File size: 20,038 Bytes
ad3484b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a427476
ad3484b
a427476
01ca724
a427476
ad3484b
 
 
 
 
1fb323e
ad3484b
 
 
 
 
 
1fb323e
ad3484b
 
 
 
2ed746b
ad3484b
 
 
 
2ed746b
ad3484b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ed746b
 
 
 
ad3484b
1fb323e
 
ad3484b
 
2ed746b
ad3484b
 
 
 
2ed746b
 
ad3484b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ed746b
 
 
 
ad3484b
 
1fb323e
 
ad3484b
 
a7c3b87
ad3484b
 
 
 
 
 
2ed746b
1fb323e
 
ad3484b
 
1fb323e
ad3484b
1fb323e
 
ad3484b
 
a7c3b87
ad3484b
 
 
a7c3b87
ad3484b
c2f1583
784e96b
a7c3b87
ad3484b
a7c3b87
ad3484b
a7c3b87
 
 
 
 
ad3484b
a7c3b87
 
 
 
 
 
 
 
 
ad3484b
c2f1583
a7c3b87
 
 
 
 
 
 
 
 
 
 
 
ad3484b
 
 
 
 
a7c3b87
 
ad3484b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ed746b
ad3484b
a7c3b87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad3484b
 
 
 
 
 
 
 
 
 
 
 
a7c3b87
ad3484b
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import gradio as gr
import numpy as np
import tensorflow as tf
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models, transforms
import cv2
from tensorflow.keras.models import load_model
from PIL import Image
import os
import pickle
from tensorflow.keras import backend as K

# I/O image dimensions
DISPLAY_DIMS = (256, 256)  # For display
CLASS_DIMS = (224, 224)    # For classification model input
SEG_DIMS = (128, 128)      # For segmentation model input

# Device configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Define Dice Coefficient function for TensorFlow segmentation model
def dice_coefficient(y_true, y_pred, smooth=1):
    y_true_f = K.flatten(tf.cast(y_true, tf.float32))
    y_pred_f = K.flatten(tf.cast(y_pred, tf.float32))
    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)

# Define Classification Model (PyTorch)
class ClassificationModel(nn.Module):
    def __init__(self, input_dim):
        super(ClassificationModel, self).__init__()
        self.fc1 = nn.Linear(input_dim, 128)
        self.fc2 = nn.Linear(128, 64)
        self.fc3 = nn.Linear(64, 16)
        self.fc4 = nn.Linear(16, 2)  # Binary Classification
        self.dropout = nn.Dropout(0.3)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = self.dropout(x)
        x = F.relu(self.fc2(x))
        x = self.dropout(x)
        x = F.relu(self.fc3(x))
        x = self.fc4(x)
        return x

# Load models
try:
    # Load ResNet feature extractor
    resnet = models.resnet18(pretrained=True)
    resnet = nn.Sequential(*list(resnet.children())[:-1])  # Remove FC layer
    resnet.to(device)
    resnet.eval()
    
    # Load Feature Selector
    with open("feature_selector.pkl", "rb") as f:
        selector = pickle.load(f)
    
    # Load Classification Model
    input_dim = selector.get_support().sum()  # Number of selected features
    classification_model = ClassificationModel(input_dim).to(device)
    classification_model.load_state_dict(torch.load("trained_model.pth", map_location=device))
    classification_model.eval()
    
    # Image transformation for PyTorch model
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])
    
    # Load segmentation model
    segmentation_model = None
    if os.path.exists("segmentation_model.h5"):
        segmentation_model = load_model("segmentation_model.h5", 
                                       custom_objects={'dice_coefficient': dice_coefficient}, 
                                       compile=False)
        print("Loaded segmentation_model.h5")
    elif os.path.exists("best_model.keras"):
        segmentation_model = load_model("best_model.keras", 
                                       custom_objects={'dice_coefficient': dice_coefficient}, 
                                       compile=False)
        print("Loaded best_model.keras")
    
    models_loaded = True
    print("Models loaded successfully!")
except Exception as e:
    print(f"Error loading models: {e}")
    print("The app will run in demo mode with simulated predictions.")
    models_loaded = False
    resnet = None
    selector = None
    classification_model = None
    segmentation_model = None
    transform = None

# Function to preprocess image for classification
def preprocess_for_classification(image):
    if not isinstance(image, Image.Image):
        image = Image.fromarray(np.array(image))
    image = image.convert("RGB")  # Ensure RGB
    return transform(image).unsqueeze(0).to(device)

# Function to preprocess image for segmentation
def preprocess_for_segmentation(image):
    if isinstance(image, Image.Image):
        image = np.array(image)
    
