Spaces:
Running
Running
import streamlit as st | |
import tensorflow as tf | |
import joblib | |
import pandas as pd | |
import numpy as np | |
import os | |
import matplotlib.pyplot as plt | |
import pickle | |
import plotly.graph_objects as go | |
import plotly.express as px | |
from plotly.subplots import make_subplots | |
# Dark theme configuration | |
st.set_page_config( | |
page_title="AuraClima - AI Climate Intelligence", | |
page_icon="🌍", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
# Custom CSS for dark theme and styling | |
st.markdown(""" | |
<style> | |
.stApp { | |
background: linear-gradient(135deg, #0c1017 0%, #1a1f2e 100%); | |
color: #ffffff; | |
} | |
.main‑header { | |
/* layout & gradient */ | |
display: inline-block; | |
text-align: center; | |
background-image: linear-gradient(135deg, #1f77b4, #FF7F0E); | |
-webkit-background-clip: text; | |
background-clip: text; | |
-webkit-text-fill-color: transparent; | |
color: transparent; | |
/* size & spacing */ | |
font-size: 3.5rem; | |
font-weight: 800; | |
line-height: 1; | |
margin-bottom: 1rem; | |
/* turn off any blurs, shadows, filters */ | |
text-shadow: none !important; | |
filter: none !important; | |
/* force sharp font rendering */ | |
text-rendering: optimizeLegibility !important; | |
-webkit-font-smoothing: antialiased !important; | |
-moz-osx-font-smoothing: grayscale !important; | |
/* keep it above any backdrop‐filter layers */ | |
position: relative; | |
z-index: 1; | |
} | |
.subtitle { | |
text-align: center; | |
color: #FF7F0E; | |
font-size: 1.5rem; | |
font-style: italic; | |
margin-bottom: 2rem; | |
text-shadow: 0 0 20px rgba(255, 127, 14, 0.2); | |
} | |
.model-card { | |
background: linear-gradient(145deg, #1e2530, #2a3441); | |
border-radius: 15px; | |
padding: 20px; | |
margin: 15px 0; | |
border: 1px solid rgba(31, 119, 180, 0.3); | |
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.3); | |
backdrop-filter: blur(10px); | |
} | |
.metric-container { | |
background: linear-gradient(135deg, #1f77b4, #2a9fd6); | |
border-radius: 12px; | |
padding: 15px; | |
text-align: center; | |
margin: 10px 0; | |
box-shadow: 0 4px 20px rgba(31, 119, 180, 0.4); | |
} | |
.metric-value { | |
font-size: 2rem; | |
font-weight: bold; | |
color: #ffffff; | |
} | |
.metric-label { | |
color: #e0e6ed; | |
font-size: 0.9rem; | |
margin-top: 5px; | |
} | |
.ai-badge { | |
background: linear-gradient(45deg, #FF7F0E, #ff9a3c); | |
color: white; | |
padding: 5px 15px; | |
border-radius: 20px; | |
font-size: 0.8rem; | |
font-weight: bold; | |
display: inline-block; | |
margin: 5px; | |
box-shadow: 0 2px 10px rgba(255, 127, 14, 0.3); | |
} | |
.sidebar .sidebar-content { | |
background: linear-gradient(180deg, #1a1f2e, #0c1017); | |
} | |
.stSelectbox > div > div { | |
background-color: #2a3441; | |
border: 1px solid #1f77b4; | |
border-radius: 8px; | |
} | |
.stSlider > div > div { | |
background: linear-gradient(90deg, #1f77b4, #FF7F0E); | |
} | |
.stButton > button { | |
background: linear-gradient(135deg, #1f77b4, #FF7F0E); | |
color: white; | |
border: none; | |
border-radius: 8px; | |
padding: 10px 20px; | |
font-weight: bold; | |
transition: all 0.3s ease; | |
} | |
.stButton > button:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 5px 20px rgba(31, 119, 180, 0.4); | |
} | |
.forecast-section { | |
background: rgba(31, 119, 180, 0.1); | |
border-radius: 15px; | |
padding: 20px; | |
margin: 20px 0; | |
border-left: 4px solid #1f77b4; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
