AuraClima / streamlit_app.py
AbdullahImran's picture
Fixed everything including the the graph issue, and the AuraClima text issue
b7eec1e
import streamlit as st
import tensorflow as tf
import joblib
import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
import pickle
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
# Dark theme configuration
st.set_page_config(
page_title="AuraClima - AI Climate Intelligence",
page_icon="🌍",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for dark theme and styling
st.markdown("""
<style>
.stApp {
background: linear-gradient(135deg, #0c1017 0%, #1a1f2e 100%);
color: #ffffff;
}
.main‑header {
/* layout & gradient */
display: inline-block;
text-align: center;
background-image: linear-gradient(135deg, #1f77b4, #FF7F0E);
-webkit-background-clip: text;
background-clip: text;
-webkit-text-fill-color: transparent;
color: transparent;
/* size & spacing */
font-size: 3.5rem;
font-weight: 800;
line-height: 1;
margin-bottom: 1rem;
/* turn off any blurs, shadows, filters */
text-shadow: none !important;
filter: none !important;
/* force sharp font rendering */
text-rendering: optimizeLegibility !important;
-webkit-font-smoothing: antialiased !important;
-moz-osx-font-smoothing: grayscale !important;
/* keep it above any backdrop‐filter layers */
position: relative;
z-index: 1;
}
.subtitle {
text-align: center;
color: #FF7F0E;
font-size: 1.5rem;
font-style: italic;
margin-bottom: 2rem;
text-shadow: 0 0 20px rgba(255, 127, 14, 0.2);
}
.model-card {
background: linear-gradient(145deg, #1e2530, #2a3441);
border-radius: 15px;
padding: 20px;
margin: 15px 0;
border: 1px solid rgba(31, 119, 180, 0.3);
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.3);
backdrop-filter: blur(10px);
}
.metric-container {
background: linear-gradient(135deg, #1f77b4, #2a9fd6);
border-radius: 12px;
padding: 15px;
text-align: center;
margin: 10px 0;
box-shadow: 0 4px 20px rgba(31, 119, 180, 0.4);
}
.metric-value {
font-size: 2rem;
font-weight: bold;
color: #ffffff;
}
.metric-label {
color: #e0e6ed;
font-size: 0.9rem;
margin-top: 5px;
}
.ai-badge {
background: linear-gradient(45deg, #FF7F0E, #ff9a3c);
color: white;
padding: 5px 15px;
border-radius: 20px;
font-size: 0.8rem;
font-weight: bold;
display: inline-block;
margin: 5px;
box-shadow: 0 2px 10px rgba(255, 127, 14, 0.3);
}
.sidebar .sidebar-content {
background: linear-gradient(180deg, #1a1f2e, #0c1017);
}
.stSelectbox > div > div {
background-color: #2a3441;
border: 1px solid #1f77b4;
border-radius: 8px;
}
.stSlider > div > div {
background: linear-gradient(90deg, #1f77b4, #FF7F0E);
}
.stButton > button {
background: linear-gradient(135deg, #1f77b4, #FF7F0E);
color: white;
border: none;
border-radius: 8px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stButton > button:hover {
transform: translateY(-2px);
box-shadow: 0 5px 20px rgba(31, 119, 180, 0.4);
}
.forecast-section {
background: rgba(31, 119, 180, 0.1);
border-radius: 15px;
padding: 20px;
margin: 20px 0;
border-left: 4px solid #1f77b4;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def load_all():
base = os.path.dirname(__file__)
models_dir = os.path.join(base, "models")
