Spaces:
Running
Running
import os | |
os.environ['HF_HOME'] = '/tmp' | |
import time | |
import streamlit as st | |
import pandas as pd | |
import io | |
import plotly.express as px | |
import zipfile | |
import json | |
import hashlib | |
from typing import Optional | |
from gliner import GLiNER | |
from comet_ml import Experiment | |
# --- Page Configuration and UI Elements --- | |
st.set_page_config(layout="wide", page_title="NER") | |
st.subheader("HR.ai", divider="green") | |
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary") | |
st.markdown( | |
""" | |
<style> | |
/* Main app background and text color */ | |
.stApp { | |
background-color: #F5FFFA; /* Mint cream, a very light green */ | |
color: #000000; /* Black for the text */ | |
} | |
/* Sidebar background color */ | |
.css-1d36184 { | |
background-color: #B2F2B2; /* A pale green for the sidebar */ | |
secondary-background-color: #B2F2B2; | |
} | |
/* Expander background color and header */ | |
.streamlit-expanderContent, .streamlit-expanderHeader { | |
background-color: #F5FFFA; | |
} | |
/* Text Area background and text color */ | |
.stTextArea textarea { | |
background-color: #D4F4D4; /* A light, soft green */ | |
color: #000000; /* Black for text */ | |
} | |
/* Text Input background and text color */ | |
.stTextInput input { | |
background-color: #D4F4D4; /* Same as the text area for consistency */ | |
color: #000000; | |
} | |
/* Button background and text color */ | |
.stButton > button { | |
background-color: #D4F4D4; | |
color: #000000; | |
} | |
/* Warning box background and text color */ | |
.stAlert.st-warning { | |
background-color: #C8F0C8; /* A light green for the warning box */ | |
color: #000000; | |
} | |
/* Success box background and text color */ | |
.stAlert.st-success { | |
background-color: #C8F0C8; /* A light green for the success box */ | |
color: #000000; | |
} | |
/* Tab color when active */ | |
.stTabs [data-baseweb="tab-list"] button[aria-selected="true"] { | |
background-color: #D4F4D4; | |
color: #000000; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
expander = st.expander("**Important notes**") | |
expander.write(""" | |
**How to Use the HR.ai web app:** | |
1. Type or paste your text into the text area, then press Ctrl + Enter. | |
2. Click the 'Results' button to extract and tag entities in your text data. | |
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags. | |
**How to Use the Question-Answering feature:** | |
1. Type or paste your text into the text area, then press Ctrl + Enter. | |
2. Click the 'Add Question' button to add your question to the Record of Questions. You can manage your questions by deleting them one by one. | |
3. Click the 'Extract Answers' button to extract the answer to your question. | |
Results are presented in an easy-to-read table, visualized in an interactive tree map, and is available for download. | |
**Entities:** "Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill" | |
**Usage Limits:** You can request results unlimited times for one (1) month. | |
**Supported Languages:** English | |
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL. | |
For any errors or inquiries, please contact us at info@nlpblogs.com""") | |
with st.sidebar: | |
st.write("Use the following code to embed the web app on your website. Feel free to adjust the width and height values to fit your page.") | |
code = ''' | |
<iframe | |
src="https://aiecosystem-hr-ai.hf.space" | |
frameborder="0" | |
width="850" | |
height="450" | |
></iframe> | |
''' | |
st.code(code, language="html") | |
st.text("") | |
st.text("") | |
st.divider() | |
st.subheader("π Ready to build your own AI Web App?", divider="green") | |
st.link_button("AI Web App Builder", "https://nlpblogs.com/build-your-named-entity-recognition-app/", type="primary") | |
# --- Comet ML Setup --- | |
COMET_API_KEY = os.environ.get("COMET_API_KEY") | |
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE") | |
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME") | |
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME) | |
if not comet_initialized: | |
st.warning("Comet ML not initialized. Check environment variables.") | |
# --- Model Loading and Caching --- | |
def load_gliner_model(model_name): | |
"""Initializes and caches the GLiNER model.""" | |
try: | |
if model_name == "HR_AI": | |
return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints=labels) | |
elif model_name == "InfoFinder": | |
return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", device="cpu") | |
except Exception as e: | |
st.error(f"Error loading the GLiNER model: {e}") | |
st.stop() | |
# --- HR_AI Model Labels and Mappings --- | |
labels = ["Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill"] | |
