File size: 36,449 Bytes
a0b9d5e 8ee0e70 d18eb0b a0b9d5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 |
# app.py — Drilling Dashboard + 3D Trajectory Agent + Voice Chat
# - Upload daily reports -> KPIs + anomaly distribution + Plotly charts
# - Optional 3D Agent: upload Survey PDF + Daily Report -> 3D well path + anomaly markers
# - OpenAI (optional) for anomaly classification + Whisper voice transcription
# - Voice input recorder near Chat
import io, os, re, json, math, tempfile
from typing import Dict, Any, List, Tuple, Optional
import streamlit as st
import pdfplumber
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
# Make uploads work behind HF proxy
# Optional TTS
try:
from gtts import gTTS
GTTS_OK = True
except Exception:
GTTS_OK = False
# Optional voice recorder component
try:
from audio_recorder_streamlit import audio_recorder
HAS_REC = True
except Exception:
HAS_REC = False
st.set_page_config(page_title="Drilling Report Anomaly Dashboard",
layout="wide",
page_icon="🛢️")
# =========================================================
# Helpers
# =========================================================
def extract_period_date(text: str) -> Tuple[pd.Timestamp, pd.Timestamp]:
m = re.search(
r"Period:\s*(\d{4}[-/]\d{2}[-/]\d{2}\s+\d{2}:\d{2})\s*-\s*(\d{4}[-/]\d{2}[-/]\d{2}\s+\d{2}:\d{2})",
text
)
if not m: return (pd.NaT, pd.NaT)
try:
return (pd.to_datetime(m.group(1)), pd.to_datetime(m.group(2)))
except Exception:
return (pd.NaT, pd.NaT)
def infer_date_from_filename(name: str) -> Optional[pd.Timestamp]:
m = re.search(r"(\d{4})[-_](\d{2})[-_](\d{2})", name)
if m:
y, M, d = map(int, m.groups())
try: return pd.Timestamp(year=y, month=M, day=d)
except Exception: pass
nums = re.findall(r"\d{2,4}", name)
for i in range(len(nums)-2):
try:
y = int(nums[i]); M = int(nums[i+1]); d = int(nums[i+2])
if 1990 <= y <= 2100 and 1 <= M <= 12 and 1 <= d <= 31:
return pd.Timestamp(year=y, month=M, day=d)
except: pass
return None
def read_pdf_text_bytes(pdf_bytes: bytes) -> str:
with pdfplumber.open(io.BytesIO(pdf_bytes)) as pdf:
pages = [p.extract_text() or "" for p in pdf.pages]
text = "\n".join(pages).replace("\r", "")
text = re.sub(r"[ \t]+", " ", text)
return text
def parse_operations_depth_time(text: str, base_date: pd.Timestamp) -> pd.DataFrame:
rows = []
for line in text.splitlines():
m = re.match(r"(\d{2}:\d{2})\s+(\d{2}:\d{2})\s+(\d+)\b", line.strip())
if m:
start, end, depth = m.groups()
try:
depth = int(depth)
start_dt = pd.to_datetime(f"{base_date.date()} {start}")
end_dt = pd.to_datetime(f"{base_date.date()} {end}")
if end_dt < start_dt: end_dt += pd.Timedelta(days=1)
mid = start_dt + (end_dt - start_dt)/2
rows.append((start_dt, end_dt, mid, depth))
except: pass
return pd.DataFrame(rows, columns=["start", "end", "mid_time", "depth_m"])
def parse_mud_density(text: str, base_date: pd.Timestamp) -> pd.DataFrame:
m_time = re.search(r"Sample Time\s+(\d{2}:\d{2})\s+(\d{2}:\d{2})", text)
m = re.search(r"Fluid Density\s*\(g/cm3\)\s+([\d\.\-]+)\s+([\d\.\-]+)", text)
if not m or not m_time: return pd.DataFrame()
try:
t1, t2 = m_time.groups()
v1, v2 = float(m.group(1)), float(m.group(2))
ts = [pd.to_datetime(f"{base_date.date()} {t1}"),
pd.to_datetime(f"{base_date.date()} {t2}")]
return pd.DataFrame({"time": ts, "density_gcm3": [v1, v2]})
except: return pd.DataFrame()
def parse_bit_record_rop(text: str) -> pd.DataFrame:
m_hole = re.search(r"Hole\s+Made\s*\(last\s*24H\)\s*([\d\.\-]+)", text, re.IGNORECASE)
m_hrs = re.search(r"Hours\s+Drilled\s*\(last\s*24H\)\s*([\d\.\-]+)", text, re.IGNORECASE)
if not m_hole or not m_hrs: return pd.DataFrame()
try:
hole = float(m_hole.group(1)); hrs = float(m_hrs.group(1))
rop = hole/hrs if hrs and hrs>0 else np.nan
return pd.DataFrame([{"hole_made_m": hole, "hours_drilled": hrs, "rop_m_per_hr": rop}])