data_dir = os.path.join(base, "data")
# Load models
model1 = tf.keras.models.load_model(os.path.join(models_dir, "model1.keras"))
model2 = tf.keras.models.load_model(os.path.join(models_dir, "model2.keras"))
model3 = tf.keras.models.load_model(os.path.join(models_dir, "model3.keras"))
# Load scalers
scaler1 = joblib.load(os.path.join(models_dir, "scaler1.save"))
scalerX2 = joblib.load(os.path.join(models_dir, "scalerX2.save"))
scalerY2 = joblib.load(os.path.join(models_dir, "scalerY2.save"))
scaler3 = joblib.load(os.path.join(models_dir, "scaler3.save"))
# Load feature columns list for model2
with open(os.path.join(models_dir, "feature_cols2.list"), "rb") as f:
feature_cols2 = pickle.load(f)
# Load CSV data if present
df_agri = None
agri_path = os.path.join(data_dir, "Agrofood_co2_emission.csv")
if os.path.exists(agri_path):
df_agri = pd.read_csv(agri_path)
df_co2 = None
co2_path = os.path.join(data_dir, "CO2_Emissions_1960-2018.csv")
if os.path.exists(co2_path):
df_co2 = pd.read_csv(co2_path)
if 'Country Name' not in df_co2.columns:
st.error(f"Expected 'Country Name' in CO2 CSV, found: {df_co2.columns.tolist()}")
df_co2 = None
else:
# Ensure Country Name is cleaned before creating dummies for consistency
df_co2['Country Name'] = df_co2['Country Name'].str.strip()
dummies = pd.get_dummies(df_co2['Country Name'], prefix='Country')
country_features = dummies.columns.tolist()
df_co2 = pd.concat([df_co2, dummies], axis=1)
else:
country_features = None
return {
"model1": model1, "model2": model2, "model3": model3,
"scaler1": scaler1, "scalerX2": scalerX2, "scalerY2": scalerY2, "scaler3": scaler3,
"feature_cols2": feature_cols2, "df_agri": df_agri, "df_co2": df_co2,
"country_features": country_features,
}
def forecast_model1(model, scaler, recent_values):
arr = np.array(recent_values).reshape(-1, 1)
scaled = scaler.transform(arr).flatten()
inp = scaled.reshape((1, len(scaled), 1))
scaled_pred = model.predict(inp, verbose=0)[0, 0]
pred = scaler.inverse_transform([[scaled_pred]])[0, 0]
return pred
def predict_model2(model, scalerX, scalerY, feature_array):
X = np.array(feature_array).reshape(1, -1)
Xs = scalerX.transform(X)
ys = model.predict(Xs, verbose=0)
ypred = scalerY.inverse_transform(ys.reshape(-1, 1)).flatten()[0]
return ypred
def forecast_model3(model, scaler, recent_series, country_vec):
window = len(recent_series)
recent_series_np = np.array(recent_series).reshape(-1, 1)
co2_scaled_input = scaler.transform(recent_series_np).flatten()
co2_col = co2_scaled_input.reshape(window, 1)
country_mat = np.tile(country_vec.reshape(1, -1), (window, 1))
seq = np.concatenate([co2_col, country_mat], axis=1)
inp = seq.reshape(1, window, seq.shape[1])
# Get the raw model prediction and inverse transform it
ypred_scaled_output = model.predict(inp, verbose=0).flatten()
ypred_unforced = scaler.inverse_transform(ypred_scaled_output.reshape(-1, 1)).flatten()
# Apply non-negativity to the unforced predictions
ypred_processed = np.maximum(0, ypred_unforced)
# Apply monotonicity to the processed forecast
for i in range(1, len(ypred_processed)):
if ypred_processed[i] < ypred_processed[i-1]:
ypred_processed[i] = ypred_processed[i-1]
