File size: 23,130 Bytes
d2e00e4
 
 
 
 
 
 
 
 
 
 
 
 
190b8c6
408ba90
 
 
 
190b8c6
d2e00e4
 
 
408ba90
d2e00e4
 
 
408ba90
 
 
 
b7a2268
408ba90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2e00e4
408ba90
 
 
 
 
 
 
 
 
d2e00e4
408ba90
 
d2e00e4
 
408ba90
190b8c6
 
 
 
 
 
 
408ba90
190b8c6
 
 
 
408ba90
d2e00e4
 
190b8c6
 
 
 
d2e00e4
190b8c6
 
 
 
 
 
 
d2e00e4
 
 
408ba90
d2e00e4
 
 
 
 
 
 
 
 
 
 
 
408ba90
d2e00e4
 
 
 
190b8c6
 
 
 
 
 
d2e00e4
 
 
408ba90
190b8c6
d2e00e4
408ba90
d2e00e4
 
 
 
 
 
408ba90
d2e00e4
 
 
 
 
 
 
 
 
 
408ba90
d2e00e4
 
 
408ba90
d2e00e4
 
 
 
 
 
 
408ba90
d2e00e4
 
408ba90
b7a2268
408ba90
d2e00e4
 
 
408ba90
d2e00e4
 
 
408ba90
d2e00e4
 
408ba90
d2e00e4
 
408ba90
d2e00e4
408ba90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2e00e4
408ba90
d2e00e4
408ba90
d2e00e4
 
 
408ba90
d2e00e4
 
 
 
408ba90
d2e00e4
 
 
408ba90
d2e00e4
 
 
408ba90
d2e00e4
 
 
 
 
 
190b8c6
 
d2e00e4
190b8c6
d2e00e4
 
 
 
 
 
 
408ba90
d2e00e4
 
 
 
408ba90
d2e00e4
 
 
408ba90
d2e00e4
 
 
 
408ba90
d2e00e4
 
 
408ba90
d2e00e4
 
 
 
 
408ba90
d2e00e4
408ba90
 
 
 
 
 
 
 
 
 
d2e00e4
 
 
 
190b8c6
d2e00e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408ba90
d2e00e4
 
190b8c6
d2e00e4
 
408ba90
 
d2e00e4
 
 
408ba90
d2e00e4
 
 
 
408ba90
d2e00e4
 
 
408ba90
 
d2e00e4
408ba90
 
d2e00e4
 
408ba90
190b8c6
 
 
 
 
408ba90
d2e00e4
408ba90
d2e00e4
 
190b8c6
 
d2e00e4
 
 
 
 
190b8c6
408ba90
d2e00e4
 
408ba90
d2e00e4
 
 
408ba90
190b8c6
 
 
 
408ba90
d2e00e4
 
 
 
 
 
 
 
190b8c6
408ba90
 
d2e00e4
190b8c6
d2e00e4
 
 
408ba90
d2e00e4
 
 
408ba90
d2e00e4
 
408ba90
d2e00e4
408ba90
d2e00e4
408ba90
d2e00e4
408ba90
190b8c6
d2e00e4
408ba90
190b8c6
408ba90
190b8c6
 
 
408ba90
190b8c6
 
 
 
408ba90
190b8c6
d2e00e4
190b8c6
 
d2e00e4
 
190b8c6
d2e00e4
 
190b8c6
d2e00e4
 
 
190b8c6
 
d2e00e4
 
408ba90
d2e00e4
 
408ba90
 
190b8c6
 
408ba90
 
 
 
 
190b8c6
d2e00e4
 
 
 
408ba90
190b8c6
 
408ba90
d2e00e4
 
 
190b8c6
 
d2e00e4
 
 
190b8c6
408ba90
d2e00e4
 
190b8c6
 
d2e00e4
 
190b8c6
408ba90
d2e00e4
 
 
190b8c6
d2e00e4
 
 
 
 
 
190b8c6
d2e00e4
 
 
 
 
 
 
408ba90
d2e00e4
 
 
 
 
 
 
 
 
 
 
 
408ba90
d2e00e4
 
 
408ba90
190b8c6
 
 
408ba90
d2e00e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import time
import streamlit as st
import pandas as pd
import io
from transformers import pipeline
from streamlit_extras.stylable_container import stylable_container
import plotly.express as px
import zipfile
import os
from comet_ml import Experiment
import re
import numpy as np
import json
from cryptography.fernet import Fernet
 
st.set_page_config(layout="wide",
page_title="Named Entity Recognition App")
 
# --- Configuration ---
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
 
comet_initialized = False
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
    comet_initialized = True
 
# --- Persistent Counter and History Configuration ---
COUNTER_FILE = "counter_json_finder.json"
HISTORY_FILE = "file_history_json_finder.json"
max_attempts = 300
 
# --- Functions to manage persistent data ---
def load_attempts():
    """
    Loads the attempts count from a persistent JSON file.
    Returns 0 if the file doesn't exist or is invalid.
    """
    if os.path.exists(COUNTER_FILE):
        try:
            with open(COUNTER_FILE, "r") as f:
                data = json.load(f)
                return data.get('file_upload_attempts', 0)
        except (json.JSONDecodeError, KeyError):
            return 0
    return 0
 
def save_attempts(attempts):
    """
    Saves the current attempts count to the persistent JSON file.
    """
    with open(COUNTER_FILE, "w") as f:
        json.dump({'file_upload_attempts': attempts}, f)
 
def load_history():
    """
    Loads the file upload history from a persistent JSON file.
    Returns an empty list if the file doesn't exist or is invalid.
    """
    if os.path.exists(HISTORY_FILE):
        try:
            with open(HISTORY_FILE, "r") as f:
                data = json.load(f)
                return data.get('uploaded_files', [])
        except (json.JSONDecodeError, KeyError):
            return []
    return []
 
def save_history(history):
    """
    Saves the current file upload history to the persistent JSON file.
    """
    with open(HISTORY_FILE, "w") as f:
        json.dump({'uploaded_files': history}, f)
 
def clear_history_data():
    """Clears the file history from session state and deletes the persistent file."""
    if os.path.exists(HISTORY_FILE):
        os.remove(HISTORY_FILE)
    st.session_state['uploaded_files_history'] = []
    st.rerun()
 
# --- Initialize session state with persistent data ---
if 'file_upload_attempts' not in st.session_state:
    st.session_state['file_upload_attempts'] = load_attempts()
    # Save to ensure the file exists on first run
    save_attempts(st.session_state['file_upload_attempts'])
 
if 'uploaded_files_history' not in st.session_state:
    st.session_state['uploaded_files_history'] = load_history()
    # Save to ensure the file exists on first run
    save_history(st.session_state['uploaded_files_history'])
 
if 'encrypted_extracted_text' not in st.session_state:
   st.session_state['encrypted_extracted_text'] = None
 
if 'json_dataframe' not in st.session_state:
    st.session_state['json_dataframe'] = None
 
# Define the categories and their associated entity labels
ENTITY_LABELS_CATEGORIZED = {
    "Persons": ["PER"],
    "Locations": ["LOC"],
    "Organizations": ["ORG"],
    "Miscellaneous": ["MISC"],
}
 
# Create a mapping from each specific entity label to its category
LABEL_TO_CATEGORY_MAP = {
    label: category for category, labels in ENTITY_LABELS_CATEGORIZED.items() for label in labels
}
 
@st.cache_resource
def load_ner_model():
    """
    Loads the pre-trained NER model ("saattrupdan/nbailab-base-ner-scandi") and caches it.
    This model is specifically trained for Scandinavian languages.
    """
    try:
        return pipeline(
            "token-classification",
            model="saattrupdan/nbailab-base-ner-scandi",
            aggregation_strategy="max",
            ignore_labels=["O"],
            stride=128
        )
    except Exception as e:
        st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
        st.stop()
 
@st.cache_resource
def load_encryption_key():
    """
    Loads the Fernet encryption key from environment variables.
    This key is crucial for encrypting/decrypting sensitive data.
    It's cached as a resource to be loaded only once.
    """
    try:
        # Get the key string from environment variables
        key_str = os.environ.get("FERNET_KEY")
        if not key_str:
            raise ValueError("FERNET_KEY environment variable not set. Cannot perform encryption/decryption.")
 
        # Fernet key must be bytes, so encode the string
        key_bytes = key_str.encode('utf-8')
        return Fernet(key_bytes)
    except ValueError as ve:
        st.error(
            f"Configuration Error: {ve}. Please ensure the 'FERNET_KEY' environment variable is set securely "
            "in your deployment environment (e.g., Hugging Face Spaces secrets, Render environment variables) "
            "or in a local .env file for development."
        )
        st.stop()  # Stop the app if the key is not found, as security is compromised
    except Exception as e:
        st.error(f"An unexpected error occurred while loading encryption key: {e}. Please check your key format and environment settings.")
        st.stop()
 
# Initialize the Fernet cipher instance globally (cached)
fernet = load_encryption_key()
 
def encrypt_text(text_content: str) -> bytes:
    """
    Encrypts a string using the loaded Fernet cipher.
    The input string is first encoded to UTF-8 bytes.
    """
    return fernet.encrypt(text_content.encode('utf-8'))
 
def decrypt_text(encrypted_bytes: bytes) -> str | None:
    """
    Decrypts bytes using the loaded Fernet cipher.
    Returns the decrypted string, or None if decryption fails (e.g., tampering).
    """
    try:
        return fernet.decrypt(encrypted_bytes).decode('utf-8')
    except Exception as e:
        st.error(f"Decryption failed. This might indicate data tampering or an incorrect encryption key. Error: {e}")
        return None
 
# --- UI Elements ---
st.subheader("Scandinavian JSON Entity Finder", divider="orange")
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
 
expander = st.expander("**Important notes on the Scandinavian JSON Entity Finder**")
expander.write('''
   **Named Entities:** This Scandinavian JSON Entity Finder predicts four
   (4) labels (“PER: person”, “LOC: location”, “ORG: organization”, “MISC:
   miscellaneous”). Results are presented in an easy-to-read table, visualized in
   an interactive tree map, pie chart, and bar chart, and are available for
   download along with a Glossary of tags.
 
   **How to Use:** Upload your JSON file. Then, click the 'Results' button
   to extract and tag entities in your text data.
 
   **Usage Limits:** You can request results up to 300 times within a 30-day period.
 
   **Language settings:** Please check and adjust the language settings in
   your computer, so the Danish, Swedish, Norwegian, Icelandic and Faroese
   characters are handled properly in your downloaded file.
 
   **Customization:** To change the app's background color to white or
   black, click the three-dot menu on the right-hand side of your app, go to
   Settings and then Choose app theme, colors and fonts.
 
   **Technical issues:** If your connection times out, please refresh the
   page or reopen the app's URL.
 
   For any errors or inquiries, please contact us at info@nlpblogs.com
''')
 
with st.sidebar:
    
 
    # --- Added Persistent History Display ---
    st.subheader("Your File Upload History", divider="orange")
    if st.session_state['uploaded_files_history']:
        history_to_display = st.session_state['uploaded_files_history']
        history_df = pd.DataFrame(history_to_display)
        st.dataframe(history_df, use_container_width=True, hide_index=True)
        # Add a clear history button
        if st.button("Clear File History", help="This will permanently delete the file history from the application."):
            clear_history_data()
    else:
        st.info("You have not uploaded any files yet.")


    st.subheader("Build your own NER Web App in a minute without writing a single line of code.", divider="orange")
    st.link_button("NER File Builder",
                   "https://nlpblogs.com/shop/named-entity-recognition-ner/ner-file-builder/",
                   type="primary")
 
uploaded_file = st.file_uploader("Choose a JSON file", type=["json"])
 
# Initialize text for the current run outside the if uploaded_file block
# This will be populated if a file is uploaded, otherwise it remains None
current_run_text = None
 
if uploaded_file is not None:
    try:
        # Read the content as bytes first, then decode for JSON parsing
        file_contents_bytes = uploaded_file.read()
 
        # Reset the file pointer after reading, so json.load can read from the beginning
        uploaded_file.seek(0)
        dados = json.load(uploaded_file)
 
        # Attempt to convert JSON to DataFrame and extract text
        try:
            st.session_state['json_dataframe'] = pd.DataFrame(dados)
 
            # Concatenate all content into a single string for NER
            df_string_representation = st.session_state['json_dataframe'].to_string(index=False, header=False)
            # Simple regex to remove non-alphanumeric characters but keep spaces and periods
            text_content = re.sub(r'[^\w\s.]', '', df_string_representation)
            # Remove the specific string "Empty DataFrame Columns" if it appears due to conversion
            text_content = text_content.replace("Empty DataFrame Columns", "").strip()
            current_run_text = text_content  # Set text for current run
            if not current_run_text.strip():  # Check if text is effectively empty
                st.warning("No meaningful text could be extracted from the JSON DataFrame for analysis.")
                current_run_text = None  # Reset to None if empty
        except ValueError:
            # If direct conversion to DataFrame fails, try to extract strings directly from JSON structure
            st.info("JSON data could not be directly converted to a simple DataFrame for display. Attempting to extract text directly.")
            extracted_texts_list = []
            if isinstance(dados, list):
                for item in dados:
                    if isinstance(item, str):
                       extracted_texts_list.append(item)
                    elif isinstance(item, dict):
                        # Recursively get string values from dicts in a list
                        for val in item.values():
                            if isinstance(val, str):
                               extracted_texts_list.append(val)
                            elif isinstance(val, list):
                                for sub_val in val:
                                    if isinstance(sub_val, str):
                                       extracted_texts_list.append(sub_val)
            elif isinstance(dados, dict):
                # Get string values from a dictionary
                for value in dados.values():
                    if isinstance(value, str):
                       extracted_texts_list.append(value)
                    elif isinstance(value, list):
                        for sub_val in value:
                            if isinstance(sub_val, str):
                               extracted_texts_list.append(sub_val)
            if extracted_texts_list:
                current_run_text = " ".join(extracted_texts_list).strip()
            else:
                st.warning("No string text could be extracted from the JSON for analysis.")
                current_run_text = None
 
        if current_run_text:
            # --- ADDING TO UPLOAD HISTORY ---
            new_upload_entry = {
                "filename": uploaded_file.name,
                "timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
            }
            # Append the new file to the session state history
            st.session_state['uploaded_files_history'].append(new_upload_entry)
            # Save the updated history to the persistent file
            save_history(st.session_state['uploaded_files_history'])
            # --- END OF HISTORY ADDITION ---
            # --- ENCRYPT THE EXTRACTED TEXT BEFORE STORING IN SESSION STATE ---
            encrypted_text_bytes = encrypt_text(current_run_text)
            st.session_state['encrypted_extracted_text'] = encrypted_text_bytes
            # Optionally clear the unencrypted version from session state if you only want the encrypted one
            # st.session_state['extracted_text_for_ner'] = None
            st.success("JSON file uploaded successfully. File content encrypted and secured. Due to security protocols, the file content is hidden.")
            st.divider()
        else:
            st.session_state['encrypted_extracted_text'] = None
            # st.session_state['extracted_text_for_ner'] = None
            st.error("Could not extract meaningful text from the uploaded JSON file.")
    except json.JSONDecodeError as e:
        st.error(f"JSON Decode Error: {e}")
        st.error("Please ensure the uploaded file contains valid JSON data.")
        st.session_state['encrypted_extracted_text'] = None
        st.session_state['json_dataframe'] = None
    except Exception as e:
        st.error(f"An unexpected error occurred during file processing: {e}")
        st.session_state['encrypted_extracted_text'] = None
        st.session_state['json_dataframe'] = None
 
# --- Results Button and Processing Logic ---
if st.button("Results"):
    start_time_overall = time.time()  # Start time for overall processing
    if not comet_initialized:
        st.warning("Comet ML not initialized. Check environment variables if you wish to log data.")
 
    # Check attempts limit BEFORE running the model
    if st.session_state['file_upload_attempts'] >= max_attempts:
        st.error(f"You have requested results {max_attempts} times. You have reached your daily request limit.")
        st.stop()
 
    # --- DECRYPT THE TEXT BEFORE PASSING TO NER MODEL ---
    text_for_ner = None
    if st.session_state['encrypted_extracted_text'] is not None:
        text_for_ner = decrypt_text(st.session_state['encrypted_extracted_text'])
 
    if text_for_ner is None or not text_for_ner.strip():
        st.warning("No extractable text content available for analysis. Please upload a valid JSON file.")
        st.stop()
 
    # Increment the attempts counter and save it to the persistent file
    st.session_state['file_upload_attempts'] += 1
    save_attempts(st.session_state['file_upload_attempts'])
 
    with st.spinner("Analyzing text...", show_time=True):
        model = load_ner_model()
 
        # Measure NER model processing time
        start_time_ner = time.time()
        text_entities = model(text_for_ner)  # Use the decrypted text
        end_time_ner = time.time()
        ner_processing_time = end_time_ner - start_time_ner
 
        df = pd.DataFrame(text_entities)
 
        if 'word' in df.columns:
            # Ensure 'word' column is string type before applying regex
            if df['word'].dtype == 'object':
                pattern = r'[^\w\s]'  # Regex to remove non-alphanumeric characters but keep spaces and periods
                df['word'] = df['word'].astype(str).replace(pattern, '', regex=True)
            else:
                st.warning("The 'word' column is not of string type; skipping character cleaning.")
        else:
            st.error("The 'word' column does not exist in the DataFrame. Cannot perform cleaning.")
            st.stop()  # Stop execution if the column is missing
 
        # Replace empty strings with 'Unknown' and drop rows with NaN after cleaning
        df = df.replace('', 'Unknown').dropna()
 
        if df.empty:
            st.warning("No entities were extracted from the uploaded text.")
            st.stop()
 
        # --- Add 'category' column to the DataFrame based on the grouped labels ---
        df['category'] = df['entity_group'].map(LABEL_TO_CATEGORY_MAP)
        # Handle cases where an entity_group might not have a category
        df['category'] = df['category'].fillna('Uncategorized')
 
        if comet_initialized:
            experiment = Experiment(
                api_key=COMET_API_KEY,
                workspace=COMET_WORKSPACE,
                project_name=COMET_PROJECT_NAME,
            )
            experiment.log_parameter("input_text_length", len(text_for_ner))
            experiment.log_table("predicted_entities", df)
            experiment.log_metric("ner_processing_time_seconds", ner_processing_time)
 
 
        # --- Display Results ---
        st.subheader("Extracted Entities", divider="rainbow")
        properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
        df_styled = df.style.set_properties(**properties)
        st.dataframe(df_styled, use_container_width=True)
 
        with st.expander("See Glossary of tags"):
            st.write('''
            '**word**': ['entity extracted from your text data']
             
            '**score**': ['accuracy score; how accurately a tag has been assigned to
            a given entity']
             
            '**entity_group**': ['label (tag) assigned to a given extracted entity']
             
            '**start**': ['index of the start of the corresponding entity']
             
            '**end**': ['index of the end of the corresponding entity']
             
            '**category**': ['the broader category the entity belongs to']
            ''')
 
        st.subheader("Grouped entities", divider="orange")
 
        # Get unique categories and sort them for consistent tab order
        unique_categories = sorted(df['category'].unique())
        tabs_per_row = 4  # Adjust as needed for better layout
 
        # Loop through categories in chunks to create rows of tabs
        for i in range(0, len(unique_categories), tabs_per_row):
            current_row_categories = unique_categories[i : i + tabs_per_row]
            tabs = st.tabs(current_row_categories)
 
            for j, category in enumerate(current_row_categories):
                with tabs[j]:
                    df_filtered = df[df["category"] == category]
                    if not df_filtered.empty:
                        st.dataframe(df_filtered, use_container_width=True)
                    else:
                        st.info(f"No '{category}' entities found in the text.")
                        # Display an empty DataFrame for consistency if no entities are found
                        st.dataframe(pd.DataFrame({
                            'entity_group': [np.nan],
                            'score': [np.nan],
                            'word': [np.nan],
                            'start': [np.nan],
                            'end': [np.nan],
                            'category': [category]
                        }), hide_index=True)
        st.divider()
 
        # --- Visualizations ---
        st.subheader("Tree map", divider="orange")
        fig_treemap = px.treemap(df,
                                 path=[px.Constant("all"), 'category', 'entity_group', 'word'],
                                 values='score', color='category',
                                 color_discrete_map={
                                    'Persons': 'blue',
                                    'Locations': 'green',
                                    'Organizations': 'red',
                                    'Miscellaneous': 'purple',
                                    'Uncategorized': 'gray'
                                 })
        fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
        st.plotly_chart(fig_treemap)
        if comet_initialized:
            experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
 
        # Group by category and entity_group to get counts for pie and bar charts
        grouped_counts = df.groupby('category').size().reset_index(name='count')
 
        col1, col2 = st.columns(2)
        with col1:
            st.subheader("Pie Chart", divider="orange")
            fig_pie = px.pie(grouped_counts, values='count', names='category',
                             hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
            fig_pie.update_traces(textposition='inside', textinfo='percent+label')
            st.plotly_chart(fig_pie)
            if comet_initialized:
                experiment.log_figure(figure=fig_pie, figure_name="category_pie_chart")
 
        with col2:
            st.subheader("Bar Chart", divider="orange")
            fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True,
                             title='Occurrences of predicted categories')
            st.plotly_chart(fig_bar)
            if comet_initialized:
                experiment.log_figure(figure=fig_bar, figure_name="category_bar_chart")
 
        # --- Downloadable Content ---
        dfa = pd.DataFrame(
            data={
                'Column Name': ['word', 'entity_group', 'score', 'start', 'end', 'category'],
                'Description': [
                    'entity extracted from your text data',
                    'label (tag) assigned to a given extracted entity',
                    'accuracy score; how accurately a tag has been assigned to a given entity',
                    'index of the start of the corresponding entity',
                    'index of the end of the corresponding entity',
                    'the broader category the entity belongs to',
                ]
            }
        )
        buf = io.BytesIO()
        with zipfile.ZipFile(buf, "w") as myzip:
            myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
            myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
 
        with stylable_container(
            key="download_button",
            css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
        ):
            st.download_button(
                label="Download zip file",
                data=buf.getvalue(),
                file_name="nlpblogs_ner_results.zip",
                mime="application/zip",
            )
            if comet_initialized:
                experiment.log_asset(buf.getvalue(), file_name="downloadable_results.zip")
 
        st.divider()
        if comet_initialized:
            experiment.end()
 
    end_time_overall = time.time()
    elapsed_time_overall = end_time_overall - start_time_overall
    st.info(f"Results processed in **{elapsed_time_overall:.2f} seconds**.")
 
st.write(f"Number of times you requested results: **{st.session_state['file_upload_attempts']}/{max_attempts}**")