    # Convert to RGB if needed
    if len(image.shape) == 2:  # Grayscale
        image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
    elif image.shape[2] == 4:  # RGBA
        image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
    
    # Resize to segmentation model's input size
    image = cv2.resize(image, SEG_DIMS)
    
    # Normalize
    image = image / 255.0
    
    # Add batch dimension
    image = np.expand_dims(image, axis=0)
    
    return image

# Function to classify COVID-19 using PyTorch model
def classify_image(image):
    if image is None:
        return "No image provided", None, 0
    
    try:
        if models_loaded and resnet is not None and classification_model is not None:
            # Preprocess and extract features
            img_tensor = preprocess_for_classification(image)
            
            with torch.no_grad():
                features = resnet(img_tensor).view(-1).cpu().numpy()
            
            # Select features using the feature selector
            features_selected = selector.transform(features.reshape(1, -1))
            input_tensor = torch.tensor(features_selected, dtype=torch.float32).to(device)
            
            # Make prediction
            with torch.no_grad():
                output = classification_model(input_tensor)
                print("Classification output:",output)
                predicted_class = torch.argmax(output, dim=1).item()
                print("Classification predicted class:",predicted_class)
                probabilities = F.softmax(output, dim=1)
                print("Classification probabilities:",probabilities)
                confidence = probabilities[0][predicted_class].item()
            
            # Map class index to label (0 -> COVID, 1 -> Non-COVID)
            status = "COVID" if predicted_class == 0 else "Non-COVID"
            
            return f"Predicted: {status} (Class: {predicted_class}, Confidence: {confidence:.2f})", image, predicted_class
        else:
            # Demo mode with simulated predictions
            import random
            predicted_class = random.randint(0, 1)  # 0 or 1
            confidence = random.uniform(0.7, 0.99)
            status = "COVID" if predicted_class == 0 else "Non-COVID"
            return f"Predicted: {status} (Class: {predicted_class}, Confidence: {confidence:.2f}) [DEMO]", image, predicted_class
    except Exception as e:
        return f"Error during classification: {str(e)}", image, 0

# Function to segment lesions in CT images
def segment_image(image):
    if image is None:
        return "No segmentation performed", None, None
    
    try:
        if models_loaded and segmentation_model is not None:
            # Preprocess for segmentation
            input_image = preprocess_for_segmentation(image)
            
            # Predict mask
            pred_mask = segmentation_model.predict(input_image)
            binary_mask = (pred_mask > 0.5).astype(np.uint8)
            
            # Create colored overlay
            if isinstance(image, Image.Image):
                display_image = np.array(image)
            else:
                display_image = np.array(image)
                
            # Resize original image for display
            display_image = cv2.resize(display_image, DISPLAY_DIMS)
            
            # Resize predicted mask to match display image
            display_mask = cv2.resize(binary_mask[0].squeeze(), DISPLAY_DIMS)
            
            # Create overlay
            overlay = display_image.copy()
            if len(overlay.shape) == 2:  # If grayscale
                overlay = cv2.cvtColor(overlay, cv2.COLOR_GRAY2RGB)
            elif overlay.shape[2] == 4:  # If RGBA
                overlay = cv2.cvtColor(overlay, cv2.COLOR_RGBA2RGB)
            
            # Apply red mask on segmented areas
            overlay[:, :, 0] = np.maximum(overlay[:, :, 0], display_mask * 255)  # Red channel
            overlay[:, :, 1] = np.where(display_mask > 0, overlay[:, :, 1] * 0.5, overlay[:, :, 1])  # Reduce green
            overlay[:, :, 2] = np.where(display_mask > 0, overlay[:, :, 2] * 0.5, overlay[:, :, 2])  # Reduce blue
            
            # Calculate lesion percentage
            lesion_percentage = np.sum(binary_mask) / binary_mask.size * 100
            
            # Enhance the segmentation mask for visibility
            # Convert to 3-channel image with a heatmap colormap
            enhanced_mask = cv2.normalize(display_mask, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
            enhanced_mask = cv2.applyColorMap(enhanced_mask, cv2.COLORMAP_JET)  # Apply color map for visibility
            
            # return f"Lesion Coverage: {lesion_percentage:.2f}%", enhanced_mask, overlay
            return enhanced_mask, overlay
        else:
            # Demo mode with simulated segmentation
            return simulate_segmentation(image)
    except Exception as e:
        return f"Error during segmentation: {str(e)}", None, image