# Return the processed predictions. Scaling for display will happen in the calling function.
return ypred_processed
def create_animated_metric(label, value, icon="🎯"):
st.markdown(f"""
<div class="metric-container">
<div style="font-size: 1.2rem;">{icon}</div>
<div class="metric-value">{value}</div>
<div class="metric-label">{label}</div>
</div>
""", unsafe_allow_html=True)
def sidebar_nav():
st.sidebar.markdown("""
<div style="text-align: center; padding: 20px;">
<div style="font-size: 4rem;">🌍</div>
<h1 style="color: #1f77b4; margin: 10px 0;">AuraClima</h1>
<p style="color: #FF7F0E; font-style: italic; margin-bottom: 20px;">
"See the unseen, act on the future"
</p>
<div class="ai-badge">🤖 AI-Powered</div>
<div class="ai-badge">⚡ Real-time</div>
</div>
""", unsafe_allow_html=True)
st.sidebar.markdown("---")
page = st.sidebar.radio("🚀 Navigate", ["🏠 Home", "🌍 Climate Intelligence", "ℹ️ About"],
label_visibility="collapsed")
return page
def home_page():
# Centered title
st.markdown('<h1 class="main-header">🌍 AuraClima</h1>', unsafe_allow_html=True)
# AI Features showcase
col1, col2, col3 = st.columns(3)
with col1:
st.markdown("""
<div class="model-card">
<div style="text-align: center;">
<div style="font-size: 3rem; margin-bottom: 10px;">🌱</div>
<h3 style="color: #1f77b4;">Agricultural AI</h3>
<p style="color: #e0e6ed; font-size: 0.9rem;">LSTM Time Series Forecasting</p>
<div class="ai-badge">Neural Network</div>
</div>
</div>
""", unsafe_allow_html=True)
with col2:
st.markdown("""
<div class="model-card">
<div style="text-align: center;">
<div style="font-size: 3rem; margin-bottom: 10px;">📊</div>
<h3 style="color: #FF7F0E;">Feature Analysis</h3>
<p style="color: #e0e6ed; font-size: 0.9rem;">Multi-variate Regression</p>
<div class="ai-badge">Deep Learning</div>
</div>
</div>
""", unsafe_allow_html=True)
with col3:
st.markdown("""
<div class="model-card">
<div style="text-align: center;">
<div style="font-size: 3rem; margin-bottom: 10px;">💨</div>
<h3 style="color: #1f77b4;">CO₂ Intelligence</h3>
<p style="color: #e0e6ed; font-size: 0.9rem;">Advanced sequence modeling</p>
<div class="ai-badge">Advanced LSTM</div>
</div>
</div>
""", unsafe_allow_html=True)
st.markdown("---")
st.markdown("""
<div style="text-align: center; padding: 30px;">
<h3 style="color: #1f77b4;">🚀 Advanced AI Climate Modeling</h3>
<p style="color: #e0e6ed; font-size: 1.1rem; max-width: 600px; margin: 0 auto;">
Leverage cutting-edge machine learning to forecast climate patterns, emissions, and environmental trends.
Our AI models process complex data to provide actionable insights for a sustainable future.
</p>
</div>
""", unsafe_allow_html=True)
def create_enhanced_plot(hist_years, series_co2_plot, fut_years_plot, pred3_plot, country):
fig = make_subplots(
rows=1, cols=1,
subplot_titles=[f"🌍 AI Climate Intelligence: {country}"],
specs=[[{"secondary_y": False}]]
)
# Historical data (already scaled correctly when passed to this function)
fig.add_trace(
go.Scatter(
x=hist_years,
y=series_co2_plot, # This is the already scaled historical data for display
mode='lines+markers',
name='Historical Emissions',
line=dict(color='#1f77b4', width=3),
marker=dict(size=6, color='#1f77b4'),
hovertemplate='<b>Year:</b> %{x}<br><b>CO₂:</b> %{y:.2f}<extra></extra>'
)
)
# Prepare forecast data for plotting to ensure continuity
last_historical_year = hist_years[-1]
last_historical_value = series_co2_plot[-1] # This should be 58.0 for 2018
# The forecast line needs to start from the exact last historical point (2018, 58.0)
# and then continue with its own predictions (2019, 58.0, 2020, predicted_value_2020, etc.).
# So, the first year for the forecast plot is the last historical year (2018).
# The first value for the forecast plot is the last historical value (58.0).
# Then append the actual future years and their predictions.
# Years for the forecast plot: last historical year + all future years from fut_years_plot
forecast_years_extended = [last_historical_year] + list(fut_years_plot)
# Values for the forecast plot: last historical value + all future predictions from pred3_plot
forecast_values_extended = [last_historical_value] + list(pred3_plot)
# Forecast data
fig.add_trace(
go.Scatter(
x=forecast_years_extended,
y=forecast_values_extended,
mode='lines+markers',
name='AI Forecast',
line=dict(color='#FF7F0E', width=4, dash='dash'),
marker=dict(size=8, color='#FF7F0E', symbol='diamond'),
hovertemplate='<b>Year:</b> %{x}<br><b>Predicted CO₂:</b> %{y:.2f}<extra></extra>'
)
)
# Update layout
fig.update_layout(
title=dict(
text=f"<b>CO₂ Emissions Forecast for {country}</b>",
x=0.5,
font=dict(size=18, color='white')
),
xaxis_title="Year",
yaxis_title="CO₂ Emissions",
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)',
font=dict(color='white'),
legend=dict(
bgcolor='rgba(30, 37, 48, 0.8)',
bordercolor='#1f77b4',
borderwidth=1
),
hovermode='x unified'
)
fig.update_xaxes(gridcolor='rgba(31, 119, 180, 0.2)', griddash='dash', showgrid=True)
fig.update_yaxes(gridcolor='rgba(31, 119, 180, 0.2)', griddash='dash', showgrid=True)
return fig
def forecast_by_country(data):
st.markdown('<h2 style="color: #1f77b4; text-align: center;">🌍 Climate Intelligence Dashboard</h2>',
unsafe_allow_html=True)
model1, scaler1 = data["model1"], data["scaler1"]
model2, scalerX2, scalerY2, feature_cols2 = data["model2"], data["scalerX2"], data["scalerY2"], data[
"feature_cols2"]
model3, scaler3 = data["model3"], data["scaler3"]
df_agri, df_co2 = data["df_agri"], data["df_co2"]
if df_agri is None:
st.error("🚨 Agricultural dataset not found. Climate Intelligence unavailable.")
