File size: 30,710 Bytes
a3f711d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
#               2025 Alibaba Inc (authors: Xiang Lyu, Yabin Li, Qihua, Shengqiang Li)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import queue
import random
import time
import threading
from typing import Dict, Optional, Callable, List, Generator
import torch
from torch import nn
import torch.nn.functional as F
from transformers import Qwen2ForCausalLM
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
from cosyvoice.utils.common import IGNORE_ID
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
from cosyvoice.utils.common import th_accuracy
from cosyvoice.utils.file_utils import logging
from cosyvoice.utils.mask import make_pad_mask


class TransformerLM(torch.nn.Module):
    def __init__(
            self,
            text_encoder_input_size: int,
            llm_input_size: int,
            llm_output_size: int,
            text_token_size: int,
            speech_token_size: int,
            text_encoder: torch.nn.Module,
            llm: torch.nn.Module,
            sampling: Callable,
            length_normalized_loss: bool = True,
            lsm_weight: float = 0.0,
            spk_embed_dim: int = 192,
    ):
        super().__init__()
        self.llm_input_size = llm_input_size
        self.speech_token_size = speech_token_size
        # 1. build text token inputs related modules
        self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
        self.text_encoder = text_encoder
        self.text_encoder_affine_layer = nn.Linear(
            self.text_encoder.output_size(),
            llm_input_size
        )

        # 2. build speech token language model related modules
        self.sos_eos = 0
        self.task_id = 1
        self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
        self.llm = llm
        self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
        self.criterion_ce = LabelSmoothingLoss(
            size=speech_token_size + 1,
            padding_idx=IGNORE_ID,
            smoothing=lsm_weight,
            normalize_length=length_normalized_loss,
        )

        # 3. [Optional] build speech token related modules
        self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
        self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)

        # 4. sampling method
        self.sampling = sampling

    def encode(
            self,
            text: torch.Tensor,
            text_lengths: torch.Tensor,
    ):
        encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1)
        encoder_out_lens = encoder_mask.squeeze(1).sum(1)
        encoder_out = self.text_encoder_affine_layer(encoder_out)
        return encoder_out, encoder_out_lens

    def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
        text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
        speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
        lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
                    for i in range(len(text_token))]
        lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
        lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
        return lm_input, lm_input_len

    def forward(
            self,
            batch: dict,
            device: torch.device,
    ) -> Dict[str, Optional[torch.Tensor]]:
        """
        Args:
            text: (B, L, D)
            text_lengths: (B,)
            audio: (B, T, N) or (B, T)
            audio_lengths: (B,)
        """
        text_token = batch['text_token'].to(device)
        text_token_len = batch['text_token_len'].to(device)
        speech_token = batch['speech_token'].to(device)
        speech_token_len = batch['speech_token_len'].to(device)
        embedding = batch['embedding'].to(device)

        # 1. prepare llm_target
        lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() +
                                  [self.speech_token_size]) for i in range(text_token.size(0))]
        lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)

        # 1. encode text_token
        text_token = self.text_embedding(text_token)
        text_token, text_token_len = self.encode(text_token, text_token_len)

        # 2. embedding projection
        embedding = F.normalize(embedding, dim=1)
        embedding = self.spk_embed_affine_layer(embedding)
        embedding = embedding.unsqueeze(1)

        # 3. eos and task_id
        sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
        task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)

        # 4. encode speech_token
        speech_token = self.speech_embedding(speech_token)

        # 5. unpad and pad
        lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len,
                                                         task_id_emb, speech_token, speech_token_len)

        # 6. run lm forward
        lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
        logits = self.llm_decoder(lm_output)
        loss = self.criterion_ce(logits, lm_target)
        acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID)
        return {'loss': loss, 'acc': acc}

    def sampling_ids(
            self,
            weighted_scores: torch.Tensor,
            decoded_tokens: List,
            sampling: int,
            ignore_eos: bool = True,
    ):
        num_trials, max_trials = 0, 100
        while True:
            top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
            if (not ignore_eos) or (self.speech_token_size not in top_ids):
                break
            num_trials += 1
            if num_trials > max_trials:
                raise RuntimeError('sampling reaches max_trials {} and still get eos when ignore_eos is True, check your input!'.format(max_trials))
        return top_ids

