Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import torch | |
import torch.nn as nn | |
from typing import List, Optional, Tuple, Union | |
import transformers.models | |
from transformers.models.qwen2.modeling_qwen2 import ( | |
Qwen2RotaryEmbedding, | |
Qwen2ForCausalLM, | |
Qwen2MLP, | |
Qwen2RMSNorm, | |
apply_rotary_pos_emb, | |
repeat_kv, | |
_prepare_4d_causal_attention_mask_with_cache_position, | |
) | |
from transformers.utils import logging | |
from transformers.modeling_outputs import CausalLMOutputWithPast | |
from transformers.cache_utils import Cache, StaticCache, SlidingWindowCache | |
from transformers.models.qwen2.configuration_qwen2 import Qwen2Config | |
from .utils import InferTaskCode | |
logger = logging.get_logger(__name__) | |
_GPU_QWEN_TORCH_COMPILE = True | |
# =================================================================== | |
# =============================Attention============================= | |
# =================================================================== | |
class GPUQwen2Attention(nn.Module): | |
""" | |
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer | |
and "Generating Long Sequences with Sparse Transformers". | |
""" | |
def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None): | |
super().__init__() | |
self.config = config | |
self.layer_idx = layer_idx | |
if layer_idx is None: | |
logger.warning_once( | |
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " | |
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " | |
"when creating this class." | |
) | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.hidden_size // self.num_heads | |
self.num_key_value_heads = config.num_key_value_heads | |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
self.max_position_embeddings = config.max_position_embeddings | |
self.rope_theta = config.rope_theta | |
self.is_causal = True | |
self.attention_dropout = config.attention_dropout | |
if (self.head_dim * self.num_heads) != self.hidden_size: | |
raise ValueError( | |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | |
f" and `num_heads`: {self.num_heads})." | |
) | |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) | |
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) | |
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) | |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | |
self.rotary_emb = Qwen2RotaryEmbedding( | |
self.head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
base=self.rope_theta, | |
) | |
# Adapted from Qwen2Attention.forward | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
# NOTE: RoPE return all embedding (to satisfy torch compile) | |
cos, sin = self.rotary_emb(value_states, seq_len=past_key_value.get_max_length()) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
if past_key_value is not None: | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
causal_mask = attention_mask | |
if attention_mask is not None: # no matter the length, we just slice it | |
causal_mask = attention_mask[:, :, :, : past_key_value.get_max_length()] | |
query_states = query_states.contiguous() | |
key_states = key_states.contiguous() | |
value_states = value_states.contiguous() | |
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. | |
is_causal = True if causal_mask is None and q_len > 1 else False | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_states, | |
key_states, | |
value_states, | |
attn_mask=causal_mask, | |
dropout_p=0.0, | |
is_causal=is_causal, | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.view(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj(attn_output) | |
return attn_output, None, past_key_value | |
# =================================================================== | |
# =============================Layer================================= | |
# =================================================================== | |
class GPUQwen2DecoderLayer(nn.Module): | |
def __init__(self, config: Qwen2Config, layer_idx: int): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
if config.sliding_window and config._attn_implementation != "flash_attention_2": | |
logger.warning_once( | |
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " | |
"unexpected results may be encountered." | |
) | |
self.self_attn = GPUQwen2Attention(config, layer_idx) | |
self.mlp = Qwen2MLP(config) | |
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
**kwargs, | |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
`(batch, sequence_length)` where padding elements are indicated by 0. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
(see `past_key_values`). | |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | |
Indices depicting the position of the input sequence tokens in the sequence. | |
kwargs (`dict`, *optional*): | |
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code | |
into the model | |
""" | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
# Self Attention | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
cache_position=cache_position, | |
) | |
hidden_states = residual + hidden_states | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
# =================================================================== | |
# ========================Qwen2ForCausalLM=========================== | |
# =================================================================== | |
class InferQwen2ForCausalLM(Qwen2ForCausalLM): | |