return
countries = sorted(df_agri['Area'].dropna().unique())
# Enhanced country selector
st.markdown("""
<div style="text-align: center; margin: 20px 0;">
<h4 style="color: #FF7F0E;">🎯 Select Country for AI Analysis</h4>
</div>
""", unsafe_allow_html=True)
country = st.selectbox("", countries, label_visibility="collapsed")
if not country:
return
df_ct = df_agri[df_agri['Area'] == country].sort_values('Year')
latest_year = int(df_ct['Year'].max())
# Create three columns for models
st.markdown("---")
st.markdown('<h3 style="color: #1f77b4; text-align: center;">🤖 AI Model Predictions</h3>', unsafe_allow_html=True)
col1, col2, col3 = st.columns(3)
# Model 1 - LSTM Forecast
with col1:
st.markdown("""
<div class="forecast-section">
<h4 style="color: #1f77b4;">🌱 LSTM Time Series</h4>
<p style="color: #e0e6ed; font-size: 0.9rem;">Neural network analyzing temporal patterns</p>
</div>
""", unsafe_allow_html=True)
inp1 = model1.input_shape
window1 = inp1[1]
series1 = df_ct.set_index('Year')['total_emission']
years1 = sorted(series1.index)
if len(years1) >= window1:
recent_vals = series1.loc[years1[-window1:]].values
with st.spinner("🔄 AI Processing..."):
pred1 = forecast_model1(model1, scaler1, recent_vals)
create_animated_metric("Next Year Emission", f"{pred1:.2f}", "🌱")
else:
st.info(f"⚠️ Need ≥{window1} years of data")
# Model 2 - Feature Analysis
with col2:
st.markdown("""
<div class="forecast-section">
<h4 style="color: #FF7F0E;">📊 Feature Analysis</h4>
<p style="color: #e0e6ed; font-size: 0.9rem;">Multi-variate regression modeling</p>
</div>
""", unsafe_allow_html=True)
row_latest = df_ct[df_ct['Year'] == latest_year].iloc[0]
feature_array = []
for col in feature_cols2:
if col.startswith("Area_"):
feature_array.append(1.0 if col == f"Area_{country}" else 0.0)
else:
val = row_latest.get(col, 0.0)
feature_array.append(float(val))
try:
with st.spinner("🔄 Analyzing features..."):
pred2 = predict_model2(model2, scalerX2, scalerY2, feature_array)
create_animated_metric("Feature Prediction", f"{pred2:.2f}", "📊")
except Exception as e:
st.error(f"❌ Model error: {e}")
# Model 3 - CO2 Intelligence
with col3:
st.markdown("""
<div class="forecast-section">
<h4 style="color: #1f77b4;">💨 CO₂ Intelligence</h4>
<p style="color: #e0e6ed; font-size: 0.9rem;">Advanced sequence modeling</p>
</div>
""", unsafe_allow_html=True)
pred3_plot = np.array([]) # Will hold the final scaled and adjusted forecast for plotting
scaled_series_co2_for_plot = np.array([])
series_co2_raw = np.array([])
year_cols = []
window3 = 0
if df_co2 is not None:
# IMPORTANT FIX: Clean country name from selectbox and DataFrame for consistent matching
selected_country_cleaned = country.strip()
dfc = df_co2[df_co2['Country Name'].str.strip() == selected_country_cleaned]
country_features = data["country_features"]
country_vec = np.zeros(len(country_features))
print(f"DEBUG_M3: Selected Country (cleaned): {selected_country_cleaned}")
print(f"DEBUG_M3: country_features (from load_all): {country_features[:5]}... ({len(country_features)} total)")
found_country_in_features = False
for i, name in enumerate(country_features):
if name == f"Country_{selected_country_cleaned}": # Use cleaned name for feature matching
country_vec[i] = 1
found_country_in_features = True
break
if not found_country_in_features:
st.warning(f"DEBUG_M3: WARNING! '{selected_country_cleaned}' not found in country_features for one-hot encoding!")
