# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du) # 2025 Alibaba Inc (authors: Xiang Lyu, Yabin Li, Qihua, Shengqiang Li) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import queue import random import time import threading from typing import Dict, Optional, Callable, List, Generator import torch from torch import nn import torch.nn.functional as F from transformers import Qwen2ForCausalLM from torch.nn.utils.rnn import pad_sequence, unpad_sequence from cosyvoice.utils.common import IGNORE_ID from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss from cosyvoice.utils.common import th_accuracy from cosyvoice.utils.file_utils import logging from cosyvoice.utils.mask import make_pad_mask class TransformerLM(torch.nn.Module): def __init__( self, text_encoder_input_size: int, llm_input_size: int, llm_output_size: int, text_token_size: int, speech_token_size: int, text_encoder: torch.nn.Module, llm: torch.nn.Module, sampling: Callable, length_normalized_loss: bool = True, lsm_weight: float = 0.0, spk_embed_dim: int = 192, ): super().__init__() self.llm_input_size = llm_input_size self.speech_token_size = speech_token_size # 1. build text token inputs related modules self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size) self.text_encoder = text_encoder self.text_encoder_affine_layer = nn.Linear( self.text_encoder.output_size(), llm_input_size ) # 2. build speech token language model related modules self.sos_eos = 0 self.task_id = 1 self.llm_embedding = torch.nn.Embedding(2, llm_input_size) self.llm = llm self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1) self.criterion_ce = LabelSmoothingLoss( size=speech_token_size + 1, padding_idx=IGNORE_ID, smoothing=lsm_weight, normalize_length=length_normalized_loss, ) # 3. [Optional] build speech token related modules self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size) self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size) # 4. sampling method self.sampling = sampling def encode( self, text: torch.Tensor, text_lengths: torch.Tensor, ): encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1) encoder_out_lens = encoder_mask.squeeze(1).sum(1) encoder_out = self.text_encoder_affine_layer(encoder_out) return encoder_out, encoder_out_lens def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len): text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True) speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True) lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0) for i in range(len(text_token))] lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32) lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID) return lm_input, lm_input_len def forward( self, batch: dict, device: torch.device, ) -> Dict[str, Optional[torch.Tensor]]: """ Args: text: (B, L, D) text_lengths: (B,) audio: (B, T, N) or (B, T) audio_lengths: (B,) """ text_token = batch['text_token'].to(device) text_token_len = batch['text_token_len'].to(device) speech_token = batch['speech_token'].to(device) speech_token_len = batch['speech_token_len'].to(device) embedding = batch['embedding'].to(device) # 1. prepare llm_target lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() + [self.speech_token_size]) for i in range(text_token.size(0))] lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device) # 1. encode text_token text_token = self.text_embedding(text_token) text_token, text_token_len = self.encode(text_token, text_token_len) # 2. embedding projection embedding = F.normalize(embedding, dim=1) embedding = self.spk_embed_affine_layer(embedding) embedding = embedding.unsqueeze(1) # 3. eos and task_id sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1) task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1) # 4. encode speech_token speech_token = self.speech_embedding(speech_token) # 5. unpad and pad lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len) # 6. run lm forward lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device)) logits = self.llm_decoder(lm_output) loss = self.criterion_ce(logits, lm_target) acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID) return {'loss': loss, 'acc': acc} def sampling_ids( self, weighted_scores: torch.Tensor, decoded_tokens: List, sampling: int, ignore_eos: bool = True, ): num_trials, max_trials = 0, 100 while True: top_ids = self.sampling(weighted_scores, decoded_tokens, sampling) if (not ignore_eos) or (self.speech_token_size not in top_ids): break num_trials += 1 if num_trials > max_trials: raise RuntimeError('sampling reaches max_trials {} and still get eos when ignore_eos is True, check your input!'