6Morpheus6's picture
Multi image support
63a09ce verified
import os
import gc
import random
import tempfile
import torch
import devicetorch
import gradio as gr
import numpy as np
from PIL import Image
from dfloat11 import DFloat11Model
#from kontext_pipeline import FluxKontextPipeline
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
# Load Kontext model
MAX_SEED = np.iinfo(np.int32).max
pipe = FluxKontextPipeline.from_pretrained("fuliucansheng/FLUX.1-Kontext-dev-diffusers", torch_dtype=torch.bfloat16).to("cuda")
DFloat11Model.from_pretrained(
"DFloat11/FLUX.1-Kontext-dev-DF11",
device="cpu",
bfloat16_model=pipe.transformer,
)
pipe.enable_model_cpu_offload()
def concatenate_images(images, direction="horizontal"):
"""
Concatenate multiple PIL images either horizontally or vertically.
Args:
images: List of PIL Images
direction: "horizontal" or "vertical"
Returns:
PIL Image: Concatenated image
"""
if not images:
return None
# Filter out None images
valid_images = [img for img in images if img is not None]
if not valid_images:
return None
if len(valid_images) == 1:
return valid_images[0].convert("RGB")
# Convert all images to RGB
valid_images = [img.convert("RGB") for img in valid_images]
if direction == "horizontal":
# Calculate total width and max height
total_width = sum(img.width for img in valid_images)
max_height = max(img.height for img in valid_images)
# Create new image
concatenated = Image.new('RGB', (total_width, max_height), (255, 255, 255))
# Paste images
x_offset = 0
for img in valid_images:
# Center image vertically if heights differ
y_offset = (max_height - img.height) // 2
concatenated.paste(img, (x_offset, y_offset))
x_offset += img.width
else: # vertical
# Calculate max width and total height
max_width = max(img.width for img in valid_images)
total_height = sum(img.height for img in valid_images)
# Create new image
concatenated = Image.new('RGB', (max_width, total_height), (255, 255, 255))
# Paste images
y_offset = 0
for img in valid_images:
# Center image horizontally if widths differ
x_offset = (max_width - img.width) // 2
concatenated.paste(img, (x_offset, y_offset))
y_offset += img.height
return concatenated
def infer(input_images, prompt, seed=42, randomize_seed=False, guidance_scale=4.0, steps=25, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Handle input_images - it could be a single image or a list of images
if input_images is None:
raise gr.Error("Please upload at least one image.")
# If it's a single image (not a list), convert to list
if not isinstance(input_images, list):
input_images = [input_images]
# Filter out None images
valid_images = [img[0] for img in input_images if img is not None]
if not valid_images:
raise gr.Error("Please upload at least one valid image.")
# Concatenate images horizontally
concatenated_image = concatenate_images(valid_images, "horizontal")
if concatenated_image is None:
raise gr.Error("Failed to process the input images.")
# original_width, original_height = concatenated_image.size
# if original_width >= original_height:
# new_width = 1024
# new_height = int(original_height * (new_width / original_width))
# new_height = round(new_height / 64) * 64
# else:
# new_height = 1024
# new_width = int(original_width * (new_height / original_height))
# new_width = round(new_width / 64) * 64
#concatenated_image_resized = concatenated_image.resize((new_width, new_height), Image.LANCZOS)
final_prompt = f"From the provided reference images, create a unified, cohesive image such that {prompt}. Maintain the identity and characteristics of each subject while adjusting their proportions, scale, and positioning to create a harmonious, naturally balanced composition. Blend and integrate all elements seamlessly with consistent lighting, perspective, and style.the final result should look like a single naturally captured scene where all subjects are properly sized and positioned relative to each other, not assembled from multiple sources."
image = pipe(
image=concatenated_image,
prompt=final_prompt,
guidance_scale=guidance_scale,
width=concatenated_image.size[0],
height=concatenated_image.size[1],
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
gradio_temp_dir = os.environ.get('GRADIO_TEMP_DIR', tempfile.gettempdir())
temp_file_path = os.path.join(gradio_temp_dir, "image.png")
image.save(temp_file_path, format="PNG")
print(f"Image saved in: {temp_file_path}")
gc.collect()
devicetorch.empty_cache(torch)
return image, seed, gr.update(visible=True)
css="""
#col-container {
margin: 0 auto;
max-width: 90vw;
}
.input-image img {
height: 70vh; !Important
}
#row {
min-height: 40vh; !Important
}
#row-height {
height: 65px !important
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 Kontext [dev] - Multi-Image
Flux Kontext with multiple image input support - compose a new image with elements from multiple images using Kontext [dev]
""")
with gr.Row(equal_height=True):
with gr.Column():
input_images = gr.Gallery(
label="Upload image(s) for editing",
show_label=True,
elem_id="gallery_input",
columns=3,
rows=2,
object_fit="contain",
height="auto",
file_types=['image'],
type='pil'
)
with gr.Column():
result = gr.Image(label="Result", show_label=False, interactive=False, elem_classes="input-image", elem_id="row")
with gr.Row(equal_height=True):
with gr.Column():
prompt = gr.Text(
label="Prompt",
show_label=True,
lines=3,
max_lines=3,
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
container=True,
scale=1
)
with gr.Column():
download_image = gr.File(label="Download Image", elem_id="row-height", interactive=False, scale=0)
run_button = gr.Button("Run", scale=1)
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
value=4.0,
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=40,
value=25,
step=1
)
reuse_button = gr.Button("Reuse this image", visible=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [input_images, prompt, seed, randomize_seed, guidance_scale, steps],
outputs = [result, seed, reuse_button]
)
reuse_button.click(
fn = lambda image: [image] if image is not None else [], # Convert single image to list for gallery
inputs = [result],
outputs = [input_images]
)
demo.launch(mcp_server=True)