File size: 14,665 Bytes
d40687b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
469395a
d40687b
 
 
 
 
 
 
469395a
3141721
469395a
 
 
 
 
 
 
 
 
3141721
469395a
3141721
 
 
 
 
469395a
 
3141721
 
d40687b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3141721
d40687b
 
3141721
d40687b
 
3141721
d40687b
 
3141721
d40687b
 
3141721
d40687b
3141721
d40687b
3141721
d40687b
3141721
f1cf635
3141721
31d88dd
 
3141721
65927d1
 
3141721
 
d40687b
3141721
 
 
d40687b
3141721
 
 
 
 
 
 
 
 
 
 
d40687b
3141721
d40687b
 
 
 
 
 
3141721
 
d40687b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3141721
 
d40687b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3141721
d40687b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3141721
d40687b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
#!/usr/bin/env python
# coding: utf-8

# # 🌍 OSM 3D Environment Generator - Gradio Web App
# 
# **Created for easy 3D city modeling from OpenStreetMap data**
# 
# This interactive web application allows you to:
# - βœ… Enter latitude and longitude coordinates
# - βœ… Specify search radius for buildings
# - βœ… Generate 3D models from real map data
# - βœ… Download GLB files for use in 3D software
# - βœ… View models directly in the browser
# 
# **Perfect for architects, urban planners, game developers, and 3D enthusiasts!**



import gradio as gr
import requests
import pyproj
import shapely.geometry as sg
import trimesh
import numpy as np
import json
import os
import re
import tempfile
import shutil
from typing import Tuple, List, Dict, Optional
import time



# OSM Overpass API URL
OVERPASS_URL = "https://overpass-api.de/api/interpreter"

def latlon_to_utm(lat: float, lon: float) -> Tuple[float, float]:
    """Convert WGS84 (lat/lon in degrees) to UTM (meters)."""
    proj = pyproj.Proj(proj="utm", zone=int((lon + 180) / 6) + 1, ellps="WGS84")
    x, y = proj(lon, lat)  # Note: pyproj uses (lon, lat) order
    return x, y

def fetch_osm_data(lat: float, lon: float, radius: int = 500) -> Optional[Dict]:
    """Fetch OSM data for buildings within a given radius of a coordinate."""
    query = f"""
    [out:json];
    (
        way(around:{radius},{lat},{lon})[building];
    );
    out body;
    >;
    out skel qt;
    """
    
    try:
        response = requests.get(OVERPASS_URL, params={"data": query}, timeout=30)
        if response.status_code == 200:
            data = response.json()
            return data
        else:
            return None
    except Exception as e:
        print(f"Error fetching OSM data: {e}")
        return None

def parse_osm_data(osm_data: Dict) -> List[Dict]:
    """Extract building footprints and heights from OSM data."""
    buildings = []
    nodes = {}
    
    # Store node locations
    for element in osm_data["elements"]:
        if element["type"] == "node":
            lon, lat = element["lon"], element["lat"]
            x, y = latlon_to_utm(lat, lon)
            nodes[element["id"]] = (x, y)
    
    # Extract building footprints
    for element in osm_data["elements"]:
        if element["type"] == "way":
            if "tags" in element and "building" in element["tags"]:
                try:
                    # Get height from tags
                    height_str = element["tags"].get("height", "10")
                    if isinstance(height_str, str):
                        height_match = re.search(r'(\d+\.?\d*)', height_str)
                        if height_match:
                            height = float(height_match.group(1))
                        else:
                            height = 10.0
                    else:
                        height = float(height_str)
                    
                    footprint = [nodes[node_id] for node_id in element["nodes"] if node_id in nodes]
                    
                    if len(footprint) >= 3:
                        if footprint[0] != footprint[-1]:
                            footprint.append(footprint[0])
                        
                        buildings.append({"footprint": footprint, "height": height})
                        
                except Exception as e:
                    continue
    
    return buildings

def create_3d_model(buildings: List[Dict]) -> trimesh.Scene:
    """Create a 3D model using trimesh with PROPER ORIENTATION FIX."""
    scene = trimesh.Scene()
    
    for building in buildings:
        footprint = building["footprint"]
        height = building.get("height", 10)
        
        if height <= 0:
            continue
        
        try:
            polygon = sg.Polygon(footprint)
            if not polygon.is_valid:
                polygon = polygon.buffer(0)
                if not polygon.is_valid:
                    continue
        except Exception:
            continue
        
        try:
            # Try triangle engine first, then earcut
            try:
                extruded = trimesh.creation.extrude_polygon(polygon, height, engine="triangle")
            except ValueError:
                try:
                    extruded = trimesh.creation.extrude_polygon(polygon, height, engine="earcut")
                except ValueError:
                    continue
            
