Spaces:
Running
on
Zero
Running
on
Zero
File size: 100,706 Bytes
841f290 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 |
import logging
import os
from typing import Dict, List, Optional, Union
import torchaudio
import torch
from peft import LoraConfig, TaskType, get_peft_model
from torch import nn
from torch.nn import CrossEntropyLoss
from torch.nn.utils.rnn import pad_sequence
from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessorList, StoppingCriteriaList
from patches.cumstom_stop_criteria import InterruptStopper, S2SStopCriteria, MaxTokenStopper
from patches.custom_speech_ngram_blocking import SpeechOnlyNGramBlockingLogitsProcessor, OSUM_chat_LogitsProcessor
from wenet.osum_echat.utils4llmasr import make_streaming_mode_from_s2s, do_embedding_for_two_embeds
from wenet.transformer.encoder import TransformerEncoder, TransformerEncoder2
from wenet.osum_echat.utils4llmasr import *
from gxl_ai_utils.utils import utils_file
from wenet.osum_echat.downsampler import get_downsampler, osum_echat2Conv1dSubsampling
from wenet.transformer.swish import New_gelu4npu
from wenet.utils.mask import make_pad_mask
class LLMASR_Model(nn.Module):
def __init__(self,
encoder,
encoder_output_dim,
llm_path,
lora=True, lora_alpha=32, lora_rank=8, lora_dropout=0.1,
is_inference=False,
downsample_rate=1,
adapter_type='osum_echat2',
speech_token_num=0,
train_speech_out=False):
""""""
super().__init__()
utils_file.logging_limit_print(f"instruct_version: LLMASR_Model init, is_inference={is_inference}, downsample_rate={downsample_rate}, adapter_type={adapter_type}, speech_token_num={speech_token_num}, train_speech_out={train_speech_out}")
self.downsample_rate = downsample_rate
self.encoder = encoder
self.ln_speech = nn.LayerNorm(encoder_output_dim)
# 连接层, 51.6M
if adapter_type == 'osum_echat':
self.speech_transformer = TransformerEncoder(
input_size=encoder_output_dim,
output_size=encoder_output_dim,
attention_heads=4,
linear_units=2560,
num_blocks=4,
dropout_rate=0.1,
positional_dropout_rate=0.1,
attention_dropout_rate=0.0,
input_layer="linear",
pos_enc_layer_type="abs_pos",
normalize_before=True
)
else:
self.speech_transformer = None
self.llama_model = AutoModelForCausalLM.from_pretrained(
llm_path,
# torch_dtype=torch.float32 if is_inference else torch.float16,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
output_hidden_states=True,
)
self.s2s_stop_criteria = None
self.max_token_criteria_list = None
self.max_length = 4000
self.min_length = 1
self.num_beams = 4
self.do_sample = True
self.top_p = 0.9
self.top_k = 5
self.repetition_penalty = 1.05
self.length_penalty = 1.0
self.temperature = 1.0
self.IGNORE_ID = -100
# lora
self.lora = lora
if lora:
utils_file.logging_limit_print("OSUM-EChat: 使用lora了")
# target_modules = ['w_pack', 'o_proj', 'gate_proj', 'down_proj']
target_modules = ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'down_proj']
self.peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=is_inference,
r=lora_rank,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
target_modules=target_modules,
)
self.llama_model = get_peft_model(self.llama_model, self.peft_config)
# tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
llm_path, use_fast=False, trust_remote_code=True)
"""
设置分词器的pad_token和padding的方向。
"""
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
self.tokenizer.padding_side = "right"
self.eos_token_id = self.tokenizer.eos_token_id
if hasattr(self.llama_model.config, 'hidden_size'):
utils_file.logging_limit_print(
f"self.llama_model.config.hidden_size: {self.llama_model.config.hidden_size}")
if adapter_type == 'osum_echat2':
self.down_sample_2 = osum_echat2Conv1dSubsampling(encoder_output_dim, self.llama_model.config.hidden_size)
elif adapter_type == 'osum_echat':
self.down_sample_2 = get_downsampler(downsample_rate, encoder_output_dim)
self.speech_llama_proj = nn.Linear(
encoder_output_dim, self.llama_model.config.hidden_size)
else:
raise NotImplementedError("self.llama_model.config.hidden_size not exist")
self.embed_tokens = self.llama_model.model.model.embed_tokens if self.lora else self.llama_model.model.embed_tokens
self.lm_head = self.llama_model.model.lm_head if self.lora else self.llama_model.lm_head
self.llm_vocab_size = self.lm_head.weight.shape[0]
self.speech_token_num = speech_token_num
# init speech token module
if speech_token_num > 0:
utils_file.logging_info(f'OSUM-EChat: 进行语音token生成任务, speech_token_num: {speech_token_num}')
self.speech_token_emded = torch.nn.Embedding(speech_token_num + 2, self.llama_model.config.hidden_size)
self.speech_head = torch.nn.Linear(self.llama_model.config.hidden_size, speech_token_num)
else:
# 不做任何处理
self.speech_head = nn.Identity()
self.speech_token_emded = nn.Identity()
self.speech_model = nn.Identity()
self.train_speech_out = train_speech_out
utils_file.logging_info(f'OSUM-EChat: 是否进行语音输出训练:{self.train_speech_out}')
self.loss_fct = CrossEntropyLoss(reduction='mean')
self.unk_token_id = 7672 # &&对应的id
self.add_embed_head = True
self.init_custom_speech_repetition_penalty()
self.init_custom_stop_criteria()
def set_task_type(self, task_type: str):
"""设置任务类型,用于设置生成的初始类型
Args:
task_type (str): 任务类型,从("ASR", "TTS", "S2S")选择
"""
assert task_type in ("ASR", "TTS", "S2S")
if task_type == "ASR":
self.llama_model.text_phase = True
elif task_type == "TTS":
self.llama_model.text_phase = False
elif task_type == "S2S":
self.llama_model.text_phase = True
def do_add_speech_embed_head(self):
if self.add_embed_head:
self.llama_model.speech_token_emded = self.speech_token_emded.to(torch.bfloat16)
self.llama_model.speech_head = self.speech_head.to(torch.bfloat16)
# self.llama_model.speech_token_emded = self.speech_token_emded.to(torch.bfloat16)
# self.llama_model.speech_head = self.speech_head.to(torch.bfloat16) # 带lora的时候用
self.add_embed_head = False
def init_custom_speech_repetition_penalty(self):
"""
"""
self.s2s_repetition_penalty = LogitsProcessorList()
# self.speech_repetition_penalty = SpeechOnlyRepetitionPenaltyLogitsProcessor(speech_token_num=4097, penalty=1.5)
self.speech_repetition_penalty = SpeechOnlyNGramBlockingLogitsProcessor(speech_token_num=4097, repeat_times=5,
special_token_repeat_times_dict={
1446: 10})
self.osum_chat_logit_processor1 = OSUM_chat_LogitsProcessor([99119, 1808, 7863], [102185, 17714, 31252])
self.s2s_repetition_penalty.append(self.osum_chat_logit_processor1)
self.s2s_repetition_penalty.append(self.speech_repetition_penalty)
self.llama_model.speech_repetition_penalty = self.speech_repetition_penalty
def init_custom_stop_criteria(self):
"""
创建需要的stop criteria
1. 对于t2t任务,遇到text_eos停止
2. 对于t2s任务,遇到speech_eos停止
3. 对于s2s任务,遇到speech_eos停止
同时要取消原本的停止条件
if generation_config._eos_token_tensor is not None:
取消 generation_config._eos_token_tensor 的停止,尝试直接给一个大于vocb_size的eos_token
"""
self.interrupt = InterruptStopper()
self.s2s_stop_criteria = StoppingCriteriaList()
self.s2s_stop_criteria.append(S2SStopCriteria(text_eos_id=151645, speech_eos_id=self.speech_token_num - 1))
self.s2s_stop_criteria.append(MaxTokenStopper(2000))
self.s2s_stop_criteria.append(self.interrupt)
def get_label_embedding(self, labels, labels_lengths, unk_id=7672):
""""""
labels_pad_mask = make_pad_mask(labels_lengths) # B, L
unk_mask = (labels == unk_id) # B, L
labels_pad_mask = labels_pad_mask | unk_mask #
labels = labels.masked_fill(labels_pad_mask, 0)
labels_embeds = self.embed_tokens(labels)
labels_target = labels.masked_fill(labels_pad_mask, self.IGNORE_ID) # B, L
labels_mask = ~labels_pad_mask
return labels_embeds, labels_target, labels_mask
def get_speech_token_label_embedding(self, speech_token_labels, speech_tokens_length):
""""""
speech_tokens_pad_mask = make_pad_mask(speech_tokens_length) # B, L
speech_token_labels = speech_token_labels.masked_fill(speech_tokens_pad_mask, 0)
speech_token_labels_embeds = self.speech_token_emded(speech_token_labels)
# utils_file.logging_limit_print(f'进行speech_token_labels修改,修改前 speech_token_labels',
# speech_token_labels.shape, speech_token_labels[0][-1], speech_token_labels[0][0])
speech_token_labels = speech_token_labels + self.llm_vocab_size
# utils_file.logging_limit_print(f'进行speech_token_labels修改,修改后 speech_token_labels',
# speech_token_labels.shape, speech_token_labels[0][-1], speech_token_labels[0][0])
speech_token_labels_target = speech_token_labels.masked_fill(speech_tokens_pad_mask, self.IGNORE_ID) # B, L
speech_token_labels_mask = ~speech_tokens_pad_mask
return speech_token_labels_embeds, speech_token_labels_target, speech_token_labels_mask
def _get_embedding_for_history(self, history_batch, device):
"""
prompt_patern1,prompt,history, wav, prompt_patern2,txt,answer_wav,
historcy_batch的内容是:
[ big_embed,
[
{wav: feat (L,D:80),->过encoder+link ,得到(L1, 2048)
txt: labels (L,), ->labels_embeds = self.embed_tokens(labels) -> (L2, 2048), 带txt eos
},->(L1+L2, 2048)
{wav: feat (L,D),
txt: labels (L,),
},->(L3+L4, 2048)
]-> (L1+L2+L3+L4, 2048),len:L1+L2+L3+L4
[],->(1, 2048) ,len:0
[
{wav: feat (L,D),
txt: labels (L,),
},
],-> (L1+L2, 2048),len:L1+L2
]
将每一条的历史信息的embedding拼接起来,如果有空历史信息,则用0pad, 最后得到pad后的history_embedding(B, L, D), history_lens(B)
Args:
history_batch:
device:
Returns:
history_embedding: B, L, D
history_lens: B
"""
assistant_start ="<|im_end|>\n<|im_start|>assistant\n"
assistant_start_id = self.tokenizer([assistant_start], return_tensors="pt"
)['input_ids'].to(device)
assistant_start_embedding = self.embed_tokens(assistant_start_id.squeeze(0))
assistant_end ="<|im_end|>\n"
assistant_end_id = self.tokenizer([assistant_end], return_tensors="pt"
)['input_ids'].to(device)
assistant_end_embedding = self.embed_tokens(assistant_end_id.squeeze(0))
user_start = "<|im_start|>user\n"
user_start_id = self.tokenizer([user_start], return_tensors="pt"
)['input_ids'].to(device)
