ALVHB95 commited on
Commit
d3f09ba
·
1 Parent(s): dd8b813
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -72,7 +72,7 @@ vectordb = Chroma.from_documents(
72
  retriever = vectordb.as_retriever(search_kwargs={"k": 1}, search_type="mmr")
73
 
74
  class FinalAnswer(BaseModel):
75
- question: str = Field(description="the original question")
76
  answer: str = Field(description="the extracted answer")
77
 
78
  # Assuming you have a parser for the FinalAnswer class
@@ -80,8 +80,8 @@ parser = PydanticOutputParser(pydantic_object=FinalAnswer)
80
 
81
  template = """
82
  Your name is AngryGreta and you are a recycling chatbot with the objective to anwer querys from user in English or Spanish /
83
- Use the following pieces of context to answer the question /
84
- Answer in the same language of the question /
85
  Context: {context}
86
  Chat history: {chat_history}
87
  User: {query}
@@ -94,7 +94,7 @@ qa_prompt = ChatPromptTemplate(
94
  messages=[
95
  sys_prompt,
96
  MessagesPlaceholder(variable_name="chat_history"),
97
- HumanMessagePromptTemplate.from_template("{question}")],
98
  partial_variables={"format_instructions": parser.get_format_instructions()}
99
  )
100
  llm = HuggingFaceHub(
 
72
  retriever = vectordb.as_retriever(search_kwargs={"k": 1}, search_type="mmr")
73
 
74
  class FinalAnswer(BaseModel):
75
+ query: str = Field(description="the original query")
76
  answer: str = Field(description="the extracted answer")
77
 
78
  # Assuming you have a parser for the FinalAnswer class
 
80
 
81
  template = """
82
  Your name is AngryGreta and you are a recycling chatbot with the objective to anwer querys from user in English or Spanish /
83
+ Use the following pieces of context to answer the query /
84
+ Answer in the same language of the query /
85
  Context: {context}
86
  Chat history: {chat_history}
87
  User: {query}
 
94
  messages=[
95
  sys_prompt,
96
  MessagesPlaceholder(variable_name="chat_history"),
97
+ HumanMessagePromptTemplate.from_template("{query}")],
98
  partial_variables={"format_instructions": parser.get_format_instructions()}
99
  )
100
  llm = HuggingFaceHub(