|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
model_name = "georgesung/llama2_7b_chat_uncensored" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.float16, |
|
device_map="auto" |
|
) |
|
|
|
def chat(prompt): |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=256, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.9 |
|
) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
demo = gr.Interface( |
|
fn=chat, |
|
inputs=gr.Textbox(lines=3, placeholder="Type your message here..."), |
|
outputs="text", |
|
title="Llama2 7B Uncensored Chatbot" |
|
) |
|
|
|
demo.launch() |