import gradio as gr from transformers import pipeline # Load your uploaded model from the hub summarizer = pipeline("summarization", model="Aarush09/bart-conversation-summarizer") def summarize_text(text, max_length, min_length): summary = summarizer(text, max_length=max_length, min_length=min_length, do_sample=False) return summary[0]['summary_text'] # Gradio Interface with gr.Blocks() as demo: gr.Markdown("## 📝 Text Summarizer\nEnter text below and get a summary using your Hugging Face model.") with gr.Row(): input_text = gr.Textbox(label="Input Text", lines=10, placeholder="Paste text here...") with gr.Row(): min_len = gr.Slider(10, 100, value=30, step=5, label="Min Summary Length") max_len = gr.Slider(50, 300, value=120, step=10, label="Max Summary Length") output_text = gr.Textbox(label="Summary", lines=8) summarize_btn = gr.Button("Summarize") summarize_btn.click(summarize_text, inputs=[input_text, max_len, min_len], outputs=output_text) demo.launch()