File size: 77,018 Bytes
841f290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import codecs
import copy

import librosa
import logging
import random
import tarfile
from subprocess import PIPE, Popen
from urllib.parse import urlparse

import torch
import torchaudio
import torchaudio.compliance.kaldi as kaldi
import torch.nn.functional as F
from gxl_ai_utils.utils import utils_file
from torch.nn.utils.rnn import pad_sequence

from wenet.text.hugging_face_tokenizer import HuggingFaceTokenizer
torchaudio.set_audio_backend("soundfile")

AUDIO_FORMAT_SETS = set(['flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'])

import re


def process_text(text):
    # 1. 删除汉字左右两侧的空格
    text = re.sub(r'\s*([\u4e00-\u9fff])\s*', r'\1', text)
    # 2. 将英文转成小写
    text = text.lower()
    # 3. 删除 < 和 > 符号两侧的空格
    text = re.sub(r'\s*<\s*', '<', text)
    text = re.sub(r'\s*>\s*', '>', text)
    return text

def process_text2(text, task_tag):
    # 1. 删除汉字左右两侧的空格
    text = re.sub(r'\s*([\u4e00-\u9fff])\s*', r'\1', text)
    # 2. 将英文转成小写
    if task_tag == "<TRANSCRIBE>":
        text = text.lower()
    # 3. 删除 < 和 > 符号两侧的空格
    text = re.sub(r'\s*<\s*', '<', text)
    text = re.sub(r'\s*>\s*', '>', text)
    return text

def insert_at_position(lst, item_str, position, is_wav:bool):
    """
    将 item_str 插入到 lst 的第 position 个位置(1-based),
    若 lst 长度不足则以 "-1" 填充至目标长度后再插入。
    """
    index = position - 1
    # 一次性计算需要补充的 "-1" 数目并批量 extend
    if len(lst) < position:
        lst.extend(["-1"] * (position - len(lst)))
    if lst[index] != "-1":
        assert isinstance(lst[index], dict), f'lst[index] is not a dict {lst[index]}'
        if is_wav:
            lst[index]['wav'] = item_str['wav']
        else:
            lst[index]['txt'] = item_str['txt']
    else:
        lst[index] = item_str
    return lst

def check_wav_format(s):
    match = re.fullmatch(r"wav_(\d+)", s)
    if match:
        return True, int(match.group(1))
    else:
        return False, -1

def check_txt_format(s):
    match = re.fullmatch(r"txt_(\d+)", s)
    if match:
        return True, int(match.group(1))
    else:
        return False, -1

def load_dict_list_from_jsonl(jsonl_file_path) -> list:
    """"""
    with codecs.open(jsonl_file_path, 'r', encoding='utf-8') as f:
        lines = f.readlines()
        lines_res = []
        for line in lines:
            try:
                line = json.loads(line)
                lines_res.append(line)
            except Exception as e:
                print(e)
                continue
    return lines_res
def url_opener(data):
    """ Give url or local file, return file descriptor
        Inplace operation.

        Args:
            data(Iterable[str]): url or local file list

        Returns:
            Iterable[{src, stream}]
    """
    for sample in data:
        assert 'src' in sample
        # TODO(Binbin Zhang): support HTTP
        url = sample['src']
        if "|" not in url:
            utils_file.logging_error(f'OSUM-EChat url_opener 错误,url格式不正确 {url}, 不含有|')
            continue
        combine_path, shard_path = url.split('|')
        if combine_path == "-":
            big_dict = None
        else:
            try:
                dict_list = load_dict_list_from_jsonl(combine_path)
            except Exception as e:
                utils_file.logging_error(f'OSUM-EChat url_opener 错误,加载combine_path {combine_path} 失败 {e}')
                dict_list = []
            big_dict = {}
            for item in dict_list:
                big_dict[item['key']] = item
        try:
            pr = urlparse(shard_path)
            # local file
            if pr.scheme == '' or pr.scheme == 'file':
                stream = open(shard_path, 'rb')
            # network file, such as HTTP(HDFS/OSS/S3)/HTTPS/SCP
            else:
                cmd = f'wget -q -O - {shard_path}'
                process = Popen(cmd, shell=True, stdout=PIPE)
                sample.update(process=process)
                stream = process.stdout
            sample.update(stream=stream,big_dict=big_dict)
            yield sample
        except Exception as ex:
            logging.warning('Failed to open {}'.format(shard_path))



def tar_file_and_group_full_data(data, total_num=0):
    """ Expand a stream of open tar files into a stream of tar file contents.
        And groups the file with same prefix

        Args:
            data: Iterable[{src, stream}]

        Returns:
            Iterable[{key, wav, txt, sample_rate}]
    """
    index = 0
    total_num = total_num
    for sample in data:
        index += 1
        # utils_file.logging_limit_print(f'OSUM-EChat 正在消化第{index}个tar包')
        assert 'stream' in sample
        stream = None
        try:
            stream = tarfile.open(fileobj=sample['stream'], mode="r:*")
            big_dict = sample['big_dict']
            prev_prefix = None
            example = {'history': []}
            valid = True
            for tarinfo in stream:
                name = tarinfo.name
                pos = name.rfind('.')
                assert pos > 0, f' pos {pos}'
                prefix, postfix = name[:pos], name[pos + 1:]
                if prev_prefix is not None and prefix != prev_prefix:
                    example['key'] = prev_prefix
                    if valid:
                        # assert 'txt' in example
                        if 'txt' not in example:
                            example['txt'] = ''
                        if 'wav' not in example:
                            example['wav'] = torch.randn(1, 160000)
                            example['sample_rate'] = 16000
                        # utils_file.logging_info(f'OSUM-EChat SHUCHU第{index}个tar包')
                        yield example
                    example = {'history': []}
                    valid = True
                with stream.extractfile(tarinfo) as file_obj:
                    try:
                        if big_dict is not None:
                            if prefix not in big_dict:
                                raise Exception(f'{prefix} not in big_dict')
                            else:
                                info_dict = big_dict[prefix]
                                if 'txt' not in info_dict or 'task' not in info_dict or 'extra' not in info_dict:
                                    raise Exception(f'info_dict {info_dict} not include txt, task, extra')
                                # utils_file.logging_limit_print(f'info dict: {info_dict}')
                                if postfix == 'txt':
                                    example['txt'] = info_dict['txt']
                                elif postfix == 'task':
                                    example['task'] = info_dict['task']
                                elif postfix == 'extra':
                                    example['extra'] = info_dict['extra']
                                elif postfix in AUDIO_FORMAT_SETS:
                                    waveform, sample_rate = torchaudio.load(file_obj)
                                    # 检查音频的维度
                                    num_channels = waveform.shape[0]
                                    # 如果音频是多通道的,则进行通道平均
                                    if num_channels > 1:
                                        waveform = torch.mean(waveform, dim=0, keepdim=True)
                                    example['wav'] = waveform
                                    example['sample_rate'] = sample_rate
                                else:
                                    pass
                        else:
                            if postfix == 'txt':
                                example['txt'] = file_obj.read().decode('utf8').strip()
                            elif postfix == 'task':
                                example['task'] = file_obj.read().decode('utf8').strip()
                            elif postfix == 'extra':
                                extra_str = file_obj.read().decode('utf8').strip()
                                example['extra'] = json.loads(extra_str)
                            elif postfix in AUDIO_FORMAT_SETS:
                                waveform, sample_rate = torchaudio.load(file_obj)
                                # 检查音频的维度
                                num_channels = waveform.shape[0]
                                # 如果音频是多通道的,则进行通道平均
                                if num_channels > 1:
                                    waveform = torch.mean(waveform, dim=0, keepdim=True)
                                example['wav'] = waveform
                                example['sample_rate'] = sample_rate
                            else:
                                pass
                    except Exception as ex:
                        valid = False
                        utils_file.logging_error('error to parse ex: {}'.format(ex))
                        # 1. 基础信息:错误对象、文件名、错误类型
                        # error_msg = (
                        #     f"Failed to parse {name}! "
                        #     f"Error type: {type(ex).__name__}, "
                        #     f"Message: {str(ex)}"
                        # )
                        # # 2. 补充堆栈跟踪(完整调用链路)
                        # stack_trace = traceback.format_exc()
                        # # 3. 组合日志信息,使用warning级别输出(或error级别更合适)
                        # logging.warning(f"{error_msg}\nStack trace:\n{stack_trace}")
                prev_prefix = prefix
            if prev_prefix is not None:
                example['key'] = prev_prefix
                if 'txt' in example:
                    if 'wav' not in example:
                        example['wav'] = torch.randn(1, 160000)
                        example['sample_rate'] = 16000
                    utils_file.logging_info(f'*************OSUM-EChat SHUCHU第{index}/{total_num}个tar包')
                    yield example
        except Exception as ex:
            logging.warning(
                'In tar_file_and_group: {} when processing {}'.format(
                    ex, sample['src']))
        finally:
            if stream is not None:
                stream.close()
            if 'process' in sample:
                sample['process'].communicate()
            sample['stream'].close()