    @torch.inference_mode()
    def inference(
            self,
            text: torch.Tensor,
            text_len: torch.Tensor,
            prompt_text: torch.Tensor,
            prompt_text_len: torch.Tensor,
            prompt_speech_token: torch.Tensor,
            prompt_speech_token_len: torch.Tensor,
            embedding: torch.Tensor,
            sampling: int = 25,
            max_token_text_ratio: float = 20,
            min_token_text_ratio: float = 2,
            uuid: str = '',
    ) -> Generator[torch.Tensor, None, None]:
        device = text.device
        text = torch.concat([prompt_text, text], dim=1)
        text_len += prompt_text_len
        text = self.text_embedding(text)

        # 1. encode text
        text, text_len = self.encode(text, text_len)

        # 2. encode embedding
        if embedding.shape[0] != 0:
            embedding = F.normalize(embedding, dim=1)
            embedding = self.spk_embed_affine_layer(embedding)
            embedding = embedding.unsqueeze(dim=1)
        else:
            embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device).to(text.dtype)

        # 3. concat llm_input
        sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
        task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
        if prompt_speech_token_len != 0:
            prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
        else:
            prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
        lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)

        # 4. cal min/max_length
        min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
        max_len = int((text_len - prompt_text_len) * max_token_text_ratio)

        # 5. step by step decode
        out_tokens = []
        offset = 0
        att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
        for i in range(max_len):
            y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=offset, required_cache_size=-1,
                                                                  att_cache=att_cache, cnn_cache=cnn_cache,
                                                                  att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]),
                                                                                                 device=lm_input.device)).to(torch.bool))
            logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
            # force continue decode first token
            if i == 0:
                logp[:, self.speech_token_size] = -float('inf')
            top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
            if top_ids == self.speech_token_size:
                break
            # in stream mode, yield token one by one
            yield top_ids
            out_tokens.append(top_ids)
            offset += lm_input.size(1)
            lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)


class Qwen2Encoder(torch.nn.Module):
    def __init__(self, pretrain_path):
        super().__init__()
        self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path)

    def forward(self, xs: torch.Tensor, xs_lens: torch.Tensor):
        T = xs.size(1)
        masks = ~make_pad_mask(xs_lens, T)
        outs = self.model(
            inputs_embeds=xs,
            attention_mask=masks,
            output_hidden_states=True,
            return_dict=True,
        )
        return outs.hidden_states[-1], masks.unsqueeze(1)

    def forward_one_step(self, xs, masks, cache=None):
        input_masks = masks[:, -1, :]
        outs = self.model(
            inputs_embeds=xs,
            attention_mask=input_masks,
            output_hidden_states=True,
            return_dict=True,
            use_cache=True,
            past_key_values=cache,
        )
        xs = outs.hidden_states[-1]
        new_cache = outs.past_key_values
        return xs, new_cache


class Qwen2LM(TransformerLM):
    def __init__(
            self,
            llm_input_size: int,
            llm_output_size: int,
            speech_token_size: int,
            llm: torch.nn.Module,
            sampling: Callable,
            length_normalized_loss: bool = True,
            lsm_weight: float = 0.0,
            mix_ratio: List[int] = [5, 15],
    ):
        torch.nn.Module.__init__(self)
        self.llm_input_size = llm_input_size
        self.llm_output_size = llm_output_size
        self.speech_token_size = speech_token_size
        # 2. build speech token language model related modules
        self.sos_eos = 0
        self.task_id = 1
        self.fill_token = 2

        self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
        self.llm = llm
        self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 3)
        self.criterion_ce = LabelSmoothingLoss(
            size=speech_token_size + 3,
            padding_idx=IGNORE_ID,
            smoothing=lsm_weight,
            normalize_length=length_normalized_loss,
        )

        # 3. [Optional] build speech token related modules
        self.speech_embedding = torch.nn.Embedding(speech_token_size + 3, llm_input_size)

        # 4. sampling method
        self.sampling = sampling
        self.mix_ratio = mix_ratio

        # 5. vllm related
        self.stop_token_ids = [speech_token_size + i for i in range(3)]
        self.vllm_output_queue = {}

