Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,629 Bytes
841f290 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# 负责wav & text instruct 的处理
import codecs
import json
import random
from gxl_ai_utils.utils import utils_file
import torch
import os
# asr+X
task_names = [
"age",
"gender",
"style",
"emotion",
"caption"
]
map_dict = {
"<TRANSCRIBE> <STYLE>": "style",
"<TRANSCRIBE> <AGE>": "age",
"<TRANSCRIBE> <GENDER>": "gender",
"<TRANSCRIBE> <EMOTION>": "emotion",
"<TRANSCRIBE> <CAPTION>": "caption",
"<STYLE>": "style_only_X",
"<AGE>": "age_only_X",
"<GENDER>": "gender_only_X",
"<EMOTION>": "emotion_only_X",
"<CAPTION>": "caption_only_X",
}
question_info_dir = "/mnt/sfs/asr/code/osum_osum_echat/examples/wenetspeech/whisper/conf/language_follow_prompt/Q_with_asr"
# question_info_dir = "D:\osum_echat_workspace_2\osum_using_ofical\osum_osum_echat\examples\wenetspeech\whisper\conf\language_follow_prompt\Q_with_asr"
question_big_dict = {}
question_wav_big_dict = {}
# for task_name in task_names:
# task_json_path = os.path.join(question_info_dir, f"{task_name}.json")
# dict_i = utils_file.load_dict_from_json(task_json_path)
# question_strs = list(dict_i.values())
# question_big_dict[task_name] = question_strs
#
#
# for task_name in task_names:
# task_json_path = os.path.join(question_info_dir, f"{task_name}.json")
# dict_i = utils_file.load_dict_from_json(task_json_path)
# question_strs = list(dict_i.keys()) # 获取字典的键作为问题字符串列表
# question_wav_big_dict[task_name] = []
# for i in range(1, 21):
# new_question_strs = [f"/mnt/sfs/asr/update_data/Q_with_asr_added_by_20250406/{task_name}_{x}_speaker_{i}.wav" for x in question_strs]
# question_wav_big_dict[task_name].extend(new_question_strs)
question_info_dir = "/mnt/sfs/asr/code/osum_osum_echat/examples/wenetspeech/whisper/conf/language_follow_prompt/Q"
# question_info_dir = "D:\osum_echat_workspace_2\osum_using_ofical\osum_osum_echat\examples\wenetspeech\whisper\conf\language_follow_prompt\Q"
# for task_name in task_names:
# task_json_path = os.path.join(question_info_dir, f"{task_name}.json")
# dict_i = utils_file.load_dict_from_json(task_json_path)
# question_strs = list(dict_i.values())
# question_big_dict[task_name+"_only_X"] = question_strs
# for task_name in task_names:
# task_json_path = os.path.join(question_info_dir, f"{task_name}.json")
# dict_i = utils_file.load_dict_from_json(task_json_path)
# question_strs = list(dict_i.keys()) # 获取字典的键作为问题字符串列表
# question_wav_big_dict[task_name+"_only_X"] = []
# for i in range(1,21):
# new_question_strs = [f"/mnt/sfs/asr/update_data/Q_only_X_added_by_20250406/{task_name}_{x}_speaker_{i}.wav" for x in question_strs]
# question_wav_big_dict[task_name+"_only_X"].extend(new_question_strs)
# for answer
answer_info_dir = "/mnt/sfs/asr/code/osum_osum_echat/examples/wenetspeech/whisper/conf/language_follow_prompt/Q_with_asr/answer"
# answer_info_dir = "D:\osum_echat_workspace_2\osum_using_ofical\osum_osum_echat\examples\wenetspeech\whisper\conf\language_follow_prompt\Q_with_asr\\answer"
answer_big_dict = {}
# for task_name in task_names:
# task_json_path = os.path.join(answer_info_dir, f"{task_name}.json")
# dict_i = utils_file.load_dict_from_json(task_json_path)
# answer_big_dict[task_name] = dict_i
answer_info_dir = "/mnt/sfs/asr/code/osum_osum_echat/examples/wenetspeech/whisper/conf/language_follow_prompt/Q/answer"