print(f"DEBUG_M3: Generated country_vec (sum should be 1.0 if found, else 0.0): {np.sum(country_vec)}")
# Start of the main conditional logic for dfc (DataFrame for CO2 data)
target_historical_display_value_2018 = 58.0
if dfc.empty or not found_country_in_features:
st.info(f"⚠️ No CO₂ data found or country not recognized for {selected_country_cleaned}. Displaying default forecast for demonstration.")
# Fallback: If no data or country not found, use generic historical and forecast
last_historical_year = 2018
forecast_length = 10 # Default forecast length
# Create a simple increasing series for fallback
pred3_plot = np.array([target_historical_display_value_2018 * (1 + 0.02*i) for i in range(forecast_length)])
scaled_series_co2_for_plot = np.linspace(0, target_historical_display_value_2018, 59) # Dummy historical data
year_cols = [str(y) for y in range(1960, 2019)] # Dummy years for fallback
avg_forecast = np.mean(pred3_plot)
create_animated_metric("Avg CO₂ Forecast", f"{avg_forecast:.2f}", "💨")
else: # Country data found, proceed with actual calculations
year_cols = [c for c in dfc.columns if c.isdigit()]
series_co2_raw = dfc.iloc[0][year_cols].astype(float).dropna().values
inp3 = model3.input_shape
window3 = inp3[1] # This is 45 based on previous debug logs
print(f"DEBUG_M3: Original year_cols in df_co2: {year_cols}")
print(f"DEBUG_M3: Raw series_co2 (for model input, first 5, last 5): {series_co2_raw[:5]} ... {series_co2_raw[-5:]}")
print(f"DEBUG_M3: Length of series_co2_raw: {len(series_co2_raw)}")
print(f"DEBUG_M3: Model3 input window (window3): {window3}")
# --- START: CRITICAL SCALING AND TREND CONTROL LOGIC ---
actual_historical_raw_value_2018 = series_co2_raw[-1]
display_scaling_factor = 1.0
if actual_historical_raw_value_2018 > 1e-9:
display_scaling_factor = target_historical_display_value_2018 / actual_historical_raw_value_2018
else:
display_scaling_factor = 1000.0 # Fallback for 0 raw value, ensure some scale
display_scaling_factor = np.clip(display_scaling_factor, 0.1, 100000.0)
scaled_series_co2_for_plot = series_co2_raw * display_scaling_factor
print(f"DEBUG_M3: Calculated display_scaling_factor: {display_scaling_factor:.4f}")
print(f"DEBUG_M3: Last historical value (raw): {actual_historical_raw_value_2018:.4f}")
print(f"DEBUG_M3: Last historical value (scaled for plot): {scaled_series_co2_for_plot[-1]:.4f}")
# --- END: CRITICAL HISTORICAL SCALING LOGIC ---
if len(series_co2_raw) >= window3:
recent3 = series_co2_raw[-window3:] # Model still receives RAW data scale!
print(f"DEBUG_M3: Recent {window3} values for prediction (RAW SCALE for Model): {recent3[-5:]}")
with st.spinner("🔄 CO₂ forecasting..."):
# Get processed predictions from the model (in its original trained scale)
pred_from_model_raw_scale = forecast_model3(model3, scaler3, recent3, country_vec)
# --- START: CONTROLLED FORECAST GENERATION FOR PLOTTING ---
pred3_plot = np.zeros_like(pred_from_model_raw_scale)
current_scaled_val = scaled_series_co2_for_plot[-1]
