File size: 8,849 Bytes
841f290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import datetime
import logging
import sys
from contextlib import nullcontext

# if your python version < 3.7 use the below one
# from contextlib import suppress as nullcontext
import torch
from wenet.utils.common import StepTimer

from wenet.utils.train_utils import (wenet_join, batch_forward, batch_backward,
                                     update_parameter_and_lr, log_per_step,
                                     save_model)

import os
from gxl_ai_utils.utils import utils_file
class Executor:

    def __init__(self,
                 global_step: int = 0,
                 device: torch.device = torch.device("cpu")):
        self.step = global_step + 1
        self.train_step_timer = None
        self.cv_step_timer = None
        self.device = device

    def train(self, model, optimizer, scheduler, train_data_loader,
              cv_data_loader, writer, configs, scaler, group_join):
        ''' Train one epoch
        '''
        if self.train_step_timer is None:
            self.train_step_timer = StepTimer(self.step)
        model.train()
        init_infos = configs.get("init_infos", {})
        init_batch_num = init_infos.get("batch_idx", 0)
        configs.pop("init_infos", None)
        info_dict = copy.deepcopy(configs)
        logging.info('using accumulate grad, new batch size is {} times'
                     ' larger than before'.format(info_dict['accum_grad']))
        # A context manager to be used in conjunction with an instance of
        # torch.nn.parallel.DistributedDataParallel to be able to train
        # with uneven inputs across participating processes.
        if isinstance(model, torch.nn.parallel.DistributedDataParallel):
            model_context = model.join
        else:
            model_context = nullcontext
        # continue_data = info_dict['dataset_conf'].get('continue_data', True)
        # utils_file.logging_info(f'OSUM-EChat -------- continue_data: {continue_data}')
        with model_context():
            logging.info(f'init_batch_num: {init_batch_num}')
            for batch_idx, batch_dict in enumerate(train_data_loader):
                # print(f'batch_idx: {batch_idx}')
                # if continue_data and batch_idx < init_batch_num:
                #     if batch_idx %100 == 0:
                #         logging.info(f'OSUM-EChat skipping: batch_idx {batch_idx}')
                #     continue
                # if batch_idx %100 == 0:
                #         logging.info(f'OSUM-EChat using: batch_idx {batch_idx}')    
                info_dict["tag"] = "TRAIN"
                info_dict["step"] = self.step
                info_dict["batch_idx"] = batch_idx
                # if wenet_join(group_join, info_dict):
                #     break
                # rank = int(os.environ.get('RANK', 0))
                # if batch_idx < 2400+3472+200    : # 2400+3572的位置会卡着,试着直接跳过他试试.双机器(调过顺序) 2400+3472+2840会卡着。三机器调过顺序后再 2400+3472+268会卡着
                #     if (rank == 0):
                #         print(f'batch_idx: {batch_idx}')
                #     continue

                if batch_dict["target_lengths"].size(0) == 0:
                    continue

                context = None
                # Disable gradient synchronizations across DDP processes.
                # Within this context, gradients will be accumulated on module
                # variables, which will later be synchronized.
                if info_dict.get("train_engine", "torch_ddp") in [
                        "torch_ddp", "torch_fsdp"
                ] and (batch_idx + 1) % info_dict["accum_grad"] != 0:
                    context = model.no_sync
                # Used for single gpu training and DDP gradient synchronization
                # processes.
                else:
                    context = nullcontext

                with context():
                    info_dict = batch_forward(model, batch_dict, scaler,
                                              info_dict, self.device)
                    # if batch_idx %10 == 0:
                        # logging.info(f'after batch_forward: batch_idx {info_dict["batch_idx"]}')
                    
                    info_dict = batch_backward(model, scaler, info_dict)
                    # if batch_idx %10 == 0:
                        # logging.info(f'after batch_backward: batch_idx {info_dict["batch_idx"]}')
                    

                info_dict = update_parameter_and_lr(model, optimizer,
                                                    scheduler, scaler,
                                                    info_dict)
                # if batch_idx %100 == 0:
                    # logging.info(f'after update_parameter_and_lr: batch_idx {info_dict["batch_idx"]}')
                    
                # write training: tensorboard && log
                log_per_step(writer, info_dict, timer=self.train_step_timer)
                save_interval = info_dict.get('save_interval', sys.maxsize)
                if (self.step +
                        1) % save_interval == 0 and self.step != 0 and (
                            batch_idx + 1) % info_dict["accum_grad"] == 0:
                    import torch.distributed as dist
                    # Ensure all ranks start CV at the same time in step mode
                    dist.barrier()
                    # loss_dict = self.cv(model, cv_data_loader, configs)
                    model.train()
                    info_dict.update({
                        "tag":
                        "step_{}".format(self.step),
                        "loss_dict": {'loss':999,'acc':999},
                        "save_time":
                        datetime.datetime.now().strftime('%d/%m/%Y %H:%M:%S'),
                        "lrs":
                        [group['lr'] for group in optimizer.param_groups]
                    })
                    save_model(model, info_dict)
                    # write final cv: tensorboard
                    log_per_step(writer, info_dict)
                    # Ensure all ranks start Train at the same time in step mode
                    dist.barrier()
                self.step += 1 if (batch_idx +
                                   1) % info_dict["accum_grad"] == 0 else 0

    def cv(self, model, cv_data_loader, configs):
        ''' Cross validation on
        '''
        if self.cv_step_timer is None:
            self.cv_step_timer = StepTimer(0.0)
        else:
            self.cv_step_timer.last_iteration = 0.0
        model.eval()
        info_dict = copy.deepcopy(configs)
        num_seen_utts, loss_dict, total_acc = 1, {}, []  # avoid division by 0
        with torch.no_grad():
            for batch_idx, batch_dict in enumerate(cv_data_loader):
                info_dict["tag"] = "CV"
                info_dict["step"] = self.step
                info_dict["batch_idx"] = batch_idx
                info_dict["cv_step"] = batch_idx

                num_utts = batch_dict["target_lengths"].size(0)
                if num_utts == 0:
                    continue

                info_dict = batch_forward(model, batch_dict, None, info_dict,
                                          self.device)
                _dict = info_dict["loss_dict"]

                num_seen_utts += num_utts
                total_acc.append(_dict['th_accuracy'].item(
                ) if _dict.get('th_accuracy', None) is not None else 0.0)
                for loss_name, loss_value in _dict.items():
                    if loss_value is not None and "loss" in loss_name \
                            and torch.isfinite(loss_value):
                        loss_value = loss_value.item()
                        loss_dict[loss_name] = loss_dict.get(loss_name, 0) + \
                            loss_value * num_utts
                # write cv: log
                log_per_step(writer=None,
                             info_dict=info_dict,
                             timer=self.cv_step_timer)
        for loss_name, loss_value in loss_dict.items():
            loss_dict[loss_name] = loss_dict[loss_name] / num_seen_utts
        loss_dict["acc"] = sum(total_acc) / len(total_acc)
        return loss_dict