.format(max_trials)) return top_ids @torch.inference_mode() def inference( self, text: torch.Tensor, text_len: torch.Tensor, prompt_text: torch.Tensor, prompt_text_len: torch.Tensor, prompt_speech_token: torch.Tensor, prompt_speech_token_len: torch.Tensor, embedding: torch.Tensor, sampling: int = 25, max_token_text_ratio: float = 20, min_token_text_ratio: float = 2, uuid: str = '', ) -> Generator[torch.Tensor, None, None]: device = text.device text = torch.concat([prompt_text, text], dim=1) text_len += prompt_text_len text = self.text_embedding(text) # 1. encode text text, text_len = self.encode(text, text_len) # 2. encode embedding if embedding.shape[0] != 0: embedding = F.normalize(embedding, dim=1) embedding = self.spk_embed_affine_layer(embedding) embedding = embedding.unsqueeze(dim=1) else: embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device).to(text.dtype) # 3. concat llm_input sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1) task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1) if prompt_speech_token_len != 0: prompt_speech_token_emb = self.speech_embedding(prompt_speech_token) else: prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device) lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1) # 4. cal min/max_length min_len = int((text_len - prompt_text_len) * min_token_text_ratio) max_len = int((text_len - prompt_text_len) * max_token_text_ratio) # 5. step by step decode out_tokens = [] offset = 0 att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device) for i in range(max_len): y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=offset, required_cache_size=-1, att_cache=att_cache, cnn_cache=cnn_cache, att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool)) logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1) # force continue decode first token if i == 0: logp[:, self.speech_token_size] = -float('inf') top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item() if top_ids == self.speech_token_size: break # in stream mode, yield token one by one yield top_ids out_tokens.append(top_ids) offset += lm_input.size(1) lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1) class Qwen2Encoder(torch.nn.Module): def __init__(self, pretrain_path): super().__init__() self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path) def forward(self, xs: torch.Tensor, xs_lens: torch.Tensor): T = xs.size(1) masks = ~make_pad_mask(xs_lens, T) outs = self.model( inputs_embeds=xs, attention_mask=masks, output_hidden_states=True, return_dict=True, ) return outs.hidden_states[-1], masks.unsqueeze(1) def forward_one_step(self, xs, masks, cache=None): input_masks = masks[:, -1, :] outs = self.model( inputs_embeds=xs, attention_mask=input_masks, output_hidden_states=True, return_dict=True, use_cache=True, past_key_values=cache, ) xs = outs.hidden_states[-1] new_cache = outs.past_key_values return xs, new_cache class Qwen2LM(TransformerLM): def __init__( self, llm_input_size: int, llm_output_size: int, speech_token_size: int, llm: torch.nn.Module, sampling: Callable, length_normalized_loss: bool = True, lsm_weight: float = 0.0, mix_ratio: List[int] = [5, 15], ): torch.nn.Module.__init__(self) self.llm_input_size = llm_input_size self.llm_output_size = llm_output_size self.speech_token_size = speech_token_size # 2. build speech token language model related modules self.sos_eos = 0 self.task_id = 1 self.fill_token = 2 self.llm_embedding = torch.nn.Embedding(2, llm_input_size) self.llm = llm self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 3) self.criterion_ce = LabelSmoothingLoss( size=speech_token_size + 3, padding_idx=IGNORE_ID, smoothing=lsm_weight, normalize_length=length_normalized_loss, ) # 3. [Optional] build speech token related modules self.speech_embedding = torch.nn.Embedding(speech_token_size + 3, llm_input_size) # 4. sampling method self.sampling = sampling self.mix_ratio = mix_ratio # 5. vllm related self.stop_token_ids = [speech_token_size + i for i in range(3)] self.vllm_output_queue = {} def