# for history
# elif check_wav_format(postfix)[0]:
# position = check_wav_format(postfix)[1]
# waveform, sample_rate = torchaudio.load(file_obj)
# if sample_rate != 16000:
# waveform = torchaudio.transforms.Resample(
#     orig_freq=sample_rate, new_freq=16000)(waveform)
# feat = do_compute_log_mel_spectrogram(waveform)
# history_item = {'wav': feat, "txt": "", 'position': position}
# insert_at_position(example['history'], history_item, position, is_wav=True)
#
# elif check_txt_format(postfix)[0]:
# position = check_txt_format(postfix)[1]
# txt_str = file_obj.read().decode(
# 'utf8').strip()
# history_item = {'wav': '', "txt": txt_str, 'position': position}
# insert_at_position(example['history'], history_item, position, is_wav=False)


def parse_raw(data):
    """ Parse key/wav/txt from json line

        Args:
            data: Iterable[str], str is a json line has key/wav/txt

        Returns:
            Iterable[{key, wav, txt, sample_rate}]
    """
    for sample in data:
        assert 'src' in sample
        json_line = sample['src']
        obj = json.loads(json_line)
        assert 'key' in obj
        assert 'wav' in obj
        assert 'txt' in obj
        key = obj['key']
        wav_file = obj['wav']
        txt = obj['txt']
        try:
            if 'start' in obj:
                assert 'end' in obj
                sample_rate = torchaudio.info(wav_file).sample_rate
                start_frame = int(obj['start'] * sample_rate)
                end_frame = int(obj['end'] * sample_rate)
                waveform, _ = torchaudio.load(filepath=wav_file,
                                              num_frames=end_frame -
                                                         start_frame,
                                              frame_offset=start_frame)
            else:
                waveform, sample_rate = torchaudio.load(wav_file)
                # 检查音频的维度
                num_channels = waveform.shape[0]
                # 如果音频是多通道的,则进行通道平均
                if num_channels > 1:
                    waveform = torch.mean(waveform, dim=0, keepdim=True)
            example = copy.deepcopy(obj)  # copy and keep all the fields
            example['wav'] = waveform  # overwrite wav
            example['sample_rate'] = sample_rate
            yield example
        except Exception as ex:
            logging.warning('Failed to read {}'.format(wav_file))


def parse_speaker(data, speaker_table_path):
    speaker_dict = {}
    with open(speaker_table_path, 'r', encoding='utf8') as fin:
        for line in fin:
            arr = line.strip().split()
            speaker_dict[arr[0]] = int(arr[1])
    for sample in data:
        assert 'speaker' in sample
        speaker = sample['speaker']
        sample['speaker'] = speaker_dict.get(speaker, 0)
        yield sample


global_style_dict = {
    "朗读": "新闻科普",
    "科普百科": "新闻科普",
    "悬疑恐怖": "恐怖故事",
    "童话故事": "童话故事",
    "客服": "客服",
    "诗歌": "诗歌散文",
    "散文": "诗歌散文",
    "武侠评书": "有声书",
    "小说": "有声书",
    "历史": "有声书",
    "科幻": "有声书",
    "对话": "日常口语",
    "口语": "日常口语",
    "幽默": "其他",
    "其他": "其他",
}
# global_chat_dict = utils_file.load_dict_from_scp("/mnt/sfs/asr/update_data/3500_chat_asr/osum_echat_all_3500_with_asr_chat.scp")

asr_X_set = {"<TRANSCRIBE> <EMOTION>", "<TRANSCRIBE> <STYLE>", "<TRANSCRIBE> <CAPTION>", "<TRANSCRIBE> <GENDER>",
             "<TRANSCRIBE> <AGE>"}

natural_language_set = {"<TRANSCRIBE> <STYLE>",
                        "<TRANSCRIBE> <CAPTION>",
                        "<TRANSCRIBE> <GENDER>",
                        "<TRANSCRIBE> <AGE>",
                        "<TRANSCRIBE> <EMOTION>",
                        "<STYLE>",
                        "<CAPTION>",
                        "<GENDER>",
                        "<AGE>",
                        "<EMOTION>",
                        }

chat_set = set([
    "<TRANSCRIBE> <S2TCHAT>",
])
import re


def extract_first_content(s):
    # 使用正则表达式匹配尖括号中的内容, input: "dfsfs<喜喜>", output: "<喜喜>"
    match = re.search(r'<[^>]+>', s)
    if match:
        return match.group()
    else:
        return "None_in_extract_X"


def extract_all_contents(s):
    # 使用正则表达式匹配所有尖括号中的内容
    matches = re.findall(r'<[^>]+>', s)
    return matches


def extract_answer(s):
    res_items = s.strip().split("<开始回答>")
    if len(res_items) == 2:
        res = res_items[1]
    else:
        res = "None_in_extract_answer"
    return res


def replace_keys_in_brackets(input_str, key_value_dict):
    for key, value in key_value_dict.items():
        # 构造匹配 <key> 形式的正则表达式模式
        pattern = re.compile(r'<{}>'.format(key))
        input_str = pattern.sub(f"<{value}>", input_str)
    return input_str


import json


def process_tagged_string(s):
    """
    处理带标签的字符串,将标签替换为对应的内容
    Args:
        s:

    Returns:
        <tag>  <tag>xxxx
    """
    match = re.match(r'^<([^<>]+)>', s)
    if match:
        tag = match.group(1)
        return f"<{tag}>", s
    else:
        new_s = "<中立>" + s
        return "<中立>", new_s


def process_tagged_string_and_delete_tag_from_txt(s):
    """
    处理带标签的字符串,提取标签并返回标签和去除标签后的内容
    Args:
        s: 带标签的字符串,格式如 "<tag>XXXX"

    Returns:
        元组 (标签, 去除标签后的内容),例如 ("<tag>", "XXXX")
    """
    # 匹配以<标签>开头的字符串
    match = re.match(r'^<([^<>]+)>(.*)$', s)
    if match:
        tag = match.group(1)
        content = match.group(2).lstrip()  # 去除标签后的内容(可选项:移除开头空格)
        return f"<{tag}>", content
    else:
        # 无标签时添加默认<中立>标签,返回标签和原始内容
        return "<中立>", s


def split_txt2asr_tag(text):
    # 使用正则表达式匹配标签
    match = re.match(r'^(.*?)(<[^>]+>)$', text)

    # 如果匹配到一个标签
    if match:
        return match.group(1), match.group(2)
    else:
        return None, None


# 过滤自我介绍
self_list = [
    # 原有 LLM 名称及变体
    "MOSS Assistant", "MOSS助手",
    "QWEN", "QWEN Assistant", "QWEN助手","小智机器人", "小智助手", "小智AI助手","Qwen助手"

    # 通用英文助手/AI 名称
    "VirtualAssistant", "virtual assistant",
    "Helper", "helper", "ChatBot","chat bot", "chatbot", "Chat Bot",
    "AI Agent", "AI agent",  "ChatGPT", "chatgpt","<think>"

    # 常见英文名字
    # " Alice ", " alice ", " Bob ", " bob ", " Charlie ", " charlie ",
    # " Dave ", " dave ", " Eve ", " eve ", " Grace ", " grace ", " Tom ",

    # 常见中文名字
    # "小明", "小红", "小刚", "晓明", "晓红", "阿强", "阿丽",
    # "丽丽", "婷婷", "王磊", "李娜", "张伟", "赵敏", "刘洋", "陈晨",
    # "小李", "小王", "小赵", "小周", "小吴", "小马", "小暖", "乐哥","李娜"

    # 中文名字 + 助手/AI 后缀
    "小明助手", "小红小助手", "小刚AI", "晓明助手", "阿强Bot",
    "阿丽小助手", "王磊AI助手", "李娜AI", "张伟助手", "赵敏Bot",
    "刘洋AI小助手", "陈晨智能助手", "<think>"

    # 混合中英文风格
    "MOSS小助手", "QWEN小助手", "小智Bot", "Assistant小智", "AI小智",
    "ChatBot小明", "VirtualAssistant李娜","大型语言模型","语言模型"

