import gradio as gr import openai import os # Initialize the OpenAI API client with your actual API key class Classifier: def __init__(self): openai.api_key = os.getenv("OPENAI_API_KEY") def classify_text(self,text): # Specify the desired model and additional options response = openai.Completion.create( engine="text-davinci-003", prompt = f"""Your are Mental healthcare Assistant. Classify the following input message from the patient if the message related to Mental healtcare issue return 'True', Else not related return 'False': ```message from the patient: {text}``` """ , temperature=0, max_tokens=50, # We only need a single token as the classification result n=1, stop=None, ) # Extract and return the generated classification result generated_text = response.choices[0].text.strip() return generated_text def clear_func(self): return " "," " def gradio_interface(self): with gr.Blocks(css="style.css",theme=gr.themes.Soft()) as demo: gr.HTML("""

Mental healthcare

""") with gr.Column(elem_id="col-container"): with gr.Row(elem_id="row-flex"): with gr.Column(scale=0.90, min_width=160): question =gr.Textbox( show_label=True, label="Question", ).style(container=True) with gr.Column(scale=0.10, min_width=160): result =gr.Textbox( show_label=True, label="Result", ).style(container=True) with gr.Row(elem_id="row-flex"): with gr.Column(scale=0.50, min_width=0): submit=gr.Button(value="Submit") with gr.Column(scale=0.50): emptyBtn = gr.Button("🧹 Clear",) submit.click(self.classify_text,question,result) emptyBtn.click(self.clear_func,[],[question,result]) demo.queue().launch(debug=True) if __name__ == "__main__": classifier = Classifier() classifier.gradio_interface()