except: return pd.DataFrame()
def parse_equipment_downtime_minutes(text: str) -> float:
blk = re.split(r"Equipment Failure Infor(?:mation|mation)", text, flags=re.IGNORECASE)
if len(blk) < 2: return 0.0
tail = blk[1]
mins = re.findall(r"\b(\d{1,4})\s*(?:min|)\b", tail)
vals = []
for x in mins:
try:
v = float(x)
if 0 <= v <= 1440: vals.append(v)
except: pass
positives = [v for v in vals if v > 0]
return float(sum(positives) if positives else 0.0)
# =========================================================
# Classifiers (OpenAI / Heuristic)
# =========================================================
ANOMALY_JSON_SCHEMA = {
"name": "AnomalyClassification",
"strict": True,
"schema": {
"type": "object",
"additionalProperties": False,
"properties": {
"is_anomalous": {"type": "boolean"},
"labels": {
"type": "array",
"items": {"type": "string", "enum": ["losses","stuck_pipe","pack_off"]},
"uniqueItems": True
},
"rationale": {"type": "string"},
"spans": {
"type": "array",
"items": {
"type": "object",
"additionalProperties": False,
"properties": {
"label": {"type": "string", "enum": ["losses","stuck_pipe","pack_off"]},
"text": {"type": "string"}
},
"required": ["label","text"]
}
}
},
"required": ["is_anomalous","labels","rationale"]
}
}
SYSTEM_PROMPT = (
"You are a drilling anomaly detector for daily reports. "
"Return ONLY JSON matching the schema. "
"Taxonomy: losses (lost returns / no returns), stuck_pipe, pack_off (packed-off hole / circulation blocked). "
"If no anomaly is present, set is_anomalous=false and labels=[]. "
"If anomalous, include 1-2 short verbatim evidence spans."
)
def build_user_prompt(text: str) -> str:
return "Classify anomalies among ['losses','stuck_pipe','pack_off'].\n\nREPORT TEXT:\n" + text
def classify_with_openai(text: str, model: str, api_key: str) -> Dict[str, Any]:
try:
from openai import OpenAI
client = OpenAI(api_key=api_key)
resp = client.responses.create(
model=model,
input=[
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": build_user_prompt(text)},
],
response_format={"type": "json_schema", "json_schema": ANOMALY_JSON_SCHEMA},
temperature=0
)
raw = getattr(resp, "output_text", None)
if not raw:
raw = resp.output[0].content[0].text # SDK alt path
return json.loads(raw)
except Exception as e:
return {"is_anomalous": False, "labels": [], "rationale": f"LLM failed: {e}", "spans": []}
def heuristic_classify(text: str) -> Dict[str, Any]:
lines = [ln.strip() for ln in text.split("\n") if ln.strip()]
pat_losses = re.compile(r"\b(lost returns?|lost\s+circulation|no returns|lost\s+circ)\b", re.IGNORECASE)
pat_stuck = re.compile(r"\b(stuck\s+pipe|pipe\s+stuck|string\s+stuck|differential\s+sticking)\b", re.IGNORECASE)
pat_pack = re.compile(r"\b(pack(?:ed)?-?\s*off|packed\s+off|hole\s+packed\s+off|circulation\s+blocked)\b", re.IGNORECASE)
labels, spans = set(), []
for ln in lines:
hit = False
if pat_losses.search(ln): labels.add("losses"); hit = True
if pat_pack.search(ln): labels.add("pack_off"); hit = True
if pat_stuck.search(ln): labels.add("stuck_pipe"); hit = True
if hit: spans.append({"label": "/".join(sorted(labels)), "text": ln})
return {
"is_anomalous": bool(labels),
"labels": sorted(labels),
"rationale": "Heuristic keyword match.",
"spans": spans[:3]
}
def extract_event_depths_from_spans(spans: List[Dict[str, str]]) -> List[int]:
depths = []
for s in spans or []:
txt = s.get("text","")
for m in re.finditer(r"\b(\d{3,4})\s?m\b", txt.lower()):
try: depths.append(int(m.group(1)))
except: pass
return depths
# =========================================================
# 3D Trajectory + Ops Anomaly Parser
# =========================================================
# Survey numeric row pattern
def parse_survey_pdf_bytes(pdf_bytes: bytes) -> pd.DataFrame:
rows = []
num = r'[-+]?(?:\d{1,3}(?:,\d{3})*|\d+)(?:\.\d+)?'