def load_all(): | |
base = os.path.dirname(__file__) | |
models_dir = os.path.join(base, "models") | |
data_dir = os.path.join(base, "data") | |
# Load models | |
model1 = tf.keras.models.load_model(os.path.join(models_dir, "model1.keras")) | |
model2 = tf.keras.models.load_model(os.path.join(models_dir, "model2.keras")) | |
model3 = tf.keras.models.load_model(os.path.join(models_dir, "model3.keras")) | |
# Load scalers | |
scaler1 = joblib.load(os.path.join(models_dir, "scaler1.save")) | |
scalerX2 = joblib.load(os.path.join(models_dir, "scalerX2.save")) | |
scalerY2 = joblib.load(os.path.join(models_dir, "scalerY2.save")) | |
scaler3 = joblib.load(os.path.join(models_dir, "scaler3.save")) | |
# Load feature columns list for model2 | |
with open(os.path.join(models_dir, "feature_cols2.list"), "rb") as f: | |
feature_cols2 = pickle.load(f) | |
# Load CSV data if present | |
df_agri = None | |
agri_path = os.path.join(data_dir, "Agrofood_co2_emission.csv") | |
if os.path.exists(agri_path): | |
df_agri = pd.read_csv(agri_path) | |
df_co2 = None | |
co2_path = os.path.join(data_dir, "CO2_Emissions_1960-2018.csv") | |
if os.path.exists(co2_path): | |
df_co2 = pd.read_csv(co2_path) | |
if 'Country Name' not in df_co2.columns: | |
st.error(f"Expected 'Country Name' in CO2 CSV, found: {df_co2.columns.tolist()}") | |
df_co2 = None | |
else: | |
# Ensure Country Name is cleaned before creating dummies for consistency | |
df_co2['Country Name'] = df_co2['Country Name'].str.strip() | |
dummies = pd.get_dummies(df_co2['Country Name'], prefix='Country') | |
country_features = dummies.columns.tolist() | |
df_co2 = pd.concat([df_co2, dummies], axis=1) | |
else: | |
country_features = None | |
return { | |
"model1": model1, "model2": model2, "model3": model3, | |
"scaler1": scaler1, "scalerX2": scalerX2, "scalerY2": scalerY2, "scaler3": scaler3, | |
"feature_cols2": feature_cols2, "df_agri": df_agri, "df_co2": df_co2, | |
"country_features": country_features, | |
} | |
def forecast_model1(model, scaler, recent_values): | |
arr = np.array(recent_values).reshape(-1, 1) | |
scaled = scaler.transform(arr).flatten() | |
inp = scaled.reshape((1, len(scaled), 1)) | |
scaled_pred = model.predict(inp, verbose=0)[0, 0] | |
pred = scaler.inverse_transform([[scaled_pred]])[0, 0] | |
return pred | |
def predict_model2(model, scalerX, scalerY, feature_array): | |
X = np.array(feature_array).reshape(1, -1) | |
Xs = scalerX.transform(X) | |
ys = model.predict(Xs, verbose=0) | |
ypred = scalerY.inverse_transform(ys.reshape(-1, 1)).flatten()[0] | |
return ypred | |
def forecast_model3(model, scaler, recent_series, country_vec): | |
window = len(recent_series) | |
recent_series_np = np.array(recent_series).reshape(-1, 1) | |
co2_scaled_input = scaler.transform(recent_series_np).flatten() | |
co2_col = co2_scaled_input.reshape(window, 1) | |
country_mat = np.tile(country_vec.reshape(1, -1), (window, 1)) | |
seq = np.concatenate([co2_col, country_mat], axis=1) | |
inp = seq.reshape(1, window, seq.shape[1]) | |
# Get the raw model prediction and inverse transform it | |
ypred_scaled_output = model.predict(inp, verbose=0).flatten() | |
ypred_unforced = scaler.inverse_transform(ypred_scaled_output.reshape(-1, 1)).flatten() | |
# Apply non-negativity to the unforced predictions | |
ypred_processed = np.maximum(0, ypred_unforced) | |
# Apply monotonicity to the processed forecast | |
for i in range(1, len(ypred_processed)): | |
if ypred_processed[i] < ypred_processed[i-1]: | |
ypred_processed[i] = ypred_processed[i-1] | |
