File size: 4,446 Bytes
b0b5f60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f549be
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
import cv2
import torch
import argparse
from torch.nn import functional as F
import warnings

OUTPUT_PATH  = "/home/user/app/output/"

warnings.filterwarnings("ignore")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.set_grad_enabled(False)
if torch.cuda.is_available():
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True

parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
parser.add_argument('--img', dest='img', nargs=2, required=True)
parser.add_argument('--exp', default=2, type=int)
parser.add_argument('--ratio', default=0, type=float, help='inference ratio between two images with 0 - 1 range')
parser.add_argument('--rthreshold', default=0.02, type=float, help='returns image when actual ratio falls in given range threshold')
parser.add_argument('--rmaxcycles', default=8, type=int, help='limit max number of bisectional cycles')
parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files')

args = parser.parse_args()

try:
    from train_log.RIFE_HDv3 import Model
    model = Model()
    model.load_model(args.modelDir, -1)
    print("Loaded RIFE_HDv3 model.")
    print("Checkpoint reached RIFE!")
except:
    from train_log.IFNet_HDv3 import Model
    model = Model()
    model.load_model(args.modelDir, -1)
    print("Loaded IFNet_HDv3 model.")
    print("Checkpoint reached IFNet!")

model.eval()
model.device()

if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
    img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
    img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
    img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device)).unsqueeze(0)
    img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device)).unsqueeze(0)
else:
    img0 = cv2.imread(args.img[0], cv2.IMREAD_UNCHANGED)
    img1 = cv2.imread(args.img[1], cv2.IMREAD_UNCHANGED)
    img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
    img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)

n, c, h, w = img0.shape
ph = ((h - 1) // 32 + 1) * 32
pw = ((w - 1) // 32 + 1) * 32
padding = (0, pw - w, 0, ph - h)
img0 = F.pad(img0, padding)
img1 = F.pad(img1, padding)

if args.ratio:
    img_list = [img0]
    img0_ratio = 0.0
    img1_ratio = 1.0
    if args.ratio <= img0_ratio + args.rthreshold / 2:
        middle = img0
    elif args.ratio >= img1_ratio - args.rthreshold / 2:
        middle = img1
    else:
        tmp_img0 = img0
        tmp_img1 = img1
        for inference_cycle in range(args.rmaxcycles):
            middle = model.inference(tmp_img0, tmp_img1)
            middle_ratio = (img0_ratio + img1_ratio) / 2
            if args.ratio - (args.rthreshold / 2) <= middle_ratio <= args.ratio + (args.rthreshold / 2):
                break
            if args.ratio > middle_ratio:
                tmp_img0 = middle
                img0_ratio = middle_ratio
            else:
                tmp_img1 = middle
                img1_ratio = middle_ratio
    img_list.append(middle)
    img_list.append(img1)
else:
    img_list = [img0, img1]
    for i in range(args.exp):
        tmp = []
        for j in range(len(img_list) - 1):
            mid = model.inference(img_list[j], img_list[j + 1])
            tmp.append(img_list[j])
            tmp.append(mid)
        tmp.append(img1)
        img_list = tmp

if not os.path.exists('output'):
    os.mkdir('output')

print("Checkpoint reached! output folder ok")

for i in range(len(img_list)):
    filename_exr = os.path.join(OUTPUT_PATH, f"img{i}.exr")
    filename_png = os.path.join(OUTPUT_PATH, f"img{i}.png")

    if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
        cv2.imwrite(filename_exr, (img_list[i][0]).cpu().numpy().transpose(1, 2, 0)[:h, :w], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])
        
        success = cv2.imwrite(filename_png, (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w])
        print(f"Saving to {filename_png} β†’ success: {success}")
        print("Saving to:", os.path.abspath(filename_png))

    else:
        success = cv2.imwrite(filename_png, (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w])
        print(f"Saving to {filename_png} β†’ success: {success}")
        print("Saving to:", os.path.abspath(filename_png))