File size: 23,130 Bytes
d2e00e4 190b8c6 408ba90 190b8c6 d2e00e4 408ba90 d2e00e4 408ba90 b7a2268 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 190b8c6 408ba90 190b8c6 408ba90 d2e00e4 190b8c6 d2e00e4 190b8c6 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 190b8c6 d2e00e4 408ba90 190b8c6 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 b7a2268 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 190b8c6 d2e00e4 190b8c6 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 190b8c6 d2e00e4 408ba90 d2e00e4 190b8c6 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 190b8c6 408ba90 d2e00e4 408ba90 d2e00e4 190b8c6 d2e00e4 190b8c6 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 190b8c6 408ba90 d2e00e4 190b8c6 408ba90 d2e00e4 190b8c6 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 190b8c6 d2e00e4 408ba90 190b8c6 408ba90 190b8c6 408ba90 190b8c6 408ba90 190b8c6 d2e00e4 190b8c6 d2e00e4 190b8c6 d2e00e4 190b8c6 d2e00e4 190b8c6 d2e00e4 408ba90 d2e00e4 408ba90 190b8c6 408ba90 190b8c6 d2e00e4 408ba90 190b8c6 408ba90 d2e00e4 190b8c6 d2e00e4 190b8c6 408ba90 d2e00e4 190b8c6 d2e00e4 190b8c6 408ba90 d2e00e4 190b8c6 d2e00e4 190b8c6 d2e00e4 408ba90 d2e00e4 408ba90 d2e00e4 408ba90 190b8c6 408ba90 d2e00e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
import time
import streamlit as st
import pandas as pd
import io
from transformers import pipeline
from streamlit_extras.stylable_container import stylable_container
import plotly.express as px
import zipfile
import os
from comet_ml import Experiment
import re
import numpy as np
import json
from cryptography.fernet import Fernet
st.set_page_config(layout="wide",
page_title="Named Entity Recognition App")
# --- Configuration ---
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
comet_initialized = False
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
comet_initialized = True
# --- Persistent Counter and History Configuration ---
COUNTER_FILE = "counter_json_finder.json"
HISTORY_FILE = "file_history_json_finder.json"
max_attempts = 300
# --- Functions to manage persistent data ---
def load_attempts():
"""
Loads the attempts count from a persistent JSON file.
Returns 0 if the file doesn't exist or is invalid.
"""
if os.path.exists(COUNTER_FILE):
try:
with open(COUNTER_FILE, "r") as f:
data = json.load(f)
return data.get('file_upload_attempts', 0)
except (json.JSONDecodeError, KeyError):
return 0
return 0
def save_attempts(attempts):
"""
Saves the current attempts count to the persistent JSON file.
"""
with open(COUNTER_FILE, "w") as f:
json.dump({'file_upload_attempts': attempts}, f)
def load_history():
"""
Loads the file upload history from a persistent JSON file.
Returns an empty list if the file doesn't exist or is invalid.
"""
if os.path.exists(HISTORY_FILE):
try:
with open(HISTORY_FILE, "r") as f:
data = json.load(f)
return data.get('uploaded_files', [])
except (json.JSONDecodeError, KeyError):
return []
return []
def save_history(history):
"""
Saves the current file upload history to the persistent JSON file.
"""
with open(HISTORY_FILE, "w") as f:
json.dump({'uploaded_files': history}, f)
def clear_history_data():
"""Clears the file history from session state and deletes the persistent file."""
if os.path.exists(HISTORY_FILE):
os.remove(HISTORY_FILE)
st.session_state['uploaded_files_history'] = []
st.rerun()
# --- Initialize session state with persistent data ---
if 'file_upload_attempts' not in st.session_state:
st.session_state['file_upload_attempts'] = load_attempts()
# Save to ensure the file exists on first run
save_attempts(st.session_state['file_upload_attempts'])
if 'uploaded_files_history' not in st.session_state:
st.session_state['uploaded_files_history'] = load_history()
# Save to ensure the file exists on first run
save_history(st.session_state['uploaded_files_history'])
if 'encrypted_extracted_text' not in st.session_state:
st.session_state['encrypted_extracted_text'] = None
if 'json_dataframe' not in st.session_state:
st.session_state['json_dataframe'] = None
# Define the categories and their associated entity labels
ENTITY_LABELS_CATEGORIZED = {
"Persons": ["PER"],
"Locations": ["LOC"],
"Organizations": ["ORG"],
"Miscellaneous": ["MISC"],
}
# Create a mapping from each specific entity label to its category
LABEL_TO_CATEGORY_MAP = {
label: category for category, labels in ENTITY_LABELS_CATEGORIZED.items() for label in labels
}
@st.cache_resource
def load_ner_model():
"""
Loads the pre-trained NER model ("saattrupdan/nbailab-base-ner-scandi") and caches it.
