File size: 8,310 Bytes
a6b2f62
 
 
 
7e976f4
a6b2f62
 
 
 
7e976f4
a6b2f62
 
 
 
 
 
 
 
 
 
 
 
 
 
7e976f4
a6b2f62
 
 
 
 
 
 
 
 
 
 
 
7e976f4
adec62c
 
 
 
 
 
 
a6b2f62
 
 
7e976f4
a6b2f62
7e976f4
 
a6b2f62
7e976f4
 
a6b2f62
 
 
adec62c
7e976f4
 
 
a6b2f62
 
 
 
 
 
 
 
 
 
 
 
 
 
7e976f4
 
 
a6b2f62
7e976f4
 
 
 
 
 
 
 
 
 
 
 
a6b2f62
7e976f4
a6b2f62
adec62c
a6b2f62
7e976f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6b2f62
7e976f4
 
a6b2f62
7e976f4
 
 
 
 
 
a6b2f62
 
7e976f4
 
a6b2f62
 
 
7e976f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6b2f62
7e976f4
 
 
a6b2f62
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import gradio as gr
import pandas as pd
import numpy as np
import re
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from fuzzywuzzy import process

# Data generation and preprocessing
def load_data():
    np.random.seed(42)
    cities = ['New York', 'Los Angeles', 'Chicago', 'Houston', 'Phoenix']
    incomes = ['Low', 'Medium', 'High']
    
    data = pd.DataFrame({
        'TransactionID': range(1, 1001),
        'Amount': np.random.uniform(10, 15000, 1000).round(2),
        'Type': np.random.choice(['Credit', 'Debit'], 1000),
        'City': np.random.choice(cities, 1000),
        'Age': np.random.randint(18, 70, 1000),
        'Income': np.random.choice(incomes, 1000, p=[0.4, 0.4, 0.2])
    })
    
    # Fraud patterns
    data['Fraud'] = 0
    data.loc[
        ((data['Amount'] > 5000) & (data['Income'] == 'Low')) |
        ((data['Type'] == 'Credit') & (data['Amount'] > 8000)) |
        ((data['City'] == 'New York') & (data['Age'].between(20, 35)) & (data['Amount'] > 6000)),
        'Fraud'
    ] = 1
    
    return data

data = load_data()

# Initialize encoders
le_type = LabelEncoder()
le_city = LabelEncoder()
le_income = LabelEncoder()

data['Type_encoded'] = le_type.fit_transform(data['Type'])
data['City_encoded'] = le_city.fit_transform(data['City'])
data['Income_encoded'] = le_income.fit_transform(data['Income'])

# Train model
model = RandomForestClassifier(random_state=42, n_estimators=100)
model.fit(data[['Amount', 'Type_encoded', 'City_encoded', 'Age', 'Income_encoded']], data['Fraud'])

# Fraud prediction function
def predict_fraud(amount, trans_type, city, age, income):
    try:
        city = city if city in le_city.classes_ else 'Unknown'
        income = income if income in le_income.classes_ else 'Medium'
        
        input_df = pd.DataFrame({
            'Amount': [amount],
            'Type_encoded': le_type.transform([trans_type])[0],
            'City_encoded': le_city.transform([city])[0] if city in le_city.classes_ else -1,
            'Age': [age],
            'Income_encoded': le_income.transform([income])[0] if income in le_income.classes_ else -1
        })
        
        proba = model.predict_proba(input_df)[0][1]
        prediction = model.predict(input_df)[0]
        
        explanation = []
        if amount > 5000 and income == 'Low':
            explanation.append("High amount for low income")
        if amount > 8000 and trans_type == 'Credit':
            explanation.append("Unusually large credit transaction")
        if city == 'New York' and 20 <= age <= 35 and amount > 6000:
            explanation.append("Suspicious pattern for young adults in NYC")
            
        return (
            f"Prediction: {'Fraudulent' if prediction else 'Legitimate'}\n"
            f"Confidence: {proba*100:.1f}%\n"
            f"Risk Factors: {', '.join(explanation) if explanation else 'No specific risks'}"
        )
    except Exception as e:
        return f"Error: {str(e)}"

# NLP processing function
def process_nl_query(query):
    try:
        amount = float(re.search(r'\$?(\d+(?:,\d{3})*(?:\.\d{2})?)', query).group(1).replace(',', ''))
        trans_type = 'Credit' if 'credit' in query.lower() else 'Debit'
        city = process.extractOne(query, le_city.classes_)[0]
        age_match = re.search(r'(\d+)\s*years?', query)
        age = int(age_match.group(1)) if age_match else data['Age'].median()
        income = 'Low' if 'low' in query.lower() else ('High' if 'high' in query.lower() else 'Medium')
        
        return predict_fraud(amount, trans_type, city, age, income)
    except Exception as e:
        return f"Error processing query: {str(e)}"

