File size: 20,857 Bytes
7805c1f
 
 
 
 
 
 
 
 
 
 
 
 
 
7bc7501
58579f9
7805c1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
808db63
7805c1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58579f9
7805c1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c24cde
 
 
 
7805c1f
 
 
 
 
808db63
7805c1f
 
 
 
 
 
 
 
 
 
 
9c24cde
7805c1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
808db63
7805c1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
808db63
7805c1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1be939
7805c1f
 
 
 
 
43d9ba9
9c24cde
 
7805c1f
 
 
9c24cde
7805c1f
9c24cde
7805c1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c24cde
7805c1f
 
 
a038763
7805c1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
from openai import AzureOpenAI
from langchain_openai import AzureChatOpenAI
import os
import ffmpeg
from typing import List
from moviepy.editor import VideoFileClip
import nltk
from sklearn.feature_extraction.text import TfidfVectorizer
from langchain import HuggingFaceHub, PromptTemplate, LLMChain
from huggingface_hub import InferenceClient
import gradio as gr
import requests
from gtts import gTTS
import logging
# from langchain.document_loaders import UnstructuredFileLoader
from langchain_community.document_loaders import PyPDFLoader
import os
import PyPDF2
nltk.download('punkt')
nltk.download('stopwords')


class PDFAnalytics:
    """
    Class for performing analytics on videos including transcription, summarization, topic generation,
    and extraction of important sentences.
    """

    def __init__(self):
      """
      Initialize the VideoAnalytics object.

      Args:
          hf_token (str): Hugging Face API token.
      """
      # Initialize AzureOpenAI client
      self.client = AzureOpenAI()

      hf_token = os.getenv("HF_TOKEN")

      self.mistral_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1",token=hf_token)

      # Initialize extracted_text variable
      self.extracted_text = ""

      self.openai_llm = AzureChatOpenAI(
          deployment_name="GPT-3",
      )


      # Configure logging settings
      logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

    def _extract_text_from_pdfs(self, file_path: str) -> List[str]:
        """Extract text content from PDF files.
        Args:
            file_paths (List[str]): List of file paths.
        Returns:
            List[str]: Extracted text from the PDFs.
        """
        try:

          loader = PyPDFLoader(file_path)
          pages = loader.load()

          self.extracted_text = pages[0].page_content
          return pages[0].page_content
        except Exception as e:
            logging.error(f"Error pdf extraction: {e}")
            return ""

    def generate_summary(self,model) -> str:
        """
        Generate a summary of the pdf.

        Returns:
            str: Generated summary.
        """
        try:
          if model == "OpenAI":
            # Define a conversation between system and user
            conversation = [
              {"role": "system", "content": "You are a Summarizer"},
              {"role": "user", "content": f"""summarize the following text delimited by triple backticks.Output must in english.give me a detailed summary.extractive summary working br like extract sentences from given text to return as summary,abstractive summary working be like summary of what about the given text.don't make bullet points write like a passage.
                      In two format of Outputs given below:
                      Abstractive Summary:
                      Extractive Summary:
                        ```{self.extracted_text}```
                """}
                ]
            # Generate completion using ChatGPT model
            response = self.client.chat.completions.create(
                model="GPT-3",
                messages=conversation,
                temperature=0,
                max_tokens=1000
            )
            # Get the generated summary message
            message = response.choices[0].message.content
            return message

          elif model == "Mixtral":
              task = "summary"
              # Generate answer using Mixtral model
              prompt = f"""<s>[INST] summarize the following text delimited by triple backticks.Output must in english.give me a detailed summary.extractive summary working br like extract sentences from given text to return as summary,abstractive summary working be like summary of what about the given text.don't make bullet points write like a passage.
                      In two format of Outputs given below:
                      Abstractive Summary:
                      Extractive Summary:
            ```data:{self.extracted_text}```[/INST]"""
              result = self.generate(prompt)
              return result

        except Exception as e:
            logging.error(f"Error generating video summary: {e}")
            return ""


    def generate_topics(self,model) -> str:
        """
        Generate topics from the pdf.

