Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import codecs | |
import copy | |
import librosa | |
import logging | |
import random | |
import tarfile | |
from subprocess import PIPE, Popen | |
from urllib.parse import urlparse | |
import torch | |
import torchaudio | |
import torchaudio.compliance.kaldi as kaldi | |
import torch.nn.functional as F | |
from gxl_ai_utils.utils import utils_file | |
from torch.nn.utils.rnn import pad_sequence | |
from wenet.text.hugging_face_tokenizer import HuggingFaceTokenizer | |
torchaudio.set_audio_backend("soundfile") | |
AUDIO_FORMAT_SETS = set(['flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma']) | |
import re | |
def process_text(text): | |
# 1. 删除汉字左右两侧的空格 | |
text = re.sub(r'\s*([\u4e00-\u9fff])\s*', r'\1', text) | |
# 2. 将英文转成小写 | |
text = text.lower() | |
# 3. 删除 < 和 > 符号两侧的空格 | |
text = re.sub(r'\s*<\s*', '<', text) | |
text = re.sub(r'\s*>\s*', '>', text) | |
return text | |
def process_text2(text, task_tag): | |
# 1. 删除汉字左右两侧的空格 | |
text = re.sub(r'\s*([\u4e00-\u9fff])\s*', r'\1', text) | |
# 2. 将英文转成小写 | |
if task_tag == "<TRANSCRIBE>": | |
text = text.lower() | |
# 3. 删除 < 和 > 符号两侧的空格 | |
text = re.sub(r'\s*<\s*', '<', text) | |
text = re.sub(r'\s*>\s*', '>', text) | |
return text | |
def insert_at_position(lst, item_str, position, is_wav:bool): | |
""" | |
将 item_str 插入到 lst 的第 position 个位置(1-based), | |
若 lst 长度不足则以 "-1" 填充至目标长度后再插入。 | |
""" | |
index = position - 1 | |
# 一次性计算需要补充的 "-1" 数目并批量 extend | |
if len(lst) < position: | |
lst.extend(["-1"] * (position - len(lst))) | |
if lst[index] != "-1": | |
assert isinstance(lst[index], dict), f'lst[index] is not a dict {lst[index]}' | |
if is_wav: | |
lst[index]['wav'] = item_str['wav'] | |
else: | |
lst[index]['txt'] = item_str['txt'] | |
else: | |
lst[index] = item_str | |
return lst | |
def check_wav_format(s): | |
match = re.fullmatch(r"wav_(\d+)", s) | |
if match: | |
return True, int(match.group(1)) | |
else: | |
return False, -1 | |
def check_txt_format(s): | |
match = re.fullmatch(r"txt_(\d+)", s) | |
if match: | |
return True, int(match.group(1)) | |
else: | |
return False, -1 | |
def load_dict_list_from_jsonl(jsonl_file_path) -> list: | |
"""""" | |
with codecs.open(jsonl_file_path, 'r', encoding='utf-8') as f: | |
lines = f.readlines() | |
lines_res = [] | |
for line in lines: | |
try: | |
line = json.loads(line) | |
lines_res.append(line) | |
except Exception as e: | |
print(e) | |
continue | |
return lines_res | |
def url_opener(data): | |
""" Give url or local file, return file descriptor | |
Inplace operation. | |
Args: | |
data(Iterable[str]): url or local file list | |
Returns: | |
Iterable[{src, stream}] | |
""" | |
for sample in data: | |
assert 'src' in sample | |
# TODO(Binbin Zhang): support HTTP | |
url = sample['src'] | |
if "|" not in url: | |
utils_file.logging_error(f'OSUM-EChat url_opener 错误,url格式不正确 {url}, 不含有|') | |
continue | |
combine_path, shard_path = url.split('|') | |
if combine_path == "-": | |
big_dict = None | |
else: | |
try: | |
dict_list = load_dict_list_from_jsonl(combine_path) | |
except Exception as e: | |
utils_file.logging_error(f'OSUM-EChat url_opener 错误,加载combine_path {combine_path} 失败 {e}') | |
dict_list = [] | |
big_dict = {} | |
for item in dict_list: | |
big_dict[item['key']] = item | |
try: | |
pr = urlparse(shard_path) | |
# local file | |
if pr.scheme == '' or pr.scheme == 'file': | |
stream = open(shard_path, 'rb') | |
# network file, such as HTTP(HDFS/OSS/S3)/HTTPS/SCP | |
else: | |
cmd = f'wget -q -O - {shard_path}' | |
process = Popen(cmd, shell=True, stdout=PIPE) | |
sample.update(process=process) | |
stream = process.stdout | |
sample.update(stream=stream,big_dict=big_dict) | |
yield sample | |
except Exception as ex: | |
logging.warning('Failed to open {}'.format(shard_path)) | |
def tar_file_and_group_full_data(data, total_num=0): | |
""" Expand a stream of open tar files into a stream of tar file contents. | |
And groups the file with same prefix | |
Args: | |
data: Iterable[{src, stream}] | |
Returns: | |
Iterable[{key, wav, txt, sample_rate}] | |
""" | |
index = 0 | |
total_num = total_num | |
for sample in data: | |
index += 1 | |
# utils_file.logging_limit_print(f'OSUM-EChat 正在消化第{index}个tar包') | |
assert 'stream' in sample | |
stream = None | |
try: | |
stream = tarfile.open(fileobj=sample['stream'], mode="r:*") | |
big_dict = sample['big_dict'] | |
prev_prefix = None | |
example = {'history': []} | |
valid = True | |
for tarinfo in stream: | |
name = tarinfo.name | |
pos = name.rfind('.') | |
assert pos > 0, f' pos {pos}' | |
prefix, postfix = name[:pos], name[pos + 1:] | |
if prev_prefix is not None and prefix != prev_prefix: | |
example['key'] = prev_prefix | |
if valid: | |
# assert 'txt' in example | |
if 'txt' not in example: | |
example['txt'] = '' | |
if 'wav' not in example: | |
example['wav'] = torch.randn(1, 160000) | |
example['sample_rate'] = 16000 | |
# utils_file.logging_info(f'OSUM-EChat SHUCHU第{index}个tar包') | |
yield example | |
example = {'history': []} | |
valid = True | |
with stream.extractfile(tarinfo) as file_obj: | |
try: | |
if big_dict is not None: | |
if prefix not in big_dict: | |
raise Exception(f'{prefix} not in big_dict') | |
else: | |
info_dict = big_dict[prefix] | |
if 'txt' not in info_dict or 'task' not in info_dict or 'extra' not in info_dict: | |
raise Exception(f'info_dict {info_dict} not include txt, task, extra') | |
# utils_file.logging_limit_print(f'info dict: {info_dict}') | |
if postfix == 'txt': | |
example['txt'] = info_dict['txt'] | |
elif postfix == 'task': | |
example['task'] = info_dict['task'] | |
elif postfix == 'extra': | |
example['extra'] = info_dict['extra'] | |
elif postfix in AUDIO_FORMAT_SETS: | |
waveform, sample_rate = torchaudio.load(file_obj) | |
# 检查音频的维度 | |
num_channels = waveform.shape[0] | |
# 如果音频是多通道的,则进行通道平均 | |
if num_channels > 1: | |
waveform = torch.mean(waveform, dim=0, keepdim=True) | |
example['wav'] = waveform | |
example['sample_rate'] = sample_rate | |
else: | |
pass | |
else: | |
if postfix == 'txt': | |
example['txt'] = file_obj.read().decode('utf8').strip() | |
elif postfix == 'task': | |
example['task'] = file_obj.read().decode('utf8').strip() | |
elif postfix == 'extra': | |
extra_str = file_obj.read().decode('utf8').strip() | |
example['extra'] = json.loads(extra_str) | |
elif postfix in AUDIO_FORMAT_SETS: | |
waveform, sample_rate = torchaudio.load(file_obj) | |
# 检查音频的维度 | |
num_channels = waveform.shape[0] | |
# 如果音频是多通道的,则进行通道平均 | |
if num_channels > 1: | |
waveform = torch.mean(waveform, dim=0, keepdim=True) | |
example['wav'] = waveform | |
example['sample_rate'] = sample_rate | |
else: | |
pass | |
except Exception as ex: | |
valid = False | |
utils_file.logging_error('error to parse ex: {}'.format(ex)) | |
# 1. 基础信息:错误对象、文件名、错误类型 | |
# error_msg = ( | |
# f"Failed to parse {name}! " | |
# f"Error type: {type(ex).__name__}, " | |
# f"Message: {str(ex)}" | |
# ) | |
# # 2. 补充堆栈跟踪(完整调用链路) | |
# stack_trace = traceback.format_exc() | |
# # 3. 组合日志信息,使用warning级别输出(或error级别更合适) | |
# logging.warning(f"{error_msg}\nStack trace:\n{stack_trace}") | |
prev_prefix = prefix | |
if prev_prefix is not None: | |
example['key'] = prev_prefix | |
if 'txt' in example: | |
if 'wav' not in example: | |
example['wav'] = torch.randn(1, 160000) | |
example['sample_rate'] = 16000 | |
utils_file.logging_info(f'*************OSUM-EChat SHUCHU第{index}/{total_num}个tar包') | |
yield example | |
except Exception as ex: | |
logging.warning( | |
'In tar_file_and_group: {} when processing {}'.format( | |
ex, sample['src'])) | |
finally: | |
if stream is not None: | |
stream.close() | |
if 'process' in sample: | |
sample['process'].communicate() | |
sample['stream'].close() | |