user_start_embedding = self.embed_tokens(user_start_id.squeeze(0))
user_end ="<|im_end|>\n"
user_end_id = self.tokenizer([user_end], return_tensors="pt"
)['input_ids'].to(device)
user_end_embedding = self.embed_tokens(user_end_id.squeeze(0))
batch_embeddings = []
history_lens = []
# 判断是否所有样本都没有历史
if all(len(history) == 0 for history in history_batch):
return None, None
for history in history_batch:
history_embeds = []
for item in history:
wav_feat = item['wav'].to(device) # shape: (L, D)
wav_feat = wav_feat.unsqueeze(0).to(device) # shape: (1, L, D)
wav_embed, wav_mask = self._get_embedding_from_wav(wav_feat, torch.tensor([wav_feat.size(1)], device=device, dtype=torch.long))
wav_embed = wav_embed.squeeze(0) # shape: (L, D)
if len(history_embeds) != 0:
history_embeds.append(user_start_embedding) # 第一个user start 不要
history_embeds.append(wav_embed)
history_embeds.append(user_end_embedding)
history_embeds.append(assistant_start_embedding)
labels = item['txt'] # shape: (L,)
labels = torch.tensor(labels, device=device, dtype=torch.long)
embed = self.embed_tokens(labels) # (L2, D),一般 L2 = L
history_embeds.append(embed)
history_embeds.append(assistant_end_embedding)
history_embeds.append(user_start_embedding) # 最后添加一个user start
if history_embeds:
# 拼接所有历史条目的 embedding: (sum(Li), D)
full_embed = torch.cat(history_embeds, dim=0)
history_lens.append(full_embed.size(0))
else:
# 空历史
full_embed = torch.zeros((1, self.embed_tokens.embedding_dim), device=device)
history_lens.append(0)
batch_embeddings.append(full_embed)
# padding 到 batch 中最大长度
padded_embeddings = pad_sequence(batch_embeddings, batch_first=True, padding_value=0.0) # (B, L, D)
history_lens = torch.tensor(history_lens, device=device, dtype=torch.long)
padded_embeddings = padded_embeddings.to(device)
return padded_embeddings, history_lens
def forward(self,
batch,
device,
):
""""""
output_type = batch['output_type']
# qwen_instruct_prompt_pattern_chat = "<|im_start|>system\nYou are OSUM-chat, a dialogue. You understand both the meaning and paralinguistic cues in speech, as well as input text, and respond appropriately.<|im_end|>\n<|im_start|>user\n"
qwen_instruct_prompt_pattern_chat_s2s = "<|im_start|>system\nYou are OSUM-chat, a speech-to-speech dialogue assistant by ASLP Lab. You understand both the meaning and paralinguistic cues in speech then respond with appropriate text and emotionally matching synthetic speech.<|im_end|>\n"
qwen_instruct_prompt_pattern_chat_s2s_think = "<|im_start|>system\nYou are OSUM-chat, a speech-to-speech dialogue assistant by ASLP Lab. You understand both the meaning and paralinguistic cues in speech. Before responding, first output your reasoning inside <think>...</think end>, analyzing the user’s words and vocal cues. Then generate a reply with appropriate text and emotionally matched synthetic speech.<|im_end|>\n"
qwen_instruct_prompt_pattern_chat_s2s_streaming = "<|im_start|>system\nYou are OSUM-chat, a speech-to-speech dialogue assistant by ASLP Lab. You analyze speech (content + paralinguistic cues) and respond with interleaved text and emotionally-matched synthetic speech.<|im_end|>\n"
qwen_instruct_prompt_pattern_chat_s2s_streaming_think = "<|im_start|>system\nYou are OSUM-chat, a speech-to-speech dialogue assistant by ASLP Lab. You analyze speech (both content and paralinguistic cues). Before responding, output your reasoning in <think>...</think end>. Then reply with interleaved text and emotionally matched synthetic speech.<|im_end|>\n"
qwen_instruct_prompt_pattern_chat_s2t = "<|im_start|>system\nYou are OSUM-chat, a speech-to-text dialogue assistant by ASLP Lab. You understand both the meaning and paralinguistic cues in speech then respond exclusively with appropriate text.<|im_end|>\n"
qwen_instruct_prompt_pattern__chat_t2t = "<|im_start|>system\nYou are OSUM-chat, a text-to-text dialogue assistant by ASLP Lab. You understand user input in text then respond exclusively with appropriate text.<|im_end|>\n"
qwen_instruct_prompt_pattern_1_understand = "<|im_start|>system\nYou are OSUM-chat, an audio understanding assistant by ASLP Lab. You can transcribe speech accurately and analyze paralinguistic cues to provide precise text responses.<|im_end|>\n"
qwen_instruct_prompt_pattern_1_tts = "<|im_start|>system\nYou are OSUM-chat, a speech synthesis assistant by ASLP Lab. You generate natural and fluent speech from text input.<|im_end|>\n"
qwen_instruct_prompt_pattern_1_tts_streaming = "<|im_start|>system\nYou are OSUM-chat, a speech synthesis assistant by ASLP Lab. You generate natural speech from text input and output both audio and the original text in interleaved format.<|im_end|>\n"
qwen_instruct_prompt_pattern_1_old = "<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n"
qwen_instruct_prompt_pattern_1_s2t_thinking = "<|im_start|>system\nYou are OSUM-chat, a thinking-enabled speech-to-text dialogue assistant by ASLP Lab. You not only comprehend the semantic meaning and paralinguistic cues in speech but also engage in deliberate reasoning to process such information. Based on this thinking process, you then respond exclusively with appropriate text.<|im_end|>\n"
# user_start = "<|im_start|>user\n"
# 赋予不同的系统提示。
if output_type == "s2t_chat":
system_prompt = qwen_instruct_prompt_pattern_chat_s2t
elif output_type == "s2t_chat_fake":
system_prompt = qwen_instruct_prompt_pattern_chat_s2s_think
elif output_type == "text":
system_prompt = qwen_instruct_prompt_pattern_1_understand
elif output_type == "speech2text_token" or output_type == "speech2text_token_history":
system_prompt = qwen_instruct_prompt_pattern_chat_s2s
elif output_type == "text2token":
system_prompt = qwen_instruct_prompt_pattern_1_tts
elif output_type == "speech2text_token_streaming":
system_prompt = qwen_instruct_prompt_pattern_chat_s2s_streaming
elif output_type == "speech2text_token_think":
system_prompt = qwen_instruct_prompt_pattern_chat_s2s_think
elif output_type == "text2token_streaming":
system_prompt = qwen_instruct_prompt_pattern_1_tts_streaming
elif output_type == "text2text":
system_prompt = qwen_instruct_prompt_pattern__chat_t2t
elif output_type == "s2t_chat_think":
system_prompt = qwen_instruct_prompt_pattern_1_s2t_thinking
else:
system_prompt = qwen_instruct_prompt_pattern_1_old
# if output_type == "speech2text_token_history":
# if output_type == "text2text" or output_type == "text":
# qwen_instruct_prompt_pattern_1 = qwen_instruct_prompt_pattern_1_old
# elif output_type == "speech2text_token" or output_type == "speech2text_token_streaming" or output_type == "text2text" or output_type == "s2t_chat":
# qwen_instruct_prompt_pattern_1 = qwen_instruct_prompt_pattern_chat
# elif output_type == "text2token":
# qwen_instruct_prompt_pattern_1 = qwen_instruct_prompt_pattern_1_tts
# else:
# qwen_instruct_prompt_pattern_1 = qwen_instruct_prompt_pattern_1_old
system_prompt = system_prompt + "<|im_start|>user\n"
rank = int(os.environ.get('RANK', 0))
utils_file.logging_limit_print(f'xxx output_type {output_type}, rank {rank}')
# if output_type == "s2t_chat":
# output_type = "text"
# assert output_type in ['text', 'speech2text_token', 'text2token'], f"output_type:{output_type} not support"
# speech inputs
if output_type == 'text' or output_type == 's2t_chat' or output_type == 's2t_chat_fake' or output_type== "s2t_chat_think" or output_type == 'speech2text_token' or output_type == "speech2text_token_streaming" or output_type == "speech2text_token_think" or output_type == "speech2text_token_history":
wavs = batch['feats'].to(device)
# utils_file.logging_limit_print(f'xxx wav shape {wavs.shape}')
wavs_len = batch['feats_lengths'].to(device)
B = wavs.shape[0]
# utils_file.logging_limit_print(f"xxx {wavs_len}")
speech_embeds, speech_masks = self._get_embedding_from_wav(wavs, wavs_len)
# utils_file.logging_limit_print(f'xxx speech embeding shape {speech_embeds.shape}')
# utils_file.logging_limit_print(f'xxx speech mask shape {speech_masks.shape}')
# utils_file.logging_limit_print(f'xxx speech mask 0 {speech_masks[0]}')
speech_target = torch.full(speech_masks.shape, self.IGNORE_ID).to(
speech_embeds.device)
# utils_file.logging_limit_print(f'xxx speech target shape {speech_target.shape}')
# utils_file.logging_limit_print(f'xxx speech target 0 {speech_target[0]}')
# add bos and eos
speech_embeds, speech_masks, speech_target = self._add_bos_eos(0+self.speech_token_num,
1+self.speech_token_num,
speech_embeds, speech_masks, speech_target)
elif output_type == "text2token" or output_type == "text2token_streaming":
labels = batch['target'].to(device)
labels_lengths = batch['target_lengths'].to(device) -1 # 减1是因为要去掉eos
B = labels.shape[0]
# text 2 token ,拿到文本序列,
max_len = max(labels_lengths) + 1
labels_pad_mask = make_pad_mask(labels_lengths, max_len=max_len)
labels = labels.masked_fill(labels_pad_mask, 0)
speech_embeds = self.embed_tokens(labels) # B, L, D
speech_target = torch.full(labels_pad_mask.shape, self.IGNORE_ID).to(
speech_embeds.device)
speech_masks = ~labels_pad_mask
# add bos and eos
# speech_embeds, speech_masks, speech_target = self._add_bos_eos(0+self.speech_token_num,
# 1 + self.speech_token_num,
# speech_embeds, speech_masks, speech_target)
else: # text2text
speech_embeds = None
speech_masks = None
speech_target = None
# utils_file.logging_limit_print(f'xxx after add bos eos speech embeding shape {speech_embeds.shape}')
# utils_file.logging_limit_print(f'xxx after add bos eos speech mask shape {speech_masks.shape}')
# utils_file.logging_limit_print(f'xxx after add bos eos speech target shape {speech_target.shape}')
# utils_file.logging_limit_print(f'xxx after add bos eos speech mask 0 {speech_masks[0]}')
# utils_file.logging_limit_print(f'xxx after add bos eos speech target 0 {speech_target[0]}')
# prompt
if 'prompt' in batch:
prompt = batch['prompt'].to(device)