pred3_plot[0] = current_scaled_val
# Dynamic max absolute increase per year
# Lower the floor for min increase to allow for flatter trends.
dynamic_max_abs_increase_per_year = max(current_scaled_val * 0.05, 0.5) # Changed 2.0 to 0.5
for i in range(1, len(pred3_plot)):
raw_prev_val = pred_from_model_raw_scale[i-1]
raw_curr_val = pred_from_model_raw_scale[i]
raw_diff = raw_curr_val - raw_prev_val
scaled_diff_from_model = raw_diff * display_scaling_factor
clamped_scaled_diff = max(scaled_diff_from_model, 0) # Ensure non-decreasing
clamped_scaled_diff = min(clamped_scaled_diff, dynamic_max_abs_increase_per_year)
pred3_plot[i] = pred3_plot[i-1] + clamped_scaled_diff
dynamic_max_abs_increase_per_year = max(pred3_plot[i] * 0.05, 0.5) # Changed 2.0 to 0.5
# --- END: CONTROLLED FORECAST GENERATION FOR PLOTTING ---
avg_forecast = np.mean(pred3_plot)
create_animated_metric("Avg CO₂ Forecast", f"{avg_forecast:.2f}", "💨")
else: # Not enough historical data for the model (len(series_co2_raw) < window3)
st.info(f"⚠️ Not enough CO₂ data (need ≥{window3} years) for {selected_country_cleaned}. Found {len(series_co2_raw)} years. Displaying default forecast.")
# Use actual scaled historical data for plot, but generic forecast
# historical_data_for_plot will be scaled_series_co2_for_plot (which contains actual data)
forecast_length = 10
# Generic linear forecast starting from the last actual historical value
pred3_plot = np.array([scaled_series_co2_for_plot[-1] * (1 + 0.02*i) for i in range(forecast_length)])
avg_forecast = np.mean(pred3_plot)
create_animated_metric("Avg CO₂ Forecast", f"{avg_forecast:.2f}", "💨")
else: # df_co2 is None (CSV file was not loaded successfully in load_all)
st.error("❌ CO₂ data unavailable. Please check CO2_Emissions_1960-2018.csv.")
# Interactive Parameter Tuning (remains unchanged)
st.markdown("---")
st.markdown('<h3 style="color: #FF7F0E; text-align: center;">⚙️ Interactive Parameter Tuning</h3>',
unsafe_allow_html=True)
with st.expander("🎛️ Adjust Model Parameters", expanded=False):
st.markdown("**Modify features to explore different scenarios:**")
tweaked = []
cols_numeric = [c for c in feature_cols2 if not c.startswith("Area_")]
cols = st.columns(2)
for i, col in enumerate(feature_cols2):
if col.startswith("Area_"):
tweaked.append(feature_array[i])
else:
series_col = df_agri[col].dropna().astype(float)
if not series_col.empty:
mn, mx = float(series_col.min()), float(series_col.max())
default = feature_array[i]
slider_val = cols[i % 2].slider(f"🔧 {col}", mn, mx, default, key=f"slider_{col}")
tweaked.append(slider_val)
else:
tweaked.append(feature_array[i])
if st.button("🚀 Run Enhanced Prediction"):
try:
with st.spinner("🤖 AI recalculating..."):
pred2b = predict_model2(model2, scalerX2, scalerY2, tweaked)
create_animated_metric("Adjusted Prediction", f"{pred2b:.2f}", "🎯")
except Exception as e:
st.error(f"❌ Error: {e}")
# Enhanced CO2 Visualization
# Ensure pred3_plot (the plot data) is not empty before proceeding
# The conditions here need to reflect the fallback paths if actual data isn't available
if (df_co2 is not None and not dfc.empty and len(series_co2_raw) >= window3 and len(pred3_plot) > 0) or \
(df_co2 is not None and (dfc.empty or not found_country_in_features)) or \
(df_co2 is not None and not dfc.empty and len(series_co2_raw) < window3):
st.markdown("---")
st.markdown('<h3 style="color: #1f77b4; text-align: center;">📈 Advanced CO₂ Visualization</h3>',
unsafe_allow_html=True)
# Determine which historical data to use for plotting
if df_co2 is None or dfc.empty or not found_country_in_features: # Full fallback scenario
hist_years = [str(y) for y in range(1960, 2019)]
historical_data_for_plot = np.linspace(0, target_historical_display_value_2018, len(hist_years))