# for history | |
# elif check_wav_format(postfix)[0]: | |
# position = check_wav_format(postfix)[1] | |
# waveform, sample_rate = torchaudio.load(file_obj) | |
# if sample_rate != 16000: | |
# waveform = torchaudio.transforms.Resample( | |
# orig_freq=sample_rate, new_freq=16000)(waveform) | |
# feat = do_compute_log_mel_spectrogram(waveform) | |
# history_item = {'wav': feat, "txt": "", 'position': position} | |
# insert_at_position(example['history'], history_item, position, is_wav=True) | |
# | |
# elif check_txt_format(postfix)[0]: | |
# position = check_txt_format(postfix)[1] | |
# txt_str = file_obj.read().decode( | |
# 'utf8').strip() | |
# history_item = {'wav': '', "txt": txt_str, 'position': position} | |
# insert_at_position(example['history'], history_item, position, is_wav=False) | |
def parse_raw(data): | |
""" Parse key/wav/txt from json line | |
Args: | |
data: Iterable[str], str is a json line has key/wav/txt | |
Returns: | |
Iterable[{key, wav, txt, sample_rate}] | |
""" | |
for sample in data: | |
assert 'src' in sample | |
json_line = sample['src'] | |
obj = json.loads(json_line) | |
assert 'key' in obj | |
assert 'wav' in obj | |
assert 'txt' in obj | |
key = obj['key'] | |
wav_file = obj['wav'] | |
txt = obj['txt'] | |
try: | |
if 'start' in obj: | |
assert 'end' in obj | |
sample_rate = torchaudio.info(wav_file).sample_rate | |
start_frame = int(obj['start'] * sample_rate) | |
end_frame = int(obj['end'] * sample_rate) | |
waveform, _ = torchaudio.load(filepath=wav_file, | |
num_frames=end_frame - | |
start_frame, | |
frame_offset=start_frame) | |
else: | |
waveform, sample_rate = torchaudio.load(wav_file) | |
# 检查音频的维度 | |
num_channels = waveform.shape[0] | |
# 如果音频是多通道的,则进行通道平均 | |
if num_channels > 1: | |
waveform = torch.mean(waveform, dim=0, keepdim=True) | |
example = copy.deepcopy(obj) # copy and keep all the fields | |
example['wav'] = waveform # overwrite wav | |
example['sample_rate'] = sample_rate | |
yield example | |
except Exception as ex: | |
logging.warning('Failed to read {}'.format(wav_file)) | |
def parse_speaker(data, speaker_table_path): | |
speaker_dict = {} | |
with open(speaker_table_path, 'r', encoding='utf8') as fin: | |
for line in fin: | |
arr = line.strip().split() | |
speaker_dict[arr[0]] = int(arr[1]) | |
for sample in data: | |
assert 'speaker' in sample | |
speaker = sample['speaker'] | |
sample['speaker'] = speaker_dict.get(speaker, 0) | |
yield sample | |
global_style_dict = { | |
"朗读": "新闻科普", | |
"科普百科": "新闻科普", | |
"悬疑恐怖": "恐怖故事", | |
"童话故事": "童话故事", | |
"客服": "客服", | |
"诗歌": "诗歌散文", | |
"散文": "诗歌散文", | |
"武侠评书": "有声书", | |
"小说": "有声书", | |
"历史": "有声书", | |
"科幻": "有声书", | |
"对话": "日常口语", | |
"口语": "日常口语", | |
"幽默": "其他", | |
"其他": "其他", | |
} | |
# global_chat_dict = utils_file.load_dict_from_scp("/mnt/sfs/asr/update_data/3500_chat_asr/osum_echat_all_3500_with_asr_chat.scp") | |
asr_X_set = {"<TRANSCRIBE> <EMOTION>", "<TRANSCRIBE> <STYLE>", "<TRANSCRIBE> <CAPTION>", "<TRANSCRIBE> <GENDER>", | |
"<TRANSCRIBE> <AGE>"} | |
natural_language_set = {"<TRANSCRIBE> <STYLE>", | |
"<TRANSCRIBE> <CAPTION>", | |
"<TRANSCRIBE> <GENDER>", | |
"<TRANSCRIBE> <AGE>", | |
"<TRANSCRIBE> <EMOTION>", | |
"<STYLE>", | |
"<CAPTION>", | |
"<GENDER>", | |
"<AGE>", | |
"<EMOTION>", | |
} | |
chat_set = set([ | |
"<TRANSCRIBE> <S2TCHAT>", | |
]) | |
import re | |
def extract_first_content(s): | |
# 使用正则表达式匹配尖括号中的内容, input: "dfsfs<喜喜>", output: "<喜喜>" | |
match = re.search(r'<[^>]+>', s) | |
if match: | |
return match.group() | |
else: | |
return "None_in_extract_X" | |
def extract_all_contents(s): | |
# 使用正则表达式匹配所有尖括号中的内容 | |
matches = re.findall(r'<[^>]+>', s) | |
return matches | |
def extract_answer(s): | |
res_items = s.strip().split("<开始回答>") | |
if len(res_items) == 2: | |
res = res_items[1] | |
else: | |
res = "None_in_extract_answer" | |
return res | |
def replace_keys_in_brackets(input_str, key_value_dict): | |
for key, value in key_value_dict.items(): | |
# 构造匹配 <key> 形式的正则表达式模式 | |
pattern = re.compile(r'<{}>'.format(key)) | |
input_str = pattern.sub(f"<{value}>", input_str) | |
return input_str | |
import json | |
def process_tagged_string(s): | |
""" | |
处理带标签的字符串,将标签替换为对应的内容 | |
Args: | |
s: | |
Returns: | |
<tag> <tag>xxxx | |
""" | |
match = re.match(r'^<([^<>]+)>', s) | |
if match: | |
tag = match.group(1) | |
return f"<{tag}>", s | |
else: | |
new_s = "<中立>" + s | |
return "<中立>", new_s | |
def process_tagged_string_and_delete_tag_from_txt(s): | |
""" | |
处理带标签的字符串,提取标签并返回标签和去除标签后的内容 | |
Args: | |
s: 带标签的字符串,格式如 "<tag>XXXX" | |
Returns: | |
元组 (标签, 去除标签后的内容),例如 ("<tag>", "XXXX") | |
""" | |
# 匹配以<标签>开头的字符串 | |
match = re.match(r'^<([^<>]+)>(.*)$', s) | |
if match: | |
tag = match.group(1) | |
content = match.group(2).lstrip() # 去除标签后的内容(可选项:移除开头空格) | |
return f"<{tag}>", content | |
else: | |
# 无标签时添加默认<中立>标签,返回标签和原始内容 | |
return "<中立>", s | |
def split_txt2asr_tag(text): | |
# 使用正则表达式匹配标签 | |
match = re.match(r'^(.*?)(<[^>]+>)$', text) | |
# 如果匹配到一个标签 | |
if match: | |
return match.group(1), match.group(2) | |
else: | |
return None, None | |
# 过滤自我介绍 | |
self_list = [ | |
# 原有 LLM 名称及变体 | |
"MOSS Assistant", "MOSS助手", | |
"QWEN", "QWEN Assistant", "QWEN助手","小智机器人", "小智助手", "小智AI助手","Qwen助手" | |
# 通用英文助手/AI 名称 | |
"VirtualAssistant", "virtual assistant", | |
"Helper", "helper", "ChatBot","chat bot", "chatbot", "Chat Bot", | |
"AI Agent", "AI agent", "ChatGPT", "chatgpt","<think>" | |
# 常见英文名字 | |
# " Alice ", " alice ", " Bob ", " bob ", " Charlie ", " charlie ", | |
# " Dave ", " dave ", " Eve ", " eve ", " Grace ", " grace ", " Tom ", | |
# 常见中文名字 | |
# "小明", "小红", "小刚", "晓明", "晓红", "阿强", "阿丽", | |
# "丽丽", "婷婷", "王磊", "李娜", "张伟", "赵敏", "刘洋", "陈晨", | |
# "小李", "小王", "小赵", "小周", "小吴", "小马", "小暖", "乐哥","李娜" | |
# 中文名字 + 助手/AI 后缀 | |
"小明助手", "小红小助手", "小刚AI", "晓明助手", "阿强Bot", | |
"阿丽小助手", "王磊AI助手", "李娜AI", "张伟助手", "赵敏Bot", | |
"刘洋AI小助手", "陈晨智能助手", "<think>" | |
# 混合中英文风格 | |
"MOSS小助手", "QWEN小助手", "小智Bot", "Assistant小智", "AI小智", | |
"ChatBot小明", "VirtualAssistant李娜","大型语言模型","语言模型" | |
] | |
escaped = [re.escape(w) for w in self_list if w] | |
pattern = re.compile(r"(" + "|".join(escaped) + r")") | |
def if_have_other_name(text): | |
matches = pattern.findall(text) | |
if matches: | |
print("出现了:", set(matches), text) | |
return True | |
else: | |
return False | |
emotion_tags = {"<HAPPY>", "<SAD>", "<ANGRY>", "<ANGER>", "<FEAR>", "<DISGUST>", "<SURPRISE>", "<NEUTRAL>"} | |
answer_emotion_tags = {"<ANGER>","<FEAR>","<HAPPY>","<SURPRISE>","<SAD>","<DISGUST>","<CONFUSED>","<SARCASM>","<EMBARRASSED>","<CURIOUS>","<WORRIED>","<SHY>","<SORRY>","<NEUTRAL>",} | |
age_tags = {"<CHILD>", "<ADULT>", "<OLD>"} | |
gender_tags = {"<MALE>", "<FEMALE>"} | |
none_tags = {"<NONE>", "<NULL>", "<None>", "<none>", "<null>"} | |
def tokenize(data, tokenizer: HuggingFaceTokenizer, other_tokenze_conf={}, global_prompt_dict=None, speech_token_num=1): | |
""" Decode text to chars or BPE | |
Inplace operation | |
Args: | |
tokenizer: | |
data: Iterable[{key, wav, txt, sample_rate}] | |
Returns: | |
Iterable[{key, wav, txt, tokens, label, sample_rate}] | |
""" | |
for sample in data: | |
# key值过滤 | |
# key = sample.get('key', "") | |
# if key == "": | |
# print(f"key is empty, skip this sample: {sample}") | |
# continue | |
# if key in pass_key_set: | |
# utils_file.logging_limit_print(f"key is in pass_key_set, skip this sample") | |
# continue | |
# =========== handle extra ,将其统一为字典================================ | |
origin_extra = sample.get('extra', {}) | |
if type(origin_extra) == str: | |
try: | |
# utils_file.logging_limit_print(f"origin_extra is a str, try to load it as json") | |
sample['extra'] = json.loads(origin_extra) | |
except json.JSONDecodeError: | |
# utils_file.logging_error("Error: 'extra' is not a valid JSON string.") | |
sample['extra'] = {} | |