        Returns:
            str: Generated topics.
        """
        try:
          if model == "OpenAI":
            # Define a conversation between system and user
            conversation = [
              {"role": "system", "content": "You are a Topic Generator"},
              {"role": "user", "content": f"""generate single Topics from the following text don't make sentence for topic generation,delimited by triple backticks.Output must in english.
                        list out the topics:
                        Topics:
                        ```{self.extracted_text}```
                """}
                ]
            # Generate completion using ChatGPT model
            response = self.client.chat.completions.create(
                model="GPT-3",
                messages=conversation,
                temperature=0,
                max_tokens=1000
            )
            # Get the generated topics message
            message = response.choices[0].message.content
            return message
          elif model == "Mixtral":
              task = "topics"
              # Generate answer using Mixtral model
              prompt = f"""<s>[INST]generate single Topics from the following text don't make sentence for topic generation,delimited by triple backticks.Output must in english.
                      list out the topics:
                      Topics:
            ```data:{self.extracted_text}```[/INST]"""
              result = self.generate(prompt)
              return result

        except Exception as e:
            logging.error(f"Error generating topics: {e}")
            return ""

    def generate_important_sentences(self,model) -> str:
        """
        Extract important sentences from the pdf.

        Returns:
            str: Extracted important sentences.
        """
        try:
          if model == "OpenAI":
            # Define a conversation between system and user
            conversation = [
              {"role": "system", "content": "You are a Sentence Extracter"},
              {"role": "user", "content": f""" Extract Most important of the sentences from text.the text is given in triple backtics.
                        listout the sentences:

                        ```{self.extracted_text}```
                """}
                ]
            # Generate completion using ChatGPT model
            response = self.client.chat.completions.create(
                model="GPT-3",
                messages=conversation,
                temperature=0,
                max_tokens=1000
            )
            # Get the generated topics message
            message = response.choices[0].message.content
            return message
          elif model == "Mixtral":
              task = "topics"
              # Generate answer using Mixtral model
              prompt = f"""<s>[INST] Extract Most important of the sentences from text.the text is given in triple backtics.
                        listout the sentences:

                        ```{self.extracted_text}```[/INST]"""
              result = self.generate(prompt)
              return result

        except Exception as e:
            logging.error(f"Error Extracting  Important Sentence: {e}")
            return ""


   
    def get_token_size(self,text, characters_per_token=4):
      token_size = len(text) // characters_per_token
      if len(text) % characters_per_token != 0:
          token_size += 1
      return token_size


    def generate(self, task: str, temperature=0.9, top_p=0.95,
                 repetition_penalty=1.0) -> str:
        """
        Generates text based on the prompt and pdf text.

        Args:
            prompt (str): The prompt for generating text.
            transcribed_text (str): The pdf text for analysis.
            temperature (float): Controls the randomness of the sampling. Default is 0.9.
            max_new_tokens (int): Maximum number of tokens to generate. Default is 5000.
            top_p (float): Nucleus sampling parameter. Default is 0.95.
            repetition_penalty (float): Penalty for repeating the same token. Default is 1.0.

        Returns:
            str: Generated text.
        """
        try:
          temperature = float(temperature)
          if temperature < 1e-2:
              temperature = 1e-2
          top_p = float(top_p)
          characters_per_token = 2
          token_size = self.get_token_size(self.extracted_text, characters_per_token)
          # print("input_token",token_size)

          output_token_size = 32768 - token_size
          # print("output_token",output_token_size)

          if token_size < 17000:
            generate_kwargs = dict(
                temperature=temperature,
                max_new_tokens=output_token_size,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                do_sample=True,
                seed=42,
            )



            # Generate text using the mistral client
            stream = self.mistral_client.text_generation(task, **generate_kwargs, stream=True, details=True, return_full_text=False)
            output = ""
            # Concatenate generated text
            for response in stream:
                output += response.token.text
            return output.replace("</s>","")
          else:
            return "Out of token size limit"
        except Exception as e:
            logging.error(f"Error in text generation: {e}")
            return "An error occurred during text generation."

    def pdf_qa(self, question: str, model: str) -> str:
        """
        Performs pdf question answering.

        Args:
            question (str): The question asked by the user.
            model (str): The language model to be used ("OpenAI" or "Mixtral").