prepare_lm_input_target(self, text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len): lm_target, lm_input = [], [] text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True) speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True) text_token_emb = unpad_sequence(text_token_emb, text_token_len.cpu(), batch_first=True) speech_token_emb = unpad_sequence(speech_token_emb, speech_token_len.cpu(), batch_first=True) for i in range(len(text_token)): # bistream sequence if random.random() < 0.5 and speech_token_len[i] / text_token_len[i] > self.mix_ratio[1] / self.mix_ratio[0]: this_lm_target, this_lm_input = [], [] this_lm_target.append(IGNORE_ID) this_lm_input.append(self.llm_embedding.weight[self.sos_eos].reshape(1, -1)) for j in range(((text_token_len[i] + 1) / self.mix_ratio[0]).ceil().int().item()): this_text_token = text_token[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]].tolist() this_speech_token = speech_token[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]].tolist() if len(this_text_token) == self.mix_ratio[0]: assert len(this_speech_token) == self.mix_ratio[1] this_lm_target += [IGNORE_ID] * (self.mix_ratio[0] - 1) this_lm_target += this_speech_token this_lm_target.append(self.speech_token_size + 2) this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]]) this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]]) else: this_lm_target += [-1] * len(this_text_token) this_lm_target += speech_token[i][j * self.mix_ratio[1]:].tolist() this_lm_target.append(self.speech_token_size) this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]:]) this_lm_input.append(self.llm_embedding.weight[self.task_id].reshape(1, -1)) this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]:]) this_lm_target, this_lm_input = torch.tensor(this_lm_target), torch.concat(this_lm_input, dim=0) # unistream sequence else: this_lm_target = torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + speech_token[i].tolist() + [self.speech_token_size]) this_lm_input = torch.concat([self.llm_embedding.weight[self.sos_eos].reshape(1, -1), text_token_emb[i], self.llm_embedding.weight[self.task_id].reshape(1, -1), speech_token_emb[i]], dim=0) lm_target.append(this_lm_target) lm_input.append(this_lm_input) lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32) lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID) lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID) return lm_target, lm_input, lm_input_len def forward( self, batch: dict, device: torch.device, ) -> Dict[str, Optional[torch.Tensor]]: """ Args: text: (B, L, D) text_lengths: (B,) audio: (B, T, N) or (B, T) audio_lengths: (B,) """ text_token = batch['text_token'].to(device) text_token_len = batch['text_token_len'].to(device) speech_token = batch['speech_token'].to(device) speech_token_len = batch['speech_token_len'].to(device) # 1. encode text_token text_token_emb = self.llm.model.model.embed_tokens(text_token) # 2. encode speech_token speech_token_emb = self.speech_embedding(speech_token) # 3. prepare llm_input/target lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len) lm_target = lm_target.to(device) # 4. run lm forward lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device)) logits = self.llm_decoder(lm_output) loss = self.criterion_ce(logits, lm_target.to(device)) acc = th_accuracy(logits.view(-1, self.speech_token_size + 3), lm_target, ignore_label=IGNORE_ID) return {'loss': loss, 'acc': acc} def forward_dpo( self, batch: dict, device: torch.device, ) -> Dict[str, Optional[torch.Tensor]]: text_token = batch['text_token'].to(device) text_token_len = batch['text_token_len'].to(device) speech_token = batch['speech_token'].to(device) speech_token_len = batch['speech_token_len'].to(device) reject_speech_token = batch['reject_speech_token'].to(device) reject_speech_token_len = batch['reject_speech_token_len'].to(device) # 1. encode text_token text_token_emb = self.llm.model.model.embed_tokens(text_token) # 2. encode speech_token speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True) reject_speech_token = unpad_sequence(reject_speech_token, reject_speech_token_len.cpu(), batch_first=True) speech_token_combined = speech_token + reject_speech_token speech_token_combined = pad_sequence(speech_token_combined, batch_first=True, padding_value=0) speech_token_combined_len = torch.concat([speech_token_len, reject_speech_token_len], dim=0) speech_token_combined_emb = self.speech_embedding(speech_token_combined) # 3. prepare llm_input/target lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(text_token.repeat(2, 1), text_token_emb.repeat(2, 1, 1), text_token_len.repeat(2), speech_token_combined, speech_token_combined_emb, speech_token_combined_len) lm_target = lm_target.to(device) # 4. run lm forward lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device)) logits = self.llm_decoder(lm_output) chosen_logits = logits[:text_token.shape[0]] rejected_logits = logits[text_token.shape[0]:] chosen_lm_target = lm_target[:text_token.shape[0]] rejected_lm_target = lm_target[text_token.shape[0]:] loss = self.criterion_ce(chosen_logits, chosen_lm_target.to(device)) acc = th_accuracy(chosen_logits.view(-1, self.speech_token_size + 3), chosen_lm_target, ignore_label=IGNORE_ID) # 5. calculate dpo logits chosen_lm_mask = chosen_lm_target == IGNORE_ID rejected_lm_mask = rejected_lm_target == IGNORE_ID chosen_logps = torch.gather(chosen_logits.log_softmax(dim=-1), dim=2, index=chosen_lm_target.masked_fill(chosen_lm_mask, 0).unsqueeze(dim=-1)).squeeze(dim=-1) rejected_logps = torch.gather(rejected_logits.log_softmax(dim=-1), dim=2, index=rejected_lm_target.masked_fill(rejected_lm_mask, 0).unsqueeze(dim=-1)).squeeze(dim=-1) chosen_logps = (chosen_logps * chosen_lm_mask).sum(dim=-1) / chosen_lm_mask.sum(dim=-1) rejected_logps = (rejected_logps * rejected_lm_mask).sum(dim=-1) / rejected_lm_mask.sum(dim=-1) return {'loss': loss, 'acc': acc, 'chosen_logps': chosen_logps, 'rejected_logps': rejected_logps} @torch.inference_mode() def inference( self, text: torch.Tensor, text_len: torch.Tensor, prompt_text: torch.Tensor, prompt_text_len: torch.Tensor, prompt_speech_token: torch.Tensor, prompt_speech_token_len: torch.Tensor, embedding: torch.Tensor, sampling: int = 25, max_token_text_ratio: float = 20, min_token_text_ratio: float = 2, uuid: str = '', ) -> Generator[torch.Tensor, None, None]: device = text.device text = torch.concat([prompt_text, text], dim=1) text_len += prompt_text_len text = self.llm.model.model.embed_tokens(text) # 3. concat llm_input sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1) task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1) if prompt_speech_token_len != 0: prompt_speech_token_emb = self.speech_embedding(prompt_speech_token) else: prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device) lm_input = torch.concat([sos_eos_emb, text, task_id_emb, prompt_speech_token_emb], dim=1) # 4. cal min/max_length min_len = int((text_len - prompt_text_len) * min_token_text_ratio) max_len = int((text_len - prompt_text_len) * max_token_text_ratio) # 5. step by step decode for token in self.inference_wrapper(lm_input, sampling, min_len, max_len, uuid): yield token @torch.inference_mode() def inference_wrapper(self, lm_input, sampling, min_len, max_len, uuid): if hasattr(self, 'vllm'): from vllm import SamplingParams, RequestOutput sampling_params = SamplingParams(top_k=sampling, stop_token_ids=self.stop_token_ids, min_tokens=min_len, max_tokens=max_len) with self.lock: self.vllm.add_request(uuid, {"prompt_embeds": lm_input.squeeze(0).to(torch.bfloat16).to(lm_input.device)}, sampling_params) self.vllm_output_queue[uuid] = queue.Queue() out_tokens = [] while True: with self.lock: if self.vllm_output_queue[uuid].empty() is True: request_outputs: List[RequestOutput] = self.vllm.step() for request_output in request_outputs: top_ids = list(request_output.outputs[0].token_ids)[-1] self.vllm_output_queue[request_output.request_id].put(top_ids) if self.vllm_output_queue[uuid].empty() is False: top_ids = self.vllm_output_queue[uuid].get() if top_ids in self.stop_token_ids: break # in stream mode, yield token one by one yield top_ids out_tokens.append(top_ids) if len(out_tokens) == max_len: break time.sleep(0.001) with self.lock: self.vllm_output_queue.pop(uuid) else: out_tokens = [] cache = None for i in range(max_len): y_pred, cache = self.llm.forward_one_step(lm_input, masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool), cache=cache) logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1) top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item() if top_ids == self.speech_token_size: break if top_ids > self.speech_token_size: continue # in stream mode, yield token one by one yield top_ids out_tokens.append(top_ids) lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1) @torch.inference_mode() def inference_bistream( self, text: Generator, prompt_text: torch.Tensor, prompt_text_len: torch.Tensor, prompt_speech_token: torch.Tensor, prompt_speech_token_len: torch.Tensor, embedding: torch.Tensor, sampling: int = 25, max_token_text_ratio: float = 20, min_token_text_ratio: float = 2, ) -> Generator[torch.Tensor, None, None]: device = prompt_text.device # 1. prepare input sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1) task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1) if prompt_speech_token_len != 0: prompt_speech_token_emb = self.speech_embedding(prompt_speech_token) else: prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=prompt_text.dtype).to(device) lm_input = torch.concat([sos_eos_emb], dim=1) # 2. iterate text out_tokens = [] cache = None # NOTE init prompt_text as text_cache as it is basically impossible prompt_speech_token/prompt_text < 15/5 text_cache = self.llm.model.model.embed_tokens(prompt_text) next_fill_index = -1 for this_text in text: text_cache = torch.concat([text_cache, self.llm.model.model.embed_tokens(this_text)], dim=1) # prompt_speech_token_emb not empty, try append to lm_input while prompt_speech_token_emb.size(1) != 0: if text_cache.size(1) >= self.mix_ratio[0]: lm_input_text, lm_input_speech = text_cache[:, :self.mix_ratio[0]], prompt_speech_token_emb[:, :self.mix_ratio[1]] logging.info('append {} text token {} speech token'.format(lm_input_text.size(1), lm_input_speech.size(1))) lm_input = torch.concat([lm_input, lm_input_text, lm_input_speech], dim=1) text_cache, prompt_speech_token_emb = text_cache[:, self.mix_ratio[0]:], prompt_speech_token_emb[:, self.mix_ratio[1]:] else: logging.info('not enough text token to decode, wait for more') break # no prompt_speech_token_emb remain, can decode some speech token if prompt_speech_token_emb.size(1) == 0: if (len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2) or (len(out_tokens) == 0 and lm_input.size(1) == 1): logging.info('get fill token, need to append more text token') if text_cache.size(1) >= self.mix_ratio[0]: lm_input_text = text_cache[:, :self.mix_ratio[0]] logging.info('append {} text token'.format(lm_input_text.size(1))) if len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2: lm_input = lm_input_text else: lm_input = torch.concat([lm_input, lm_input_text], dim=1) text_cache = text_cache[:, self.mix_ratio[0]:] else: logging.info('not enough text token to decode, wait for more') continue while True: seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2) y_pred, cache = self.llm.forward_one_step(lm_input, masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool), cache=cache) logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1) if next_fill_index != -1 and len(out_tokens) == next_fill_index: top_ids = self.speech_token_size + 2 next_fill_index += (self.mix_ratio[1] + 1) else: top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True).item() if top_ids == self.speech_token_size + 2: next_fill_index = len(out_tokens) + self.mix_ratio[1] + 1 logging.info('fill_token index {} next fill_token index {}'.format(len(out_tokens), next_fill_index)) out_tokens.append(top_ids) if top_ids >= self.speech_token_size: if top_ids == self.speech_token_size + 2: break else: raise ValueError('should not get token {}'.format(top_ids)) yield top_ids lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1) # 3. final decode lm_input = torch.concat([lm_input, text_cache, task_id_emb], dim=1) logging.info('no more text token, decode until met eos') while True: seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2) y_pred, cache = self.llm.forward_one_step(lm_input, masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool), cache=cache) logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1) top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=False).item() out_tokens.append(top_ids) if top_ids >= self.speech_token_size: if top_ids == self.speech_token_size: break else: raise ValueError('should not get token {}'.format(top_ids)) # in stream mode, yield token one by one yield top_ids lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)