elif type(origin_extra) == dict: | |
sample['extra'] = origin_extra | |
else: | |
sample['extra'] = {} | |
final_extra = sample['extra'] | |
# =========== handle extra end ======================================= | |
insert_prompt = None | |
# ============handle task, txt,确保task txt标签一定存在 ==================== | |
if 'task' not in sample: | |
sample['task'] = "<TRANSCRIBE>" | |
if 'txt' not in sample: | |
sample['txt'] = "" | |
task_name = sample['task'] | |
txt = sample['txt'] | |
# ============handle task txt end ======================================= | |
# ===============做补丁处理 ========================================== | |
if if_have_other_name(txt): | |
print(f"txt: {txt} 存在其他名称,跳过") | |
continue | |
txt = txt.replace("\n", " ") | |
if "<AGE>" in task_name and ( | |
"<YOUTH>" in sample['txt'] or "<MIDDLE_AGE>" in sample['txt'] or "<MIDDLE>" in sample['txt']): | |
txt = sample['txt'].replace("<YOUTH>", "<ADULT>").replace("<MIDDLE_AGE>", "<ADULT>").replace("<MIDDLE>", | |
"<ADULT>") | |
sample['txt'] = txt | |
if "<STYLE>" in sample['task']: | |
txt = replace_keys_in_brackets(sample['txt'], global_style_dict) | |
sample['txt'] = txt | |
if task_name == "TEXT2TOKEN": | |
task_name = "<TEXT2TOKEN>" | |
sample['task'] = task_name | |
if task_name == "<Speech2TEXTandTOKEN>" or task_name == "<S2TCHAT> <TEXT2TOKEN> <EMOTION>": | |
task_name = "<S2TCHAT> <TEXT2TOKEN>" | |
sample['task'] = task_name | |
# ================补丁处理结束 ============================================== | |
unk_tag = "<&&>" # 对应数字为 27,7672,29,... | |
# =============针对理解任务做only X 的处理, 加入理解任务转换的任务=================================== | |
if other_tokenze_conf.get("use_50_per_change_if_only_X", False) and task_name in asr_X_set: | |
# utils_file.logging_limit_print(f"task_name: {task_name}, in asr_X_set") | |
# 得到一个50%的随机 | |
if random.random() < 0.5: | |
task_name = task_name.replace("<TRANSCRIBE> ", "") | |
sample['task'] = task_name | |
# utils_file.logging_limit_print(f"task_name: {task_name},发生任务替换, replace to {sample['task']}") | |
txt = extract_first_content(sample['txt']) | |
sample['txt'] = txt | |
# utils_file.logging_limit_print(f"old txt: {sample['txt']}, 发生了文本替换, replace to new txt: {txt}") | |
elif other_tokenze_conf.get("use_50_per_change_if_only_X", False) and task_name in chat_set: | |
# utils_file.logging_limit_print(f"task_name: {task_name}, in chat_set") | |
# 得到一个50%的随机 | |
if random.random() < 0.5: | |
task_name = task_name.replace("<TRANSCRIBE> ", "") | |
sample['task'] = task_name | |
# utils_file.logging_limit_print(f"task_name: {task_name},发生任务替换, replace to {sample['task']}") | |
txt = extract_answer(sample['txt']) | |
sample['txt'] = txt | |
# utils_file.logging_limit_print(f"old txt: {sample['txt']}, 发生了文本替换, replace to new txt: {txt}") | |
# =============针对理解任务做only X 的处理, 加入理解任务转换的任务 end=================================== | |
# =======================对tts任务做处理======================================= | |
if task_name == "<TEXT2TOKEN>" and other_tokenze_conf.get("use_streaming_tts", {}).get("enable", False): | |
if random.random() < other_tokenze_conf.get("use_streaming_tts", {}).get("rate", 0.5): | |
task_name = "<TEXT2TOKEN> <STREAMING>" | |
sample['task'] = task_name | |
# =======================对tts任务处理结束======================================= | |
emotion_tag, txt = process_tagged_string_and_delete_tag_from_txt(txt) | |
# =======================处理s2t think======================================== | |
if task_name == "<S2TCHAT> <THINKER>": | |
# emotion_tag, txt = process_tagged_string(txt) # 如果开头没<中立>,则加上<中立> | |
if 'think_str' in final_extra: | |
think_str = final_extra['think_str'] | |
txt = f'<think>{think_str}<think end>{txt}' | |
else: | |
utils_file.logging_error(f"error: think_str is not in extra, {sample}") | |
continue | |
# =======================处理s2t think end===================================== | |
# ===================处理s2s think============================================ | |
if task_name == "<S2TCHAT> <TEXT2TOKEN> <THINK>": | |
# emotion_tag, txt = process_tagged_string(txt) # 如果开头没<中立>,则加上<中立> | |
if 'think_str' in final_extra: | |
think_str = final_extra['think_str'] | |
txt = f'<think>{think_str}<think end>{txt}' | |
else: | |
utils_file.logging_error(f"error: think_str is not in extra, {sample}") | |
continue | |
# ====================处理s2s think end============================================ | |
# =======================得到 txt的数字化token ================================= | |
tokens, label = tokenizer.tokenize(process_text2(txt, sample.get("task", "<TRANSCRIBE>"))) | |
sample['tokens'] = tokens # token是字符, label是数字 | |
if txt.endswith(unk_tag): | |
sample['label'] = label | |
else: | |
sample['label'] = label + [tokenizer.tokenizer.eos_token_id] | |
# =======================得到 txt的数字化token 结束 ================================= | |
# ====================处理prompt ============================================== | |
try: | |
if "question" in sample['extra']: #if sample['task'] == '<TEXT2TEXT>': | |
question = sample['extra'].get('question', "") | |
if question == "": | |
utils_file.logging_info(f"error: question is empty, {sample}") | |
continue | |
prompt = question | |
else: | |
if insert_prompt is not None: | |
prompt = insert_prompt | |
else: | |
if task_name not in global_prompt_dict: | |
prompt = "<no_prompt>" | |
else: | |
random_index = random.randint(0, len(global_prompt_dict[task_name]) - 1) | |
prompt = global_prompt_dict[task_name][random_index] | |
if prompt == "<no_prompt>": | |
# utils_file.logging_limit_print(f'no prompt for {task_name}') | |
sample['prompt'] = [] | |
else: | |
sample['prompt'] = tokenizer.tokenize(prompt)[1] # labels | |
except Exception as e: | |
utils_file.logging_info(f"error in extract prompt, {e},task_name: {task_name}, sample: {sample}") | |
continue | |
# ====================处理prompt 结束 ======================================= | |
# ========================处理speech token ================================ | |
if task_name == "<S2TCHAT> <TEXT2TOKEN>" or task_name == "<S2TCHAT> <TEXT2TOKEN> <THINK>" or task_name == "<TEXT2TOKEN>" or task_name == "<TEXT2TOKEN> <STREAMING>": | |
if "speech_token" in final_extra: | |
speech_token_tmp = final_extra['speech_token'] | |
if not isinstance(speech_token_tmp, list): | |
speech_token_tmp = [] | |
print(f"error: speech_token is not a list, {speech_token_tmp}") | |
continue | |
speech_token = [int(x) for x in speech_token_tmp] | |
if len(speech_token) == 0: | |
utils_file.logging_warning(f"error: speech_token is empty,task: {task_name}") | |
continue | |
sample['speech_token'] = [speech_token_num - 1] + speech_token + [speech_token_num - 1] | |
else: | |
utils_file.logging_warning(f"error: speech_token is empty,task: {task_name}") | |
continue | |
else: | |
sample['speech_token'] = [] | |
# ========================处理speech token 结束 ========================== | |
# =====================处理output_type====================== | |
# tts | |
if task_name == "<TEXT2TOKEN>": | |
sample['output_type'] = "text2token" | |
elif task_name == "<TEXT2TOKEN> <STREAMING>": | |
sample['output_type'] = "text2token_streaming" | |
elif task_name == "<S2TCHAT> <TEXT2TOKEN>" or task_name == "<S2TCHAT> <TEXT2TOKEN> <EMOTION>": | |
sample['output_type'] = 'speech2text_token' | |
elif task_name == "<S2TCHAT> <TEXT2TOKEN> <STREAMING>": | |
sample['output_type'] = 'speech2text_token_streaming' | |
elif task_name == "<S2TCHAT> <TEXT2TOKEN> <THINK>": | |
sample['output_type'] = 'speech2text_token_think' | |
elif task_name == "<S2TCHAT> <TEXT2TOKEN> <HISTORY>": | |
sample['output_type'] = 'speech2text_token_history' | |
elif task_name == "<TEXT2TEXT>": | |
sample['output_type'] = 'text2text' | |
elif task_name == "<S2TCHAT>": | |
sample['output_type'] ='s2t_chat' | |