def __init__(self, config): | |
super().__init__(config) | |
self.compile_forward = torch.compile(self.simplify_forward, dynamic=False, fullgraph=True) \ | |
if _GPU_QWEN_TORCH_COMPILE else self.simplify_forward | |
self.text_phase = True | |
''' | |
NOTE: 重写原Qwen2ForCausalLM forward函数,torchair直接编译原函数在返回CausalLMOutputWithPast时会出现编译错误 | |
''' | |
def simplify_forward(self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
): | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
cache_position=cache_position, | |
) | |
return outputs | |
def forward(self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
do_compile = True | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
if past_key_values is not None: | |
past_key_values.training = False | |
# print(self.text_phase) | |
if input_ids is not None: | |
if self.text_phase: | |
inputs_embeds = self.model.embed_tokens(input_ids) | |
else: | |
inputs_embeds = self.speech_token_emded(input_ids) | |
if torch.isin(input_ids, 151645).any(): | |
self.text_phase = False | |
input_ids = None | |
if (inputs_embeds is not None and cache_position[0] == 0) or do_compile==False : | |
# prefill branch | |
outputs = self.simplify_forward(input_ids, | |
attention_mask, | |
position_ids, | |
past_key_values, | |
inputs_embeds, | |
labels, | |
use_cache, | |
output_attentions, | |
output_hidden_states, | |
return_dict, | |
cache_position) | |
else: | |
# decoding | |
outputs = self.compile_forward(input_ids, | |
attention_mask, | |
position_ids, | |
past_key_values, | |
inputs_embeds, | |
labels, | |
use_cache, | |
output_attentions, | |
output_hidden_states, | |
return_dict, | |
cache_position) | |
last_hidden_states = outputs.last_hidden_state | |
if self.text_phase: | |
logits = self.lm_head(last_hidden_states) | |
else: | |
logits = self.speech_head(last_hidden_states) | |
logits = logits.float() | |
return CausalLMOutputWithPast( | |
loss=None, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
inputs_embeds=None, | |
cache_position=None, | |
position_ids=None, | |
use_cache=True, | |
**kwargs, | |
): | |
""" | |
Mainly add static cache support | |
""" | |
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens | |
# Exception 1: when passing input_embeds, input_ids may be missing entries | |
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here | |
if past_key_values is not None: | |
if inputs_embeds is not None: # Exception 1 | |
input_ids = input_ids[:, -cache_position.shape[0] :] | |
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2) | |
input_ids = input_ids[:, cache_position] | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values: | |
position_ids = position_ids[:, -input_ids.shape[1] :] | |
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, | |
# as otherwise the input `position_ids` would have various stride during the decoding. | |
# Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, | |
# `position_ids` is already contiguous but with varying stride which retriggers a capture. | |
position_ids = position_ids.clone(memory_format=torch.contiguous_format) | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and cache_position[0] == 0: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
# NOTE: 与上述的position_ids相同,same as position_ids, for torch.compile and cuda graph | |
input_ids = input_ids.clone(memory_format=torch.contiguous_format) | |
model_inputs = {"input_ids": input_ids} | |
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2: | |
if inputs_embeds is not None and cache_position[0] == 0: | |
# prefill phase, inputs_embeds has shape (B,S,H) | |
batch_size, sequence_length = inputs_embeds.shape[0], inputs_embeds.shape[1] | |
device = inputs_embeds.device | |
else: | |
# decdoing phase, input_ids has shape (B,S) | |
batch_size, sequence_length = input_ids.shape | |
device = input_ids.device | |
dtype = self.lm_head.weight.dtype | |
min_dtype = torch.finfo(dtype).min | |
if inputs_embeds is not None and inputs_embeds.ndim == 2 or input_ids is not None and input_ids.size(-1) == 1: | |
# we only expand attention mask in docoding mode | |
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position( | |
attention_mask, | |
sequence_length=sequence_length, | |
target_length=past_key_values.get_max_length(), | |
dtype=dtype, | |
device=device, | |
min_dtype=min_dtype, | |
cache_position=cache_position, | |
batch_size=batch_size, | |
) | |
model_inputs.update( | |
{ | |
"position_ids": position_ids, | |
"cache_position": cache_position, | |
"past_key_values": past_key_values, | |
"use_cache": use_cache, | |
"attention_mask": attention_mask, | |
"do_compile": kwargs['do_compile'], | |
} | |
) | |
return model_inputs | |
# =================================================================== | |
print("========================= DO Qwen2 PATCH ===========================") | |
# =================================================================== | |
transformers.models.qwen2.modeling_qwen2.Qwen2PreTrainedModel._supports_static_cache = True # enable static cache | |
transformers.models.qwen2.modeling_qwen2.Qwen2DecoderLayer = GPUQwen2DecoderLayer | |
transformers.models.qwen2.modeling_qwen2.Qwen2ForCausalLM = InferQwen2ForCausalLM |