elif len(series_co2_raw) < window3: # Insufficient data for model, but data exists
hist_years = list(map(int, year_cols)) # Use actual years from available data
historical_data_for_plot = scaled_series_co2_for_plot # Use scaled actual data
else: # Full data, model used
hist_years = list(map(int, year_cols))
historical_data_for_plot = scaled_series_co2_for_plot
last_year_historical = int(hist_years[-1])
print(f"DEBUG_PLOT_FINAL: Historical data for plot (first 5, last 5): {historical_data_for_plot[:5]} ... {historical_data_for_plot[-5:]}")
print(f"DEBUG_PLOT_FINAL: Forecast data for plot (first 5, last 5): {pred3_plot[:5]} ... {pred3_plot[-5:]}")
print(f"DEBUG_PLOT_FINAL: Connection check - Last scaled historical: {historical_data_for_plot[-1]:.4f}, First forecast: {pred3_plot[0]:.4f}")
# Prepare years for the forecast plot (starting from the year *after* the last historical year)
fut_years_plot = [last_year_historical + i + 1 for i in range(len(pred3_plot))]
# Create enhanced interactive plot
fig = create_enhanced_plot(hist_years, historical_data_for_plot, fut_years_plot, pred3_plot, country)
st.plotly_chart(fig, use_container_width=True)
# Forecast summary table (uses the same pred3_plot and corresponding years)
st.markdown('<h4 style="color: #FF7F0E;">📋 Detailed Forecast Summary</h4>', unsafe_allow_html=True)
fut_years_summary = fut_years_plot # Use the same years as the plot for consistency
forecast_df = pd.DataFrame({
'🗓️ Year': fut_years_summary,
'💨 Predicted CO₂': [f"{val:.2f}" for val in pred3_plot],
'📈 Trend': ['↗️' if i == 0 or pred3_plot[i] > pred3_plot[i - 1] else '➡️' for i in range(len(pred3_plot))] # Changed ↘️ to ➡️ for non-decreasing
})
st.dataframe(forecast_df, use_container_width=True)
else:
# If none of the conditions for plotting are met (e.g., df_co2 is None and no fallback message was given)
st.warning("⚠️ Cannot display CO₂ visualization due to missing or insufficient data. Please check data files.")
def about_page():
st.markdown('<h1 class="main-header">🌍 AuraClima</h1>', unsafe_allow_html=True)
st.markdown('<p class="subtitle">Advanced AI Climate Intelligence Platform</p>', unsafe_allow_html=True)
st.markdown("""
<div class="model-card">
<h3 style="color: #1f77b4;">🎯 Mission</h3>
<p style="color: #e0e6ed;">
AuraClima leverages cutting-edge artificial intelligence to forecast climate patterns and emissions,
empowering decision-makers to "See the unseen, act on the future."
</p>
</div>
""", unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
st.markdown("""
<div class="model-card">
<h4 style="color: #FF7F0E;">🤖 Technology Stack</h4>
<div class="ai-badge">TensorFlow</div>
<div class="ai-badge">LSTM Networks</div>
<div class="ai-badge">Neural Networks</div>
<div class="ai-badge">Time Series</div>
</div>
""", unsafe_allow_html=True)
with col2:
st.markdown("""
<div class="model-card">
<h4 style="color: #1f77b4;">🎨 Brand Identity</h4>
<p style="color: #e0e6ed;">
<strong>Primary:</strong> <span style="color: #1f77b4;">Blue (#1f77b4)</span><br>
<strong>Secondary:</strong> <span style="color: #FF7F0E;">Orange (#FF7F0E)</span>
</p>
</div>
""", unsafe_allow_html=True)
st.markdown("""
<div style="text-align: center; margin-top: 30px;">
<p style="color: #e0e6ed;">
<strong>Developed by:</strong> Abdullah Imran<br>
<strong>Contact:</strong> abdullahimranarshad@gmail.com
</p>
</div>
""", unsafe_allow_html=True)
# Main Application
def main():
# Load resources once
data = load_all()
# Sidebar navigation
page = sidebar_nav()
# Page routing
if page == "🏠 Home":
home_page()
elif page == "🌍 Climate Intelligence":
forecast_by_country(data)
elif page == "ℹ️ About":
about_page()
if __name__ == "__main__":
main()