{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "source": [ "# AuraClima: predicting the CO2" ], "metadata": { "id": "T5UzeL4jY0AC" } }, { "cell_type": "markdown", "source": [ "## Basic Overview and Analysis" ], "metadata": { "id": "CZm9r69dbQWr" } }, { "cell_type": "code", "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "p6TIsD_dY6EE", "outputId": "243f5ca9-201b-472b-a155-fcb6143064f3" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Mounted at /content/drive\n" ] } ] }, { "cell_type": "code", "source": [ "import pandas as pd\n", "\n", "agri_path = \"/content/drive/MyDrive/AuraClima/Agrofood_co2_emission.csv\"\n", "co2_path = \"/content/drive/MyDrive/AuraClima/CO2_Emissions_1960-2018.csv\"\n", "\n", "df_agri = pd.read_csv(agri_path)\n", "df_co2 = pd.read_csv(co2_path)" ], "metadata": { "id": "T1CxxOGcZbqv" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "df_agri.head()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 307 }, "id": "QNXMv2WOa7wR", "outputId": "c971ef85-ca51-4df5-ee3b-6db7e85b1f73" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Area Year Savanna fires Forest fires Crop Residues \\\n", "0 Afghanistan 1990 14.7237 0.0557 205.6077 \n", "1 Afghanistan 1991 14.7237 0.0557 209.4971 \n", "2 Afghanistan 1992 14.7237 0.0557 196.5341 \n", "3 Afghanistan 1993 14.7237 0.0557 230.8175 \n", "4 Afghanistan 1994 14.7237 0.0557 242.0494 \n", "\n", " Rice Cultivation Drained organic soils (CO2) Pesticides Manufacturing \\\n", "0 686.00 0.0 11.807483 \n", "1 678.16 0.0 11.712073 \n", "2 686.00 0.0 11.712073 \n", "3 686.00 0.0 11.712073 \n", "4 705.60 0.0 11.712073 \n", "\n", " Food Transport Forestland ... Manure Management Fires in organic soils \\\n", "0 63.1152 -2388.803 ... 319.1763 0.0 \n", "1 61.2125 -2388.803 ... 342.3079 0.0 \n", "2 53.3170 -2388.803 ... 349.1224 0.0 \n", "3 54.3617 -2388.803 ... 352.2947 0.0 \n", "4 53.9874 -2388.803 ... 367.6784 0.0 \n", "\n", " Fires in humid tropical forests On-farm energy use Rural population \\\n", "0 0.0 NaN 9655167.0 \n", "1 0.0 NaN 10230490.0 \n", "2 0.0 NaN 10995568.0 \n", "3 0.0 NaN 11858090.0 \n", "4 0.0 NaN 12690115.0 \n", "\n", " Urban population Total Population - Male Total Population - Female \\\n", "0 2593947.0 5348387.0 5346409.0 \n", "1 2763167.0 5372959.0 5372208.0 \n", "2 2985663.0 6028494.0 6028939.0 \n", "3 3237009.0 7003641.0 7000119.0 \n", "4 3482604.0 7733458.0 7722096.0 \n", "\n", " total_emission Average Temperature °C \n", "0 2198.963539 0.536167 \n", "1 2323.876629 0.020667 \n", "2 2356.304229 -0.259583 \n", "3 2368.470529 0.101917 \n", "4 2500.768729 0.372250 \n", "\n", "[5 rows x 31 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AreaYearSavanna firesForest firesCrop ResiduesRice CultivationDrained organic soils (CO2)Pesticides ManufacturingFood TransportForestland...Manure ManagementFires in organic soilsFires in humid tropical forestsOn-farm energy useRural populationUrban populationTotal Population - MaleTotal Population - Femaletotal_emissionAverage Temperature °C
0Afghanistan199014.72370.0557205.6077686.000.011.80748363.1152-2388.803...319.17630.00.0NaN9655167.02593947.05348387.05346409.02198.9635390.536167
1Afghanistan199114.72370.0557209.4971678.160.011.71207361.2125-2388.803...342.30790.00.0NaN10230490.02763167.05372959.05372208.02323.8766290.020667
2Afghanistan199214.72370.0557196.5341686.000.011.71207353.3170-2388.803...349.12240.00.0NaN10995568.02985663.06028494.06028939.02356.304229-0.259583
3Afghanistan199314.72370.0557230.8175686.000.011.71207354.3617-2388.803...352.29470.00.0NaN11858090.03237009.07003641.07000119.02368.4705290.101917
4Afghanistan199414.72370.0557242.0494705.600.011.71207353.9874-2388.803...367.67840.00.0NaN12690115.03482604.07733458.07722096.02500.7687290.372250
\n", "

5 rows × 31 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "df_agri" } }, "metadata": {}, "execution_count": 4 } ] }, { "cell_type": "code", "source": [ "df_co2.head()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 359 }, "id": "hKFfGUy9a-8H", "outputId": "e9d13bfb-adde-4dc0-bb35-54d02a4d59f0" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Country Name 1960 1961 1962 \\\n", "0 Aruba 204.631696 208.837879 226.081890 \n", "1 Africa Eastern and Southern 0.906060 0.922474 0.930816 \n", "2 Afghanistan 0.046057 0.053589 0.073721 \n", "3 Africa Western and Central 0.090880 0.095283 0.096612 \n", "4 Angola 0.100835 0.082204 0.210533 \n", "\n", " 1963 1964 1965 1966 1967 1968 \\\n", "0 214.785217 207.626699 185.213644 172.158729 210.819017 194.917536 \n", "1 0.940570 0.996033 1.047280 1.033908 1.052204 1.079727 \n", "2 0.074161 0.086174 0.101285 0.107399 0.123409 0.115142 \n", "3 0.112376 0.133258 0.184803 0.193676 0.189305 0.143989 \n", "4 0.202739 0.213562 0.205891 0.268937 0.172096 0.289702 \n", "\n", " ... 2009 2010 2011 2012 2013 2014 2015 \\\n", "0 ... NaN NaN NaN NaN NaN NaN NaN \n", "1 ... 1.021954 1.048876 1.005338 1.021646 1.031833 1.041145 0.987393 \n", "2 ... 0.211306 0.297065 0.407074 0.335351 0.263716 0.234037 0.232176 \n", "3 ... 0.426770 0.472819 0.497023 0.490867 0.504655 0.507671 0.480743 \n", "4 ... 1.205902 1.221515 1.216317 1.204799 1.261542 1.285365 1.260921 \n", "\n", " 2016 2017 2018 \n", "0 NaN NaN NaN \n", "1 0.971016 0.959978 0.933541 \n", "2 0.208857 0.203328 0.200151 \n", "3 0.472959 0.476438 0.515544 \n", "4 1.227703 1.034317 0.887380 \n", "\n", "[5 rows x 60 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Country Name196019611962196319641965196619671968...2009201020112012201320142015201620172018
0Aruba204.631696208.837879226.081890214.785217207.626699185.213644172.158729210.819017194.917536...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
1Africa Eastern and Southern0.9060600.9224740.9308160.9405700.9960331.0472801.0339081.0522041.079727...1.0219541.0488761.0053381.0216461.0318331.0411450.9873930.9710160.9599780.933541
2Afghanistan0.0460570.0535890.0737210.0741610.0861740.1012850.1073990.1234090.115142...0.2113060.2970650.4070740.3353510.2637160.2340370.2321760.2088570.2033280.200151
3Africa Western and Central0.0908800.0952830.0966120.1123760.1332580.1848030.1936760.1893050.143989...0.4267700.4728190.4970230.4908670.5046550.5076710.4807430.4729590.4764380.515544
4Angola0.1008350.0822040.2105330.2027390.2135620.2058910.2689370.1720960.289702...1.2059021.2215151.2163171.2047991.2615421.2853651.2609211.2277031.0343170.887380
\n", "

5 rows × 60 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "df_co2" } }, "metadata": {}, "execution_count": 5 } ] }, { "cell_type": "code", "source": [ "def missing_report(df, name):\n", " print(f\"\\nMissing Values Report for {name}\")\n", " total = df.isnull().sum()\n", " percent = (total / len(df)) * 100\n", " missing_df = pd.DataFrame({'Missing Count': total, 'Missing %': percent})\n", " missing_df = missing_df[missing_df['Missing Count'] > 0].sort_values(by='Missing %', ascending=False)\n", " display(missing_df)\n", "\n", "missing_report(df_agri, \"Agri Dataset\")\n", "missing_report(df_co2, \"CO2 Dataset\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "4B6GeePMbENS", "outputId": "081d7b1e-63c0-43e0-b0cf-12990d1d21c1" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", "Missing Values Report for Agri Dataset\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ " Missing Count Missing %\n", "Crop Residues 1389 19.942570\n", "On-farm energy use 956 13.725772\n", "Manure applied to Soils 928 13.323762\n", "Manure Management 928 13.323762\n", "IPPU 743 10.667624\n", "Forestland 493 7.078248\n", "Net Forest conversion 493 7.078248\n", "Food Household Consumption 473 6.791098\n", "Fires in humid tropical forests 155 2.225413\n", "Forest fires 93 1.335248\n", "Savanna fires 31 0.445083" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Missing CountMissing %
Crop Residues138919.942570
On-farm energy use95613.725772
Manure applied to Soils92813.323762
Manure Management92813.323762
IPPU74310.667624
Forestland4937.078248
Net Forest conversion4937.078248
Food Household Consumption4736.791098
Fires in humid tropical forests1552.225413
Forest fires931.335248
Savanna fires310.445083
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "summary": "{\n \"name\": \"missing_report(df_co2, \\\"CO2 Dataset\\\")\",\n \"rows\": 11,\n \"fields\": [\n {\n \"column\": \"Missing Count\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 424,\n \"min\": 31,\n \"max\": 1389,\n \"num_unique_values\": 9,\n \"samples\": [\n 93,\n 956,\n 473\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Missing %\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 6.094966207784966,\n \"min\": 0.44508255563531945,\n \"max\": 19.942569992821248,\n \"num_unique_values\": 9,\n \"samples\": [\n 1.3352476669059583,\n 13.725771715721462,\n 6.791098348887294\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {} }, { "output_type": "stream", "name": "stdout", "text": [ "\n", "Missing Values Report for CO2 Dataset\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ " Missing Count Missing %\n", "1960 63 23.684211\n", "1961 62 23.308271\n", "1962 60 22.556391\n", "1963 59 22.180451\n", "1964 53 19.924812\n", "1965 53 19.924812\n", "1966 53 19.924812\n", "1967 53 19.924812\n", "1968 53 19.924812\n", "1969 53 19.924812\n", "1970 52 19.548872\n", "1971 51 19.172932\n", "1972 50 18.796992\n", "1973 50 18.796992\n", "1974 50 18.796992\n", "1975 50 18.796992\n", "1976 50 18.796992\n", "1977 50 18.796992\n", "1978 50 18.796992\n", "1979 50 18.796992\n", "1980 50 18.796992\n", "1981 50 18.796992\n", "1982 50 18.796992\n", "1983 50 18.796992\n", "1984 50 18.796992\n", "1985 50 18.796992\n", "1986 50 18.796992\n", "1987 50 18.796992\n", "1988 50 18.796992\n", "1989 50 18.796992\n", "1990 28 10.526316\n", "1992 28 10.526316\n", "1993 28 10.526316\n", "1994 28 10.526316\n", "1991 27 10.150376\n", "1995 27 10.150376\n", "1996 27 10.150376\n", "1997 27 10.150376\n", "1998 27 10.150376\n", "1999 27 10.150376\n", "2000 27 10.150376\n", "2001 27 10.150376\n", "2002 27 10.150376\n", "2003 27 10.150376\n", "2004 27 10.150376\n", "2005 27 10.150376\n", "2006 27 10.150376\n", "2007 27 10.150376\n", "2008 27 10.150376\n", "2009 27 10.150376\n", "2010 27 10.150376\n", "2011 27 10.150376\n", "2012 27 10.150376\n", "2013 27 10.150376\n", "2014 27 10.150376\n", "2015 27 10.150376\n", "2016 27 10.150376\n", "2017 27 10.150376\n", "2018 27 10.150376" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Missing CountMissing %
19606323.684211
19616223.308271
19626022.556391
19635922.180451
19645319.924812
19655319.924812
19665319.924812
19675319.924812
19685319.924812
19695319.924812
19705219.548872