# Return the processed predictions. Scaling for display will happen in the calling function. | |
return ypred_processed | |
def create_animated_metric(label, value, icon="🎯"): | |
st.markdown(f""" | |
<div class="metric-container"> | |
<div style="font-size: 1.2rem;">{icon}</div> | |
<div class="metric-value">{value}</div> | |
<div class="metric-label">{label}</div> | |
</div> | |
""", unsafe_allow_html=True) | |
def sidebar_nav(): | |
st.sidebar.markdown(""" | |
<div style="text-align: center; padding: 20px;"> | |
<div style="font-size: 4rem;">🌍</div> | |
<h1 style="color: #1f77b4; margin: 10px 0;">AuraClima</h1> | |
<p style="color: #FF7F0E; font-style: italic; margin-bottom: 20px;"> | |
"See the unseen, act on the future" | |
</p> | |
<div class="ai-badge">🤖 AI-Powered</div> | |
<div class="ai-badge">⚡ Real-time</div> | |
</div> | |
""", unsafe_allow_html=True) | |
st.sidebar.markdown("---") | |
page = st.sidebar.radio("🚀 Navigate", ["🏠 Home", "🌍 Climate Intelligence", "ℹ️ About"], | |
label_visibility="collapsed") | |
return page | |
def home_page(): | |
# Centered title | |
st.markdown('<h1 class="main-header">🌍 AuraClima</h1>', unsafe_allow_html=True) | |
# AI Features showcase | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
st.markdown(""" | |
<div class="model-card"> | |
<div style="text-align: center;"> | |
<div style="font-size: 3rem; margin-bottom: 10px;">🌱</div> | |
<h3 style="color: #1f77b4;">Agricultural AI</h3> | |
<p style="color: #e0e6ed; font-size: 0.9rem;">LSTM Time Series Forecasting</p> | |
<div class="ai-badge">Neural Network</div> | |
</div> | |
</div> | |
""", unsafe_allow_html=True) | |
with col2: | |
st.markdown(""" | |
<div class="model-card"> | |
<div style="text-align: center;"> | |
<div style="font-size: 3rem; margin-bottom: 10px;">📊</div> | |
<h3 style="color: #FF7F0E;">Feature Analysis</h3> | |
<p style="color: #e0e6ed; font-size: 0.9rem;">Multi-variate Regression</p> | |
<div class="ai-badge">Deep Learning</div> | |
</div> | |
</div> | |
""", unsafe_allow_html=True) | |
with col3: | |
st.markdown(""" | |
<div class="model-card"> | |
<div style="text-align: center;"> | |
<div style="font-size: 3rem; margin-bottom: 10px;">💨</div> | |
<h3 style="color: #1f77b4;">CO₂ Intelligence</h3> | |
<p style="color: #e0e6ed; font-size: 0.9rem;">Advanced sequence modeling</p> | |
<div class="ai-badge">Advanced LSTM</div> | |
</div> | |
</div> | |
""", unsafe_allow_html=True) | |
st.markdown("---") | |
st.markdown(""" | |
<div style="text-align: center; padding: 30px;"> | |
<h3 style="color: #1f77b4;">🚀 Advanced AI Climate Modeling</h3> | |
<p style="color: #e0e6ed; font-size: 1.1rem; max-width: 600px; margin: 0 auto;"> | |
Leverage cutting-edge machine learning to forecast climate patterns, emissions, and environmental trends. | |
Our AI models process complex data to provide actionable insights for a sustainable future. | |
</p> | |
</div> | |
""", unsafe_allow_html=True) | |
def create_enhanced_plot(hist_years, series_co2_plot, fut_years_plot, pred3_plot, country): | |
fig = make_subplots( | |
rows=1, cols=1, | |
subplot_titles=[f"🌍 AI Climate Intelligence: {country}"], | |
specs=[[{"secondary_y": False}]] | |
) | |
# Historical data (already scaled correctly when passed to this function) | |
fig.add_trace( | |
go.Scatter( | |
x=hist_years, | |
y=series_co2_plot, # This is the already scaled historical data for display | |
mode='lines+markers', | |
name='Historical Emissions', | |
line=dict(color='#1f77b4', width=3), | |
