Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,602 Bytes
841f290 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import random
from typing import List
import torch
import torch.distributed as dist
from torch.utils.data import IterableDataset
import wenet.dataset.process.processor as processor
from wenet.text.base_tokenizer import BaseTokenizer
from wenet.utils.file_utils import read_lists
class Processor(IterableDataset):
def __init__(self, source, f, *args, **kw):
assert callable(f)
self.source = source
self.f = f
self.args = args
self.kw = kw
def set_epoch(self, epoch):
self.source.set_epoch(epoch)
def __iter__(self):
""" Return an iterator over the source dataset processed by the
given processor.
"""
assert self.source is not None
assert callable(self.f)
return self.f(iter(self.source), *self.args, **self.kw)
def apply(self, f):
assert callable(f)
return Processor(self, f, *self.args, **self.kw)
class DistributedSampler:
def __init__(self, shuffle=True, partition=True, split_num=1,multi_num=1):
self.epoch = -1
self.update()
self.shuffle = shuffle
self.partition = partition
self.split_num = split_num
self.multi_num = multi_num
def update(self):
assert dist.is_available()
if dist.is_initialized():
self.rank = dist.get_rank()
self.world_size = dist.get_world_size()
else:
self.rank = 0
self.world_size = 1
worker_info = torch.utils.data.get_worker_info()
if worker_info is None:
self.worker_id = 0
self.num_workers = 1
else:
self.worker_id = worker_info.id
self.num_workers = worker_info.num_workers
return dict(rank=self.rank,
world_size=self.world_size,
worker_id=self.worker_id,
num_workers=self.num_workers)
def set_epoch(self, epoch):
self.epoch = epoch
def split_data(self, total_num):
data = list(range(total_num))
sub_epoch = self.epoch + 1
full_epoch = sub_epoch // self.split_num
num_per_sub_epochs = total_num // self.split_num
random.Random(full_epoch).shuffle(data)
split_index = sub_epoch - full_epoch * self.split_num
begin = split_index * num_per_sub_epochs
end = (begin + num_per_sub_epochs
if (split_index + 1) < self.split_num else
total_num)
# print(f'begin: {begin}, end: {end}, world_size: {self.world_size}')
return data[begin:end]
def sample(self, data, split_num=1):
""" Sample data according to rank/world_size/num_workers
Args:
data(List): input data list
Returns:
List: data list after sample
"""
if self.split_num == 1 and self.multi_num == 1:
data = list(range(len(data)))
elif self.split_num != 1:
assert self.multi_num == 1
data = self.split_data(len(data))
else:
assert self.split_num ==1
data = list(range(len(data*self.multi_num)))
# TODO(Binbin Zhang): fix this
# We can not handle uneven data for CV on DDP, so we don't
# sample data by rank, that means every GPU gets the same
# and all the CV data
if self.partition:
if self.shuffle:
random.Random(self.epoch).shuffle(data)
data = data[self.rank::self.world_size]
# print(f'num dataset: {len(data)}')
data = data[self.worker_id::self.num_workers]
self.epoch += 1
return data
def pre_sample(self, data, split_num=1):
""" Sample data according to rank/world_size/num_workers
Args:
data(List): input data list
Returns:
List: data list after sample
"""
if self.split_num == 1 and self.multi_num == 1:
data = list(range(len(data)))
elif self.split_num != 1:
assert self.multi_num == 1
data = self.split_data(len(data))
else:
assert self.split_num ==1
data = list(range(len(data*self.multi_num)))
# TODO(Binbin Zhang): fix this
# We can not handle uneven data for CV on DDP, so we don't
# sample data by rank, that means every GPU gets the same
# and all the CV data
if self.partition:
if self.shuffle:
random.Random(self.epoch).shuffle(data)
data = data[self.rank::self.world_size]
# print(f'num dataset: {len(data)}')
data = data[self.worker_id::self.num_workers]
return data
class DataList(IterableDataset):
def __init__(self, lists, shuffle=True, partition=True, split_num=1):
self.lists = lists
self.sampler = DistributedSampler(shuffle, partition, split_num)
self.true_lists = self.sampler.pre_sample(self.lists)
def set_epoch(self, epoch):
