Spaces:
Running
Running
app16
Browse files- WebScrapping1.0.ipynb +0 -0
- app.py +2 -4
WebScrapping1.0.ipynb
ADDED
File without changes
|
app.py
CHANGED
@@ -52,7 +52,7 @@ data=loader.load()
|
|
52 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
|
53 |
docs = text_splitter.split_documents(data)
|
54 |
# define embedding
|
55 |
-
embeddings = HuggingFaceEmbeddings(model_name='thenlper/gte-
|
56 |
# create vector database from data
|
57 |
persist_directory = 'docs/chroma/'
|
58 |
|
@@ -105,9 +105,7 @@ qa_chain = ConversationalRetrievalChain.from_llm(
|
|
105 |
)
|
106 |
|
107 |
|
108 |
-
def chat_interface(
|
109 |
-
question = inputs[0] # Use integer index 0 for the "Question" input
|
110 |
-
chat_history = inputs[1] # Use integer index 1 for the "Chat History" input
|
111 |
# ConversationalRetrievalChain
|
112 |
result = qa_chain.run({"question": question, "chat_history": chat_history})
|
113 |
print("Debug: Result from qa_chain.run:", result) # Add this line for debugging
|
|
|
52 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
|
53 |
docs = text_splitter.split_documents(data)
|
54 |
# define embedding
|
55 |
+
embeddings = HuggingFaceEmbeddings(model_name='thenlper/gte-small')
|
56 |
# create vector database from data
|
57 |
persist_directory = 'docs/chroma/'
|
58 |
|
|
|
105 |
)
|
106 |
|
107 |
|
108 |
+
def chat_interface(question, chat_history):
|
|
|
|
|
109 |
# ConversationalRetrievalChain
|
110 |
result = qa_chain.run({"question": question, "chat_history": chat_history})
|
111 |
print("Debug: Result from qa_chain.run:", result) # Add this line for debugging
|