File size: 4,478 Bytes
42cbb25
 
 
 
 
 
dfe2f93
a2d74bd
b0f6301
42cbb25
5c5c1de
42cbb25
 
 
 
 
12bd70f
42cbb25
 
 
 
 
 
 
4857da3
42cbb25
4857da3
42cbb25
 
 
 
 
06cbb3c
42cbb25
 
 
 
 
06cbb3c
42cbb25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bc616a
 
42cbb25
06cbb3c
42cbb25
 
b0f6301
 
 
42cbb25
b0f6301
 
 
 
 
06cbb3c
42cbb25
b0f6301
 
 
 
06cbb3c
42cbb25
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import cv2
import torch
import argparse
from torch.nn import functional as F
import warnings

OUTPUT_PATH  = "/home/user/app/output/"

warnings.filterwarnings("ignore")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.set_grad_enabled(False)
if torch.cuda.is_available():
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True

parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
parser.add_argument('--img', dest='img', nargs=2, required=True)
parser.add_argument('--exp', default=2, type=int)
parser.add_argument('--ratio', default=0, type=float, help='inference ratio between two images with 0 - 1 range')
parser.add_argument('--rthreshold', default=0.02, type=float, help='returns image when actual ratio falls in given range threshold')
parser.add_argument('--rmaxcycles', default=8, type=int, help='limit max number of bisectional cycles')
parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files')

args = parser.parse_args()

try:
    from train_log.RIFE_HDv3 import Model
    model = Model()
    model.load_model(args.modelDir, -1)
    print("Loaded RIFE_HDv3 model.")
    print("Checkpoint reached RIFE!")
except:
    from train_log.IFNet_HDv3 import Model
    model = Model()
    model.load_model(args.modelDir, -1)
    print("Loaded IFNet_HDv3 model.")
    print("Checkpoint reached IFNet!")

model.eval()
model.device()

if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
    img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
    img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
    img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device)).unsqueeze(0)
    img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device)).unsqueeze(0)
else:
    img0 = cv2.imread(args.img[0], cv2.IMREAD_UNCHANGED)
    img1 = cv2.imread(args.img[1], cv2.IMREAD_UNCHANGED)
    img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
    img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)

n, c, h, w = img0.shape
ph = ((h - 1) // 32 + 1) * 32
pw = ((w - 1) // 32 + 1) * 32
padding = (0, pw - w, 0, ph - h)
img0 = F.pad(img0, padding)
img1 = F.pad(img1, padding)

if args.ratio:
    img_list = [img0]
    img0_ratio = 0.0
    img1_ratio = 1.0
    if args.ratio <= img0_ratio + args.rthreshold / 2:
        middle = img0
    elif args.ratio >= img1_ratio - args.rthreshold / 2:
        middle = img1
    else:
        tmp_img0 = img0
        tmp_img1 = img1
        for inference_cycle in range(args.rmaxcycles):
            middle = model.inference(tmp_img0, tmp_img1)
            middle_ratio = (img0_ratio + img1_ratio) / 2
            if args.ratio - (args.rthreshold / 2) <= middle_ratio <= args.ratio + (args.rthreshold / 2):
                break
            if args.ratio > middle_ratio:
                tmp_img0 = middle
                img0_ratio = middle_ratio
            else:
                tmp_img1 = middle
                img1_ratio = middle_ratio
    img_list.append(middle)
    img_list.append(img1)
else:
    img_list = [img0, img1]
    for i in range(args.exp):
        tmp = []
        for j in range(len(img_list) - 1):
            mid = model.inference(img_list[j], img_list[j + 1])
            tmp.append(img_list[j])
            tmp.append(mid)
        tmp.append(img1)
        img_list = tmp

if not os.path.exists('output'):
    os.mkdir('output')

print("Checkpoint reached! output folder ok")

for i in range(len(img_list)):
    filename_exr = os.path.join(OUTPUT_PATH, f"img{i}.exr")
    filename_png = os.path.join(OUTPUT_PATH, f"img{i}.png")

    if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
        cv2.imwrite(filename_exr, (img_list[i][0]).cpu().numpy().transpose(1, 2, 0)[:h, :w], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])
        
        success = cv2.imwrite(filename_png, (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w])
        print(f"Saving to {filename_png} β†’ success: {success}")
        print("Saving to:", os.path.abspath(filename_png))

    else:
        success = cv2.imwrite(filename_png, (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w])
        print(f"Saving to {filename_png} β†’ success: {success}")
        print("Saving to:", os.path.abspath(filename_png))



print("Checkpoint reached!")