Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,263 Bytes
841f290 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
import random
from typing import Tuple
import torch
from torch.nn.utils.rnn import pad_sequence
from wenet.utils.common import pad_list
from gxl_ai_utils.utils import utils_file
def add_sos_eos4speech_llm(ys_pad: torch.Tensor, sos: int, eos: int,
ignore_id: int) -> Tuple[torch.Tensor, torch.Tensor]:
"""Add <sos> and <eos> labels.
为out后接一个eos. in基本保持不变
Args:
ys_pad (torch.Tensor): batch of padded target sequences (B, Lmax)
sos (int): index of <sos>
eos (int): index of <eeos>
ignore_id (int): index of padding
Returns:
ys_in (torch.Tensor) : (B, Lmax)
ys_out (torch.Tensor) : (B, Lmax + 1)
Examples:
>>> sos_id = 10
>>> eos_id = 11
>>> ignore_id = -1
>>> ys_pad
tensor([[ 1, 2, 3, 4, 5],
[ 4, 5, 6, -1, -1],
[ 7, 8, 9, -1, -1]], dtype=torch.int32)
>>> ys_in,ys_out=add_sos_eos(ys_pad, sos_id , eos_id, ignore_id)
>>> ys_in
tensor([[ 1, 2, 3, 4, 5],
[ 4, 5, 6, 11, 11],
[ 7, 8, 9, 11, 11]])
>>> ys_out
tensor([[ 1, 2, 3, 4, 5, 11],
[ 4, 5, 6, 11, -1, -1],
[ 7, 8, 9, 11, -1, -1]])
"""
_sos = torch.tensor([sos],
dtype=torch.long,
requires_grad=False,
device=ys_pad.device)
_eos = torch.tensor([eos],
dtype=torch.long,
requires_grad=False,
device=ys_pad.device)
ys = [y[y != ignore_id] for y in ys_pad] # parse padded ys
# ys_in = [torch.cat([_sos, y], dim=0) for y in ys]
ys_in = [y for y in ys]
ys_out = [torch.cat([y, _eos], dim=0) for y in ys]
return pad_list(ys_in, eos), pad_list(ys_out, ignore_id)
global_prompt_dict = None
def get_prompt_by_task(task_name):
"""
根据task给定指定的prompt, 并实现prompt的多样随意性
Args:
task_name:
Returns:
"""
global global_prompt_dict
if global_prompt_dict is None:
global_prompt_dict = utils_file.load_dict_from_yaml('conf/prompt.yaml')
random_index = random.randint(0, len(global_prompt_dict[task_name]) - 1)
return global_prompt_dict[task_name][random_index]
import torch
def merge_labels_with_valid_adjacent(
labels_embeds1, labels_target1, labels_mask1,
labels_embeds2, labels_target2, labels_mask2,
pad_value=0, ignore_id=-100
):
"""
合并两组标签,有效特征紧邻拼接,无效特征后移
Args:
labels_embeds1 (Tensor): 标签1嵌入,形状 (B, L1, D)
labels_target1 (Tensor): 标签1目标,形状 (B, L1)
labels_mask1 (Tensor): 标签1掩码,形状 (B, L1)
labels_embeds2 (Tensor): 标签2嵌入,形状 (B, L2, D)
labels_target2 (Tensor): 标签2目标,形状 (B, L2)
labels_mask2 (Tensor): 标签2掩码,形状 (B, L2)
pad_value (int): 嵌入填充值
ignore_id (int): 目标填充值(如IGNORE_ID)
Returns:
merged_embeds (Tensor): 合并嵌入,形状 (B, L1+L2, D)
merged_target (Tensor): 合并目标,形状 (B, L1+L2)
merged_mask (Tensor): 合并掩码,形状 (B, L1+L2)
"""
batch_size = labels_embeds1.size(0)
max_len = labels_embeds1.size(1) + labels_embeds2.size(1)
merged_embeds = []
merged_target = []
merged_mask = []
for i in range(batch_size):
# 提取有效特征索引
valid_indices1 = torch.where(labels_mask1[i])[0]
valid_indices2 = torch.where(labels_mask2[i])[0]
# 合并有效特征段
valid_embeds = torch.cat([
labels_embeds1[i, valid_indices1],
labels_embeds2[i, valid_indices2]
], dim=0)
valid_target = torch.cat([
labels_target1[i, valid_indices1],
labels_target2[i, valid_indices2]
], dim=0)
valid_mask = torch.cat([
labels_mask1[i, valid_indices1],
labels_mask2[i, valid_indices2]
], dim=0)
# 填充无效部分
pad_length = max_len - len(valid_embeds)
padded_embeds = torch.cat([
valid_embeds,