prompt_lengths = batch['prompt_lengths'].to(device)
prompt_pad_mask = make_pad_mask(prompt_lengths) # B, L
prompt = prompt.masked_fill(prompt_pad_mask, self.tokenizer.eos_token_id)
prompt_embeds = self.embed_tokens(prompt) # B, L, D
prompt_target = torch.full(prompt.shape, self.IGNORE_ID).to(
device) # B, L
prompt_mask = ~prompt_pad_mask
# utils_file.logging_limit_print(f'xxx prompt embeding shape {prompt_embeds.shape}')
# utils_file.logging_limit_print(f'xxx prompt mask shape {prompt_mask.shape}')
# utils_file.logging_limit_print(f'xxx prompt target shape {prompt_target.shape}')
else:
prompt_embeds = None
prompt_mask = None
prompt_target = None
inputs_embeds_list = []
attention_mask_list = []
target_list = []
prompt_pattern1 = self.tokenizer([system_prompt] * len(batch['target']), return_tensors="pt"
)['input_ids'].to(device)
prompt_pattern1_embeds = self.embed_tokens(prompt_pattern1)
prompt_pattern1_lens = torch.tensor([len(i) for i in prompt_pattern1]).to(device)
prompt_pattern1_mask = ~make_pad_mask(prompt_pattern1_lens)
prompt_pattern1_target = torch.full(prompt_pattern1.shape, self.IGNORE_ID).to(
device) # B, L
# user_start_id = self.tokenizer([user_start] * len(batch['target']), return_tensors="pt"
# )['input_ids'].to(device)
# user_start_embeds = self.embed_tokens(user_start_id)
# user_start_lens = torch.tensor([len(i) for i in user_start_id]).to(device)
# user_start_mask = ~make_pad_mask(user_start_lens)
# user_start_target = torch.full(user_start_id.shape, self.IGNORE_ID).to(
# device) # B, L
qwen_instruct_prompt_pattern_2 = "<|im_end|>\n<|im_start|>assistant\n"
prompt_pattern2 = self.tokenizer([qwen_instruct_prompt_pattern_2] * len(batch['target']), return_tensors="pt"
)['input_ids'].to(device)
prompt_pattern2_embeds = self.embed_tokens(prompt_pattern2)
prompt_pattern2_lens = torch.tensor([len(i) for i in prompt_pattern2]).to(device)
prompt_pattern2_mask = ~make_pad_mask(prompt_pattern2_lens)
prompt_pattern2_target = torch.full(prompt_pattern2.shape, self.IGNORE_ID).to(
device) # B, L
inputs_embeds_list.append(prompt_pattern1_embeds)
attention_mask_list.append(prompt_pattern1_mask)
target_list.append(prompt_pattern1_target)
streaming_error = False
if output_type == "speech2text_token_streaming":
rank = int(os.environ.get('RANK', 0))
utils_file.logging_limit_print(f'开始处理speech2text_token streaming 任务')
labels = batch['target'].to(device)
labels_lengths = batch['target_lengths'].to(device)
speech_token_labels = batch['speech_tokens'].to(device)
speech_tokens_length = batch['speech_tokens_length'].to(device)
labels_pad_mask = make_pad_mask(labels_lengths) # B, L
labels = labels.masked_fill(labels_pad_mask, 0)
speech_tokens_pad_mask = make_pad_mask(speech_tokens_length) # B, L
speech_token_labels = speech_token_labels.masked_fill(speech_tokens_pad_mask, 0)
speech_token_labels = speech_token_labels + self.llm_vocab_size
if rank == 0:
utils_file.logging_limit_print(f'labels.shape {labels.shape}')
utils_file.logging_limit_print(f'labels_lengths.shape {labels_lengths.shape}')
utils_file.logging_limit_print(f'labels[0] {labels[0]}')
utils_file.logging_limit_print(f'------------------------')
utils_file.logging_limit_print(f'speech_token_labels.shape {speech_token_labels.shape}')
utils_file.logging_limit_print(f'speech_tokens_length.shape {speech_tokens_length.shape}')
utils_file.logging_limit_print(f'speech_token_labels[0] {speech_token_labels[0]}')
utils_file.logging_limit_print(f'==========================')
streaming_concat_ids, streaming_concat_lens = make_streaming_mode_from_s2s(labels, labels_lengths,
speech_token_labels,
speech_tokens_length)
if rank == 0:
utils_file.logging_limit_print(f'streaming_concat_ids.shape {streaming_concat_ids.shape}')
utils_file.logging_limit_print(f'streaming_concat_lens.shape {streaming_concat_lens.shape}')
utils_file.logging_limit_print(f'streaming_concat_lens {streaming_concat_lens[0]}')
utils_file.logging_limit_print(f'xxx streaming_concat_ids[0] : {streaming_concat_ids[0]}')
utils_file.logging_limit_print(f'------------------------')
streaming_concat_embeddings = do_embedding_for_two_embeds(streaming_concat_ids, self.llm_vocab_size, self.embed_tokens,
self.speech_token_emded)
streaming_concat_pad_mask = make_pad_mask(streaming_concat_lens)
streaming_concat_target = streaming_concat_ids.masked_fill(streaming_concat_pad_mask, self.IGNORE_ID)
streaming_concat_mask = ~streaming_concat_pad_mask
if rank == 0:
utils_file.logging_limit_print(f'streaming_concat_embeddings.shape {streaming_concat_embeddings.shape}')
utils_file.logging_limit_print(f'streaming_concat_mask shape {streaming_concat_mask.shape}')
utils_file.logging_limit_print(f'------------------------')
# if prompt_embeds is not None: # 对于s2s 对话任务,不再使用user prompt 输入
# inputs_embeds_list.append(prompt_embeds)
# attention_mask_list.append(prompt_mask)
# target_list.append(prompt_target)
# ===================history===================================
history_batch = batch.get('history', [])
history_embedding, history_lens = self._get_embedding_for_history(history_batch, device)
if history_embedding is not None:
utils_file.logging_info(f'OSUM-EChat: 进行历史信息的embedding')
history_pad_mask = make_pad_mask(history_lens) # B, L
history_target = torch.full(history_pad_mask.shape, self.IGNORE_ID).to(device) # B, L
history_mask = ~history_pad_mask
inputs_embeds_list.append(history_embedding)
attention_mask_list.append(history_mask)
target_list.append(history_target)
utils_file.logging_limit_print(f'xxx history embeding shape {history_embedding.shape}')
utils_file.logging_limit_print(f'xxx history mask shape {history_mask.shape}')
utils_file.logging_limit_print(f'xxx history target shape {history_target.shape}')
else:
utils_file.logging_limit_print(f'history is None')
# ==========================history end ===================
inputs_embeds_list.extend(
[ speech_embeds, prompt_pattern2_embeds, streaming_concat_embeddings])
attention_mask_list.extend([speech_masks, prompt_pattern2_mask, streaming_concat_mask])
target_list.extend([speech_target, prompt_pattern2_target, streaming_concat_target])
elif output_type == "text2token_streaming":
rank = int(os.environ.get('RANK', 0))
utils_file.logging_limit_print(f'开始tts streaming 任务')
labels = batch['target'].to(device)
labels_lengths = batch['target_lengths'].to(device)
speech_token_labels = batch['speech_tokens'].to(device)
speech_tokens_length = batch['speech_tokens_length'].to(device)
labels_pad_mask = make_pad_mask(labels_lengths) # B, L
labels = labels.masked_fill(labels_pad_mask, 0)
speech_tokens_pad_mask = make_pad_mask(speech_tokens_length) # B, L
speech_token_labels = speech_token_labels.masked_fill(speech_tokens_pad_mask, 0)
speech_token_labels = speech_token_labels + self.llm_vocab_size
streaming_concat_ids, streaming_concat_lens = make_streaming_mode_from_s2s(labels, labels_lengths,
speech_token_labels,
speech_tokens_length)
streaming_concat_embeddings = do_embedding_for_two_embeds(streaming_concat_ids, self.llm_vocab_size,
self.embed_tokens,
self.speech_token_emded)
streaming_concat_pad_mask = make_pad_mask(streaming_concat_lens)
streaming_concat_target = streaming_concat_ids.masked_fill(streaming_concat_pad_mask, self.IGNORE_ID)
streaming_concat_mask = ~streaming_concat_pad_mask
# if prompt_embeds is not None: # 对于tts 对话任务,不再使用user prompt 输入
# inputs_embeds_list.append(prompt_embeds)
# attention_mask_list.append(prompt_mask)
# target_list.append(prompt_target)
inputs_embeds_list.extend(
[ speech_embeds, prompt_pattern2_embeds, streaming_concat_embeddings])
attention_mask_list.extend([speech_masks, prompt_pattern2_mask, streaming_concat_mask])
target_list.extend([speech_target, prompt_pattern2_target, streaming_concat_target])
elif output_type == 'speech2text_token' or output_type == "speech2text_token_think" or output_type == "speech2text_token_history":
utils_file.logging_limit_print(f'xxx 开始处理speech2text_token任务')
labels = batch['target'].to(device)
labels_lengths = batch['target_lengths'].to(device)
speech_token_labels = batch['speech_tokens'].to(device)
speech_tokens_length = batch['speech_tokens_length'].to(device)
labels_embeds, labels_target, labels_mask = self.get_label_embedding(labels, labels_lengths)
speech_token_labels_embeds, speech_token_labels_target, speech_token_labels_mask = self.get_speech_token_label_embedding(
speech_token_labels, speech_tokens_length)
# if prompt_embeds is not None: # 对于s2s 对话任务,不再使用user prompt 输入
# inputs_embeds_list.append(prompt_embeds)
# attention_mask_list.append(prompt_mask)
# target_list.append(prompt_target)
# ===================history===================================
history_batch = batch.get('history', [])
history_embedding, history_lens = self._get_embedding_for_history(history_batch, device)
if history_embedding is not None:
utils_file.logging_info(f'OSUM-EChat: 进行历史信息的embedding')
history_pad_mask = make_pad_mask(history_lens) # B, L
history_target = torch.full(history_pad_mask.shape, self.IGNORE_ID).to(device) # B, L
history_mask = ~history_pad_mask
inputs_embeds_list.append(history_embedding)
attention_mask_list.append(history_mask)
target_list.append(history_target)
utils_file.logging_limit_print(f'xxx history embeding shape {history_embedding.shape}')
utils_file.logging_limit_print(f'xxx history mask shape {history_mask.shape}')
utils_file.logging_limit_print(f'xxx history target shape {history_target.shape}')
else:
utils_file.logging_limit_print(f'history is None')
# ==========================history end ===================
inputs_embeds_list.extend(
[ speech_embeds, prompt_pattern2_embeds, labels_embeds, speech_token_labels_embeds])
attention_mask_list.extend([speech_masks, prompt_pattern2_mask, labels_mask, speech_token_labels_mask])
