import streamlit as st import os from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace from langchain_core.messages import HumanMessage, AIMessage, SystemMessage hf = os.getenv('Data_science') os.environ['HUGGINGFACEHUB_API_TOKEN'] = hf os.environ['HF_TOKEN'] = hf # --- Config --- st.set_page_config(page_title="SQL Mentor Chat", layout="centered") st.title("🗃️ SQL Mentor Chat") # --- Sidebar for selections --- st.sidebar.title("Mentor Preferences") exp_options = ['Beginner', 'Intermediate', 'Experienced'] exp = st.sidebar.selectbox("Select your experience level:", exp_options) # --- Initialize Chat Model --- sql_model_skeleton = HuggingFaceEndpoint( repo_id='marin-community/marin-8b-instruct', provider='together', temperature=0.7, max_new_tokens=110, task='conversational' ) sql_mentor = ChatHuggingFace( llm=sql_model_skeleton, repo_id='marin-community/marin-8b-instruct', provider='together', temperature=0.7, max_new_tokens=110, task='conversational' ) # --- Session State --- if "chat_history_sql" not in st.session_state: st.session_state.chat_history_sql = [] # --- Chat Form --- with st.form(key="chat_form"): user_input = st.text_input("Ask your question:") submit = st.form_submit_button("Send") # --- Chat Logic --- if submit and user_input: system_prompt = ( f"Act as a SQL mentor with {exp.lower()} experience level. " f"Explain in a very friendly manner and keep answers within 150 words. " f"If the question is not about SQL, politely say it is out of scope." ) messages = [SystemMessage(content=system_prompt), HumanMessage(content=user_input)] result = sql_mentor.invoke(messages) st.session_state.chat_history_sql.append((user_input, result.content)) # --- Display Chat History --- st.subheader("🗨️ Chat History") for user, bot in st.session_state.chat_history_sql: st.markdown(f"**You:** {user}") st.markdown(f"**Mentor:** {bot}") st.markdown("---")