Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import os
|
|
| 2 |
os.environ['HF_HOME'] = os.path.abspath(
|
| 3 |
os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))
|
| 4 |
)
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
import torch
|
| 7 |
import traceback
|
|
@@ -11,26 +12,41 @@ import numpy as np
|
|
| 11 |
import math
|
| 12 |
import spaces
|
| 13 |
from PIL import Image
|
|
|
|
|
|
|
| 14 |
from diffusers import AutoencoderKLHunyuanVideo
|
|
|
|
|
|
|
| 15 |
from transformers import (
|
| 16 |
LlamaModel, CLIPTextModel,
|
| 17 |
-
LlamaTokenizerFast, CLIPTokenizer,
|
|
|
|
| 18 |
)
|
|
|
|
|
|
|
| 19 |
from diffusers_helper.hunyuan import (
|
| 20 |
encode_prompt_conds, vae_decode,
|
| 21 |
vae_encode, vae_decode_fake
|
| 22 |
)
|
|
|
|
| 23 |
from diffusers_helper.utils import (
|
| 24 |
save_bcthw_as_mp4, crop_or_pad_yield_mask,
|
| 25 |
soft_append_bcthw, resize_and_center_crop,
|
| 26 |
state_dict_weighted_merge, state_dict_offset_merge,
|
| 27 |
generate_timestamp
|
| 28 |
)
|
|
|
|
| 29 |
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
| 30 |
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
| 31 |
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
| 32 |
from diffusers_helper.bucket_tools import find_nearest_bucket
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
# Set device to CPU
|
| 35 |
device = torch.device("cpu")
|
| 36 |
|
|
|
|
| 2 |
os.environ['HF_HOME'] = os.path.abspath(
|
| 3 |
os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))
|
| 4 |
)
|
| 5 |
+
|
| 6 |
import gradio as gr
|
| 7 |
import torch
|
| 8 |
import traceback
|
|
|
|
| 12 |
import math
|
| 13 |
import spaces
|
| 14 |
from PIL import Image
|
| 15 |
+
|
| 16 |
+
# Diffusers models
|
| 17 |
from diffusers import AutoencoderKLHunyuanVideo
|
| 18 |
+
|
| 19 |
+
# Transformers models
|
| 20 |
from transformers import (
|
| 21 |
LlamaModel, CLIPTextModel,
|
| 22 |
+
LlamaTokenizerFast, CLIPTokenizer,
|
| 23 |
+
AutoImageProcessor, CLIPImageProcessor, CLIPVisionModel
|
| 24 |
)
|
| 25 |
+
|
| 26 |
+
# Local helper modules
|
| 27 |
from diffusers_helper.hunyuan import (
|
| 28 |
encode_prompt_conds, vae_decode,
|
| 29 |
vae_encode, vae_decode_fake
|
| 30 |
)
|
| 31 |
+
|
| 32 |
from diffusers_helper.utils import (
|
| 33 |
save_bcthw_as_mp4, crop_or_pad_yield_mask,
|
| 34 |
soft_append_bcthw, resize_and_center_crop,
|
| 35 |
state_dict_weighted_merge, state_dict_offset_merge,
|
| 36 |
generate_timestamp
|
| 37 |
)
|
| 38 |
+
|
| 39 |
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
| 40 |
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
| 41 |
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
| 42 |
from diffusers_helper.bucket_tools import find_nearest_bucket
|
| 43 |
|
| 44 |
+
# Thread utilities
|
| 45 |
+
from diffusers_helper.thread_utils import AsyncStream, async_run
|
| 46 |
+
|
| 47 |
+
# Gradio progress bar utils
|
| 48 |
+
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
| 49 |
+
|
| 50 |
# Set device to CPU
|
| 51 |
device = torch.device("cpu")
|
| 52 |
|