        Returns:
            str: Answer to the user's question.
        """
        try:
          if model == "OpenAI":
            template = """you are the universal language expert .your task is  analyze the given  text and user ask any question about given text answer to the user question.otherwise reply i don't know.
            extracted_text:{text}
            user_question:{question}"""

            prompt = PromptTemplate(template=template, input_variables=["text","question"])
            llm_chain = LLMChain(prompt=prompt, verbose=True, llm=self.openai_llm)

            # Run the language model chain
            result = llm_chain.run({"text":self.extracted_text,"question":question})
            return result

          elif model == "Mixtral":
              task = "pdf_qa"
              # Generate answer using Mixtral model
              prompt = "<s>"
              prompt = f"""[INST] you are the german language and universal language expert .your task is  analyze the given data and user ask any question about given data answer to the user question.your returning answer must in user's language.otherwise reply i don't know.
                data:{self.extracted_text}
                question:{question}[/INST]"""

              prompt1 = f"[INST] {question} [/INST]"
              pdfqa_prompt = prompt+prompt1
              result = self.generate(pdfqa_prompt)
              return result
        except Exception as e:
            logging.error(f"Error in video question answering: {e}")
            return "An error occurred during video question answering."


    def write_text_files(self, text: str, filename: str) -> None:
        """
        Write text to a file.

        Args:
            text (str): Text to be written to the file.
            filename (str): Name of the file.
        """
        try:
          file_path = f"{filename}.txt"
          with open(file_path, 'w') as file:
              # Write content to the file
              file.write(text)
        except Exception as e:
            logging.error(f"Error writing text to file: {e}")

    def save_audio_with_gtts(self, text: str, filename: str) -> str:
        """
        Save audio file using Google Text-to-Speech (gTTS).

        Args:
            text (str): The text to be converted to speech.
            filename (str): The name of the file to save.

        Returns:
            str: The filename of the saved audio file.
        """
        try:
            tts = gTTS(text=text, lang='en')
            tts.save(filename)
            logging.info(f"Audio saved successfully as {filename}")
            return filename
        except Exception as e:
            logging.error(f"An error occurred while saving audio: {e}")
            return None

    def split_20_pages(self, pdf_path: str) -> int:
        """
        Split a PDF into parts, with each part containing 20 pages or less.

        Args:
            pdf_path (str): The path to the PDF file.

        Returns:
            int: The number of parts created.
        """
        def extract_text_from_pdf(pdf_path: str, start_page: int, end_page: int) -> str:
            """
            Extract text from a range of pages in a PDF file.

            Args:
                pdf_path (str): The path to the PDF file.
                start_page (int): The starting page number.
                end_page (int): The ending page number.

            Returns:
                str: The extracted text.
            """
            text = ""
            with open(pdf_path, 'rb') as file:
                reader = PyPDF2.PdfReader(file)
                for page_num in range(start_page, end_page):
                    page = reader.pages[page_num]
                    text += page.extract_text()
            return text
        try:
          # Assuming your PDF file is named 'your_pdf_file.pdf'
          pdf_reader = PyPDF2.PdfReader(pdf_path)
          num_pages = len(pdf_reader.pages)
          total_pages = num_pages
          desired_pages = 20

          # Determine how many loops you need
          num_loops = total_pages // desired_pages
          remainder_pages = total_pages % desired_pages

          for i in range(num_loops):
              start_page = i * desired_pages
              end_page = (i + 1) * desired_pages
              text = extract_text_from_pdf(pdf_path, start_page, end_page)
              # Do something with the extracted text, like saving to a file
              with open(f'extracted_text_part_{i}.txt', 'w', encoding='utf-8') as text_file:
                  text_file.write(text)

          # For the remaining pages
          if remainder_pages > 0:
              start_page = num_loops * desired_pages
              end_page = total_pages
              text = extract_text_from_pdf(pdf_path, start_page, end_page)
              # Do something with the extracted text, like saving to a file
              with open(f'extracted_text_part_{num_loops}.txt', 'w', encoding='utf-8') as text_file:
                  text_file.write(text)
          return num_loops
        except Exception as e:
            logging.error(f"An error occurred while splitting PDF: {e}")
            return 0

    def main(self,input_path: str = None,model: str = None) -> tuple:
        """
        Perform PDF analytics.

        Args:
            input_path (str): Input path for the File.