row_re = re.compile(
rf'^\s*({num})\s+({num})\s+({num})\s+({num})\s+({num})\s+({num})\s+({num})\s+({num})\s+({num})\s*({num})\s*$'
)
with pdfplumber.open(io.BytesIO(pdf_bytes)) as pdf:
for page in pdf.pages:
txt = page.extract_text() or ""
for line in txt.splitlines():
line = line.strip()
if not line or (line[0].isalpha() and not line.split()[0].replace('.', '', 1).isdigit()):
continue
m = row_re.match(line)
if m:
vals = [float(v.replace(',', '')) for v in m.groups()]
rows.append(vals)
if not rows:
raise ValueError("No survey rows found in this PDF.")
df = pd.DataFrame(rows, columns=[
'MD_m','Incl_deg','Azim_deg','E_m','VS_m','DL_deg_per30m','N_m','BR_deg_per30m','TR_deg_per30m','TVD_m'
])
return df.sort_values('MD_m').reset_index(drop=True)
def recompute_min_curve_with_top_lock(
df: pd.DataFrame,
md_col="MD_m", inc_col="Incl_deg", az_col="Azim_deg",
inc_lock_deg=2.5, lateral_lock_m=8.0, roll_window=7, max_lock_md=300.0, inc_damp_deg=3.0
) -> pd.DataFrame:
d = df[[md_col, inc_col, az_col]].copy().sort_values(md_col).reset_index(drop=True)
md = d[md_col].to_numpy(float)
inc = np.deg2rad(d[inc_col].to_numpy(float))
az = np.deg2rad(d[az_col].to_numpy(float)); az = np.unwrap(az)
n = len(md)
E = np.zeros(n); N = np.zeros(n); TVD = np.zeros(n)
roll_inc = pd.Series(np.rad2deg(inc)).rolling(roll_window, min_periods=1).mean().to_numpy()
search = (md - md[0]) <= max_lock_md
i_lock_end = 0
for i in range(1, n):
if not search[i]: break
if roll_inc[i] >= inc_lock_deg:
i_lock_end = i; break
for i in range(1, n):
dMD = md[i] - md[i-1]
if dMD <= 0: continue
i1, i2 = inc[i-1], inc[i]; a1, a2 = az[i-1], az[i]
if np.rad2deg(i1) < inc_damp_deg and np.rad2deg(i2) < inc_damp_deg: a2 = a1
cos_dl = np.clip(np.sin(i1)*np.sin(i2)*np.cos(a2 - a1) + np.cos(i1)*np.cos(i2), -1.0, 1.0)
dl = np.arccos(cos_dl); RF = 1.0 if dl < 1e-12 else (2.0/dl)*np.tan(dl/2.0)
nx1, ex1, vz1 = np.sin(i1)*np.cos(a1), np.sin(i1)*np.sin(a1), np.cos(i1)
nx2, ex2, vz2 = np.sin(i2)*np.cos(a2), np.sin(i2)*np.sin(a2), np.cos(i2)
dN = 0.5 * dMD * (nx1 + nx2) * RF
dE = 0.5 * dMD * (ex1 + ex2) * RF
dV = 0.5 * dMD * (vz1 + vz2) * RF
if i <= max(i_lock_end,0) and search[i]: dN, dE = 0.0, 0.0
N[i] = N[i-1] + dN; E[i] = E[i-1] + dE; TVD[i] = TVD[i-1] + dV
if i <= i_lock_end and np.hypot(E[i], N[i]) > lateral_lock_m: i_lock_end = i
out = df.copy()
out["E_m"] = E; out["N_m"] = N
out["TVD_m"] = (TVD + float(out["TVD_m"].iloc[0])) if "TVD_m" in out else TVD
return out
# Operations anomalies (by end depth + remark)
_ROW_START = re.compile(r'^\s*(\d{1,2}:\d{2})\s+(\d{1,2}:\d{2})\s+(\d{3,5}(?:\.\d+)?)\b')
RE_LOSSES = re.compile(r'\b(loss|losses|lost\s+(?:returns|mud)|no\s+returns|lost\s+circulation)\b', re.I)
RE_STUCK = re.compile(r'\b(stuck\s+pipe|stuck\b|differential\s+stuck|free\s+pipe|worked\s+pipe|overpull)\b', re.I)
RE_PACKOFF = re.compile(r'\b(pack[- ]?off|packed\s*off|tight\s+hole)\b', re.I)
def _clean_state_prefix(text: str) -> str:
return re.sub(r'^\s*[A-Za-z/ &-]+--\s*[A-Za-z0-9/ &-]+\s*', '', text).strip()
def parse_operations_anomalies_bytes(pdf_bytes: bytes) -> Tuple[Dict[str, List[Dict]], int]:
groups = {"lost_circulation": [], "stuck_pipe": [], "pack_off": [], "other": []}
ops_row_count = 0
with pdfplumber.open(io.BytesIO(pdf_bytes)) as pdf:
for page in pdf.pages:
text = page.extract_text() or ""
lines = [ln.rstrip() for ln in text.splitlines()]
ops_started, block = False, []
for ln in lines:
low = ln.lower()
if not ops_started and "operations" in low:
ops_started = True; continue
if ops_started and ("drilling fluid" in low or "pore pressure" in low or "gas reading" in low or ("casing" in low and "liner" in low)):
break
if ops_started: block.append(ln)
if not block: continue
stitched_rows, current = [], ""
for ln in block:
m = _ROW_START.match(ln)
if m:
if current: stitched_rows.append(current.strip())
current = ln
else:
if current: current += " " + ln.strip()
if current: stitched_rows.append(current.strip())
for row in stitched_rows:
m = _ROW_START.match(row)
if not m: continue
ops_row_count += 1
start_t, end_t, end_depth = m.group(1), m.group(2), float(m.group(3))
rest = _clean_state_prefix(row[m.end():].strip())
remark, times = rest, f"{start_t}-{end_t}"
entry = {"md": end_depth, "remark": remark, "times": times}
matched = False
if RE_LOSSES.search(remark): groups["lost_circulation"].append(entry); matched=True
if RE_STUCK.search(remark): groups["stuck_pipe"].append(entry); matched=True
if RE_PACKOFF.search(remark):groups["pack_off"].append(entry); matched=True
if not matched and re.search(r'\b(kick|influx|trip\s*gas|high\s+gas|h2s)\b', remark, re.I):
groups["other"].append(entry)
# dedupe depths
for k, lst in groups.items():
by_md: Dict[float, Dict] = {}
for e in lst:
key = round(e["md"], 1)
if key not in by_md:
by_md[key] = {"md": e["md"], "remark": e["remark"], "times": e["times"]}
else:
if e["remark"] not in by_md[key]["remark"]:
by_md[key]["remark"] += " | " + e["remark"]
if e["times"] not in by_md[key]["times"]:
by_md[key]["times"] += "," + e["times"]
groups[k] = list(by_md.values())
return groups, ops_row_count
def _suggest_camera_params(x, y, z, base_radius=1.6, base_z=0.9, zoom_factor=0.5):
span_xy = max((x.max() - x.min()), (y.max() - y.min()))
span_z = (z.max() - z.min()); span = max(span_xy, span_z)
radius = (base_radius + (span / 2000.0)) * zoom_factor
z_eye = (base_z + (span / 3000.0)) * (zoom_factor**0.5)
return radius, z_eye
def make_3d_figure(df_xyz: pd.DataFrame, title="3D Well Trajectory"):
x = df_xyz["E_m"].to_numpy(); y = df_xyz["N_m"].to_numpy(); z = -df_xyz["TVD_m"].to_numpy()
md = df_xyz["MD_m"].to_numpy()
radius0, z_eye0 = _suggest_camera_params(x, y, z, zoom_factor=0.5)
camera_init = dict(eye=dict(x=radius0, y=radius0, z=z_eye0))
fig = go.Figure(go.Scatter3d(
x=x, y=y, z=z, mode="lines",
line=dict(width=6, color=md, colorscale="Viridis"),
hovertemplate=("MD: %{customdata[0]:.2f} m<br>"
"E: %{x:.2f} m | N: %{y:.2f} m<br>"
"TVD: %{customdata[1]:.2f} m<extra></extra>"),
customdata=np.column_stack([md, df_xyz["TVD_m"].to_numpy()]),
name="Well trajectory", legendrank=1, showlegend=True
))
fig.update_layout(
title=title, margin=dict(l=0,r=0,t=40,b=0), showlegend=True,
scene=dict(
camera=camera_init, aspectmode="data",
xaxis=dict(title="Easting (m)", backgroundcolor="white", showgrid=True, gridcolor="lightgrey", zeroline=False),
yaxis=dict(title="Northing (m)", backgroundcolor="white", showgrid=True, gridcolor="lightgrey", zeroline=False),
zaxis=dict(title="Depth (m, TVD)", backgroundcolor="white", showgrid=True, gridcolor="lightgrey", zeroline=False),
)
)
return fig
def add_camera_rotation_animation(fig: go.Figure, x, y, z, revolutions=1.0, n_frames=120, zoom_factor=0.5):
radius, z_eye = _suggest_camera_params(x, y, z, zoom_factor=zoom_factor)
angles = np.linspace(0, 2*np.pi*revolutions, n_frames)
frames = [go.Frame(name=f"cam{a:.3f}", layout=dict(scene_camera=dict(eye=dict(x=radius*np.cos(a), y=radius*np.sin(a), z=z_eye)))) for a in angles]