self.sampler.set_epoch(epoch)
def __iter__(self):
sampler_info = self.sampler.update()
indexes = self.sampler.sample(self.lists)
for index in indexes:
# yield dict(src=src)
data = dict(src=self.lists[index])
data.update(sampler_info)
yield data
from gxl_ai_utils.utils import utils_file
class BigDataList(IterableDataset):
def __init__(self,s2t_dataset,t2s_dataset,s2s_dataset,t2t_dataset, weight_num:List[int]):
self.s2t_dataset = s2t_dataset
self.t2s_dataset = t2s_dataset
self.s2s_dataset = s2s_dataset
self.t2t_dataset = t2t_dataset
self.batch_index = 0
self.weight_num = weight_num
utils_file.logging_info(f"weight_num:{weight_num}")
def set_epoch(self, epoch):
self.s2t_dataset.set_epoch(epoch)
self.t2s_dataset.set_epoch(epoch)
self.s2s_dataset.set_epoch(epoch)
self.t2t_dataset.set_epoch(epoch)
def __iter__(self):
datasets = [iter(d) for d in [self.s2t_dataset, self.t2s_dataset, self.s2s_dataset, self.t2t_dataset]]
while True:
self.batch_index += 1
selected_iter = self.do_select_iter(datasets)
try:
yield next(selected_iter)
except StopIteration:
# 移除已耗尽的数据源
datasets = [it for it in datasets if it is not selected_iter]
if not datasets: # 所有数据源耗尽时终止
break
def do_select_iter(self, datasets):
# 检查各迭代器是否有效(未耗尽)
valid_indices = [i for i, it in enumerate(datasets) if it is not None]
if not valid_indices:
raise StopIteration
# 保存当前随机状态
original_state = random.getstate()
# 临时设置随机种子为batch_index
random.seed(self.batch_index)
# 根据weight_num计算有效数据源的权重
valid_weights = [self.weight_num[i] for i in valid_indices]
# 按权重随机选择(使用random.choices)
selected_idx = random.choices(valid_indices, weights=valid_weights, k=1)[0]
# 恢复原始随机状态
random.setstate(original_state)
return datasets[selected_idx]
def get_dataset(data_type,
data_list_file,
tokenizer: BaseTokenizer,
conf,
partition=True):
lists = read_lists(data_list_file)
shuffle = conf.get('shuffle', True)
split_num = conf.get('split_num', 1)
multi_num = conf.get('multi_num', 1)
lists = lists * multi_num
if_data_recover = conf.get('data_recover', False)
data_recover_conf = conf.get('data_recover_conf', {})
if if_data_recover:
print(f"recover data old list len:{len(lists)}")
start_idx = data_recover_conf.get('start_idx', 0)
if start_idx >= len(lists):
start_idx = 0
lists = lists[start_idx:]
print(f"recover data from {start_idx}, new list len:{len(lists)}")
dataset = DataList(lists, shuffle=shuffle, partition=partition, split_num=split_num)
true_list = dataset.true_lists
if data_type == 'shard':
dataset = Processor(dataset, processor.url_opener)
dataset = Processor(dataset, processor.tar_file_and_group_full_data, total_num=len(true_list))
else:
dataset = Processor(dataset, processor.parse_raw)
speaker_conf = conf.get('speaker_conf', None)
if speaker_conf is not None:
dataset = Processor(dataset, processor.parse_speaker, **speaker_conf)
if conf.get('eod_id', None) is not None:
tokenizer.eod_id = conf['eod_id']
# prompt dict
from gxl_ai_utils.utils import utils_file
other_tokenze_conf = conf.get('other_tokenze_conf', {})
global_prompt_dict = utils_file.load_dict_from_yaml(conf.get('prompt_conf_path', "conf/promp,t_config.yaml"))
speech_token_num = conf.get('speech_token_num', 1)
dataset = Processor(dataset, processor.tokenize, tokenizer, other_tokenze_conf=other_tokenze_conf,
global_prompt_dict=global_prompt_dict, speech_token_num=speech_token_num)
filter_conf = conf.get('filter_conf', {})
dataset = Processor(dataset, processor.filter, **filter_conf)
resample_conf = conf.get('resample_conf', {})
dataset = Processor(dataset, processor.resample, **resample_conf)
speed_perturb = conf.get('speed_perturb', False)
if speed_perturb:
dataset = Processor(dataset, processor.speed_perturb)
feats_type = conf.get('feats_type', 'fbank')
assert feats_type in ['fbank', 'mfcc', 'log_mel_spectrogram']
if feats_type == 'fbank':
fbank_conf = conf.get('fbank_conf', {})
dataset = Processor(dataset, processor.compute_fbank, **fbank_conf)
elif feats_type == 'mfcc':
mfcc_conf = conf.get('mfcc_conf', {})
dataset = Processor(dataset, processor.compute_mfcc, **mfcc_conf)
elif feats_type == 'log_mel_spectrogram':