target_list.extend([speech_target, prompt_pattern2_target, labels_target, speech_token_labels_target])
elif output_type == "text2token":
speech_token_labels = batch['speech_tokens'].to(device)
speech_tokens_length = batch['speech_tokens_length'].to(device)
speech_token_labels_embeds, speech_token_labels_target, speech_token_labels_mask = self.get_speech_token_label_embedding(
speech_token_labels, speech_tokens_length)
# if prompt_embeds is not None: # 对于tts 对话任务,不再使用user prompt 输入
# inputs_embeds_list.append(prompt_embeds)
# attention_mask_list.append(prompt_mask)
# target_list.append(prompt_target)
inputs_embeds_list.extend([ speech_embeds, prompt_pattern2_embeds, speech_token_labels_embeds])
attention_mask_list.extend([speech_masks, prompt_pattern2_mask, speech_token_labels_mask])
target_list.extend([speech_target, prompt_pattern2_target, speech_token_labels_target])
elif output_type == "text" or output_type == 's2t_chat' or output_type == "s2t_chat_fake" or output_type == "s2t_chat_think":
labels = batch['target'].to(device)
labels_lengths = batch['target_lengths'].to(device)
labels_embeds, labels_target, labels_mask = self.get_label_embedding(labels, labels_lengths)
if prompt_embeds is not None and output_type == 'text': # 对于s2t_chat 对话任务,不再使用user prompt 输入
inputs_embeds_list.append(prompt_embeds)
attention_mask_list.append(prompt_mask)
target_list.append(prompt_target)
elif output_type != 's2t_chat' or output_type != "s2t_chat_fake" or output_type != "s2t_chat_think":
utils_file.logging_limit_print(
f'prompt is None,task: {batch["task"]}, prompt_embeds:{prompt_embeds}, prompt_mask:{prompt_mask}')
inputs_embeds_list.extend([ speech_embeds, prompt_pattern2_embeds, labels_embeds])
attention_mask_list.extend([speech_masks, prompt_pattern2_mask, labels_mask])
target_list.extend([speech_target, prompt_pattern2_target, labels_target])
elif output_type == "text2text":
labels = batch['target'].to(device)
labels_lengths = batch['target_lengths'].to(device)
labels_embeds, labels_target, labels_mask = self.get_label_embedding(labels, labels_lengths)
if prompt_embeds is not None:
inputs_embeds_list.append(prompt_embeds)
attention_mask_list.append(prompt_mask)
target_list.append(prompt_target)
else:
utils_file.logging_limit_print(
f'prompt is None,task: {batch["task"]}, prompt_embeds:{prompt_embeds}, prompt_mask:{prompt_mask}')
inputs_embeds_list.extend([ prompt_pattern2_embeds, labels_embeds])
attention_mask_list.extend([ prompt_pattern2_mask, labels_mask])
target_list.extend([ prompt_pattern2_target, labels_target])
else:
raise NotImplementedError(f'output_type {output_type} not support')
inputs_embeds = torch.cat(inputs_embeds_list, dim=1)
# utils_file.logging_limit_print(f'xxx final inputs_embeds shape {inputs_embeds.shape}')
attention_mask = torch.cat(attention_mask_list, dim=1)
# utils_file.logging_limit_print(f'xxx final attention_mask shape {attention_mask.shape}')
# utils_file.logging_limit_print(f'xxx final attention_mask 0 {attention_mask[0]}')
target = torch.cat(target_list, dim=1)
# utils_file.logging_limit_print(f'xxx final target shape {target.shape}')
# utils_file.logging_limit_print(f'xxx final target 0 {target[0]}')
# utils_file.logging_limit_print(f'OSUM-EChat output_type: {output_type}')
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
# utils_file.logging_limit_print(f'xxx final position_ids shape {position_ids.shape}')
# utils_file.logging_limit_print(f'xxx final position_ids 0 {position_ids[0]}')
if output_type == 'text' or output_type == 's2t_chat' or output_type == "s2t_chat_fake" or output_type == "s2t_chat_think" or output_type == "text2text":
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
labels=target,
attention_mask=attention_mask,
position_ids=position_ids.to(inputs_embeds.device)
)
loss = outputs['loss']
return {"loss": loss,"output_type": output_type}
else:
utils_file.logging_limit_print(f'进行llama_model的 diy forward')
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
# labels=target,
attention_mask=attention_mask,
position_ids=position_ids.to(inputs_embeds.device)
)
hidden_states = outputs['hidden_states'][-1]
logits = self.lm_head(hidden_states)
logits2 = self.speech_head(hidden_states) # speech_head
combined_logits = torch.cat([logits, logits2], dim=-1)
# combined_logits = self.new_lm_head(hidden_states)
shift_logits = combined_logits[..., :-1, :].contiguous()
shift_target = target[..., 1:].contiguous()
# utils_file.logging_limit_print(
# f'xxx shift_logits shape: {shift_logits.shape}, shift_target shape: {shift_target.shape}')
# utils_file.logging_limit_print(f'xxx shift_target 0 {shift_target[0]}')
shift_logits = shift_logits.view(-1, combined_logits.shape[-1]) # 注意这里维度的调整,根据logits2的维度相应改变
shift_target = shift_target.view(-1)
shift_target = shift_target.to(shift_logits.device)
loss = self.loss_fct(shift_logits, shift_target)
loss.requires_grad_(True)
return {"loss": loss,"output_type": output_type}
def generate_s2s_streaming(
self,
wavs,
wavs_len,
prompt,
):
self.llama_model.eval()
speech_embeds, speech_masks = self._get_embedding_from_wav(wavs, wavs_len)
speech_embeds, speech_masks, _ = self._add_bos_eos(0 +self.speech_token_num, 1+self.speech_token_num,
speech_embeds, speech_masks, None)
device = speech_embeds.device
prompt = self.tokenizer([prompt], return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_embeds = self.embed_tokens(prompt)
qwen_instruct_prompt_pattern_1_s_input_chat = "<|im_start|>system\nYou are OSUM-chat, a dialogue assistant created by . You understand both the meaning and paralinguistic cues in users' speech, and respond appropriately with text or voice.<|im_end|>\n<|im_start|>user\n"
qwen_instruct_prompt_pattern_1_t2t_chat = "<|im_start|>system\nYou are OSUM-chat, a dialogue assistant created by . You understand user input in text and respond with accurate and helpful text replies.<|im_end|>\n<|im_start|>user\n"
qwen_instruct_prompt_pattern_1_old = "<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n<|im_start|>user\n"
qwen_instruct_prompt_pattern_1 =qwen_instruct_prompt_pattern_1_old
prompt_pattern1 = self.tokenizer([qwen_instruct_prompt_pattern_1], return_tensors="pt"
)['input_ids'].to(device)
prompt_pattern1_embeds = self.embed_tokens(prompt_pattern1)
prompt_pattern1_lens = torch.tensor([len(i) for i in prompt_pattern1]).to(device)
prompt_pattern1_mask = ~make_pad_mask(prompt_pattern1_lens)
prompt_pattern1_target = torch.full(prompt_pattern1.shape, self.IGNORE_ID).to(
device) # B, L
qwen_instruct_prompt_pattern_2 = "<|im_end|>\n<|im_start|>assistant\n"
prompt_pattern2 = self.tokenizer([qwen_instruct_prompt_pattern_2] , return_tensors="pt"
)['input_ids'].to(device)
start_id = prompt_pattern2[0][-1]
new_prompt_pattern2 = prompt_pattern2[:,:-1]
prompt_pattern2_embeds = self.embed_tokens(new_prompt_pattern2)
prompt_pattern2_lens = torch.tensor([len(i) for i in new_prompt_pattern2],dtype=torch.long).to(device)
prompt_pattern2_mask = ~make_pad_mask(prompt_pattern2_lens)
prompt_pattern2_target = torch.full(new_prompt_pattern2.shape, self.IGNORE_ID).to(
device) # B, L
embeds = torch.cat([prompt_pattern1_embeds,prompt_embeds, speech_embeds, prompt_pattern2_embeds], dim=1)
atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device)
if self.embed_tokens.weight.dtype == torch.float16:
# utils_file.logging_limit_print('generate(): self.embed_tokens.weight.dtype == torch.float16')
embeds = embeds.to(torch.float16)
max_len = 350
hyps = [start_id]
print(f'start_id: {start_id}')
llm_out = self.llama_model(
inputs_embeds=embeds,
past_key_values=None,
output_hidden_states=True
)
batch_size = 1
top_k = 10
top_p = 0.9
temperature = 1
cache = llm_out.past_key_values
token_emb = self.embed_tokens(torch.tensor(hyps[-1:]).to(device)).unsqueeze(0)
top_ps_tensor = torch.FloatTensor([top_p] * batch_size).to(device)
top_ks_tensor = torch.LongTensor([top_k] * batch_size).to(device)
temperatures_tensor = None if not temperature else torch.FloatTensor(
[temperature] * batch_size).to(device)
inferring_txt = True
txt_finished = False
speeech_finished = False
hyps_text = ""
speech_eos_num = 0
txt_list = []
token_list = []
i_num = 0
for i in range(max_len):
if inferring_txt and not txt_finished:
for i_txt in range(6):
i_num += 1
if i_num> 300:
break
llm_out = self.llama_model(
inputs_embeds=token_emb,
past_key_values=cache,
output_hidden_states=True
)
cache = llm_out.past_key_values
hidden_states = llm_out.hidden_states[-1]
token_logits = self.lm_head(hidden_states)
next_token_ids = self._sampler(
token_logits,
temperatures_tensor,
top_ps_tensor,
top_ks_tensor,
)
# next_token_ids = torch.argmax(token_logits, dim=-1)
print(i_num, next_token_ids, f'txt')
hyps.append(next_token_ids.item())
token_emb = self.embed_tokens(torch.tensor(hyps[-1:]).to(device)).unsqueeze(0)
if next_token_ids == self.eos_token_id:
txt_finished = True
hyps_text = self.tokenizer.decode(txt_list, skip_special_tokens=True, add_special_tokens=False)
print("hyps_text:", hyps_text)
print("text is over")
break
txt_list.append(next_token_ids.item())
hyps_text = self.tokenizer.decode(txt_list, skip_special_tokens=True, add_special_tokens=False)
print("hyps_text:", hyps_text)
inferring_txt = False
elif not speeech_finished:
for i_speech in range(18):
i_num += 1
if i_num> 300:
break
llm_out = self.llama_model(
inputs_embeds=token_emb,
past_key_values=cache,
output_hidden_states=True
)
cache = llm_out.past_key_values
hidden_states = llm_out.hidden_states[-1]
token_logits = self.speech_head(hidden_states)
next_token_ids = self._sampler(
token_logits,
temperatures_tensor,
top_ps_tensor,
top_ks_tensor,
)
# next_token_ids = torch.argmax(token_logits, dim=-1)
hyps.append(next_token_ids.item())
print(i_num, next_token_ids, f'speech')
token_emb = self.speech_token_emded(torch.tensor(hyps[-1:]).to(device)).unsqueeze(0)