fig.update(frames=frames)
updatemenus = list(fig.layout.updatemenus) if fig.layout.updatemenus else []
updatemenus.append(dict(
type="buttons", direction="left", x=0.50, y=1.08, xanchor="center", yanchor="top", showactive=False,
buttons=[
dict(label="▶ Play", method="animate",
args=[None, dict(frame=dict(duration=60, redraw=True), transition=dict(duration=0),
fromcurrent=True, loop=True)]),
dict(label="⏸ Pause", method="animate",
args=[[None], dict(frame=dict(duration=0, redraw=False), transition=dict(duration=0),
mode="immediate")])
]
))
fig.update_layout(updatemenus=updatemenus)
return fig
def _map_md_to_xyz(df_xyz: pd.DataFrame, md_values: List[float]) -> Tuple[List[float], List[float], List[float]]:
xs, ys, zs = [], [], []
arr_md = df_xyz["MD_m"].to_numpy()
for md in md_values:
i = int(np.argmin(np.abs(arr_md - md)))
xs.append(float(df_xyz["E_m"].iloc[i])); ys.append(float(df_xyz["N_m"].iloc[i])); zs.append(float(-df_xyz["TVD_m"].iloc[i]))
return xs, ys, zs
def add_anomaly_category_traces(fig: go.Figure, df_xyz: pd.DataFrame, grouped: dict):
category_style = {
"lost_circulation": {"name": "Lost circulation", "symbol": "diamond", "rank": 100},
"stuck_pipe": {"name": "Stuck pipe", "symbol": "x", "rank": 101},
"pack_off": {"name": "Pack-off", "symbol": "square", "rank": 102},
"other": {"name": "Other (gas/kick)", "symbol": "circle-open", "rank": 103},
}
ordered_keys = ["lost_circulation", "stuck_pipe", "pack_off", "other"]
trace_indices = []
for key in ordered_keys:
items = grouped.get(key, [])
style = category_style[key]
if items:
md_vals = [e["md"] for e in items]
ax, ay, az = _map_md_to_xyz(df_xyz, md_vals)
labels = [f"{style['name']} @ {m:.0f} mMD" for m in md_vals]
hover = []
for e in items:
snippet = (e["remark"][:120] + "…") if len(e["remark"]) > 120 else e["remark"]
hover.append(f"{style['name']}<br>End depth: {e['md']:.0f} mMD<br>Time: {e['times']}<br>Remark: {snippet}")
fig.add_trace(go.Scatter3d(
x=ax, y=ay, z=az, mode="markers+text",
marker=dict(size=6, color="red", symbol=style["symbol"]),
text=labels, textposition="top center",
hovertext=hover, hoverinfo="text",
name=style["name"], legendrank=style["rank"], visible=True, showlegend=True,
))
else:
fig.add_trace(go.Scatter3d(
x=[np.nan], y=[np.nan], z=[np.nan], mode="markers",
marker=dict(size=6, color="red", symbol=style["symbol"], opacity=0),
name=style["name"], legendrank=style["rank"], hoverinfo="skip", visible=True, showlegend=True,
))
trace_indices.append(len(fig.data) - 1)
# Toggle button
visible_all_on = [True] * len(fig.data)
visible_all_off = [True] * len(fig.data)
for i in trace_indices: visible_all_off[i] = False
updatemenus = list(fig.layout.updatemenus) if fig.layout.updatemenus else []
updatemenus.append(dict(
type="buttons", direction="left", x=0.50, y=1.16, xanchor="center", yanchor="top", showactive=False,
buttons=[
dict(label="Anomalies: ON", method="update", args=[{"visible": visible_all_on}]),
dict(label="Anomalies: OFF", method="update", args=[{"visible": visible_all_off}]),
],
))
fig.update_layout(updatemenus=updatemenus)
return fig
# =========================================================
# Sidebar (Left column)
# =========================================================
with st.sidebar:
st.header("Upload & Settings")
# A) Daily report PDFs (same as earlier dashboard)
files = st.file_uploader("Upload daily report PDFs", type=["pdf"], accept_multiple_files=True)
st.caption("Add more files anytime; dashboard updates live.")