# Function to simulate segmentation for demo mode
def simulate_segmentation(image):
    # For demo mode, create a simulated segmentation
    import random
    
    if isinstance(image, Image.Image):
        display_image = np.array(image)
    else:
        display_image = np.array(image)
        
    if len(display_image.shape) == 2:
        display_image = cv2.cvtColor(display_image, cv2.COLOR_GRAY2RGB)
    elif display_image.shape[2] == 4:
        display_image = cv2.cvtColor(display_image, cv2.COLOR_RGBA2RGB)
        
    display_image = cv2.resize(display_image, DISPLAY_DIMS)
    
    # Create a blank mask
    mask = np.zeros(DISPLAY_DIMS, dtype=np.uint8)
    
    # Simulate random blobs
    num_blobs = random.randint(1, 3)
    for i in range(num_blobs):
        center_x = random.randint(50, DISPLAY_DIMS[0]-50)
        center_y = random.randint(50, DISPLAY_DIMS[1]-50)
        radius = random.randint(10, 30)
        cv2.circle(mask, (center_x, center_y), radius, 1, -1)
    
    # Create colored overlay
    overlay = display_image.copy()
    
    # Apply red mask on segmented areas
    overlay[:, :, 0] = np.maximum(overlay[:, :, 0], mask * 255)  # Red channel
    overlay[:, :, 1] = np.where(mask > 0, overlay[:, :, 1] * 0.5, overlay[:, :, 1])  # Reduce green
    overlay[:, :, 2] = np.where(mask > 0, overlay[:, :, 2] * 0.5, overlay[:, :, 2])  # Reduce blue
    
    # Enhance the mask for visibility
    enhanced_mask = cv2.normalize(mask, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
    enhanced_mask = cv2.applyColorMap(enhanced_mask, cv2.COLORMAP_JET)  # Apply color map for visibility
    
    lesion_percentage = np.sum(mask) / mask.size * 100
    
    # return f"Lesion Coverage: {lesion_percentage:.2f}% [DEMO]", enhanced_mask, overlay
    return enhanced_mask, overlay

# Function to run both classification and segmentation
def process_image(image):
    if image is None:
        return None, "No image provided", None, "No image provided"
    
    # Run classification
    classification_result, processed_image, predicted_class = classify_image(image)
    
    # Run segmentation (now for all images regardless of class)
    # segmentation_result, segmentation_map, overlay_image = segment_image(image)
    segmentation_map, overlay_image = segment_image(image)
    
    # Combine results
    # combined_result = f"{classification_result}\n{segmentation_result}"
    
    # return overlay_image, combined_result, segmentation_map, classification_result
    return overlay_image, classification_result, segmentation_map, classification_result

# Load example images
def load_covid_examples():
    examples = []
    
    try:
        # Look for COVID example images
        for i in range(1, 6):
            covid_path = f"./examples/Covid ({i}).png"
            if os.path.exists(covid_path):
                examples.append([covid_path])
        
        # If no COVID examples were found, create placeholders
        if len(examples) == 0:
            for i in range(1, 6):
                covid_img = np.ones((256, 256, 3), dtype=np.uint8) * 200
                cv2.putText(covid_img, f"COVID Example {i}", (30, 128), 
                            cv2.FONT_HERSHEY_SIMPLEX, 0.8, (100, 100, 100), 2)
                examples.append([covid_img])
    except Exception as e:
        print(f"Could not load COVID examples: {e}")
    
    return examples

def load_non_covid_examples():
    examples = []
    
    try:
        # Look for Non-COVID example images
        for i in range(1, 6):
            non_covid_path = f"./examples/Non-Covid ({i}).png"
            if os.path.exists(non_covid_path):
                examples.append([non_covid_path])
        
        # If no Non-COVID examples were found, create placeholders
        if len(examples) == 0:
            for i in range(1, 6):
                non_covid_img = np.ones((256, 256, 3), dtype=np.uint8) * 200
                cv2.putText(non_covid_img, f"Non-COVID Example {i}", (30, 128), 
                            cv2.FONT_HERSHEY_SIMPLEX, 0.8, (100, 100, 100), 2)
                examples.append([non_covid_img])
    except Exception as e:
        print(f"Could not load Non-COVID examples: {e}")
    
    return examples

class GradioInterface:
    def __init__(self):
        self.covid_examples = load_covid_examples()
        self.non_covid_examples = load_non_covid_examples()