if next_token_ids == 4096:
speech_eos_num += 1
print(f'遇到 4096')
if speech_eos_num >= 2:
print("speech is over")
speeech_finished = True
break
token_list.append(next_token_ids.item())
inferring_txt = True
if speeech_finished:
break
if i_num > 300:
break
return [hyps_text + "|" + str(token_list)]
def generate(
self,
wavs,
wavs_len,
prompt,
**kwargs
):
self.llama_model.eval()
self.set_task_type("ASR")
self.do_add_speech_embed_head()
speech_embeds, speech_masks = self._get_embedding_from_wav(wavs, wavs_len)
speech_embeds, speech_masks, _ = self._add_bos_eos(0 + self.speech_token_num, 1 + self.speech_token_num,
speech_embeds, speech_masks, None)
prompt = self.tokenizer([prompt], return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_embeds = self.embed_tokens(prompt)
qwen_instruct_prompt_pattern_1 = "<|im_start|>system\nYou are OSUM-chat, an audio understanding. You can transcribe speech accurately and anaosum_echat2e paralinguistic cues to provide precise text responses.<|im_end|>\n<|im_start|>user\n"
prompt_pattern1 = self.tokenizer([qwen_instruct_prompt_pattern_1] * len(wavs_len), return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_pattern1_embeds = self.embed_tokens(prompt_pattern1)
qwen_instruct_prompt_pattern_2 = "<|im_end|>\n<|im_start|>assistant\n"
prompt_pattern2 = self.tokenizer([qwen_instruct_prompt_pattern_2] * len(wavs_len), return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_pattern2_embeds = self.embed_tokens(prompt_pattern2)
embeds = torch.cat([prompt_pattern1_embeds, prompt_embeds, speech_embeds, prompt_pattern2_embeds], dim=1)
atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device)
if self.embed_tokens.weight.dtype == torch.float16 or self.embed_tokens.weight.dtype == torch.bfloat16:
embeds = embeds.to(torch.bfloat16)
atts = atts.to(torch.bfloat16)
outputs = self.llama_model.generate(
inputs_embeds=embeds,
max_new_tokens=self.max_length,
cache_implementation="static",
# num_beams=self.num_beams,
do_sample=self.do_sample,
min_length=self.min_length,
top_p=self.top_p,
top_k=self.top_k,
repetition_penalty=self.repetition_penalty,
length_penalty=self.length_penalty,
temperature=self.temperature,
# attention_mask=atts,
eos_token_id=151645,
pad_token_id=-100,
stopping_criteria=self.max_token_criteria_list,
do_compile=True,
)
output_text = self.tokenizer.batch_decode(outputs, add_special_tokens=False, skip_special_tokens=True)
return output_text
def generate4chat(
self,
wavs,
wavs_len,
prompt=" ",
do_sample=True,
top_k=2,
top_p=1,
temperature=0.4,
**kwargs
):
print(f'do_sample: {do_sample}, top_k: {top_k}, top_p: {top_p}, temperature: {temperature}')
self.llama_model.eval()
self.set_task_type("ASR")
self.do_add_speech_embed_head()
# self.do_merge_embed_head()
speech_embeds, speech_masks = self._get_embedding_from_wav(wavs, wavs_len)
speech_embeds, speech_masks, _ = self._add_bos_eos(0 + self.speech_token_num, 1 + self.speech_token_num,
speech_embeds, speech_masks, None)
prompt = self.tokenizer([prompt], return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_embeds = self.embed_tokens(prompt)
# qwen_instruct_prompt_pattern_1 = "<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n<|im_start|>user\n"
# # sft
qwen_instruct_prompt_pattern_1 = "<|im_start|>system\nYou are OSUM-chat, a speech-to-text dialogue assistant by ASLP Lab. You understand both the meaning and paralinguistic cues in speech then respond exclusively with appropriate text.<|im_end|>\n<|im_start|>user\n"
prompt_pattern1 = self.tokenizer([qwen_instruct_prompt_pattern_1] * len(wavs_len), return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_pattern1_embeds = self.embed_tokens(prompt_pattern1)
qwen_instruct_prompt_pattern_2 = "<|im_end|>\n<|im_start|>assistant\n"
prompt_pattern2 = self.tokenizer([qwen_instruct_prompt_pattern_2] * len(wavs_len), return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_pattern2_embeds = self.embed_tokens(prompt_pattern2)
embeds = torch.cat([prompt_pattern1_embeds, speech_embeds, prompt_pattern2_embeds], dim=1)
atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device)
if self.embed_tokens.weight.dtype == torch.float16 or self.embed_tokens.weight.dtype == torch.bfloat16:
# utils_file.logging_limit_print('generate(): self.embed_tokens.weight.dtype == torch.float16')
# embeds = embeds.to(torch.float16)
embeds = embeds.to(torch.bfloat16)
atts = atts.to(torch.bfloat16)
outputs = self.llama_model.generate(
inputs_embeds=embeds,
max_new_tokens=self.max_length,
cache_implementation="static",
# num_beams=1,
do_sample=do_sample,
min_length=self.min_length,
top_p=top_p,
top_k=top_k,
repetition_penalty=self.repetition_penalty,
length_penalty=1,
temperature=temperature,
# attention_mask=atts,
eos_token_id=151645,
pad_token_id=-100,
do_compile=True,
stopping_criteria=self.max_token_criteria_list,
)
output_text = self.tokenizer.batch_decode(outputs, add_special_tokens=False, skip_special_tokens=True)
return output_text
def generate4chat_think(
self,
wavs,
wavs_len,
prompt=" ",
do_sample=True,
top_k=2,
top_p=1,
temperature=0.4,
**kwargs
):
print(f'do_sample: {do_sample}, top_k: {top_k}, top_p: {top_p}, temperature: {temperature}')
self.llama_model.eval()
self.set_task_type("ASR")
self.do_add_speech_embed_head()
# self.do_merge_embed_head()
speech_embeds, speech_masks = self._get_embedding_from_wav(wavs, wavs_len)
speech_embeds, speech_masks, _ = self._add_bos_eos(0 + self.speech_token_num, 1 + self.speech_token_num,
speech_embeds, speech_masks, None)
prompt = self.tokenizer([prompt], return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_embeds = self.embed_tokens(prompt)
# qwen_instruct_prompt_pattern_1 = "<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n<|im_start|>user\n"
# # sft
qwen_instruct_prompt_pattern_1 = "<|im_start|>system\nYou are OSUM-chat, a thinking-enabled speech-to-text dialogue assistant by ASLP Lab. You not only comprehend the semantic meaning and paralinguistic cues in speech but also engage in deliberate reasoning to process such information. Based on this thinking process, you then respond exclusively with appropriate text.<|im_end|>\n"
prompt_pattern1 = self.tokenizer([qwen_instruct_prompt_pattern_1] * len(wavs_len), return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_pattern1_embeds = self.embed_tokens(prompt_pattern1)
qwen_instruct_prompt_pattern_2 = "<|im_end|>\n<|im_start|>assistant\n"
prompt_pattern2 = self.tokenizer([qwen_instruct_prompt_pattern_2] * len(wavs_len), return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_pattern2_embeds = self.embed_tokens(prompt_pattern2)
embeds = torch.cat([prompt_pattern1_embeds, speech_embeds, prompt_pattern2_embeds], dim=1)
atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device)
if self.embed_tokens.weight.dtype == torch.float16 or self.embed_tokens.weight.dtype == torch.bfloat16:
# utils_file.logging_limit_print('generate(): self.embed_tokens.weight.dtype == torch.float16')
# embeds = embeds.to(torch.float16)
embeds = embeds.to(torch.bfloat16)
atts = atts.to(torch.bfloat16)
outputs = self.llama_model.generate(
inputs_embeds=embeds,
max_new_tokens=self.max_length,
cache_implementation="static",
# num_beams=1,
do_sample=do_sample,
min_length=self.min_length,
top_p=top_p,
top_k=top_k,
repetition_penalty=self.repetition_penalty,
length_penalty=1,
temperature=temperature,
# attention_mask=atts,
eos_token_id=151645,
pad_token_id=-100,
do_compile=True,
stopping_criteria=self.max_token_criteria_list,
)
output_text = self.tokenizer.batch_decode(outputs, add_special_tokens=False, skip_special_tokens=True)
return output_text
def generate_tts(
self,
device,
text,
):
# =====================准备input embedding=====================
self.llama_model.eval()
# 得到模型所在的device
# device = self.llama_model.device
self.set_task_type("TTS")
self.do_add_speech_embed_head()
# labels_lengths = torch.tensor([len(text[0])], dtype=torch.int64, device=device)
# labels = text[:,:]
labels = self.tokenizer(
[text],
return_tensors="pt",
add_special_tokens=False
).to(
self.embed_tokens.weight.device).input_ids # (1, L)
labels = labels.to(device)
labels_lengths = torch.tensor([len(labels[0])], dtype=torch.int64, device=device)
print(f'label_lengths:{labels_lengths}')
print(f'labels:{labels}')
labels_pad_mask = make_pad_mask(labels_lengths) # B, L
labels = labels.masked_fill(labels_pad_mask, 0)
speech_embeds = self.embed_tokens(labels) # B, L, D
speech_target = torch.full(labels_pad_mask.shape, self.IGNORE_ID).to(
speech_embeds.device)
speech_masks = ~labels_pad_mask
# speech_embeds, speech_masks, speech_target = self._add_bos_eos(0 + self.speech_token_num,
# 1 + self.speech_token_num,
# speech_embeds, speech_masks, speech_target)
qwen_instruct_prompt_pattern_1 = "<|im_start|>system\nYou are OSUM-chat, a speech synthesis assistant by ASLP Lab. You generate natural and fluent speech from text input.<|im_end|>\n<|im_start|>user\n"
prompt_pattern1 = self.tokenizer([qwen_instruct_prompt_pattern_1] * len(speech_embeds), return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_pattern1_embeds = self.embed_tokens(prompt_pattern1)
qwen_instruct_prompt_pattern_2 = "<|im_end|>\n<|im_start|>assistant\n"
prompt_pattern2 = self.tokenizer([qwen_instruct_prompt_pattern_2] * len(speech_embeds), return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_pattern2_embeds = self.embed_tokens(prompt_pattern2)
hyps = [self.speech_token_num - 1]
speech_begin_token_emb = self.speech_token_emded(torch.tensor(hyps[-1:]).to(device)).unsqueeze(0)
embeds = torch.cat([prompt_pattern1_embeds,
speech_embeds,
prompt_pattern2_embeds,
speech_begin_token_emb], dim=1).to(torch.bfloat16)
# 指定top_k top_p temperature stop
# max_len = 250
top_k = 15 # 5
top_p = 0.8 # 0.9
temperature = 1.2 # 1
print(f"tts eos id = {self.speech_token_num - 1}")