# B) 3D Agent (optional)
st.subheader("3D Trajectory Agent (optional)")
traj_pdf = st.file_uploader("Trajectory / Survey PDF", type=["pdf"], key="traj")
anomaly_pdf = st.file_uploader("Daily Report PDF (for 3D anomalies)", type=["pdf"], key="rep3d")
run_3d = st.button("Run 3D Agent")
st.divider()
st.subheader("Classifier")
DEFAULT_OPENAI_KEY = os.getenv("OPENAI_API_KEY", "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")
use_openai = st.toggle("Use OpenAI Responses API", value=False)
model_name = st.text_input("Model name", value="gpt-4o-mini-2024-07-18")
api_key_prefill = "set via Space secret" if DEFAULT_OPENAI_KEY else ""
api_key = st.text_input("OpenAI API Key", type="password", value=api_key_prefill)
if api_key == "set via Space secret":
api_key = DEFAULT_OPENAI_KEY
st.markdown("If OFF or key missing, a heuristic will be used.")
process_btn = st.button("Process files")
# =========================================================
# Session
# =========================================================
if "reports" not in st.session_state: st.session_state.reports = []
if "chat" not in st.session_state: st.session_state.chat = []
if "traj_fig" not in st.session_state: st.session_state.traj_fig = None
if "traj_summary" not in st.session_state: st.session_state.traj_summary = ""
# =========================================================
# Process uploads
# =========================================================
if process_btn and files:
new_items = []
for f in files:
try:
name = f.name
data = f.getvalue()
text = read_pdf_text_bytes(data)
s, e = extract_period_date(text)
inferred = infer_date_from_filename(name)
base_date = s if pd.notna(s) else (inferred if inferred else pd.Timestamp.today().normalize())
ops_df = parse_operations_depth_time(text, base_date)
mud_df = parse_mud_density(text, base_date)
rop_df = parse_bit_record_rop(text)
downtime_min = parse_equipment_downtime_minutes(text)
if use_openai and api_key.strip() and model_name.strip():
cls = classify_with_openai(text, model_name, api_key)
else:
cls = heuristic_classify(text)
evt_depths = extract_event_depths_from_spans(cls.get("spans"))
rec = {
"name": name,
"period_start": s if pd.notna(s) else (inferred if inferred else base_date),
"period_end": e if pd.notna(e) else None,
"ops_df": ops_df.to_dict("records"),
"mud_df": mud_df.to_dict("records"),
"rop_df": rop_df.to_dict("records"),
"downtime_min": float(downtime_min),
"classification": cls,
"event_depths": evt_depths,
"raw_bytes": data, # keep bytes for optional later use
}
new_items.append(rec)
except Exception as ex:
st.error(f"Failed to process {f.name}: {ex}")
existing = {r["name"]: r for r in st.session_state.reports}
for r in new_items: existing[r["name"]] = r
st.session_state.reports = list(existing.values())
st.success(f"Processed {len(new_items)} file(s).")
# =========================================================
# 3D Agent
# =========================================================
def run_trajectory_agent(survey_bytes: bytes, report_bytes: bytes) -> Tuple[go.Figure, str]:
"""
Deterministic 'agent' that:
1) parses survey -> min-curve recompute
2) parses Ops anomalies (end depth, remark, time)
3) renders 3D figure and pins category markers
Returns (figure, short summary).
"""
survey_df = parse_survey_pdf_bytes(survey_bytes)
df_mc = recompute_min_curve_with_top_lock(survey_df)
x = df_mc["E_m"].to_numpy(); y = df_mc["N_m"].to_numpy(); z = -df_mc["TVD_m"].to_numpy()
fig = make_3d_figure(df_mc)
fig = add_camera_rotation_animation(fig, x, y, z, revolutions=1.0, n_frames=120, zoom_factor=0.5)
groups, ops_rows = parse_operations_anomalies_bytes(report_bytes)
counts = {k: len(v) for k, v in groups.items()}
fig = add_anomaly_category_traces(fig, df_mc, groups)
summary = f"Survey rows: {len(survey_df)} | Ops rows parsed: {ops_rows} | Anomalies — losses: {counts.get('lost_circulation',0)}, pack_off: {counts.get('pack_off',0)}, stuck_pipe: {counts.get('stuck_pipe',0)}, other: {counts.get('other',0)}."
return fig, summary
if run_3d:
if not traj_pdf or not anomaly_pdf:
st.sidebar.error("Please upload BOTH a trajectory (survey) PDF and a daily report PDF.")
else:
try:
fig3d, summary = run_trajectory_agent(traj_pdf.getvalue(), anomaly_pdf.getvalue())
st.session_state.traj_fig = fig3d
st.session_state.traj_summary = summary
st.sidebar.success("3D Agent completed.")