elif task_name == "<S2TCHAT_FAKE>": | |
sample['output_type'] ='s2t_chat_fake' | |
elif task_name == "<S2TCHAT> <THINKER>": | |
sample['output_type'] ='s2t_chat_think' | |
else: | |
sample['output_type'] = 'text' | |
# utils_file.logging_limit_print(f"output_type: {sample['output_type']}") | |
# s2t end | |
# =====================处理output_type 结束====================== | |
yield sample | |
def filter(data, | |
max_length=1200, | |
min_length=0, | |
token_max_length=250, | |
token_min_length=1, | |
min_output_input_ratio=0.00005, | |
max_output_input_ratio=1, | |
filter_no_extra_info: bool = False, | |
max_seq_len=1000, | |
other_filter_conf={}): | |
""" Filter sample according to feature and label length | |
Inplace operation. | |
Args:: | |
data: Iterable[{key, wav, label, sample_rate}] | |
max_length: drop utterance which is greater than max_length(10ms) | |
min_length: drop utterance which is less than min_length(10ms) | |
token_max_length: drop utterance which is greater than | |
token_max_length, especially when use char unit for | |
english modeling | |
token_min_length: drop utterance which is | |
less than token_max_length | |
min_output_input_ratio: minimal ration of | |
token_length / feats_length(10ms) | |
max_output_input_ratio: maximum ration of | |
token_length / feats_length(10ms) | |
Returns: | |
Iterable[{key, wav, label, sample_rate}] | |
""" | |
for sample in data: | |
try: | |
assert 'sample_rate' in sample | |
assert 'wav' in sample | |
assert 'label' in sample | |
except: | |
utils_file.logging_error(f'sample_rate or wav or label not in sample,') | |
continue | |
output_type = sample["output_type"] | |
if other_filter_conf.get("only_s2s", False): | |
if output_type not in ['speech2text_token', 'speech2text_token_streaming', 'speech2text_token_think', 'speech2text_token_history']: | |
utils_file.logging_error( | |
f"only_s2s, output_type is not speech2text_token or speech2text_token_streaming,speech2text_token_think,speech2text_token_history, continue, output_type: {output_type}") | |
continue | |
if other_filter_conf.get("only_s2t", False): | |
if output_type not in ["text", 's2t_chat', "s2t_chat_fake", "s2t_chat_think"]: | |
utils_file.logging_error( | |
f"only_s2t, output_type is not s2t, continue, output_type: {output_type}") | |
continue | |
if other_filter_conf.get("only_t2t", False): | |
if output_type != 'text2text': | |
utils_file.logging_error( | |
f"only_t2t, output_type is not text2text, continue, output_type: {output_type}") | |
continue | |
if other_filter_conf.get("only_t2s", False): | |
if output_type not in ['text2token', 'text2token_streaming']: | |
utils_file.logging_error( | |
f"only_t2s, output_type is not text2token or text2token_streaming, continue, output_type: {output_type}, sampl e: {sample}") | |
continue | |
# 过滤不当文字wav比例 | |
if "speech_token" in sample and sample["output_type"] not in ['text','text2text', 's2t_chat', 's2t_chat_fake', 's2t_chat_think']: | |
if len(sample['label']) * 0.8 >= len(sample['speech_token']): | |
utils_file.logging_error(f"label 长度过长,和token长度不匹配,continue, len(sample['label']):{len(sample['label'])}, len(sample['speech_token']):{len(sample['speech_token'])}, task: {sample['task']}, output_type: {sample['output_type']}") | |
continue | |
# if len(sample['label'])>=5 and len(sample['speech_token']) > 125 and len(sample['label']) * 8.33 < len(sample['speech_token']): # 5s以上的音频,label长度大于5,限制用每秒至少3个文字 | |
# utils_file.logging_error(f"label 长度过短,和token长度不匹配,continue, len(sample['label']):{len(sample['label'])}, len(sample['speech_token']):{len(sample['speech_token'])},len(sample['label']) * 8.33 < len(sample['speech_token'])") | |
# continue | |
# elif len(sample['label']) * 10 < len(sample['speech_token']): | |
# utils_file.logging_error(f"label 长度过长,和token长度不匹配,continue, len(sample['label']):{len(sample['label'])}, len(sample['speech_token']):{len(sample['speech_token'])},len(sample['label']) * 10 < len(sample['speech_token'])") | |
# continue | |
txt = sample['txt'] | |
if txt == "None_in_extract_answer": | |
utils_file.logging_error( | |
f'error , txt is None, continue, old txt: {sample["txt"]}, task: {sample["task"]}') | |
continue | |
if txt == "None_in_extract_X": | |
utils_file.logging_error( | |
f'error , txt is None, continue, old txt: {sample["txt"]}, task: {sample["task"]}') | |
continue | |
# if txt == "<None>" or txt == "<NONE>" or txt == "<none>" or txt == "None" or txt == "none" or txt == "NONE": | |
if other_filter_conf.get("fiter_txt_is_None", False): | |
if "<None>" in txt or "<NONE>" in txt or "<none>" in txt: | |
utils_file.logging_error( | |
f'error , txt is None, continue, old txt: {sample["txt"]}, task: {sample["task"]}') | |
continue | |
history_list = sample.get('history', []) | |
if "-1" in history_list: | |
history_list = [] | |
sample['history'] = history_list | |
history_len = 0 | |
history_err = False | |
for item in history_list: | |
if item['wav'] is None or isinstance(item['wav'], str): | |
history_err = True | |
break | |
wav_len_itm = item['wav'].size(0) | |
txt_len_itm = len(item['txt']) | |
history_len += wav_len_itm + txt_len_itm | |
if history_err: | |
utils_file.logging_error(f"error: history_list item['wav'] is None, {sample}, continue") | |
continue | |
# sample['wav'] is torch.Tensor, we have 100 frames every second | |
num_frames = sample['wav'].size(1) / sample['sample_rate'] * 100 + history_len | |
# filter for shard_in_common | |
if filter_no_extra_info: | |
# if 'lang' not in sample: | |
# utils_file.logging_limit_print(f'filter_no_extra_info, lang not in sample, ') | |
# continue | |
if 'task' not in sample: | |
utils_file.logging_error(f'filter_no_extra_info, task not in sample, ') | |
continue | |
if num_frames < min_length: | |
utils_file.logging_info( | |
f'num_frames < min_length, continue, num_frames: {num_frames}, min_length: {min_length}, ') | |
continue | |
if num_frames > max_length: | |
# continue | |
if 'task' in sample and sample['task'] == '<CAPTION>': | |
utils_file.logging_error( | |
f'num_frames > max_length, continue, num_frames: {num_frames}, max_length: {max_length}, ') | |
continue | |
# utils_file.logging_limit_print('进行了随机剪裁') | |
# 随机选择一个起始点进行裁剪 | |
# start_frame = random.randint(0, int(num_frames - max_length)) | |
# end_frame = start_frame + max_length | |
# sample['wav'] = sample['wav'][:, int(start_frame / 100 * sample['sample_rate']): int( | |
# end_frame / 100 * sample['sample_rate'])] | |
# utils_file.logging_limit_print('sample[', sample['wav'].shape) | |
else: | |
utils_file.logging_error( | |
f'num_frames > max_length, continue, num_frames: {num_frames}, max_length: {max_length}, ') | |
continue | |
if len(sample['label']) < token_min_length: | |
utils_file.logging_error( | |
f'len(sample["label"]) < token_min_length, continue, len(sample["label"]): {len(sample["label"])}, token_min_length: {token_min_length}, ') | |
continue | |
if len(sample['label']) > token_max_length: | |
utils_file.logging_error( | |
f'len(sample["label"]) > token_max_length, continue, len(sample["label"]): {len(sample["label"])}, token_max_length: {token_max_length}, ') | |
continue | |
# if output_type=="text2text" and len(sample['prompt']) > token_max_length: | |
# utils_file.logging_limit_print( | |
# f'len(sample["label"]) > token_max_length, continue, len(sample["label"]): {len(sample["label"])}, token_max_length: {token_max_length}, ') | |
# continue | |
# if num_frames != 0: | |
# if len(sample['label']) / num_frames < min_output_input_ratio: | |
# continue | |
# if len(sample['label']) / num_frames > max_output_input_ratio: | |
# continue | |
if sample["output_type"] == "speech2text_token" or sample["output_type"] == "speech2text_token_streaming" or sample["output_type"] == "speech2text_token_think" or sample["output_type"] == "speech2text_token_history": | |