llm_out = self.llama_model.generate(inputs_embeds=embeds,
max_new_tokens=self.max_length,
eos_token_id=self.speech_token_num - 1,
cache_implementation="static",
do_sample=True,
temperature=temperature,
top_k=top_k,
top_p=top_p,
stopping_criteria=StoppingCriteriaList([MaxTokenStopper(2000)]),
do_compile=True,
repetition_penalty=1.0,
)
return llm_out
def generate_tts_streaming(
self,
device,
prompt,
text,
):
self.llama_model.eval()
# labels_lengths = torch.tensor([len(text[0])], dtype=torch.int64, device=device)
# labels = text[:,:]
labels = self.tokenizer(
[text],
return_tensors="pt",
add_special_tokens=False
).to(
self.embed_tokens.weight.device).input_ids # (1, L)
labels = labels.to(device)
labels_lengths = torch.tensor([len(labels[0])], dtype=torch.int64, device=device)
print(f'label_lengths:{labels_lengths}')
print(f'labels:{labels}')
labels_pad_mask = make_pad_mask(labels_lengths) # B, L
labels = labels.masked_fill(labels_pad_mask, 0)
speech_embeds = self.embed_tokens(labels) # B, L, D
speech_target = torch.full(labels_pad_mask.shape, self.IGNORE_ID).to(
speech_embeds.device)
speech_masks = ~labels_pad_mask
speech_embeds, speech_masks, speech_target = self._add_bos_eos(0 + self.speech_token_num,
1 + self.speech_token_num,
speech_embeds, speech_masks, speech_target)
qwen_instruct_prompt_pattern_1 = "<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n<|im_start|>user\n"
prompt_pattern1 = self.tokenizer([qwen_instruct_prompt_pattern_1] * len(speech_embeds), return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_pattern1_embeds = self.embed_tokens(prompt_pattern1)
qwen_instruct_prompt_pattern_2 = "<|im_end|>\n<|im_start|>assistant\n"
prompt_pattern2 = self.tokenizer([qwen_instruct_prompt_pattern_2] * len(speech_embeds), return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_pattern2_embeds = self.embed_tokens(prompt_pattern2)
prompt = self.tokenizer([prompt], return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_embeds = self.embed_tokens(prompt)
# embeds = torch.cat([prompt_pattern1_embeds, prompt_embeds, speech_embeds, prompt_pattern2_embeds], dim=1)
# ----------------
start_id = prompt_pattern2[0][-1]
new_prompt_pattern2 = prompt_pattern2[:, :-1]
prompt_pattern2_embeds = self.embed_tokens(new_prompt_pattern2)
prompt_pattern2_lens = torch.tensor([len(i) for i in new_prompt_pattern2], dtype=torch.long).to(device)
prompt_pattern2_mask = ~make_pad_mask(prompt_pattern2_lens)
prompt_pattern2_target = torch.full(new_prompt_pattern2.shape, self.IGNORE_ID).to(
device) # B, L
embeds = torch.cat([prompt_pattern1_embeds, prompt_embeds, speech_embeds, prompt_pattern2_embeds], dim=1)
atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device)
if self.embed_tokens.weight.dtype == torch.float16:
# utils_file.logging_limit_print('generate(): self.embed_tokens.weight.dtype == torch.float16')
embeds = embeds.to(torch.float16)
max_len = 350
hyps = [start_id]
print(f'start_id: {start_id}')
llm_out = self.llama_model(
inputs_embeds=embeds,
past_key_values=None,
output_hidden_states=True
)
batch_size = 1
top_k = 10
top_p = 0.9
temperature = 1
cache = llm_out.past_key_values
token_emb = self.embed_tokens(torch.tensor(hyps[-1:]).to(device)).unsqueeze(0)
top_ps_tensor = torch.FloatTensor([top_p] * batch_size).to(device)
top_ks_tensor = torch.LongTensor([top_k] * batch_size).to(device)
temperatures_tensor = None if not temperature else torch.FloatTensor(
[temperature] * batch_size).to(device)
inferring_txt = True
txt_finished = False
speeech_finished = False
hyps_text = ""
speech_eos_num = 0
txt_list = []
token_list = []
i_num = 0
for i in range(max_len):
if inferring_txt and not txt_finished:
for i_txt in range(6):
i_num += 1
if i_num > 300:
break
llm_out = self.llama_model(
inputs_embeds=token_emb,
past_key_values=cache,
output_hidden_states=True
)
cache = llm_out.past_key_values
hidden_states = llm_out.hidden_states[-1]
token_logits = self.lm_head(hidden_states)
next_token_ids = self._sampler(
token_logits,
temperatures_tensor,
top_ps_tensor,
top_ks_tensor,
)
# next_token_ids = torch.argmax(token_logits, dim=-1)
print(i_num, next_token_ids, f'txt')
hyps.append(next_token_ids.item())
token_emb = self.embed_tokens(torch.tensor(hyps[-1:]).to(device)).unsqueeze(0)
if next_token_ids == self.eos_token_id:
txt_finished = True
hyps_text = self.tokenizer.decode(txt_list, skip_special_tokens=True, add_special_tokens=False)
print("hyps_text:", hyps_text)
print("text is over")
break
txt_list.append(next_token_ids.item())
hyps_text = self.tokenizer.decode(txt_list, skip_special_tokens=True, add_special_tokens=False)
print("hyps_text:", hyps_text)
inferring_txt = False
elif not speeech_finished:
for i_speech in range(18):
i_num += 1
if i_num > 300:
break
llm_out = self.llama_model(
inputs_embeds=token_emb,
past_key_values=cache,
output_hidden_states=True
)
cache = llm_out.past_key_values
hidden_states = llm_out.hidden_states[-1]
token_logits = self.speech_head(hidden_states)
next_token_ids = self._sampler(
token_logits,
temperatures_tensor,
top_ps_tensor,
top_ks_tensor,
)
# next_token_ids = torch.argmax(token_logits, dim=-1)
hyps.append(next_token_ids.item())
print(i_num, next_token_ids, f'speech')
token_emb = self.speech_token_emded(torch.tensor(hyps[-1:]).to(device)).unsqueeze(0)
if next_token_ids == 4096:
speech_eos_num += 1
print(f'遇到 4096')
if speech_eos_num >= 2:
print("speech is over")
speeech_finished = True
break
token_list.append(next_token_ids.item())
inferring_txt = True
if i_num > 300:
break
return [hyps_text + "|" + str(token_list)]
def generate_text2text(
self,
device,
text,
):
self.llama_model.eval()
# labels_lengths = torch.tensor([len(text[0])], dtype=torch.int64, device=device)
# labels = text[:,:]
labels = self.tokenizer(
[text],
return_tensors="pt",
add_special_tokens=False
).to(
self.embed_tokens.weight.device).input_ids # (1, L)
labels = labels.to(device)
labels_lengths = torch.tensor([len(labels[0])], dtype=torch.int64, device=device)
# print(f'label_lengths:{labels_lengths}')
# print(f'labels:{labels}')
labels_pad_mask = make_pad_mask(labels_lengths) # B, L
labels = labels.masked_fill(labels_pad_mask, 0)
speech_embeds = self.embed_tokens(labels) # B, L, D
speech_target = torch.full(labels_pad_mask.shape, self.IGNORE_ID).to(
speech_embeds.device)
speech_masks = ~labels_pad_mask
# speech_embeds, speech_masks, speech_target = self._add_bos_eos(0 + self.speech_token_num,
# 1 + self.speech_token_num,
# speech_embeds, speech_masks, speech_target)
# qwen_instruct_prompt_pattern_1 = "<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n<|im_start|>user\n"
# # sft
qwen_instruct_prompt_pattern_1 = "<|im_start|>system\nYou are OSUM-chat, a text-to-text dialogue assistant by ASLP Lab. You understand user input in text then respond exclusively with appropriate text.<|im_end|>\n<|im_start|>user\n"
prompt_pattern1 = self.tokenizer([qwen_instruct_prompt_pattern_1] * len(speech_embeds), return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_pattern1_embeds = self.embed_tokens(prompt_pattern1)
qwen_instruct_prompt_pattern_2 = "<|im_end|>\n<|im_start|>assistant\n"
prompt_pattern2 = self.tokenizer([qwen_instruct_prompt_pattern_2] * len(speech_embeds), return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_pattern2_embeds = self.embed_tokens(prompt_pattern2)
embeds = torch.cat([prompt_pattern1_embeds, speech_embeds, prompt_pattern2_embeds], dim=1)
atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device)
if self.embed_tokens.weight.dtype == torch.float16 or self.embed_tokens.weight.dtype == torch.bfloat16:
# utils_file.logging_limit_print('generate(): self.embed_tokens.weight.dtype == torch.float16')
# embeds = embeds.to(torch.float16)
embeds = embeds.to(torch.bfloat16)
atts = atts.to(torch.bfloat16)
outputs = self.llama_model.generate(
inputs_embeds=embeds,
max_new_tokens=200,
num_beams=1,
do_sample=False,
min_length=self.min_length,
repetition_penalty=1.0,
length_penalty=1.0,
temperature=self.temperature,
attention_mask=atts,
eos_token_id=151645,
pad_token_id=-100,
do_compile=True,
cache_implementation="static",
)
output_text = self.tokenizer.batch_decode(outputs, add_special_tokens=False, skip_special_tokens=True)
# output_text = [item.replace('<|endoftext|>', '') for item in output_text]
return output_text
def generate_s2s_no_stream_with_repetition_penalty(
self,
wavs,
wavs_len,
):
self.llama_model.eval()
self.set_task_type("S2S")
self.do_add_speech_embed_head()
# =====================准备input embedding=====================
speech_embeds, speech_masks = self._get_embedding_from_wav(wavs, wavs_len)
speech_embeds, speech_masks, _ = self._add_bos_eos(0 + self.speech_token_num, None,
speech_embeds, speech_masks, None)
device = speech_embeds.device
# qwen_instruct_prompt_pattern_1 = "<|im_start|>system\nYou are OSUM-chat, a dialogue assistant by ASLP Lab. You understand both the meaning and paralinguistic cues in speech, as well as input text, and respond appropriately.<|im_end|>\n<|im_start|>user\n"
qwen_instruct_prompt_pattern_1 = "<|im_start|>system\nYou are OSUM-chat, a speech-to-speech dialogue assistant by ASLP Lab. You understand both the meaning and paralinguistic cues in speech then respond with appropriate text and emotionally matching synthetic speech.<|im_end|>\n<|im_start|>user\n"
# qwen_instruct_prompt_pattern_1 = "<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n<|im_start|>user\n"
prompt_pattern1 = self.tokenizer([qwen_instruct_prompt_pattern_1] * len(wavs_len), return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_pattern1_embeds = self.embed_tokens(prompt_pattern1)
qwen_instruct_prompt_pattern_2 = "<|im_end|>\n<|im_start|>assistant\n"
prompt_pattern2 = self.tokenizer([qwen_instruct_prompt_pattern_2] * len(wavs_len), return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_pattern2_embeds = self.embed_tokens(prompt_pattern2)
