Spaces:
Running
Running
File size: 4,478 Bytes
42cbb25 dfe2f93 a2d74bd b0f6301 42cbb25 5c5c1de 42cbb25 12bd70f 42cbb25 4857da3 42cbb25 4857da3 42cbb25 06cbb3c 42cbb25 06cbb3c 42cbb25 6bc616a 42cbb25 06cbb3c 42cbb25 b0f6301 42cbb25 b0f6301 06cbb3c 42cbb25 b0f6301 06cbb3c 42cbb25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import os
import cv2
import torch
import argparse
from torch.nn import functional as F
import warnings
OUTPUT_PATH = "/home/user/app/output/"
warnings.filterwarnings("ignore")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.set_grad_enabled(False)
if torch.cuda.is_available():
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
parser.add_argument('--img', dest='img', nargs=2, required=True)
parser.add_argument('--exp', default=2, type=int)
parser.add_argument('--ratio', default=0, type=float, help='inference ratio between two images with 0 - 1 range')
parser.add_argument('--rthreshold', default=0.02, type=float, help='returns image when actual ratio falls in given range threshold')
parser.add_argument('--rmaxcycles', default=8, type=int, help='limit max number of bisectional cycles')
parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files')
args = parser.parse_args()
try:
from train_log.RIFE_HDv3 import Model
model = Model()
model.load_model(args.modelDir, -1)
print("Loaded RIFE_HDv3 model.")
print("Checkpoint reached RIFE!")
except:
from train_log.IFNet_HDv3 import Model
model = Model()
model.load_model(args.modelDir, -1)
print("Loaded IFNet_HDv3 model.")
print("Checkpoint reached IFNet!")
model.eval()
model.device()
if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device)).unsqueeze(0)
img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device)).unsqueeze(0)
else:
img0 = cv2.imread(args.img[0], cv2.IMREAD_UNCHANGED)
img1 = cv2.imread(args.img[1], cv2.IMREAD_UNCHANGED)
img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
n, c, h, w = img0.shape
ph = ((h - 1) // 32 + 1) * 32
pw = ((w - 1) // 32 + 1) * 32
padding = (0, pw - w, 0, ph - h)
img0 = F.pad(img0, padding)
img1 = F.pad(img1, padding)
if args.ratio:
img_list = [img0]
img0_ratio = 0.0
img1_ratio = 1.0
if args.ratio <= img0_ratio + args.rthreshold / 2:
middle = img0
elif args.ratio >= img1_ratio - args.rthreshold / 2:
middle = img1
else:
tmp_img0 = img0
tmp_img1 = img1
for inference_cycle in range(args.rmaxcycles):
middle = model.inference(tmp_img0, tmp_img1)
middle_ratio = (img0_ratio + img1_ratio) / 2
if args.ratio - (args.rthreshold / 2) <= middle_ratio <= args.ratio + (args.rthreshold / 2):
break
if args.ratio > middle_ratio:
tmp_img0 = middle
img0_ratio = middle_ratio
else:
tmp_img1 = middle
img1_ratio = middle_ratio
img_list.append(middle)
img_list.append(img1)
else:
img_list = [img0, img1]
for i in range(args.exp):
tmp = []
for j in range(len(img_list) - 1):
mid = model.inference(img_list[j], img_list[j + 1])
tmp.append(img_list[j])
tmp.append(mid)
tmp.append(img1)
img_list = tmp
if not os.path.exists('output'):
os.mkdir('output')
print("Checkpoint reached! output folder ok")
for i in range(len(img_list)):
filename_exr = os.path.join(OUTPUT_PATH, f"img{i}.exr")
filename_png = os.path.join(OUTPUT_PATH, f"img{i}.png")
if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
cv2.imwrite(filename_exr, (img_list[i][0]).cpu().numpy().transpose(1, 2, 0)[:h, :w], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])
success = cv2.imwrite(filename_png, (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w])
print(f"Saving to {filename_png} β success: {success}")
print("Saving to:", os.path.abspath(filename_png))
else:
success = cv2.imwrite(filename_png, (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w])
print(f"Saving to {filename_png} β success: {success}")
print("Saving to:", os.path.abspath(filename_png))
print("Checkpoint reached!")
|