seq_len = len(sample['prompt']) + num_frames / 8 + len(sample['label']) + len(sample['speech_token']) | |
elif sample["output_type"] == "text2token" or sample["output_type"] == "text2token_streaming": | |
seq_len = len(sample['prompt']) + len(sample['label']) + len(sample['speech_token']) | |
else: | |
seq_len = len(sample['prompt']) + num_frames / 8 + len(sample['label']) | |
# utils_file.logging_limit_print(f'seqlen: {seq_len}, output_type:{sample["output_type"]},len(sample["prompt"]):{len(sample["prompt"])},num_frames / 8:{num_frames / 8},len(sample["label"]):{len(sample["label"])},len(sample["speech_token"]):{len(sample["speech_token"])} ') | |
# for instruct llm | |
seq_len = seq_len + 29*2 + history_len | |
if 0 < max_seq_len < seq_len: | |
utils_file.logging_error(f"seqlen: {seq_len} 超过了最大长度:{max_seq_len},contiune") | |
continue | |
# utils_file.logging_limit_print(f'filter yield, task_name: {sample["task"]}, prompt:{sample["prompt"]}, label:{txt}, seq_len:{seq_len}') | |
yield sample | |
def resample(data, resample_rate=16000): | |
""" Resample data. | |
Inplace operation. | |
Args: | |
data: Iterable[{key, wav, label, sample_rate}] | |
resample_rate: target resample rate | |
Returns: | |
Iterable[{key, wav, label, sample_rate}] | |
""" | |
for sample in data: | |
assert 'sample_rate' in sample | |
assert 'wav' in sample | |
sample_rate = sample['sample_rate'] | |
waveform = sample['wav'] | |
if sample_rate != resample_rate: | |
sample['sample_rate'] = resample_rate | |
sample['wav'] = torchaudio.transforms.Resample( | |
orig_freq=sample_rate, new_freq=resample_rate)(waveform) | |
yield sample | |
def speed_perturb(data, speeds=None): | |
""" Apply speed perturb to the data. | |
Inplace operation. | |
Args: | |
data: Iterable[{key, wav, label, sample_rate}] | |
speeds(List[float]): optional speed | |
Returns: | |
Iterable[{key, wav, label, sample_rate}] | |
""" | |
if speeds is None: | |
speeds = [0.9, 1.0, 1.1] | |
for sample in data: | |
assert 'sample_rate' in sample | |
assert 'wav' in sample | |
sample_rate = sample['sample_rate'] | |
waveform = sample['wav'] | |
speed = random.choice(speeds) | |
if speed != 1.0: | |
wav, _ = torchaudio.sox_effects.apply_effects_tensor( | |
waveform, sample_rate, | |
[['speed', str(speed)], ['rate', str(sample_rate)]]) | |
sample['wav'] = wav | |
yield sample | |
def compute_fbank(data, | |
num_mel_bins=23, | |
frame_length=25, | |
frame_shift=10, | |
dither=0.0): | |
""" Extract fbank | |
Args: | |
data: Iterable[{key, wav, label, sample_rate}] | |
Returns: | |
Iterable[{key, feat, label}] | |
""" | |
for sample in data: | |
assert 'sample_rate' in sample | |
assert 'wav' in sample | |
assert 'key' in sample | |
assert 'label' in sample | |
sample_rate = sample['sample_rate'] | |
waveform = sample['wav'] | |
waveform = waveform * (1 << 15) | |
# Only keep key, feat, label | |
mat = kaldi.fbank(waveform, | |
num_mel_bins=num_mel_bins, | |
frame_length=frame_length, | |
frame_shift=frame_shift, | |
dither=dither, | |
energy_floor=0.0, | |
sample_frequency=sample_rate) | |
sample['feat'] = mat | |
yield sample | |
def compute_mfcc(data, | |
num_mel_bins=23, | |
frame_length=25, | |
frame_shift=10, | |
dither=0.0, | |
num_ceps=40, | |
high_freq=0.0, | |
low_freq=20.0): | |
""" Extract mfcc | |
Args: | |
data: Iterable[{key, wav, label, sample_rate}] | |
Returns: | |
Iterable[{key, feat, label}] | |
""" | |
for sample in data: | |
assert 'sample_rate' in sample | |
assert 'wav' in sample | |
assert 'key' in sample | |
assert 'label' in sample | |
sample_rate = sample['sample_rate'] | |
waveform = sample['wav'] | |
waveform = waveform * (1 << 15) | |
# Only keep key, feat, label | |
mat = kaldi.mfcc(waveform, | |
num_mel_bins=num_mel_bins, | |
frame_length=frame_length, | |
frame_shift=frame_shift, | |
dither=dither, | |
num_ceps=num_ceps, | |
high_freq=high_freq, | |
low_freq=low_freq, | |
sample_frequency=sample_rate) | |
sample['feat'] = mat | |
yield sample | |
def do_compute_log_mel_spectrogram(waveform,n_fft=400, | |
hop_length=160, | |
num_mel_bins=80, | |
padding=0): | |
waveform = waveform.squeeze(0) # (channel=1, sample) -> (sample,) | |
# utils_file.logging_limit_print(f'wavform shape: {waveform.shape}') | |
try: | |
if padding > 0: | |
waveform = F.pad(waveform, (0, padding)) | |
window = torch.hann_window(n_fft) | |
stft = torch.stft(waveform, | |
n_fft, | |
hop_length, | |
window=window, | |
return_complex=True) | |
magnitudes = stft[..., :-1].abs() ** 2 | |
filters = torch.from_numpy( | |
librosa.filters.mel(sr=16000, | |
n_fft=n_fft, | |
n_mels=num_mel_bins)) | |
mel_spec = filters @ magnitudes | |
# NOTE(xcsong): https://github.com/openai/whisper/discussions/269 | |
log_spec = torch.clamp(mel_spec, min=1e-10).log10() | |
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) | |
log_spec = (log_spec + 4.0) / 4.0 | |
feat = log_spec.transpose(0, 1) | |
return feat | |
except Exception as e: | |
utils_file.logging_error(f'do_compute_log_mel_spectrogram error: {e}') | |
return None | |
def compute_log_mel_spectrogram(data, | |
n_fft=400, | |
hop_length=160, | |
num_mel_bins=80, | |
padding=0): | |
""" Extract log mel spectrogram, modified from openai-whisper, see: | |
- https://github.com/openai/whisper/blob/main/whisper/audio.py | |
- https://github.com/wenet-e2e/wenet/pull/2141#issuecomment-1811765040 | |
Args: | |
data: Iterable[{key, wav, label, sample_rate}] | |
Returns: | |
Iterable[{key, feat, label}] | |
""" | |
for sample in data: | |
assert 'sample_rate' in sample | |
assert 'wav' in sample | |
assert 'key' in sample | |
assert 'label' in sample | |
sample_rate = sample['sample_rate'] | |
waveform = sample['wav'].squeeze(0) # (channel=1, sample) -> (sample,) | |
# utils_file.logging_limit_print(f'wavform shape: {waveform.shape}') | |
try: | |
if padding > 0: | |
waveform = F.pad(waveform, (0, padding)) | |
window = torch.hann_window(n_fft) | |
stft = torch.stft(waveform, | |
n_fft, | |
hop_length, | |
window=window, | |
return_complex=True) | |
magnitudes = stft[..., :-1].abs() ** 2 | |
filters = torch.from_numpy( | |
librosa.filters.mel(sr=sample_rate, | |
n_fft=n_fft, | |
n_mels=num_mel_bins)) | |
mel_spec = filters @ magnitudes | |
# NOTE(xcsong): https://github.com/openai/whisper/discussions/269 | |
log_spec = torch.clamp(mel_spec, min=1e-10).log10() | |
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) | |
log_spec = (log_spec + 4.0) / 4.0 | |
sample['feat'] = log_spec.transpose(0, 1) | |
# utils_file.logging_limit_print(f'compute_log_mel_spectrogram yield, feat shape: {sample["feat"].shape}') | |
except Exception as e: | |
utils_file.logging_info(f'compute_log_mel_spectrogram error: {e}, continue, sample: {sample}') | |
continue | |
# utils_file.logging_limit_print(f'compute_log_mel_spectrogram yield, feat shape: {sample["feat"].shape}') | |
yield sample | |
def spec_aug(data, num_t_mask=2, num_f_mask=2, max_t=50, max_f=10, max_w=80): | |
""" Do spec augmentation | |
Inplace operation | |
Args: | |
data: Iterable[{key, feat, label}] | |
num_t_mask: number of time mask to apply | |
num_f_mask: number of freq mask to apply | |
max_t: max width of time mask | |
max_f: max width of freq mask | |
max_w: max width of time warp | |
Returns | |
Iterable[{key, feat, label}] | |
""" | |
for sample in data: | |
assert 'feat' in sample | |
x = sample['feat'] | |
assert isinstance(x, torch.Tensor) | |
y = x.clone().detach() | |
max_frames = y.size(0) | |
max_freq = y.size(1) | |
# time mask | |
for i in range(num_t_mask): | |
start = random.randint(0, max_frames - 1) | |
length = random.randint(1, max_t) | |
end = min(max_frames, start + length) | |
y[start:end, :] = 0 | |
# freq mask | |
for i in range(num_f_mask): | |