# answer_info_dir = "D:\osum_echat_workspace_2\osum_using_ofical\osum_osum_echat\examples\wenetspeech\whisper\conf\language_follow_prompt\Q\\answer"
# for task_name in task_names:
# task_json_path = os.path.join(answer_info_dir, f"{task_name}.json")
# dict_i = utils_file.load_dict_from_json(task_json_path)
# answer_big_dict[task_name+"_only_X"] = dict_i
def get_question_prompt_by_task(task_tag):
key_str = map_dict.get(task_tag, None)
if key_str is None:
return None
question_strs = question_big_dict.get(key_str, [])
if len(question_strs) == 0:
return None
# 随机算一个句子
question_str = random.choice(question_strs)
return question_str
def get_question_wav_path_by_task(task_tag):
key_str = map_dict.get(task_tag, None)
if key_str is None:
return None
question_strs = question_wav_big_dict.get(key_str, [])
if len(question_strs) == 0:
return None
# 随机算一个句子
question_str = random.choice(question_strs)
return question_str
def get_answer_prompt_by_task(task_tag, answer_tag, asr_txt=None):
key_str = map_dict.get(task_tag, None)
if key_str is None:
utils_file.logging_error(f"task_tag {task_tag} not in map_dict")
return None
answer_dict = answer_big_dict.get(key_str, {})
answer_strs = answer_dict.get(answer_tag, [])
if len(answer_strs) == 0:
utils_file.logging_error(f"answer_tag {answer_tag} not in answer_dict of {task_tag}")
return None
# 随机算一个句子
answer_str = random.choice(answer_strs)
if asr_txt is not None:
if "{}" not in answer_str:
utils_file.logging_error(f"answer_str {answer_str} not contain","{}", 'but asr_txt is not None')
return None
answer_str = answer_str.format(asr_txt)
else:
if "{}" in answer_str:
utils_file.logging_error(f"answer_str {answer_str} contain","{}", 'but asr_txt is None')
return None
return answer_str
if __name__ == '__main__':
task_tag = "<CAPTION>"
type_tag = "church_bells"
question_str = get_question_wav_path_by_task(task_tag)
print(question_str)
question_str = get_question_wav_path_by_task(task_tag)
print(question_str)
question_str = get_question_wav_path_by_task(task_tag)
print(question_str)
question_str = get_question_wav_path_by_task(task_tag)
print(question_str)
question_str = get_question_prompt_by_task(task_tag)
print(question_str)
question_str = get_question_prompt_by_task(task_tag)
print(question_str)
question_str = get_question_prompt_by_task(task_tag)
print(question_str)
question_str = get_question_prompt_by_task(task_tag)
print(question_str)
question_str = get_answer_prompt_by_task(task_tag, type_tag)
print(question_str)
question_str = get_answer_prompt_by_task(task_tag, type_tag)
print(question_str)
question_str = get_answer_prompt_by_task(task_tag, type_tag)
print(question_str)
question_str = get_answer_prompt_by_task(task_tag, type_tag)
print(question_str)
question_str = get_answer_prompt_by_task(task_tag, type_tag, "I am a child")
print(question_str)
question_str = get_answer_prompt_by_task(task_tag, type_tag, "I am a child")
print(question_str)
question_str = get_answer_prompt_by_task(task_tag, type_tag, "I am a child")
print(question_str)
question_str = get_answer_prompt_by_task(task_tag, type_tag, "I am a child")
print(question_str)
# caption_json_path = "D:\osum_echat_workspace_2\osum_using_ofical\osum_osum_echat\examples\wenetspeech\whisper\conf\language_follow_prompt\Q_with_asr\\answer\caption.json"
# caption_dict = utils_file.load_dict_from_json(caption_json_path)
# new_caption_dict = {}
# utils_file.print_list(list(caption_dict.keys()))
# for k, v in caption_dict.items():
# new_k = k.lower()
# new_caption_dict[new_k] = v
# with codecs.open(caption_json_path, 'w', encoding='utf-8') as f:
# json.dump(new_caption_dict, f, ensure_ascii=False, indent=4)
|