    def prepare_lm_input_target(self, text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len):
        lm_target, lm_input = [], []
        text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
        speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
        text_token_emb = unpad_sequence(text_token_emb, text_token_len.cpu(), batch_first=True)
        speech_token_emb = unpad_sequence(speech_token_emb, speech_token_len.cpu(), batch_first=True)
        for i in range(len(text_token)):
            # bistream sequence
            if random.random() < 0.5 and speech_token_len[i] / text_token_len[i] > self.mix_ratio[1] / self.mix_ratio[0]:
                this_lm_target, this_lm_input = [], []
                this_lm_target.append(IGNORE_ID)
                this_lm_input.append(self.llm_embedding.weight[self.sos_eos].reshape(1, -1))
                for j in range(((text_token_len[i] + 1) / self.mix_ratio[0]).ceil().int().item()):
                    this_text_token = text_token[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]].tolist()
                    this_speech_token = speech_token[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]].tolist()
                    if len(this_text_token) == self.mix_ratio[0]:
                        assert len(this_speech_token) == self.mix_ratio[1]
                        this_lm_target += [IGNORE_ID] * (self.mix_ratio[0] - 1)
                        this_lm_target += this_speech_token
                        this_lm_target.append(self.speech_token_size + 2)
                        this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]])
                        this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]])
                    else:
                        this_lm_target += [-1] * len(this_text_token)
                        this_lm_target += speech_token[i][j * self.mix_ratio[1]:].tolist()
                        this_lm_target.append(self.speech_token_size)
                        this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]:])
                        this_lm_input.append(self.llm_embedding.weight[self.task_id].reshape(1, -1))
                        this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]:])
                this_lm_target, this_lm_input = torch.tensor(this_lm_target), torch.concat(this_lm_input, dim=0)
            # unistream sequence
            else:
                this_lm_target = torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + speech_token[i].tolist() + [self.speech_token_size])
                this_lm_input = torch.concat([self.llm_embedding.weight[self.sos_eos].reshape(1, -1), text_token_emb[i],
                                              self.llm_embedding.weight[self.task_id].reshape(1, -1), speech_token_emb[i]], dim=0)
            lm_target.append(this_lm_target)
            lm_input.append(this_lm_input)
        lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
        lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
        lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID)
        return lm_target, lm_input, lm_input_len

    def forward(
            self,
            batch: dict,
            device: torch.device,
    ) -> Dict[str, Optional[torch.Tensor]]:
        """
        Args:
            text: (B, L, D)
            text_lengths: (B,)
            audio: (B, T, N) or (B, T)
            audio_lengths: (B,)
        """
        text_token = batch['text_token'].to(device)
        text_token_len = batch['text_token_len'].to(device)
        speech_token = batch['speech_token'].to(device)
        speech_token_len = batch['speech_token_len'].to(device)

        # 1. encode text_token
        text_token_emb = self.llm.model.model.embed_tokens(text_token)

        # 2. encode speech_token
        speech_token_emb = self.speech_embedding(speech_token)

        # 3. prepare llm_input/target
        lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len)
        lm_target = lm_target.to(device)

        # 4. run lm forward
        lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
        logits = self.llm_decoder(lm_output)
        loss = self.criterion_ce(logits, lm_target.to(device))
        acc = th_accuracy(logits.view(-1, self.speech_token_size + 3), lm_target, ignore_label=IGNORE_ID)
        return {'loss': loss, 'acc': acc}

    def forward_dpo(
            self,
            batch: dict,
            device: torch.device,
    ) -> Dict[str, Optional[torch.Tensor]]:
        text_token = batch['text_token'].to(device)
        text_token_len = batch['text_token_len'].to(device)
        speech_token = batch['speech_token'].to(device)
        speech_token_len = batch['speech_token_len'].to(device)
        reject_speech_token = batch['reject_speech_token'].to(device)
        reject_speech_token_len = batch['reject_speech_token_len'].to(device)

        # 1. encode text_token
        text_token_emb = self.llm.model.model.embed_tokens(text_token)

        # 2. encode speech_token
        speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
        reject_speech_token = unpad_sequence(reject_speech_token, reject_speech_token_len.cpu(), batch_first=True)
        speech_token_combined = speech_token + reject_speech_token
        speech_token_combined = pad_sequence(speech_token_combined, batch_first=True, padding_value=0)
        speech_token_combined_len = torch.concat([speech_token_len, reject_speech_token_len], dim=0)
        speech_token_combined_emb = self.speech_embedding(speech_token_combined)

        # 3. prepare llm_input/target
        lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(text_token.repeat(2, 1), text_token_emb.repeat(2, 1, 1), text_token_len.repeat(2),
                                                                         speech_token_combined, speech_token_combined_emb, speech_token_combined_len)
        lm_target = lm_target.to(device)

