File size: 15,602 Bytes
841f290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import random
from typing import List

import torch
import torch.distributed as dist
from torch.utils.data import IterableDataset

import wenet.dataset.process.processor as processor
from wenet.text.base_tokenizer import BaseTokenizer
from wenet.utils.file_utils import read_lists


class Processor(IterableDataset):

    def __init__(self, source, f, *args, **kw):
        assert callable(f)
        self.source = source
        self.f = f
        self.args = args
        self.kw = kw

    def set_epoch(self, epoch):
        self.source.set_epoch(epoch)

    def __iter__(self):
        """ Return an iterator over the source dataset processed by the
            given processor.
        """
        assert self.source is not None
        assert callable(self.f)
        return self.f(iter(self.source), *self.args, **self.kw)

    def apply(self, f):
        assert callable(f)
        return Processor(self, f, *self.args, **self.kw)


class DistributedSampler:

    def __init__(self, shuffle=True, partition=True, split_num=1,multi_num=1):
        self.epoch = -1
        self.update()
        self.shuffle = shuffle
        self.partition = partition
        self.split_num = split_num
        self.multi_num = multi_num

    def update(self):
        assert dist.is_available()
        if dist.is_initialized():
            self.rank = dist.get_rank()
            self.world_size = dist.get_world_size()
        else:
            self.rank = 0
            self.world_size = 1
        worker_info = torch.utils.data.get_worker_info()
        if worker_info is None:
            self.worker_id = 0
            self.num_workers = 1
        else:
            self.worker_id = worker_info.id
            self.num_workers = worker_info.num_workers
        return dict(rank=self.rank,
                    world_size=self.world_size,
                    worker_id=self.worker_id,
                    num_workers=self.num_workers)

    def set_epoch(self, epoch):
        self.epoch = epoch

    def split_data(self, total_num):
        data = list(range(total_num))
        sub_epoch = self.epoch + 1
        full_epoch = sub_epoch // self.split_num
        num_per_sub_epochs = total_num // self.split_num
        random.Random(full_epoch).shuffle(data)

        split_index = sub_epoch - full_epoch * self.split_num
        begin = split_index * num_per_sub_epochs
        end = (begin + num_per_sub_epochs 
                if (split_index + 1) < self.split_num else
                total_num)
        
        # print(f'begin: {begin}, end: {end}, world_size: {self.world_size}')
        return data[begin:end]

    def sample(self, data, split_num=1):
        """ Sample data according to rank/world_size/num_workers

            Args:
                data(List): input data list

            Returns:
                List: data list after sample
        """
        if self.split_num == 1 and self.multi_num == 1:
            data = list(range(len(data)))
        elif self.split_num != 1:
            assert self.multi_num == 1
            data = self.split_data(len(data))
        else: 
            assert self.split_num ==1
            data = list(range(len(data*self.multi_num)))
        # TODO(Binbin Zhang): fix this
        # We can not handle uneven data for CV on DDP, so we don't
        # sample data by rank, that means every GPU gets the same
        # and all the CV data
        if self.partition:
            if self.shuffle:
                random.Random(self.epoch).shuffle(data)
            data = data[self.rank::self.world_size]
            # print(f'num dataset: {len(data)}')
        data = data[self.worker_id::self.num_workers]
        self.epoch += 1
        return data

    def pre_sample(self, data, split_num=1):
        """ Sample data according to rank/world_size/num_workers

            Args:
                data(List): input data list

            Returns:
                List: data list after sample
        """
        if self.split_num == 1 and self.multi_num == 1:
            data = list(range(len(data)))
        elif self.split_num != 1:
            assert self.multi_num == 1
            data = self.split_data(len(data))
        else:
            assert self.split_num ==1
            data = list(range(len(data*self.multi_num)))
        # TODO(Binbin Zhang): fix this
        # We can not handle uneven data for CV on DDP, so we don't
        # sample data by rank, that means every GPU gets the same
        # and all the CV data
        if self.partition:
            if self.shuffle:
                random.Random(self.epoch).shuffle(data)
            data = data[self.rank::self.world_size]
            # print(f'num dataset: {len(data)}')
        data = data[self.worker_id::self.num_workers]
        return data


class DataList(IterableDataset):

    def __init__(self, lists, shuffle=True, partition=True, split_num=1):
        self.lists = lists
        self.sampler = DistributedSampler(shuffle, partition, split_num)
        self.true_lists = self.sampler.pre_sample(self.lists)

    def set_epoch(self, epoch):
        self.sampler.set_epoch(epoch)

    def __iter__(self):
        sampler_info = self.sampler.update()
        indexes = self.sampler.sample(self.lists)
        for index in indexes:
            # yield dict(src=src)
            data = dict(src=self.lists[index])
            data.update(sampler_info)
            yield data
from gxl_ai_utils.utils import utils_file

class BigDataList(IterableDataset):