]
escaped = [re.escape(w) for w in self_list if w]
pattern = re.compile(r"(" + "|".join(escaped) + r")")



def if_have_other_name(text):
    matches = pattern.findall(text)
    if matches:
        print("出现了:", set(matches), text)
        return True
    else:
        return False


emotion_tags = {"<HAPPY>", "<SAD>", "<ANGRY>", "<ANGER>", "<FEAR>", "<DISGUST>", "<SURPRISE>", "<NEUTRAL>"}
answer_emotion_tags = {"<ANGER>","<FEAR>","<HAPPY>","<SURPRISE>","<SAD>","<DISGUST>","<CONFUSED>","<SARCASM>","<EMBARRASSED>","<CURIOUS>","<WORRIED>","<SHY>","<SORRY>","<NEUTRAL>",}
age_tags = {"<CHILD>", "<ADULT>", "<OLD>"}
gender_tags = {"<MALE>", "<FEMALE>"}
none_tags = {"<NONE>", "<NULL>", "<None>", "<none>", "<null>"}


def tokenize(data, tokenizer: HuggingFaceTokenizer, other_tokenze_conf={}, global_prompt_dict=None, speech_token_num=1):
    """ Decode text to chars or BPE
        Inplace operation

        Args:
            tokenizer:
            data: Iterable[{key, wav, txt, sample_rate}]

        Returns:
            Iterable[{key, wav, txt, tokens, label, sample_rate}]
    """
    for sample in data:
        # key值过滤
        # key = sample.get('key', "")
        # if key == "":
        #     print(f"key is empty, skip this sample: {sample}")
        #     continue
        # if key in pass_key_set:
        #     utils_file.logging_limit_print(f"key is in pass_key_set, skip this sample")
        #     continue

        # =========== handle extra ,将其统一为字典================================
        origin_extra = sample.get('extra', {})
        if type(origin_extra) == str:
            try:
                # utils_file.logging_limit_print(f"origin_extra is a str, try to load it as json")
                sample['extra'] = json.loads(origin_extra)
            except json.JSONDecodeError:
                # utils_file.logging_error("Error: 'extra' is not a valid JSON string.")
                sample['extra'] = {}
        elif type(origin_extra) == dict:
            sample['extra'] = origin_extra
        else:
            sample['extra'] = {}
        final_extra = sample['extra']
        # =========== handle extra end =======================================

        insert_prompt = None
        # ============handle task, txt,确保task txt标签一定存在 ====================
        if 'task' not in sample:
            sample['task'] = "<TRANSCRIBE>"

        if 'txt' not in sample:
            sample['txt'] = ""
        task_name = sample['task']
        txt = sample['txt']
        # ============handle task txt end =======================================



        # ===============做补丁处理 ==========================================
        if if_have_other_name(txt):
            print(f"txt: {txt} 存在其他名称,跳过")
            continue
        txt = txt.replace("\n", " ")

        if "<AGE>" in task_name and (
                "<YOUTH>" in sample['txt'] or "<MIDDLE_AGE>" in sample['txt'] or "<MIDDLE>" in sample['txt']):
            txt = sample['txt'].replace("<YOUTH>", "<ADULT>").replace("<MIDDLE_AGE>", "<ADULT>").replace("<MIDDLE>",
                                                                                                         "<ADULT>")
            sample['txt'] = txt
        if "<STYLE>" in sample['task']:
            txt = replace_keys_in_brackets(sample['txt'], global_style_dict)
            sample['txt'] = txt
        if task_name == "TEXT2TOKEN":
            task_name = "<TEXT2TOKEN>"
            sample['task'] = task_name

        if task_name == "<Speech2TEXTandTOKEN>" or task_name == "<S2TCHAT> <TEXT2TOKEN> <EMOTION>":
            task_name = "<S2TCHAT> <TEXT2TOKEN>"
            sample['task'] = task_name
        # ================补丁处理结束 ==============================================

        unk_tag = "<&&>"  # 对应数字为 27,7672,29,...

        # =============针对理解任务做only X 的处理, 加入理解任务转换的任务===================================
        if other_tokenze_conf.get("use_50_per_change_if_only_X", False) and task_name in asr_X_set:
            # utils_file.logging_limit_print(f"task_name: {task_name}, in asr_X_set")
            # 得到一个50%的随机
            if random.random() < 0.5:
                task_name = task_name.replace("<TRANSCRIBE> ", "")
                sample['task'] = task_name
                # utils_file.logging_limit_print(f"task_name: {task_name},发生任务替换, replace to {sample['task']}")
                txt = extract_first_content(sample['txt'])
                sample['txt'] = txt
                # utils_file.logging_limit_print(f"old txt: {sample['txt']}, 发生了文本替换, replace to new txt: {txt}")
        elif other_tokenze_conf.get("use_50_per_change_if_only_X", False) and task_name in chat_set:
            # utils_file.logging_limit_print(f"task_name: {task_name}, in chat_set")
            # 得到一个50%的随机
            if random.random() < 0.5:
                task_name = task_name.replace("<TRANSCRIBE> ", "")
                sample['task'] = task_name
                # utils_file.logging_limit_print(f"task_name: {task_name},发生任务替换, replace to {sample['task']}")
                txt = extract_answer(sample['txt'])
                sample['txt'] = txt
                # utils_file.logging_limit_print(f"old txt: {sample['txt']}, 发生了文本替换, replace to new txt: {txt}")
        # =============针对理解任务做only X 的处理, 加入理解任务转换的任务 end===================================



        # =======================对tts任务做处理=======================================
        if task_name == "<TEXT2TOKEN>" and other_tokenze_conf.get("use_streaming_tts", {}).get("enable", False):
            if random.random() < other_tokenze_conf.get("use_streaming_tts", {}).get("rate", 0.5):
                task_name = "<TEXT2TOKEN> <STREAMING>"
                sample['task'] = task_name
        # =======================对tts任务处理结束=======================================

        emotion_tag, txt = process_tagged_string_and_delete_tag_from_txt(txt)
        # =======================处理s2t think========================================
        if task_name == "<S2TCHAT> <THINKER>":
            # emotion_tag, txt = process_tagged_string(txt)  # 如果开头没<中立>,则加上<中立>
            if 'think_str' in final_extra:
                think_str = final_extra['think_str']
                txt = f'<think>{think_str}<think end>{txt}'
            else:
                utils_file.logging_error(f"error: think_str is not in extra, {sample}")
                continue
        # =======================处理s2t think end=====================================

        # ===================处理s2s think============================================
        if task_name == "<S2TCHAT> <TEXT2TOKEN> <THINK>":
            # emotion_tag, txt = process_tagged_string(txt)  # 如果开头没<中立>,则加上<中立>
            if 'think_str' in final_extra:
                think_str = final_extra['think_str']
                txt = f'<think>{think_str}<think end>{txt}'
            else:
                utils_file.logging_error(f"error: think_str is not in extra, {sample}")
                continue
        # ====================处理s2s think end============================================


        # =======================得到 txt的数字化token =================================
        tokens, label = tokenizer.tokenize(process_text2(txt, sample.get("task", "<TRANSCRIBE>")))
        sample['tokens'] = tokens  # token是字符, label是数字
        if txt.endswith(unk_tag):
            sample['label'] = label
        else:
            sample['label'] = label + [tokenizer.tokenizer.eos_token_id]
        # =======================得到 txt的数字化token 结束 =================================


        # ====================处理prompt ==============================================
        try:
            if "question" in sample['extra']: #if sample['task'] == '<TEXT2TEXT>':
                question = sample['extra'].get('question', "")
                if question == "":
                    utils_file.logging_info(f"error: question is empty, {sample}")
                    continue
                prompt = question
            else:
                if insert_prompt is not None:
                    prompt = insert_prompt
                else:
                    if task_name not in global_prompt_dict:
                        prompt = "<no_prompt>"
                    else:
                        random_index = random.randint(0, len(global_prompt_dict[task_name]) - 1)
                        prompt = global_prompt_dict[task_name][random_index]
            if prompt == "<no_prompt>":
                # utils_file.logging_limit_print(f'no prompt for {task_name}')
                sample['prompt'] = []
            else:
                sample['prompt'] = tokenizer.tokenize(prompt)[1]  # labels
        except Exception as e:
            utils_file.logging_info(f"error in extract prompt, {e},task_name: {task_name}, sample: {sample}")
            continue
        # ====================处理prompt 结束 =======================================



        # ========================处理speech token ================================
        if task_name == "<S2TCHAT> <TEXT2TOKEN>" or task_name == "<S2TCHAT> <TEXT2TOKEN> <THINK>" or task_name == "<TEXT2TOKEN>" or task_name == "<TEXT2TOKEN> <STREAMING>":
            if "speech_token" in final_extra:
                speech_token_tmp = final_extra['speech_token']
                if not isinstance(speech_token_tmp, list):
                    speech_token_tmp = []
                    print(f"error: speech_token is not a list, {speech_token_tmp}")
                    continue
                speech_token = [int(x) for x in speech_token_tmp]
                if len(speech_token) == 0:
                    utils_file.logging_warning(f"error: speech_token is empty,task: {task_name}")
                    continue
                sample['speech_token'] = [speech_token_num - 1] + speech_token + [speech_token_num - 1]
            else:
                utils_file.logging_warning(f"error: speech_token is empty,task: {task_name}")
                continue
        else:
            sample['speech_token'] = []
        # ========================处理speech token 结束 ==========================