This model is specifically trained for Scandinavian languages.
"""
try:
return pipeline(
"token-classification",
model="saattrupdan/nbailab-base-ner-scandi",
aggregation_strategy="max",
ignore_labels=["O"],
stride=128
)
except Exception as e:
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
st.stop()
@st.cache_resource
def load_encryption_key():
"""
Loads the Fernet encryption key from environment variables.
This key is crucial for encrypting/decrypting sensitive data.
It's cached as a resource to be loaded only once.
"""
try:
# Get the key string from environment variables
key_str = os.environ.get("FERNET_KEY")
if not key_str:
raise ValueError("FERNET_KEY environment variable not set. Cannot perform encryption/decryption.")
# Fernet key must be bytes, so encode the string
key_bytes = key_str.encode('utf-8')
return Fernet(key_bytes)
except ValueError as ve:
st.error(
f"Configuration Error: {ve}. Please ensure the 'FERNET_KEY' environment variable is set securely "
"in your deployment environment (e.g., Hugging Face Spaces secrets, Render environment variables) "
"or in a local .env file for development."
)
st.stop() # Stop the app if the key is not found, as security is compromised
except Exception as e:
st.error(f"An unexpected error occurred while loading encryption key: {e}. Please check your key format and environment settings.")
st.stop()
# Initialize the Fernet cipher instance globally (cached)
fernet = load_encryption_key()
def encrypt_text(text_content: str) -> bytes:
"""
Encrypts a string using the loaded Fernet cipher.
The input string is first encoded to UTF-8 bytes.
"""
return fernet.encrypt(text_content.encode('utf-8'))
def decrypt_text(encrypted_bytes: bytes) -> str | None:
"""
Decrypts bytes using the loaded Fernet cipher.
Returns the decrypted string, or None if decryption fails (e.g., tampering).
"""
try:
return fernet.decrypt(encrypted_bytes).decode('utf-8')
except Exception as e:
st.error(f"Decryption failed. This might indicate data tampering or an incorrect encryption key. Error: {e}")
return None
# --- UI Elements ---
st.subheader("Scandinavian JSON Entity Finder", divider="orange")
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
expander = st.expander("**Important notes on the Scandinavian JSON Entity Finder**")
expander.write('''
**Named Entities:** This Scandinavian JSON Entity Finder predicts four
(4) labels (“PER: person”, “LOC: location”, “ORG: organization”, “MISC:
miscellaneous”). Results are presented in an easy-to-read table, visualized in
an interactive tree map, pie chart, and bar chart, and are available for
download along with a Glossary of tags.
**How to Use:** Upload your JSON file. Then, click the 'Results' button
to extract and tag entities in your text data.
**Usage Limits:** You can request results up to 300 times within a 30-day period.
**Language settings:** Please check and adjust the language settings in
your computer, so the Danish, Swedish, Norwegian, Icelandic and Faroese
characters are handled properly in your downloaded file.
**Customization:** To change the app's background color to white or
black, click the three-dot menu on the right-hand side of your app, go to
Settings and then Choose app theme, colors and fonts.
**Technical issues:** If your connection times out, please refresh the
page or reopen the app's URL.
For any errors or inquiries, please contact us at info@nlpblogs.com
''')
with st.sidebar:
# --- Added Persistent History Display ---
st.subheader("Your File Upload History", divider="orange")
if st.session_state['uploaded_files_history']:
history_to_display = st.session_state['uploaded_files_history']
history_df = pd.DataFrame(history_to_display)
st.dataframe(history_df, use_container_width=True, hide_index=True)
# Add a clear history button
if st.button("Clear File History", help="This will permanently delete the file history from the application."):
clear_history_data()
else:
st.info("You have not uploaded any files yet.")
st.subheader("Build your own NER Web App in a minute without writing a single line of code.", divider="orange")
st.link_button("NER File Builder",
"https://nlpblogs.com/shop/named-entity-recognition-ner/ner-file-builder/",
type="primary")
uploaded_file = st.file_uploader("Choose a JSON file", type=["json"])
# Initialize text for the current run outside the if uploaded_file block
# This will be populated if a file is uploaded, otherwise it remains None
current_run_text = None
if uploaded_file is not None:
try:
# Read the content as bytes first, then decode for JSON parsing
file_contents_bytes = uploaded_file.read()
# Reset the file pointer after reading, so json.load can read from the beginning
uploaded_file.seek(0)
dados = json.load(uploaded_file)
# Attempt to convert JSON to DataFrame and extract text
try:
st.session_state['json_dataframe'] = pd.DataFrame(dados)
# Concatenate all content into a single string for NER
df_string_representation = st.session_state['json_dataframe'].to_string(index=False, header=False)
# Simple regex to remove non-alphanumeric characters but keep spaces and periods
text_content = re.sub(r'[^\w\s.]', '', df_string_representation)
# Remove the specific string "Empty DataFrame Columns" if it appears due to conversion
text_content = text_content.replace("Empty DataFrame Columns", "").strip()
current_run_text = text_content # Set text for current run
if not current_run_text.strip(): # Check if text is effectively empty
st.warning("No meaningful text could be extracted from the JSON DataFrame for analysis.")