category_mapping = { | |
"Contact Information": ["Email", "Phone_number", "Street_address", "City", "Country"], | |
"Personal Details": ["Date_of_birth", "Marital_status", "Person"], | |
"Employment Status": ["Full_time", "Part_time", "Contract", "Terminated", "Retired"], | |
"Employment Information": ["Job_title", "Date", "Organization", "Role"], | |
"Performance": ["Performance_score"], | |
"Attendance": ["Leave_of_absence"], | |
"Benefits": ["Retirement_plan", "Bonus", "Stock_options", "Health_insurance"], | |
"Compensation": ["Pay_rate", "Annual_salary"], | |
"Deductions": ["Tax", "Deductions"], | |
"Recruitment & Sourcing": ["Interview_type", "Applicant", "Referral", "Job_board", "Recruiter"], | |
"Legal & Compliance": ["Offer_letter", "Agreement"], | |
"Professional_Development": ["Certification", "Skill"] | |
} | |
reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list} | |
# --- InfoFinder Helpers --- | |
if 'user_labels' not in st.session_state: | |
st.session_state.user_labels = [] | |
def get_stable_color(label): | |
hash_object = hashlib.sha1(label.encode('utf-8')) | |
hex_dig = hash_object.hexdigest() | |
return '#' + hex_dig[:6] | |
# --- Main App with Tabs --- | |
tab1, tab2 = st.tabs(["HR.ai", "Question-Answering"]) | |
with tab1: | |
# Load model for this tab | |
model_hr = load_gliner_model("HR_AI") | |
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", height=250, key='my_text_area_hr') | |
def clear_text_hr(): | |
st.session_state['my_text_area_hr'] = "" | |
st.button("Clear text", on_click=clear_text_hr, key="clear_hr") | |
if st.button("Results"): | |
start_time = time.time() | |
if not text.strip(): | |
st.warning("Please enter some text to extract entities.") | |
else: | |
with st.spinner("Extracting entities...", show_time=True): | |
entities = model_hr.predict_entities(text, labels) | |
df = pd.DataFrame(entities) | |
if not df.empty: | |
df['category'] = df['label'].map(reverse_category_mapping) | |
if comet_initialized: | |
experiment = Experiment(api_key=COMET_API_KEY, workspace=COMET_WORKSPACE, project_name=COMET_PROJECT_NAME) | |
experiment.log_parameter("input_text", text) | |
experiment.log_table("predicted_entities", df) | |
st.subheader("Grouped Entities by Category", divider="green") | |
category_names = sorted(list(category_mapping.keys())) | |
category_tabs_hr = st.tabs(category_names) | |
for i, category_name in enumerate(category_names): | |
with category_tabs_hr[i]: | |
df_category_filtered = df[df['category'] == category_name] | |
if not df_category_filtered.empty: | |
st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True) | |
else: | |
st.info(f"No entities found for the '{category_name}' category.") | |
with st.expander("See Glossary of tags"): | |
st.write(''' | |
- **text**: ['entity extracted from your text data'] | |
- **score**: ['accuracy score; how accurately a tag has been assigned to a given entity'] | |
- **label**: ['label (tag) assigned to a given extracted entity'] | |
- **start**: ['index of the start of the corresponding entity'] | |
- **end**: ['index of the end of the corresponding entity'] | |
''') | |
st.divider() | |
st.subheader("Candidate Card", divider="green") | |
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category') | |
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA') | |
st.plotly_chart(fig_treemap) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.subheader("Pie chart", divider="green") | |
grouped_counts = df['category'].value_counts().reset_index() | |
grouped_counts.columns = ['category', 'count'] | |
fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories') | |
fig_pie.update_traces(textposition='inside', textinfo='percent+label') | |
fig_pie.update_layout(paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA') | |
st.plotly_chart(fig_pie) | |
with col2: | |
st.subheader("Bar chart", divider="green") | |
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories') | |
fig_bar.update_layout(paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA') | |
st.plotly_chart(fig_bar) | |
st.subheader("Most Frequent Entities", divider="green") | |
word_counts = df['text'].value_counts().reset_index() | |
word_counts.columns = ['Entity', 'Count'] | |
repeating_entities = word_counts[word_counts['Count'] > 1] | |
if not repeating_entities.empty: | |
st.dataframe(repeating_entities, use_container_width=True) | |
fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity') | |
fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'}, paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA') | |
st.plotly_chart(fig_repeating_bar) | |
else: | |
st.warning("No entities were found that occur more than once.") | |
st.divider() | |