torch.full((pad_length, labels_embeds1.size(2)), pad_value, device=labels_embeds1.device)
], dim=0)
padded_target = torch.cat([
valid_target,
torch.full((pad_length,), ignore_id, device=labels_target1.device)
], dim=0)
padded_mask = torch.cat([
valid_mask,
torch.zeros(pad_length, dtype=torch.bool, device=labels_mask1.device)
], dim=0)
merged_embeds.append(padded_embeds)
merged_target.append(padded_target)
merged_mask.append(padded_mask)
# 堆叠批次结果
merged_embeds = torch.stack(merged_embeds, dim=0).to(labels_embeds1.device)
merged_target = torch.stack(merged_target, dim=0).to(labels_target1.device)
merged_mask = torch.stack(merged_mask, dim=0).to(labels_mask1.device)
return merged_embeds, merged_target, merged_mask
def make_streaming_mode_from_s2s_old(text_tokens_padded, text_tokens_lens, speech_tokens_padded, speech_tokens_lens, ):
"""
Args:
text_tokens_padded: (B, Lmax)
text_tokens_lens: (B,)
speech_tokens_padded: (B, Lmax2)
speech_tokens_lens: (B,)
Returns:
streaming_mode_tokens_padded: (B, Lmax+Lmax2+1)
streaming_mode_tokens_lens: (B,)
首先assert每个单元的文字有效token的数量的3倍是少于该单元的speech token的数量。
然后做如下排列:对于batch内的每个item, 先排6个文字有效token,然后再排18个speech 有效token,然后再排6个文字token,然后排18个speech token,以此类推,直到有效文本token用尽。
"""
text_tokens_padded = text_tokens_padded.to(torch.int64)
speech_tokens_padded = speech_tokens_padded.to(torch.int64)
batch_size = text_tokens_padded.size(0)
device = text_tokens_padded.device
# 验证文字token数量不超过语音token的1/3
for i in range(batch_size):
assert text_tokens_lens[i] * 3 <= speech_tokens_lens[i], \
f"Batch {i}: Text tokens * 3 should be less than speech tokens"
streaming_mode_tokens_list = []
streaming_mode_lens = []
for i in range(batch_size):
text_tokens = text_tokens_padded[i, :text_tokens_lens[i]]
speech_tokens = speech_tokens_padded[i, :speech_tokens_lens[i]].to(torch.int64)
streaming_tokens = []
text_idx = 0
speech_idx = 0
while text_idx < text_tokens_lens[i]:
# 处理文本token(6个一组),防止越界
chunk_size = min(6, text_tokens_lens[i] - text_idx)
streaming_tokens.extend(text_tokens[text_idx:text_idx + chunk_size].tolist())
text_idx += chunk_size
# 如果文本token不足6个,添加999标记
if chunk_size < 6:
streaming_tokens.append(999)
# 处理语音token(18个一组),防止越界
speech_chunk = min(18, speech_tokens_lens[i] - speech_idx)
streaming_tokens.extend(speech_tokens[speech_idx:speech_idx + speech_chunk].tolist())
speech_idx += speech_chunk
# 如果文本token正好用完,添加999标记
if text_idx == text_tokens_lens[i] and text_tokens_lens[i] % 6 == 0:
streaming_tokens.append(999)
# 添加剩余的语音token
streaming_tokens.extend(speech_tokens[speech_idx:].tolist())
# 转换为BFLOAT16张量
streaming_mode_tokens_list.append(torch.tensor(streaming_tokens, dtype=torch.int64, device=device))
streaming_mode_lens.append(len(streaming_tokens))
streaming_mode_tokens_padded = pad_sequence(streaming_mode_tokens_list, batch_first=True, padding_value=0).to(
device)
streaming_mode_tokens_lens = torch.tensor(streaming_mode_lens, device=device)
return streaming_mode_tokens_padded, streaming_mode_tokens_lens
def make_streaming_mode_from_s2s(text_tokens_padded, text_tokens_lens, speech_tokens_padded, speech_tokens_lens, ):
"""
Args:
text_tokens_padded: (B, Lmax)
text_tokens_lens: (B,)
speech_tokens_padded: (B, Lmax2)
speech_tokens_lens: (B,)
Returns:
streaming_mode_tokens_padded: (B, Lmax+Lmax2+1)
streaming_mode_tokens_lens: (B,)