        # =====================处理output_type======================
        # tts
        if task_name == "<TEXT2TOKEN>":
            sample['output_type'] = "text2token"
        elif task_name == "<TEXT2TOKEN> <STREAMING>":
            sample['output_type'] = "text2token_streaming"
        elif task_name == "<S2TCHAT> <TEXT2TOKEN>" or task_name == "<S2TCHAT> <TEXT2TOKEN> <EMOTION>":
            sample['output_type'] = 'speech2text_token'
        elif task_name == "<S2TCHAT> <TEXT2TOKEN> <STREAMING>":
            sample['output_type'] = 'speech2text_token_streaming'
        elif task_name == "<S2TCHAT> <TEXT2TOKEN> <THINK>":
            sample['output_type'] = 'speech2text_token_think'
        elif task_name == "<S2TCHAT> <TEXT2TOKEN> <HISTORY>":
            sample['output_type'] = 'speech2text_token_history'
        elif task_name == "<TEXT2TEXT>":
            sample['output_type'] = 'text2text'
        elif task_name == "<S2TCHAT>":
            sample['output_type'] ='s2t_chat'
        elif task_name == "<S2TCHAT_FAKE>":
            sample['output_type'] ='s2t_chat_fake'
        elif task_name == "<S2TCHAT> <THINKER>":
            sample['output_type'] ='s2t_chat_think'
        else:
           sample['output_type'] = 'text'
        # utils_file.logging_limit_print(f"output_type: {sample['output_type']}")
            # s2t end
        # =====================处理output_type 结束======================
        yield sample


def filter(data,
           max_length=1200,
           min_length=0,
           token_max_length=250,
           token_min_length=1,
           min_output_input_ratio=0.00005,
           max_output_input_ratio=1,
           filter_no_extra_info: bool = False,
           max_seq_len=1000,
           other_filter_conf={}):
    """ Filter sample according to feature and label length
        Inplace operation.

        Args::
            data: Iterable[{key, wav, label, sample_rate}]
            max_length: drop utterance which is greater than max_length(10ms)
            min_length: drop utterance which is less than min_length(10ms)
            token_max_length: drop utterance which is greater than
                token_max_length, especially when use char unit for
                english modeling
            token_min_length: drop utterance which is
                less than token_max_length
            min_output_input_ratio: minimal ration of
                token_length / feats_length(10ms)
            max_output_input_ratio: maximum ration of
                token_length / feats_length(10ms)

        Returns:
            Iterable[{key, wav, label, sample_rate}]
    """
    for sample in data:
        try:
            assert 'sample_rate' in sample
            assert 'wav' in sample
            assert 'label' in sample
        except:
            utils_file.logging_error(f'sample_rate or wav or label not in sample,')
            continue

        output_type = sample["output_type"]
        if other_filter_conf.get("only_s2s", False):
            if output_type not in ['speech2text_token', 'speech2text_token_streaming', 'speech2text_token_think', 'speech2text_token_history']:
                utils_file.logging_error(
                    f"only_s2s, output_type is not speech2text_token or speech2text_token_streaming,speech2text_token_think,speech2text_token_history, continue, output_type: {output_type}")
                continue
        if other_filter_conf.get("only_s2t", False):
            if output_type not in ["text", 's2t_chat', "s2t_chat_fake", "s2t_chat_think"]:
                utils_file.logging_error(
                    f"only_s2t, output_type is not s2t, continue, output_type: {output_type}")
                continue
        if other_filter_conf.get("only_t2t", False):
            if output_type != 'text2text':
                utils_file.logging_error(
                    f"only_t2t, output_type is not text2text, continue, output_type: {output_type}")
                continue
        if other_filter_conf.get("only_t2s", False):
            if output_type not in ['text2token', 'text2token_streaming']:
                utils_file.logging_error(
                    f"only_t2s, output_type is not text2token or text2token_streaming, continue, output_type: {output_type}, sampl  e: {sample}")
                continue

        # 过滤不当文字wav比例
        if "speech_token" in sample and sample["output_type"] not in ['text','text2text', 's2t_chat', 's2t_chat_fake', 's2t_chat_think']:
            if len(sample['label']) * 0.8 >= len(sample['speech_token']):
                utils_file.logging_error(f"label 长度过长,和token长度不匹配,continue, len(sample['label']):{len(sample['label'])}, len(sample['speech_token']):{len(sample['speech_token'])},  task: {sample['task']}, output_type: {sample['output_type']}")
                continue
            # if len(sample['label'])>=5 and len(sample['speech_token']) > 125 and len(sample['label']) * 8.33 < len(sample['speech_token']): # 5s以上的音频,label长度大于5,限制用每秒至少3个文字
            #     utils_file.logging_error(f"label 长度过短,和token长度不匹配,continue, len(sample['label']):{len(sample['label'])}, len(sample['speech_token']):{len(sample['speech_token'])},len(sample['label']) * 8.33 < len(sample['speech_token'])")
            #     continue
            # elif len(sample['label']) * 10 < len(sample['speech_token']):
            #     utils_file.logging_error(f"label 长度过长,和token长度不匹配,continue, len(sample['label']):{len(sample['label'])}, len(sample['speech_token']):{len(sample['speech_token'])},len(sample['label']) * 10 < len(sample['speech_token'])")
            #     continue

        txt = sample['txt']
        if txt == "None_in_extract_answer":
            utils_file.logging_error(
                f'error , txt is None, continue, old txt: {sample["txt"]}, task: {sample["task"]}')
            continue
        if txt == "None_in_extract_X":
            utils_file.logging_error(
                f'error , txt is None, continue, old txt: {sample["txt"]}, task: {sample["task"]}')
            continue
            # if txt == "<None>" or txt == "<NONE>" or txt == "<none>" or txt == "None" or txt == "none" or txt == "NONE":
        if other_filter_conf.get("fiter_txt_is_None", False):
            if "<None>" in txt or "<NONE>" in txt or "<none>" in txt:
                utils_file.logging_error(
                    f'error , txt is None, continue, old txt: {sample["txt"]}, task: {sample["task"]}')
                continue

        history_list = sample.get('history', [])
        if "-1" in history_list:
            history_list = []
            sample['history'] = history_list
        history_len = 0
        history_err = False
        for item in history_list:
            if item['wav'] is None or isinstance(item['wav'], str):
                history_err = True
                break
            wav_len_itm = item['wav'].size(0)
            txt_len_itm = len(item['txt'])
            history_len += wav_len_itm + txt_len_itm
        if history_err:
            utils_file.logging_error(f"error: history_list item['wav'] is None, {sample}, continue")
            continue

        # sample['wav'] is torch.Tensor, we have 100 frames every second
        num_frames = sample['wav'].size(1) / sample['sample_rate'] * 100 + history_len

        # filter for shard_in_common
        if filter_no_extra_info:
            # if 'lang' not in sample:
            #     utils_file.logging_limit_print(f'filter_no_extra_info, lang not in sample, ')
            #     continue
            if 'task' not in sample:
                utils_file.logging_error(f'filter_no_extra_info, task not in sample, ')
                continue

        if num_frames < min_length:
            utils_file.logging_info(
                f'num_frames < min_length, continue, num_frames: {num_frames}, min_length: {min_length}, ')
            continue

        if num_frames > max_length:
            # continue
            if 'task' in sample and sample['task'] == '<CAPTION>':
                utils_file.logging_error(
                    f'num_frames > max_length, continue, num_frames: {num_frames}, max_length: {max_length}, ')
                continue
                # utils_file.logging_limit_print('进行了随机剪裁')
                # 随机选择一个起始点进行裁剪
                # start_frame = random.randint(0, int(num_frames - max_length))
                # end_frame = start_frame + max_length
                # sample['wav'] = sample['wav'][:, int(start_frame / 100 * sample['sample_rate']): int(
                #     end_frame / 100 * sample['sample_rate'])]
                # utils_file.logging_limit_print('sample[', sample['wav'].shape)
            else:
                utils_file.logging_error(
                    f'num_frames > max_length, continue, num_frames: {num_frames}, max_length: {max_length}, ')
                continue
        if len(sample['label']) < token_min_length:
            utils_file.logging_error(
                f'len(sample["label"]) < token_min_length, continue, len(sample["label"]): {len(sample["label"])}, token_min_length: {token_min_length}, ')
            continue
        if len(sample['label']) > token_max_length:
            utils_file.logging_error(
                f'len(sample["label"]) > token_max_length, continue, len(sample["label"]): {len(sample["label"])}, token_max_length: {token_max_length}, ')
            continue
        # if output_type=="text2text" and len(sample['prompt']) > token_max_length:
        #     utils_file.logging_limit_print(
        #         f'len(sample["label"]) > token_max_length, continue, len(sample["label"]): {len(sample["label"])}, token_max_length: {token_max_length}, ')
        #     continue
        # if num_frames != 0:
        #     if len(sample['label']) / num_frames < min_output_input_ratio:
        #         continue
        #     if len(sample['label']) / num_frames > max_output_input_ratio:
        #         continue