        # 4. run lm forward
        lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
        logits = self.llm_decoder(lm_output)
        chosen_logits = logits[:text_token.shape[0]]
        rejected_logits = logits[text_token.shape[0]:]
        chosen_lm_target = lm_target[:text_token.shape[0]]
        rejected_lm_target = lm_target[text_token.shape[0]:]
        loss = self.criterion_ce(chosen_logits, chosen_lm_target.to(device))
        acc = th_accuracy(chosen_logits.view(-1, self.speech_token_size + 3), chosen_lm_target, ignore_label=IGNORE_ID)

        # 5. calculate dpo logits
        chosen_lm_mask = chosen_lm_target == IGNORE_ID
        rejected_lm_mask = rejected_lm_target == IGNORE_ID
        chosen_logps = torch.gather(chosen_logits.log_softmax(dim=-1), dim=2, index=chosen_lm_target.masked_fill(chosen_lm_mask, 0).unsqueeze(dim=-1)).squeeze(dim=-1)
        rejected_logps = torch.gather(rejected_logits.log_softmax(dim=-1), dim=2, index=rejected_lm_target.masked_fill(rejected_lm_mask, 0).unsqueeze(dim=-1)).squeeze(dim=-1)
        chosen_logps = (chosen_logps * chosen_lm_mask).sum(dim=-1) / chosen_lm_mask.sum(dim=-1)
        rejected_logps = (rejected_logps * rejected_lm_mask).sum(dim=-1) / rejected_lm_mask.sum(dim=-1)
        return {'loss': loss, 'acc': acc, 'chosen_logps': chosen_logps, 'rejected_logps': rejected_logps}

    @torch.inference_mode()
    def inference(
            self,
            text: torch.Tensor,
            text_len: torch.Tensor,
            prompt_text: torch.Tensor,
            prompt_text_len: torch.Tensor,
            prompt_speech_token: torch.Tensor,
            prompt_speech_token_len: torch.Tensor,
            embedding: torch.Tensor,
            sampling: int = 25,
            max_token_text_ratio: float = 20,
            min_token_text_ratio: float = 2,
            uuid: str = '',
    ) -> Generator[torch.Tensor, None, None]:
        device = text.device
        text = torch.concat([prompt_text, text], dim=1)
        text_len += prompt_text_len
        text = self.llm.model.model.embed_tokens(text)

        # 3. concat llm_input
        sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
        task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
        if prompt_speech_token_len != 0:
            prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
        else:
            prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
        lm_input = torch.concat([sos_eos_emb, text, task_id_emb, prompt_speech_token_emb], dim=1)

        # 4. cal min/max_length
        min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
        max_len = int((text_len - prompt_text_len) * max_token_text_ratio)

        # 5. step by step decode
        for token in self.inference_wrapper(lm_input, sampling, min_len, max_len, uuid):
            yield token

    @torch.inference_mode()
    def inference_wrapper(self, lm_input, sampling, min_len, max_len, uuid):
        if hasattr(self, 'vllm'):
            from vllm import SamplingParams, RequestOutput
            sampling_params = SamplingParams(top_k=sampling,
                                             stop_token_ids=self.stop_token_ids,
                                             min_tokens=min_len,
                                             max_tokens=max_len)
            with self.lock:
                self.vllm.add_request(uuid, {"prompt_embeds": lm_input.squeeze(0).to(torch.bfloat16).to(lm_input.device)}, sampling_params)
                self.vllm_output_queue[uuid] = queue.Queue()
            out_tokens = []
            while True:
                with self.lock:
                    if self.vllm_output_queue[uuid].empty() is True:
                        request_outputs: List[RequestOutput] = self.vllm.step()
                        for request_output in request_outputs:
                            top_ids = list(request_output.outputs[0].token_ids)[-1]
                            self.vllm_output_queue[request_output.request_id].put(top_ids)
                if self.vllm_output_queue[uuid].empty() is False:
                    top_ids = self.vllm_output_queue[uuid].get()
                    if top_ids in self.stop_token_ids:
                        break
                    # in stream mode, yield token one by one
                    yield top_ids
                    out_tokens.append(top_ids)
                    if len(out_tokens) == max_len:
                        break
                time.sleep(0.001)
            with self.lock:
                self.vllm_output_queue.pop(uuid)
        else:
            out_tokens = []
            cache = None
            for i in range(max_len):
                y_pred, cache = self.llm.forward_one_step(lm_input,
                                                          masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
                                                          cache=cache)
                logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
                top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
                if top_ids == self.speech_token_size:
                    break
                if top_ids > self.speech_token_size:
                    continue
                # in stream mode, yield token one by one
                yield top_ids
                out_tokens.append(top_ids)
                lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)