# Visualization function
def create_plot(choice):
    try:
        fig, ax = plt.subplots(figsize=(10, 6))
        
        if choice == "Fraud by City":
            city_counts = data[data['Fraud'] == 1]['City'].value_counts()
            if not city_counts.empty:
                ax.bar(city_counts.index, city_counts.values)
                ax.set_title('Fraud Cases by City')
                ax.set_xlabel('City')
                ax.set_ylabel('Count')
                plt.xticks(rotation=45)
            else:
                ax.text(0.5, 0.5, 'No fraud data available', 
                        ha='center', va='center')
                ax.set_title('Fraud Cases by City')
                
        elif choice == "Fraud by Income":
            income_counts = data[data['Fraud'] == 1]['Income'].value_counts()
            if not income_counts.empty:
                ax.bar(income_counts.index, income_counts.values)
                ax.set_title('Fraud Cases by Income Level')
                ax.set_xlabel('Income Level')
                ax.set_ylabel('Count')
            else:
                ax.text(0.5, 0.5, 'No fraud data available', 
                        ha='center', va='center')
                ax.set_title('Fraud Cases by Income Level')
                
        elif choice == "Transaction Patterns":
            fraud_data = data[data['Fraud'] == 1]
            legit_data = data[data['Fraud'] == 0]
            if not fraud_data.empty:
                ax.scatter(legit_data['Amount'], legit_data['Age'], 
                          alpha=0.3, label='Legitimate')
                ax.scatter(fraud_data['Amount'], fraud_data['Age'], 
                          color='red', alpha=0.5, label='Fraud')
                ax.set_title('Transaction Amount vs Age')
                ax.set_xlabel('Amount')
                ax.set_ylabel('Age')
                ax.legend()
            else:
                ax.text(0.5, 0.5, 'No fraud data available', 
                        ha='center', va='center')
                ax.set_title('Transaction Amount vs Age')
                
        plt.tight_layout()
        return fig, ""
        
    except Exception as e:
        plt.close()
        return None, f"Error generating plot: {str(e)}"

# Gradio Interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# πŸ•΅οΈ Banking Fraud Detection System")
    
    with gr.Tab("πŸ’¬ NLP Query"):
        gr.Markdown("## Analyze Transactions with Natural Language")
        with gr.Row():
            nl_input = gr.Textbox(label="Describe transaction", placeholder="e.g., 'Credit of $6000 in New York for a 26-year-old with low income'")
            nl_btn = gr.Button("Analyze", variant="primary")
        nl_output = gr.Textbox(label="Analysis Result", lines=4)
        gr.Examples(
            examples=[
                "$8000 credit in Chicago for 45-year-old with medium income",
                "Verify $300 debit in Phoenix for 60-year-old high income client"
            ],
            inputs=nl_input
        )
        nl_btn.click(process_nl_query, nl_input, nl_output)
    
    with gr.Tab("πŸ“ Manual Input"):
        gr.Markdown("## Manual Transaction Analysis")
        with gr.Row():
            amount = gr.Number(label="Amount", minimum=0)
            trans_type = gr.Dropdown(["Credit", "Debit"], label="Type")
        with gr.Row():
            city = gr.Dropdown(le_city.classes_.tolist(), label="City")
            age = gr.Number(label="Age", minimum=18)
        income = gr.Dropdown(le_income.classes_.tolist(), label="Income Level")
        manual_btn = gr.Button("Analyze", variant="primary")
        manual_output = gr.Textbox(label="Analysis Result", lines=4)
        manual_btn.click(predict_fraud, [amount, trans_type, city, age, income], manual_output)
    
    with gr.Tab("πŸ“Š Data Insights"):
        gr.Markdown("## Fraud Pattern Visualization")
        with gr.Row():
            plot_choice = gr.Radio(
                ["Fraud by City", "Fraud by Income", "Transaction Patterns"],
                label="Select Visualization",
                value="Fraud by City"
            )
        with gr.Row():
            plot_output = gr.Plot()
            error_output = gr.Textbox(label="Error Message", visible=False)
            
        plot_choice.change(
            fn=create_plot,
            inputs=plot_choice,
            outputs=[plot_output, error_output]
        )
    
    with gr.Tab("πŸ“ Raw Data"):
        gr.Markdown("## Complete Transaction Dataset")
        gr.DataFrame(data)

demo.launch()