    def __init__(self,s2t_dataset,t2s_dataset,s2s_dataset,t2t_dataset, weight_num:List[int]):
        self.s2t_dataset = s2t_dataset
        self.t2s_dataset = t2s_dataset
        self.s2s_dataset = s2s_dataset
        self.t2t_dataset = t2t_dataset
        self.batch_index = 0
        self.weight_num = weight_num
        utils_file.logging_info(f"weight_num:{weight_num}")
    def set_epoch(self, epoch):
        self.s2t_dataset.set_epoch(epoch)
        self.t2s_dataset.set_epoch(epoch)
        self.s2s_dataset.set_epoch(epoch)
        self.t2t_dataset.set_epoch(epoch)

    def __iter__(self):
        datasets = [iter(d) for d in [self.s2t_dataset, self.t2s_dataset, self.s2s_dataset, self.t2t_dataset]]
        while True:
            self.batch_index += 1
            selected_iter = self.do_select_iter(datasets)
            try:
                yield next(selected_iter)
            except StopIteration:
                # 移除已耗尽的数据源
                datasets = [it for it in datasets if it is not selected_iter]
                if not datasets:  # 所有数据源耗尽时终止
                    break

    def do_select_iter(self, datasets):
        # 检查各迭代器是否有效(未耗尽)
        valid_indices = [i for i, it in enumerate(datasets) if it is not None]
        if not valid_indices:
            raise StopIteration
        # 保存当前随机状态
        original_state = random.getstate()

        # 临时设置随机种子为batch_index
        random.seed(self.batch_index)
        # 根据weight_num计算有效数据源的权重
        valid_weights = [self.weight_num[i] for i in valid_indices]

        # 按权重随机选择(使用random.choices)
        selected_idx = random.choices(valid_indices, weights=valid_weights, k=1)[0]
        # 恢复原始随机状态
        random.setstate(original_state)
        return datasets[selected_idx]


def get_dataset(data_type,
                data_list_file,
                tokenizer: BaseTokenizer,
                conf,
                partition=True):
    lists = read_lists(data_list_file)
    shuffle = conf.get('shuffle', True)
    split_num = conf.get('split_num', 1)
    multi_num = conf.get('multi_num', 1)
    lists = lists * multi_num
    if_data_recover = conf.get('data_recover', False)
    data_recover_conf = conf.get('data_recover_conf', {})
    if if_data_recover:
        print(f"recover data old list len:{len(lists)}")
        start_idx = data_recover_conf.get('start_idx', 0)
        if start_idx >= len(lists):
            start_idx = 0
        lists = lists[start_idx:]
        print(f"recover data from {start_idx}, new list len:{len(lists)}")
    dataset = DataList(lists, shuffle=shuffle, partition=partition, split_num=split_num)
    true_list = dataset.true_lists
    if data_type == 'shard':
        dataset = Processor(dataset, processor.url_opener)
        dataset = Processor(dataset, processor.tar_file_and_group_full_data, total_num=len(true_list))
    else:
        dataset = Processor(dataset, processor.parse_raw)

    speaker_conf = conf.get('speaker_conf', None)
    if speaker_conf is not None:
        dataset = Processor(dataset, processor.parse_speaker, **speaker_conf)

    if conf.get('eod_id', None) is not None:
        tokenizer.eod_id = conf['eod_id']
    # prompt dict
    from gxl_ai_utils.utils import utils_file
    other_tokenze_conf = conf.get('other_tokenze_conf', {})
    global_prompt_dict = utils_file.load_dict_from_yaml(conf.get('prompt_conf_path', "conf/promp,t_config.yaml"))
    speech_token_num = conf.get('speech_token_num', 1)
    dataset = Processor(dataset, processor.tokenize, tokenizer, other_tokenze_conf=other_tokenze_conf,
                        global_prompt_dict=global_prompt_dict, speech_token_num=speech_token_num)
    filter_conf = conf.get('filter_conf', {})
    dataset = Processor(dataset, processor.filter, **filter_conf)

    resample_conf = conf.get('resample_conf', {})
    dataset = Processor(dataset, processor.resample, **resample_conf)

    speed_perturb = conf.get('speed_perturb', False)
    if speed_perturb:
        dataset = Processor(dataset, processor.speed_perturb)

    feats_type = conf.get('feats_type', 'fbank')
    assert feats_type in ['fbank', 'mfcc', 'log_mel_spectrogram']
    if feats_type == 'fbank':
        fbank_conf = conf.get('fbank_conf', {})
        dataset = Processor(dataset, processor.compute_fbank, **fbank_conf)
    elif feats_type == 'mfcc':
        mfcc_conf = conf.get('mfcc_conf', {})
        dataset = Processor(dataset, processor.compute_mfcc, **mfcc_conf)
    elif feats_type == 'log_mel_spectrogram':
        log_mel_spectrogram_conf = conf.get('log_mel_spectrogram_conf', {})
        dataset = Processor(dataset, processor.compute_log_mel_spectrogram,
                            **log_mel_spectrogram_conf)

