Spaces:
Running
Running
app16
Browse files
app.py
CHANGED
@@ -49,7 +49,12 @@ image_gradio_app = gr.Interface(
|
|
49 |
loader = PyPDFDirectoryLoader('pdfs')
|
50 |
data=loader.load()
|
51 |
# split documents
|
52 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
|
|
|
|
|
|
|
|
|
|
53 |
docs = text_splitter.split_documents(data)
|
54 |
# define embedding
|
55 |
embeddings = HuggingFaceEmbeddings(model_name='thenlper/gte-small')
|
@@ -65,7 +70,12 @@ vectordb = Chroma.from_documents(
|
|
65 |
)
|
66 |
# define retriever
|
67 |
retriever = vectordb.as_retriever(search_type="mmr")
|
68 |
-
template = """
|
|
|
|
|
|
|
|
|
|
|
69 |
context: {context}
|
70 |
chat history: {chat_history}
|
71 |
question: {question}
|
@@ -92,7 +102,7 @@ llm = HuggingFaceHub(
|
|
92 |
)
|
93 |
llm_chain = LLMChain(llm=llm, prompt=qa_prompt)
|
94 |
|
95 |
-
memory = ConversationBufferMemory(llm=llm, memory_key="chat_history", output_key='answer', return_messages=
|
96 |
|
97 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
98 |
llm = llm,
|
|
|
49 |
loader = PyPDFDirectoryLoader('pdfs')
|
50 |
data=loader.load()
|
51 |
# split documents
|
52 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
53 |
+
separator="\n",
|
54 |
+
chunk_size=1000,
|
55 |
+
chunk_overlap=150,
|
56 |
+
length_function=len
|
57 |
+
)
|
58 |
docs = text_splitter.split_documents(data)
|
59 |
# define embedding
|
60 |
embeddings = HuggingFaceEmbeddings(model_name='thenlper/gte-small')
|
|
|
70 |
)
|
71 |
# define retriever
|
72 |
retriever = vectordb.as_retriever(search_type="mmr")
|
73 |
+
template = """
|
74 |
+
Your name is AngryGreta and you are a recycling chatbot with the objective to anwer questions from user in English or Spanish /
|
75 |
+
Use the following pieces of context to answer the question if the question is related with recycling /
|
76 |
+
No more than two chunks of context /
|
77 |
+
Answer in the same language of the question /
|
78 |
+
Always say "thanks for asking!" at the end of the answer.
|
79 |
context: {context}
|
80 |
chat history: {chat_history}
|
81 |
question: {question}
|
|
|
102 |
)
|
103 |
llm_chain = LLMChain(llm=llm, prompt=qa_prompt)
|
104 |
|
105 |
+
memory = ConversationBufferMemory(llm=llm, memory_key="chat_history", output_key='answer', return_messages=False)
|
106 |
|
107 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
108 |
llm = llm,
|