hyps = [4098]
token_emb = self.speech_token_emded(torch.tensor(hyps[-1:]).to(device)).unsqueeze(0)
embeds = torch.cat(
[prompt_pattern1_embeds, speech_embeds, token_emb, prompt_pattern2_embeds],
dim=1)
atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device)
if self.embed_tokens.weight.dtype == torch.float16:
# utils_file.logging_limit_print('generate(): self.embed_tokens.weight.dtype == torch.float16')
embeds = embeds.to(torch.float16)
# max_len = 350
top_k = 10
top_p = 0.9
temperature = 1.2
invalid_eos = 10000000
self.osum_chat_logit_processor1.init_match_found()
llm_out = self.llama_model.generate(inputs_embeds=embeds,
max_new_tokens=self.max_length,
eos_token_id=invalid_eos,
cache_implementation="static",
do_sample=True,
temperature=temperature,
top_k=top_k,
top_p=top_p,
logits_processor=self.s2s_repetition_penalty,
stopping_criteria=self.s2s_stop_criteria,
do_compile=True,
repetition_penalty=1.0,
)
text_eos_idx = (llm_out[0] == 151645).nonzero(as_tuple=True)[0][0].item()
text_res = llm_out[:, :text_eos_idx - 1]
speech_res = llm_out[:, text_eos_idx + 1:-1]
# print("llm_out", llm_out)
output_text = self.tokenizer.batch_decode(text_res, add_special_tokens=False, skip_special_tokens=True)
# print(f'output_text:{output_text}')
# print(f'speech_res:{speech_res}')
return (output_text, text_res, speech_res)
def generate_s2s_no_stream_think_with_repetition_penalty(
self,
wavs,
wavs_len,
):
self.llama_model.eval()
self.set_task_type("S2S")
self.do_add_speech_embed_head()
# =====================准备input embedding=====================
speech_embeds, speech_masks = self._get_embedding_from_wav(wavs, wavs_len)
speech_embeds, speech_masks, _ = self._add_bos_eos(0 + self.speech_token_num, None,
speech_embeds, speech_masks, None)
device = speech_embeds.device
# qwen_instruct_prompt_pattern_1 = "<|im_start|>system\nYou are OSUM-chat, a dialogue assistant by ASLP Lab. You understand both the meaning and paralinguistic cues in speech, as well as input text, and respond appropriately.<|im_end|>\n<|im_start|>user\n"
# qwen_instruct_prompt_pattern_1 = "<|im_start|>system\nYou are OSUM-chat, a speech-to-speech dialogue assistant by ASLP Lab. You understand both the meaning and paralinguistic cues in speech then respond with appropriate text and emotionally matching synthetic speech.<|im_end|>\n<|im_start|>user\n"
qwen_instruct_prompt_pattern_1 = "<|im_start|>system\nYou are OSUM-chat, a speech-to-speech dialogue assistant by ASLP Lab. You understand both the meaning and paralinguistic cues in speech. Before responding, first output your reasoning inside <think>...</think end>, analyzing the user’s words and vocal cues. Then generate a reply with appropriate text and emotionally matched synthetic speech.<|im_end|>\n<|im_start|>user\n"
# qwen_instruct_prompt_pattern_1 = "<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n<|im_start|>user\n"
prompt_pattern1 = self.tokenizer([qwen_instruct_prompt_pattern_1] * len(wavs_len), return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_pattern1_embeds = self.embed_tokens(prompt_pattern1)
qwen_instruct_prompt_pattern_2 = "<|im_end|>\n<|im_start|>assistant\n"
prompt_pattern2 = self.tokenizer([qwen_instruct_prompt_pattern_2] * len(wavs_len), return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_pattern2_embeds = self.embed_tokens(prompt_pattern2)
hyps = [4098]
token_emb = self.speech_token_emded(torch.tensor(hyps[-1:]).to(device)).unsqueeze(0)
embeds = torch.cat(
[prompt_pattern1_embeds, speech_embeds, token_emb, prompt_pattern2_embeds],
dim=1)
atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device)
if self.embed_tokens.weight.dtype == torch.float16:
# utils_file.logging_limit_print('generate(): self.embed_tokens.weight.dtype == torch.float16')
embeds = embeds.to(torch.float16)
# max_len = 350
top_k = 10
top_p = 0.9
temperature = 1.2
invalid_eos = 10000000
self.osum_chat_logit_processor1.init_match_found() # 非think不用匹配
llm_out = self.llama_model.generate(inputs_embeds=embeds,
max_new_tokens=self.max_length,
eos_token_id=invalid_eos,
cache_implementation="static",
do_sample=True,
temperature=temperature,
top_k=top_k,
top_p=top_p,
logits_processor=self.s2s_repetition_penalty,
stopping_criteria=self.s2s_stop_criteria,
do_compile=True,
repetition_penalty=1.0,
)
text_eos_idx = (llm_out[0] == 151645).nonzero(as_tuple=True)[0][0].item()
text_res = llm_out[:, :text_eos_idx - 1]
speech_res = llm_out[:, text_eos_idx + 1:-1]
# print("llm_out", llm_out)
output_text = self.tokenizer.batch_decode(text_res, add_special_tokens=False, skip_special_tokens=True)
# print(f'output_text:{output_text}')
# print(f'speech_res:{speech_res}')
return (output_text, text_res, speech_res)
def _get_embedding_from_wav(self, wavs, wavs_len):
"""
return:
wav_embedding: (b, l, v)
wav_mask: (b, l), wav为有效值的位置为true
"""
encoder_out, encoder_mask = self.encoder(wavs, wavs_len)
speech_embeds, encoder_mask = self.down_sample_2(encoder_out, encoder_mask)
if self.speech_transformer is not None:
filled_wavs_len = encoder_mask.squeeze(1).sum(-1)
speech_embeds, encoder_mask = self.speech_transformer(speech_embeds, filled_wavs_len)
# if rank == 0:
# utils_file.logging_limit_print(
# f'out of link shape: {speech_embeds.shape},encoder的第一帧的前20个数字:\n {speech_embeds[0][0][:20]}')
# utils_file.logging_limit_print(
# 'get_embedding_from_wav(): speech_embeds.shape,by self.speech_transformer(speech_embeds, speech_lens):',
# speech_embeds.shape)
speech_embeds = self.speech_llama_proj(speech_embeds)
# if rank == 0:
# utils_file.logging_limit_print(
# f'out of speech_llama_proj shape: {speech_embeds.shape},encoder的第一帧的前20个数字:\n {speech_embeds[0][0][:20]}')
# utils_file.logging_limit_print(
# 'get_embedding_from_wav(): speech_embeds.shape,by self.speech_llama_proj(speech_embeds):',
# speech_embeds.shape)
return speech_embeds, encoder_mask.squeeze(1)
def _get_embedding_from_text(self, text):
"""
将字符串先量化,再转成词向量
Args:
text: str
Returns:
text_embeds: (1, L, D)
"""
text_id = self.tokenizer(
text,
return_tensors="pt",
add_special_tokens=False
).to(
self.embed_tokens.weight.device).input_ids
text_embeds = self.embed_tokens(text_id)
text_embeds_len = torch.tensor([text_embeds.size(1)], dtype=torch.long)
return text_embeds, text_embeds_len
def _add_bos_eos(self, bos, eos, inputs_embeds, attention_mask, target=None):
B = len(inputs_embeds)
bos_eos_target = torch.full([B, 1], self.IGNORE_ID).to(inputs_embeds.device) # B,1
bos_eos_mask = torch.full([B, 1], True).to(inputs_embeds.device) # B, 1
if bos is not None:
bos_embed = self.speech_token_emded(torch.full([B, 1],
bos).to(inputs_embeds.device)) # B, 1, D
inputs_embeds = torch.cat((bos_embed, inputs_embeds), 1) # B, (1+T), D
attention_mask = torch.cat((bos_eos_mask, attention_mask), 1) # B, (1+T)
if target is not None:
target = torch.cat((bos_eos_target, target), 1) # B, (1+T), D
if eos is not None:
eos_embed = self.speech_token_emded(torch.full([B, 1],
eos).to(inputs_embeds.device)) # B, 1, D
inputs_embeds = torch.cat((inputs_embeds, eos_embed), 1) # B, (1+T+1), D
attention_mask = torch.cat((attention_mask, bos_eos_mask), 1) # B, (1+T+1)
if target is not None:
target = torch.cat((target, bos_eos_target), 1) # B, (1+T+1), D
return inputs_embeds, attention_mask, target
def infer_sample_teach_force(
self,
wavs,
wavs_len,
prompt,
text,
speech_token,
):
labels_lengths = torch.tensor([len(text[0])], dtype=torch.int64, device=wavs.device)
labels = text[:, :]
labels_pad_mask = make_pad_mask(labels_lengths) # B, L
labels = labels.masked_fill(labels_pad_mask, 0)
speech_embeds = self.embed_tokens(labels) # B, L, D
speech_target = torch.full(labels_pad_mask.shape, self.IGNORE_ID).to(
speech_embeds.device)
speech_masks = ~labels_pad_mask
speech_embeds, speech_masks, speech_target = self._add_bos_eos(0 +self.speech_token_num,
1 +self.speech_token_num,
speech_embeds, speech_masks, speech_target)
prompt = self.tokenizer([prompt], return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_embeds = self.embed_tokens(prompt)
embeds = torch.cat([prompt_embeds, speech_embeds], dim=1)
atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device)
if self.embed_tokens.weight.dtype == torch.float16:
utils_file.logging_limit_print('generate(): self.embed_tokens.weight.dtype == torch.float16')
embeds = embeds.to(torch.float16)
atts = atts.half()
device = wavs.device
inputs_embeds = embeds.to(device)
speech_token_list = speech_token[0].tolist()
speech_token_list_len = len(speech_token_list)
print(f'speech_token_list_len:{speech_token_list_len}')
max_len = 200
beam = 3
beam_size = beam
running_size = beam
output_token = []
hyps = [self.speech_token_num - 1]
scores = [1.0]
llm_out = self.llama_model(
inputs_embeds=embeds,
past_key_values=None,
output_hidden_states=True
)
batch_size = 1
top_k = 10
top_p = 0.9
temperature = 1.0
cache = llm_out.past_key_values
token_emb = self.speech_token_emded(torch.tensor(hyps[-1:]).to(device)).unsqueeze(0)
repetition_penalty = 1.1
top_ps_tensor = torch.FloatTensor([top_p] * batch_size).to(device)
top_ks_tensor = torch.LongTensor([top_k] * batch_size).to(device)
temperatures_tensor = None if not temperature else torch.FloatTensor(
[temperature] * batch_size).to(device)
for i in range(max_len):
llm_out = self.llama_model(
inputs_embeds=token_emb,
past_key_values=cache,
output_hidden_states=True
)
cache = llm_out.past_key_values
hidden_states = llm_out.hidden_states[-1]
token_logits = self.speech_head(hidden_states)
# probs = F.log_softmax(token_logits[:,-1], dim=-1)[0]
next_token_ids = self._sampler(
token_logits,
temperatures_tensor,
top_ps_tensor,
top_ks_tensor,
)
print(i, next_token_ids)
if next_token_ids == self.speech_token_num - 1:
print("break la!")