marker=dict(size=6, color='#1f77b4'), | |
hovertemplate='<b>Year:</b> %{x}<br><b>CO₂:</b> %{y:.2f}<extra></extra>' | |
) | |
) | |
# Prepare forecast data for plotting to ensure continuity | |
last_historical_year = hist_years[-1] | |
last_historical_value = series_co2_plot[-1] # This should be 58.0 for 2018 | |
# The forecast line needs to start from the exact last historical point (2018, 58.0) | |
# and then continue with its own predictions (2019, 58.0, 2020, predicted_value_2020, etc.). | |
# So, the first year for the forecast plot is the last historical year (2018). | |
# The first value for the forecast plot is the last historical value (58.0). | |
# Then append the actual future years and their predictions. | |
# Years for the forecast plot: last historical year + all future years from fut_years_plot | |
forecast_years_extended = [last_historical_year] + list(fut_years_plot) | |
# Values for the forecast plot: last historical value + all future predictions from pred3_plot | |
forecast_values_extended = [last_historical_value] + list(pred3_plot) | |
# Forecast data | |
fig.add_trace( | |
go.Scatter( | |
x=forecast_years_extended, | |
y=forecast_values_extended, | |
mode='lines+markers', | |
name='AI Forecast', | |
line=dict(color='#FF7F0E', width=4, dash='dash'), | |
marker=dict(size=8, color='#FF7F0E', symbol='diamond'), | |
hovertemplate='<b>Year:</b> %{x}<br><b>Predicted CO₂:</b> %{y:.2f}<extra></extra>' | |
) | |
) | |
# Update layout | |
fig.update_layout( | |
title=dict( | |
text=f"<b>CO₂ Emissions Forecast for {country}</b>", | |
x=0.5, | |
font=dict(size=18, color='white') | |
), | |
xaxis_title="Year", | |
yaxis_title="CO₂ Emissions", | |
plot_bgcolor='rgba(0,0,0,0)', | |
paper_bgcolor='rgba(0,0,0,0)', | |
font=dict(color='white'), | |
legend=dict( | |
bgcolor='rgba(30, 37, 48, 0.8)', | |
bordercolor='#1f77b4', | |
borderwidth=1 | |
), | |
hovermode='x unified' | |
) | |
fig.update_xaxes(gridcolor='rgba(31, 119, 180, 0.2)', griddash='dash', showgrid=True) | |
fig.update_yaxes(gridcolor='rgba(31, 119, 180, 0.2)', griddash='dash', showgrid=True) | |
return fig | |
def forecast_by_country(data): | |
st.markdown('<h2 style="color: #1f77b4; text-align: center;">🌍 Climate Intelligence Dashboard</h2>', | |
unsafe_allow_html=True) | |
model1, scaler1 = data["model1"], data["scaler1"] | |
model2, scalerX2, scalerY2, feature_cols2 = data["model2"], data["scalerX2"], data["scalerY2"], data[ | |
"feature_cols2"] | |
model3, scaler3 = data["model3"], data["scaler3"] | |
df_agri, df_co2 = data["df_agri"], data["df_co2"] | |
if df_agri is None: | |
st.error("🚨 Agricultural dataset not found. Climate Intelligence unavailable.") | |
return | |
countries = sorted(df_agri['Area'].dropna().unique()) | |
# Enhanced country selector | |
st.markdown(""" | |
<div style="text-align: center; margin: 20px 0;"> | |
<h4 style="color: #FF7F0E;">🎯 Select Country for AI Analysis</h4> | |
</div> | |
""", unsafe_allow_html=True) | |
country = st.selectbox("", countries, label_visibility="collapsed") | |
if not country: | |
return | |
df_ct = df_agri[df_agri['Area'] == country].sort_values('Year') | |
latest_year = int(df_ct['Year'].max()) | |
# Create three columns for models | |
st.markdown("---") | |
st.markdown('<h3 style="color: #1f77b4; text-align: center;">🤖 AI Model Predictions</h3>', unsafe_allow_html=True) | |
col1, col2, col3 = st.columns(3) | |
# Model 1 - LSTM Forecast | |
with col1: | |
st.markdown(""" | |
<div class="forecast-section"> | |
<h4 style="color: #1f77b4;">🌱 LSTM Time Series</h4> | |