except Exception as e:
st.sidebar.error(f"3D Agent failed: {e}")
# =========================================================
# Main layout
# =========================================================
st.title("🛢️ Drilling Report Anomaly Dashboard")
reports = st.session_state.reports
if not reports:
st.info("Upload daily report PDFs in the sidebar to begin.")
st.stop()
def to_df(reports: List[Dict[str, Any]]) -> pd.DataFrame:
rows = []
for r in reports:
start = r["period_start"]
if isinstance(start, str) and start: start = pd.to_datetime(start)
cls = r["classification"]; labels = cls.get("labels", []) or []
if not labels: labels = ["none"]
for lab in labels:
rows.append({
"name": r["name"],
"date": start.normalize() if isinstance(start, pd.Timestamp) and pd.notna(start) else pd.NaT,
"label": lab, "is_anomalous": (lab != "none"),
"downtime_min": r.get("downtime_min", 0.0),
})
df = pd.DataFrame(rows)
if not df.empty and "date" in df:
mask = df["date"].isna()
if mask.any():
inferred_dates = []
for nm in df.loc[mask, "name"]:
d = infer_date_from_filename(nm)
inferred_dates.append(d if d else pd.NaT)
df.loc[mask, "date"] = inferred_dates
df.sort_values(["date","name"], inplace=True, na_position="last")
return df
df_all = to_df(reports)
left, right = st.columns([3, 2], gap="large")
# ---------- LEFT: Global + 3D Agent output ----------
with left:
st.subheader("Global Overview")
if df_all["date"].notna().any():
unique_dates = sorted(set(pd.to_datetime(df_all["date"].dropna()).dt.date.tolist()))
if len(unique_dates) >= 2:
min_date, max_date = unique_dates[0], unique_dates[-1]
date_range = st.slider("Date range", min_value=min_date, max_value=max_date, value=(min_date, max_date))
df_filt = df_all[(df_all["date"] >= pd.to_datetime(date_range[0])) &
(df_all["date"] <= pd.to_datetime(date_range[1]))]
else:
st.info(f"Single date found: {unique_dates[0]}. Showing that day.")
df_filt = df_all.copy()
else:
st.warning("Dates not found in reports or filenames; showing all.")
df_filt = df_all.copy()
if not df_filt.empty and df_filt["date"].notna().any():
fig = px.histogram(df_filt, x="date", color="label", barmode="stack", title="Anomaly Distribution Over Time")
st.plotly_chart(fig, use_container_width=True)
else:
fig = px.histogram(df_filt, x="label", color="label", title="Anomaly Distribution (no dates)")
st.plotly_chart(fig, use_container_width=True)
st.dataframe(df_filt, use_container_width=True)
# 3D Agent panel (on the LEFT, as requested)
st.divider()
st.subheader("3D Trajectory (Agent)")
if st.session_state.traj_fig is not None:
st.caption(st.session_state.traj_summary or "")
st.plotly_chart(st.session_state.traj_fig, use_container_width=True)
else:
st.info("Upload a **Trajectory PDF** and a **Daily Report PDF** in the sidebar, then click **Run 3D Agent** to see the 3D view here.")
# ---------- RIGHT: KPIs + detail ----------
with right:
st.subheader("KPIs")
total_reports = df_all["name"].nunique()
total_anom = int(df_all["is_anomalous"].sum())
last_date = df_all["date"].dropna().max() if df_all["date"].notna().any() else None
k1, k2, k3 = st.columns(3)
k1.metric("Reports", total_reports)
k2.metric("Anomalies", total_anom)
k3.metric("Latest date", "-" if last_date is None or pd.isna(last_date) else str(last_date.date()))
names = sorted({r["name"] for r in reports})
sel = st.selectbox("Select report", names, index=max(0, len(names)-1))
rep = next(r for r in reports if r["name"] == sel)
cls = rep["classification"]
is_anom = cls.get("is_anomalous", False)
label_list = cls.get("labels", []) or []
labels_str = ", ".join(label_list) if label_list else "—"
if is_anom:
st.error(f"⚠️ Attention: anomaly detected — {labels_str}")
if GTTS_OK and st.button("🔊 Speak alert"):
tts = gTTS(text=f"Attention. Anomaly detected. {labels_str.replace('_',' ')}.", lang='en')
tmp = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False); tts.save(tmp.name)
st.audio(tmp.name, format="audio/mp3")
else:
st.success("✅ All clear: no anomaly detected.")
