|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
|
|
summarizer = pipeline("summarization", model="Aarush09/bart-conversation-summarizer") |
|
|
|
def summarize_text(text, max_length, min_length): |
|
summary = summarizer(text, max_length=max_length, min_length=min_length, do_sample=False) |
|
return summary[0]['summary_text'] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## π Text Summarizer\nEnter text below and get a summary using your Hugging Face model.") |
|
|
|
with gr.Row(): |
|
input_text = gr.Textbox(label="Input Text", lines=10, placeholder="Paste text here...") |
|
|
|
with gr.Row(): |
|
min_len = gr.Slider(10, 100, value=30, step=5, label="Min Summary Length") |
|
max_len = gr.Slider(50, 300, value=120, step=10, label="Max Summary Length") |
|
|
|
output_text = gr.Textbox(label="Summary", lines=8) |
|
|
|
summarize_btn = gr.Button("Summarize") |
|
summarize_btn.click(summarize_text, inputs=[input_text, max_len, min_len], outputs=output_text) |
|
|
|
demo.launch() |
|
|