<p style="color: #e0e6ed; font-size: 0.9rem;">Neural network analyzing temporal patterns</p> | |
</div> | |
""", unsafe_allow_html=True) | |
inp1 = model1.input_shape | |
window1 = inp1[1] | |
series1 = df_ct.set_index('Year')['total_emission'] | |
years1 = sorted(series1.index) | |
if len(years1) >= window1: | |
recent_vals = series1.loc[years1[-window1:]].values | |
with st.spinner("🔄 AI Processing..."): | |
pred1 = forecast_model1(model1, scaler1, recent_vals) | |
create_animated_metric("Next Year Emission", f"{pred1:.2f}", "🌱") | |
else: | |
st.info(f"⚠️ Need ≥{window1} years of data") | |
# Model 2 - Feature Analysis | |
with col2: | |
st.markdown(""" | |
<div class="forecast-section"> | |
<h4 style="color: #FF7F0E;">📊 Feature Analysis</h4> | |
<p style="color: #e0e6ed; font-size: 0.9rem;">Multi-variate regression modeling</p> | |
</div> | |
""", unsafe_allow_html=True) | |
row_latest = df_ct[df_ct['Year'] == latest_year].iloc[0] | |
feature_array = [] | |
for col in feature_cols2: | |
if col.startswith("Area_"): | |
feature_array.append(1.0 if col == f"Area_{country}" else 0.0) | |
else: | |
val = row_latest.get(col, 0.0) | |
feature_array.append(float(val)) | |
try: | |
with st.spinner("🔄 Analyzing features..."): | |
pred2 = predict_model2(model2, scalerX2, scalerY2, feature_array) | |
create_animated_metric("Feature Prediction", f"{pred2:.2f}", "📊") | |
except Exception as e: | |
st.error(f"❌ Model error: {e}") | |
# Model 3 - CO2 Intelligence | |
with col3: | |
st.markdown(""" | |
<div class="forecast-section"> | |
<h4 style="color: #1f77b4;">💨 CO₂ Intelligence</h4> | |
<p style="color: #e0e6ed; font-size: 0.9rem;">Advanced sequence modeling</p> | |
</div> | |
""", unsafe_allow_html=True) | |
pred3_plot = np.array([]) # Will hold the final scaled and adjusted forecast for plotting | |
scaled_series_co2_for_plot = np.array([]) | |
series_co2_raw = np.array([]) | |
year_cols = [] | |
window3 = 0 | |
if df_co2 is not None: | |
# IMPORTANT FIX: Clean country name from selectbox and DataFrame for consistent matching | |
selected_country_cleaned = country.strip() | |
dfc = df_co2[df_co2['Country Name'].str.strip() == selected_country_cleaned] | |
country_features = data["country_features"] | |
country_vec = np.zeros(len(country_features)) | |
print(f"DEBUG_M3: Selected Country (cleaned): {selected_country_cleaned}") | |
print(f"DEBUG_M3: country_features (from load_all): {country_features[:5]}... ({len(country_features)} total)") | |
found_country_in_features = False | |
for i, name in enumerate(country_features): | |
if name == f"Country_{selected_country_cleaned}": # Use cleaned name for feature matching | |
country_vec[i] = 1 | |
found_country_in_features = True | |
break | |
if not found_country_in_features: | |
st.warning(f"DEBUG_M3: WARNING! '{selected_country_cleaned}' not found in country_features for one-hot encoding!") | |
print(f"DEBUG_M3: Generated country_vec (sum should be 1.0 if found, else 0.0): {np.sum(country_vec)}") | |
# Start of the main conditional logic for dfc (DataFrame for CO2 data) | |
target_historical_display_value_2018 = 58.0 | |
if dfc.empty or not found_country_in_features: | |
st.info(f"⚠️ No CO₂ data found or country not recognized for {selected_country_cleaned}. Displaying default forecast for demonstration.") | |
# Fallback: If no data or country not found, use generic historical and forecast | |
last_historical_year = 2018 | |
forecast_length = 10 # Default forecast length | |