if GTTS_OK and st.button("🔊 Speak summary"):
tts = gTTS(text="All clear. No anomaly detected. Operations normal.", lang='en')
tmp = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False); tts.save(tmp.name)
st.audio(tmp.name, format="audio/mp3")
c1, c2 = st.columns(2)
c1.metric("Anomalous?", "Yes" if is_anom else "No")
c2.metric("Label(s)", labels_str)
st.divider()
st.caption("Report detail")
ops_df = pd.DataFrame(rep["ops_df"])
mud_df = pd.DataFrame(rep["mud_df"])
rop_df = pd.DataFrame(rep["rop_df"])
if not ops_df.empty:
fig = px.line(ops_df, x="mid_time", y="depth_m", title="Depth vs Time (Operations)")
if is_anom: fig.update_traces(line=dict(color="#d62728"))
fig.update_yaxes(autorange="reversed", title="Depth (mMD)")
fig.update_xaxes(title="Time")
st.plotly_chart(fig, use_container_width=True)
if not mud_df.empty:
fig = px.line(mud_df, x="time", y="density_gcm3", markers=True, title="Mud Density vs Time (g/cm³)")
if is_anom: fig.update_traces(line=dict(color="#d62728"), marker=dict(color="#d62728"))
st.plotly_chart(fig, use_container_width=True)
if not rop_df.empty and not pd.isna(rop_df.get("rop_m_per_hr", [np.nan])[0]):
rop = float(rop_df["rop_m_per_hr"].iloc[0])
fig = go.Figure(go.Indicator(mode="number+gauge", value=rop, number={'valueformat': '.2f'},
gauge={'shape': "bullet"}, title={'text': "ROP (m/hr) — last 24h"}))
fig.update_layout(height=140, margin=dict(l=30,r=30,t=30,b=10))
st.plotly_chart(fig, use_container_width=True)
spans = cls.get("spans", [])
if spans:
with st.expander("Evidence spans"):
for s in spans:
st.write(f"- **{s.get('label','')}**: {s.get('text','')}")
# =========================================================
# Chat + Voice
# =========================================================
st.divider()
st.subheader("Chat")
# Voice input row (placed near chat)
with st.expander("🎙️ Voice question"):
recorded = None
if HAS_REC:
st.caption("Click to start/stop recording, then press **Transcribe & Ask**.")
recorded = audio_recorder(pause_threshold=3.0)
voice_file = st.file_uploader("…or upload a short .wav/.mp3", type=["wav","mp3"], key="voice_up")
if st.button("Transcribe & Ask"):
audio_bytes = None
if recorded: audio_bytes = recorded
elif voice_file: audio_bytes = voice_file.getvalue()
if not audio_bytes:
st.warning("No audio captured or uploaded.")
else:
if api_key.strip():
try:
from openai import OpenAI
client = OpenAI(api_key=api_key)
# Save temp file for Whisper
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
tmp.write(audio_bytes); tmp.flush()
with open(tmp.name, "rb") as fh:
tr = client.audio.transcriptions.create(model="whisper-1", file=fh)
voice_text = tr.text if hasattr(tr, "text") else str(tr)
st.write("You said:", voice_text)
st.session_state.chat.append({"role": "user", "content": voice_text})
except Exception as e:
st.error(f"Transcription failed: {e}")
else:
st.warning("Add your OpenAI API key in the sidebar to enable voice transcription.")
# Show chat history
for m in st.session_state.chat:
with st.chat_message(m["role"]):
st.markdown(m["content"])
chat_q = st.chat_input("Ask about anomalies, depths, mud density, etc.")
if chat_q:
st.session_state.chat.append({"role": "user", "content": chat_q})
# Simple data-aware reply using selected report
if len(st.session_state.chat) and st.session_state.chat[-1]["role"] == "user":
sel_name = 'sel' in locals() and sel or reports[-1]["name"]
rep = next(r for r in reports if r["name"] == sel_name)
ops_df = pd.DataFrame(rep["ops_df"]); mud_df = pd.DataFrame(rep["mud_df"])
cls = rep["classification"]; is_anom = cls.get("is_anomalous", False)
labels = ", ".join(cls.get("labels", [])) if cls.get("labels") else "—"
ans = f"Report **{sel_name}** — anomaly: {'Yes' if is_anom else 'No'}; labels: {labels}. "
if not ops_df.empty:
ans += f"Ops depth range: {int(ops_df['depth_m'].min())}-{int(ops_df['depth_m'].max())} mMD. "
if not mud_df.empty:
ans += f"Mud density range: {mud_df['density_gcm3'].min():.2f}-{mud_df['density_gcm3'].max():.2f} g/cm³. "
st.session_state.chat.append({"role": "assistant", "content": ans})
with st.chat_message("assistant"):
st.markdown(ans)
st.caption("Dates parsed from report headers or inferred from filenames. 3D agent uses Survey + Daily Report from the sidebar.")
|