首先assert每个单元的文字有效token的数量的3倍是少于该单元的speech token的数量。
然后做如下排列:对于batch内的每个item, 先排6个文字有效token,然后再排18个speech 有效token,然后再排6个文字token,然后排18个speech token,以此类推,直到有效文本token用尽。
<think_end> : [13708, 766, 835, 29]
"""
text_tokens_padded = text_tokens_padded.to(torch.int64)
speech_tokens_padded = speech_tokens_padded.to(torch.int64)
batch_size = text_tokens_padded.size(0)
device = text_tokens_padded.device
# 验证文字token数量不超过语音token的1/3
for i in range(batch_size):
assert text_tokens_lens[i] * 3 <= speech_tokens_lens[i], \
f"Batch {i}: Text tokens * 3 should be less than speech tokens"
streaming_mode_tokens_list = []
streaming_mode_lens = []
for i in range(batch_size):
text_tokens = text_tokens_padded[i, :text_tokens_lens[i]]
speech_tokens = speech_tokens_padded[i, :speech_tokens_lens[i]].to(torch.int64)
streaming_tokens = []
text_idx = 0
speech_idx = 0
while text_idx < text_tokens_lens[i]: # 这里的指针指的是左指针,肯定不能等于 len(text_tokens)
# 处理文本token(6个一组),防止越界
chunk_size = min(6, text_tokens_lens[i] - text_idx)
streaming_tokens.extend(text_tokens[text_idx:text_idx + chunk_size].tolist())
text_idx += chunk_size
# 处理语音token(18个一组),防止越界
speech_chunk = min(18, speech_tokens_lens[i] - speech_idx)
streaming_tokens.extend(speech_tokens[speech_idx:speech_idx + speech_chunk].tolist())
speech_idx += speech_chunk
# 添加剩余的语音token
streaming_tokens.extend(speech_tokens[speech_idx:].tolist())
streaming_mode_tokens_list.append(torch.tensor(streaming_tokens, dtype=torch.int64, device=device))
streaming_mode_lens.append(len(streaming_tokens))
streaming_mode_tokens_padded = pad_sequence(streaming_mode_tokens_list, batch_first=True, padding_value=0).to(
device)
streaming_mode_tokens_lens = torch.tensor(streaming_mode_lens, device=device)
return streaming_mode_tokens_padded, streaming_mode_tokens_lens
def make_streaming_mode_from_s2s4think(
text_tokens_padded, text_tokens_lens,
speech_tokens_padded, speech_tokens_lens,
):
"""
Args:
text_tokens_padded: (B, Lmax)
text_tokens_lens: (B,)
speech_tokens_padded: (B, Lmax2)
speech_tokens_lens: (B,)
Returns:
streaming_mode_tokens_padded: (B, Lmax+Lmax2+1)
streaming_mode_tokens_lens: (B,)
"""
text_tokens_padded = text_tokens_padded.to(torch.int64)
speech_tokens_padded = speech_tokens_padded.to(torch.int64)
batch_size = text_tokens_padded.size(0)
device = text_tokens_padded.device
# 验证文字 token 数量不超过语音 token 的 1/3
for i in range(batch_size):
assert text_tokens_lens[i] * 3 <= speech_tokens_lens[i], \
f"Batch {i}: Text tokens * 3 should be <= speech tokens"
streaming_mode_tokens_list = []
streaming_mode_lens = []
# 要检测的子序列
target_seq = [13708, 766, 835, 29]
seq_len = len(target_seq)
for i in range(batch_size):
# 取出本样本的有效文本和语音序列
text_tokens = text_tokens_padded[i, :text_tokens_lens[i]]
speech_tokens = speech_tokens_padded[i, :speech_tokens_lens[i]]
streaming_tokens = []
# —— 新增逻辑:先在 text_tokens 中寻找整个子序列 target_seq ——
text_list = text_tokens.tolist()
prefix_end_idx = 0
# 滑窗匹配
for j in range(text_tokens_lens[i] - seq_len + 1):
if text_list[j:j + seq_len] == target_seq:
prefix_end_idx = j + seq_len
break
# 如果找到了,就先把前缀一次性输出
if prefix_end_idx > 0:
streaming_tokens.extend(text_list[:prefix_end_idx])
text_idx = prefix_end_idx
else:
text_idx = 0
# —— 新增逻辑结束 ——
speech_idx = 0
# 之后再从 text_idx 开始做常规的“6 文本 + 18 语音”交错
while text_idx < text_tokens_lens[i]:
# 文本块(最多 6)
chunk_size = min(6, text_tokens_lens[i] - text_idx)
streaming_tokens.extend(text_list[text_idx:text_idx + chunk_size])
text_idx += chunk_size
# 语音块(最多 18)
speech_chunk = min(18, speech_tokens_lens[i] - speech_idx)
streaming_tokens.extend(speech_tokens[speech_idx:speech_idx + speech_chunk].tolist())
speech_idx += speech_chunk
# 最后再把剩余的所有语音 token 全部补上
streaming_tokens.extend(speech_tokens[speech_idx:].tolist())
# 收集本样本结果
streaming_mode_tokens_list.append(
torch.tensor(streaming_tokens, dtype=torch.int64, device=device)
)
streaming_mode_lens.append(len(streaming_tokens))
# padding 到同样长度
streaming_mode_tokens_padded = pad_sequence(
streaming_mode_tokens_list,
batch_first=True,
padding_value=0
).to(device)
streaming_mode_tokens_lens = torch.tensor(streaming_mode_lens, device=device)
return streaming_mode_tokens_padded, streaming_mode_tokens_lens
def do_embedding_for_two_embeds(input_token_ids, dividing_id, embedding1, embedding2):
"""
Args:
input_token_ids: (B, Lmax) ,其词表范围是[0, vocab_size1+vocab_size2)
dividing_id: int, 第一个词表的个数
embedding1: nn.Embedding(vocab_size1, embedding_dim)
embedding2: nn.Embedding(vocab_size2, embedding_dim)
Returns:
embedding1_output: (B, Lmax, D)
把两个embeddings 虚拟成一个大的词向量
"""
input_token_ids = input_token_ids.to(torch.int64)
mask4embedding1 = input_token_ids < dividing_id
mask4embedding2 = input_token_ids >= dividing_id
embedding1_output = embedding1(input_token_ids[mask4embedding1]).to(embedding1.weight.dtype)
embedding2_output = embedding2(input_token_ids[mask4embedding2] - dividing_id).to(embedding1.weight.dtype)
res_output = torch.zeros(input_token_ids.size(0), input_token_ids.size(1), embedding1.embedding_dim,dtype=embedding1.weight.dtype,
device=embedding1.weight.device)
res_output[mask4embedding1] = embedding1_output
res_output[mask4embedding2] = embedding2_output
return res_output
def do_convert_num2text(num_str: str):
"""
将数字字符串转换为中文数字
Args:
num_str: 数字字符串
Returns:
转换后的中文数字字符串
"""
import cn2an
num_str = num_str.strip()
output = cn2an.transform(num_str, "an2cn")
return output
def _do_test_for_streaming_chat():
# test make_streaming_mode_from_s2s
text_tokens_padded = torch.randint(0, 100, (3, 10)).to(torch.device('npu:0'))
text_tokens_lens = torch.tensor([5, 7, 3]).to(torch.device('npu:0'))
speech_tokens_padded = torch.randint(100, 200, (3, 150)).to(torch.device('npu:0'))
speech_tokens_lens = torch.tensor([100, 120, 80]).to(torch.device('npu:0'))
streaming_mode_tokens_padded, streaming_mode_tokens_lens = make_streaming_mode_from_s2s(text_tokens_padded,
text_tokens_lens,
speech_tokens_padded,
speech_tokens_lens)
print(streaming_mode_tokens_padded.shape)
print(streaming_mode_tokens_padded.device)
print(streaming_mode_tokens_lens)
print(streaming_mode_tokens_lens.device)
# test do_embedding_for_two_embeds
input_token_ids = torch.randint(0, 100, (3, 10)).to(torch.device('npu:0'))
dividing_id = 50
embedding1 = torch.nn.Embedding(50, 10).to(torch.device('npu:0'))
embedding2 = torch.nn.Embedding(50, 10).to(torch.device('npu:0'))
res_output = do_embedding_for_two_embeds(input_token_ids, dividing_id, embedding1, embedding2)
print(res_output.shape)
print(res_output.device)
a = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, ]).to(torch.device('npu:0'))
print(a[3:1000])
if __name__ == '__main__':
""""""
|