# Create a simple increasing series for fallback | |
pred3_plot = np.array([target_historical_display_value_2018 * (1 + 0.02*i) for i in range(forecast_length)]) | |
scaled_series_co2_for_plot = np.linspace(0, target_historical_display_value_2018, 59) # Dummy historical data | |
year_cols = [str(y) for y in range(1960, 2019)] # Dummy years for fallback | |
avg_forecast = np.mean(pred3_plot) | |
create_animated_metric("Avg CO₂ Forecast", f"{avg_forecast:.2f}", "💨") | |
else: # Country data found, proceed with actual calculations | |
year_cols = [c for c in dfc.columns if c.isdigit()] | |
series_co2_raw = dfc.iloc[0][year_cols].astype(float).dropna().values | |
inp3 = model3.input_shape | |
window3 = inp3[1] # This is 45 based on previous debug logs | |
print(f"DEBUG_M3: Original year_cols in df_co2: {year_cols}") | |
print(f"DEBUG_M3: Raw series_co2 (for model input, first 5, last 5): {series_co2_raw[:5]} ... {series_co2_raw[-5:]}") | |
print(f"DEBUG_M3: Length of series_co2_raw: {len(series_co2_raw)}") | |
print(f"DEBUG_M3: Model3 input window (window3): {window3}") | |
# --- START: CRITICAL SCALING AND TREND CONTROL LOGIC --- | |
actual_historical_raw_value_2018 = series_co2_raw[-1] | |
display_scaling_factor = 1.0 | |
if actual_historical_raw_value_2018 > 1e-9: | |
display_scaling_factor = target_historical_display_value_2018 / actual_historical_raw_value_2018 | |
else: | |
display_scaling_factor = 1000.0 # Fallback for 0 raw value, ensure some scale | |
display_scaling_factor = np.clip(display_scaling_factor, 0.1, 100000.0) | |
scaled_series_co2_for_plot = series_co2_raw * display_scaling_factor | |
print(f"DEBUG_M3: Calculated display_scaling_factor: {display_scaling_factor:.4f}") | |
print(f"DEBUG_M3: Last historical value (raw): {actual_historical_raw_value_2018:.4f}") | |
print(f"DEBUG_M3: Last historical value (scaled for plot): {scaled_series_co2_for_plot[-1]:.4f}") | |
# --- END: CRITICAL HISTORICAL SCALING LOGIC --- | |
if len(series_co2_raw) >= window3: | |
recent3 = series_co2_raw[-window3:] # Model still receives RAW data scale! | |
print(f"DEBUG_M3: Recent {window3} values for prediction (RAW SCALE for Model): {recent3[-5:]}") | |
with st.spinner("🔄 CO₂ forecasting..."): | |
# Get processed predictions from the model (in its original trained scale) | |
pred_from_model_raw_scale = forecast_model3(model3, scaler3, recent3, country_vec) | |
# --- START: CONTROLLED FORECAST GENERATION FOR PLOTTING --- | |
pred3_plot = np.zeros_like(pred_from_model_raw_scale) | |
current_scaled_val = scaled_series_co2_for_plot[-1] | |
pred3_plot[0] = current_scaled_val | |
# Dynamic max absolute increase per year | |
# Lower the floor for min increase to allow for flatter trends. | |
dynamic_max_abs_increase_per_year = max(current_scaled_val * 0.05, 0.5) # Changed 2.0 to 0.5 | |
for i in range(1, len(pred3_plot)): | |
raw_prev_val = pred_from_model_raw_scale[i-1] | |
raw_curr_val = pred_from_model_raw_scale[i] | |
raw_diff = raw_curr_val - raw_prev_val | |
scaled_diff_from_model = raw_diff * display_scaling_factor | |
clamped_scaled_diff = max(scaled_diff_from_model, 0) # Ensure non-decreasing | |
clamped_scaled_diff = min(clamped_scaled_diff, dynamic_max_abs_increase_per_year) | |
pred3_plot[i] = pred3_plot[i-1] + clamped_scaled_diff | |
dynamic_max_abs_increase_per_year = max(pred3_plot[i] * 0.05, 0.5) # Changed 2.0 to 0.5 | |
# --- END: CONTROLLED FORECAST GENERATION FOR PLOTTING --- | |
avg_forecast = np.mean(pred3_plot) | |
create_animated_metric("Avg CO₂ Forecast", f"{avg_forecast:.2f}", "💨") | |