    spec_aug = conf.get('spec_aug', True)
    spec_sub = conf.get('spec_sub', False)
    spec_trim = conf.get('spec_trim', False)
    if spec_aug:
        spec_aug_conf = conf.get('spec_aug_conf', {})
        dataset = Processor(dataset, processor.spec_aug, **spec_aug_conf)
    if spec_sub:
        spec_sub_conf = conf.get('spec_sub_conf', {})
        dataset = Processor(dataset, processor.spec_sub, **spec_sub_conf)
    if spec_trim:
        spec_trim_conf = conf.get('spec_trim_conf', {})
        dataset = Processor(dataset, processor.spec_trim, **spec_trim_conf)
    # for emotion-only task
    # dataset = Processor(dataset, processor.add_ssl_vec)
    if shuffle:
        shuffle_conf = conf.get('shuffle_conf', {})
        dataset = Processor(dataset, processor.shuffle, **shuffle_conf)

    sort = conf.get('sort', True)
    if sort:
        sort_conf = conf.get('sort_conf', {})
        dataset = Processor(dataset, processor.sort, **sort_conf)

    batch_conf = conf.get('batch_conf', {})
    dataset = Processor(dataset, processor.batch, **batch_conf)
    dataset = Processor(dataset, processor.padding)
    return dataset

def do_get_fake_file():
    temp_path = f'~/.cache/.temp/{random.randint(10000, 99999)}.txt'
    utils_file.makedir_for_file(temp_path)
    return temp_path

def BigDataset(data_type,
            data_list_file_s2t,
            data_list_file_t2s,
            data_list_file_s2s,
            data_list_file_t2t,
            tokenizer: BaseTokenizer,
            conf,
            partition=True):
    """ Construct dataset from arguments

        We have two shuffle stage in the Dataset. The first is global
        shuffle at shard tar/raw file level. The second is global shuffle
        at training samples level.

        Args:
            data_type(str): raw/shard
            bpe_model(str): model for english bpe part
            partition(bool): whether to do data partition in terms of rank
    """
    assert data_type in ['raw', 'shard']
    # 深度复制conf
    s2t_conf = copy.deepcopy(conf)
    s2t_conf['other_tokenze_conf']["use_s2s_convert_s2t"]['enable'] = True
    s2t_conf['filter_conf']['other_filter_conf']['only_s2t'] = True
    s2t_conf['other_tokenze_conf']["only_info"]["only_s2t"] = True

    t2s_conf = copy.deepcopy(conf)
    t2s_conf['filter_conf']['other_filter_conf']['only_t2s'] = True
    t2s_conf['other_tokenze_conf']["only_info"]['only_t2s'] = True
    s2s_conf = copy.deepcopy(conf)
    s2s_conf['filter_conf']['other_filter_conf']['only_s2s'] = True
    s2s_conf['other_tokenze_conf']["only_info"]['only_s2s'] = True
    t2t_conf = copy.deepcopy(conf)
    t2t_conf['filter_conf']['other_filter_conf']['only_t2t'] = True
    t2t_conf['other_tokenze_conf']["only_info"]['only_t2t'] = True

    tmp_file_s2t = do_get_fake_file()
    s2s_list = utils_file.load_list_file_clean(data_list_file_s2s)
    # s2s_list_little = s2s_list[::3]
    s2s_list_little = []
    s2t_list = utils_file.load_list_file_clean(data_list_file_s2t)
    s2t_full_list = s2t_list + s2s_list_little
    utils_file.write_list_to_file(s2t_full_list, tmp_file_s2t)


    s2t_dataset = get_dataset(data_type, tmp_file_s2t, tokenizer, s2t_conf, partition=partition)
    t2s_dataset = get_dataset(data_type, data_list_file_t2s, tokenizer, t2s_conf, partition=partition)
    s2s_dataset = get_dataset(data_type, data_list_file_s2s, tokenizer, s2s_conf, partition=partition)
    t2t_dataset = get_dataset(data_type, data_list_file_t2t, tokenizer, t2t_conf, partition=partition)
    dataset = BigDataList(s2t_dataset, t2s_dataset, s2s_dataset, t2t_dataset,
                          weight_num=[len(read_lists(tmp_file_s2t)),
                                      len(read_lists(data_list_file_t2s)),
                                      len(read_lists(data_list_file_s2s)),
                                      len(read_lists(data_list_file_t2t))
    ])
    return dataset

def Dataset(data_type,
            data_list_file,
            tokenizer: BaseTokenizer,
            conf,
            partition=True):
    """ Construct dataset from arguments

        We have two shuffle stage in the Dataset. The first is global
        shuffle at shard tar/raw file level. The second is global shuffle
        at training samples level.

        Args:
            data_type(str): raw/shard
            bpe_model(str): model for english bpe part
            partition(bool): whether to do data partition in terms of rank
    """
    assert data_type in ['raw', 'shard', 'shard_full_data']
    dataset = get_dataset(data_type, data_list_file, tokenizer, conf, partition=partition)
    return dataset