start = random.randint(0, max_freq - 1) | |
length = random.randint(1, max_f) | |
end = min(max_freq, start + length) | |
y[:, start:end] = 0 | |
sample['feat'] = y | |
yield sample | |
def spec_sub(data, max_t=20, num_t_sub=3): | |
""" Do spec substitute | |
Inplace operation | |
ref: U2++, section 3.2.3 [https://arxiv.org/abs/2106.05642] | |
Args: | |
data: Iterable[{key, feat, label}] | |
max_t: max width of time substitute | |
num_t_sub: number of time substitute to apply | |
Returns | |
Iterable[{key, feat, label}] | |
""" | |
for sample in data: | |
assert 'feat' in sample | |
x = sample['feat'] | |
assert isinstance(x, torch.Tensor) | |
y = x.clone().detach() | |
max_frames = y.size(0) | |
for i in range(num_t_sub): | |
start = random.randint(0, max_frames - 1) | |
length = random.randint(1, max_t) | |
end = min(max_frames, start + length) | |
# only substitute the earlier time chosen randomly for current time | |
pos = random.randint(0, start) | |
y[start:end, :] = x[start - pos:end - pos, :] | |
sample['feat'] = y | |
yield sample | |
def spec_trim(data, max_t=20): | |
""" Trim tailing frames. Inplace operation. | |
ref: TrimTail [https://arxiv.org/abs/2211.00522] | |
Args: | |
data: Iterable[{key, feat, label}] | |
max_t: max width of length trimming | |
Returns | |
Iterable[{key, feat, label}] | |
""" | |
for sample in data: | |
assert 'feat' in sample | |
x = sample['feat'] | |
assert isinstance(x, torch.Tensor) | |
max_frames = x.size(0) | |
length = random.randint(1, max_t) | |
if length < max_frames / 2: | |
y = x.clone().detach()[:max_frames - length] | |
sample['feat'] = y | |
yield sample | |
def shuffle(data, shuffle_size=10000): | |
""" Local shuffle the data | |
Args: | |
data: Iterable[{key, feat, label}] | |
shuffle_size: buffer size for shuffle | |
Returns: | |
Iterable[{key, feat, label}] | |
""" | |
buf = [] | |
for sample in data: | |
buf.append(sample) | |
if len(buf) >= shuffle_size: | |
random.shuffle(buf) | |
for x in buf: | |
yield x | |
buf = [] | |
# The sample left over | |
random.shuffle(buf) | |
for x in buf: | |
yield x | |
def sort(data, sort_size=500): | |
""" Sort the data by feature length. | |
Sort is used after shuffle and before batch, so we can group | |
utts with similar lengths into a batch, and `sort_size` should | |
be less than `shuffle_size` | |
Args: | |
data: Iterable[{key, feat, label}] | |
sort_size: buffer size for sort | |
Returns: | |
Iterable[{key, feat, label}] | |
""" | |
buf = [] | |
for sample in data: | |
buf.append(sample) | |
if len(buf) >= sort_size: | |
buf.sort(key=lambda x: x['feat'].size(0)) | |
for x in buf: | |
yield x | |
buf = [] | |
# The sample left over | |
buf.sort(key=lambda x: x['feat'].size(0)) | |
for x in buf: | |
yield x | |
def static_batch(data, batch_size=16): | |
""" Static batch the data by `batch_size` | |
Args: | |
data: Iterable[{key, feat, label}] | |
batch_size: batch size | |
Returns: | |
Iterable[List[{key, feat, label}]] | |
""" | |
buf = [] | |
for sample in data: | |
buf.append(sample) | |
if len(buf) >= batch_size: | |
yield buf | |
buf = [] | |
if len(buf) > 0: | |
yield buf | |
# def dynamic_batch(data, max_frames_in_batch=12000, max_seq_in_batch=10000000): | |
# """ Dynamic batch the data until the total frames in batch | |
# reach `max_frames_in_batch` | |
# Args: | |
# data: Iterable[{key, feat, label}] | |
# max_frames_in_batch: max_frames in one batch | |
# Returns: | |
# Iterable[List[{key, feat, label}]] | |
# """ | |
# buf = [] | |
# longest_frames = 0 | |
# longest_seq = 0 | |
# max_frames_in_batch = max_frames_in_batch | |
# # buf_speech_token = [] | |
# # longest_frames_token = 0 | |
# # longest_seq_token = 0 | |
# # max_frames_in_batch_token = int(max_frames_in_batch) | |
# # buf_speech_token_with_text = [] | |
# # longest_frames_token_with_text = 0 | |
# # longest_seq_token_with_text = 0 | |
# # max_frames_in_batch_token_with_text = max_frames_in_batch | |
# # buf_no_prompt = [] | |
# # longest_frames_no_prompt = 0 | |
# # longest_seq_no_prompt = 0 | |
# # max_frames_in_batch_no_prompt = int(max_frames_in_batch) # 没有prompt的放在一起 | |
# for sample in data: | |
# # utils_file.logging_limit_print(f'sample in dynamic_batch: {sample}') | |
# assert 'feat' in sample, f'feat not in ' | |
# assert isinstance(sample['feat'], torch.Tensor), f'feat is not tensor: {sample}' | |
# new_sample_frames = sample['feat'].size(0) | |
# new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', [])) + 300 | |
# longest_seq = max(longest_seq, new_seq) | |
# longest_frames = max(longest_frames, new_sample_frames) | |
# frames_after_padding = longest_frames * (len(buf)+1) | |
# seq_after_padding = longest_seq * (len(buf)+1) | |
# if frames_after_padding > max_frames_in_batch or seq_after_padding > max_seq_in_batch: | |
# utils_file.logging_limit_print('dynamic batch yield') | |
# yield buf | |
# buf = [sample] | |
# longest_frames = new_sample_frames | |
# longest_seq = new_seq | |
# else: | |
# buf.append(sample) | |
# if len(buf) > 0: | |
# utils_file.logging_limit_print(f'dynamic batch yield last') | |
# yield buf | |
def dynamic_batch(data, max_frames_in_batch=12000, max_seq_in_batch=10000000): | |
""" Dynamic batch the data until the total frames in batch | |
reach `max_frames_in_batch` | |
Args: | |
data: Iterable[{key, feat, label}] | |
max_frames_in_batch: max_frames in one batch | |
Returns: | |
Iterable[List[{key, feat, label}]] | |
""" | |
buf = [] | |
longest_frames = 0 | |
longest_seq = 0 | |
max_frames_in_batch = max_frames_in_batch | |
buf_s2s_streaming = [] # for speech 2 text token streaming | |
longest_frames_s2s_streaming = 0 | |
longest_seq_s2s_streaming = 0 | |
max_frames_in_batch_s2s_streaming = int(max_frames_in_batch) | |
buf_s2s_think = [] # for speech 2 text token think | |
longest_frames_s2s_think = 0 | |
longest_seq_s2s_think = 0 | |
max_frames_in_batch_s2s_think = int(max_frames_in_batch) | |
buf_s2s_history = [] # for speech 2 text token think | |
longest_frames_s2s_history = 0 | |
longest_seq_s2s_history = 0 | |
max_frames_in_batch_s2s_history = int(max_frames_in_batch) | |
buf_speech_token_s2s = [] # for speech 2 text token | |
longest_frames_token_s2s = 0 | |
longest_seq_token_s2s = 0 | |
max_frames_in_batch_token_s2s = int(max_frames_in_batch) | |
buf_speech_token_with_text = [] | |
longest_frames_token_with_text = 0 | |
longest_seq_token_with_text = 0 | |
max_frames_in_batch_token_with_text = max_frames_in_batch | |
buf_speech_token_with_text_streaming = [] | |
longest_frames_token_with_text_streaming = 0 | |
longest_seq_token_with_text_streaming = 0 | |
max_frames_in_batch_token_with_text_streaming = max_frames_in_batch | |
buf_t2t = [] | |
longest_frames_t2t = 0 | |
longest_seq_t2t = 0 | |
max_frames_in_batch_t2t = int(max_frames_in_batch) | |
buf_no_prompt = [] | |
longest_frames_no_prompt = 0 | |
longest_seq_no_prompt = 0 | |
max_frames_in_batch_no_prompt = int(max_frames_in_batch) # 没有prompt的放在一起 | |
# s2t_chat | |
buf_s2t_chat = [] | |
longest_frames_s2t_chat = 0 | |
longest_seq_s2t_chat = 0 | |
max_frames_in_batch_s2t_chat = int(max_frames_in_batch) # 没有prompt的放在一起 | |
# s2t_chat_fake | |
buf_s2t_chat_fake = [] | |
longest_frames_s2t_chat_fake = 0 | |
longest_seq_s2t_chat_fake = 0 | |
max_frames_in_batch_s2t_chat_fake = int(max_frames_in_batch) # 没有prompt的放在一起 | |
# s2t_chat_think | |
buf_s2t_chat_think = [] | |
longest_frames_s2t_chat_think = 0 | |
longest_seq_s2t_chat_think = 0 | |
max_frames_in_batch_s2t_chat_think = int(max_frames_in_batch) # 没有prompt的放在一起 | |
batch_nums = 0 | |
# % 4 ->s2t, t2t, t2s, s2s | |
for sample in data: | |
history_list = sample.get('history', []) | |
history_len = 0 | |
history_err = False | |
for item in history_list: | |
if item['wav'] is None: | |
history_err = True | |