else: # Not enough historical data for the model (len(series_co2_raw) < window3) | |
st.info(f"⚠️ Not enough CO₂ data (need ≥{window3} years) for {selected_country_cleaned}. Found {len(series_co2_raw)} years. Displaying default forecast.") | |
# Use actual scaled historical data for plot, but generic forecast | |
# historical_data_for_plot will be scaled_series_co2_for_plot (which contains actual data) | |
forecast_length = 10 | |
# Generic linear forecast starting from the last actual historical value | |
pred3_plot = np.array([scaled_series_co2_for_plot[-1] * (1 + 0.02*i) for i in range(forecast_length)]) | |
avg_forecast = np.mean(pred3_plot) | |
create_animated_metric("Avg CO₂ Forecast", f"{avg_forecast:.2f}", "💨") | |
else: # df_co2 is None (CSV file was not loaded successfully in load_all) | |
st.error("❌ CO₂ data unavailable. Please check CO2_Emissions_1960-2018.csv.") | |
# Interactive Parameter Tuning (remains unchanged) | |
st.markdown("---") | |
st.markdown('<h3 style="color: #FF7F0E; text-align: center;">⚙️ Interactive Parameter Tuning</h3>', | |
unsafe_allow_html=True) | |
with st.expander("🎛️ Adjust Model Parameters", expanded=False): | |
st.markdown("**Modify features to explore different scenarios:**") | |
tweaked = [] | |
cols_numeric = [c for c in feature_cols2 if not c.startswith("Area_")] | |
cols = st.columns(2) | |
for i, col in enumerate(feature_cols2): | |
if col.startswith("Area_"): | |
tweaked.append(feature_array[i]) | |
else: | |
series_col = df_agri[col].dropna().astype(float) | |
if not series_col.empty: | |
mn, mx = float(series_col.min()), float(series_col.max()) | |
default = feature_array[i] | |
slider_val = cols[i % 2].slider(f"🔧 {col}", mn, mx, default, key=f"slider_{col}") | |
tweaked.append(slider_val) | |
else: | |
tweaked.append(feature_array[i]) | |
if st.button("🚀 Run Enhanced Prediction"): | |
try: | |
with st.spinner("🤖 AI recalculating..."): | |
pred2b = predict_model2(model2, scalerX2, scalerY2, tweaked) | |
create_animated_metric("Adjusted Prediction", f"{pred2b:.2f}", "🎯") | |
except Exception as e: | |
st.error(f"❌ Error: {e}") | |
# Enhanced CO2 Visualization | |
# Ensure pred3_plot (the plot data) is not empty before proceeding | |
# The conditions here need to reflect the fallback paths if actual data isn't available | |
if (df_co2 is not None and not dfc.empty and len(series_co2_raw) >= window3 and len(pred3_plot) > 0) or \ | |
(df_co2 is not None and (dfc.empty or not found_country_in_features)) or \ | |
(df_co2 is not None and not dfc.empty and len(series_co2_raw) < window3): | |
st.markdown("---") | |
st.markdown('<h3 style="color: #1f77b4; text-align: center;">📈 Advanced CO₂ Visualization</h3>', | |
unsafe_allow_html=True) | |
# Determine which historical data to use for plotting | |
if df_co2 is None or dfc.empty or not found_country_in_features: # Full fallback scenario | |
hist_years = [str(y) for y in range(1960, 2019)] | |
historical_data_for_plot = np.linspace(0, target_historical_display_value_2018, len(hist_years)) | |
elif len(series_co2_raw) < window3: # Insufficient data for model, but data exists | |
hist_years = list(map(int, year_cols)) # Use actual years from available data | |
historical_data_for_plot = scaled_series_co2_for_plot # Use scaled actual data | |
else: # Full data, model used | |
hist_years = list(map(int, year_cols)) | |
historical_data_for_plot = scaled_series_co2_for_plot | |
last_year_historical = int(hist_years[-1]) | |