current_run_text = None # Reset to None if empty
except ValueError:
# If direct conversion to DataFrame fails, try to extract strings directly from JSON structure
st.info("JSON data could not be directly converted to a simple DataFrame for display. Attempting to extract text directly.")
extracted_texts_list = []
if isinstance(dados, list):
for item in dados:
if isinstance(item, str):
extracted_texts_list.append(item)
elif isinstance(item, dict):
# Recursively get string values from dicts in a list
for val in item.values():
if isinstance(val, str):
extracted_texts_list.append(val)
elif isinstance(val, list):
for sub_val in val:
if isinstance(sub_val, str):
extracted_texts_list.append(sub_val)
elif isinstance(dados, dict):
# Get string values from a dictionary
for value in dados.values():
if isinstance(value, str):
extracted_texts_list.append(value)
elif isinstance(value, list):
for sub_val in value:
if isinstance(sub_val, str):
extracted_texts_list.append(sub_val)
if extracted_texts_list:
current_run_text = " ".join(extracted_texts_list).strip()
else:
st.warning("No string text could be extracted from the JSON for analysis.")
current_run_text = None
if current_run_text:
# --- ADDING TO UPLOAD HISTORY ---
new_upload_entry = {
"filename": uploaded_file.name,
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
}
# Append the new file to the session state history
st.session_state['uploaded_files_history'].append(new_upload_entry)
# Save the updated history to the persistent file
save_history(st.session_state['uploaded_files_history'])
# --- END OF HISTORY ADDITION ---
# --- ENCRYPT THE EXTRACTED TEXT BEFORE STORING IN SESSION STATE ---
encrypted_text_bytes = encrypt_text(current_run_text)
st.session_state['encrypted_extracted_text'] = encrypted_text_bytes
# Optionally clear the unencrypted version from session state if you only want the encrypted one
# st.session_state['extracted_text_for_ner'] = None
st.success("JSON file uploaded successfully. File content encrypted and secured. Due to security protocols, the file content is hidden.")
st.divider()
else:
st.session_state['encrypted_extracted_text'] = None
# st.session_state['extracted_text_for_ner'] = None
st.error("Could not extract meaningful text from the uploaded JSON file.")
except json.JSONDecodeError as e:
st.error(f"JSON Decode Error: {e}")
st.error("Please ensure the uploaded file contains valid JSON data.")
st.session_state['encrypted_extracted_text'] = None
st.session_state['json_dataframe'] = None
except Exception as e:
st.error(f"An unexpected error occurred during file processing: {e}")
st.session_state['encrypted_extracted_text'] = None
st.session_state['json_dataframe'] = None
# --- Results Button and Processing Logic ---
if st.button("Results"):
start_time_overall = time.time() # Start time for overall processing
if not comet_initialized:
st.warning("Comet ML not initialized. Check environment variables if you wish to log data.")
# Check attempts limit BEFORE running the model
if st.session_state['file_upload_attempts'] >= max_attempts:
st.error(f"You have requested results {max_attempts} times. You have reached your daily request limit.")
st.stop()
# --- DECRYPT THE TEXT BEFORE PASSING TO NER MODEL ---
text_for_ner = None
if st.session_state['encrypted_extracted_text'] is not None:
text_for_ner = decrypt_text(st.session_state['encrypted_extracted_text'])
if text_for_ner is None or not text_for_ner.strip():
st.warning("No extractable text content available for analysis. Please upload a valid JSON file.")
st.stop()
# Increment the attempts counter and save it to the persistent file
st.session_state['file_upload_attempts'] += 1
save_attempts(st.session_state['file_upload_attempts'])
with st.spinner("Analyzing text...", show_time=True):
model = load_ner_model()
# Measure NER model processing time
start_time_ner = time.time()
text_entities = model(text_for_ner) # Use the decrypted text
end_time_ner = time.time()
ner_processing_time = end_time_ner - start_time_ner
df = pd.DataFrame(text_entities)
if 'word' in df.columns:
# Ensure 'word' column is string type before applying regex
if df['word'].dtype == 'object':
pattern = r'[^\w\s]' # Regex to remove non-alphanumeric characters but keep spaces and periods
df['word'] = df['word'].astype(str).replace(pattern, '', regex=True)
else:
st.warning("The 'word' column is not of string type; skipping character cleaning.")
else:
st.error("The 'word' column does not exist in the DataFrame. Cannot perform cleaning.")
st.stop() # Stop execution if the column is missing
# Replace empty strings with 'Unknown' and drop rows with NaN after cleaning
df = df.replace('', 'Unknown').dropna()
if df.empty:
st.warning("No entities were extracted from the uploaded text.")
st.stop()
# --- Add 'category' column to the DataFrame based on the grouped labels ---
df['category'] = df['entity_group'].map(LABEL_TO_CATEGORY_MAP)
# Handle cases where an entity_group might not have a category
df['category'] = df['category'].fillna('Uncategorized')
if comet_initialized:
experiment = Experiment(
api_key=COMET_API_KEY,
workspace=COMET_WORKSPACE,
project_name=COMET_PROJECT_NAME,
)
experiment.log_parameter("input_text_length", len(text_for_ner))
experiment.log_table("predicted_entities", df)
experiment.log_metric("ner_processing_time_seconds", ner_processing_time)
# --- Display Results ---
st.subheader("Extracted Entities", divider="rainbow")
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
df_styled = df.style.set_properties(**properties)
st.dataframe(df_styled, use_container_width=True)
with st.expander("See Glossary of tags"):
st.write('''
'**word**': ['entity extracted from your text data']
'**score**': ['accuracy score; how accurately a tag has been assigned to
a given entity']
'**entity_group**': ['label (tag) assigned to a given extracted entity']
'**start**': ['index of the start of the corresponding entity']
'**end**': ['index of the end of the corresponding entity']
'**category**': ['the broader category the entity belongs to']
''')
st.subheader("Grouped entities", divider="orange")
# Get unique categories and sort them for consistent tab order
unique_categories = sorted(df['category'].unique())
tabs_per_row = 4 # Adjust as needed for better layout
# Loop through categories in chunks to create rows of tabs
for i in range(0, len(unique_categories), tabs_per_row):
current_row_categories = unique_categories[i : i + tabs_per_row]
tabs = st.tabs(current_row_categories)
for j, category in enumerate(current_row_categories):
with tabs[j]:
df_filtered = df[df["category"] == category]
if not df_filtered.empty:
st.dataframe(df_filtered, use_container_width=True)
else:
st.info(f"No '{category}' entities found in the text.")
# Display an empty DataFrame for consistency if no entities are found
st.dataframe(pd.DataFrame({
'entity_group': [np.nan],
'score': [np.nan],
'word': [np.nan],
'start': [np.nan],
'end': [np.nan],
'category': [category]
}), hide_index=True)
st.divider()
# --- Visualizations ---
st.subheader("Tree map", divider="orange")
fig_treemap = px.treemap(df,
path=[px.Constant("all"), 'category', 'entity_group', 'word'],
values='score', color='category',
color_discrete_map={
'Persons': 'blue',
'Locations': 'green',
'Organizations': 'red',
'Miscellaneous': 'purple',
'Uncategorized': 'gray'
})
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
st.plotly_chart(fig_treemap)
if comet_initialized:
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
# Group by category and entity_group to get counts for pie and bar charts
grouped_counts = df.groupby('category').size().reset_index(name='count')
col1, col2 = st.columns(2)
with col1:
st.subheader("Pie Chart", divider="orange")
fig_pie = px.pie(grouped_counts, values='count', names='category',
hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
st.plotly_chart(fig_pie)
if comet_initialized:
experiment.log_figure(figure=fig_pie, figure_name="category_pie_chart")
with col2:
st.subheader("Bar Chart", divider="orange")
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True,
title='Occurrences of predicted categories')
st.plotly_chart(fig_bar)
if comet_initialized:
experiment.log_figure(figure=fig_bar, figure_name="category_bar_chart")
# --- Downloadable Content ---
dfa = pd.DataFrame(
data={
'Column Name': ['word', 'entity_group', 'score', 'start', 'end', 'category'],
'Description': [
'entity extracted from your text data',
'label (tag) assigned to a given extracted entity',
'accuracy score; how accurately a tag has been assigned to a given entity',
'index of the start of the corresponding entity',
'index of the end of the corresponding entity',
'the broader category the entity belongs to',
]
}
)
buf = io.BytesIO()
with zipfile.ZipFile(buf, "w") as myzip:
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
with stylable_container(
key="download_button",
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
):
st.download_button(
label="Download zip file",
data=buf.getvalue(),
file_name="nlpblogs_ner_results.zip",
mime="application/zip",
)
if comet_initialized:
experiment.log_asset(buf.getvalue(), file_name="downloadable_results.zip")
st.divider()
if comet_initialized:
experiment.end()
end_time_overall = time.time()
elapsed_time_overall = end_time_overall - start_time_overall
st.info(f"Results processed in **{elapsed_time_overall:.2f} seconds**.")
st.write(f"Number of times you requested results: **{st.session_state['file_upload_attempts']}/{max_attempts}**")
|