break | |
wav_len_itm = item['wav'].size(0) | |
txt_len_itm = len(item['txt']) | |
history_len += wav_len_itm + txt_len_itm | |
if history_err: | |
utils_file.logging_error(f"error: history_list item['wav'] is None, {sample}, continue") | |
continue | |
# utils_file.logging_limit_print(f'sample in dynamic_batch: {sample}') | |
assert 'feat' in sample | |
assert isinstance(sample['feat'], torch.Tensor) | |
new_sample_frames = sample['feat'].size(0) + history_len | |
if "output_type" in sample and sample["output_type"] == "speech2text_token": | |
new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', [])) + len( | |
sample.get('speech_token', [])) | |
# for instruct llm | |
new_seq = new_seq + 29 *2 + history_len | |
longest_seq_token_s2s = max(longest_seq_token_s2s, new_seq) | |
longest_frames_token_s2s = max(longest_frames_token_s2s, new_sample_frames) | |
frames_after_padding_token_s2s = longest_frames_token_s2s * (len(buf_speech_token_s2s) + 1) | |
seq_after_padding_token_s2s = longest_seq_token_s2s * (len(buf_speech_token_s2s) + 1) | |
if frames_after_padding_token_s2s > max_frames_in_batch_token_s2s or seq_after_padding_token_s2s > max_seq_in_batch * 0.8: | |
yield buf_speech_token_s2s | |
buf_speech_token_s2s = [sample] | |
longest_frames_token_s2s = new_sample_frames | |
longest_seq_token_s2s = new_seq | |
else: | |
buf_speech_token_s2s.append(sample) | |
elif "output_type" in sample and sample["output_type"] =="speech2text_token_streaming": | |
new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', [])) + len( | |
sample.get('speech_token', [])) | |
# for instruct llm | |
new_seq = new_seq + 29 *2 + history_len | |
longest_seq_s2s_streaming = max(longest_seq_s2s_streaming, new_seq) | |
longest_frames_s2s_streaming = max(longest_frames_s2s_streaming, new_sample_frames) | |
frames_after_padding_token = longest_frames_s2s_streaming * (len(buf_s2s_streaming) + 1) | |
seq_after_padding_token = longest_seq_s2s_streaming * (len(buf_s2s_streaming) + 1) | |
if frames_after_padding_token > max_frames_in_batch_s2s_streaming or seq_after_padding_token > max_seq_in_batch * 0.6: | |
yield buf_s2s_streaming | |
buf_s2s_streaming = [sample] | |
longest_frames_s2s_streaming = new_sample_frames | |
longest_seq_s2s_streaming = new_seq | |
else: | |
buf_s2s_streaming.append(sample) | |
elif "output_type" in sample and sample["output_type"] == "speech2text_token_think": | |
new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', [])) + len( | |
sample.get('speech_token', [])) | |
# for instruct llm | |
new_seq = new_seq + 29 * 2 + history_len | |
longest_seq_s2s_think = max(longest_seq_s2s_think, new_seq) | |
longest_frames_s2s_think = max(longest_frames_s2s_think, new_sample_frames) | |
frames_after_padding_token = longest_frames_s2s_think * (len(buf_s2s_think) + 1) | |
seq_after_padding_token = longest_seq_s2s_think * (len(buf_s2s_think) + 1) | |
if frames_after_padding_token > max_frames_in_batch_s2s_think or seq_after_padding_token > max_seq_in_batch * 0.6: | |
yield buf_s2s_think | |
buf_s2s_think = [sample] | |
longest_frames_s2s_think = new_sample_frames | |
longest_seq_s2s_think = new_seq | |
else: | |
buf_s2s_think.append(sample) | |
elif "output_type" in sample and sample["output_type"] == "speech2text_token_history": | |
new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', [])) + len( | |
sample.get('speech_token', [])) | |
# for instruct llm | |
new_seq = new_seq + 29 * 2 + history_len | |
longest_seq_s2s_history = max(longest_seq_s2s_history, new_seq) | |
longest_frames_s2s_history = max(longest_frames_s2s_history, new_sample_frames) | |
frames_after_padding_token = longest_frames_s2s_history * (len(buf_s2s_history) + 1) | |
seq_after_padding_token = longest_seq_s2s_history * (len(buf_s2s_history) + 1) | |
if frames_after_padding_token > max_frames_in_batch_s2s_history or seq_after_padding_token > max_seq_in_batch * 0.6: | |
yield buf_s2s_history | |
buf_s2s_history = [sample] | |
longest_frames_s2s_history = new_sample_frames | |
longest_seq_s2s_history = new_seq | |
else: | |
buf_s2s_history.append(sample) | |
elif "output_type" in sample and sample["output_type"] == "text2token": | |
new_seq = len(sample['label']) + len(sample.get('prompt', [])) + len( | |
sample.get('speech_token', [])) | |
# for instruct llm | |
new_seq = new_seq + 29 *2 + history_len | |
longest_seq_token_with_text = max(longest_seq_token_with_text, new_seq) | |
longest_frames_token_with_text = max(longest_frames_token_with_text, new_sample_frames) | |
frames_after_padding_token_with_text = longest_frames_token_with_text * ( | |
len(buf_speech_token_with_text) + 1) | |
seq_after_padding_token_with_text = longest_seq_token_with_text * (len(buf_speech_token_with_text) + 1) | |
if frames_after_padding_token_with_text > max_frames_in_batch_token_with_text or seq_after_padding_token_with_text > max_seq_in_batch: | |
# utils_file.logging_limit_print('输出了t2s的batch') | |
yield buf_speech_token_with_text | |
buf_speech_token_with_text = [sample] | |
longest_frames_token_with_text = new_sample_frames | |
longest_seq_token_with_text = new_seq | |
else: | |
buf_speech_token_with_text.append(sample) | |
elif "output_type" in sample and sample["output_type"] == "text2token_streaming": | |
new_seq = len(sample['label']) + len(sample.get('prompt', [])) + len( | |
sample.get('speech_token', [])) | |
# for instruct llm | |
new_seq = new_seq + 29 *2 + history_len | |
longest_seq_token_with_text_streaming = max(longest_seq_token_with_text_streaming, new_seq) | |
longest_frames_token_with_text_streaming = max(longest_frames_token_with_text_streaming, new_sample_frames) | |
frames_after_padding_token_with_text_streaming = longest_frames_token_with_text_streaming * ( | |
len(buf_speech_token_with_text_streaming) + 1) | |
seq_after_padding_token_with_text_streaming = longest_seq_token_with_text_streaming * (len(buf_speech_token_with_text_streaming) + 1) | |
if frames_after_padding_token_with_text_streaming > max_frames_in_batch_token_with_text_streaming or seq_after_padding_token_with_text_streaming > max_seq_in_batch: | |
# utils_file.logging_limit_print('输出了t2s的batch streaming') | |
yield buf_speech_token_with_text_streaming | |
buf_speech_token_with_text_streaming = [sample] | |
longest_frames_token_with_text_streaming = new_sample_frames | |
longest_seq_token_with_text_streaming = new_seq | |
else: | |
buf_speech_token_with_text_streaming.append(sample) | |
elif "output_type" in sample and sample["output_type"] == "text2text": | |
new_seq = len(sample['label']) + len(sample.get('prompt', [])) + len( | |
sample.get('speech_token', [])) | |
# for instruct llm | |
new_seq = new_seq + 29 *2 + history_len | |
longest_seq_t2t = max(longest_seq_t2t, new_seq) | |
longest_frames_t2t = max(longest_frames_t2t, new_sample_frames) | |
frames_after_padding_t2t = longest_frames_t2t * (len(buf_t2t) + 1) | |
seq_after_padding_t2t = longest_seq_t2t * (len(buf_t2t) + 1) | |
if frames_after_padding_t2t > max_frames_in_batch_t2t or seq_after_padding_t2t > max_seq_in_batch * 0.6: # t2t没有受到frames限制, 过长的t2t数据引入会导致爆显存,所以给总长度进行限制 | |
yield buf_t2t | |
buf_t2t = [sample] | |
longest_frames_t2t = new_sample_frames | |
longest_seq_t2t = new_seq | |
else: | |
buf_t2t.append(sample) | |
elif "output_type" in sample and sample["output_type"] == "s2t_chat": | |
new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', [])) | |
new_seq = new_seq + 29 *2 + history_len | |
longest_seq_s2t_chat = max(longest_seq_s2t_chat, new_seq) | |
longest_frames_s2t_chat = max(longest_frames_s2t_chat, new_sample_frames) | |
frames_after_padding_s2t_chat = longest_frames_s2t_chat * (len(buf_s2t_chat) + 1) | |
seq_after_padding_s2t_chat = longest_seq_s2t_chat * (len(buf_s2t_chat) + 1) | |