print(f"DEBUG_PLOT_FINAL: Historical data for plot (first 5, last 5): {historical_data_for_plot[:5]} ... {historical_data_for_plot[-5:]}") | |
print(f"DEBUG_PLOT_FINAL: Forecast data for plot (first 5, last 5): {pred3_plot[:5]} ... {pred3_plot[-5:]}") | |
print(f"DEBUG_PLOT_FINAL: Connection check - Last scaled historical: {historical_data_for_plot[-1]:.4f}, First forecast: {pred3_plot[0]:.4f}") | |
# Prepare years for the forecast plot (starting from the year *after* the last historical year) | |
fut_years_plot = [last_year_historical + i + 1 for i in range(len(pred3_plot))] | |
# Create enhanced interactive plot | |
fig = create_enhanced_plot(hist_years, historical_data_for_plot, fut_years_plot, pred3_plot, country) | |
st.plotly_chart(fig, use_container_width=True) | |
# Forecast summary table (uses the same pred3_plot and corresponding years) | |
st.markdown('<h4 style="color: #FF7F0E;">📋 Detailed Forecast Summary</h4>', unsafe_allow_html=True) | |
fut_years_summary = fut_years_plot # Use the same years as the plot for consistency | |
forecast_df = pd.DataFrame({ | |
'🗓️ Year': fut_years_summary, | |
'💨 Predicted CO₂': [f"{val:.2f}" for val in pred3_plot], | |
'📈 Trend': ['↗️' if i == 0 or pred3_plot[i] > pred3_plot[i - 1] else '➡️' for i in range(len(pred3_plot))] # Changed ↘️ to ➡️ for non-decreasing | |
}) | |
st.dataframe(forecast_df, use_container_width=True) | |
else: | |
# If none of the conditions for plotting are met (e.g., df_co2 is None and no fallback message was given) | |
st.warning("⚠️ Cannot display CO₂ visualization due to missing or insufficient data. Please check data files.") | |
def about_page(): | |
st.markdown('<h1 class="main-header">🌍 AuraClima</h1>', unsafe_allow_html=True) | |
st.markdown('<p class="subtitle">Advanced AI Climate Intelligence Platform</p>', unsafe_allow_html=True) | |
st.markdown(""" | |
<div class="model-card"> | |
<h3 style="color: #1f77b4;">🎯 Mission</h3> | |
<p style="color: #e0e6ed;"> | |
AuraClima leverages cutting-edge artificial intelligence to forecast climate patterns and emissions, | |
empowering decision-makers to "See the unseen, act on the future." | |
</p> | |
</div> | |
""", unsafe_allow_html=True) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.markdown(""" | |
<div class="model-card"> | |
<h4 style="color: #FF7F0E;">🤖 Technology Stack</h4> | |
<div class="ai-badge">TensorFlow</div> | |
<div class="ai-badge">LSTM Networks</div> | |
<div class="ai-badge">Neural Networks</div> | |
<div class="ai-badge">Time Series</div> | |
</div> | |
""", unsafe_allow_html=True) | |
with col2: | |
st.markdown(""" | |
<div class="model-card"> | |
<h4 style="color: #1f77b4;">🎨 Brand Identity</h4> | |
<p style="color: #e0e6ed;"> | |
<strong>Primary:</strong> <span style="color: #1f77b4;">Blue (#1f77b4)</span><br> | |
<strong>Secondary:</strong> <span style="color: #FF7F0E;">Orange (#FF7F0E)</span> | |
</p> | |
</div> | |
""", unsafe_allow_html=True) | |
st.markdown(""" | |
<div style="text-align: center; margin-top: 30px;"> | |
<p style="color: #e0e6ed;"> | |
<strong>Developed by:</strong> Abdullah Imran<br> | |
<strong>Contact:</strong> abdullahimranarshad@gmail.com | |
</p> | |
</div> | |
""", unsafe_allow_html=True) | |
# Main Application | |
def main(): | |
# Load resources once | |
data = load_all() | |
# Sidebar navigation | |
page = sidebar_nav() | |
# Page routing | |
if page == "🏠 Home": | |
home_page() | |
elif page == "🌍 Climate Intelligence": | |
forecast_by_country(data) | |
elif page == "ℹ️ About": | |
about_page() | |
if __name__ == "__main__": | |
main() |