        if sample["output_type"] == "speech2text_token" or sample["output_type"] == "speech2text_token_streaming" or sample["output_type"] == "speech2text_token_think" or sample["output_type"] == "speech2text_token_history":
            seq_len = len(sample['prompt']) + num_frames / 8 + len(sample['label']) + len(sample['speech_token'])
        elif sample["output_type"] == "text2token" or sample["output_type"] == "text2token_streaming":
            seq_len = len(sample['prompt']) + len(sample['label']) + len(sample['speech_token'])
        else:
            seq_len = len(sample['prompt']) + num_frames / 8 + len(sample['label'])
        # utils_file.logging_limit_print(f'seqlen: {seq_len}, output_type:{sample["output_type"]},len(sample["prompt"]):{len(sample["prompt"])},num_frames / 8:{num_frames / 8},len(sample["label"]):{len(sample["label"])},len(sample["speech_token"]):{len(sample["speech_token"])} ')
        # for instruct llm
        seq_len = seq_len + 29*2 + history_len
        if 0 < max_seq_len < seq_len:
            utils_file.logging_error(f"seqlen: {seq_len} 超过了最大长度:{max_seq_len},contiune")
            continue
        # utils_file.logging_limit_print(f'filter yield, task_name: {sample["task"]}, prompt:{sample["prompt"]}, label:{txt}, seq_len:{seq_len}')
        yield sample


def resample(data, resample_rate=16000):
    """ Resample data.
        Inplace operation.

        Args:
            data: Iterable[{key, wav, label, sample_rate}]
            resample_rate: target resample rate

        Returns:
            Iterable[{key, wav, label, sample_rate}]
    """
    for sample in data:
        assert 'sample_rate' in sample
        assert 'wav' in sample
        sample_rate = sample['sample_rate']
        waveform = sample['wav']
        if sample_rate != resample_rate:
            sample['sample_rate'] = resample_rate
            sample['wav'] = torchaudio.transforms.Resample(
                orig_freq=sample_rate, new_freq=resample_rate)(waveform)
        yield sample


def speed_perturb(data, speeds=None):
    """ Apply speed perturb to the data.
        Inplace operation.

        Args:
            data: Iterable[{key, wav, label, sample_rate}]
            speeds(List[float]): optional speed

        Returns:
            Iterable[{key, wav, label, sample_rate}]
    """
    if speeds is None:
        speeds = [0.9, 1.0, 1.1]
    for sample in data:
        assert 'sample_rate' in sample
        assert 'wav' in sample
        sample_rate = sample['sample_rate']
        waveform = sample['wav']
        speed = random.choice(speeds)
        if speed != 1.0:
            wav, _ = torchaudio.sox_effects.apply_effects_tensor(
                waveform, sample_rate,
                [['speed', str(speed)], ['rate', str(sample_rate)]])
            sample['wav'] = wav

        yield sample


def compute_fbank(data,
                  num_mel_bins=23,
                  frame_length=25,
                  frame_shift=10,
                  dither=0.0):
    """ Extract fbank

        Args:
            data: Iterable[{key, wav, label, sample_rate}]

        Returns:
            Iterable[{key, feat, label}]
    """
    for sample in data:
        assert 'sample_rate' in sample
        assert 'wav' in sample
        assert 'key' in sample
        assert 'label' in sample
        sample_rate = sample['sample_rate']
        waveform = sample['wav']
        waveform = waveform * (1 << 15)
        # Only keep key, feat, label
        mat = kaldi.fbank(waveform,
                          num_mel_bins=num_mel_bins,
                          frame_length=frame_length,
                          frame_shift=frame_shift,
                          dither=dither,
                          energy_floor=0.0,
                          sample_frequency=sample_rate)
        sample['feat'] = mat
        yield sample


def compute_mfcc(data,
                 num_mel_bins=23,
                 frame_length=25,
                 frame_shift=10,
                 dither=0.0,
                 num_ceps=40,
                 high_freq=0.0,
                 low_freq=20.0):
    """ Extract mfcc

        Args:
            data: Iterable[{key, wav, label, sample_rate}]

        Returns:
            Iterable[{key, feat, label}]
    """
    for sample in data:
        assert 'sample_rate' in sample
        assert 'wav' in sample
        assert 'key' in sample
        assert 'label' in sample
        sample_rate = sample['sample_rate']
        waveform = sample['wav']
        waveform = waveform * (1 << 15)
        # Only keep key, feat, label
        mat = kaldi.mfcc(waveform,
                         num_mel_bins=num_mel_bins,
                         frame_length=frame_length,
                         frame_shift=frame_shift,
                         dither=dither,
                         num_ceps=num_ceps,
                         high_freq=high_freq,
                         low_freq=low_freq,
                         sample_frequency=sample_rate)
        sample['feat'] = mat
        yield sample


def do_compute_log_mel_spectrogram(waveform,n_fft=400,
                                hop_length=160,
                                num_mel_bins=80,
                                padding=0):
    waveform = waveform.squeeze(0)  # (channel=1, sample) -> (sample,)
    # utils_file.logging_limit_print(f'wavform shape: {waveform.shape}')
    try:
        if padding > 0:
            waveform = F.pad(waveform, (0, padding))
        window = torch.hann_window(n_fft)
        stft = torch.stft(waveform,
                          n_fft,
                          hop_length,
                          window=window,
                          return_complex=True)
        magnitudes = stft[..., :-1].abs() ** 2

        filters = torch.from_numpy(
            librosa.filters.mel(sr=16000,
                                n_fft=n_fft,
                                n_mels=num_mel_bins))
        mel_spec = filters @ magnitudes

        # NOTE(xcsong): https://github.com/openai/whisper/discussions/269
        log_spec = torch.clamp(mel_spec, min=1e-10).log10()
        log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
        log_spec = (log_spec + 4.0) / 4.0
        feat = log_spec.transpose(0, 1)
        return feat
    except Exception as e:
        utils_file.logging_error(f'do_compute_log_mel_spectrogram error: {e}')
        return None
def compute_log_mel_spectrogram(data,
                                n_fft=400,
                                hop_length=160,
                                num_mel_bins=80,
                                padding=0):
    """ Extract log mel spectrogram, modified from openai-whisper, see:
        - https://github.com/openai/whisper/blob/main/whisper/audio.py
        - https://github.com/wenet-e2e/wenet/pull/2141#issuecomment-1811765040

        Args:
            data: Iterable[{key, wav, label, sample_rate}]

        Returns:
            Iterable[{key, feat, label}]
    """
    for sample in data:
        assert 'sample_rate' in sample
        assert 'wav' in sample
        assert 'key' in sample
        assert 'label' in sample
        sample_rate = sample['sample_rate']
        waveform = sample['wav'].squeeze(0)  # (channel=1, sample) -> (sample,)
        # utils_file.logging_limit_print(f'wavform shape: {waveform.shape}')
        try:
            if padding > 0:
                waveform = F.pad(waveform, (0, padding))
            window = torch.hann_window(n_fft)
            stft = torch.stft(waveform,
                              n_fft,
                              hop_length,
                              window=window,
                              return_complex=True)
            magnitudes = stft[..., :-1].abs() ** 2

            filters = torch.from_numpy(
                librosa.filters.mel(sr=sample_rate,
                                    n_fft=n_fft,
                                    n_mels=num_mel_bins))
            mel_spec = filters @ magnitudes

            # NOTE(xcsong): https://github.com/openai/whisper/discussions/269
            log_spec = torch.clamp(mel_spec, min=1e-10).log10()
            log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
            log_spec = (log_spec + 4.0) / 4.0
            sample['feat'] = log_spec.transpose(0, 1)
            # utils_file.logging_limit_print(f'compute_log_mel_spectrogram yield, feat shape: {sample["feat"].shape}')
        except Exception as e:
            utils_file.logging_info(f'compute_log_mel_spectrogram error: {e}, continue, sample: {sample}')
            continue

        # utils_file.logging_limit_print(f'compute_log_mel_spectrogram yield, feat shape: {sample["feat"].shape}')
        yield sample


def spec_aug(data, num_t_mask=2, num_f_mask=2, max_t=50, max_f=10, max_w=80):
    """ Do spec augmentation
        Inplace operation

        Args:
            data: Iterable[{key, feat, label}]
            num_t_mask: number of time mask to apply
            num_f_mask: number of freq mask to apply
            max_t: max width of time mask
            max_f: max width of freq mask
            max_w: max width of time warp

