import os import subprocess from pathlib import Path from PIL import Image import streamlit as st import urllib.request from PIL import Image,ImageFile import streamlit as st import numpy as np import requests from io import BytesIO # ---- CONFIG ---- st.set_page_config( page_title="Streamlit iCodeIdoia", page_icon="images/ilpicon1.png", layout="wide", initial_sidebar_state="expanded" ) st.image("images/banner.jpg") # ---- PATHS ---- FRAME1 = Path("demo/frame1.png") FRAME2 = Path("demo/frame2.png") TARGET_DIR = Path("/home/user/app/output/") PALETTE_PNG = TARGET_DIR / "palette.png" OUTPUT_GIF = TARGET_DIR / "output.gif" os.makedirs(TARGET_DIR, exist_ok=True) # ---- FUNCTION ---- def load_description(path: str) -> str: return Path(path).read_text(encoding="utf-8") def interpolate_image(img_a_path: str, img_b_path: str) -> str: # --- clear any previous output --- if OUTPUT_GIF.exists(): OUTPUT_GIF.unlink() # delete old GIF if PALETTE_PNG.exists(): PALETTE_PNG.unlink() # delete old palette # optional: clear any old frame PNGs for f in TARGET_DIR.glob("img*.png"): f.unlink() subprocess.run([ "python3", "inference_img.py", "--img", str(img_a_path), str(img_b_path), "--exp", "4" ], check=True) subprocess.run([ "ffmpeg", "-y", "-r", "14", "-f", "image2", "-i", f"{TARGET_DIR}/img%d.png", "-vf", "palettegen=stats_mode=single", "-frames:v", "1", str(PALETTE_PNG) ], check=True) subprocess.run([ "ffmpeg", "-y", "-r", "14", "-f", "image2", "-i", f"{TARGET_DIR}/img%d.png", "-i", str(PALETTE_PNG), "-lavfi", "paletteuse", str(OUTPUT_GIF) ], check=True) return str(OUTPUT_GIF) st.markdown(load_description("TITLE.md"), unsafe_allow_html=True) # ---- TABS ---- tab1, tab2 = st.tabs(["Demo", "Upload your images"]) with tab1: st.subheader("Demo: Preloaded images") st.image(str(FRAME1), caption="Image A") st.image(str(FRAME2), caption="Image B") if st.button("Run Interpolation Demo"): gif_path = interpolate_image(FRAME1, FRAME2) st.image(gif_path, caption="Interpolated GIF") #st.text(f"Output path: {gif_path}") st.markdown( "**Note:** The visual noise is not present when you save the image. " "This occurs in Streamlit's display, not in the Gradio demo app." ) with tab2: st.subheader("Upload any two images") uploaded_a = st.file_uploader("Upload Image A", type=["png", "jpg", "jpeg"]) uploaded_b = st.file_uploader("Upload Image B", type=["png", "jpg", "jpeg"]) if uploaded_a and uploaded_b: temp_a = TARGET_DIR / "user_a.png" temp_b = TARGET_DIR / "user_b.png" Image.open(uploaded_a).save(temp_a) Image.open(uploaded_b).save(temp_b) if st.button("Run Interpolation"): gif_path = None gif_path = interpolate_image(temp_a, temp_b) st.image(gif_path, caption="Interpolated GIF") # Note about visual noise st.markdown( "**Note:** The visual noise is not present when you save the image. " "This occurs in Streamlit's display, not in the Gradio demo app." ) # Optional debug output path # st.text(f"Output path: {gif_path}") # HTML donation + message block donation_html = """
Buy Me A Coffee
But what would really help me is a PRO subscription to Google Colab, Kaggle or Hugging Face. Many thanks.
""" st.markdown(donation_html, unsafe_allow_html=True)