log_mel_spectrogram_conf = conf.get('log_mel_spectrogram_conf', {})
dataset = Processor(dataset, processor.compute_log_mel_spectrogram,
**log_mel_spectrogram_conf)
spec_aug = conf.get('spec_aug', True)
spec_sub = conf.get('spec_sub', False)
spec_trim = conf.get('spec_trim', False)
if spec_aug:
spec_aug_conf = conf.get('spec_aug_conf', {})
dataset = Processor(dataset, processor.spec_aug, **spec_aug_conf)
if spec_sub:
spec_sub_conf = conf.get('spec_sub_conf', {})
dataset = Processor(dataset, processor.spec_sub, **spec_sub_conf)
if spec_trim:
spec_trim_conf = conf.get('spec_trim_conf', {})
dataset = Processor(dataset, processor.spec_trim, **spec_trim_conf)
# for emotion-only task
# dataset = Processor(dataset, processor.add_ssl_vec)
if shuffle:
shuffle_conf = conf.get('shuffle_conf', {})
dataset = Processor(dataset, processor.shuffle, **shuffle_conf)
sort = conf.get('sort', True)
if sort:
sort_conf = conf.get('sort_conf', {})
dataset = Processor(dataset, processor.sort, **sort_conf)
batch_conf = conf.get('batch_conf', {})
dataset = Processor(dataset, processor.batch, **batch_conf)
dataset = Processor(dataset, processor.padding)
return dataset
def do_get_fake_file():
temp_path = f'~/.cache/.temp/{random.randint(10000, 99999)}.txt'
utils_file.makedir_for_file(temp_path)
return temp_path
def BigDataset(data_type,
data_list_file_s2t,
data_list_file_t2s,
data_list_file_s2s,
data_list_file_t2t,
tokenizer: BaseTokenizer,
conf,
partition=True):
""" Construct dataset from arguments
We have two shuffle stage in the Dataset. The first is global
shuffle at shard tar/raw file level. The second is global shuffle
at training samples level.
Args:
data_type(str): raw/shard
bpe_model(str): model for english bpe part
partition(bool): whether to do data partition in terms of rank
"""
assert data_type in ['raw', 'shard']
# 深度复制conf
s2t_conf = copy.deepcopy(conf)
s2t_conf['other_tokenze_conf']["use_s2s_convert_s2t"]['enable'] = True
s2t_conf['filter_conf']['other_filter_conf']['only_s2t'] = True
s2t_conf['other_tokenze_conf']["only_info"]["only_s2t"] = True
t2s_conf = copy.deepcopy(conf)
t2s_conf['filter_conf']['other_filter_conf']['only_t2s'] = True
t2s_conf['other_tokenze_conf']["only_info"]['only_t2s'] = True
s2s_conf = copy.deepcopy(conf)
s2s_conf['filter_conf']['other_filter_conf']['only_s2s'] = True
s2s_conf['other_tokenze_conf']["only_info"]['only_s2s'] = True
t2t_conf = copy.deepcopy(conf)
t2t_conf['filter_conf']['other_filter_conf']['only_t2t'] = True
t2t_conf['other_tokenze_conf']["only_info"]['only_t2t'] = True
tmp_file_s2t = do_get_fake_file()
s2s_list = utils_file.load_list_file_clean(data_list_file_s2s)
# s2s_list_little = s2s_list[::3]
s2s_list_little = []
s2t_list = utils_file.load_list_file_clean(data_list_file_s2t)
s2t_full_list = s2t_list + s2s_list_little
utils_file.write_list_to_file(s2t_full_list, tmp_file_s2t)
s2t_dataset = get_dataset(data_type, tmp_file_s2t, tokenizer, s2t_conf, partition=partition)
t2s_dataset = get_dataset(data_type, data_list_file_t2s, tokenizer, t2s_conf, partition=partition)
s2s_dataset = get_dataset(data_type, data_list_file_s2s, tokenizer, s2s_conf, partition=partition)
t2t_dataset = get_dataset(data_type, data_list_file_t2t, tokenizer, t2t_conf, partition=partition)
dataset = BigDataList(s2t_dataset, t2s_dataset, s2s_dataset, t2t_dataset,
weight_num=[len(read_lists(tmp_file_s2t)),
len(read_lists(data_list_file_t2s)),
len(read_lists(data_list_file_s2s)),
len(read_lists(data_list_file_t2t))
])
return dataset
def Dataset(data_type,
data_list_file,
tokenizer: BaseTokenizer,
conf,
partition=True):
""" Construct dataset from arguments
We have two shuffle stage in the Dataset. The first is global
shuffle at shard tar/raw file level. The second is global shuffle
at training samples level.
Args:
data_type(str): raw/shard
bpe_model(str): model for english bpe part
partition(bool): whether to do data partition in terms of rank
"""
assert data_type in ['raw', 'shard', 'shard_full_data']
dataset = get_dataset(data_type, data_list_file, tokenizer, conf, partition=partition)
return dataset
|