Spaces:
Running
on
Zero
Running
on
Zero
import logging | |
import torch | |
from wenet.osum_echat.llmasr_model_instruct_version import LLMASR_Model as LLMASR_Model_Instruct | |
# from wenet.osum_echat.llmasr_model_base_version import LLMASR_Model as LLMASR_Model_Base | |
from wenet.transformer.cmvn import GlobalCMVN | |
from wenet.utils.checkpoint import load_checkpoint, load_trained_modules | |
from wenet.utils.cmvn import load_cmvn | |
from gxl_ai_utils.utils import utils_file | |
def init_llmasr(args, configs, is_inference=False): | |
llm_path = configs["llm_path"] | |
lora = configs["use_lora"] | |
lora_alpha = configs["lora_alpha"] | |
lora_rank = configs["lora_rank"] | |
lora_dropout = configs["lora_dropout"] | |
if configs['encoder'] == 'transformer': | |
encoder_type = configs.get('encoder', 'conformer') | |
input_dim = configs['input_dim'] | |
from wenet.utils.init_model import WENET_ENCODER_CLASSES | |
encoder = WENET_ENCODER_CLASSES[encoder_type]( | |
input_dim, | |
global_cmvn=None, | |
**configs['encoder_conf'], | |
**configs['encoder_conf']['efficient_conf'] | |
if 'efficient_conf' in configs['encoder_conf'] else {}) | |
encoder_output_dim = configs['encoder_conf']['output_size'] | |
elif configs['encoder'] == 'whisper': | |
raise NotImplementedError('openai-whisper 还没实现') | |
elif configs['encoder'] == 'hubert': | |
raise NotImplementedError('hubert 还没实现') | |
else: | |
encoder_output_dim=0 | |
encoder = None | |
speech_token_num = configs.get('speech_token_num', 0) | |
train_speech_out = speech_token_num != 0 | |
if_instruct = configs.get('if_instruct', False) | |
BIGMODEL = LLMASR_Model_Instruct | |
model = BIGMODEL( | |
encoder=encoder, | |
encoder_output_dim=encoder_output_dim, | |
llm_path=llm_path, | |
lora=lora, | |
lora_alpha=lora_alpha, | |
lora_rank=lora_rank, | |
lora_dropout=lora_dropout, | |
is_inference=is_inference, | |
downsample_rate=configs.get('downsample_rate',1), | |
adapter_type=configs.get('adapter_type', 'osum_echat'), | |
speech_token_num=speech_token_num, | |
train_speech_out=train_speech_out, | |
) | |
utils_file.logging_info("init_llmasr():模型初始化完毕,开始打印模型参数量") | |
utils_file.logging_info(f'encoder') | |
utils_file.print_model_size(model.encoder) | |
utils_file.logging_info(f'llm_model') | |
utils_file.print_model_size(model.llama_model) | |
utils_file.logging_info(f'speech_transformer') | |
utils_file.print_model_size(model.speech_transformer) | |
utils_file.logging_info(f'speech_llama_proj') | |
utils_file.print_model_size(model.speech_llama_proj) | |
utils_file.logging_info(f'speech_head') | |
utils_file.print_model_size(model.speech_head) | |
logging.info(f'OSUM-EChat:init_salmonn():开始加载初始化模型') | |
if hasattr(args, 'checkpoint') and args.checkpoint is not None: | |
logging.info(f'OSUM-EChat: 设置了初始化模型位置,开始加载,参数文件位置:{args.checkpoint}') | |
infos = load_checkpoint(model, args.checkpoint) | |
elif hasattr(args, 'checkpoint') and args.enc_init is not None: | |
infos = load_trained_modules(model, args) | |
else: | |
infos = {} | |
if configs.get('init_step', False): | |
infos = {} | |
configs["init_infos"] = infos | |
print(configs) | |
logging.info('OSUM-EChat:加载初始化模型完毕') | |
# model.to(torch.float32) | |
# logging.info('OSUM-EChat:开始加载instruct LLM模型') | |
# load_checkpoint(model.llama_model.model, "/mnt/sfs/asr/env/.cache/transformers/models--Qwen--Qwen2.5-7B-Instruct-1M/llama_model.pt") | |
# logging.info('OSUM-EChat:加载instruct LLM模型完毕') | |
# logging.info(f'OSUM-EChat:init_llmasr():开始加载encoder参数,仅仅为了消融2,一会马上删了该逻辑') | |
# encoder_path = "/home/A02_tmpdata3/ckpt/whisper_medium/wenet_whisper.pt" | |
# load_checkpoint(model, encoder_path) | |
# logging.info(f'OSUM-EChat:init_llmasr():加载encoder参数完毕') | |
logging.info('OSUM-EChat:开始选择性冻结模块') | |
fire_module = configs.get("fire_module", None) | |
if fire_module is None: | |
logging.info('OSUM-EChat:没有选择解冻的模块,也就是没有训练参数,直接报错返回') | |
raise ValueError('没有选择解冻的模块,也就是没有训练参数,直接报错返回') | |
for k, p in model.named_parameters(): | |
# if k.startswith("llama_model") or k.startswith("speech_encoder"): | |
# if k.startswith("llama_model") or k.startswith("speech_transformer"): | |
if fire_module == 'link': | |
# link 包括下采样块, transformer块, 前后linear块 | |
if k.startswith("llama_model") or k.startswith("encoder"): | |
p.requires_grad = False | |
elif fire_module == 'encoder': | |
if not k.startswith("encoder"): | |
p.requires_grad = False | |
elif fire_module == 'llm': | |
if not k.startswith("llama_model"): | |
p.requires_grad = False | |
elif fire_module == 'link_and_encoder': | |
# 这里和speech token相关的层不会被冻结 | |
if k.startswith("llama_model"): | |
p.requires_grad = False | |
elif fire_module == "link_and_encoder_and_lora": | |
pass | |
elif fire_module == "link_and_lora": | |
if k.startswith("encoder"): | |
p.requires_grad = False | |
# logging.info(f"{k} {p.requires_grad} {p.shape} {p.dtype}") | |
logging.info('OSUM-EChat:冻结完毕') | |
logging.info(configs) | |
return model, configs | |