        Returns
            Iterable[{key, feat, label}]
    """
    for sample in data:
        assert 'feat' in sample
        x = sample['feat']
        assert isinstance(x, torch.Tensor)
        y = x.clone().detach()
        max_frames = y.size(0)
        max_freq = y.size(1)
        # time mask
        for i in range(num_t_mask):
            start = random.randint(0, max_frames - 1)
            length = random.randint(1, max_t)
            end = min(max_frames, start + length)
            y[start:end, :] = 0
        # freq mask
        for i in range(num_f_mask):
            start = random.randint(0, max_freq - 1)
            length = random.randint(1, max_f)
            end = min(max_freq, start + length)
            y[:, start:end] = 0
        sample['feat'] = y
        yield sample


def spec_sub(data, max_t=20, num_t_sub=3):
    """ Do spec substitute
        Inplace operation
        ref: U2++, section 3.2.3 [https://arxiv.org/abs/2106.05642]

        Args:
            data: Iterable[{key, feat, label}]
            max_t: max width of time substitute
            num_t_sub: number of time substitute to apply

        Returns
            Iterable[{key, feat, label}]
    """
    for sample in data:
        assert 'feat' in sample
        x = sample['feat']
        assert isinstance(x, torch.Tensor)
        y = x.clone().detach()
        max_frames = y.size(0)
        for i in range(num_t_sub):
            start = random.randint(0, max_frames - 1)
            length = random.randint(1, max_t)
            end = min(max_frames, start + length)
            # only substitute the earlier time chosen randomly for current time
            pos = random.randint(0, start)
            y[start:end, :] = x[start - pos:end - pos, :]
        sample['feat'] = y
        yield sample


def spec_trim(data, max_t=20):
    """ Trim tailing frames. Inplace operation.
        ref: TrimTail [https://arxiv.org/abs/2211.00522]

        Args:
            data: Iterable[{key, feat, label}]
            max_t: max width of length trimming

        Returns
            Iterable[{key, feat, label}]
    """
    for sample in data:
        assert 'feat' in sample
        x = sample['feat']
        assert isinstance(x, torch.Tensor)
        max_frames = x.size(0)
        length = random.randint(1, max_t)
        if length < max_frames / 2:
            y = x.clone().detach()[:max_frames - length]
            sample['feat'] = y
        yield sample


def shuffle(data, shuffle_size=10000):
    """ Local shuffle the data

        Args:
            data: Iterable[{key, feat, label}]
            shuffle_size: buffer size for shuffle

        Returns:
            Iterable[{key, feat, label}]
    """
    buf = []
    for sample in data:
        buf.append(sample)
        if len(buf) >= shuffle_size:
            random.shuffle(buf)
            for x in buf:
                yield x
            buf = []
    # The sample left over
    random.shuffle(buf)
    for x in buf:
        yield x


def sort(data, sort_size=500):
    """ Sort the data by feature length.
        Sort is used after shuffle and before batch, so we can group
        utts with similar lengths into a batch, and `sort_size` should
        be less than `shuffle_size`

        Args:
            data: Iterable[{key, feat, label}]
            sort_size: buffer size for sort

        Returns:
            Iterable[{key, feat, label}]
    """

    buf = []
    for sample in data:
        buf.append(sample)
        if len(buf) >= sort_size:
            buf.sort(key=lambda x: x['feat'].size(0))
            for x in buf:
                yield x
            buf = []
    # The sample left over
    buf.sort(key=lambda x: x['feat'].size(0))
    for x in buf:
        yield x


def static_batch(data, batch_size=16):
    """ Static batch the data by `batch_size`

        Args:
            data: Iterable[{key, feat, label}]
            batch_size: batch size

        Returns:
            Iterable[List[{key, feat, label}]]
    """
    buf = []
    for sample in data:
        buf.append(sample)
        if len(buf) >= batch_size:
            yield buf
            buf = []
    if len(buf) > 0:
        yield buf


# def dynamic_batch(data, max_frames_in_batch=12000, max_seq_in_batch=10000000):
#     """ Dynamic batch the data until the total frames in batch
#         reach `max_frames_in_batch`

#         Args:
#             data: Iterable[{key, feat, label}]
#             max_frames_in_batch: max_frames in one batch

#         Returns:
#             Iterable[List[{key, feat, label}]]
#     """
#     buf = []
#     longest_frames = 0
#     longest_seq = 0
#     max_frames_in_batch = max_frames_in_batch

#     # buf_speech_token = []
#     # longest_frames_token = 0
#     # longest_seq_token = 0
#     # max_frames_in_batch_token = int(max_frames_in_batch)

#     # buf_speech_token_with_text = []
#     # longest_frames_token_with_text = 0
#     # longest_seq_token_with_text = 0
#     # max_frames_in_batch_token_with_text = max_frames_in_batch

#     # buf_no_prompt = []
#     # longest_frames_no_prompt = 0
#     # longest_seq_no_prompt = 0
#     # max_frames_in_batch_no_prompt = int(max_frames_in_batch) # 没有prompt的放在一起

#     for sample in data:
#         # utils_file.logging_limit_print(f'sample in dynamic_batch: {sample}')
#         assert 'feat' in sample, f'feat not in '
#         assert isinstance(sample['feat'], torch.Tensor), f'feat is not tensor: {sample}'
#         new_sample_frames = sample['feat'].size(0)
#         new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', [])) + 300
#         longest_seq = max(longest_seq, new_seq)
#         longest_frames = max(longest_frames, new_sample_frames)
#         frames_after_padding = longest_frames * (len(buf)+1)
#         seq_after_padding = longest_seq * (len(buf)+1)
#         if frames_after_padding > max_frames_in_batch or seq_after_padding > max_seq_in_batch:
#             utils_file.logging_limit_print('dynamic batch yield')
#             yield buf
#             buf = [sample]
#             longest_frames = new_sample_frames
#             longest_seq = new_seq
#         else:
#             buf.append(sample)
#     if len(buf) > 0:
#         utils_file.logging_limit_print(f'dynamic batch yield last')
#         yield buf


def dynamic_batch(data, max_frames_in_batch=12000, max_seq_in_batch=10000000):
    """ Dynamic batch the data until the total frames in batch
        reach `max_frames_in_batch`

        Args:
            data: Iterable[{key, feat, label}]
            max_frames_in_batch: max_frames in one batch

        Returns:
            Iterable[List[{key, feat, label}]]
    """
    buf = []
    longest_frames = 0
    longest_seq = 0
    max_frames_in_batch = max_frames_in_batch

    buf_s2s_streaming = [] # for speech 2 text token streaming
    longest_frames_s2s_streaming = 0
    longest_seq_s2s_streaming = 0
    max_frames_in_batch_s2s_streaming = int(max_frames_in_batch)

    buf_s2s_think = []  # for speech 2 text token think
    longest_frames_s2s_think = 0
    longest_seq_s2s_think = 0
    max_frames_in_batch_s2s_think = int(max_frames_in_batch)

    buf_s2s_history = []  # for speech 2 text token think
    longest_frames_s2s_history = 0
    longest_seq_s2s_history = 0
    max_frames_in_batch_s2s_history = int(max_frames_in_batch)

    buf_speech_token_s2s = []  # for speech 2 text token
    longest_frames_token_s2s = 0
    longest_seq_token_s2s = 0
    max_frames_in_batch_token_s2s = int(max_frames_in_batch)

    buf_speech_token_with_text = []
    longest_frames_token_with_text = 0
    longest_seq_token_with_text = 0
    max_frames_in_batch_token_with_text = max_frames_in_batch

    buf_speech_token_with_text_streaming = []
    longest_frames_token_with_text_streaming = 0
    longest_seq_token_with_text_streaming = 0
    max_frames_in_batch_token_with_text_streaming = max_frames_in_batch

    buf_t2t = []
    longest_frames_t2t = 0
    longest_seq_t2t = 0
    max_frames_in_batch_t2t = int(max_frames_in_batch)

    buf_no_prompt = []
    longest_frames_no_prompt = 0
    longest_seq_no_prompt = 0
    max_frames_in_batch_no_prompt = int(max_frames_in_batch)  # 没有prompt的放在一起

    # s2t_chat
    buf_s2t_chat = []
    longest_frames_s2t_chat = 0
    longest_seq_s2t_chat = 0
    max_frames_in_batch_s2t_chat = int(max_frames_in_batch)  # 没有prompt的放在一起

    # s2t_chat_fake
    buf_s2t_chat_fake = []
    longest_frames_s2t_chat_fake = 0
    longest_seq_s2t_chat_fake = 0
    max_frames_in_batch_s2t_chat_fake = int(max_frames_in_batch)  # 没有prompt的放在一起