            # βœ… PROPER ORIENTATION FIX - This is the solution you provided
            # This rotates the model so the front view shows properly
            transform_x = trimesh.transformations.rotation_matrix(np.pi/2, (1, 0, 0))
            
            # Also rotate around Z-axis for proper left-right orientation
            transform_z = trimesh.transformations.rotation_matrix(np.pi, (0, 0, 1))
            
            # Apply the transformations
            extruded.apply_transform(transform_x)
            extruded.apply_transform(transform_z)
            
            # Add to scene
            scene.add_geometry(extruded)
            
        except Exception:
            continue
    
    return scene

def save_3d_model(scene: trimesh.Scene, filename: str) -> bool:
    """Export the 3D scene to a GLB file."""
    try:
        scene.export(filename)
        return os.path.exists(filename)
    except Exception:
        return False




def generate_3d_model(latitude: float, longitude: float, radius: int) -> Tuple[str, str, str]:
    """Main function to generate 3D model from coordinates."""
    
    # Validate inputs
    if not (-90 <= latitude <= 90):
        return None, "❌ Error: Latitude must be between -90 and 90", ""
    
    if not (-180 <= longitude <= 180):
        return None, "❌ Error: Longitude must be between -180 and 180", ""
    
    if not (10 <= radius <= 2000):
        return None, "❌ Error: Radius must be between 10 and 2000 meters", ""
    
    try:
        # Step 1: Fetch OSM data
        status_msg = f"πŸ” Fetching OSM data for coordinates: {latitude}, {longitude} with radius: {radius}m..."
        print(status_msg)
        
        osm_data = fetch_osm_data(latitude, longitude, radius)
        if not osm_data:
            return None, "❌ Failed to fetch OSM data. Please check coordinates and try again.", ""
        
        # Step 2: Parse buildings
        status_msg += f"\nβœ… OSM data fetched successfully\nπŸ—οΈ Parsing building data..."
        buildings = parse_osm_data(osm_data)
        
        if not buildings:
            return None, "❌ No buildings found in this area. Try a different location or larger radius.", ""
        
        # Step 3: Create 3D model
        status_msg += f"\nβœ… Found {len(buildings)} buildings\n🏠 Creating 3D model..."
        scene = create_3d_model(buildings)
        
        if len(scene.geometry) == 0:
            return None, "❌ Could not create 3D model from the buildings found.", ""
        
        # Step 4: Save model
        timestamp = int(time.time())
        filename = f"osm_3d_model_{timestamp}.glb"
        
        status_msg += f"\nβœ… 3D model created with {len(scene.geometry)} buildings\nπŸ’Ύ Saving model..."
        
        if save_3d_model(scene, filename):
            file_size = os.path.getsize(filename)
            final_msg = f"\nβœ… SUCCESS! 3D model saved as {filename}\nπŸ“ File size: {file_size:,} bytes ({file_size/1024:.1f} KB)\nπŸŽ‰ Ready for download!"
            status_msg += final_msg
            
            # Create summary info
            summary = f"""🌍 **Location**: {latitude}, {longitude}
πŸ“ **Radius**: {radius} meters
🏒 **Buildings Found**: {len(buildings)}
πŸ”§ **3D Geometries Created**: {len(scene.geometry)}
πŸ“ **File Size**: {file_size/1024:.1f} KB
⏰ **Generated**: {time.strftime('%Y-%m-%d %H:%M:%S')}"""
            
            return filename, status_msg, summary
        else:
            return None, "❌ Failed to save 3D model file.", ""
            
    except Exception as e:
        return None, f"❌ Unexpected error: {str(e)}", ""




# Create Gradio interface
def create_gradio_app():
    """Create and configure the Gradio interface."""
    
    with gr.Blocks(title="🌍 OSM 3D Generator", theme=gr.themes.Soft()) as app:
        
        # Header
        gr.Markdown("""
        # 🌍 OSM 3D Environment Generator
        
        **Transform real-world locations into 3D models!**
        
        Enter coordinates and radius to generate 3D building models from OpenStreetMap data.
        Perfect for architecture, urban planning, game development, and 3D visualization.
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                # Input section
                gr.Markdown("## πŸ“ Location Settings")
                
                latitude = gr.Number(
                    label="🌐 Latitude",
                    value=40.748817,  # Empire State Building
                    precision=6,
                    info="Enter latitude (-90 to 90)"
                )
                
                longitude = gr.Number(
                    label="🌐 Longitude", 
                    value=-73.985428,  # Empire State Building
                    precision=6,
                    info="Enter longitude (-180 to 180)"
                )
                
                radius = gr.Slider(
                    label="πŸ“ Search Radius (meters)",
                    minimum=10,
                    maximum=2000,
                    value=500,
                    step=10,
                    info="Larger radius = more buildings but slower processing"
                )
                
                generate_btn = gr.Button(
                    "πŸš€ Generate 3D Model", 
                    variant="primary", 
                    size="lg"
                )
                
