|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import gradio as gr |
|
|
|
|
|
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta" |
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
try: |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) |
|
|
|
|
|
torch_dtype = torch.float16 if DEVICE == "cuda" else torch.float32 |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_NAME, |
|
torch_dtype=torch_dtype, |
|
device_map="auto" |
|
) |
|
|
|
|
|
model.to(DEVICE) |
|
|
|
except Exception as e: |
|
raise gr.Error(f"Error al cargar el modelo: {str(e)}") |
|
|
|
|
|
def generate_response(message, history): |
|
try: |
|
|
|
messages = [{"role": "user", "content": message}] |
|
prompt = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE) |
|
|
|
|
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=256, |
|
temperature=0.7, |
|
do_sample=True, |
|
pad_token_id=tokenizer.eos_token_id |
|
) |
|
|
|
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return response.split("assistant\n")[-1].strip() |
|
|
|
except Exception as e: |
|
return f"鈿狅笍 Error en la generaci贸n: {str(e)}" |
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown("## 馃殌 Chatbot Gerardo - Versi贸n Estable") |
|
gr.ChatInterface( |
|
fn=generate_response, |
|
examples=["Hola", "驴C贸mo funciona esto?"], |
|
title="Chatbot de Gerardo", |
|
description="Asistente IA sin errores de CPU/GPU" |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |