Spaces:
Sleeping
Sleeping
File size: 43,404 Bytes
cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 cce43bc 535dff0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 |
"""
AI Database Assistant - Streamlit Chat Interface
"""
import streamlit as st
import pandas as pd
import base64
import logging
from typing import List, Dict, Any
from api_client import APIClient
from themes import ThemeManager
from config import (
BASE_URL, PAGE_TITLE, PAGE_LAYOUT, AVAILABLE_MODELS, AVAILABLE_AGENTS,
OUTLINE_INDIGO_USER, DARK_MODE_SLATE_AI, AVAILABLE_THEMES,
CHAT_INPUT_PLACEHOLDER, THINKING_MESSAGE, WORKING_MESSAGE, RETRY_BUTTON_TEXT, DOWNLOAD_BUTTON_TEXT
)
# ===============================
# Configuration
# ===============================
# Configuration is now imported from config.py
# To change environments, only modify BASE_URL in config.py
# Setup
st.set_page_config(page_title=PAGE_TITLE, layout=PAGE_LAYOUT)
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Initialize API Client with base URL from config
api_client = APIClient(BASE_URL)
# ===============================
# Theme Management
# ===============================
# Initialize theme manager
theme_manager = ThemeManager()
# ===============================
# Database Status Functions
# ===============================
@st.cache_data(ttl=30) # Reduced cache time for more responsive health checks
def check_api_status():
"""Check if the API is reachable and responsive with a lightweight health check."""
try:
return api_client.check_health()
except Exception as e:
logging.error(f"Health check failed: {e}")
return "π΄ Error", f"Failed: {str(e)}", "error"
@st.cache_data(ttl=30) # Reduced cache time for detailed health
def get_detailed_health_status():
"""Get detailed health status from the API."""
try:
return api_client.get_detailed_health()
except Exception as e:
logging.error(f"Detailed health check failed: {e}")
return {
"status": "error",
"message": f"Health check failed: {str(e)}",
"checks": {}
}
def should_skip_api_call(force_refresh=False):
"""Enhanced validation to determine if API calls should be skipped - FOR HEALTH CHECKS ONLY."""
try:
# Always allow API calls when force refresh is requested
if force_refresh:
logging.info("API call allowed: Force refresh requested")
return False
# Check for immediate health check flag (when System Status is just enabled)
if st.session_state.get("force_immediate_health_check", False):
logging.info("API call allowed: System Status just enabled")
# Clear the flag after use
st.session_state["force_immediate_health_check"] = False
return False
# Skip if currently processing a query (to prevent concurrent calls)
if st.session_state.get("processing_query", False):
logging.info("API call skipped: Query processing in progress")
return True
# Check if System Status section is enabled - only call API if it's visible
if not st.session_state.get("sidebar_settings", {}).get("show_system_status", False):
logging.info("API call skipped: System Status section is disabled")
return True
# Block API calls if ANY UI interaction happened in last 5 seconds (FOR HEALTH CHECKS)
if "recent_ui_action" in st.session_state:
current_time = pd.Timestamp.now().timestamp()
time_since_action = current_time - st.session_state.get("recent_ui_action", 0)
if time_since_action < 5: # 5 seconds protection
logging.info(f"API call blocked: UI interaction {time_since_action:.1f}s ago")
return True
# Check rate limiting for regular health checks
current_time = pd.Timestamp.now().timestamp()
last_update = st.session_state.get("last_status_update", 0)
# Allow call if we don't have cached status
if "last_api_status" not in st.session_state:
logging.info("API call allowed: No cached status available")
return False
# Otherwise, respect the rate limit
time_since_update = current_time - last_update
if time_since_update < 30: # 30 seconds rate limit
logging.info(f"API call skipped: Rate limit (updated {time_since_update:.1f}s ago)")
return True
logging.info("API call allowed: Rate limit passed")
return False
except Exception as e:
logging.error(f"Error in should_skip_api_call: {e}")
return False # Allow API call on error (fail safe)
def should_skip_query_processing():
"""Determine if query processing should be skipped - FOR QUERY PROCESSING ONLY."""
try:
# Never skip if we have a legitimate query
if "legitimate_query_time" in st.session_state:
current_time = pd.Timestamp.now().timestamp()
time_since_query = current_time - st.session_state.get("legitimate_query_time", 0)
if time_since_query < 10: # Allow legitimate queries within 10 seconds
logging.info(f"Query processing allowed: Legitimate query {time_since_query:.1f}s ago")
return False
# Skip if already processing a query (to prevent concurrent calls)
if st.session_state.get("processing_query", False):
logging.info("Query processing skipped: Already processing a query")
return True
# Block if recent UI action but no legitimate query flag
if "recent_ui_action" in st.session_state and "legitimate_query_time" not in st.session_state:
current_time = pd.Timestamp.now().timestamp()
time_since_action = current_time - st.session_state.get("recent_ui_action", 0)
if time_since_action < 5: # 5 seconds protection
logging.info(f"Query processing blocked: UI interaction {time_since_action:.1f}s ago without legitimate query")
return True
logging.info("Query processing allowed: No blocking conditions")
return False
except Exception as e:
logging.error(f"Error in should_skip_query_processing: {e}")
return False # Allow processing on error (fail safe)
def silent_status_update():
"""Update status silently without UI disruption."""
try:
# Use the validation function
if should_skip_api_call():
return
# Clear cache and update timestamp
st.cache_data.clear()
st.session_state["last_status_update"] = pd.Timestamp.now().timestamp()
except:
pass # Silent failure
def get_query_stats():
"""Get query statistics from session state."""
if "query_stats" not in st.session_state:
st.session_state["query_stats"] = {
"total_queries": 0,
"successful_queries": 0,
"failed_queries": 0,
"session_start": pd.Timestamp.now()
}
stats = st.session_state["query_stats"]
success_rate = 0
if stats["total_queries"] > 0:
success_rate = round((stats["successful_queries"] / stats["total_queries"]) * 100, 1)
return stats["total_queries"], success_rate, stats["successful_queries"], stats["failed_queries"]
def update_query_stats(success=True):
"""Update query statistics."""
if "query_stats" not in st.session_state:
st.session_state["query_stats"] = {
"total_queries": 0,
"successful_queries": 0,
"failed_queries": 0,
"session_start": pd.Timestamp.now()
}
st.session_state["query_stats"]["total_queries"] += 1
if success:
st.session_state["query_stats"]["successful_queries"] += 1
else:
st.session_state["query_stats"]["failed_queries"] += 1
# ===============================
# Session State Management
# ===============================
if "messages" not in st.session_state:
st.session_state["messages"] = []
if "query_stats" not in st.session_state:
st.session_state["query_stats"] = {
"total_queries": 0,
"successful_queries": 0,
"failed_queries": 0,
"session_start": pd.Timestamp.now()
}
if "processing_query" not in st.session_state:
st.session_state["processing_query"] = False
# ===============================
# Main App Setup
# ===============================
# Professional header positioned at top-left of chat area
st.markdown(f"""
<div style=" display: flex; align-items: center; padding-left: 0.5rem;">
<h2 style="margin: 0; font-size: 1.5rem; font-weight: 600; color: inherit;">
π¬ {PAGE_TITLE}
</h2>
</div>
""", unsafe_allow_html=True)
st.markdown("""
<div style=" padding-left: 0.5rem;">
<p style="margin: 0; font-size: 0.9rem; opacity: 0.7; color: inherit;">
Ask questions in plain English to generate and run SQL queries.
</p>
</div>
""", unsafe_allow_html=True)
# Sidebar
with st.sidebar:
# Quick status indicator at the top
if "sidebar_settings" in st.session_state:
visible_count = sum([
st.session_state["sidebar_settings"]["show_model_selection"],
st.session_state["sidebar_settings"]["show_agent_selection"],
st.session_state["sidebar_settings"]["show_theme_selection"],
st.session_state["sidebar_settings"]["show_system_status"],
st.session_state["sidebar_settings"]["show_tips"]
])
if visible_count == 5:
st.caption("π’ All sections visible")
elif visible_count > 0:
st.caption(f"π‘ {visible_count}/5 sections visible")
else:
st.caption("π΄ No sections visible")
# Sidebar Display Settings - User Configurable
# Initialize settings state tracking
if "settings_interaction_count" not in st.session_state:
st.session_state["settings_interaction_count"] = 0
# Track if user has recently interacted with settings
keep_expanded = st.session_state.get("settings_interaction_count", 0) > 0
# Create expander that stays open for a few interactions
settings_expander = st.expander(
"βοΈ Sidebar Settings",
expanded=keep_expanded
)
with settings_expander:
st.markdown("**Choose what to display:**")
# Initialize sidebar visibility settings in session state with new defaults
if "sidebar_settings" not in st.session_state:
st.session_state["sidebar_settings"] = {
"show_model_selection": True, # Default unchecked
"show_agent_selection": False, # Default unchecked
"show_theme_selection": True,
"show_system_status": False, # Default unchecked - only load health checks when enabled
"show_tips": True
}
# Store previous values to detect changes
prev_settings = st.session_state["sidebar_settings"].copy()
# Configurable checkboxes
col1, col2 = st.columns(2)
with col1:
show_model = st.checkbox(
"π€ AI Model",
value=st.session_state["sidebar_settings"]["show_model_selection"],
help="Show/hide AI model selection",
key="settings_model"
)
show_agent = st.checkbox(
"π― Agent Type",
value=st.session_state["sidebar_settings"]["show_agent_selection"],
help="Show/hide agent selection",
key="settings_agent"
)
show_theme = st.checkbox(
"π¨ Theme",
value=st.session_state["sidebar_settings"]["show_theme_selection"],
help="Show/hide theme selection",
key="settings_theme"
)
with col2:
show_status = st.checkbox(
"π System Status",
value=st.session_state["sidebar_settings"]["show_system_status"],
help="Show/hide system status",
key="settings_status"
)
show_tips = st.checkbox(
"π‘ Tips & Help",
value=st.session_state["sidebar_settings"]["show_tips"],
help="Show/hide tips section",
key="settings_tips"
)
# Detect if any setting changed
new_settings = {
"show_model_selection": show_model,
"show_agent_selection": show_agent,
"show_theme_selection": show_theme,
"show_system_status": show_status,
"show_tips": show_tips
}
# Check if settings changed
settings_changed = any(
prev_settings.get(key) != new_settings[key]
for key in new_settings.keys()
)
# Special handling for System Status being enabled
status_just_enabled = (
not prev_settings.get("show_system_status", False) and
new_settings["show_system_status"]
)
# Update session state
st.session_state["sidebar_settings"].update(new_settings)
# Increment interaction count when settings change
if settings_changed:
st.session_state["settings_interaction_count"] += 1
# Mark UI action to prevent unnecessary API calls for most settings
if not status_just_enabled: # Don't block API calls when System Status is enabled
st.session_state["recent_ui_action"] = pd.Timestamp.now().timestamp()
# Reset counter after 10 interactions to prevent it growing indefinitely
if st.session_state["settings_interaction_count"] > 10:
st.session_state["settings_interaction_count"] = 5
# If System Status was just enabled, clear cache and allow immediate health check
if status_just_enabled:
st.cache_data.clear()
# Clear any cached status to force fresh call
for key in ["last_api_status", "last_api_delta", "last_api_type", "last_detailed_health"]:
if key in st.session_state:
del st.session_state[key]
st.session_state["last_status_update"] = 0
# Set flag to trigger immediate health check
st.session_state["force_immediate_health_check"] = True
# Remove any recent UI action timestamp to allow API call
if "recent_ui_action" in st.session_state:
del st.session_state["recent_ui_action"]
# Show current settings status
visible_count = sum([show_model, show_agent, show_theme, show_status, show_tips])
if visible_count == 5:
st.success(f"β
All {visible_count} sections visible")
elif visible_count > 0:
st.info(f"βΉοΈ {visible_count}/5 sections visible")
else:
st.warning("β οΈ No sections visible")
# Use the current session state values for conditional rendering
show_model = st.session_state["sidebar_settings"]["show_model_selection"]
show_agent = st.session_state["sidebar_settings"]["show_agent_selection"]
show_theme = st.session_state["sidebar_settings"]["show_theme_selection"]
show_status = st.session_state["sidebar_settings"]["show_system_status"]
show_tips = st.session_state["sidebar_settings"]["show_tips"]
st.markdown("---")
# Model Selection (conditional display)
if show_model:
st.markdown("### π€ AI Model")
# Static list of available models - no API calls needed
available_models = [
"gpt-4o-mini",
"gpt-3.5-turbo",
"gemini-1.5-pro",
"gemini-1.5-flash",
"claude-3-haiku",
"claude-3-sonnet",
"mistral-small",
"mistral-medium",
"mistral-large",
]
model = st.selectbox(
"Choose your AI model:",
available_models,
index=0, # Default to first model
help="Select the AI model for processing your queries",
key="model_selector"
)
# Show model descriptions - static information
model_descriptions = {
"gpt-4o-mini": "β‘ Fast & cost-effective OpenAI model",
"gpt-3.5-turbo": "π₯ Reliable & quick OpenAI model",
"gemini-pro": "π Google's powerful Gemini model",
"gemini-1.5-pro": "π¬ Google's latest Gemini model",
"gemini-1.5-flash": "β‘ Google's fast Gemini model",
"claude-3-haiku": "πΈ Anthropic's efficient Claude model",
"claude-3-sonnet": "π΅ Anthropic's balanced Claude model",
"mistral-small": "π― Mistral's efficient model",
"mistral-medium": "βοΈ Mistral's balanced model",
"mistral-large": "π¦Ύ Mistral's most capable model",
}
description = model_descriptions.get(model, "π€ Advanced AI model")
st.info(description)
# Show provider information - static
provider_info = {
"gpt-4o-mini": "π’ OpenAI",
"gpt-3.5-turbo": "π’ OpenAI",
"gemini-pro": "π Google",
"gemini-1.5-pro": "π Google",
"gemini-1.5-flash": "π Google",
"claude-3-haiku": "π€ Anthropic",
"claude-3-sonnet": "π€ Anthropic",
"mistral-small": "β‘ Mistral AI",
"mistral-medium": "β‘ Mistral AI",
"mistral-large": "β‘ Mistral AI",
}
provider = provider_info.get(model, "π€ AI Provider")
st.caption(f"Provider: {provider}")
# Show setup hints for different providers
if model.startswith("gemini"):
st.caption("π‘ Requires GOOGLE_API_KEY in .env")
elif model.startswith("claude"):
st.caption("π‘ Requires ANTHROPIC_API_KEY in .env")
elif model.startswith("mistral"):
st.caption("π‘ Requires MISTRAL_API_KEY in .env")
elif model in ["llama3.2", "llama3.1", "codellama", "phi3"]:
st.caption("π‘ Requires Ollama installed locally")
else:
st.caption("π‘ Requires OPENAI_API_KEY in .env")
# Mark UI action to prevent unnecessary API calls for other interactions
if model:
st.session_state["recent_ui_action"] = pd.Timestamp.now().timestamp()
st.markdown("---")
else:
# Use default model when hidden
model = AVAILABLE_MODELS[0]
# Agent Selection (conditional display)
if show_agent:
st.markdown("### π― Agent Type")
agent = st.selectbox(
"Choose your agent:",
AVAILABLE_AGENTS,
help="Select the specialized agent for your database tasks",
key="agent_selector"
)
# Mark UI action to prevent unnecessary API calls
if agent:
st.session_state["recent_ui_action"] = pd.Timestamp.now().timestamp()
# Show agent info
agent_info = {
"default": "π§ General-purpose database assistant",
"sql-agent": "πΎ Specialized in SQL optimization",
"custom-agent": "π¨ Customized for specific workflows"
}
st.info(agent_info.get(agent, "Specialized database agent"))
st.markdown("---")
else:
# Use default agent when hidden
agent = AVAILABLE_AGENTS[0]
# Theme Selection (conditional display)
if show_theme:
st.markdown("### π¨ Appearance")
theme = st.selectbox(
"Choose your theme:",
AVAILABLE_THEMES,
help="Customize the visual appearance",
key="theme_selector"
)
# Mark UI action to prevent unnecessary API calls
if theme:
st.session_state["recent_ui_action"] = pd.Timestamp.now().timestamp()
st.markdown("---")
else:
# Use default theme when hidden
theme = AVAILABLE_THEMES[0]
# System Status (conditional display)
if show_status:
st.markdown("### π System Status")
# Skip status check if currently processing a query to avoid slowdown
if st.session_state.get("processing_query", False):
st.info("β³ Status check paused during query processing")
# Show cached stats only
total_queries, success_rate, successful, failed = get_query_stats()
col1, col2 = st.columns(2)
with col1:
st.metric("API Status", "β³ Processing", delta="Query in progress")
with col2:
st.metric("Total Queries", total_queries, delta=f"+{total_queries}")
else:
# Check if this is a force refresh scenario
is_force_refresh = st.session_state.get("force_refresh_requested", False)
# Use centralized validation to avoid unnecessary API calls
if not should_skip_api_call(force_refresh=is_force_refresh):
logging.info("=== HEALTH CHECK API CALL STARTING ===")
try:
# Get real-time API status only when validation passes
status_text, status_delta, status_type = check_api_status()
# Get detailed health information
detailed_health = get_detailed_health_status()
# Store the status for future use
st.session_state["last_api_status"] = status_text
st.session_state["last_api_delta"] = status_delta
st.session_state["last_api_type"] = status_type
st.session_state["last_detailed_health"] = detailed_health
st.session_state["last_status_update"] = pd.Timestamp.now().timestamp()
logging.info("=== HEALTH CHECK API CALL COMPLETED ===")
# Clear force refresh flag after successful update
if is_force_refresh:
st.session_state["force_refresh_requested"] = False
except Exception as e:
logging.error(f"Status check failed: {e}")
# Use error values if API fails
status_text = "π΄ Failed"
status_delta = f"Error: {str(e)[:50]}..."
status_type = "error"
detailed_health = {
"status": "error",
"message": f"Status check failed: {str(e)}",
"checks": {}
}
# Clear force refresh flag even on error
if is_force_refresh:
st.session_state["force_refresh_requested"] = False
else:
# Use cached values to avoid API calls, with better defaults
status_text = st.session_state.get("last_api_status", "π‘ Loading...")
status_delta = st.session_state.get("last_api_delta", "Initializing...")
status_type = st.session_state.get("last_api_type", "normal")
detailed_health = st.session_state.get("last_detailed_health", {
"status": "unknown",
"message": "Loading system status...",
"checks": {}
})
# Get query statistics
total_queries, success_rate, successful, failed = get_query_stats()
# Display main metrics
col1, col2 = st.columns(2)
with col1:
st.metric("API Status", status_text, delta=status_delta)
with col2:
st.metric("Total Queries", total_queries, delta=f"+{total_queries}")
# Status indicator with more details
if status_type == "success":
st.success("β
All systems operational")
elif status_type == "warning":
st.warning("β οΈ Limited functionality - some features may be slow")
else:
st.error("β API connection failed - please check your backend service")
# Show detailed health checks in an expander
with st.expander("π Detailed System Health", expanded=False):
if detailed_health.get("status") in ["healthy", "unhealthy"]:
# Display timestamp
if "timestamp" in detailed_health:
st.caption(f"Last checked: {detailed_health['timestamp']}")
# Display individual checks
checks = detailed_health.get("checks", {})
if "database" in checks:
db_check = checks["database"]
db_status = db_check.get("status", "unknown")
db_message = db_check.get("message", "No information")
if db_status == "healthy":
st.success(f"ποΈ Database: {db_message}")
elif db_status == "unhealthy":
st.error(f"ποΈ Database: {db_message}")
else:
st.warning(f"ποΈ Database: {db_message}")
if "openai_api" in checks:
api_check = checks["openai_api"]
api_status = api_check.get("status", "unknown")
api_message = api_check.get("message", "No information")
if api_status == "configured":
st.success(f"π€ OpenAI API: {api_message}")
elif api_status == "error":
st.error(f"π€ OpenAI API: {api_message}")
else:
st.warning(f"π€ OpenAI API: {api_message}")
# Display version if available
if "version" in detailed_health:
st.info(f"π¦ Version: {detailed_health['version']}")
else:
# Show error information
st.error(f"β Health check failed: {detailed_health.get('message', 'Unknown error')}")
st.caption("Unable to retrieve detailed system status")
# Additional detailed stats (always show regardless of processing state)
if total_queries > 0:
col3, col4 = st.columns(2)
with col3:
st.metric("Success Rate", f"{success_rate}%", delta=f"{successful} successful")
with col4:
session_duration = pd.Timestamp.now() - st.session_state["query_stats"]["session_start"]
hours = int(session_duration.total_seconds() // 3600)
minutes = int((session_duration.total_seconds() % 3600) // 60)
st.metric("Session Time", f"{hours}h {minutes}m", delta="Active")
# Show last update time and refresh button
col_refresh1, col_refresh2 = st.columns([2, 1])
with col_refresh1:
st.caption(f"π Last updated: {pd.Timestamp.now().strftime('%H:%M:%S')}")
with col_refresh2:
if st.button("π", help="Force Refresh Status", key="refresh_status"):
# Set force refresh flag to bypass validation
st.session_state["force_refresh_requested"] = True
# Clear all cached data and force fresh API calls
st.cache_data.clear()
# Reset validation timestamps to allow immediate API calls
st.session_state["last_status_update"] = 0
if "recent_ui_action" in st.session_state:
del st.session_state["recent_ui_action"]
# Clear cached status values
for key in ["last_api_status", "last_api_delta", "last_api_type", "last_detailed_health"]:
if key in st.session_state:
del st.session_state[key]
st.rerun()
st.markdown("---")
# Tips and Help (conditional display)
if show_tips:
st.markdown("### π‘ Quick Tips")
with st.expander("π How to ask questions"):
st.markdown("""
- **"Show me all customers from Chicago"**
- **"What are the top 5 branches by transactions?"**
- **"Calculate total transactions by month"**
- **"Find customers who haven't done any transactions recently"**
""")
with st.expander("β‘ Pro Tips"):
st.markdown("""
- Be specific about what data you want
- Mention date ranges when relevant
- Ask for summaries or aggregations
- Use natural language - no SQL needed!
""")
with st.expander("π§ Troubleshooting"):
st.markdown("""
- **No results?** Try rephrasing your question
- **Error message?** Use the retry button
- **Slow response?** Check your connection
- **Wrong data?** Be more specific in your query
""")
st.markdown("---")
# Quick actions
st.markdown("### π Quick Actions")
# Check if query is currently being processed
is_processing = st.session_state.get("processing_query", False)
# Show processing indicator if query is running
if is_processing:
st.info("β‘ Query in progress... All action buttons are temporarily disabled.")
col_action1, col_action2 = st.columns(2)
with col_action1:
# Disable Clear Chat button when query is processing
clear_chat_disabled = is_processing
clear_chat_help = "Cannot clear chat while query is processing" if is_processing else "Clear all chat messages"
if st.button("ποΈ Clear Chat",
use_container_width=True,
disabled=clear_chat_disabled,
help=clear_chat_help):
# Simple UI action - block API calls for 5 seconds
st.session_state["recent_ui_action"] = pd.Timestamp.now().timestamp()
st.session_state["messages"] = []
logging.info("Clear Chat button clicked - blocking API calls for 5 seconds")
st.rerun()
with col_action2:
# Disable Reset Stats button when query is processing to prevent any API calls
reset_stats_disabled = is_processing
reset_stats_help = "Cannot reset stats while query is processing" if is_processing else "Reset query statistics"
if st.button("π Reset Stats",
use_container_width=True,
disabled=reset_stats_disabled,
help=reset_stats_help):
# Simple UI action - block API calls for 5 seconds
st.session_state["recent_ui_action"] = pd.Timestamp.now().timestamp()
st.session_state["query_stats"] = {
"total_queries": 0,
"successful_queries": 0,
"failed_queries": 0,
"session_start": pd.Timestamp.now()
}
logging.info("Reset Stats button clicked - blocking API calls for 5 seconds")
st.rerun()
# Sample Queries button - also disabled during processing to avoid confusion
sample_disabled = is_processing
sample_help = "Cannot show samples while query is processing" if is_processing else "Show sample queries you can copy"
if st.button("π Sample Queries",
use_container_width=True,
disabled=sample_disabled,
help=sample_help):
# Simple UI action - block API calls for 5 seconds
st.session_state["recent_ui_action"] = pd.Timestamp.now().timestamp()
logging.info("Sample Queries button clicked - blocking API calls for 5 seconds")
sample_queries = [
"Show me the top 10 customers by transactions",
"Which branches collected more transactions last month?",
"Calculate average transactions value",
"List all active customers"
]
# Display sample queries in the sidebar instead of adding to chat
st.markdown("**Sample queries you can copy and paste:**")
for query in sample_queries:
st.code(query)
# Footer
st.markdown("### βΉοΈ About")
st.markdown("""
**AI Database Assistant** v2.0
π Powered by advanced AI
π¬ Natural language to SQL
π Real-time analytics
""")
# Apply theme
theme_manager.inject_theme(theme)
# ===============================
# Chat Rendering Function
# ===============================
def render_chat():
"""Render chat history with proper error handling."""
st.markdown("<div class='chat-container'>", unsafe_allow_html=True)
messages = st.session_state["messages"]
for i, msg in enumerate(messages):
if msg["role"] == "user":
# User message with avatar
st.markdown(
f'''<div style="display: flex; align-items: flex-start; justify-content: flex-end; margin-bottom: 0.5em;">
<div style="margin-right: 0.5em;">
<img src="{OUTLINE_INDIGO_USER}" alt="User" style="width: 2.3rem; height: 2.3rem; border-radius: 50%; border: 2px solid #e3f2fd; background: #fff; object-fit: cover;" />
</div>
<div class="user-bubble">{msg["content"]}</div>
</div>''',
unsafe_allow_html=True)
elif msg["role"] == "assistant":
# Show all assistant messages normally (including errors)
bubble_class = "error-bubble" if msg.get("is_error") else "ai-bubble"
# Skip rendering placeholder messages (we use Streamlit spinner instead)
if msg.get("is_placeholder"):
continue
else:
# For error messages, show retry button below the message
if msg.get("is_error"):
st.markdown(
f'''<div style="display: flex; align-items: flex-start; margin-bottom: 0.5em;">
<div style="margin-right: 0.5em;">
<img src="{DARK_MODE_SLATE_AI}" alt="AI" style="width: 2.3rem; height: 2.3rem; border-radius: 50%; border: 2px solid #b2dfdb; background: #fff; object-fit: cover;" />
</div>
<div class="{bubble_class}">{msg["content"]}</div>
</div>''',
unsafe_allow_html=True)
# Show retry button below the error message, aligned with the error message
# Use same layout structure as the error message for alignment
cols = st.columns([0.03, 0.85])
with cols[0]:
st.empty() # Empty space where avatar would be
with cols[1]:
if st.button(RETRY_BUTTON_TEXT, key=f"retry_error_{i}"):
# Use the stored user query and index for reliable retry
stored_user_query = msg.get("user_query")
stored_user_index = msg.get("user_query_index")
if stored_user_query and stored_user_index is not None:
# Remove all messages after the user query and retry
st.session_state["messages"] = st.session_state["messages"][:stored_user_index+1]
st.session_state["messages"].append({"role": "assistant", "content": "οΏ½ Processing your query...", "is_placeholder": True})
# Mark this as a legitimate retry, not a UI interaction
st.session_state["legitimate_query_time"] = pd.Timestamp.now().timestamp()
# Remove any recent UI action flag to allow this query to process
if "recent_ui_action" in st.session_state:
del st.session_state["recent_ui_action"]
st.rerun()
else:
# Regular AI message
st.markdown(
f'''<div style="display: flex; align-items: flex-start; margin-bottom: 0.5em;">
<div style="margin-right: 0.5em;">
<img src="{DARK_MODE_SLATE_AI}" alt="AI" style="width: 2.3rem; height: 2.3rem; border-radius: 50%; border: 2px solid #b2dfdb; background: #fff; object-fit: cover;" />
</div>
<div class="{bubble_class}">{msg["content"]}</div>
</div>''',
unsafe_allow_html=True)
# Show data table and download if present
if msg.get("data"):
df = pd.DataFrame(msg["data"])
st.dataframe(df, use_container_width=True)
csv = df.to_csv(index=False).encode("utf-8")
st.download_button(DOWNLOAD_BUTTON_TEXT, csv, "results.csv", "text/csv", key=f"download_csv_{id(msg)}")
# Show chart if present
if msg.get("chart"):
img_data = base64.b64decode(msg["chart"])
st.image(img_data, use_column_width=True)
st.markdown("</div>", unsafe_allow_html=True)
# Render chat
render_chat()
# ===============================
# User Input Handling
# ===============================
# Check if AI is thinking
pending = False
if st.session_state["messages"]:
if st.session_state["messages"][-1]["role"] == "assistant":
pending = st.session_state["messages"][-1].get("is_placeholder", False)
# Get user input
user_query = st.chat_input(CHAT_INPUT_PLACEHOLDER, disabled=pending)
if user_query and not pending:
st.session_state["messages"].append({"role": "user", "content": user_query})
st.session_state["messages"].append({"role": "assistant", "content": "οΏ½ Processing ...", "is_placeholder": True})
# Mark this as a legitimate user query, not a UI interaction
st.session_state["legitimate_query_time"] = pd.Timestamp.now().timestamp()
# Remove any recent UI action flag to allow this query to process
if "recent_ui_action" in st.session_state:
del st.session_state["recent_ui_action"]
st.rerun()
# ===============================
# API Response Handling
# ===============================
# CRITICAL: Only process API calls for legitimate user queries, not UI interactions
# Check if we have a placeholder message from a user query
has_placeholder = (
st.session_state["messages"]
and st.session_state["messages"][-1].get("is_placeholder")
and len(st.session_state["messages"]) >= 2
and st.session_state["messages"][-2]["role"] == "user"
)
# Check if this is a legitimate query that should be processed
# Block if recent UI action (sidebar interactions) triggered this rerun
should_process_query = (
has_placeholder
and not should_skip_query_processing() # Use query-specific validation
)
if has_placeholder:
logging.info(f"=== QUERY PROCESSING CHECK ===")
logging.info(f"Has placeholder: {has_placeholder}")
logging.info(f"Should process query: {should_process_query}")
if not should_process_query:
logging.info("BLOCKED: Query processing blocked by should_skip_api_call")
else:
logging.info("ALLOWED: Query processing allowed")
if should_process_query:
user_query = st.session_state["messages"][-2]["content"]
user_query_index = len(st.session_state["messages"]) - 2 # Store the user query index
# Set processing flag to pause status checks
st.session_state["processing_query"] = True
try:
with st.spinner(THINKING_MESSAGE):
logging.info(f"Sending query to API: {user_query}")
try:
# Use the API client instead of direct requests
result = api_client.send_query(user_query, model, agent)
if result:
answer_text = result.get("message", "No response received")
rows = result.get("rows", [])
chart = result.get("chart", None)
is_error = result.get("error", False)
model_used = result.get("model_used", "unknown")
status = result.get("status", "unknown")
# Add model information to the response for successful queries
if not is_error and model_used != "unknown":
answer_text += f"\n\n*Powered by: {model_used}*"
else:
answer_text = "β Error: Unable to process your request. Please try again."
rows, chart, is_error = [], None, True
model_used, status = "unknown", "error"
except Exception as e:
logging.error(f"API connectivity error: {e}")
answer_text, rows, chart, is_error = (
"β API is not available. Please check your connection or try again later.", [], None, True
)
model_used, status = "unknown", "error"
except Exception as e:
logging.error(f"Exception: {e}")
answer_text, rows, chart, is_error = f"β οΈ Exception: {str(e)}", [], None, True
model_used, status = "unknown", "error"
# Update query statistics
update_query_stats(success=not is_error)
# Clear processing flag
st.session_state["processing_query"] = False
# Clear legitimate query flag after processing
if "legitimate_query_time" in st.session_state:
del st.session_state["legitimate_query_time"]
# Replace placeholder with final response
st.session_state["messages"][-1] = {
"role": "assistant",
"content": answer_text,
"data": rows,
"chart": chart,
"is_error": is_error,
"model_used": model_used,
"status": status,
"user_query": user_query if is_error else None, # Store user query for retry
"user_query_index": user_query_index if is_error else None, # Store user query index for retry
}
st.rerun()
|