    def create_interface(self):
        app_styles = """
        <style>
            /* Global Styles */
            body, #root {
                font-family: Helvetica, Arial, sans-serif;
                background-color: #1a1a1a;
                color: #fafafa;
            }
            /* Header Styles */
            .app-header {
                background: linear-gradient(45deg, #1a1a1a 0%, #333333 100%);
                padding: 24px;
                border-radius: 8px;
                margin-bottom: 24px;
                text-align: center;
            }
            .app-title {
                font-size: 48px;
                margin: 0;
                color: #fafafa;
            }
            .app-subtitle {
                font-size: 24px;
                margin: 8px 0 16px;
                color: #fafafa;
            }
            .app-description {
                font-size: 16px;
                line-height: 1.6;
                opacity: 0.8;
                margin-bottom: 24px;
            }
            /* Button Styles */
            .publication-links {
                display: flex;
                justify-content: center;
                flex-wrap: wrap;
                gap: 8px;
                margin-bottom: 16px;
            }
            .publication-link {
                display: inline-flex;
                align-items: center;
                padding: 8px 16px;
                background-color: #333;
                color: #fff !important;
                text-decoration: none !important;
                border-radius: 20px;
                font-size: 14px;
                transition: background-color 0.3s;
            }
            .publication-link:hover {
                background-color: #555;
            }
            .publication-link i {
                margin-right: 8px;
            }
            /* Content Styles */
            .content-container {
                background-color: #2a2a2a;
                border-radius: 8px;
                padding: 24px;
                margin-bottom: 24px;
            }
            /* Image Styles */
            .image-preview img {
                max-width: 256px;
                max-height: 256px;  
                margin: 0 auto;
                border-radius: 4px;
                display: block;
                object-fit: contain;  
            }
            /* Control Styles */
            .control-panel {
                background-color: #333;
                padding: 16px;
                border-radius: 8px;
                margin-top: 16px;
            }
            /* Gradio Component Overrides */
            .gr-button {
                background-color: #4a4a4a;
                color: #fff;
                border: none;
                border-radius: 4px;
                padding: 8px 16px;
                cursor: pointer;
                transition: background-color 0.3s;
            }
            .gr-button:hover {
                background-color: #5a5a5a;
            }
            .gr-input, .gr-dropdown {
                background-color: #3a3a3a;
                color: #fff;
                border: 1px solid #4a4a4a;
                border-radius: 4px;
                padding: 8px;
            }
            .gr-form {
                background-color: transparent;
            }
            .gr-panel {
                border: none;
                background-color: transparent;
            }
        </style>
        """

        header_html = f"""
        <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bulma@0.9.3/css/bulma.min.css">
        <link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.4/css/all.css">
        {app_styles}
        <div class="app-header">
            <h1 class="app-title">COVID-19 CT Analysis System</h1>
            <h2 class="app-subtitle">Classification & Lesion Segmentation</h2>
            <p class="app-description">
                Upload CT scan images to detect COVID-19 and segment lesions if present.
                The system uses ResNet-18 for feature extraction and a U-Net for lesion segmentation.
            </p>
        </div>
        """

        js_func = """
        function refresh() {
            const url = new URL(window.location);
            if (url.searchParams.get('__theme') !== 'dark') {
                url.searchParams.set('__theme', 'dark');
                window.location.href = url.href;
            }
        }
        """

        with gr.Blocks(js=js_func, theme=gr.themes.Default()) as demo:
            gr.HTML(header_html)
            
            with gr.Row(elem_classes="content-container"):
                with gr.Column():
                    input_image = gr.Image(label="Upload CT Scan Image", type="pil", image_mode="RGB", elem_classes="image-preview")
                    run_button = gr.Button("Analyze Image", elem_classes="gr-button")
                    
                    with gr.Row():
                        with gr.Column(scale=1):
                            covid_examples_title = gr.Markdown("### COVID Examples")
                            covid_examples = gr.Examples(
                                examples=self.covid_examples,
                                inputs=input_image,
                                label=""
                            )
                        
                        with gr.Column(scale=1):
                            non_covid_examples_title = gr.Markdown("### Non-COVID Examples")
                            non_covid_examples = gr.Examples(
                                examples=self.non_covid_examples,
                                inputs=input_image,
                                label=""
                            )
                    
                with gr.Column():
                    with gr.Tab("Results"):
                        overlay_image = gr.Image(label="Segmentation Overlay", elem_classes="image-preview")
                        result_text = gr.Textbox(label="Analysis Results")
                        
                    with gr.Tab("Segmentation Details"):
                        segmentation_image = gr.Image(label="Lesion Segmentation Map", elem_classes="image-preview")
                        classification_text = gr.Textbox(label="Classification Details")

            run_button.click(
                fn=process_image,
                inputs=input_image,
                outputs=[overlay_image, result_text, segmentation_image, classification_text],
            )

        return demo

def main():
    interface = GradioInterface()
    demo = interface.create_interface()
    demo.launch(share=True)

if __name__ == "__main__":
    main()