OSUM-EChat / wenet /osum_echat /init_llmasr.py
xlgeng's picture
开始部署
6f7f7cd
import logging
import torch
from wenet.osum_echat.llmasr_model_instruct_version import LLMASR_Model as LLMASR_Model_Instruct
# from wenet.osum_echat.llmasr_model_base_version import LLMASR_Model as LLMASR_Model_Base
from wenet.transformer.cmvn import GlobalCMVN
from wenet.utils.checkpoint import load_checkpoint, load_trained_modules
from wenet.utils.cmvn import load_cmvn
from gxl_ai_utils.utils import utils_file
def init_llmasr(args, configs, is_inference=False):
llm_path = configs["llm_path"]
lora = configs["use_lora"]
lora_alpha = configs["lora_alpha"]
lora_rank = configs["lora_rank"]
lora_dropout = configs["lora_dropout"]
if configs['encoder'] == 'transformer':
encoder_type = configs.get('encoder', 'conformer')
input_dim = configs['input_dim']
from wenet.utils.init_model import WENET_ENCODER_CLASSES
encoder = WENET_ENCODER_CLASSES[encoder_type](
input_dim,
global_cmvn=None,
**configs['encoder_conf'],
**configs['encoder_conf']['efficient_conf']
if 'efficient_conf' in configs['encoder_conf'] else {})
encoder_output_dim = configs['encoder_conf']['output_size']
elif configs['encoder'] == 'whisper':
raise NotImplementedError('openai-whisper 还没实现')
elif configs['encoder'] == 'hubert':
raise NotImplementedError('hubert 还没实现')
else:
encoder_output_dim=0
encoder = None
speech_token_num = configs.get('speech_token_num', 0)
train_speech_out = speech_token_num != 0
if_instruct = configs.get('if_instruct', False)
BIGMODEL = LLMASR_Model_Instruct
model = BIGMODEL(
encoder=encoder,
encoder_output_dim=encoder_output_dim,
llm_path=llm_path,
lora=lora,
lora_alpha=lora_alpha,
lora_rank=lora_rank,
lora_dropout=lora_dropout,
is_inference=is_inference,
downsample_rate=configs.get('downsample_rate',1),
adapter_type=configs.get('adapter_type', 'osum_echat'),
speech_token_num=speech_token_num,
train_speech_out=train_speech_out,
)
utils_file.logging_info("init_llmasr():模型初始化完毕,开始打印模型参数量")
utils_file.logging_info(f'encoder')
utils_file.print_model_size(model.encoder)
utils_file.logging_info(f'llm_model')
utils_file.print_model_size(model.llama_model)
utils_file.logging_info(f'speech_transformer')
utils_file.print_model_size(model.speech_transformer)
utils_file.logging_info(f'speech_llama_proj')
utils_file.print_model_size(model.speech_llama_proj)
utils_file.logging_info(f'speech_head')
utils_file.print_model_size(model.speech_head)
logging.info(f'OSUM-EChat:init_salmonn():开始加载初始化模型')
if hasattr(args, 'checkpoint') and args.checkpoint is not None:
logging.info(f'OSUM-EChat: 设置了初始化模型位置,开始加载,参数文件位置:{args.checkpoint}')
infos = load_checkpoint(model, args.checkpoint)
elif hasattr(args, 'checkpoint') and args.enc_init is not None:
infos = load_trained_modules(model, args)
else:
infos = {}
if configs.get('init_step', False):
infos = {}
configs["init_infos"] = infos
print(configs)
logging.info('OSUM-EChat:加载初始化模型完毕')
# model.to(torch.float32)
# logging.info('OSUM-EChat:开始加载instruct LLM模型')
# load_checkpoint(model.llama_model.model, "/mnt/sfs/asr/env/.cache/transformers/models--Qwen--Qwen2.5-7B-Instruct-1M/llama_model.pt")
# logging.info('OSUM-EChat:加载instruct LLM模型完毕')
# logging.info(f'OSUM-EChat:init_llmasr():开始加载encoder参数,仅仅为了消融2,一会马上删了该逻辑')
# encoder_path = "/home/A02_tmpdata3/ckpt/whisper_medium/wenet_whisper.pt"
# load_checkpoint(model, encoder_path)
# logging.info(f'OSUM-EChat:init_llmasr():加载encoder参数完毕')
logging.info('OSUM-EChat:开始选择性冻结模块')
fire_module = configs.get("fire_module", None)
if fire_module is None:
logging.info('OSUM-EChat:没有选择解冻的模块,也就是没有训练参数,直接报错返回')
raise ValueError('没有选择解冻的模块,也就是没有训练参数,直接报错返回')
for k, p in model.named_parameters():
# if k.startswith("llama_model") or k.startswith("speech_encoder"):
# if k.startswith("llama_model") or k.startswith("speech_transformer"):
if fire_module == 'link':
# link 包括下采样块, transformer块, 前后linear块
if k.startswith("llama_model") or k.startswith("encoder"):
p.requires_grad = False
elif fire_module == 'encoder':
if not k.startswith("encoder"):
p.requires_grad = False
elif fire_module == 'llm':
if not k.startswith("llama_model"):
p.requires_grad = False
elif fire_module == 'link_and_encoder':
# 这里和speech token相关的层不会被冻结
if k.startswith("llama_model"):
p.requires_grad = False
elif fire_module == "link_and_encoder_and_lora":
pass
elif fire_module == "link_and_lora":
if k.startswith("encoder"):
p.requires_grad = False
# logging.info(f"{k} {p.requires_grad} {p.shape} {p.dtype}")
logging.info('OSUM-EChat:冻结完毕')
logging.info(configs)
return model, configs