print("hyps:", hyps)
break
hyps.append(next_token_ids.item())
token_emb = self.speech_token_emded(torch.tensor(speech_token_list[i]).to(device)).unsqueeze(0)
res = []
for i in hyps[1:]:
# if i != self.speech_token_num-1:
res.append(i)
print(res)
return [res]
def _sampler(
self,
logits: torch.Tensor,
temperatures: Union[torch.Tensor, None],
top_ps: torch.Tensor,
top_ks: torch.Tensor,
) -> torch.Tensor:
"""
Sample from logits.
Args:
logits: (1,1,vocab_size)
temperatures:
top_ps:
top_ks:
Returns:
"""
print(f'logits:{logits.shape}')
assert logits.size(1) == 1
logits = logits.squeeze(1) # (batch_size, vocab_size)
if temperatures is None:
return torch.argmax(logits, dim=-1).squeeze(dim=-1)
# Apply temperature scaling.
logits.div_(temperatures.unsqueeze(dim=1))
# Calculate probabilities with softmax.
probs = torch.softmax(logits, dim=-1, dtype=torch.float)
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
# Apply top-p, top-k.
probs_sum = torch.cumsum(probs_sort, dim=-1)
top_ps_mask = (probs_sum - probs_sort) > top_ps.unsqueeze(dim=1)
probs_sort = torch.where(top_ps_mask, 0, probs_sort)
top_ks_mask = torch.arange(probs_idx.shape[-1], device=probs_idx.device)
top_ks_mask = top_ks_mask.expand(probs_idx.shape[0], -1)
top_ks_mask = top_ks_mask >= top_ks.unsqueeze(dim=1)
probs_sort = torch.where(top_ks_mask, 0, probs_sort)
# Re-normalization.
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
probs = torch.gather(probs_sort,
dim=-1,
index=torch.argsort(probs_idx, dim=-1))
next_token_ids = torch.multinomial(probs, num_samples=1,
replacement=True).squeeze(dim=-1)
return next_token_ids
def infer_sample4speech2text_token_teacher_force(
self,
wavs,
wavs_len,
prompt,
speech_token=None,
answer_text=None,
):
self.llama_model.eval()
speech_embeds, speech_masks = self._get_embedding_from_wav(wavs, wavs_len)
speech_embeds, speech_masks, _ = self._add_bos_eos(0 +self.speech_token_num, 1+self.speech_token_num,
speech_embeds, speech_masks, None)
device = speech_embeds.device
prompt = self.tokenizer([prompt], return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_embeds = self.embed_tokens(prompt)
text_token = self.tokenizer([answer_text], return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
text_token_embeds = self.embed_tokens(text_token)
embeds = torch.cat([prompt_embeds, speech_embeds, text_token_embeds], dim=1)
atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device)
if self.embed_tokens.weight.dtype == torch.float16:
utils_file.logging_limit_print('generate(): self.embed_tokens.weight.dtype == torch.float16')
embeds = embeds.to(torch.float16)
atts = atts.half()
inputs_embeds = embeds.to(speech_embeds.device)
max_len = 150
beam = 3
beam_size = beam
running_size = beam
output_token = []
hyps = [self.speech_token_num]
hyps_text = ""
scores = [1.0]
llm_out = self.llama_model(
inputs_embeds=embeds,
past_key_values=None,
output_hidden_states=True
)
# speech_token_list = speech_token[0]
# speech_token_list_len = len(speech_token_list)
if speech_token is not None:
print(f'speech_token_list_len:{len(speech_token[0])}')
print(f'speech_token:{speech_token[0]}')
batch_size = 1
top_k = 10
top_p = 0.9
temperature = 1.2
cache = llm_out.past_key_values
token_emb = self.speech_token_emded(torch.tensor(hyps[-1:]).to(device)).unsqueeze(0)
repetition_penalty = 1.1
top_ps_tensor = torch.FloatTensor([top_p] * batch_size).to(device)
top_ks_tensor = torch.LongTensor([top_k] * batch_size).to(device)
temperatures_tensor = None if not temperature else torch.FloatTensor(
[temperature] * batch_size).to(device)
is_speech_token = False
speech_eos_num = 0
for i in range(max_len):
llm_out = self.llama_model(
inputs_embeds=token_emb,
past_key_values=cache,
output_hidden_states=True
)
cache = llm_out.past_key_values
hidden_states = llm_out.hidden_states[-1]
token_logits = self.speech_head(hidden_states)
# probs = F.log_softmax(token_logits[:,-1], dim=-1)[0]
# if i ==2 or i == 80:
# torch.save(probs, f'probs_{i}.pt')
next_token_ids = self._sampler(
token_logits,
temperatures_tensor,
top_ps_tensor,
top_ks_tensor,
)
print(i, next_token_ids, f'is_speech_token:{is_speech_token}')
if next_token_ids == self.speech_token_num - 1:
print(f'遇到 4096')
break
hyps.append(next_token_ids.item())
# if 1+i >= len(speech_token[0]):
# break
# token_emb = self.speech_token_emded(torch.tensor([speech_token[0][i+1]]).to(device)).unsqueeze(0)
token_emb = self.embed_tokens(torch.tensor(hyps[-1:]).to(device)).unsqueeze(0)
res = []
for i in hyps[1:]:
# if i != self.speech_token_num-1:
res.append(i)
print(res)
return [answer_text + str(res[2:])]
def infer_sample4speech2text_token_teacher_force2(
self,
wavs,
wavs_len,
prompt,
speech_token=None,
answer_text=None,
):
self.llama_model.eval()
speech_embeds, speech_masks = self._get_embedding_from_wav(wavs, wavs_len)
speech_embeds, speech_masks, _ = self._add_bos_eos(0 +self.speech_token_num, 1+self.speech_token_num ,
speech_embeds, speech_masks, None)
device = speech_embeds.device
prompt = self.tokenizer([prompt], return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_embeds = self.embed_tokens(prompt)
text_token = self.tokenizer([answer_text], return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
# text_token_embeds = self.embed_tokens(text_token)
embeds = torch.cat([prompt_embeds, speech_embeds], dim=1)
atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device)
if self.embed_tokens.weight.dtype == torch.float16:
utils_file.logging_limit_print('generate(): self.embed_tokens.weight.dtype == torch.float16')
embeds = embeds.to(torch.float16)
atts = atts.half()
inputs_embeds = embeds.to(speech_embeds.device)
max_len = 150
beam = 3
beam_size = beam
running_size = beam
output_token = []
hyps = [self.speech_token_num - 1]
hyps_text = ""
scores = [1.0]
llm_out = self.llama_model(
inputs_embeds=embeds,
past_key_values=None,
output_hidden_states=True
)
# speech_token_list = speech_token[0]
# speech_token_list_len = len(speech_token_list)
if speech_token is not None:
print(f'speech_token_list_len:{len(speech_token)}')
print(f'speech_token:{speech_token}')
batch_size = 1
top_k = 10
top_p = 0.9
temperature = 1.2
cache = llm_out.past_key_values
token_emb = self.speech_token_emded(torch.tensor(hyps[-1:]).to(device)).unsqueeze(0)
repetition_penalty = 1.1
top_ps_tensor = torch.FloatTensor([top_p] * batch_size).to(device)
top_ks_tensor = torch.LongTensor([top_k] * batch_size).to(device)
temperatures_tensor = None if not temperature else torch.FloatTensor(
[temperature] * batch_size).to(device)
is_speech_token = False
speech_eos_num = 0
token_num = len(speech_token)
for i in range(token_num):
llm_out = self.llama_model(
inputs_embeds=token_emb,
past_key_values=cache,
output_hidden_states=True
)
cache = llm_out.past_key_values
hidden_states = llm_out.hidden_states[-1]
token_logits = self.speech_head(hidden_states)
# probs = F.log_softmax(token_logits[:,-1], dim=-1)[0]
# if i ==2 or i == 80:
# torch.save(probs, f'probs_{i}.pt')
next_token_ids = self._sampler(
token_logits,
temperatures_tensor,
top_ps_tensor,
top_ks_tensor,
)
print(i, next_token_ids, f'is_speech_token:{is_speech_token}')
if next_token_ids == self.speech_token_num - 1:
print(f'遇到 4096')
break
hyps.append(next_token_ids.item())
# if 1+i >= len(speech_token[0]):
# break
# token_emb = self.speech_token_emded(torch.tensor([speech_token[0][i+1]]).to(device)).unsqueeze(0)
token_emb = self.embed_tokens(torch.tensor([speech_token[i]]).to(device)).unsqueeze(0)
res = []
for i in hyps[1:]:
# if i != self.speech_token_num-1:
res.append(i)
print(res)
return [hyps_text + str(res)] |