    # s2t_chat_think
    buf_s2t_chat_think = []
    longest_frames_s2t_chat_think = 0
    longest_seq_s2t_chat_think = 0
    max_frames_in_batch_s2t_chat_think = int(max_frames_in_batch)  # 没有prompt的放在一起

    batch_nums = 0
    # % 4 ->s2t, t2t, t2s, s2s
    for sample in data:
        history_list = sample.get('history', [])
        history_len = 0
        history_err = False
        for item in history_list:
            if item['wav'] is None:
                history_err = True
                break
            wav_len_itm = item['wav'].size(0)
            txt_len_itm = len(item['txt'])
            history_len += wav_len_itm + txt_len_itm
        if history_err:
            utils_file.logging_error(f"error: history_list item['wav'] is None, {sample}, continue")
            continue
        # utils_file.logging_limit_print(f'sample in dynamic_batch: {sample}')
        assert 'feat' in sample
        assert isinstance(sample['feat'], torch.Tensor)
        new_sample_frames = sample['feat'].size(0) + history_len
        if "output_type" in sample and sample["output_type"] == "speech2text_token":
            new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', [])) + len(
                sample.get('speech_token', []))
            # for instruct llm
            new_seq = new_seq + 29 *2  + history_len
            longest_seq_token_s2s = max(longest_seq_token_s2s, new_seq)
            longest_frames_token_s2s = max(longest_frames_token_s2s, new_sample_frames)
            frames_after_padding_token_s2s = longest_frames_token_s2s * (len(buf_speech_token_s2s) + 1)
            seq_after_padding_token_s2s = longest_seq_token_s2s * (len(buf_speech_token_s2s) + 1)
            if frames_after_padding_token_s2s > max_frames_in_batch_token_s2s or seq_after_padding_token_s2s > max_seq_in_batch * 0.8:
                yield buf_speech_token_s2s
                buf_speech_token_s2s = [sample]
                longest_frames_token_s2s = new_sample_frames
                longest_seq_token_s2s = new_seq
            else:
                buf_speech_token_s2s.append(sample)
        elif "output_type" in sample and sample["output_type"] =="speech2text_token_streaming":
            new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', [])) + len(
                sample.get('speech_token', []))
            # for instruct llm
            new_seq = new_seq + 29 *2  + history_len
            longest_seq_s2s_streaming = max(longest_seq_s2s_streaming, new_seq)
            longest_frames_s2s_streaming = max(longest_frames_s2s_streaming, new_sample_frames)
            frames_after_padding_token = longest_frames_s2s_streaming * (len(buf_s2s_streaming) + 1)
            seq_after_padding_token = longest_seq_s2s_streaming * (len(buf_s2s_streaming) + 1)
            if frames_after_padding_token > max_frames_in_batch_s2s_streaming or seq_after_padding_token > max_seq_in_batch * 0.6:
                yield buf_s2s_streaming
                buf_s2s_streaming = [sample]
                longest_frames_s2s_streaming = new_sample_frames
                longest_seq_s2s_streaming = new_seq
            else:
                buf_s2s_streaming.append(sample)
        elif "output_type" in sample and sample["output_type"] == "speech2text_token_think":
            new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', [])) + len(
                sample.get('speech_token', []))
            # for instruct llm
            new_seq = new_seq + 29 * 2 + history_len
            longest_seq_s2s_think = max(longest_seq_s2s_think, new_seq)
            longest_frames_s2s_think = max(longest_frames_s2s_think, new_sample_frames)
            frames_after_padding_token = longest_frames_s2s_think * (len(buf_s2s_think) + 1)
            seq_after_padding_token = longest_seq_s2s_think * (len(buf_s2s_think) + 1)
            if frames_after_padding_token > max_frames_in_batch_s2s_think or seq_after_padding_token > max_seq_in_batch * 0.6:
                yield buf_s2s_think
                buf_s2s_think = [sample]
                longest_frames_s2s_think = new_sample_frames
                longest_seq_s2s_think = new_seq
            else:
                buf_s2s_think.append(sample)
        elif "output_type" in sample and sample["output_type"] == "speech2text_token_history":
            new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', [])) + len(
                sample.get('speech_token', []))
            # for instruct llm
            new_seq = new_seq + 29 * 2 + history_len
            longest_seq_s2s_history = max(longest_seq_s2s_history, new_seq)
            longest_frames_s2s_history = max(longest_frames_s2s_history, new_sample_frames)
            frames_after_padding_token = longest_frames_s2s_history * (len(buf_s2s_history) + 1)
            seq_after_padding_token = longest_seq_s2s_history * (len(buf_s2s_history) + 1)
            if frames_after_padding_token > max_frames_in_batch_s2s_history or seq_after_padding_token > max_seq_in_batch * 0.6:
                yield buf_s2s_history
                buf_s2s_history = [sample]
                longest_frames_s2s_history = new_sample_frames
                longest_seq_s2s_history = new_seq
            else:
                buf_s2s_history.append(sample)
        elif "output_type" in sample and sample["output_type"] == "text2token":
            new_seq = len(sample['label']) + len(sample.get('prompt', [])) + len(
                sample.get('speech_token', []))
            # for instruct llm
            new_seq = new_seq + 29 *2  + history_len
            longest_seq_token_with_text = max(longest_seq_token_with_text, new_seq)
            longest_frames_token_with_text = max(longest_frames_token_with_text, new_sample_frames)
            frames_after_padding_token_with_text = longest_frames_token_with_text * (
                        len(buf_speech_token_with_text) + 1)
            seq_after_padding_token_with_text = longest_seq_token_with_text * (len(buf_speech_token_with_text) + 1)
            if frames_after_padding_token_with_text > max_frames_in_batch_token_with_text or seq_after_padding_token_with_text > max_seq_in_batch:
                # utils_file.logging_limit_print('输出了t2s的batch')
                yield buf_speech_token_with_text
                buf_speech_token_with_text = [sample]
                longest_frames_token_with_text = new_sample_frames
                longest_seq_token_with_text = new_seq
            else:
                buf_speech_token_with_text.append(sample)
        elif "output_type" in sample and sample["output_type"] == "text2token_streaming":
            new_seq = len(sample['label']) + len(sample.get('prompt', [])) + len(
                sample.get('speech_token', []))
            # for instruct llm
            new_seq = new_seq + 29 *2  + history_len
            longest_seq_token_with_text_streaming = max(longest_seq_token_with_text_streaming, new_seq)
            longest_frames_token_with_text_streaming = max(longest_frames_token_with_text_streaming, new_sample_frames)
            frames_after_padding_token_with_text_streaming = longest_frames_token_with_text_streaming * (
                        len(buf_speech_token_with_text_streaming) + 1)
            seq_after_padding_token_with_text_streaming = longest_seq_token_with_text_streaming * (len(buf_speech_token_with_text_streaming) + 1)
            if frames_after_padding_token_with_text_streaming > max_frames_in_batch_token_with_text_streaming or seq_after_padding_token_with_text_streaming > max_seq_in_batch:
                # utils_file.logging_limit_print('输出了t2s的batch streaming')
                yield buf_speech_token_with_text_streaming
                buf_speech_token_with_text_streaming = [sample]
                longest_frames_token_with_text_streaming = new_sample_frames
                longest_seq_token_with_text_streaming = new_seq
            else:
                buf_speech_token_with_text_streaming.append(sample)
        elif "output_type" in sample and sample["output_type"] == "text2text":
            new_seq = len(sample['label']) + len(sample.get('prompt', [])) + len(
                sample.get('speech_token', []))
            # for instruct llm
            new_seq = new_seq + 29 *2  + history_len
            longest_seq_t2t = max(longest_seq_t2t, new_seq)
            longest_frames_t2t = max(longest_frames_t2t, new_sample_frames)
            frames_after_padding_t2t = longest_frames_t2t * (len(buf_t2t) + 1)
            seq_after_padding_t2t = longest_seq_t2t * (len(buf_t2t) + 1)
            if frames_after_padding_t2t > max_frames_in_batch_t2t or seq_after_padding_t2t > max_seq_in_batch * 0.6: # t2t没有受到frames限制, 过长的t2t数据引入会导致爆显存,所以给总长度进行限制
                yield buf_t2t
                buf_t2t = [sample]
                longest_frames_t2t = new_sample_frames
                longest_seq_t2t = new_seq
            else:
                buf_t2t.append(sample)
        elif "output_type" in sample and sample["output_type"] == "s2t_chat":
            new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', []))
            new_seq = new_seq + 29 *2  + history_len
            longest_seq_s2t_chat = max(longest_seq_s2t_chat, new_seq)
            longest_frames_s2t_chat = max(longest_frames_s2t_chat, new_sample_frames)
            frames_after_padding_s2t_chat = longest_frames_s2t_chat * (len(buf_s2t_chat) + 1)
            seq_after_padding_s2t_chat = longest_seq_s2t_chat * (len(buf_s2t_chat) + 1)
            if frames_after_padding_s2t_chat > max_frames_in_batch_s2t_chat or seq_after_padding_s2t_chat > max_seq_in_batch:
                yield buf_s2t_chat
                buf_s2t_chat = [sample]
                longest_frames_s2t_chat = new_sample_frames
                longest_seq_s2t_chat = new_seq
            else:
                buf_s2t_chat.append(sample)
        elif "output_type" in sample and sample["output_type"] == "s2t_chat_fake":
            new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', []))
            new_seq = new_seq + 29 *2  + history_len
            longest_seq_s2t_chat_fake = max(longest_seq_s2t_chat_fake, new_seq)
            longest_frames_s2t_chat_fake = max(longest_frames_s2t_chat_fake, new_sample_frames)
            frames_after_padding_s2t_chat_fake = longest_frames_s2t_chat_fake * (len(buf_s2t_chat_fake) + 1)
            seq_after_padding_s2t_chat_fake = longest_seq_s2t_chat_fake * (len(buf_s2t_chat_fake) + 1)
            if frames_after_padding_s2t_chat_fake > max_frames_in_batch_s2t_chat_fake or seq_after_padding_s2t_chat_fake > max_seq_in_batch:
                yield buf_s2t_chat_fake
                buf_s2t_chat_fake = [sample]
                longest_frames_s2t_chat_fake = new_sample_frames
                longest_seq_s2t_chat_fake = new_seq
            else:
                buf_s2t_chat_fake.append(sample)
        elif "output_type" in sample and sample["output_type"] == "s2t_chat_think":
            new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', []))
            new_seq = new_seq + 29 *2  + history_len
            longest_seq_s2t_chat_think = max(longest_seq_s2t_chat_think, new_seq)
            longest_frames_s2t_chat_think = max(longest_frames_s2t_chat_think, new_sample_frames)
            frames_after_padding_s2t_chat_think = longest_frames_s2t_chat_think * (len(buf_s2t_chat_think) + 1)
            seq_after_padding_s2t_chat_think = longest_seq_s2t_chat_think * (len(buf_s2t_chat_think) + 1)
            if frames_after_padding_s2t_chat_think > max_frames_in_batch_s2t_chat_think or seq_after_padding_s2t_chat_think > max_seq_in_batch:
                yield buf_s2t_chat_think
                buf_s2t_chat_think = [sample]
                longest_frames_s2t_chat_think = new_sample_frames
                longest_seq_s2t_chat_think = new_seq
            else:
                buf_s2t_chat_think.append(sample)
        else:
            if len(sample.get('prompt', [])) == 0:
                # 没有prompt的text任务的放在一起
                new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', []))
                # for instruct llm
                new_seq = new_seq + 29 *2  + history_len
                longest_seq_no_prompt = max(longest_seq_no_prompt, new_seq)
                longest_frames_no_prompt = max(longest_frames_no_prompt, new_sample_frames)
                frames_after_padding_no_prompt = longest_frames * (len(buf_no_prompt) + 1)
                seq_after_padding_no_prompt = longest_seq_no_prompt * (len(buf_no_prompt) + 1)
                if frames_after_padding_no_prompt > max_frames_in_batch_no_prompt or seq_after_padding_no_prompt > max_seq_in_batch:
                    yield buf_no_prompt
                    buf_no_prompt = [sample]
                    longest_frames_no_prompt = new_sample_frames
                    longest_seq_no_prompt = new_seq
                else:
                    buf_no_prompt.append(sample)
            else:
                new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', []))
                # for instruct llm
                new_seq = new_seq + 29 *2  + history_len
                longest_seq = max(longest_seq, new_seq)
                longest_frames = max(longest_frames, new_sample_frames)
                frames_after_padding = longest_frames * (len(buf) + 1)
                seq_after_padding = longest_seq * (len(buf) + 1)
                if frames_after_padding > max_frames_in_batch or seq_after_padding > max_seq_in_batch:
                    yield buf
                    buf = [sample]
                    longest_frames = new_sample_frames
                    longest_seq = new_seq
                else:
                    buf.append(sample)
    if len(buf) > 0:
        yield buf


