File size: 5,131 Bytes
841f290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from ESPnet(https://github.com/espnet/espnet)

from typing import Tuple

import torch
import torch.nn.functional as F

class osum_echatCTCMapper(torch.nn.Module):
    """CTC module"""

    def __init__(
        self,
        ctc_linear: torch.nn.Linear,
        dropout_rate: float = 0.0,
        reduce: bool = True,
        blank_id: int = 0,
    ):
        """ Construct CTC module
        Args:
            odim: dimension of outputs
            encoder_output_size: number of encoder projection units
            dropout_rate: dropout rate (0.0 ~ 1.0)
            reduce: reduce the CTC loss into a scalar
            blank_id: blank label.
        """
        super().__init__()
        self.ctc_lo = ctc_linear
        self.dropout_rate = dropout_rate

        reduction_type = "sum" if reduce else "none"
        self.ctc_loss = torch.nn.CTCLoss(blank=blank_id,
                                         reduction=reduction_type,
                                         zero_infinity=True)

    def forward(self, hs_pad: torch.Tensor, hlens: torch.Tensor,
                ys_pad: torch.Tensor,
                ys_lens: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """Calculate CTC loss.

        Args:
            hs_pad: batch of padded hidden state sequences (B, Tmax, D)
            hlens: batch of lengths of hidden state sequences (B)
            ys_pad: batch of padded character id sequence tensor (B, Lmax)
            ys_lens: batch of lengths of character sequence (B)
        """
        # hs_pad: (B, L, NProj) -> ys_hat: (B, L, Nvocab)
        ys_hat = self.ctc_lo(F.dropout(hs_pad, p=self.dropout_rate))
        # ys_hat: (B, L, D) -> (L, B, D)
        ys_hat = ys_hat.transpose(0, 1)
        ys_hat = ys_hat.log_softmax(2)
        loss = self.ctc_loss(ys_hat, ys_pad, hlens, ys_lens)
        # Batch-size average
        loss = loss / ys_hat.size(1)
        ys_hat = ys_hat.transpose(0, 1)
        return loss, ys_hat

class CTC(torch.nn.Module):
    """CTC module"""

    def __init__(
        self,
        odim: int,
        encoder_output_size: int,
        dropout_rate: float = 0.0,
        reduce: bool = True,
        blank_id: int = 0,
    ):
        """ Construct CTC module
        Args:
            odim: dimension of outputs
            encoder_output_size: number of encoder projection units
            dropout_rate: dropout rate (0.0 ~ 1.0)
            reduce: reduce the CTC loss into a scalar
            blank_id: blank label.
        """
        super().__init__()
        eprojs = encoder_output_size
        self.dropout_rate = dropout_rate
        self.ctc_lo = torch.nn.Linear(eprojs, odim)

        reduction_type = "sum" if reduce else "none"
        self.ctc_loss = torch.nn.CTCLoss(blank=blank_id,
                                         reduction=reduction_type,
                                         zero_infinity=True)

    def forward(self, hs_pad: torch.Tensor, hlens: torch.Tensor,
                ys_pad: torch.Tensor,
                ys_lens: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """Calculate CTC loss.

        Args:
            hs_pad: batch of padded hidden state sequences (B, Tmax, D)
            hlens: batch of lengths of hidden state sequences (B)
            ys_pad: batch of padded character id sequence tensor (B, Lmax)
            ys_lens: batch of lengths of character sequence (B)
        """
        # hs_pad: (B, L, NProj) -> ys_hat: (B, L, Nvocab)
        ys_hat = self.ctc_lo(F.dropout(hs_pad, p=self.dropout_rate))
        # ys_hat: (B, L, D) -> (L, B, D)
        ys_hat = ys_hat.transpose(0, 1)
        ys_hat = ys_hat.log_softmax(2)
        loss = self.ctc_loss(ys_hat, ys_pad, hlens, ys_lens)
        # Batch-size average
        loss = loss / ys_hat.size(1)
        ys_hat = ys_hat.transpose(0, 1)
        return loss, ys_hat

    def log_softmax(self, hs_pad: torch.Tensor) -> torch.Tensor:
        """log_softmax of frame activations

        Args:
            Tensor hs_pad: 3d tensor (B, Tmax, eprojs)
        Returns:
            torch.Tensor: log softmax applied 3d tensor (B, Tmax, odim)
        """
        return F.log_softmax(self.ctc_lo(hs_pad), dim=2)

    def argmax(self, hs_pad: torch.Tensor) -> torch.Tensor:
        """argmax of frame activations

        Args:
            torch.Tensor hs_pad: 3d tensor (B, Tmax, eprojs)
        Returns:
            torch.Tensor: argmax applied 2d tensor (B, Tmax)
        """
        return torch.argmax(self.ctc_lo(hs_pad), dim=2)