dfa = pd.DataFrame(data={'Column Name': ['text', 'label', 'score', 'start', 'end'], 'Description': ['entity extracted from your text data', 'label (tag) assigned to a given extracted entity', 'accuracy score; how accurately a tag has been assigned to a given entity', 'index of the start of the corresponding entity', 'index of the end of the corresponding entity']}) | |
buf = io.BytesIO() | |
with zipfile.ZipFile(buf, "w") as myzip: | |
myzip.writestr("Summary of the results.csv", df.to_csv(index=False)) | |
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False)) | |
st.download_button( | |
label="Download results and glossary (zip)", | |
data=buf.getvalue(), | |
file_name="nlpblogs_results.zip", | |
mime="application/zip", | |
) | |
if comet_initialized: | |
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories") | |
experiment.end() | |
else: | |
st.warning("No entities were found in the provided text.") | |
end_time = time.time() | |
elapsed_time = end_time - start_time | |
st.text("") | |
st.text("") | |
st.info(f"Results processed in **{elapsed_time:.2f} seconds**.") | |
with tab2: | |
# Load model for this tab | |
model_qa = load_gliner_model("InfoFinder") | |
user_text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", height=250, key='my_text_area_infofinder') | |
def clear_text_qa(): | |
st.session_state['my_text_area_infofinder'] = "" | |
st.button("Clear text", on_click=clear_text_qa, key="clear_qa") | |
st.subheader("Question-Answering", divider="green") | |
question_input = st.text_input("Ask wh-questions. **Wh-questions begin with what, when, where, who, whom, which, whose, why and how. We use them to ask for specific information.**") | |
if st.button("Add Question"): | |
if question_input: | |
if question_input not in st.session_state.user_labels: | |
st.session_state.user_labels.append(question_input) | |
st.success(f"Added question: {question_input}") | |
else: | |
st.warning("This question has already been added.") | |
else: | |
st.warning("Please enter a question.") | |
st.markdown("---") | |
st.subheader("Record of Questions", divider="green") | |
if st.session_state.user_labels: | |
for i, label in enumerate(st.session_state.user_labels): | |
col_list, col_delete = st.columns([0.9, 0.1]) | |
with col_list: | |
st.write(f"- {label}", key=f"label_{i}") | |
with col_delete: | |
if st.button("Delete", key=f"delete_{i}"): | |
st.session_state.user_labels.pop(i) | |
st.rerun() | |
else: | |
st.info("No questions defined yet. Use the input above to add one.") | |
st.divider() | |
if st.button("Extract Answers"): | |
if not user_text.strip(): | |
st.warning("Please enter some text to analyze.") | |
elif not st.session_state.user_labels: | |
st.warning("Please define at least one question.") | |
else: | |
if comet_initialized: | |
experiment = Experiment(api_key=COMET_API_KEY, workspace=COMET_WORKSPACE, project_name=COMET_PROJECT_NAME) | |
experiment.log_parameter("input_text_length", len(user_text)) | |
experiment.log_parameter("defined_labels", st.session_state.user_labels) | |
start_time = time.time() | |
with st.spinner("Analyzing text...", show_time=True): | |
try: | |
entities = model_qa.predict_entities(user_text, st.session_state.user_labels) | |
end_time = time.time() | |
elapsed_time = end_time - start_time | |
st.info(f"Processing took **{elapsed_time:.2f} seconds**.") | |
if entities: | |
df1 = pd.DataFrame(entities) | |
df2 = df1[['label', 'text', 'score']] | |
df = df2.rename(columns={'label': 'question', 'text': 'answer'}) | |
st.subheader("Extracted Answers", divider="green") | |
expander = st.expander("**Download**") | |
expander.write(""" | |
To download the data, simply hover your cursor over the table. A download icon will appear on the right side. | |
""") | |
st.dataframe(df, use_container_width=True) | |
st.subheader("Tree map", divider="green") | |
all_labels = df['question'].unique() | |
label_color_map = {label: get_stable_color(label) for label in all_labels} | |
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'question', 'answer'], values='score', color='question', color_discrete_map=label_color_map) | |
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#F3E5F5', plot_bgcolor='#F3E5F5') | |
st.plotly_chart(fig_treemap) | |
if comet_initialized: | |
experiment.log_metric("processing_time_seconds", elapsed_time) | |
experiment.log_table("predicted_entities", df) | |
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap") | |
experiment.end() | |
else: | |
st.info("No answers were found in the text with the defined questions.") | |
if comet_initialized: | |
experiment.end() | |
except Exception as e: | |
st.error(f"An error occurred during processing: {e}") | |
st.write(f"Error details: {e}") | |
if comet_initialized: | |
experiment.log_text(f"Error: {e}") | |
experiment.end() | |