def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, max_seq_in_batch=10000000):
    """ Wrapper for static/dynamic batch
    """
    if batch_type == 'static':
        return static_batch(data, batch_size)
    elif batch_type == 'dynamic':
        return dynamic_batch(data, max_frames_in_batch, max_seq_in_batch=max_seq_in_batch)
    else:
        logging.fatal('Unsupported batch type {}'.format(batch_type))


def padding(data):
    """ Padding the data into training data

        Args:
            data: Iterable[List[{key, feat, label}]]

        Returns:
            Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
    """
    for sample in data:
        assert isinstance(sample, list)
        feats_length = torch.tensor([x['feat'].size(0) for x in sample],
                                    dtype=torch.int32)
        order = torch.argsort(feats_length, descending=True)
        feats_lengths = torch.tensor(
            [sample[i]['feat'].size(0) for i in order], dtype=torch.int32)
        sorted_feats = [sample[i]['feat'] for i in order]
        sorted_keys = [sample[i]['key'] for i in order]
        sorted_labels = [
            torch.tensor(sample[i]['label'], dtype=torch.int64) for i in order
        ]
        sorted_speech_tokens = [
            torch.tensor(sample[i]['speech_token'], dtype=torch.int64) for i in order
        ]

        sorted_wavs = [sample[i]['wav'].squeeze(0) for i in order]
        label_lengths = torch.tensor([x.size(0) for x in sorted_labels],
                                     dtype=torch.int32)
        speech_token_lengths = torch.tensor([x.size(0) for x in sorted_speech_tokens],
                                            dtype=torch.int32)
        wav_lengths = torch.tensor([x.size(0) for x in sorted_wavs],
                                   dtype=torch.int32)
        # utils_file.logging_limit_print('------------------')
        # for feat_item in sorted_feats:
        #     utils_file.logging_limit_print(feat_item.shape)
        # utils_file.logging_limit_print('------------------')

        if len(sorted_feats)==0:
            utils_file.logging_info(f'empty feats, output_type')
            continue
        padded_feats = pad_sequence(sorted_feats,
                                    batch_first=True,
                                    padding_value=0)
        padding_labels = pad_sequence(sorted_labels,
                                      batch_first=True,
                                      padding_value=-100)

        padding_speech_tokens = pad_sequence(sorted_speech_tokens,
                                             batch_first=True,
                                             padding_value=-100)
        padded_wavs = pad_sequence(sorted_wavs,
                                   batch_first=True,
                                   padding_value=0)

        sorted_lang = [
            sample[i].get('lang', 'cn') for i in order
        ]

        sorted_speaker = [
            sample[i].get('speaker', 'None') for i in order
        ]

        sorted_emotion = [
            sample[i].get('emotion', 'None') for i in order
        ]
        sorted_gender = [
            sample[i].get('gender', 'None') for i in order
        ]
        # sorted_duration = [
        #     sample[i]['duration'] for i in order
        # ]
        sorted_task = [
            sample[i].get('task', '<TRANSCRIBE>') for i in order
        ]
        sorted_txts = [
            sample[i].get('txt', '') for i in order
        ]

        batch = {
            "keys": sorted_keys,
            "feats": padded_feats,
            "target": padding_labels,
            "feats_lengths": feats_lengths,
            "target_lengths": label_lengths,
            "pcm": padded_wavs,
            "pcm_length": wav_lengths,
            "speech_tokens": padding_speech_tokens,
            "speech_tokens_length": speech_token_lengths,
            "lang": sorted_lang,
            "speaker": sorted_speaker,
            "emotion": sorted_emotion,
            "gender": sorted_gender,
            "task": sorted_task,
            'txts': sorted_txts
        }
        if 'prompt' in sample[0] and len(sample[0]['prompt']) > 0:
            sorted_prompts = [
                torch.tensor(sample[i]['prompt'], dtype=torch.int64
                             ) for i in order
            ]
            prompt_lengths = torch.tensor([x.size(0) for x in
                                           sorted_prompts], dtype=torch.int32)
            padding_prompts = pad_sequence(sorted_prompts,
                                           batch_first=True,
                                           padding_value=-1)
            batch['prompt'] = padding_prompts
            batch['prompt_lengths'] = prompt_lengths

        if 'output_type' in sample[0]:
            batch['output_type'] = sample[0]['output_type']
        else:
            batch['output_type'] = 'text'

        history_batch = []
        for i in order:
            if 'history' in sample[i]:
                history_batch.append(sample[i].get("history",[]))
            else:
                history_batch.append([])
        batch['history'] = history_batch
        # if batch['output_type'] == "speech2text_token" or batch['output_type'] == "speech2text_token_streaming":
        if 'extra' in sample[0]:
            batch['extra'] = [sample[i].get('extra', {}) for i in order]
        yield batch