    @torch.inference_mode()
    def inference_bistream(
            self,
            text: Generator,
            prompt_text: torch.Tensor,
            prompt_text_len: torch.Tensor,
            prompt_speech_token: torch.Tensor,
            prompt_speech_token_len: torch.Tensor,
            embedding: torch.Tensor,
            sampling: int = 25,
            max_token_text_ratio: float = 20,
            min_token_text_ratio: float = 2,
    ) -> Generator[torch.Tensor, None, None]:

        device = prompt_text.device
        # 1. prepare input
        sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
        task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
        if prompt_speech_token_len != 0:
            prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
        else:
            prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=prompt_text.dtype).to(device)
        lm_input = torch.concat([sos_eos_emb], dim=1)

        # 2. iterate text
        out_tokens = []
        cache = None
        # NOTE init prompt_text as text_cache as it is basically impossible prompt_speech_token/prompt_text < 15/5
        text_cache = self.llm.model.model.embed_tokens(prompt_text)
        next_fill_index = -1
        for this_text in text:
            text_cache = torch.concat([text_cache, self.llm.model.model.embed_tokens(this_text)], dim=1)
            # prompt_speech_token_emb not empty, try append to lm_input
            while prompt_speech_token_emb.size(1) != 0:
                if text_cache.size(1) >= self.mix_ratio[0]:
                    lm_input_text, lm_input_speech = text_cache[:, :self.mix_ratio[0]], prompt_speech_token_emb[:, :self.mix_ratio[1]]
                    logging.info('append {} text token {} speech token'.format(lm_input_text.size(1), lm_input_speech.size(1)))
                    lm_input = torch.concat([lm_input, lm_input_text, lm_input_speech], dim=1)
                    text_cache, prompt_speech_token_emb = text_cache[:, self.mix_ratio[0]:], prompt_speech_token_emb[:, self.mix_ratio[1]:]
                else:
                    logging.info('not enough text token to decode, wait for more')
                    break
            # no prompt_speech_token_emb remain, can decode some speech token
            if prompt_speech_token_emb.size(1) == 0:
                if (len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2) or (len(out_tokens) == 0 and lm_input.size(1) == 1):
                    logging.info('get fill token, need to append more text token')
                    if text_cache.size(1) >= self.mix_ratio[0]:
                        lm_input_text = text_cache[:, :self.mix_ratio[0]]
                        logging.info('append {} text token'.format(lm_input_text.size(1)))
                        if len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2:
                            lm_input = lm_input_text
                        else:
                            lm_input = torch.concat([lm_input, lm_input_text], dim=1)
                        text_cache = text_cache[:, self.mix_ratio[0]:]
                    else:
                        logging.info('not enough text token to decode, wait for more')
                        continue
                while True:
                    seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
                    y_pred, cache = self.llm.forward_one_step(lm_input,
                                                              masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
                                                              cache=cache)
                    logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
                    if next_fill_index != -1 and len(out_tokens) == next_fill_index:
                        top_ids = self.speech_token_size + 2
                        next_fill_index += (self.mix_ratio[1] + 1)
                    else:
                        top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True).item()
                    if top_ids == self.speech_token_size + 2:
                        next_fill_index = len(out_tokens) + self.mix_ratio[1] + 1
                        logging.info('fill_token index {} next fill_token index {}'.format(len(out_tokens), next_fill_index))
                    out_tokens.append(top_ids)
                    if top_ids >= self.speech_token_size:
                        if top_ids == self.speech_token_size + 2:
                            break
                        else:
                            raise ValueError('should not get token {}'.format(top_ids))
                    yield top_ids
                    lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)

        # 3. final decode
        lm_input = torch.concat([lm_input, text_cache, task_id_emb], dim=1)
        logging.info('no more text token, decode until met eos')
        while True:
            seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
            y_pred, cache = self.llm.forward_one_step(lm_input,
                                                      masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
                                                      cache=cache)
            logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
            top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=False).item()
            out_tokens.append(top_ids)
            if top_ids >= self.speech_token_size:
                if top_ids == self.speech_token_size:
                    break
                else:
                    raise ValueError('should not get token {}'.format(top_ids))
            # in stream mode, yield token one by one
            yield top_ids
            lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)