                # Examples
                gr.Markdown("### πŸŒ† Quick Examples")
                gr.Examples(
                    examples=[
                        [40.748817, -73.985428, 500],  # Empire State Building, NYC
                        [48.858844, 2.294351, 300],    # Eiffel Tower, Paris
                        [51.500729, -0.124625, 400],   # Big Ben, London
                        [35.676098, 139.650311, 600],  # Tokyo Station
                        [37.819929, -122.478255, 350], # Golden Gate Bridge area
                    ],
                    inputs=[latitude, longitude, radius],
                    label="Click to load famous locations"
                )
            
            with gr.Column(scale=1):
                # Output section
                gr.Markdown("## πŸ“₯ Generated Model")
                
                file_output = gr.File(
                    label="πŸ“ Download 3D Model (.glb)",
                    file_types=[".glb"],
                    visible=False
                )
                
                status_output = gr.Textbox(
                    label="πŸ“Š Generation Status",
                    lines=8,
                    max_lines=15,
                    placeholder="Click 'Generate 3D Model' to start...",
                    interactive=False
                )
                
                summary_output = gr.Markdown(
                    "### πŸ“‹ Model Summary\nGeneration results will appear here..."
                )
        
        # Info section
        with gr.Row():
            gr.Markdown("""
            ### πŸ’‘ Tips for Best Results
            
            - **Urban areas** work best (more buildings = better models)
            - **Start with 300-500m radius** for good balance of detail and speed
            - **Large cities** like NYC, Paris, Tokyo have excellent building data
            - **Rural areas** may have fewer or no buildings
            - **Generated .glb files** can be opened in Blender, Three.js, or online 3D viewers
            
            ### πŸ› οΈ Technical Details
            
            - Uses **OpenStreetMap** data via Overpass API
            - Creates **proper 3D building heights** when available
            - Applies **correct orientation** for front-view display
            - Exports as **GLB format** (compatible with most 3D software)
            - **Processing time** varies by area complexity (typically 10-60 seconds)
            """)
        
        # Event handler
        def handle_generation(lat, lon, rad):
            """Handle the generation process and update UI."""
            file_path, status, summary = generate_3d_model(lat, lon, rad)
            
            if file_path:
                return (
                    gr.update(value=file_path, visible=True),  # file_output
                    status,                                    # status_output
                    f"### πŸ“‹ Model Summary\n{summary}"        # summary_output
                )
            else:
                return (
                    gr.update(visible=False),                  # file_output
                    status,                                    # status_output
                    "### ❌ Generation Failed\nPlease check the status above and try again."  # summary_output
                )
        
        # Connect the button
        generate_btn.click(
            fn=handle_generation,
            inputs=[latitude, longitude, radius],
            outputs=[file_output, status_output, summary_output]
        )
    
    return app




# Create and launch the app
app = create_gradio_app()

# Launch the app
if __name__ == "__main__":
    app.launch(
        share=True,  # Creates public link for Hugging Face
        server_name="0.0.0.0",  # Allow external connections
        server_port=7860,  # Standard port for Hugging Face
        show_error=True,
        debug=True
    )
else:
    # For Hugging Face Spaces
    app.launch()


# ## πŸš€ Deployment Instructions for Hugging Face Spaces
# 
# To deploy this app on Hugging Face Spaces:
# 
# 1. **Create a new Space** on [Hugging Face](https://huggingface.co/spaces)
# 2. **Select "Gradio" as the Space SDK**
# 3. **Upload this notebook** or copy the code to `app.py`
# 4. **Add requirements.txt** with these dependencies:
#    ```
#    gradio
#    requests
#    pyproj
#    shapely
#    trimesh
#    numpy
#    ```
# 5. **Commit and push** - your app will automatically deploy!
# 
# ### πŸ“ Alternative: Direct Python File
# You can also copy all the Python code cells into a single `app.py` file for easier deployment.
# 
# ### πŸ”§ Environment Variables (Optional)
# For production deployment, consider adding:
# - `GRADIO_SERVER_NAME=0.0.0.0`
# - `GRADIO_SERVER_PORT=7860`