        Returns:
            tuple: Summary, important sentences, and topics.
        """
        try:
            # Download the video if input_path is provided, otherwise use the provided video path
          pdf_reader = PyPDF2.PdfReader(input_path.name)
          num_pages = len(pdf_reader.pages)
          if input_path and num_pages > 20:
              num_loops = self.split_20_pages(input_path.name)
          elif num_pages < 20:
              self._extract_text_from_pdfs(input_path.name)
              num_loops = 1
          overall_summary = "\n"
          overall_important_sentences = "\n"
          overall_topics = "\n"
          for i in range(num_loops):
            self._extract_text_from_pdfs(f"extracted_text_part_{i}.txt")
            ordinal_suffix = "th" if 11 <= (i+1) % 100 <= 13 else {1: "st", 2: "nd", 3: "rd"}.get((i+1) % 10, "th")
            text = f"{i+1}{ordinal_suffix} 20 pages Summary:\n\n"
            summary = self.generate_summary(model)
            overall_summary += text + summary +"\n\n"
            important_sentences = self.generate_important_sentences(model)
            important_sent_text = f"{i+1}{ordinal_suffix} 20 pages Important Sentence:\n\n"
            overall_important_sentences += important_sent_text + important_sentences + "\n\n"
            topics_text = f"{i+1}{ordinal_suffix} 20 pages Topics:\n\n"
            topics = self.generate_topics(model)
            overall_topics += topics_text + topics + "\n\n"

          self.write_text_files(overall_summary,"Summary")
          summary_voice = self.save_audio_with_gtts(overall_summary,"summary.mp3")
          self.write_text_files(overall_important_sentences,"Important_Sentence")
          important_sentences_voice = self.save_audio_with_gtts(overall_important_sentences,"important_sentences.mp3")
          self.write_text_files(overall_topics,"Topics")
          topics_voice = self.save_audio_with_gtts(overall_topics,"topics.mp3")

          # Return the generated summary, important sentences, and topics
          return overall_summary,overall_important_sentences,overall_topics,summary_voice,important_sentences_voice,topics_voice
        except Exception as e:
            # Log any errors that occur during video analytics
            logging.error(f"Error in main function: {e}")
            return "", "", ""

    def file_show_status(self,filepath):
        return "File Uploaded Successfully"

    def gradio_interface(self):
        with gr.Blocks(css="style.css",theme=gr.themes.Soft()) as demo:
            gr.HTML("""<center><h1>PDF Analytics</h1></center>""")
            with gr.Row():
              with gr.Column(scale=0.70):
                    file_output = gr.Textbox(label="File Status")
              with gr.Column(scale=0.30):
                    model_selection = gr.Dropdown(["OpenAI", "Mixtral"],label="Model",value="model")
            with gr.Row():
                    upload_button = gr.UploadButton(
                        "Browse File",
                        file_types=[".pdf"]
                    )
            with gr.Row():
              submit_btn = gr.Button(value="Submit")
            with gr.Tab("Summary"):
              with gr.Row():
                  summary = gr.Textbox(show_label=False,lines=10)
              with gr.Row():
                  summary_download = gr.DownloadButton(label="Download",value="Summary.txt",visible=True,size='lg',elem_classes="download_button")
              with gr.Row():
                  summary_audio = gr.Audio(show_label= False,elem_classes='audio_class')
            with gr.Tab("Important Sentences"):
              with gr.Row():
                  Important_Sentences = gr.Textbox(show_label=False,lines=10)
              with gr.Row():
                  sentence_download = gr.DownloadButton(label="Download",value="Important_Sentence.txt",visible=True,size='lg',elem_classes="download_button")
              with gr.Row():
                  important_sentence_audio = gr.Audio(show_label = False,elem_classes='audio_class')
            with gr.Tab("Topics"):
              with gr.Row():
                  Topics = gr.Textbox(show_label=False,lines=10)
              with gr.Row():
                  topics_download = gr.DownloadButton(label="Download",value="Topics.txt",visible=True,size='lg',elem_classes="download_button")
              with gr.Row():
                  topics_audio = gr.Audio(show_label=False,elem_classes='audio_class')
            with gr.Tab("PDF QA"):
              with gr.Row():
                with gr.Column(scale=0.70):
                  question = gr.Textbox(show_label=False,placeholder="Ask Your Questions...")
                with gr.Column(scale=0.30):
                  model = gr.Dropdown(["OpenAI", "Mixtral"],show_label=False,value="model")
              with gr.Row():
                  result = gr.Textbox(label='Answer',lines=10)
              upload_button.upload(self.file_show_status,upload_button,file_output)
              submit_btn.click(self.main,[upload_button,model_selection],[summary,Important_Sentences,Topics,summary_audio,important_sentence_audio,topics_audio])
              question.submit(self.pdf_qa,[question,model],result)
        demo.launch()

if __name__ == "__main__":
    pdf_analytics = PDFAnalytics()
    pdf_analytics.gradio_interface()