if frames_after_padding_s2t_chat > max_frames_in_batch_s2t_chat or seq_after_padding_s2t_chat > max_seq_in_batch: | |
yield buf_s2t_chat | |
buf_s2t_chat = [sample] | |
longest_frames_s2t_chat = new_sample_frames | |
longest_seq_s2t_chat = new_seq | |
else: | |
buf_s2t_chat.append(sample) | |
elif "output_type" in sample and sample["output_type"] == "s2t_chat_fake": | |
new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', [])) | |
new_seq = new_seq + 29 *2 + history_len | |
longest_seq_s2t_chat_fake = max(longest_seq_s2t_chat_fake, new_seq) | |
longest_frames_s2t_chat_fake = max(longest_frames_s2t_chat_fake, new_sample_frames) | |
frames_after_padding_s2t_chat_fake = longest_frames_s2t_chat_fake * (len(buf_s2t_chat_fake) + 1) | |
seq_after_padding_s2t_chat_fake = longest_seq_s2t_chat_fake * (len(buf_s2t_chat_fake) + 1) | |
if frames_after_padding_s2t_chat_fake > max_frames_in_batch_s2t_chat_fake or seq_after_padding_s2t_chat_fake > max_seq_in_batch: | |
yield buf_s2t_chat_fake | |
buf_s2t_chat_fake = [sample] | |
longest_frames_s2t_chat_fake = new_sample_frames | |
longest_seq_s2t_chat_fake = new_seq | |
else: | |
buf_s2t_chat_fake.append(sample) | |
elif "output_type" in sample and sample["output_type"] == "s2t_chat_think": | |
new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', [])) | |
new_seq = new_seq + 29 *2 + history_len | |
longest_seq_s2t_chat_think = max(longest_seq_s2t_chat_think, new_seq) | |
longest_frames_s2t_chat_think = max(longest_frames_s2t_chat_think, new_sample_frames) | |
frames_after_padding_s2t_chat_think = longest_frames_s2t_chat_think * (len(buf_s2t_chat_think) + 1) | |
seq_after_padding_s2t_chat_think = longest_seq_s2t_chat_think * (len(buf_s2t_chat_think) + 1) | |
if frames_after_padding_s2t_chat_think > max_frames_in_batch_s2t_chat_think or seq_after_padding_s2t_chat_think > max_seq_in_batch: | |
yield buf_s2t_chat_think | |
buf_s2t_chat_think = [sample] | |
longest_frames_s2t_chat_think = new_sample_frames | |
longest_seq_s2t_chat_think = new_seq | |
else: | |
buf_s2t_chat_think.append(sample) | |
else: | |
if len(sample.get('prompt', [])) == 0: | |
# 没有prompt的text任务的放在一起 | |
new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', [])) | |
# for instruct llm | |
new_seq = new_seq + 29 *2 + history_len | |
longest_seq_no_prompt = max(longest_seq_no_prompt, new_seq) | |
longest_frames_no_prompt = max(longest_frames_no_prompt, new_sample_frames) | |
frames_after_padding_no_prompt = longest_frames * (len(buf_no_prompt) + 1) | |
seq_after_padding_no_prompt = longest_seq_no_prompt * (len(buf_no_prompt) + 1) | |
if frames_after_padding_no_prompt > max_frames_in_batch_no_prompt or seq_after_padding_no_prompt > max_seq_in_batch: | |
yield buf_no_prompt | |
buf_no_prompt = [sample] | |
longest_frames_no_prompt = new_sample_frames | |
longest_seq_no_prompt = new_seq | |
else: | |
buf_no_prompt.append(sample) | |
else: | |
new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', [])) | |
# for instruct llm | |
new_seq = new_seq + 29 *2 + history_len | |
longest_seq = max(longest_seq, new_seq) | |
longest_frames = max(longest_frames, new_sample_frames) | |
frames_after_padding = longest_frames * (len(buf) + 1) | |
seq_after_padding = longest_seq * (len(buf) + 1) | |
if frames_after_padding > max_frames_in_batch or seq_after_padding > max_seq_in_batch: | |
yield buf | |
buf = [sample] | |
longest_frames = new_sample_frames | |
longest_seq = new_seq | |
else: | |
buf.append(sample) | |
if len(buf) > 0: | |
yield buf | |
def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, max_seq_in_batch=10000000): | |
""" Wrapper for static/dynamic batch | |
""" | |
if batch_type == 'static': | |
return static_batch(data, batch_size) | |
elif batch_type == 'dynamic': | |
return dynamic_batch(data, max_frames_in_batch, max_seq_in_batch=max_seq_in_batch) | |
else: | |
logging.fatal('Unsupported batch type {}'.format(batch_type)) | |
def padding(data): | |
""" Padding the data into training data | |
Args: | |
data: Iterable[List[{key, feat, label}]] | |
Returns: | |
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)] | |
""" | |
for sample in data: | |
assert isinstance(sample, list) | |
feats_length = torch.tensor([x['feat'].size(0) for x in sample], | |
dtype=torch.int32) | |
order = torch.argsort(feats_length, descending=True) | |
feats_lengths = torch.tensor( | |
[sample[i]['feat'].size(0) for i in order], dtype=torch.int32) | |
sorted_feats = [sample[i]['feat'] for i in order] | |
sorted_keys = [sample[i]['key'] for i in order] | |
sorted_labels = [ | |
torch.tensor(sample[i]['label'], dtype=torch.int64) for i in order | |
] | |
sorted_speech_tokens = [ | |
torch.tensor(sample[i]['speech_token'], dtype=torch.int64) for i in order | |
] | |
sorted_wavs = [sample[i]['wav'].squeeze(0) for i in order] | |
label_lengths = torch.tensor([x.size(0) for x in sorted_labels], | |
dtype=torch.int32) | |
speech_token_lengths = torch.tensor([x.size(0) for x in sorted_speech_tokens], | |
dtype=torch.int32) | |
wav_lengths = torch.tensor([x.size(0) for x in sorted_wavs], | |
dtype=torch.int32) | |
# utils_file.logging_limit_print('------------------') | |
# for feat_item in sorted_feats: | |
# utils_file.logging_limit_print(feat_item.shape) | |
# utils_file.logging_limit_print('------------------') | |
if len(sorted_feats)==0: | |
utils_file.logging_info(f'empty feats, output_type') | |
continue | |
padded_feats = pad_sequence(sorted_feats, | |
batch_first=True, | |
padding_value=0) | |
padding_labels = pad_sequence(sorted_labels, | |
batch_first=True, | |
padding_value=-100) | |
padding_speech_tokens = pad_sequence(sorted_speech_tokens, | |
batch_first=True, | |
padding_value=-100) | |
padded_wavs = pad_sequence(sorted_wavs, | |
batch_first=True, | |
padding_value=0) | |
sorted_lang = [ | |
sample[i].get('lang', 'cn') for i in order | |
] | |
sorted_speaker = [ | |
sample[i].get('speaker', 'None') for i in order | |
] | |
sorted_emotion = [ | |
sample[i].get('emotion', 'None') for i in order | |
] | |
sorted_gender = [ | |
sample[i].get('gender', 'None') for i in order | |
] | |
# sorted_duration = [ | |
# sample[i]['duration'] for i in order | |
# ] | |
sorted_task = [ | |
sample[i].get('task', '<TRANSCRIBE>') for i in order | |
] | |
sorted_txts = [ | |
sample[i].get('txt', '') for i in order | |
] | |
batch = { | |
"keys": sorted_keys, | |
"feats": padded_feats, | |
"target": padding_labels, | |
"feats_lengths": feats_lengths, | |
"target_lengths": label_lengths, | |
"pcm": padded_wavs, | |
"pcm_length": wav_lengths, | |
"speech_tokens": padding_speech_tokens, | |
"speech_tokens_length": speech_token_lengths, | |
"lang": sorted_lang, | |
"speaker": sorted_speaker, | |
"emotion": sorted_emotion, | |
"gender": sorted_gender, | |
"task": sorted_task, | |
'txts': sorted_txts | |
} | |
if 'prompt' in sample[0] and len(sample[0]['prompt']) > 0: | |
sorted_prompts = [ | |
torch.tensor(sample[i]['prompt'], dtype=torch.int64 | |
) for i in order | |
] | |
prompt_lengths = torch.tensor([x.size(0) for x in | |
sorted_prompts], dtype=torch.int32) | |
padding_prompts = pad_sequence(sorted_prompts, | |
batch_first=True, | |
padding_value=-1) | |
batch['prompt'] = padding_prompts | |
batch['prompt_lengths'] = prompt_lengths | |
if 'output_type' in sample[0]: | |
batch['output_type'] = sample[0]['output_type'] | |
else: | |
batch['output_type'] = 'text' | |
history_batch = [] | |
for i in order: | |
if 'history' in sample[i]: | |
history_batch.append(sample[i].get("history",[])) | |
else: | |
history_batch.append([]) | |
batch['history'] = history_batch | |
# if batch['output_type'] == "speech2text_token" or batch['output_type'] == "speech2text_token_streaming": | |
if 'extra' in sample[0]: | |
batch['extra'] = [sample[i].get('extra', {}) for i in order] | |
yield batch | |