import streamlit as st import os from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace from langchain_core.messages import HumanMessage, SystemMessage # Set Hugging Face tokens hf = os.getenv('Data_science') os.environ['HUGGINGFACEHUB_API_TOKEN'] = hf os.environ['HF_TOKEN'] = hf # --- Page Configuration --- st.set_page_config(page_title="ML Mentor Chat", layout="centered") # --- Inject Home Page CSS Styling --- st.markdown(""" """, unsafe_allow_html=True) # --- Page Title --- st.title("🤖 Machine Learning Mentor Chat") # --- Sidebar: Experience Level with same style --- st.sidebar.title("Mentor Preferences") experience_label = st.sidebar.selectbox( "Select your experience level:", ["Beginner", "Intermediate", "Experienced"] ) # --- Initialize Chat Model --- ml_model_skeleton = HuggingFaceEndpoint( repo_id='Qwen/Qwen3-14B', provider='nebius', temperature=0.7, max_new_tokens=50, task='conversational' ) ml_mentor = ChatHuggingFace( llm=ml_model_skeleton, repo_id='Qwen/Qwen3-14B', provider='nebius', temperature=0.7, max_new_tokens=50, task='conversational' ) PAGE_KEY = "ml_chat_history" # --- Session State Initialization --- if PAGE_KEY not in st.session_state: st.session_state[PAGE_KEY] = [] # --- Chat Input Form --- with st.form(key="chat_form"): user_input = st.text_input("Ask your question:") submit = st.form_submit_button("Send") # --- Chat Logic --- if submit and user_input: system_prompt = ( f"You are a machine learning mentor with {experience_label.lower()} experience. " f"Answer only machine learning questions in a friendly tone and within 150 words. " f"Politely inform if the question is out of scope." ) messages = [SystemMessage(content=system_prompt), HumanMessage(content=user_input)] result = ml_mentor.invoke(messages) st.session_state[PAGE_KEY].append((user_input, result.content)) # --- Chat History Display --- st.subheader("🗨️ Chat History") for user, bot in st.session_state[PAGE_KEY]: st.markdown(f"**You:** {user}") st.markdown(f"**Mentor:** {bot}") st.markdown("---")