import torch import torch.nn.functional as F from typing import Tuple def tpr_loss(disc_real_outputs, disc_generated_outputs, tau): loss = 0 for dr, dg in zip(disc_real_outputs, disc_generated_outputs): m_DG = torch.median((dr - dg)) L_rel = torch.mean((((dr - dg) - m_DG) ** 2)[dr < dg + m_DG]) loss += tau - F.relu(tau - L_rel) return loss def mel_loss(real_speech, generated_speech, mel_transforms): loss = 0 for transform in mel_transforms: mel_r = transform(real_speech) mel_g = transform(generated_speech) loss += F.l1_loss(mel_g, mel_r) return loss class DPOLoss(torch.nn.Module): """ DPO Loss """ def __init__(self, beta: float, label_smoothing: float = 0.0, ipo: bool = False) -> None: super().__init__() self.beta = beta self.label_smoothing = label_smoothing self.ipo = ipo def forward( self, policy_chosen_logps: torch.Tensor, policy_rejected_logps: torch.Tensor, reference_chosen_logps: torch.Tensor, reference_rejected_logps: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: pi_logratios = policy_chosen_logps - policy_rejected_logps ref_logratios = reference_chosen_logps - reference_rejected_logps logits = pi_logratios - ref_logratios if self.ipo: losses = (logits - 1 / (2 * self.beta)) ** 2 # Eq. 17 of https://arxiv.org/pdf/2310.12036v2.pdf else: # Eq. 3 https://ericmitchell.ai/cdpo.pdf; label_smoothing=0 gives original DPO (Eq. 7 of https://arxiv.org/pdf/2305.18290.pdf) losses = ( -F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing) - F.logsigmoid(-self.beta * logits) * self.label_smoothing ) loss = losses.mean() chosen_rewards = self.beta * (policy_chosen_logps - reference_chosen_logps).detach() rejected_rewards = self.beta * (policy_rejected_logps - reference_rejected_logps).detach() return loss, chosen_rewards, rejected_rewards