File size: 5,461 Bytes
a3f711d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
#               2024 Alibaba Inc (authors: Xiang Lyu, Zetao Hu)
#               2025 Alibaba Inc (authors: Xiang Lyu, Yabin Li)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import json
import torch
import torchaudio
import logging
logging.getLogger('matplotlib').setLevel(logging.WARNING)
logging.basicConfig(level=logging.DEBUG,
                    format='%(asctime)s %(levelname)s %(message)s')


def read_lists(list_file):
    lists = []
    with open(list_file, 'r', encoding='utf8') as fin:
        for line in fin:
            lists.append(line.strip())
    return lists


def read_json_lists(list_file):
    lists = read_lists(list_file)
    results = {}
    for fn in lists:
        with open(fn, 'r', encoding='utf8') as fin:
            results.update(json.load(fin))
    return results


def load_wav(wav, target_sr):
    speech, sample_rate = torchaudio.load(wav, backend='soundfile')
    speech = speech.mean(dim=0, keepdim=True)
    if sample_rate != target_sr:
        assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr)
        speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech)
    return speech


def convert_onnx_to_trt(trt_model, trt_kwargs, onnx_model, fp16):
    import tensorrt as trt
    logging.info("Converting onnx to trt...")
    network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
    logger = trt.Logger(trt.Logger.INFO)
    builder = trt.Builder(logger)
    network = builder.create_network(network_flags)
    parser = trt.OnnxParser(network, logger)
    config = builder.create_builder_config()
    config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 32)  # 4GB
    if fp16:
        config.set_flag(trt.BuilderFlag.FP16)
    profile = builder.create_optimization_profile()
    # load onnx model
    with open(onnx_model, "rb") as f:
        if not parser.parse(f.read()):
            for error in range(parser.num_errors):
                print(parser.get_error(error))
            raise ValueError('failed to parse {}'.format(onnx_model))
    # set input shapes
    for i in range(len(trt_kwargs['input_names'])):
        profile.set_shape(trt_kwargs['input_names'][i], trt_kwargs['min_shape'][i], trt_kwargs['opt_shape'][i], trt_kwargs['max_shape'][i])
    tensor_dtype = trt.DataType.HALF if fp16 else trt.DataType.FLOAT
    # set input and output data type
    for i in range(network.num_inputs):
        input_tensor = network.get_input(i)
        input_tensor.dtype = tensor_dtype
    for i in range(network.num_outputs):
        output_tensor = network.get_output(i)
        output_tensor.dtype = tensor_dtype
    config.add_optimization_profile(profile)
    engine_bytes = builder.build_serialized_network(network, config)
    # save trt engine
    with open(trt_model, "wb") as f:
        f.write(engine_bytes)
    logging.info("Succesfully convert onnx to trt...")


def export_cosyvoice2_vllm(model, model_path, device):
    if os.path.exists(model_path):
        return
    pad_to = DEFAULT_VOCAB_PADDING_SIZE = 64
    vocab_size = model.speech_embedding.num_embeddings
    feature_size = model.speech_embedding.embedding_dim
    pad_vocab_size = ((vocab_size + pad_to - 1) // pad_to) * pad_to

    dtype = torch.bfloat16
    # lm_head
    new_lm_head = torch.nn.Linear(in_features=feature_size, out_features=pad_vocab_size, bias=True)
    with torch.no_grad():
        new_lm_head.weight[:vocab_size] = model.llm_decoder.weight
        new_lm_head.bias[:vocab_size] = model.llm_decoder.bias
        new_lm_head.weight[vocab_size:] = 0
        new_lm_head.bias[vocab_size:] = 0
    model.llm.model.lm_head = new_lm_head
    new_codec_embed = torch.nn.Linear(in_features=feature_size, out_features=pad_vocab_size)
    # embed_tokens
    embed_tokens = model.llm.model.model.embed_tokens
    with torch.no_grad():
        new_codec_embed.weight[:vocab_size] = model.speech_embedding.weight
        new_codec_embed.weight[vocab_size:] = 0
    model.llm.model.set_input_embeddings(new_codec_embed)
    model.llm.model.to(device)
    model.llm.model.to(dtype)
    tmp_vocab_size = model.llm.model.config.vocab_size
    tmp_tie_embedding = model.llm.model.config.tie_word_embeddings
    del model.llm.model.generation_config.eos_token_id
    del model.llm.model.config.bos_token_id
    del model.llm.model.config.eos_token_id
    model.llm.model.config.vocab_size = pad_vocab_size
    model.llm.model.config.tie_word_embeddings = False
    model.llm.model.config.use_bias = True
    model.llm.model.save_pretrained(model_path)
    os.system('sed -i s@Qwen2ForCausalLM@CosyVoice2ForCausalLM@g {}/config.json'.format(os.path.abspath(model_path)))
    model.llm.model.config.vocab_size = tmp_vocab_size
    model.llm.model.config.tie_word_embeddings = tmp_tie_embedding
    model.llm.model.set_input_embeddings(embed_tokens)