19715119.172932
19725018.796992
19735018.796992
19745018.796992
19755018.796992
19765018.796992
19775018.796992
19785018.796992
19795018.796992
19805018.796992
19815018.796992
19825018.796992
19835018.796992
19845018.796992
19855018.796992
19865018.796992
19875018.796992
19885018.796992
19895018.796992
19902810.526316
19922810.526316
19932810.526316
19942810.526316
19912710.150376
19952710.150376
19962710.150376
19972710.150376
19982710.150376
19992710.150376
20002710.150376
20012710.150376
20022710.150376
20032710.150376
20042710.150376
20052710.150376
20062710.150376
20072710.150376
20082710.150376
20092710.150376
20102710.150376
20112710.150376
20122710.150376
20132710.150376
20142710.150376
20152710.150376
20162710.150376
20172710.150376
20182710.150376
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "summary": "{\n \"name\": \"missing_report(df_co2, \\\"CO2 Dataset\\\")\",\n \"rows\": 59,\n \"fields\": [\n {\n \"column\": \"Missing Count\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 12,\n \"min\": 27,\n \"max\": 63,\n \"num_unique_values\": 10,\n \"samples\": [\n 28,\n 62,\n 52\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Missing %\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 4.849909261138194,\n \"min\": 10.150375939849624,\n \"max\": 23.684210526315788,\n \"num_unique_values\": 10,\n \"samples\": [\n 10.526315789473683,\n 23.308270676691727,\n 19.548872180451127\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "print(\"Agri shape:\", df_agri.shape)\n", "print(\"CO2 shape:\", df_co2.shape)\n", "\n", "df_agri.describe(include='all')\n", "df_co2.describe(include='all')" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 495 }, "id": "XauQcTypbLdI", "outputId": "e9684ffe-f391-4b2b-8d50-9c1c724e5868" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Agri shape: (6965, 31)\n", "CO2 shape: (266, 60)\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ " Country Name 1960 1961 1962 1963 \\\n", "count 266 203.000000 204.000000 206.000000 207.000000 \n", "unique 266 NaN NaN NaN NaN \n", "top Zimbabwe NaN NaN NaN NaN \n", "freq 1 NaN NaN NaN NaN \n", "mean NaN 3.160220 3.292338 3.462051 3.906006 \n", "std NaN 14.821169 15.114669 16.286958 16.909771 \n", "min NaN 0.007984 0.007857 0.008435 0.009336 \n", "25% NaN 0.195031 0.185078 0.211355 0.208805 \n", "50% NaN 0.616754 0.662374 0.659399 0.706050 \n", "75% NaN 2.060142 2.420962 2.526705 2.270349 \n", "max NaN 204.631696 208.837879 226.081890 214.785217 \n", "\n", " 1964 1965 1966 1967 1968 ... \\\n", "count 213.000000 213.000000 213.000000 213.000000 213.000000 ... \n", "unique NaN NaN NaN NaN NaN ... \n", "top NaN NaN NaN NaN NaN ... \n", "freq NaN NaN NaN NaN NaN ... \n", "mean 4.007034 4.029132 3.992162 4.249468 4.363587 ... \n", "std 16.325047 15.139695 14.054838 15.943855 14.936638 ... \n", "min 0.011589 0.011851 0.013248 0.011791 -0.020098 ... \n", "25% 0.219304 0.236942 0.258556 0.265284 0.293462 ... \n", "50% 0.793962 0.794770 0.885508 1.032198 1.004645 ... \n", "75% 2.523331 2.630170 3.202366 3.913345 4.072719 ... \n", "max 207.626699 185.213644 172.158729 210.819017 194.917536 ... \n", "\n", " 2009 2010 2011 2012 2013 \\\n", "count 239.000000 239.000000 239.000000 239.000000 239.000000 \n", "unique NaN NaN NaN NaN NaN \n", "top NaN NaN NaN NaN NaN \n", "freq NaN NaN NaN NaN NaN \n", "mean 4.494702 4.329083 4.315602 4.372246 4.280935 \n", "std 5.177846 5.006608 4.912689 4.894707 4.844110 \n", "min 0.000000 0.000000 0.000000 0.035207 0.042976 \n", "25% 0.736515 0.779051 0.798791 0.805751 0.815681 \n", "50% 2.741639 2.667232 2.689378 2.869867 2.695691 \n", "75% 6.524149 6.110808 6.188510 6.315302 6.284435 \n", "max 34.544976 33.544700 32.305726 33.373132 31.927018 \n", "\n", " 2014 2015 2016 2017 2018 \n", "count 239.000000 239.000000 239.000000 239.000000 239.000000 \n", "unique NaN NaN NaN NaN NaN \n", "top NaN NaN NaN NaN NaN \n", "freq NaN NaN NaN NaN NaN \n", "mean 4.195690 4.148874 4.147100 4.154185 4.158613 \n", "std 4.732984 4.654801 4.592901 4.575980 4.547079 \n", "min 0.039617 0.037904 0.026146 0.028010 0.026169 \n", "25% 0.824377 0.806683 0.818367 0.851900 0.827804 \n", "50% 2.698682 2.696240 2.754968 2.667119 2.691814 \n", "75% 6.108660 5.920151 5.836392 6.158644 6.069018 \n", "max 32.693532 32.470570 32.128042 32.179371 32.415639 \n", "\n", "[11 rows x 60 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Country Name196019611962196319641965196619671968...2009201020112012201320142015201620172018
count266203.000000204.000000206.000000207.000000213.000000213.000000213.000000213.000000213.000000...239.000000239.000000239.000000239.000000239.000000239.000000239.000000239.000000239.000000239.000000
unique266NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
topZimbabweNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
freq1NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
meanNaN3.1602203.2923383.4620513.9060064.0070344.0291323.9921624.2494684.363587...4.4947024.3290834.3156024.3722464.2809354.1956904.1488744.1471004.1541854.158613
stdNaN14.82116915.11466916.28695816.90977116.32504715.13969514.05483815.94385514.936638...5.1778465.0066084.9126894.8947074.8441104.7329844.6548014.5929014.5759804.547079
minNaN0.0079840.0078570.0084350.0093360.0115890.0118510.0132480.011791-0.020098...0.0000000.0000000.0000000.0352070.0429760.0396170.0379040.0261460.0280100.026169
25%NaN0.1950310.1850780.2113550.2088050.2193040.2369420.2585560.2652840.293462...0.7365150.7790510.7987910.8057510.8156810.8243770.8066830.8183670.8519000.827804
50%NaN0.6167540.6623740.6593990.7060500.7939620.7947700.8855081.0321981.004645...2.7416392.6672322.6893782.8698672.6956912.6986822.6962402.7549682.6671192.691814
75%NaN2.0601422.4209622.5267052.2703492.5233312.6301703.2023663.9133454.072719...6.5241496.1108086.1885106.3153026.2844356.1086605.9201515.8363926.1586446.069018
maxNaN204.631696208.837879226.081890214.785217207.626699185.213644172.158729210.819017194.917536...34.54497633.54470032.30572633.37313231.92701832.69353232.47057032.12804232.17937132.415639
\n", "

11 rows × 60 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe" } }, "metadata": {}, "execution_count": 7 } ] }, { "cell_type": "markdown", "source": [ "### Agriculture Data" ], "metadata": { "id": "-OiCwU2JqAfG" } }, { "cell_type": "code", "source": [ "df_agri.columns" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "zXpQVb21db0P", "outputId": "17cb861d-5245-424b-8097-358f3587431d" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Index(['Area', 'Year', 'Savanna fires', 'Forest fires', 'Crop Residues',\n", " 'Rice Cultivation', 'Drained organic soils (CO2)',\n", " 'Pesticides Manufacturing', 'Food Transport', 'Forestland',\n", " 'Net Forest conversion', 'Food Household Consumption', 'Food Retail',\n", " 'On-farm Electricity Use', 'Food Packaging',\n", " 'Agrifood Systems Waste Disposal', 'Food Processing',\n", " 'Fertilizers Manufacturing', 'IPPU', 'Manure applied to Soils',\n", " 'Manure left on Pasture', 'Manure Management', 'Fires in organic soils',\n", " 'Fires in humid tropical forests', 'On-farm energy use',\n", " 'Rural population', 'Urban population', 'Total Population - Male',\n", " 'Total Population - Female', 'total_emission',\n", " 'Average Temperature °C'],\n", " dtype='object')" ] }, "metadata": {}, "execution_count": 9 } ] }, { "cell_type": "markdown", "source": [ "What we observe:\n", "\n", "- Many columns above represent 0 values here which is just no right, there can't ever be 0 rice cultivation for instance, hence we will replace those with the mean of that by the country.\n", "\n", "- However, since the fire columns can absolutely represent 0 values aka absence of the fire, hence we won't touch those." ], "metadata": { "id": "5Iwn2_GzfIRg" } }, { "cell_type": "markdown", "source": [ "**Stage 1 computation**" ], "metadata": { "id": "DAPdVxWYl6DE" } }, { "cell_type": "code", "source": [ "columns_to_clean = [\n", " 'Crop Residues', 'Rice Cultivation', 'Drained organic soils (CO2)',\n", " 'Pesticides Manufacturing', 'Food Transport', 'Forestland',\n", " 'Net Forest conversion', 'Food Household Consumption', 'Food Retail',\n", " 'On-farm Electricity Use', 'Food Packaging',\n", " 'Agrifood Systems Waste Disposal', 'Food Processing',\n", " 'Fertilizers Manufacturing', 'IPPU', 'Manure applied to Soils',\n", " 'Manure left on Pasture', 'Manure Management', 'On-farm energy use',\n", " 'Rural population', 'Urban population', 'Total Population - Male',\n", " 'Total Population - Female', 'total_emission', 'Average Temperature °C'\n", "]" ], "metadata": { "id": "Kx_bEcH6edcc" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "df_agri[columns_to_clean] = df_agri[columns_to_clean].replace(0, pd.NA)" ], "metadata": { "id": "n8FuqY8wmEIU" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Fill NaNs (former 0s) with country-level mean\n", "df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "QHmHV3TvmN3d", "outputId": "72004a0f-d587-4683-b8e4-f058e8e48a90" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n", ":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n" ] } ] }, { "cell_type": "code", "source": [ "missing = df_agri[columns_to_clean].isna().sum()\n", "print(\"Remaining missing values after replacement:\")\n", "print(missing[missing > 0])" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "eQ05zjuYmjsn", "outputId": "0f47af7e-f783-4ef1-ff0f-255f90deb967" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Remaining missing values after replacement:\n", "Crop Residues 1227\n", "Rice Cultivation 31\n", "Drained organic soils (CO2) 3822\n", "Pesticides Manufacturing 217\n", "Forestland 1732\n", "Net Forest conversion 2337\n", "Food Household Consumption 445\n", "IPPU 896\n", "Manure applied to Soils 918\n", "Manure Management 918\n", "On-farm energy use 922\n", "Rural population 248\n", "Urban population 62\n", "dtype: int64\n" ] } ] }, { "cell_type": "code", "source": [ "# Fill all remaining NaNs (again) using country-wise means\n", "df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))" ], "metadata": { "id": "YmJHIqvwmnrC" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Final check: Should show all zeroes (i.e., no missing values)\n", "missing_check = df_agri[columns_to_clean].isna().sum()\n", "print(\"Missing values after second groupby fill:\")\n", "print(missing_check[missing_check > 0])" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "bXUzLTYfnSmQ", "outputId": "ba1c627f-e1f1-48af-e5af-42c75b0bb527" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Missing values after second groupby fill:\n", "Crop Residues 1227\n", "Rice Cultivation 31\n", "Drained organic soils (CO2) 3822\n", "Pesticides Manufacturing 217\n", "Forestland 1732\n", "Net Forest conversion 2337\n", "Food Household Consumption 445\n", "IPPU 896\n", "Manure applied to Soils 918\n", "Manure Management 918\n", "On-farm energy use 922\n", "Rural population 248\n", "Urban population 62\n", "dtype: int64\n" ] } ] }, { "cell_type": "markdown", "source": [ "There are still many missing values, let us just fill with global mean" ], "metadata": { "id": "uPEQ65P5nkPe" } }, { "cell_type": "code", "source": [ "# Fill any remaining missing values with global column means\n", "df_agri[columns_to_clean] = df_agri[columns_to_clean].fillna(df_agri[columns_to_clean].mean())" ], "metadata": { "id": "ZoEAUzVInW24" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "print(\"✅ Total missing values after global mean fill:\")\n", "print(df_agri[columns_to_clean].isna().sum().sum())" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "9S2fkzoyntjl", "outputId": "a529e5ab-d7c1-4c89-9661-b0236ee8b372" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "✅ Total missing values after global mean fill:\n", "0\n" ] } ] }, { "cell_type": "markdown", "source": [ "**Stage 2: Analyzing the extremes of the data**" ], "metadata": { "id": "xa0uBENqtvOd" } }, { "cell_type": "code", "source": [ "columns_to_measure = [\n", " 'Year','Crop Residues', 'Savanna fires', 'Forest fires', 'Rice Cultivation', 'Drained organic soils (CO2)',\n", " 'Pesticides Manufacturing', 'Food Transport', 'Forestland',\n", " 'Net Forest conversion', 'Food Household Consumption', 'Food Retail',\n", " 'On-farm Electricity Use', 'Food Packaging',\n", " 'Agrifood Systems Waste Disposal', 'Food Processing',\n", " 'Fertilizers Manufacturing', 'IPPU', 'Manure applied to Soils',\n", " 'Manure left on Pasture', 'Manure Management', 'On-farm energy use',\n", " 'Rural population', 'Urban population', 'Fires in organic soils',\n", " 'Fires in humid tropical forests','Total Population - Male',\n", " 'Total Population - Female', 'total_emission', 'Average Temperature °C'\n", "]" ], "metadata": { "id": "4H04J--3nvvm" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Handle outliers using IQR method\n", "for col in columns_to_measure:\n", " Q1 = df_agri[col].quantile(0.25)\n", " Q3 = df_agri[col].quantile(0.75)\n", " IQR = Q3 - Q1\n", "\n", " lower_bound = Q1 - 1.5 * IQR\n", " upper_bound = Q3 + 1.5 * IQR\n", "\n", " median = df_agri[col].median()\n", "\n", " # Replace outliers with median\n", " df_agri[col] = df_agri[col].apply(lambda x: median if x < lower_bound or x > upper_bound else x)" ], "metadata": { "id": "iBj7-XfDuLYD" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "for col in columns_to_clean:\n", " Q1 = df_agri[col].quantile(0.25)\n", " Q3 = df_agri[col].quantile(0.75)\n", " IQR = Q3 - Q1\n", " lower = Q1 - 1.5 * IQR\n", " upper = Q3 + 1.5 * IQR\n", " outliers = df_agri[(df_agri[col] < lower) | (df_agri[col] > upper)]\n", " print(f\"{col}: {len(outliers)} outliers replaced\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "3caxMAMWuZYQ", "outputId": "16f40884-6308-4faf-e61f-a1360ccc7969" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Crop Residues: 99 outliers replaced\n", "Rice Cultivation: 533 outliers replaced\n", "Drained organic soils (CO2): 0 outliers replaced\n", "Pesticides Manufacturing: 1161 outliers replaced\n", "Food Transport: 916 outliers replaced\n", "Forestland: 0 outliers replaced\n", "Net Forest conversion: 0 outliers replaced\n", "Food Household Consumption: 1083 outliers replaced\n", "Food Retail: 933 outliers replaced\n", "On-farm Electricity Use: 1161 outliers replaced\n", "Food Packaging: 2991 outliers replaced\n", "Agrifood Systems Waste Disposal: 517 outliers replaced\n", "Food Processing: 1081 outliers replaced\n", "Fertilizers Manufacturing: 32 outliers replaced\n", "IPPU: 289 outliers replaced\n", "Manure applied to Soils: 208 outliers replaced\n", "Manure left on Pasture: 157 outliers replaced\n", "Manure Management: 222 outliers replaced\n", "On-farm energy use: 246 outliers replaced\n", "Rural population: 704 outliers replaced\n", "Urban population: 625 outliers replaced\n", "Total Population - Male: 646 outliers replaced\n", "Total Population - Female: 627 outliers replaced\n", "total_emission: 863 outliers replaced\n", "Average Temperature °C: 34 outliers replaced\n" ] } ] }, { "cell_type": "markdown", "source": [ "**Stage 3: Data Normalization**" ], "metadata": { "id": "0yUEH_9zvfnQ" } }, { "cell_type": "code", "source": [ "from sklearn.preprocessing import StandardScaler\n", "import pandas as pd\n", "\n", "# Step 1: One-hot encode 'Area'\n", "df_encoded = pd.get_dummies(df_agri, columns=['Area'], drop_first=True) # drop_first to avoid dummy trap\n", "\n", "# Step 2: Normalize only the numerical columns\n", "scaler = StandardScaler()\n", "df_encoded[columns_to_measure] = scaler.fit_transform(df_encoded[columns_to_measure])" ], "metadata": { "id": "lrfGFzbeuh2g" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "df_encoded.shape" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "8FmTa5-Uvr3w", "outputId": "c6fa62d7-f358-4c95-c228-7ba12541ca9d" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "(6965, 265)" ] }, "metadata": {}, "execution_count": 33 } ] }, { "cell_type": "code", "source": [ "df_encoded.head()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 307 }, "id": "yTkZxUxhvuIV", "outputId": "0d7859a5-ac9d-4d92-b765-b3c8873726aa" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Year Savanna fires Forest fires Crop Residues Rice Cultivation \\\n", "0 -1.700569 0.002847 -0.350999 -0.358933 0.015239 \n", "1 -1.588134 0.002847 -0.350999 -0.350862 0.004759 \n", "2 -1.475699 0.002847 -0.350999 -0.377764 0.015239 \n", "3 -1.363264 0.002847 -0.350999 -0.306615 0.015239 \n", "4 -1.250829 0.002847 -0.350999 -0.283305 0.041439 \n", "\n", " Drained organic soils (CO2) Pesticides Manufacturing Food Transport \\\n", "0 0.635421 -0.473601 -0.570823 \n", "1 0.635421 -0.474986 -0.573847 \n", "2 0.635421 -0.474986 -0.586398 \n", "3 0.635421 -0.474986 -0.584737 \n", "4 0.635421 -0.474986 -0.585332 \n", "\n", " Forestland Net Forest conversion ... Area_Uzbekistan Area_Vanuatu \\\n", "0 0.567415 0.857852 ... False False \n", "1 0.567415 0.857852 ... False False \n", "2 0.567415 0.857852 ... False False \n", "3 0.567415 0.857852 ... False False \n", "4 0.567415 0.857852 ... False False \n", "\n", " Area_Venezuela (Bolivarian Republic of) Area_Viet Nam \\\n", "0 False False \n", "1 False False \n", "2 False False \n", "3 False False \n", "4 False False \n", "\n", " Area_Wallis and Futuna Islands Area_Western Sahara Area_Yemen \\\n", "0 False False False \n", "1 False False False \n", "2 False False False \n", "3 False False False \n", "4 False False False \n", "\n", " Area_Yugoslav SFR Area_Zambia Area_Zimbabwe \n", "0 False False False \n", "1 False False False \n", "2 False False False \n", "3 False False False \n", "4 False False False \n", "\n", "[5 rows x 265 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
YearSavanna firesForest firesCrop ResiduesRice CultivationDrained organic soils (CO2)Pesticides ManufacturingFood TransportForestlandNet Forest conversion...Area_UzbekistanArea_VanuatuArea_Venezuela (Bolivarian Republic of)Area_Viet NamArea_Wallis and Futuna IslandsArea_Western SaharaArea_YemenArea_Yugoslav SFRArea_ZambiaArea_Zimbabwe
0-1.7005690.002847-0.350999-0.3589330.0152390.635421-0.473601-0.5708230.5674150.857852...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
1-1.5881340.002847-0.350999-0.3508620.0047590.635421-0.474986-0.5738470.5674150.857852...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
2-1.4756990.002847-0.350999-0.3777640.0152390.635421-0.474986-0.5863980.5674150.857852...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
3-1.3632640.002847-0.350999-0.3066150.0152390.635421-0.474986-0.5847370.5674150.857852...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
4-1.2508290.002847-0.350999-0.2833050.0414390.635421-0.474986-0.5853320.5674150.857852...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
\n", "

5 rows × 265 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "df_encoded" } }, "metadata": {}, "execution_count": 34 } ] }, { "cell_type": "markdown", "source": [ "**Stage 4: Data Analysis through feature analysis**" ], "metadata": { "id": "tXXK3McmwS-8" } }, { "cell_type": "code", "source": [ "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from sklearn.ensemble import RandomForestRegressor\n", "\n", "# === CORRELATION MATRIX ===\n", "plt.figure(figsize=(18, 14))\n", "corr_matrix = df_encoded[columns_to_measure].corr()\n", "sns.heatmap(corr_matrix, annot=False, cmap='coolwarm', center=0)\n", "plt.title(\"📈 Correlation Matrix (Pearson)\", fontsize=16)\n", "plt.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "P_Yw8vQRvzZ0", "outputId": "8da55e5a-74cb-4cd0-ecc9-077106ceb3cb" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABggAAAVUCAYAAAAFzpPjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xt8z/X///H7a+fZzHHMYcww5jxEoRzLiBIi+TgfklNCpByLlELkmDD1IZFjcl6oD3KqiczZTBlybsPs8P790W/vr3evjWG8xm7Xy+V1uez9ej1fz9f99doM78f7+XwaNpvNJgAAAAAAAAAAkKU4WR0AAAAAAAAAAAA8fBQIAAAAAAAAAADIgigQAAAAAAAAAACQBVEgAAAAAAAAAAAgC6JAAAAAAAAAAABAFkSBAAAAAAAAAACALIgCAQAAAAAAAAAAWRAFAgAAAAAAAAAAsiAKBAAAAAAAAAAAZEEUCAAAALK4Y8eO6eDBg+narl27dtf9X7hwQWPHjlWdOnXk5+cnNzc3+fj4qFy5curWrZt++OGHB3BXD59hGDIM46FdLywsTIZhqGPHjg/tmndr8+bN9udiGIZ+/fXX27YvW7asvW3Xrl0fUsr0GTlypAzD0MiRIx/aNVesWCHDMDR+/HiH/Snf+1s3Jycn5ciRQ9WqVdOYMWMUGxv70HI+bq5cuaI8efKoevXqstlsVscBAAB4oCgQAAAAZHH169dXcHBwuradO3feVd9fffWVAgIC9M477+jnn39WUFCQWrRooXr16ikxMVFffPGF6tevr1atWj2gu3s0RUVFyTAMBQQEWB0lQ82ZMyfNYz///LMOHDiQ4de04o39jBAfH6/+/fvL399fvXr1SrWNl5eXOnTooA4dOqht27YqV66c9uzZo6FDh6pKlSo6e/bsQ079eMiRI4eGDBminTt36ssvv7Q6DgAAwANFgQAAAACaO3eubDbbbTdnZ+e76nPGjBlq37694uLiNHjwYJ07d04//vijvv76ay1fvlwHDx7U77//rpdffllHjhx5QHf2+HrppZcUGRmpsWPHWh3ljooUKaJ8+fJpwYIFio+PT7VNSvHgiSeeeJjR0q13796KjIxU7969H8r1PvvsMx0/flxvv/22PDw8Um2TN29ehYWFKSwsTF999ZW2bt2q7du3y9vbW4cPH9Zbb731ULI+jnr37i1fX18NGTIkzZ9ZAACAxwEFAgAAAGS4gwcPqm/fvpKk8ePH68MPP5SPj4+pXZkyZbRo0SJNmjTpYUd85OXIkUOlS5dWgQIFrI5yR66urvrPf/6jixcvavny5abj165d08KFC1WoUCE1bNjw4QdMh7x586p06dLKmzfvA79WUlKSPvvsM3l4eKht27Z3dW61atU0YMAASdLSpUuVmJj4ICI+9jw8PPTqq68qJiZG33zzjdVxAAAAHhgKBAAAAMhwH330kRISElSxYkX169fvju2feeYZ074//vhDffr0UcmSJeXh4aEcOXKoZs2amjlzppKSkkztb52T/+LFi+rXr5+KFy8ud3d31alTR5LjdDPR0dHq0qWL/P395erqaprL/9tvv1VoaKh8fX3l5uamQoUK6T//+c9dT4Nz4MABjRgxQjVr1lShQoXk5uamPHnyqEGDBlq0aJGpfceOHVWsWDFJ0smTJ01zzad2v6nZuXOnWrVqpYIFC8rNzU358uVT06ZNtWHDhlTbd+zYUYZhKCwsTCdOnFC7du3k5+cnd3d3FS9eXEOHDr2vT1J37txZUurTDC1evFh///232rdvf9uRKkuXLlXXrl1Vrlw55cqVSx4eHipWrJg6d+6sQ4cOmdobhqFRo0ZJkkaNGuXwHG99bgEBATIMQ1FRUVqxYoXq1aun3LlzyzAMbd68WVLqUxVdvHhRRYsWlWEYmjFjhun6sbGxKl26tAzD0EcffZSexyRJWrlypaKjo9WsWTPlyJEj3eelqFKliiQpLi5O58+ft+9PmdarTp06yp07t9zd3VWsWDG9/vrrOnXqVKp93e0zlxx/lvbv36/WrVurQIECcnZ2dnh+ixcvVoMGDZQnTx65uroqT548KlOmjLp166bffvvN1O+1a9f04YcfqnLlysqePbuyZcumsmXLaujQobp06ZKp/a1TddlsNn3++eeqUqWKvLy8lCNHDj333HPavn17ms8x5Wdk6tSpabYBAAB41LlYHQAAAACPF5vNpu+++06S1L59+3tauHfXrl0KDQ3VxYsXVaRIETVr1kxXrlzR5s2btW3bNi1btkwrV66Um5ub6dzz58+ratWqunz5sp5++mlVqVLF1O7IkSMKCQmRm5ubatasKZvNZv9keGJiotq2batFixbJ3d1dVapUUaFChXT48GHNnz9fS5cu1dKlSxUaGpque5kwYYJmz56t0qVLq3z58sqZM6eio6O1adMmhYeH6+eff9aECRPs7WvVqqXY2FgtWbJEXl5eatmy5V0/v1mzZqlHjx5KTk5WSEiI6tSpo5MnT2rVqlVatWqVRo4cqREjRqR6bkREhN544w3lypVLtWvX1sWLF7V161aNGTNGv//+u5YtW3bXeaR/FiCuVq2aNm7cqFOnTsnf399+bPbs2ZKkTp06af78+Wn20apVK7m7u6tMmTL2dSz279+vuXPnatGiRVq/fr1q1Khhb9+hQwdFRERo7969qlixoipVqmQ/VqtWLVP/48eP15QpU1S1alWFhobq9OnTty1Y5M6dW4sWLdLTTz+tN998U08++aTDNbp3765Dhw7p+eef16BBg9LzmCTJPsqiQYMG6T7nVlevXrV/7e7uLkn6+++/9cILL2jz5s3y9vZWlSpV5Ovrq3379mnGjBlavHixNmzYoJCQEIe+7vaZ32rbtm3q0aOHChQooGeeeUbXr19X9uzZJUnvvfeeRowYIRcXF9WoUUOFChXSlStXFB0drdmzZ6ts2bKqUKGCva+LFy+qfv36ioiIkI+Pj+rVqydXV1dt2bJFY8aM0YIFC/TDDz+kuW5Hp06dtGDBAj399NNq0qSJIiIitGHDBv3444/asmWLqlevbjqnUqVK8vX11c6dOxUTE/NIjNYBAAC4azYAAABkaUWLFrXNnTv3ju2cnZ1tmzZtumO7Y8eO2STZJNl+/PHHu85z48YNW9GiRW2SbD169LDdvHnToe+AgACbJNs777zjcN7cuXPt161fv77typUrpr5HjBhhb/Of//zHduPGDVObd955xybJVr16ddvx48cdji1evNjm7Oxsy5Url+3SpUsOx1L6/bfNmzfbjh07Ztp/8OBBW+HChW2SbDt27HA4duLECZskW9GiRU3n/ft+O3To4LD/t99+s7m4uNgMw7B9+eWXDsdWr15tc3Nzs0myrV+/3uFYhw4d7Pfw7rvv2hITE+3H9u3bZ/Py8rJJsm3bti3NTP+2adMmmyRb8eLFbTabzTZz5kybJNt7771nb3P48GGbJNszzzxjs9n+73vUpUsXU38LFy60xcbGOuxLTk62TZ061SbJVrZsWVtycrLD8ZT+RowYkWbOlJ83Z2dn24oVK1Jtc7t+Jk6caJNkK1mypO3q1as2m81mmz59uk2SrUiRIrYLFy6kee3U+Pv72yTZfv/991SPp3zv0/r5aNmypf3aKV599VWbJFuTJk1sZ8+eTTP/rd93m+3envmtP0tvv/22LSkpyeH4jRs3bJ6enjZvb2/bwYMHTfmjoqJskZGRDvtat25t/3N5/vx5+/6///7b1qhRI5skW40aNRzOSflzlPKsDh06ZD+WmJho69y5s02S7bnnnjNlSPHCCy/YJNm++uqrNNsAAAA8yphiCAAAABnqr7/+sn+dL1++uz5/8eLFOnnypAoWLKhPP/1Urq6u9mOBgYH65JNPJP2ziOuNGzdM57u6uurzzz9Pdc2DFLlz59aUKVPsn65OcfHiRU2cOFEeHh5asmSJfaqfFC1bttRrr72mS5cu6b///W+67qd27doKDAw07S9VqpSGDRsm6Z/pjDLKpEmTlJiYqJdeeknt2rVzONaoUSN1795dkvTxxx+nen6VKlX0/vvvO3xyvly5cva+Nm7ceM/ZXnnlFWXLlk1hYWGy2WyS/m/KoZQpiG6ndevW8vLycthnGIZ69uypp556Sr///rsiIyPvOV+HDh30wgsv3PV5/fr1U/PmzXXkyBF169ZNv/76q/r16ydXV1d98803yp07d7r7On/+vE6dOiUnJyeVKlUq3eclJSXp6NGj6tevn/3nKWV6r8jISH399dcqWLCgFixYYPpz2a9fPzVu3FhHjhzRmjVrHI7dzzMPCgrS6NGj5eTk+N/Oq1ev6vr16woMDEz1HosWLarSpUvbX0dHR2vx4sUyDEOff/658uTJYz/m7e2tWbNmycPDQ9u2bdO2bdtSzfLZZ58pKCjI/trZ2VljxoyRJG3ZskUJCQmpnle2bFlJ0i+//JLqcQAAgEcdUwwBAAAgU0mZ8/2VV14xvYEvSc2bN1euXLl06dIl7dmzRzVr1nQ4HhISkuob8rdq0KBBqnO7b9q0SdevX1f9+vVVqFChVM+tU6eOpk2bpm3btql3797puqfY2FitWbNGv/76q86fP6+bN29KkmJiYiQpzbnc70XK80trbYIuXbpoypQp+umnn5SUlGSaQqdJkyapTgsVHBwsSfrzzz/vOZuPj49atGihr776Sps3b9YzzzyjL7/8UtmzZ9fLL7+crj6OHj2qtWvX6ujRo/r777/t61GcPXtW0j/PskyZMveU716mc0oxZ84cRURE6JtvvtHatWsVHx+v8ePH68knn7yrflLuI0eOHLed3kj6vzUq/s3JyUn9+vWzFwhWr14tm82mRo0a2af4+bc6depo9erV2rZtm5o0aeJw7F6febNmzVK9B19fXwUEBOi3337TgAED1KVLl9t+z3788UclJyercuXKDtMOpUhZ3HrFihXatGmTacojFxeXVKcE8/Pzs/8uuXDhgvz8/ExtUooRKfcKAADwuKFAAAAAgAzl6+tr//rcuXN39Slo6f/egP73p/dTGIahYsWK6dKlS6m+WZ3WHOTpaXP8+HFJUnh4+B3XTrh1pMTtfPfdd+rUqZMuXLiQZptb54y/X3d6fsWLF5ck3bhxQxcuXDB9mrxIkSKpnpcyIiO1URt3o3Pnzvrqq680Z84cXbt2TadPn1bXrl2VLVu2256XlJSk3r17a+bMmfbRB6m5n2eZnp+dtOTIkUNfffWVatasqStXrqhx48bq37//Xfdz5coVSbrtCJgUt65RYRiGvL29FRQUpCZNmjh8/1N+rmfPnm1f7yEtt/5c3+8zv93z/PLLL9WyZUtNmDBBEyZMUO7cuVW9enU9++yzateunX1NEOnOP9PS//1cp/Y7oUCBAg4jkW7l4+OjS5cupflznfJ9SG0RZAAAgMcBBQIAAABkqICAAOXOnVsXL17Url279PTTTz/U63t6et5zm+TkZElSiRIlTCMT/u3WKVDS8ueff6p169a6fv26Bg0apLZt2yogIEDe3t5ycnLS+vXr1bBhw9u++fqw/Xs6mIxWu3ZtFS9eXEuWLNGZM2ckpW96oUmTJmnGjBny8/PThAkTVKNGDeXPn18eHh6SpFdffVVff/31fT3L9Pzs3M5XX31l/zoyMlJXrlxJdaTK7eTMmVNS+godefPmVVhY2B3bpfxcV6pUSRUrVrxt21sX673fZ3675/n0008rKipK33//vbZs2aJt27Zp3bp1WrNmjUaMGKFly5apfv36d7y39Lifn+mUgk2uXLkyJAsAAEBmQ4EAAAAAGcrJyUlNmzbVvHnz9OWXX971p6hTpvZJ+dRzak6cOOHQNqP4+/tL+md9gPS88Xon3333na5fv66XXnpJH330ken4kSNH7vsa/1aoUCEdO3ZMx48fV7ly5UzHU56rh4fHXc2Nn1EMw1DHjh01bNgwbdy4UcHBwXrqqafueN6iRYskSTNnzkx1nYAH8SzvxsKFCzVjxgzlz59fVatW1ffff6/OnTtryZIld9VPyoiOy5cvpzoF1L1I+bmuWbOmpkyZku7zHvQz9/T0VMuWLe2jIP766y8NHTpUn3/+uTp37qyTJ09KSt/vhJRjGf07IWXkT/78+TO0XwAAgMyCRYoBAACQ4QYPHixXV1ft3btXn3766R3b//TTT/av69SpI0n65ptvUp32Y9myZbp06ZKyZ8+uKlWqZFRkSVL9+vXl5uamzZs369y5c/fd38WLFyX9s+jqv9lsNi1YsCDV89zc3CRJiYmJd33NlOeXVoEjZVHgp59+Wi4u1nxeqGPHjvL19VWePHn02muvpeuc2z3L33//XREREamedz/PMr0OHz6s7t27y8nJSfPnz9eCBQtUvHhxLV26VJMnT76rvvLmzSt/f3/ZbDYdPHgwQ/I1atRIkrRy5cq7miLqXp/5vfL19dW4ceMk/bMwccq0Ps8884ycnJwUERGhvXv3ms6LiYnR2rVrJUl169bN0Ez79++XpAz/XQMAAJBZUCAAAABAhgsODtaECRMkSf3799c777yjv//+29Tu8OHDatOmjfr27Wvf9/LLL6tIkSI6ffq0+vfv7/DG7okTJzRgwABJUp8+fexTnWSU/Pnzq0+fPoqLi1PTpk21b98+U5v4+HitXLkyXW/epizs++2339oXJJb+mdt9+PDh2rZtW6rn+fr6ys3NTWfOnLG/SZteb7zxhlxcXLR8+XL997//dTi2fv16zZw5U5I0cODAu+o3IxUuXFjnzp3T+fPn9cYbb6TrnJRnOXXqVPuUOdI/bw63b98+zQJA4cKFJf3zhvaDcOPGDb388sv6+++/NWzYMNWvX18+Pj5atGiR3N3d9dZbb2nXrl131WfKm9zbt2/PkIwhISFq0aKFTp06pebNmysqKsrUJi4uTvPnz3dYjPden/mdnDx5Ul988UWq0yh99913kv6Z0idl/v8iRYro5Zdfls1m02uvveawnkdcXJy6d++uGzduqEaNGqYFiu9XyvegXr16GdovAABAZsEUQwAAAHggevfuLS8vL/Xp00djx47VxIkTVa1aNRUqVEg3btzQwYMHFRkZKUl65ZVX7Oe5u7vr22+/VWhoqKZPn67Vq1frySef1N9//60ffvhBN27cUMOGDTVixIgHkvvDDz9UTEyMFixYYJ+zPTAwUC4uLvrjjz8UERGhuLg4rVmz5o7rEDRt2lRVqlTRnj17FBQUpNq1a8vLy0s7duzQ6dOnNXjw4FSnHnJ1ddULL7ygb7/9VpUqVVKtWrXsi/h+8cUXt71m+fLlNXXqVL3++utq166dJk6cqNKlS+vkyZPatm2bbDabRo4cqeeee+7eH5IF3nnnHa1du1azZs3Spk2bVLlyZV29elVbtmxRYGCgXnrpJS1btsx0XsOGDeXl5aXly5erVq1aKlmypJydnVWzZk116tTpvnP16dNHv/32m+rVq6fhw4fb91euXFmffPKJ+vTpo9atW+uXX36xry9wJ82aNdOXX36pDRs2qGvXrvedUZLmzp2ry5cva82aNSpVqpQqVqyoYsWKyWazKSoqSnv37tXNmzcVGRlpn07nXp/5nVy6dEndunVTz549ValSJfviw0eOHNGvv/4qwzD08ccfO0yvNHXqVB08eFA7duxQ8eLFVbduXbm4uGjLli3666+/VKxYMc2fPz9DnlWKX3/9VRcuXFC1atVUoECBDO0bAAAgs2AEAQAAAB6YTp06KSoqSqNHj9YTTzyhyMhILV68WBs2bJCzs7O6d++uLVu26Ouvv3Y474knnlBERIR69eolZ2dnLVu2TD/99JNCQkI0ffp0rVq1yj51TEZzcXHR/PnztXr1ajVr1kznzp3TypUrtW7dOl28eFFNmzbVggUL9Mwzz6Srr82bN+udd95RoUKFFB4ers2bNyskJETbt29XaGhomufOnDlTr732mgzD0LfffqvZs2dr9uzZ6bqH7t27a9u2bWrZsqVOnz6tRYsW6eDBg2rcuLHWr1//wIorD1L16tW1e/duvfDCC4qLi9PKlSt17Ngx9enTR9u3b7d/2vzf8ufPrzVr1qhBgwY6cOCAvvzyS82ePVtbtmy570zz58/XF198ofz582v+/PmmxXB79+6tli1b6sSJE+laiDnFCy+8oCJFimjlypX2aXbuV/bs2bV+/XotWLBADRo0UHR0tJYtW6YffvhB169fV9u2bbVs2TIVL17cfs69PvM7KV68uD799FM1adJEly9f1urVq/X9998rLi5O7du3165du9SlSxeHc/LkyaNt27Zp7NixKlasmNavX69Vq1Ypb968euedd7Rnzx4FBATczyMySZmmq1evXhnaLwAAQGZi2Gw2m9UhAAAAYJ2AgACNHDlSHTt2vG07FxcXbdy40T7HPYAH55NPPtFbb72lyZMnq0+fPlbHyXJu3Lghf39/ubq66sSJE3J3d7c6EgAAwAPBCAIAAAAAyGT69OmjwMBAjRs37q4WFkbG+Oyzz3T+/HmNHTuW4gAAAHissQYBAAAAFBMTk65FdwE8HO7u7powYYKaNWumKVOmWLqodFZz5coVffjhh6pWrZrat29vdRwAAIAHiimGAAAAsriAgACdPHkyXW03bdrEFEMAAAAA8JhgiiEAAIAsLioqSjabLV0bxQEAAAAASJ8ff/xRTZs2VcGCBWUYhpYvX37HczZv3qzKlSvL3d1dJUqUUFhY2APNSIEAAAAAAAAAAIAMFhcXp4oVK2rq1Knpan/ixAk9//zzqlu3riIiItSvXz917dpV69ate2AZmWIIAAAAAAAAAIAHyDAMLVu2TM2aNUuzzeDBg/X9999r//799n2vvPKKLl++rLVr1z6QXIwgAAAAAAAAAADgDuLj43X16lWHLT4+PsP63759uxo0aOCwr2HDhtq+fXuGXePfXB5YzwAyne9dS1kdwaT0oTVWRzBxsiVbHcHkhjytjpAqNyPj/hJ8nLknXrM6wiMh3iWb1REeGZnx95R3/EWrI5hc9chrdQQT5+REqyOkymZkvs8NGZnw59zJlmR1BJPMmCnRyc3qCKlKNpytjmBiKPMN6E+Uq9URTFyUYHUEE5fkm1ZHSJV/yTJWRzA5euyE1RFMPJLirI5gkhn/Lk5wcrc6QqryrZ1pdQQT717jrI6QKWXG96Hu165322jUqFEO+0aMGKGRI0dmSP9nzpxR/vz5Hfblz59fV69e1fXr1+XpmfHvD1EgAAAAAAAAAADgDoYMGaL+/fs77HN3z5zFtPSiQAAAAAAAAAAAwB24u7s/0IKAn5+fzp4967Dv7Nmz8vHxeSCjByTWIAAAAAAAAAAAwHJPPfWUwsPDHfZt2LBBTz311AO7JgUCAAAAAAAAAAAyWGxsrCIiIhQRESFJOnHihCIiIhQdHS3pnymL2rdvb2/fo0cPHT9+XIMGDdLBgwc1bdo0LVq0SG+++eYDy0iBAAAAAAAAAACADLZ7926FhIQoJCREktS/f3+FhIRo+PDhkqSYmBh7sUCSihUrpu+//14bNmxQxYoVNX78eH3xxRdq2LDhA8vIGgQAAAAAAAAAAGSwOnXqyGazpXk8LCws1XN+/fXXB5jKESMIAAAAAAAAAADIgigQAAAAAAAAAACQBTHFEAAAAAAAAAAgQxmuhtURkA6MIAAAAAAAAAAAIAuiQAAAAAAAAAAAQBZEgQDIYDabTQ0aNFDDhg1Nx6ZNm6acOXPqjz/+sCAZAAAAAAAAAPwfCgRABjMMQ3PnztWOHTs0c+ZM+/4TJ05o0KBB+uyzz1S4cOEMvWZCQkKG9gcAAAAAAADg8UeBAHgA/P39NWnSJA0cOFAnTpyQzWZTly5d9NxzzykkJESNGjWSt7e38ufPr3bt2un8+fP2c9euXatatWopZ86cypMnj5o0aaJjx47Zj0dFRckwDH3zzTeqXbu2PDw8NH/+fCtuEwAAAAAAAMAjjAIB8IB06NBB9evXV+fOnTVlyhTt379fM2fOVL169RQSEqLdu3dr7dq1Onv2rFq1amU/Ly4uTv3799fu3bsVHh4uJycnvfTSS0pOTnbo/+2339Ybb7yhyMjIVKczAgAAAAAAAIDbcbE6APA4+/zzz1W2bFn9+OOPWrJkiWbOnKmQkBB98MEH9jZz5syRv7+/Dh8+rKCgILVo0cKhjzlz5sjX11cHDhxQuXLl7Pv79eun5s2bP7R7AQAAAAAAAPB4oUAAPED58uXTa6+9puXLl6tZs2aaP3++Nm3aJG9vb1PbY8eOKSgoSEeOHNHw4cO1Y8cOnT9/3j5yIDo62qFAULVq1dteOz4+XvHx8Q77EmzJcjUYOAQAAAAAAIAHy8nFsDoC0oECAfCAubi4yMXlnz9qsbGxatq0qT766CNTuwIFCkiSmjZtqqJFi2rWrFkqWLCgkpOTVa5cOd28edOhvZeX122vO3bsWI0aNcphXxsjt9o6572f2wEAAAAAAADwmKBAADxElStX1pIlSxQQEGAvGtzqwoULOnTokGbNmqWnn35akvS///3vnq41ZMgQ9e/f32HfD7mr3FNfAAAAAAAAAB4/zDUCPES9evXSxYsX1aZNG+3atUvHjh3TunXr1KlTJyUlJSlXrlzKkyePPv/8cx09elQ//PCD6U3+9HJ3d5ePj4/DxvRCAAAAAAAAAFIwggB4iAoWLKitW7dq8ODBeu655xQfH6+iRYsqNDRUTk5OMgxDCxcuVN++fVWuXDmVKlVKkydPVp06dayODgAAAAAAAKSb4coHVR8Fhs1ms1kdAsDD8b1rKasjmJQ+tMbqCCZOtmSrI5jckKfVEVLlZsTfuRHknnjN6giPhHiXbFZHeGRkxt9T3vEXrY5gctUj862745ycaHWEVNky4ShDIxP+nDvZkqyOYJIZMyU6uVkdIVXJhrPVEUwMZb7/jifK1eoIJi5KsDqCiUvyzTs3soB/yTJWRzA5euyE1RFMPJLirI5gkhn/Lk5wcrc6QqryrZ1pdQQT717jrI6QKa3LU9bqCBmu4YXfrY6Q4TLfbx8AAAAAAAAAAPDAUSAAAAAAAAAAACALokAAAAAAAAAAAEAWRIEAAAAAAAAAAIAsiAIBAAAAAAAAAABZEAUCAAAAAAAAAACyIAoEAAAAAAAAAABkQS5WBwAAAAAAAAAAPF6cXAyrIyAdGEEAAAAAAAAAAEAWRIEAAAAAAAAAAIAsiAIBAAAAAAAAAABZEGsQAAAAAAAAAAAylOHKGgSPAkYQAAAAAAAAAACQBTGCAMhCSh9aY3UEk4OlGlkdwaRo5BarI5g4KdnqCKkqFLnO6ggm8QVLWh3B5Fq2vFZHMIl3yWZ1BJPLiTmtjpCqIolHrY5g4pScaHUEk6ue+ayOYOKZEGt1BJObzh5WR0hVgtysjmDid/WQ1RFMbrp5Wx3BxPv0QasjmF04Z3WCVCUXDrQ6gtnxSKsTmMQ9EWp1BBPX+Mz3+zwz/vsus7qW7GV1BBMn58z3/ytDNqsjmLgk37Q6QqpiQntZHcEk8/0vFEg/RhAAAAAAAAAAAJAFUSAAAAAAAAAAACALokAAAAAAAAAAAEAWRIEAAAAAAAAAAIAsiAIBAAAAAAAAAABZkIvVAQAAAAAAAAAAjxcnF8PqCEgHRhAAAAAAAAAAAJAFUSAAAAAAAAAAACALokAAAAAAAAAAAEAWxBoEAAAAAAAAAIAMZbiyBsGjgBEEwF2KioqSYRiKiIhIs83mzZtlGIYuX7780HIBAAAAAAAAwN2gQID7dubMGfXp00eBgYFyd3eXv7+/mjZtqvDwcEvydOzYUYZhyDAMubq6qlixYho0aJBu3LiRIf37+/srJiZG5cqVy5D+AAAAAAAAAMAKTDGE+xIVFaWaNWsqZ86c+vjjj1W+fHklJCRo3bp16tWrlw4ePJjqeQkJCXJ1dX1guUJDQzV37lwlJCRoz5496tChgwzD0EcffXTffTs7O8vPzy8DUgIAAAAAAACAdRhBgPvSs2dPGYahnTt3qkWLFgoKClLZsmXVv39//fzzz/Z2hmFo+vTpeuGFF+Tl5aUxY8ZIkqZPn67ixYvLzc1NpUqV0ldffeXQf8p5jRo1kqenpwIDA/Xtt9/eMZe7u7v8/Pzk7++vZs2aqUGDBtqwYYP9eHJyssaOHatixYrJ09NTFStWdOj30qVLatu2rXx9feXp6amSJUtq7ty5klKfYmj16tUKCgqSp6en6tatq6ioKIc8I0eOVKVKlRz2ffrppwoICHDY98UXXyg4OFgeHh4qXbq0pk2bZj928+ZN9e7dWwUKFJCHh4eKFi2qsWPH3vFZAAAAAAAAAEBqGEGAe3bx4kWtXbtWY8aMkZeXl+l4zpw5HV6PHDlSH374oT799FO5uLho2bJleuONN/Tpp5+qQYMGWrVqlTp16qTChQurbt269vOGDRumDz/8UJMmTdJXX32lV155Rfv27VNwcHC6cu7fv1/btm1T0aJF7fvGjh2r//73v5oxY4ZKliypH3/8Uf/5z3/k6+ur2rVra9iwYTpw4IDWrFmjvHnz6ujRo7p+/Xqq/Z86dUrNmzdXr1691L17d+3evVsDBgxIV7ZbzZ8/X8OHD9eUKVMUEhKiX3/9Vd26dZOXl5c6dOigyZMna+XKlVq0aJGKFCmiU6dO6dSpU3d9HQAAAAAAAACQKBDgPhw9elQ2m02lS5dOV/tXX31VnTp1sr9u06aNOnbsqJ49e0qSfdTBJ5984lAgePnll9W1a1dJ0vvvv68NGzbos88+c/h0/b+tWrVK3t7eSkxMVHx8vJycnDRlyhRJUnx8vD744ANt3LhRTz31lCQpMDBQ//vf/zRz5kzVrl1b0dHRCgkJUdWqVSXJ9En/W6WMghg/frwkqVSpUtq3b99dT2c0YsQIjR8/Xs2bN5ckFStWTAcOHNDMmTPVoUMHRUdHq2TJkqpVq5YMw3AoeAAAAAAAAADA3aJAgHtms9nuqn3Km+0pIiMj1b17d4d9NWvW1KRJkxz2pbyJf+vrW6f3SU3dunU1ffp0xcXFaeLEiXJxcVGLFi0k/VPYuHbtmp599lmHc27evKmQkBBJ0uuvv64WLVrol19+0XPPPadmzZqpRo0aqV4rMjJS1atXv23mO4mLi9OxY8fUpUsXdevWzb4/MTFROXLkkPTP4svPPvusSpUqpdDQUDVp0kTPPfdcmn3Gx8crPj7etM/d3f2usgEAAAAAAAB4PFEgwD0rWbKkDMNIcyHif0ttGqIHxcvLSyVKlJAkzZkzRxUrVtTs2bPVpUsXxcbGSpK+//57FSpUyOG8lDfPGzVqpJMnT2r16tXasGGD6tevr169eumTTz65pzxOTk6mgkpCQoL965RMs2bNMhUbnJ2dJUmVK1fWiRMntGbNGm3cuFGtWrVSgwYN0lyTYezYsRo1apTDvj59++qNN964p3sAAAAAAAAA8HhhkWLcs9y5c6thw4aaOnWq4uLiTMcvX7582/ODg4O1detWh31bt25VmTJlHPbduthxyuv0rj8g/fPm/DvvvKOhQ4fq+vXrKlOmjNzd3RUdHa0SJUo4bP7+/vbzfH191aFDB/33v//Vp59+qs8//zzN+9i5c+dtM/v6+urMmTMORYJbR0Hkz59fBQsW1PHjx02ZihUrZm/n4+Oj1q1ba9asWfrmm2+0ZMkSXbx4MdVcQ4YM0ZUrVxy2Hj16pPu5AQAAAAAAAPfKycV47LbHESMIcF+mTp2qmjVrqlq1anrvvfdUoUIFJSYmasOGDZo+fboiIyPTPPett95Sq1atFBISogYNGui7777T0qVLtXHjRod2ixcvVtWqVVWrVi3Nnz9fO3fu1OzZs+8q58svv6y33npLU6dO1cCBAzVw4EC9+eabSk5OVq1atXTlyhVt3bpVPj4+6tChg4YPH64qVaqobNmyio+P16pVq9IsSvTo0UPjx4/XW2+9pa5du2rPnj0KCwtzaFOnTh399ddfGjdunFq2bKm1a9dqzZo18vHxsbcZNWqU+vbtqxw5cig0NFTx8fHavXu3Ll26pP79+2vChAkqUKCAQkJC5OTkpMWLF8vPz8+0GHQKd3d303RC7ufP39VzAwAAAAAAAPD4YgQB7ktgYKB++eUX1a1bVwMGDFC5cuX07LPPKjw8XNOnT7/tuc2aNdOkSZP0ySefqGzZspo5c6bmzp2rOnXqOLQbNWqUFi5cqAoVKujLL7/U119/bRplcCcuLi7q3bu3xo0bp7i4OL3//vsaNmyYxo4dq+DgYIWGhur777+3f1rfzc1NQ4YMUYUKFfTMM8/I2dlZCxcuTLXvIkWKaMmSJVq+fLkqVqyoGTNm6IMPPnBoExwcrGnTpmnq1KmqWLGidu7cqYEDBzq06dq1q7744gvNnTtX5cuXV+3atRUWFmbPlD17do0bN05Vq1bVE088oaioKK1evVpOTvwxBgAAAAAAAHD3DNvdrjQLPESGYWjZsmVq1qyZ1VEeC8eOH7c6gsnBUo2sjmBSNHKL1RFMnJRsdYRUBR5cYXUEk/iCJa2OYHItW16rI5jEu2SzOoLJheTM95wkqUjiUasjmDglJ1odweSqZz6rI5i4J16zOoLJTWcPqyOk6qaR+XL5XTlkdQSTm27eVkcw8T6dvvXAHqoL56xOkKrkwoFWRzA7nvaIa6vEPRFqdQQT1/hYqyOYZMZ/30lSwVIVrI5g8tuRzPc7wdvpb6sjmBjKfG/POScn3LmRBeKdMt//ZUoWL2p1hExpS3AlqyNkuNqREVZHyHBMMQQAAAAAAAAAyFCG8+M5Z//jhrlJAAAAAAAAAADIghhBgEyNGbAAAAAAAAAA4MFgBAEAAAAAAAAAAFkQBQIAAAAAAAAAALIgCgQAAAAAAAAAAGRBFAgAAAAAAAAAAMiCKBAAAAAAAAAAAJAFUSAAAAAAAAAAACALcrE6AAAAAAAAAADg8eLkbFgdAenACAIAAAAAAAAAALIgCgQAAAAAAAAAAGRBFAgAAAAAAAAAAMiCWIMAyEKcbMlWRzApGrnF6ggmJ4NrWx3B5OmfJ1sdIVWHS7WwOsIjIacuWB3BJNFwtTqCSU6Xy1ZHSNUfRqDVEUyyOV23OoKJsxKtjmByxSWP1RFMXDLhc5Ikn4TM93sqJkdpqyOYJNoy33+fYgIz4e+oEnFWR0iVc3Lm+/N3o+BTVkcwcTVuWh3BxNPZw+oIJolOme/fUpmVj3HZ6ggm7gnXrI5gkuzkbHUEkyQj8/29J0mutnirIyCdDCfWIHgUMIIAAAAAAAAAAIAsiAIBAAAAAAAAAABZEAUCAAAAAAAAAACyIAoEAAAAAAAAAABkQRQIAAAAAAAAAADIgigQAAAAAAAAAACQBVEgAAAAAAAAAAAgC3KxOgAAAAAAAAAA4PFiOPPZ9EcB3yUAAAAAAAAAALIgCgQAAAAAAAAAAGRBFAiADHbmzBk9++yz8vLyUs6cOSVJhmFo+fLlluYCAAAAAAAAgFtRIECG+uuvv/T666+rSJEicnd3l5+fnxo2bKitW7daHe2hmThxomJiYhQREaHDhw9LkmJiYtSoUSOLkwEAAAAAAADA/2GRYmSoFi1a6ObNm5o3b54CAwN19uxZhYeH68KFC1ZHe2iOHTumKlWqqGTJkvZ9fn5+tz0nISFBrq6uDzoaAAAAAAAAANgxggAZ5vLly/rpp5/00UcfqW7duipatKiqVaumIUOG6IUXXrC3mzBhgsqXLy8vLy/5+/urZ8+eio2NlSRdvXpVnp6eWrNmjUPfy5YtU/bs2XXt2jVJ0uDBgxUUFKRs2bIpMDBQw4YNU0JCgr39yJEjValSJX311VcKCAhQjhw59Morr+jvv/+2t6lTp4769u2rQYMGKXfu3PLz89PIkSMdrnu7rKkJCAjQkiVL9OWXX8owDHXs2FGS4xRDUVFRMgxD33zzjWrXri0PDw/Nnz9fkvTFF18oODhYHh4eKl26tKZNm2bv++bNm+rdu7cKFCggDw8PFS1aVGPHjk3ndwcAAAAAAAAAHFEgQIbx9vaWt7e3li9frvj4+DTbOTk5afLkyfr99981b948/fDDDxo0aJAkycfHR02aNNGCBQsczpk/f76aNWumbNmySZKyZ8+usLAwHThwQJMmTdKsWbM0ceJEh3OOHTum5cuXa9WqVVq1apW2bNmiDz/80KHNvHnz5OXlpR07dmjcuHF67733tGHDhnRlTc2uXbsUGhqqVq1aKSYmRpMmTUqz7dtvv6033nhDkZGRatiwoebPn6/hw4drzJgxioyM1AcffKBhw4Zp3rx5kqTJkydr5cqVWrRokQ4dOqT58+crICAgzf4BAAAAAAAA4HaYYggZxsXFRWFhYerWrZtmzJihypUrq3bt2nrllVdUoUIFe7t+/frZvw4ICNDo0aPVo0cP+6fl27Ztq3bt2unatWvKli2brl69qu+//17Lli2znzd06FCHPgYOHKiFCxc6vHmfnJyssLAwZc+eXZLUrl07hYeHa8yYMfY2FSpU0IgRIyRJJUuW1JQpUxQeHq5nn302XVn/zdfXV+7u7vL09LzjtEL9+vVT8+bN7a9HjBih8ePH2/cVK1ZMBw4c0MyZM9WhQwdFR0erZMmSqlWrlgzDUNGiRW/bPwAAAAAAAADcDiMIkKFatGih06dPa+XKlQoNDdXmzZtVuXJlhYWF2dts3LhR9evXV6FChZQ9e3a1a9dOFy5csE8f1LhxY7m6umrlypWSpCVLlsjHx0cNGjSw9/HNN9+oZs2a8vPzk7e3t4YOHaro6GiHLAEBAfbigCQVKFBA586dc2hza+EitTZ3yno/qlatav86Li5Ox44dU5cuXewjMby9vTV69GgdO3ZMktSxY0dFRESoVKlS6tu3r9avX3/b/uPj43X16lWH7XYjOwAAAAAAAICM4uRsPHbb44gCATKch4eHnn32WQ0bNkzbtm1Tx44d7Z/Sj4qKUpMmTVShQgUtWbJEe/bs0dSpUyX9M8e+JLm5ually5b2aYYWLFig1q1by8XlnwEv27dvV9u2bdW4cWOtWrVKv/76q9599137+Sn+veivYRhKTk5Od5v0ZL0fXl5e9q9T1jWYNWuWIiIi7Nv+/fv1888/S5IqV66sEydO6P3339f169fVqlUrtWzZMs3+x44dqxw5cjhs02fMvO/cAAAAAAAAAB4PTDGEB65MmTL2BXr37Nmj5ORkjR8/Xk5O/9SnFi1aZDqnbdu2evbZZ/X777/rhx9+0OjRo+3Htm3bpqJFi+rdd9+17zt58mSG505v1oyQP39+FSxYUMePH1fbtm3TbOfj46PWrVurdevWatmypUJDQ3Xx4kXlzp3b1HbIkCHq37+/w77Tf5zK8OwAAAAAAAAAHk0UCJBhLly4oJdfflmdO3dWhQoVlD17du3evVvjxo3Tiy++KEkqUaKEEhIS9Nlnn6lp06baunWrZsyYYerrmWeekZ+fn9q2batixYqpevXq9mMlS5ZUdHS0Fi5cqCeeeMK0PkFGSW/WjDJq1Cj17dtXOXLkUGhoqOLj47V7925dunRJ/fv314QJE1SgQAGFhITIyclJixcvlp+fn3LmzJlqf+7u7nJ3d3fYd+FfrwEAAAAAAABkXUwxhAzj7e2t6tWra+LEiXrmmWdUrlw5DRs2TN26ddOUKVMkSRUrVtSECRP00UcfqVy5cpo/f77Gjh1r6sswDLVp00Z79+41faL+hRde0JtvvqnevXurUqVK2rZtm4YNG5bh95PerBmla9eu+uKLLzR37lyVL19etWvXVlhYmIoVKyZJyp49u8aNG6eqVavqiSeeUFRUlFavXm0f3QAAAAAAAABkFoaT8dhtjyPDZrPZrA4B4OE4ceyo1RFM4mzeVkcwORlc2+oIJk//PNnqCKmK8gmxOsIjIacuWB3B5KaTh9URTAwjc/6T5GqSj9URTLI5Xbc6gomzEq2OYJIgN6sjmLhkwuckSdkTLlodweSKa16rI5gk2jLfAOzkTPiZr2xOcVZHSJVzcub783fDyGZ1BBNX4/7XW8tongmxVkcwSXRyvXMjCxQpGWx1BJOoo4etjmDinnjN6ggmyU7OVkcwSTIy3997kpRsZL5nFVAiyOoImdKOp6rfudEjpvr2HVZHyHCZ71+TAAAAAAAAAADggaNAAAAAAAAAAABAFkSBAAAAAAAAAACALIgCAQAAAAAAAAAAWRAFAgAAAAAAAAAAsiAKBAAAAAAAAAAAZEEuVgcAAAAAAAAAADxenJwNqyMgHRhBAAAAAAAAAABAFkSBAAAAAAAAAACALIgCAQAAAAAAAAAAWRBrEAAAAAAAAAAAMpTBGgSPBEYQAAAAAAAAAACQBVEgAAAAAAAAAAAgC2KKISALuSFPqyOYOCnZ6ggmT/882eoIJj892dfqCKkKOrje6ggmlxJyWh3BxMkpyeoIJp5JsVZHMEl0crM6wiPDVTetjmBiyGZ1BBMn3bA6gklmfE6S5HYz8/1O8HDJZnUEk2uGt9URTDLjv6WcbJkvkyR5JMZZHcHkpquH1RFMMuNzcknKfH/vuSZlvr9jMiu3TPisPG9ctjqCSbKTs9URTJJc3K2OkKpL7n5WRwAeK4wgAAAAAAAAAAAgC6JAAAAAAAAAAABAFkSBAAAAAAAAAACALIgCAQAAAAAAAAAAWRAFAgAAAAAAAAAAsiAXqwMAAAAAAAAAAB4vhhOfTX8U8F0CAAAAAAAAACALokAAAAAAAAAAAEAWRIEAAAAAAAAAAIAsiDUIAAAAAAAAAAAZynAyrI6AdGAEAZDBbDabunfvrty5c8swDEVERKhOnTrq16+f1dEAAAAAAAAAwI4RBMiUOnbsqHnz5pn2HzlyRCVKlLAg0T+ZLl++rOXLl9+23dq1axUWFqbNmzcrMDBQefPm1dKlS+Xq6vpwggIAAAAAAABAOlAgQKYVGhqquXPnOuzz9fW9p75u3rwpNze3jIh1R8eOHVOBAgVUo0YN+77cuXPf9pyHmQ8AAAAAAAAAJKYYQibm7u4uPz8/h83Z2VmStGXLFlWrVk3u7u4qUKCA3n77bSUmJtrPrVOnjnr37q1+/fopb968atiwoSRp//79atSokby9vZU/f361a9dO58+ft5/37bffqnz58vL09FSePHnUoEEDxcXFaeTIkZo3b55WrFghwzBkGIY2b95sytyxY0f16dNH0dHRMgxDAQEB9jy3TjEUEBCg999/X+3bt5ePj4+6d+8uSfrf//6np59+Wp6envL391ffvn0VFxdnP2/atGkqWbKkPDw8lD9/frVs2TKjHjcAAAAAAACALIYCAR45f/75pxo3bqwnnnhCe/fu1fTp0zV79myNHj3aod28efPk5uamrVu3asaMGbp8+bLq1aunkJAQ7d69W2vXrtXZs2fVqlUrSVJMTIzatGmjzp07KzIyUps3b1bz5s1ls9k0cOBAtWrVSqGhoYqJiVFMTIzDCIEUkyZN0nvvvafChQsrJiZGu3btSvM+PvnkE1WsWFG//vqrhg0bpmPHjik0NFQtWrTQb7/9pm+++Ub/+9//1Lt3b0nS7t271bdvX7333ns6dOiQ1q5dq2eeeSYDnywAAAAAAACArIQphpBprVq1St7e3vbXjRo10uLFizVt2jT5+/trypQpMgxDpUuX1unTpzV48GANHz5cTk7/1L1KliypcePG2c8fPXq0QkJC9MEHH9j3zZkzR/7+/jp8+LBiY2OVmJio5s2bq2jRopKk8uXL29t6enoqPj5efn5+aWbOkSOHsmfPLmdn59u2k6R69eppwIAB9tddu3ZV27Zt7SMNSpYsqcmTJ6t27dqaPn26oqOj5eXlpSZNmih79uwqWrSoQkJC0vEkAQAAAAAAAMCMAgEyrbp162r69On2115eXpKkyMhIPfXUUzIMw36sZs2aio2N1R9//KEiRYpIkqpUqeLQ3969e7Vp0yaHokOKY8eO6bnnnlP9+vVVvnx5NWzYUM8995xatmypXLlyPYjbU9WqVU35fvvtN82fP9++z2azKTk5WSdOnNCzzz6rokWLKjAwUKGhoQoNDdVLL72kbNmypdp/fHy84uPjHfbdjI+Xm7t7xt8MAAAAAAAAgEcOUwwh0/Ly8lKJEiXsW4ECBe76/FvFxsaqadOmioiIcNiOHDmiZ555Rs7OztqwYYPWrFmjMmXK6LPPPlOpUqV04sSJjLyt2+Z77bXXHLLt3btXR44cUfHixZU9e3b98ssv+vrrr1WgQAENHz5cFStW1OXLl1Ptf+zYscqRI4fD9vmMKQ/kXgAAAAAAAIBbOTkbj932OGIEAR45wcHBWrJkiWw2m30UwdatW5U9e3YVLlw4zfMqV66sJUuWKCAgQC4uqf/oG4ahmjVrqmbNmho+fLiKFi2qZcuWqX///nJzc1NSUtIDuaeUfAcOHFCJEiXSbOPi4qIGDRqoQYMGGjFihHLmzKkffvhBzZs3N7UdMmSI+vfv77DvxB/nTe0AAAAAAAAAZE2MIMAjp2fPnjp16pT69OmjgwcPasWKFRoxYoT69+9vX38gNb169dLFixfVpk0b7dq1S8eOHdO6devUqVMnJSUlaceOHfrggw+0e/duRUdHa+nSpfrrr78UHBwsSQoICNBvv/2mQ4cO6fz580pISMjQ+xo8eLC2bdum3r1720c2rFixwr5I8apVqzR58mRFRETo5MmT+vLLL5WcnKxSpUql2p+7u7t8fHwcNqYXAgAAAAAAAJCCAgEeOYUKFdLq1au1c+dOVaxYUT169FCXLl00dOjQ255XsGBBbd26VUlJSXruuedUvnx59evXTzlz5pSTk5N8fHz0448/qnHjxgoKCtLQoUM1fvx4NWrUSJLUrVs3lSpVSlWrVpWvr6+2bt2aofdVoUIFbdmyRYcPH9bTTz+tkJAQDR8+XAULFpQk5cyZU0uXLlW9evUUHBysGTNm6Ouvv1bZsmUzNAcAAAAAAACArMGw2Ww2q0MAeDgij/1pdQQTmy3zzd9W+Mo+qyOY/PRkX6sjpCro4HqrI5hcSshpdQSTgk6nrI5gYijz/fWf6ORmdYRUXbTlsTqCSQ6nK1ZHMMmMP1M2Zb6/YzLjc5KkHHExVkcw+TtbPqsjmFwzvK2O8Ejw0HWrI6TKM+FvqyOYXHXNfH/HeCVlvr9jXBPjrY5gYijZ6gip8i1TzeoIJqcP/WZ1BJNs1y9aHcEk2cnZ6ggmSS6ZcxaCS+5+VkcwCSpexOoImVLEc09bHSHDVVr/k9URMhxrEAAAAAAAAAAAMpThlPk+sAMzphgCAAAAAAAAACALokAAAAAAAAAAAEAWRIEAAAAAAAAAAIAsiAIBAAAAAAAAAABZEAUCAAAAAAAAAACyIAoEAAAAAAAAAABkQRQIAAAAAAAAAADIglysDgAAAAAAAAAAeLwYTnw2/VHAdwkAAAAAAAAAgCyIAgEAAAAAAAAAAFkQBQIAAAAAAAAAALIg1iAAAAAAAAAAAGQow8mwOgLSgQIBkIW4GfFWRzApFLnO6ggmh0u1sDqCSdDB9VZHSNXh0s9ZHcGk4u9LrI5gEu+SzeoIj4SrST5WR0hV4ZvHrI5gYtiSrY5gciVbfqsjmHgkxlkdwSTeOXP+PojzzGN1BJNcV6KsjmDi5pX5fs5znt5ndQQTI/aq1RFSdbNwkNURTHJcOWB1BJOoInWsjmBSKDbzPacr2QtZHeGRcdE5n9URTJw8kqyOYJIZ/333t1tuqyOkytlItDoC8FhhiiEAAAAAAAAAALIgCgQAAAAAAAAAAGRBFAgAAAAAAAAAAMiCKBAAAAAAAAAAAJAFUSAAAAAAAAAAACALokAAAAAAAAAAAEAWRIEAAAAAAAAAAIAsyMXqAAAAAAAAAACAx4uTs2F1BKQDIwgAAAAAAAAAAMiCKBAAAAAAAAAAAJAFUSDAPYuKipJhGIqIiLA6yh1t3rxZhmHo8uXLt20XEBCgTz/99IHn6dixo5o1a/bArwMAAAAAAAAAaaFAgFR17NhRhmHIMAy5urqqWLFiGjRokG7cuGFv4+/vr5iYGJUrV+6BZjlz5oz69OmjwMBAubu7y9/fX02bNlV4ePg99xkWFqacOXOa9u/atUvdu3e/j7SO0iqiTJo0SWFhYRl2HQAAAAAAAAC4WyxSjDSFhoZq7ty5SkhI0J49e9ShQwcZhqGPPvpIkuTs7Cw/P78HmiEqKko1a9ZUzpw59fHHH6t8+fJKSEjQunXr1KtXLx08eDBDr+fr65uh/aUlR44cD+U6AAAAAAAAAJAWRhAgTe7u7vLz85O/v7+aNWumBg0aaMOGDfbjqX06/vfff1eTJk3k4+Oj7Nmz6+mnn9axY8fsx7/44gsFBwfLw8NDpUuX1rRp026boWfPnjIMQzt37lSLFi0UFBSksmXLqn///vr555/TzHH58mUZhqHNmzeb+ty8ebM6deqkK1eu2EdJjBw5UpLjFEOvvvqqWrdu7XBuQkKC8ubNqy+//FKStHbtWtWqVUs5c+ZUnjx51KRJE4f7LVasmCQpJCREhmGoTp06ksxTDMXHx6tv377Kly+fPDw8VKtWLe3atcshs2EYCg8PV9WqVZUtWzbVqFFDhw4duu3zAwAAAAAAAIC0UCBAuuzfv1/btm2Tm5tbmm3+/PNPPfPMM3J3d9cPP/ygPXv2qHPnzkpMTJQkzZ8/X8OHD9eYMWMUGRmpDz74QMOGDdO8efNS7e/ixYtau3atevXqJS8vL9Px1KYISo8aNWro008/lY+Pj2JiYhQTE6OBAwea2rVt21bfffedYmNj7fvWrVuna9eu6aWXXpIkxcXFqX///tq9e7fCw8Pl5OSkl156ScnJyZKknTt3SpI2btyomJgYLV26NNVMgwYN0pIlSzRv3jz98ssvKlGihBo2bKiLFy86tHv33Xc1fvx47d69Wy4uLurcufM9PQMAAAAAAAAAYIohpGnVqlXy9vZWYmKi4uPj5eTkpClTpqTZfurUqcqRI4cWLlwoV1dXSVJQUJD9+IgRIzR+/Hg1b95c0j+frj9w4IBmzpypDh06mPo7evSobDabSpcunaH35ebmphw5csgwjNtOkdSwYUN5eXlp2bJlateunSRpwYIFeuGFF5Q9e3ZJUosWLRzOmTNnjnx9fXXgwAGVK1fOPmVRnjx50rxWXFycpk+frrCwMDVq1EiSNGvWLG3YsEGzZ8/WW2+9ZW87ZswY1a5dW5L09ttv6/nnn9eNGzfk4eFxj08DAAAAAAAAyHiGk2F1BKQDIwiQprp16yoiIkI7duxQhw4d1KlTJ9Mb4reKiIjQ008/bS8O3CouLk7Hjh1Tly5d5O3tbd9Gjx7tMCXPrWw2W4bdy71wcXFRq1atNH/+fEn/3MOKFSvUtm1be5sjR46oTZs2CgwMlI+PjwICAiRJ0dHR6b7OsWPHlJCQoJo1a9r3ubq6qlq1aoqMjHRoW6FCBfvXBQoUkCSdO3cu1X7j4+N19epVhy0+Pj7duQAAAAAAAAA83igQIE1eXl4qUaKEKlasqDlz5mjHjh2aPXt2mu09PT3TPJYyTc+sWbMUERFh3/bv329fS+DfSpYsKcMw7rgQsZPTPz/GtxYUEhISbntOerVt21bh4eE6d+6cli9fLk9PT4WGhtqPN23aVBcvXtSsWbO0Y8cO7dixQ5J08+bNDLn+v91afDGMf6qwKdMZ/dvYsWOVI0cOh23GjBkPJBcAAAAAAACARw8FAqSLk5OT3nnnHQ0dOlTXr19PtU2FChX0008/pfrmfP78+VWwYEEdP35cJUqUcNhSFvL9t9y5c6thw4aaOnWq4uLiTMcvX74sSfZpfGJiYuzHbl2wODVubm5KSkq6bRvpn/UK/P399c0332j+/Pl6+eWX7W/SX7hwQYcOHdLQoUNVv359BQcH69KlS6brSLrttYoXLy43Nzdt3brVvi8hIUG7du1SmTJl7pgxLUOGDNGVK1ccth49etxzfwAAAAAAAADuztSpUxUQECAPDw9Vr17dvmZpWj799FOVKlVKnp6e8vf315tvvqkbN248sHwUCJBuL7/8spydnTV16tRUj/fu3VtXr17VK6+8ot27d+vIkSP66quvdOjQIUnSqFGjNHbsWE2ePFmHDx/Wvn37NHfuXE2YMCHNa06dOlVJSUmqVq2alixZoiNHjigyMlKTJ0/WU089JemfkQtPPvmkPvzwQ0VGRmrLli0aOnTobe8lICBAsbGxCg8P1/nz53Xt2rU027766quaMWOGNmzY4DC9UK5cuZQnTx59/vnnOnr0qH744Qf179/f4dx8+fLJ09NTa9eu1dmzZ3XlyhVT/15eXnr99df11ltvae3atTpw4IC6deuma9euqUuXLre9j9txd3eXj4+Pw+bu7n7P/QEAAAAAAADpZTg5PXbb3frmm2/Uv39/jRgxQr/88osqVqyohg0bpjll+IIFC/T2229rxIgRioyM1OzZs/XNN9/onXfeud9vR5ooECDdXFxc1Lt3b40bNy7VT/TnyZNHP/zwg2JjY1W7dm1VqVJFs2bNsn/ivmvXrvriiy80d+5clS9fXrVr11ZYWFiaIwgkKTAwUL/88ovq1q2rAQMGqFy5cnr22WcVHh6u6dOn29vNmTNHiYmJqlKlivr166fRo0ff9l5q1KihHj16qHXr1vL19dW4cePSbNu2bVsdOHBAhQoVclgnwMnJSQsXLtSePXtUrlw5vfnmm/r4449Nz2zy5MmaOXOmChYsqBdffDHVa3z44Ydq0aKF2rVrp8qVK+vo0aNat26dcuXKddv7AAAAAAAAAJA5TZgwQd26dVOnTp1UpkwZzZgxQ9myZdOcOXNSbb9t2zbVrFlTr776qgICAvTcc8+pTZs2dxx1cD8Mm9UrwQJ4aI4dP251BJNCB9ZZHcHkcKm0F+O2iqdT6lN7We1w6eesjmBS8fclVkcwiXfJZnWER8LVJB+rI6Sq8M1jVkcwMWyprz9jpSvZ8lsdwcQj0fyBBqvFO2fO3weuyfFWRzDJcfWU1RFM4rwy3895ztP7rI5gYsRetTpCqm4WDrI6gonrldQ/PWilqCJ1rI5gUujKAasjmFzJXsjqCKnyL3nv09Q+KPuPnrE6gknexJg7N3rIMuO/7/52y211hFQZRuZ7K7N4YKDVETKlyBbPWh0hwwUuWKX4eMd/O7u7u6c6a8fNmzeVLVs2ffvtt2rWrJl9f4cOHXT58mWtWLHCdM6CBQvUs2dPrV+/XtWqVdPx48f1/PPPq127dg9sFAEjCAAAAAAAAAAAuIOxY8cqR44cDtvYsWNTbXv+/HklJSUpf37HD5nkz59fZ86kXjx99dVX9d5776lWrVpydXVV8eLFVadOHaYYAgAAAAAAAADASkOGDNGVK1cctiFDhmRY/5s3b9YHH3ygadOm6ZdfftHSpUv1/fff6/3338+wa/ybywPrGQAAAAAAAACAx0Ra0wmlJm/evHJ2dtbZs2cd9p89e1Z+fn6pnjNs2DC1a9dOXbt2lSSVL19ecXFx6t69u95991053cNCyXfCCAIAAAAAAAAAADKQm5ubqlSpovDwcPu+5ORkhYeH66mnnkr1nGvXrpmKAM7OzpKkB7WUMCMIAAAAAAAAAADIYP3791eHDh1UtWpVVatWTZ9++qni4uLUqVMnSVL79u1VqFAh+zoGTZs21YQJExQSEqLq1avr6NGjGjZsmJo2bWovFGQ0CgQAAAAAAAAAAGSw1q1b66+//tLw4cN15swZVapUSWvXrrUvXBwdHe0wYmDo0KEyDENDhw7Vn3/+KV9fXzVt2lRjxox5YBkpEAAAAAAAAAAAMpThZFgdIVPo3bu3evfuneqxzZs3O7x2cXHRiBEjNGLEiIeQ7B+sQQAAAAAAAAAAQBZEgQAAAAAAAAAAgCyIAgEAAAAAAAAAAFkQaxAAAAAAAAAAADIUaxA8GhhBAAAAAAAAAABAFkSBAAAAAAAAAACALIgphgBYKr5gSasjPBIuJeS0OkKqKv6+xOoIJnvLtrA6gknpQ2usjmByI9nT6ggmzkq2OkKqbIaz1RFMrnjkszqCmc3qAI+GG7bM92dPki7ZclkdweRmLg+rI5h4x1+yOoLJuSLVrI5g4pEQa3WEVDkn3bQ6gslNX2+rI5i4KNHqCCbncwRaHcEkNjm71RFS5W91gFQk2zLfZ1P/cilodQQTmy3zTcXirnirI6TKyZY5/98APKoy329pAAAAAAAAAADwwFEgAAAAAAAAAAAgC6JAAAAAAAAAAABAFkSBAAAAAAAAAACALIhFigEAAAAAAAAAGcpwynyLb8OMEQQAAAAAAAAAAGRBFAgAAAAAAAAAAMiCKBAAAAAAAAAAAJAFUSAAAAAAAAAAACALYpFiAAAAAAAAAECGMpz4bPqjgO/SPejYsaOaNWv2wK8zcuRIVapU6YFf50EyDEPLly+35Nr/fn4Z8X0bNmyYunfvfn/B7tPatWtVqVIlJScnW5oDAAAAAAAAwKPtsSsQdOzYUYZhyDAMubq6Kn/+/Hr22Wc1Z86cDHtDddKkSQoLC8uQvh53MTExatSokSXXHjhwoMLDwzOsvzNnzmjSpEl69913Tfv79OmjwMBAubu7y9/fX02bNjVde9u2bWrcuLFy5colDw8PlS9fXhMmTFBSUpK9TVRUlLp06aJixYrJ09NTxYsX14gRI3Tz5k17m9DQULm6umr+/PkZdm8AAAAAAAAAsp7HrkAg/fMGakxMjKKiorRmzRrVrVtXb7zxhpo0aaLExMQ0z0tISEhX/zly5FDOnDkzKO3DdesbzQ+Dn5+f3N3dH+o1U3h7eytPnjwZ1t8XX3yhGjVqqGjRovZ9UVFRqlKlin744Qd9/PHH2rdvn9auXau6deuqV69e9nbLli1T7dq1VbhwYW3atEkHDx7UG2+8odGjR+uVV16RzWaTJB08eFDJycmaOXOmfv/9d02cOFEzZszQO++845ClY8eOmjx5cobdGwAAAAAAAICs57EsELi7u8vPz0+FChVS5cqV9c4772jFihVas2aNwyf/DcPQ9OnT9cILL8jLy0tjxoxRUlKSwye4S5UqpUmTJjn0/++paurUqaO+fftq0KBByp07t/z8/DRy5EiHcy5fvqyuXbvK19dXPj4+qlevnvbu3evQ5sMPP1T+/PmVPXt2denSRTdu3LjjvW7ZskXVqlWTu7u7ChQooLffftuhCFKnTh317t1b/fr1U968edWwYUNJ0sqVK1WyZEl5eHiobt26mjdvngzD0OXLlyVJFy5cUJs2bVSoUCFly5ZN5cuX19dff+1w7fTc97+nGPrjjz/Upk0b5c6dW15eXqpatap27NiR6r3dvHlTvXv3VoECBeTh4aGiRYtq7Nix9uPR0dF68cUX5e3tLR8fH7Vq1Upnz561H7/TFE3ffvutypcvL09PT+XJk0cNGjRQXFxcmu0XLlyopk2bOuzr2bOnDMPQzp071aJFCwUFBals2bLq37+/fv75Z0lSXFycunXrphdeeEGff/65KlWqpICAAHXt2lXz5s3Tt99+q0WLFkn6p7g1d+5cPffccwoMDNQLL7yggQMHaunSpQ7Xbdq0qXbv3q1jx46lmRcAAAAAAAAAbuexLBCkpl69eqpYsaLpjdaRI0fqpZde0r59+9S5c2clJyercOHCWrx4sQ4cOKDhw4frnXfesb+Bm5Z58+bJy8tLO3bs0Lhx4/Tee+9pw4YN9uMvv/yyzp07pzVr1mjPnj2qXLmy6tevr4sXL0qSFi1apJEjR+qDDz7Q7t27VaBAAU2bNu221/zzzz/VuHFjPfHEE9q7d6+mT5+u2bNna/To0aZsbm5u2rp1q2bMmKETJ06oZcuWatasmfbu3avXXnvNNG3OjRs3VKVKFX3//ffav3+/unfvrnbt2mnnzp13dd+3io2NVe3atfXnn39q5cqV2rt3rwYNGpTm1E+TJ0/WypUrtWjRIh06dEjz589XQECAJCk5OVkvvviiLl68qC1btmjDhg06fvy4WrdufdtnliImJkZt2rRR586dFRkZqc2bN6t58+b2T/L/28WLF3XgwAFVrVrVYd/atWvVq1cveXl5mc5JGWWyfv16XbhwQQMHDjS1adq0qYKCgkzFl1tduXJFuXPndthXpEgR5c+fXz/99FN6bhcAAAAAAAAATFysDvAwlS5dWr/99pvDvldffVWdOnVy2Ddq1Cj718WKFdP27du1aNEitWrVKs2+K1SooBEjRkiSSpYsqSlTpig8PFzPPvus/ve//2nnzp06d+6cfbqdTz75RMuXL9e3336r7t2769NPP1WXLl3UpUsXSdLo0aO1cePG244imDZtmvz9/TVlyhQZhqHSpUvr9OnTGjx4sIYPHy6n/79SeMmSJTVu3Dj7eW+//bZKlSqljz/+WJJUqlQp7d+/X2PGjLG3KVSokMMb2n369NG6deu0aNEiVatWLV33/W8LFizQX3/9pV27dtnf8C5RokSa9xcdHa2SJUuqVq1aMgzDYWqf8PBw7du3TydOnJC/v78k6csvv1TZsmW1a9cuPfHEE2n2K/1TIEhMTFTz5s3t/ZYvX/62WWw2mwoWLGjfd/ToUdlsNpUuXfq21zp8+LAkKTg4ONXjpUuXtrf5t6NHj+qzzz7TJ598YjpWsGBBnTx58rbXBgAAAAAAAIC0ZJkRBJJks9lkGIbDvls/EZ5i6tSpqlKlinx9feXt7a3PP/9c0dHRt+27QoUKDq8LFCigc+fOSZL27t2r2NhY5cmTR97e3vbtxIkT9iliIiMjVb16dYc+nnrqqdteMzIyUk899ZTDPdWsWVOxsbH6448/7PuqVKnicN6hQ4dMb6Df+qa/JCUlJen9999X+fLllTt3bnl7e2vdunWm53C7+/63iIgIhYSEmD4Nn5aOHTsqIiJCpUqVUt++fbV+/Xr7scjISPn7+9uLA5JUpkwZ5cyZU5GRkXfsu2LFiqpfv77Kly+vl19+WbNmzdKlS5fSbH/9+nVJkoeHh31fWqMN0nK37f/880+Fhobq5ZdfVrdu3UzHPT09de3atTTPj4+P19WrVx22+Pj4u8oAAAAAAAAA4PGVpQoEkZGRKlasmMO+f08Ns3DhQg0cOFBdunTR+vXrFRERoU6dOt1xcV9XV1eH14Zh2KfOiY2NVYECBRQREeGwHTp0SG+99VYG3NntpTb9zZ18/PHHmjRpkgYPHqxNmzYpIiJCDRs2ND2H2933v3l6et5VhsqVK+vEiRN6//33df36dbVq1UotW7a8uxtJg7OzszZs2KA1a9aoTJky+uyzz1SqVCmdOHEi1fZ58+aVJIciQsmSJWUYhg4ePHjbawUFBUlSmoWLyMhIe5sUp0+fVt26dVWjRg19/vnnqZ538eJF+fr6pnndsWPHKkeOHA7bjBkzbpsVAAAAAAAAyAhOzsZjtz2OskyB4IcfftC+ffvUokWL27bbunWratSooZ49eyokJEQlSpS474VgK1eurDNnzsjFxUUlSpRw2FLeeA4ODjYt1puyyG1agoODtX37dodPpm/dulXZs2dX4cKF0zyvVKlS2r17t8O+Xbt2ObzeunWrXnzxRf3nP/9RxYoVFRgYmOY0OOlVoUIFRURE2NddSA8fHx+1bt1as2bN0jfffKMlS5bo4sWLCg4O1qlTp3Tq1Cl72wMHDujy5csqU6ZMuvo2DEM1a9bUqFGj9Ouvv8rNzU3Lli1LtW3x4sXl4+OjAwcO2Pflzp1bDRs21NSpU1Nd3DhlwefnnntOuXPn1vjx401tVq5cqSNHjqhNmzb2fX/++afq1KmjKlWqaO7cufapom5148YNHTt2TCEhIWne35AhQ3TlyhWHrUePHmm2BwAAAAAAAJC1PJYFgvj4eJ05c0Z//vmnfvnlF33wwQd68cUX1aRJE7Vv3/6255YsWVK7d+/WunXrdPjwYQ0bNsz05vndatCggZ566ik1a9ZM69evV1RUlLZt26Z3333X/kb9G2+8oTlz5mju3Lk6fPiwRowYod9///22/fbs2VOnTp1Snz59dPDgQa1YsUIjRoxQ//79U31TOcVrr72mgwcPavDgwTp8+LAWLVqksLAwSbJPV1SyZElt2LBB27ZtU2RkpF577TWdPXv2vp5DmzZt5Ofnp2bNmmnr1q06fvy4lixZou3bt6fafsKECfr666918OBBHT58WIsXL5afn59y5sypBg0aqHz58mrbtq1++eUX7dy5U+3bt1ft2rVTnTbq33bs2GFfEDo6OlpLly7VX3/9leY6AU5OTmrQoIH+97//OeyfOnWqkpKSVK1aNS1ZskRHjhxRZGSkJk+ebJ8iysvLSzNnztSKFSvUvXt3/fbbb4qKitLs2bPVsWNHtWzZ0r6+RUpxoEiRIvrkk0/0119/6cyZMzpz5ozDdX/++We5u7vfdhoqd3d3+fj4OGwpa2AAAAAAAAAAwGNZIFi7dq0KFCiggIAAhYaGatOmTZo8ebJWrFghZ2fn25772muvqXnz5mrdurWqV6+uCxcuqGfPnveVxzAMrV69Ws8884w6deqkoKAgvfLKKzp58qTy588vSWrdurWGDRumQYMGqUqVKjp58qRef/312/ZbqFAhrV69Wjt37lTFihXVo0cPdenSRUOHDr3tecWKFdO3336rpUuXqkKFCpo+fbreffddSbK/gTx06FBVrlxZDRs2VJ06dexv7N8PNzc3rV+/Xvny5VPjxo1Vvnx5ffjhh2l+T7Jnz65x48apatWqeuKJJxQVFaXVq1fLyclJhmFoxYoVypUrl5555hk1aNBAgYGB+uabb9KVxcfHRz/++KMaN26soKAgDR06VOPHj1ejRo3SPKdr165auHChwxRKgYGB+uWXX1S3bl0NGDBA5cqV07PPPqvw8HBNnz7d3q5ly5batGmToqOj9fTTT6tUqVKaOHGi3n33XS1cuNBemNmwYYOOHj2q8PBwFS5cWAUKFLBvt/r666/Vtm1bZcuWLV33CwAAAAAAAAD/ZtjuduVUPJbGjBmjGTNmOEzZA0c2m03Vq1fXm2++6TAl0MN2/vx5+zRR/15T406OHT/+gFLdu7yXM1+mk9kr3LnRQ3YjKXOO/ijolPl+Z+wte/up5KxQ+tAaqyOY3Ei+u3VhHoYk2+2L+FbxS4i2OoLJVfc8Vkd4JHgmxVodweSKU+b83l1P9rA6gklOl8tWRzDxjr9050YP2Q1Xb6sjmHgkZL4/e5LknHT7deXwj0ueBa2OYOKsRKsjmMQmZ7c6QqoqlMxndQST346cszqCiWFkvrfCbLbMN7e5u1O81RFS5aTU1760UsniRa2OkCkd79jE6ggZLjBsldURMtxjOYIAdzZt2jTt2rVLx48f11dffaWPP/5YHTp0sDpWpmYYhj7//HMlJlr7j9OoqChNmzbtrosDAAAAAAAAAHArF6sDwBpHjhzR6NGjdfHiRRUpUkQDBgzQkCFDrI6V6VWqVEmVKlWyNEPVqlXTtc4CAAAAAAAAANwOBYIsauLEiZo4caLVMQAAAAAAAAAAFmGKIQAAAAAAAAAAsiAKBAAAAAAAAAAAZEEUCAAAAAAAAAAAyIIoEAAAAAAAAAAAkAVRIAAAAAAAAAAAIAtysToAAAAAAAAAAODxYjjx2fRHAd8lAAAAAAAAAACyIAoEAAAAAAAAAABkQRQIAAAAAAAAAADIgliDAAAAAAAAAACQoQwnw+oISAcKBEAW4p54zeoIJtey5bU6gklOXbA6gomTU5LVEVIV75LN6ggmpQ+tsTqCycFSjayOYFL70xetjmDyV2h3qyOk6qK7n9URTIqe+snqCGanjlmdwMRWpITVEUy8fPJZHSFVrjeuWh3BxPncH1ZHMDlatqXVEUyKXo6wOoKJU8INqyOk6ma2XFZHMHG5GWd1BJNCF05aHcHkTOEnrI5gUvLPcKsjpK5kG6sTmPgYl62OYJLn0lGrIzwSjOTM+f/Q2ByFrY6QiqJWBwDuGVMMAQAAAAAAAACQBVEgAAAAAAAAAAAgC6JAAAAAAAAAAABAFkSBAAAAAAAAAACALIgCAQAAAAAAAAAAWRAFAgAAAAAAAAAAsiAXqwMAAAAAAAAAAB4vhpNhdQSkAyMIAAAAAAAAAADIgigQAAAAAAAAAACQBVEgAAAAAAAAAAAgC6JAkEnUqVNH/fr1S1fbzZs3yzAMXb58Oc02YWFhypkzZ4Zke9QsX75cJUqUkLOzc7qf6cMUFRUlwzAUERFhdRQAAAAAAAAAWRgFglR07NhRhmHIMAy5ubmpRIkSeu+995SYmHjffaf15v7SpUv1/vvvp6uPGjVqKCYmRjly5LjvPPcqLCxMhmEoODjYdGzx4sUyDEMBAQEPP5ik1157TS1bttSpU6fS/UxvJ6Pf0Pf391dMTIzKlSuXIf0BAAAAAAAAwL2gQJCG0NBQxcTE6MiRIxowYIBGjhypjz/++IFdL3fu3MqePXu62rq5ucnPz0+GYe1K4F5eXjp37py2b9/usH/27NkqUqSIJZliY2N17tw5NWzYUAULFkz3M31Ybt68KWdnZ/n5+cnFxcXqOAAAAAAAAACyMAoEaXB3d5efn5+KFi2q119/XQ0aNNDKlSslSfHx8Ro4cKAKFSokLy8vVa9eXZs3b7afe/LkSTVt2lS5cuWSl5eXypYtq9WrVysqKkp169aVJOXKlUuGYahjx46SzFMMxcfHa/DgwfL395e7u7tKlCih2bNnS0p9FEJYWJiKFCmibNmy6aWXXtKFCxdM97RixQpVrlxZHh4eCgwM1KhRo+yjImw2m0aOHKkiRYrI3d1dBQsWVN++fW/7jFxcXPTqq69qzpw59n1//PGHNm/erFdffdWh7bFjx/Tiiy8qf/788vb21hNPPKGNGzc6tAkICNAHH3ygzp07K3v27CpSpIg+//xz+/HU7jsiIkKGYSgqKkqbN2+2FwTq1asnwzC0efNmXbhwQW3atFGhQoWULVs2lS9fXl9//bXDtZOTkzVu3DiVKFFC7u7uKlKkiMaMGSNJKlasmCQpJCREhmGoTp06klKfFqpZs2b272nKPb3//vtq3769fHx81L17d9OIhJT7Cg8PV9WqVZUtWzbVqFFDhw4dcuh79OjRypcvn7Jnz66uXbvq7bffVqVKldL+BgEAAAAAAADAbVAgSCdPT0/dvHlTktS7d29t375dCxcu1G+//aaXX35ZoaGhOnLkiCSpV69eio+P148//qh9+/bpo48+kre3t/z9/bVkyRJJ0qFDhxQTE6NJkyaler327dvr66+/1uTJkxUZGamZM2fK29s71bY7duxQly5d1Lt3b0VERKhu3boaPXq0Q5uffvpJ7du31xtvvKEDBw5o5syZCgsLs78JvmTJEk2cOFEzZ87UkSNHtHz5cpUvX/6Oz6Vz585atGiRrl27JumfQkVoaKjy58/v0C42NlaNGzdWeHi4fv31V4WGhqpp06aKjo52aDd+/HhVrVpVv/76q3r27KnXX3/d9EZ5Wm59U33JkiWKiYlRjRo1dOPGDVWpUkXff/+99u/fr+7du6tdu3bauXOn/dwhQ4boww8/1LBhw3TgwAEtWLDAfg8p7TZu3KiYmBgtXbo0XXlSfPLJJ6pYsaJ+/fVXDRs2LM127777rsaPH6/du3fLxcVFnTt3th+bP3++xowZo48++kh79uxRkSJFNH369LvKAQAAAAAAAAC3Yo6TO7DZbAoPD9e6devUp08fRUdHa+7cuYqOjlbBggUlSQMHDtTatWs1d+5cffDBB4qOjlaLFi3sb7AHBgba+8udO7ckKV++fGkuInz48GEtWrRIGzZsUIMGDUx9/NukSZMUGhqqQYMGSZKCgoK0bds2rV271t5m1KhRevvtt9WhQwd7f++//74GDRqkESNGKDo6Wn5+fmrQoIFcXV1VpEgRVatW7Y7PJyQkRIGBgfr222/Vrl07hYWFacKECTp+/LhDu4oVK6pixYr21++//76WLVumlStXqnfv3vb9jRs3Vs+ePSVJgwcP1sSJE7Vp0yaVKlXqjlnc3NyUL18+Sf88Zz8/P0lSoUKFNHDgQHu7Pn36aN26dVq0aJGqVaumv//+W5MmTdKUKVPsz6d48eKqVauWJMnX11eSlCdPHnufd6NevXoaMGCA/XVUVFSq7caMGaPatWtLkt5++209//zzunHjhjw8PPTZZ5+pS5cu6tSpkyRp+PDhWr9+vWJjY+86DwAAAAAAAPCgGU58Nv1RwHcpDatWrZK3t7c8PDzUqFEjtW7dWiNHjtS+ffuUlJSkoKAgeXt727ctW7bo2LFjkqS+fftq9OjRqlmzpkaMGKHffvvtrq4dEREhZ2dn+5vFdxIZGanq1as77HvqqaccXu/du1fvvfeeQ+Zu3bopJiZG165d08svv6zr168rMDBQ3bp107Jly9K9KHPnzp01d+5cbdmyRXFxcWrcuLGpTWxsrAYOHKjg4GDlzJlT3t7eioyMNI0gqFChgv1rwzDk5+enc+fOpStHWpKSkvT++++rfPnyyp07t7y9vbVu3Tr7tSMjIxUfH6/69evf13XSUrVq1XS1u/XeCxQoIEn2ez906JCpYHOnAk58fLyuXr3qsMX//1EwAAAAAAAAAECBIA1169ZVRESEjhw5ouvXr2vevHny8vJSbGysnJ2dtWfPHkVERNi3yMhI+3RBXbt21fHjx9WuXTvt27dPVatW1WeffZbua3t6emb4/cTGxmrUqFEOmfft26cjR47Iw8ND/v7+OnTokKZNmyZPT0/17NlTzzzzjBISEu7Yd9u2bfXzzz9r5MiRateuXaqL7w4cOFDLli3TBx98oJ9++kkREREqX768fdqmFK6urg6vDcNQcnKyJMnp/1cdbTab/Xh68n388ceaNGmSBg8erE2bNikiIkINGza0X/ten7eTk5NDlrTyeHl5pau/W+89ZQHqlHu/F2PHjlWOHDkctqkzv7jn/gAAAAAAAAA8XigQpMHLy0slSpRQkSJFHN7wDgkJUVJSks6dO6cSJUo4bLdOP+Pv768ePXpo6dKlGjBggGbNmiXpn2lwpH8+1Z6W8uXLKzk5WVu2bElX1uDgYO3YscNh388//+zwunLlyjp06JApc4kSJexvvHt6eqpp06aaPHmyNm/erO3bt2vfvn13vH7u3Ln1wgsvaMuWLQ7z5t9q69at6tixo1566SWVL19efn5+aU61k5aUqX5iYmLs+1IW+r2drVu36sUXX9R//vMfVaxYUYGBgTp8+LD9eMmSJeXp6anw8PBUz0/re+br6+uQJSkpSfv370/3/dyNUqVKadeuXQ77/v3634YMGaIrV644bL1e6/pA8gEAAAAAAAB49LAGwV0KCgpS27Zt1b59e40fP14hISH666+/FB4ergoVKuj5559Xv3791KhRIwUFBenSpUvatGmTgoODJUlFixaVYRhatWqVGjduLE9PT9PiwwEBAerQoYM6d+6syZMnq2LFijp58qTOnTunVq1amTL17dtXNWvW1CeffKIXX3xR69atc1h/QPpnzvomTZqoSJEiatmypZycnLR3717t379fo0ePVlhYmJKSklS9enVly5ZN//3vf+Xp6amiRYum67mEhYVp2rRpypMnT6rHS5YsqaVLl6pp06YyDEPDhg2760/HlyhRQv7+/ho5cqTGjBmjw4cPa/z48Xc8r2TJkvr222+1bds25cqVSxMmTNDZs2dVpkwZSZKHh4cGDx6sQYMGyc3NTTVr1tRff/2l33//XV26dFG+fPnk6emptWvXqnDhwvLw8FCOHDlUr1499e/fX99//72KFy+uCRMm6PLly3d1T+nVp08fdevWTVWrVlWNGjX0zTff6Lfffrvt2hTu7u5yd3d32Hf1/xc7AAAAAAAAgAfJcDKsjoB0YATBPZg7d67at2+vAQMGqFSpUmrWrJl27dqlIkWKSPrnk+S9evVScHCwQkNDFRQUpGnTpkn6Z8HclAWD8+fP77BA762mT5+uli1bqmfPnipdurS6deumuLi4VNs++eSTmjVrliZNmqSKFStq/fr1Gjp0qEObhg0batWqVVq/fr2eeOIJPfnkk5o4caK9AJAzZ07NmjVLNWvWVIUKFbRx40Z99913ab7h/2+enp63bTthwgTlypVLNWrUUNOmTdWwYUNVrlw5XX2ncHV11ddff62DBw+qQoUK+uijjzR69Og7njd06FBVrlxZDRs2VJ06deTn56dmzZo5tBk2bJgGDBig4cOHKzg4WK1bt7bP/+/i4qLJkydr5syZKliwoF588UVJ/6y90KFDB7Vv3161a9dWYGCg6tate1f3lF5t27bVkCFDNHDgQFWuXFknTpxQx44d5eHh8UCuBwAAAAAAAODxZ9j+PYk6gEfCs88+Kz8/P3311VfpPuePww9mCqT74ZycvsWwH6YEZ/c7N3rInGxpT0tmpXiXbFZHeCQcLNXI6ggmtT990eoIJn+Fdrc6QqrilfmKsUVP/WR1BLNTx6xOYGIrUsLqCCY3ffJZHSFVrjeuWh3BxPncH1ZHMDlatqXVEUyKXo6wOoKJU8INqyOk6ma2XFZHMHG5mfqHwKzkfC3z/T44U/gJqyOYFDi10+oIqfKs08bqCCZRRw/fudFDlufSUasjPBKM5Mz5/9DYHIWtjmDiVzrE6giZ0qmeLayOkOH8py2xOkKGY4oh4BFw7do1zZgxQw0bNpSzs7O+/vprbdy4URs2bLA6GgAAAAAAAIBHFAUC4BFgGIZWr16tMWPG6MaNGypVqpSWLFmiBg0aWB0NAAAAAAAAwCOKAgHwCPD09NTGjRutjgEAAAAAAADgMcIixQAAAAAAAAAAZEEUCAAAAAAAAAAAyIKYYggAAAAAAAAAkKEMJz6b/ijguwQAAAAAAAAAQBZEgQAAAAAAAAAAgCyIAgEAAAAAAAAAAFkQBQIAAAAAAAAAALIgFikGAAAAAAAAAGQsw7A6AdKBEQQAAAAAAAAAAGRBFAgAAAAAAAAAAMiCmGIIgKXiXbJZHcEk0XC1OoKJZ1Ks1REeGTeSPa2OYFL70xetjmCypd8KqyOYlDjYx+oIqbqR7G51BBPjr9NWRzBJuHjJ6ggmrrkvWx3BxM0l8/0dI0lGwk2rI5jduGZ1ApP4ZDerI5gYSQlWRzAxEjNfJkm66eZtdQQT96vnrI5g4hR72eoIJs62RKsjmBgXzlgd4ZFx0/CwOoKJ64XM928pOWe+t+iSs2W3OkKq3BLirI4APFYYQQAAAAAAAAAAQBZEgQAAAAAAAAAAgCyIAgEAAAAAAAAAAFkQBQIAAAAAAAAAALKgzLcCCgAAAAAAAADgkWY4GVZHQDowggAAAAAAAAAAgCyIAgEAAAAAAAAAAFkQBQIAAAAAAAAAALIg1iAAAAAAAAAAAGQow4nPpj8K+C4BAAAAAAAAAJAFUSBAprd582YZhqHLly9bHQUAAAAAAAAAHhsUCHBXOnbsKMMwTNvRo0ctyZNSPLjdtnnzZkuyPShRUVEyDEMRERFWRwEAAAAAAADwCGMNAty10NBQzZ0712Gfr6+vJVlq1KihmJgY++s33nhDV69edciXO3du+9c3b96Um5vbQ82YkW7evGl1BAAAAAAAAACPCUYQ4K65u7vLz8/PYXN2dpYkbdmyRdWqVZO7u7sKFCigt99+W4mJifZz4+Pj1bdvX+XLl08eHh6qVauWdu3a5dD/6tWrFRQUJE9PT9WtW1dRUVFpZnFzc3PI4enp6ZBvxowZqlatmr744gsVK1ZMHh4ekqS1a9eqVq1aypkzp/LkyaMmTZro2LFj9n5TPqW/dOlS1a1bV9myZVPFihW1fft2e5uTJ0+qadOmypUrl7y8vFS2bFmtXr1a0v+NbPj+++9VoUIFeXh46Mknn9T+/fsd8i9ZskRly5aVu7u7AgICNH78eIfjAQEBev/999W+fXv5+Pioe/fuKlasmCQpJCREhmGoTp066fzOAQAAAAAAAMD/oUCADPPnn3+qcePGeuKJJ7R3715Nnz5ds2fP1ujRo+1tBg0apCVLlmjevHn65ZdfVKJECTVs2FAXL16UJJ06dUrNmzdX06ZNFRERoa5du+rtt9++r1xHjx7VkiVLtHTpUvu0PHFxcerfv792796t8PBwOTk56aWXXlJycrLDue+++64GDhyoiIgIBQUFqU2bNvaCR69evRQfH68ff/xR+/bt00cffSRvb2+H89966y2NHz9eu3btkq+vr5o2baqEhARJ0p49e9SqVSu98sor2rdvn0aOHKlhw4YpLCzMoY9PPvlEFStW1K+//qphw4Zp586dkqSNGzcqJiZGS5cuva/nAwAAAAAAACBrYooh3LVVq1Y5vBHeqFEjLV68WNOmTZO/v7+mTJkiwzBUunRpnT59WoMHD9bw4cN1/fp1TZ8+XWFhYWrUqJEkadasWdqwYYNmz56tt956S9OnT1fx4sXtn6QvVaqU/c33e3Xz5k19+eWXDtMgtWjRwqHNnDlz5OvrqwMHDqhcuXL2/QMHDtTzzz8vSRo1apTKli2ro0ePqnTp0oqOjlaLFi1Uvnx5SVJgYKDp2iNGjNCzzz4rSZo3b54KFy6sZcuWqVWrVpowYYLq16+vYcOGSZKCgoJ04MABffzxx+rYsaO9j3r16mnAgAH21ymjNfLkySM/P797fi4AAAAAAAAAsjZGEOCu1a1bVxEREfZt8uTJkqTIyEg99dRTMgzD3rZmzZqKjY3VH3/8oWPHjikhIUE1a9a0H3d1dVW1atUUGRlp76N69eoO13vqqafuK2/RokVNayQcOXJEbdq0UWBgoHx8fBQQECBJio6OdmhXoUIF+9cFChSQJJ07d06S1LdvX40ePVo1a9bUiBEj9Ntvv5mufWv23Llzq1SpUg73euuzkP55XkeOHFFSUpJ9X9WqVe/2liX9M53T1atXHbZ41jAAAAAAAAAA8P9RIMBd8/LyUokSJexbyhvnmZWXl5dpX9OmTXXx4kXNmjVLO3bs0I4dOySZFwF2dXW1f51S+EiZhqhr1646fvy42rVrp3379qlq1ar67LPPHkr+9Bg7dqxy5MjhsE2d+UUGpwMAAAAAAADMDCfjsdseRxQIkGGCg4O1fft22Ww2+76tW7cqe/bsKly4sIoXLy43Nzdt3brVfjwhIUG7du1SmTJl7H2kzLGf4ueff87QnBcuXNChQ4c0dOhQ1a9fX8HBwbp06dI99eXv768ePXpo6dKlGjBggGbNmuVw/Nbsly5d0uHDhxUcHCzpn3u99VlI/zyvoKAg+zRCqXFzc5Mkh1EGqRkyZIiuXLnisPV6retd3R8AAAAAAACAxxcFAmSYnj176tSpU+rTp48OHjyoFStWaMSIEerfv7+cnJzk5eWl119/XW+99ZbWrl2rAwcOqFu3brp27Zq6dOkiSerRo4eOHDmit956S4cOHdKCBQtMi/ber1y5cilPnjz6/PPPdfToUf3www/q37//XffTr18/rVu3TidOnNAvv/yiTZs22d/8T/Hee+8pPDxc+/fvV8eOHZU3b141a9ZMkjRgwACFh4fr/fff1+HDhzVv3jxNmTJFAwcOvO118+XLJ09PT61du1Znz57VlStXUm3n7u4uHx8fh839/xcXAAAAAAAAAIACATJMoUKFtHr1au3cuVMVK1ZUjx491KVLFw0dOtTe5sMPP1SLFi3Url07Va5cWUePHtW6deuUK1cuSVKRIkW0ZMkSLV++XBUrVtSMGTP0wQcfZGhOJycnLVy4UHv27FG5cuX05ptv6uOPP77rfpKSktSrVy8FBwcrNDRUQUFBmjZtmkObDz/8UG+88YaqVKmiM2fO6LvvvrOPAKhcubIWLVqkhQsXqly5cho+fLjee+89hwWKU+Pi4qLJkydr5syZKliwoF588cW7zg4AAAAAAAAAhu3W+WAAZIjNmzerbt26unTpknLmzGl1HLs/Du+3OoJJolPmG9WQaLjeudFD5pkUa3WEVN1wubc1Mh6kG8meVkcwKbpuotURTLb0W2F1BJMSBzdaHSFV15M9rI5gUjriS6sjmCScPm11BBPXEiWtjmCSnNPX6gipMhJu3rnRQ2acPWV1BJPfQzLfdI2lLm29c6OHzOnmDasjpOrvvIFWRzDJfv641RFMnK5esDqCydlSda2OYJJ/72qrI6TKo8WbVkcwOXws2uoIJkWOrLc6gpmzi9UJTJKzZbc6Qqpu+OS3OoJJ7vK1rI6QKZ156z9WR8hwfh//1+oIGY4RBAAAAAAAAAAAZEEUCAAAAAAAAAAAyIIy3/gl4DFQp04dMXsXAAAAAAAAgMyMEQQAAAAAAAAAAGRBFAgAAAAAAAAAAMiCKBAAAAAAAAAAAJAFUSAAAAAAAAAAACALYpFiAAAAAAAAAECGMpwMqyMgHRhBAAAAAAAAAABAFkSBAAAAAAAAAACALIgCAQAAAAAAAAAAWRBrEAAAAAAAAAAAMhRrEDwaGEEAAAAAAAAAAEAWZNhsNpvVIQA8HMeOH7c6gsnlxJxWRzDJ6XLZ6ggmLskJVkdI1UVbHqsjmDgr2eoIJtmdrlodweSm3K2OYHK0dAOrI6TKdfc+qyOYFPOOsTqCiU2Z79NBmTHTtWRPqyOkqnBC5vs3wlWPvFZHMDkb72t1BBNPl3irI5i4GElWR0hVruS/rI5g8pfhZ3UEE0+nG1ZHMEm0Zb7JD7yV+f59J0kBJYKsjmBy5uCvVkcwiXXNaXUEE2dlzt+dmZFzJvz/cZGSwVZHyJTODWlvdYQMl2/sl1ZHyHCMIAAAAAAAAAAAIAuiQAAAAAAAAAAAQBZEgQAAAAAAAAAAgCyIAgEAAAAAAAAAAFkQBQIAAAAAAAAAALIgCgQAAAAAAAAAAGRBLlYHAAAAAAAAAAA8Zpz4bPqjgO8SAAAAAAAAAABZEAUCAAAAAAAAAACyIAoEAAAAAAAAAABkQRQIgAwUFRUlwzAUERHxwK8VEBCgTz/99IFfBwAAAAAAAMDjiQIBHhkdO3aUYRim7ejRo5bladasmSXXBgAAAAAAAID75WJ1AOBuhIaGau7cuQ77fH1977qfmzdvys3NLaNiAQAAAAAAAMAjhxEEeKS4u7vLz8/PYXN2dtaWLVtUrVo1ubu7q0CBAnr77beVmJhoP69OnTrq3bu3+vXrp7x586phw4aSpP3796tRo0by9vZW/vz51a5dO50/f95+3rfffqvy5cvL09NTefLkUYMGDRQXF6eRI0dq3rx5WrFihX0kw+bNm015k5KS1KVLFxUrVkyenp4qVaqUJk2a5NAmZSTCJ598ogIFCihPnjzq1auXEhIS7G3OnTunpk2bytPTU8WKFdP8+fMz+MkCAAAAAAAAyGoYQYBH3p9//qnGjRurY8eO+vLLL3Xw4EF169ZNHh4eGjlypL3dvHnz9Prrr2vr1q2SpMuXL6tevXrq2rWrJk6cqOvXr2vw4MFq1aqVfvjhB8XExKhNmzYaN26cXnrpJf3999/66aefZLPZNHDgQEVGRurq1av2EQ25c+fW6dOnHbIlJyercOHCWrx4sfLkyaNt27ape/fuKlCggFq1amVvt2nTJhUoUECbNm3S0aNH1bp1a1WqVEndunWT9E8R4fTp09q0aZNcXV3Vt29fnTt37gE/WQAAAAAAAODeGIZhdQSkAwUCPFJWrVolb29v++tGjRopKChI/v7+mjJligzDUOnSpXX69GkNHjxYw4cPl5PTPwNlSpYsqXHjxtnPHT16tEJCQvTBBx/Y982ZM0f+/v46fPiwYmNjlZiYqObNm6to0aKSpPLly9vbenp6Kj4+Xn5+fmnmdXV11ahRo+yvixUrpu3bt2vRokUOBYJcuXJpypQpcnZ2VunSpfX8888rPDxc3bp10+HDh7VmzRrt3LlTTzzxhCRp9uzZCg4OvtfHCAAAAAAAAAAUCPBoqVu3rqZPn25/7eXlpV69eumpp55yqErWrFlTsbGx+uOPP1SkSBFJUpUqVRz62rt3rzZt2uRQcPh/7N17fM/1///x+3vnszlvGMNsTHPK4YNyqAmVEkXyoTnlmMrZx2nk2CeFZCRMJ1REH8kxUy1lZIiZmcOU5ZBTc9j590c/7693r5mN6TV2u14ur8vF+/V6vp6v++v1fm+t9+P1ej6vS0xM1GOPPaZHH31UISEhat26tR577DE9++yzKl68eL4yv/vuu1q8eLGSkpJ09epVpaWlqU6dOjZtatasKXt7e+trX19f7du3T5IUFxcnBwcHm/zVq1eXt7d3rsdNTU1VamqqYZ2zs3O+8gMAAAAAAAC4PzEHAe4p7u7uCggIsC6+vr752vdGKSkpateunWJjY22WhIQENWvWTPb29tq0aZO+/vprBQcH65133lFQUJCOHj2a52MuX75cw4YNU69evbRx40bFxsaqR48eSktLs2nn6Oho89pisSgrKyvPx8nJtGnTVKxYMZtl/vz5d9QnAAAAAAAAgPsHBQLc82rUqKHt27crOzvbui46Olqenp6qUKHCTferV6+e9u/fL39/f5uiQ0BAgLWYYLFY1LRpU02cOFG7d++Wk5OTvvjiC0mSk5OTMjMzc80WHR2tJk2aaMCAAapbt64CAgKUmJiYr/OrXr26MjIytGvXLuu6+Ph4XbhwIdf9Ro8erYsXL9os/fr1y9exAQAAAAAAANy/KBDgnjdgwACdOHFCL7/8sg4ePKg1a9ZowoQJGjJkiHX+gZwMHDhQ586dU5cuXRQTE6PExERt2LBBPXr0UGZmpn766SdNnTpVO3fuVFJSklatWqUzZ85Yx/739/fX3r17FR8fr7Nnzyo9Pd1wjGrVqmnnzp3asGGDDh06pHHjxikmJiZf5xcUFKQ2bdqob9+++umnn7Rr1y717t1brq6uue7n7OwsLy8vm4XhhQAAAAAAAPBPsNjZ3XfL/ej+PCsUKeXLl9e6deu0Y8cO1a5dW/369VOvXr00duzYXPcrV66coqOjlZmZqccee0whISF69dVX5e3tLTs7O3l5eenbb7/V448/rsDAQI0dO1YzZ85U27ZtJUl9+vRRUFCQ6tevr9KlSys6OtpwjL59+6pDhw7q3LmzGjVqpD/++EMDBgzI9zkuWbJE5cqVU/PmzdWhQwe99NJLKlOmTL77AQAAAAAAAIDrLNk3jssC4L6WeOSI2REMLmR4mx3BwNvhgtkRDByyjE+oFAbnskuaHcHAXnc2f8fd4Gl3yewIBmkqfE8UHa4eanaEHDnu3Gd2BIPKHslmRzDIlsXsCAaFMdOVrNyfADRLhfTC9zfCJZdSZkcwOJVa2uwIBq4OqWZHMHCw5D4Mp1mKZ50xO4LBGYuP2REMXO2umR3BICPbwewIBh4qfH/fSZJ/QKDZEQx+P7jb7AgGKY7eZkcwsFfh/N1ZGNkXwv8/rlithtkRCqWz43uZHaHAlZq0yOwIBY4nCAAAAAAAAAAAKIIoEAAAAAAAAAAAUARRIAAAAAAAAAAAoAiiQAAAAAAAAAAAQBFEgQAAAAAAAAAAgCLIwewAAAAAAAAAAID7i8XOYnYE5AFPEAAAAAAAAAAAUARRIAAAAAAAAAAAoAiiQAAAAAAAAAAAQBHEHAQAAAAAAAAAgIJlx73p9wLeJQAAAAAAAAAAiiAKBAAAAAAAAAAAFEEUCAAAAAAAAAAAKIKYgwCAqSpmHDY7gsGvlipmR7hnVEhLNDuCQbbF3uwIBuecfcyOYHAty9nsCAaOO/eZHSFH6fVDzI5gkBYXZXYEg8zswvezZ2/JNDuCgUXZZkfI0TlnX7MjGKRmFr7fU6Wdzpkd4Z5gVwh/9iTJISPd7AgGXk6XzI5gYJedZXYEA6/MK2ZHMLjsUMzsCPeM845lzI5g4KKrZke4J9hnFb7fm5KUYuHnDyhIPEEAAAAAAAAAAEARRIEAAAAAAAAAAIAiiAIBAAAAAAAAAABFEAUCAAAAAAAAAACKICYpBgAAAAAAAAAUKIudxewIyAOeIAAAAAAAAAAA4C5499135e/vLxcXFzVq1Eg7duzItf2FCxc0cOBA+fr6ytnZWYGBgVq3bt1dy8cTBAAAAAAAAAAAFLAVK1ZoyJAhmj9/vho1aqRZs2apdevWio+PV5kyZQzt09LS1KpVK5UpU0aff/65ypcvr+PHj8vb2/uuZaRAAAAAAAAAAABAAXvrrbfUp08f9ejRQ5I0f/58ffXVV1q8eLFGjRplaL948WKdO3dOP/zwgxwdHSVJ/v7+dzUjQwwBAAAAAAAAAAqUxWJ33y2pqam6dOmSzZKamprj+aelpWnXrl0KDQ21rrOzs1NoaKi2b9+e4z5ffvmlGjdurIEDB6ps2bJ64IEHNHXqVGVmZt6V90iiQAAAAAAAAAAAwC1NmzZNxYoVs1mmTZuWY9uzZ88qMzNTZcuWtVlftmxZ/f777znuc+TIEX3++efKzMzUunXrNG7cOM2cOVOTJ08u8HO5jiGGABOEh4dr9erVio2NNTsKAAAAAAAAgDwYPXq0hgwZYrPO2dm5wPrPyspSmTJl9N5778ne3l4PPvigfvvtN/33v//VhAkTCuw4N+IJgn9YWFiYLBaLpk+fbrN+9erVslgs+erL399fs2bNylM7i8Vis1SoUCFfxypoec1+vxo2bJi2bNlidgwAAAAAAAAAeeTs7CwvLy+b5WYFglKlSsne3l6nTp2yWX/q1Cn5+PjkuI+vr68CAwNlb29vXVejRg39/vvvSktLK7gTuQEFAhO4uLhoxowZOn/+/D92zEmTJik5Odm67N69+7b7Sk9PL8Bk95/MzExlZWXl2sbDw0MlS5b8hxIBAAAAAAAA+Cc5OTnpwQcftLlJOCsrS1u2bFHjxo1z3Kdp06Y6fPiwzXeLhw4dkq+vr5ycnO5KTgoEJggNDZWPj89Nx6e67vvvv9fDDz8sV1dX+fn5afDgwbp8+bIkqUWLFjp+/Lhee+0161MBufH09JSPj491KV26tHVbRESEqlatKicnJwUFBenDDz+02ddisSgiIkJPPfWU3N3dNWXKFEnSmjVrVK9ePbm4uKhKlSqaOHGiMjIyJEnZ2dkKDw9XxYoV5ezsrHLlymnw4MH5zn7hwgX17dtXZcuWlYuLix544AGtXbvWun3lypWqWbOmnJ2d5e/vr5kzZ9rs7+/vr6lTp6pnz57y9PRUxYoV9d5771m3N2nSRCNHjrTZ58yZM3J0dNS3334rSUpNTdWwYcNUvnx5ubu7q1GjRoqKirK2j4yMlLe3t7788ksFBwfL2dlZSUlJioqKUsOGDeXu7i5vb281bdpUx48fl/TXEEN16tSx9pGVlaVJkyapQoUKcnZ2Vp06dbR+/Xrr9mPHjslisWjVqlVq2bKl3NzcVLt27ZtOaAIAAAAAAADAXEOGDNHChQu1dOlSxcXFqX///rp8+bJ69OghSerevbtGjx5tbd+/f3+dO3dOr7zyig4dOqSvvvpKU6dO1cCBA+9aRgoEJrC3t9fUqVP1zjvv6Ndff82xTWJiotq0aaOOHTtq7969WrFihb7//nsNGjRIkrRq1SpVqFDB5smA2/HFF1/olVde0dChQ/XLL7+ob9++6tGjh7Zu3WrTLjw8XM8884z27dunnj176rvvvlP37t31yiuv6MCBA1qwYIEiIyOtxYOVK1fq7bff1oIFC5SQkKDVq1crJCQkX9mzsrLUtm1bRUdH66OPPtKBAwc0ffp06yM2u3btUqdOnfT8889r3759Cg8P17hx4xQZGWnTz8yZM1W/fn3t3r1bAwYMUP/+/RUfHy9J6tq1q5YvX67s7Gxr+xUrVqhcuXJ6+OGHJUmDBg3S9u3btXz5cu3du1fPPfec2rRpo4SEBOs+V65c0YwZM/T+++9r//79KlGihNq3b6/mzZtr79692r59u1566aWbFkNmz56tmTNn6s0339TevXvVunVrPfXUUzbHkKQxY8Zo2LBhio2NVWBgoLp06WItygAAAAAAAAAoPDp37qw333xT48ePV506dRQbG6v169dbJy5OSkqy+W7Uz89PGzZsUExMjGrVqqXBgwfrlVde0ahRo+5aRkv2jd+M4q4LCwvThQsXtHr1ajVu3FjBwcFatGiRVq9erWeeecb6RXXv3r1lb2+vBQsWWPf9/vvv1bx5c12+fFkuLi7y9/fXq6++qldffTXXY/r7+ys5OVmOjo7WdVOnTtXgwYPVtGlT1axZ0+au+k6dOuny5cv66quvJP31BMGrr76qt99+29omNDRUjz76qE2F66OPPtKIESN08uRJvfXWW1qwYIF++eUXm+PemOlW2Tdu3Ki2bdsqLi5OgYGBhu1du3bVmTNntHHjRuu6ESNG6KuvvtL+/futx3n44YetT0VkZ2fLx8dHEydOVL9+/XTmzBmVK1dO33zzjbUg0KRJEzVr1kzTp09XUlKSqlSpoqSkJJUrV87m/Bs2bKipU6cqMjJSPXr0UGxsrGrXri1JOnfunEqWLKmoqCg1b97ckP3vkxSXL19eAwcO1H/+8x9rm4YNG6pBgwZ69913dezYMVWuXFnvv/++evXqJUk6cOCAatasqbi4OFWvXv2m1/FGiUeO5KndP8nr2lmzIxj86ljF7Aj3jAppiWZHMMi22N+60T/snHPOYwua6VpWwU2iVFBOXylmdoQcpdcPMTuCgX9clNkRDDKzC9/Pnr0l0+wIBunZDmZHyJGr3TWzIxikFsLfU652V82OcE+wK4Q/e5LknnbR7AgGl50K33/77LJzHy7VDM4ZV8yOYHDZofC9d5JUrWolsyMYxCX+ZnYEAxfx+zwv7LMK5xDTKZbC9/MXHFDu1o2KoPNT+psdocAVHxNhdoQCxxMEJpoxY4b18ZK/27NnjyIjI+Xh4WFdWrduraysLB09ejTfxxo+fLhiY2OtS/fu3SVJcXFxatq0qU3bpk2bGjLVr1/fkG/SpEk2+fr06aPk5GRduXJFzz33nK5evaoqVaqoT58++uKLL/J9p3tsbKwqVKiQY3Egt+wJCQnKzPy//ympVauW9d8Wi0U+Pj46ffq0JKl06dJ67LHH9PHHH0uSjh49qu3bt6tr166SpH379ikzM1OBgYE257pt2zYlJv7fF6NOTk42xylRooTCwsLUunVrtWvXTrNnz77pkxKXLl3SyZMn8/Q+3HgMX19fSbKey9+lpqbq0qVLNktqamqObQEAAAAAAIACZWe5/5b7EAUCEzVr1kytW7e2uQv/upSUFPXt29fmS/09e/YoISFBVatWzfexSpUqpYCAAOvi7e2dr/3d3d0N+SZOnGiTb9++fUpISJCLi4v8/PwUHx+vefPmydXVVQMGDFCzZs3yNcGxq6trvjLezN+fYLBYLDYTfXTt2lWff/650tPT9cknnygkJMQ6HFJKSors7e21a9cum3ONi4vT7NmzbbL+ffigJUuWaPv27WrSpIlWrFihwMBA/fjjjwV2LtePd7MJkadNm6ZixYrZLPPnz7+j4wMAAAAAAAC4fxTOZ5yLkOnTp6tOnToKCgqyWV+vXj0dOHBAAQEBN93XycnJ5k7521GjRg1FR0frxRdftK6Ljo5WcHBwrvvVq1dP8fHxueZzdXVVu3bt1K5dOw0cOFDVq1fXvn37VK9evTxlr1Wrln799VcdOnQox6cIrme/UXR0tAIDA63zFOTF008/rZdeeknr16/XJ598Yn26QpLq1q2rzMxMnT592joEUX7UrVtXdevW1ejRo9W4cWN98skn+te//mXTxsvLS+XKlVN0dLTNcETR0dFq2LBhvo953ejRozVkyBCbdb/+Vvge7QQAAAAAAABgDgoEJgsJCVHXrl01Z84cm/UjR47Uv/71Lw0aNEi9e/eWu7u7Dhw4oE2bNmnu3LmS/hpf/9tvv9Xzzz8vZ2dnlSpVKt/HHz58uDp16qS6desqNDRU//vf/7Rq1Spt3rw51/3Gjx+vJ598UhUrVtSzzz4rOzs77dmzR7/88osmT56syMhIZWZmqlGjRnJzc9NHH30kV1dXVapUKc/ZmzdvrmbNmqljx4566623FBAQoIMHD8pisahNmzYaOnSoGjRooNdff12dO3fW9u3bNXfuXM2bNy9f18Dd3V3t27fXuHHjFBcXpy5duli3BQYGqmvXrurevbtmzpypunXr6syZM9qyZYtq1aqlJ554Isc+jx49qvfee09PPfWUypUrp/j4eCUkJNgUH240fPhwTZgwQVWrVlWdOnW0ZMkSxcbGWoc+uh3Ozs5ydrYdu9f5bOEb7x8AAAAAAACAORhiqBCYNGmSYZiYWrVqadu2bTp06JAefvhh1a1bV+PHj7eZKHfSpEk6duyYqlatqtKlS9/Wsdu3b6/Zs2frzTffVM2aNbVgwQItWbJELVq0yHW/1q1ba+3atdq4caMaNGigf/3rX3r77betBQBvb28tXLhQTZs2Va1atbR582b973//U8mSJfOVfeXKlWrQoIG6dOmi4OBgjRgxwvrkQb169fTpp59q+fLleuCBBzR+/HhNmjRJYWFh+b4OXbt21Z49e/Twww+rYsWKNtuWLFmi7t27a+jQoQoKClL79u0VExNjaHcjNzc3HTx4UB07dlRgYKBeeuklDRw4UH379s2x/eDBgzVkyBANHTpUISEhWr9+vb788ktVq1Yt3+cCAAAAAAAAmM1iZ3ffLfcjS3Z2drbZIQD8MxKPHDE7goHXtcL3VMOvjlXMjnDPqJCWeOtG/7BsS96HGPunnHP2MTuCwbUs51s3+oedvlLM7Ag5Sq8fYnYEA/+4KLMjGGRmF76fPXvLnQ3FeDekZxfOB3hd7a6ZHcEgtRD+nnK1u2p2hHuCXSH82ZMk97SLZkcwuOxU+P7bZ5ed8xxnZnLOuGJ2BIPLDoXvvZOkalUrmR3BIC6x8A116yJ+n+eFfVbe55H8J6VYCt/PX3BAuVs3KoIuzBhkdoQC5z1yrtkRCtz9WfYAAAAAAAAAAAC5okAAAAAAAAAAAEARRIEAAAAAAAAAAIAiiAIBAAAAAAAAAABFEAUCAAAAAAAAAACKIAoEAAAAAAAAAAAUQRQIAAAAAAAAAAAoghzMDgAAAAAAAAAAuL9Y7CxmR0Ae8AQBAAAAAAAAAABFEAUCAAAAAAAAAACKIAoEAAAAAAAAAAAUQcxBAAAAAAAAAAAoWBbuTb8XUCAAihC77CyzIxjYZWWYHcHAze6q2REMHJVmdoQcWQrhZ+qiSxmzIxhUOvGd2REMLGdOmh3BwL3es2ZHyFFaXJTZEQyO1WhhdgSDR9ePMTuCQebheLMjGGTVbWJ2hBxd8q5odgSDSrvWmR3B4FSD9mZHMCh9co/ZEQyynF3NjpCjlGIVzI5gUPpCotkRDOxTL5sdweBQqYfMjmBQ7ex2syPkrGolsxPcE4pd+d3sCPeETHsnsyPkzNHsADkpZ3YA4LZRxgEAAAAAAAAAoAiiQAAAAAAAAAAAQBFEgQAAAAAAAAAAgCKIAgEAAAAAAAAAAEUQBQIAAAAAAAAAAIogCgQAAAAAAAAAABRBFAgAAAAAAAAAACiCHMwOAAAAAAAAAAC4v1jsLGZHQB7wBAEAAAAAAAAAAEUQBQIAAAAAAAAAAIogCgQAAAAAAAAAABRBFAgkRUVFyWKx6MKFC2ZHKRAtWrTQq6++ekd9hIeHq06dOrm2CQsLU/v27e/oOEUV1w4AAAAAAAD3NTu7+2+5DxW6swoLC5PFYjEshw8fNjWXv7+/Zs2aZVifly/Si7Ls7Gy99957atSokTw8POTt7a369etr1qxZunLlitnx7rpjx47JYrEoNjbWZv3s2bMVGRlpSiYAAAAAAAAAkCQHswPkpE2bNlqyZInNutKlS5uUBneiW7duWrVqlcaOHau5c+eqdOnS2rNnj2bNmiV/f/8iexd9sWLFzI4AAAAAAAAAoIgrdE8QSJKzs7N8fHxsFnt7e0nStm3b1LBhQzk7O8vX11ejRo1SRkaGdd/U1FQNHjxYZcqUkYuLix566CHFxMTY9L9u3ToFBgbK1dVVLVu21LFjxwose1ZWliZNmqQKFSrI2dlZderU0fr1663bcxrOKDY2VhaLxZrj+PHjateunYoXLy53d3fVrFlT69ats7b/5Zdf1LZtW3l4eKhs2bLq1q2bzp49a8gxYsQIlShRQj4+PgoPD7fZnpSUpKeffloeHh7y8vJSp06ddOrUqZueV2ZmpoYMGSJvb2+VLFlSI0aMUHZ2dq7X4tNPP9XHH3+sZcuW6T//+Y8aNGggf39/Pf300/rmm2/UsmXLPF2z63fhr1q1Si1btpSbm5tq166t7du3W9vkds0iIyPl7e1tk2316tWyWCzW19efBFm8eLEqVqwoDw8PDRgwQJmZmXrjjTfk4+OjMmXKaMqUKTb9WCwWRUREqG3btnJ1dVWVKlX0+eefW7dXrlxZklS3bl1ZLBa1aNFCknGIoVt9bq9/brZs2aL69evLzc1NTZo0UXx8fK7vAQAAAAAAAADcTKEsENzMb7/9pscff1wNGjTQnj17FBERoUWLFmny5MnWNiNGjNDKlSu1dOlS/fzzzwoICFDr1q117tw5SdKJEyfUoUMHtWvXTrGxserdu7dGjRpVYBlnz56tmTNn6s0339TevXvVunVrPfXUU0pISMhzHwMHDlRqaqq+/fZb7du3TzNmzJCHh4ck6cKFC3rkkUdUt25d7dy5U+vXr9epU6fUqVMnmz6WLl0qd3d3/fTTT3rjjTc0adIkbdq0SdJfX8g//fTTOnfunLZt26ZNmzbpyJEj6ty5800zzZw5U5GRkVq8eLG+//57nTt3Tl988UWu5/Hxxx8rKChITz/9tGGbxWKx3kWf12s2ZswYDRs2TLGxsQoMDFSXLl2sxaHcrlleJSYm6uuvv9b69eu1bNkyLVq0SE888YR+/fVXbdu2TTNmzNDYsWP1008/2ew3btw4dezYUXv27FHXrl31/PPPKy4uTpK0Y8cOSdLmzZuVnJysVatW5XjsW31ub7wGM2fO1M6dO+Xg4KCePXvm6xwBAAAAAAAA4LpCOcTQ2rVrbb7cbdu2rT777DPNmzdPfn5+mjt3riwWi6pXr66TJ09q5MiRGj9+vK5evaqIiAhFRkaqbdu2kqSFCxdq06ZNWrRokYYPH66IiAhVrVpVM2fOlCQFBQVZv1C+lZEjR2rs2LE269LS0hQcHGx9/eabb2rkyJF6/vnnJUkzZszQ1q1bNWvWLL377rt5Ov+kpCR17NhRISEhkqQqVapYt82dO1d169bV1KlTresWL14sPz8/HTp0SIGBgZKkWrVqacKECZKkatWqae7cudqyZYtatWqlLVu2aN++fTp69Kj8/PwkSR988IFq1qypmJgYNWjQwJBp1qxZGj16tDp06CBJmj9/vjZs2JDreSQkJCgoKOiW55vXazZs2DA98cQTkqSJEyeqZs2aOnz4sKpXr57rNcurrKwsLV68WJ6engoODlbLli0VHx+vdevWyc7OTkFBQdZsjRo1su733HPPqXfv3pKk119/XZs2bdI777yjefPmWYfGKlmypHx8fHI87uXLl2/5ub1uypQpat68uSRp1KhReuKJJ3Tt2jW5uLgY+k1NTVVqaqphnbOzc76vDQAAAAAAAID7T6F8gqBly5aKjY21LnPmzJEkxcXFqXHjxjZDwzRt2lQpKSn69ddflZiYqPT0dDVt2tS63dHRUQ0bNrTe0R0XF2fz5a4kNW7cOE+5hg8fbpMrNjZW/fr1s26/dOmSTp48aXP86xmvHz8vBg8erMmTJ6tp06aaMGGC9u7da922Z88ebd26VR4eHtalevXqkv66A/66WrVq2fTp6+ur06dPS/rrGvj5+VmLA5IUHBwsb2/vHHNevHhRycnJNtfNwcFB9evXz/U8bjUEkZS/a3bjOfn6+kqS9Zxyu2Z55e/vL09PT+vrsmXLKjg4WHY3zFBetmxZ6zGv+/vnp3Hjxvl6v/Pyub0ut2vwd9OmTVOxYsVsloj5C/KcCwAAAAAAAMD9rVAWCNzd3RUQEGBdrn8RarZSpUrZ5AoICFCJEiXy1cf1L5tv/PI8PT3dpk3v3r115MgRdevWTfv27VP9+vX1zjvvSJJSUlKswyPduCQkJKhZs2bWPhwdHW36tFgsysrKylfWOxUYGKiDBw8WWH83ntP1ItH1c8rtmtnZ2RmKFX+/5n/v//oxCsN1vFFu1+DvRo8erYsXL9os/fv1/UdyAgAAAAAAACj8CmWB4GZq1Kih7du323zZGx0dLU9PT1WoUEFVq1aVk5OToqOjrdvT09MVExNjHQaoRo0a1nHhr/vxxx8LJJ+Xl5fKlStnc/zrGa8f//qQM8nJydbtsbGxhr78/PzUr18/rVq1SkOHDtXChQslSfXq1dP+/fvl7+9vKFa4u7vnKWeNGjV04sQJnThxwrruwIEDunDhgs1wSdcVK1ZMvr6+NmPvZ2RkaNeuXbke54UXXtChQ4e0Zs0aw7bs7GxdvHgxT9csr252zUqXLq0///xTly9ftrbN6Zrfrr9/fn788UfVqFFDkuTk5CTpr0mebyYvn9vb4ezsLC8vL5uF4YUAAAAAAADwT7BYLPfdcj+6pwoEAwYM0IkTJ/Tyyy/r4MGDWrNmjSZMmKAhQ4bIzs5O7u7u6t+/v4YPH67169frwIED6tOnj65cuaJevXpJkvr166eEhAQNHz5c8fHx+uSTTxQZGVlgGYcPH64ZM2ZoxYoVio+P16hRoxQbG6tXXnlFkhQQECA/Pz+Fh4crISFBX331lXU+hOteffVVbdiwQUePHtXPP/+srVu3Wr9wHjhwoM6dO6cuXbooJiZGiYmJ2rBhg3r06JHrl9A3Cg0NVUhIiLp27aqff/5ZO3bsUPfu3dW8efObDhv0yiuvaPr06Vq9erUOHjyoAQMG6MKFC7kep1OnTurcubO6dOmiqVOnaufOnTp+/LjWrl2r0NBQbd26NU/XLC9yu2aNGjWSm5ub/vOf/ygxMbHA3/PPPvtMixcv1qFDhzRhwgTt2LFDgwYNkiSVKVNGrq6u1smkL168aNg/L59bAAAAAAAAACho91SBoHz58lq3bp127Nih2rVrq1+/furVq5fNxMHTp09Xx44d1a1bN9WrV0+HDx/Whg0bVLx4cUlSxYoVtXLlSq1evVq1a9fW/PnzbSb8vVODBw/WkCFDNHToUIWEhGj9+vX68ssvVa1aNUl/DRGzbNkyHTx4ULVq1dKMGTM0efJkmz4yMzM1cOBA1ahRQ23atFFgYKDmzZsnSda77TMzM/XYY48pJCREr776qry9vW3Gys+NxWLRmjVrVLx4cTVr1kyhoaGqUqWKVqxYcdN9hg4dqm7duunFF19U48aN5enpqWeeeeaWx/nkk0/01ltvafXq1WrevLlq1aql8PBwPf3002rdunWerlle5HbNSpQooY8++kjr1q1TSEiIli1bpvDw8Dz3fSsTJ07U8uXLVatWLX3wwQdatmyZ9c5/BwcHzZkzRwsWLFC5cuX09NNP59jHrT63AAAAAAAAAFDQLNl5mUkWQI4sFou++OILtW/f3uwoeXI08bDZEQy8ruY8ybKZzrr63brRP8xRaWZHyFFhfP8uuPqYHcGg/ImCGcquIFnOnDQ7gsGJes+aHSFHadlOZkcwOFajhdkRDB5dP8bsCAaZh+PNjmCQVbeJ2RFydMm7otkRDEruWmd2BINTDdqbHcGg9Mk9ZkcwyHJ2NTtCjlKKVTA7goHblbNmRzCwT71860b/sEOlHjI7gkG1c9vNjpAjj0btzI5gEJf4m9kRDMpeOWp2hHtCpn3h+ztYkq46epodwaBitRpmRyiU/pw91OwIBc7zlZm3bnSPuaeeIAAAAAAAAAAAAAWDAgEAAAAAAAAAAEWQg9kBgHsZI3QBAAAAAAAAuFfxBAEAAAAAAAAAAEUQBQIAAAAAAAAAAIoghhgCAAAAAAAAABQsO+5NvxfwLgEAAAAAAAAAUARRIAAAAAAAAAAAoAiiQAAAAAAAAAAAQBHEHAQAAAAAAAAAgAJlsbOYHQF5wBMEAAAAAAAAAAAUQRQIAAAAAAAAAAAoghhiCChCPFLPmR3B4JJrGbMjGNgrw+wIBhZlmx0hRxfdypodwagwXqoTiWYnMEg/d97sCAbZ9Qrn46eZ2fZmRzB4dP0YsyMYbGkzxewIBoXxOmU6OJkdIUfFTx00O4KRp5fZCQxOZfiYHcGghGvh+29MpoOL2RFydM3B3ewIBk4OKWZHMHA6k2R2BIPipQvf/8c4/JFsdoR7RlZ24bs31eVC4Xv/sh0czY5wz7B3L2l2BOC+Uvh+SwMAAAAAAAAAgLuOAgEAAAAAAAAAAEUQBQIAAAAAAAAAAIogCgQAAAAAAAAAABRBTFIMAAAAAAAAAChYFu5NvxfwLgEAAAAAAAAAUARRIAAAAAAAAAAAoAiiQAAAAAAAAAAAQBHEHAQAAAAAAAAAgIJlZzE7AfKAJwgAAAAAAAAAACiCKBAAAAAAAAAAAFAEUSAA/r+oqChZLBZduHDB7Cg5ioyMlLe3t/V1eHi46tSpY1oeAAAAAAAAAPc2CgQolMLCwmSxWAzL4cOHTc3l7+9vzeLm5qaQkBC9//77+erjdr/Y79y5sw4dOpTv/QAAAAAAAAAgJxQIUGi1adNGycnJNkvlypXNjqVJkyYpOTlZv/zyi/7973+rT58++vrrr+/6cV1dXVWmTJm7fhwAAAAAAAAARQMFAhRazs7O8vHxsVns7e0lSdu2bVPDhg3l7OwsX19fjRo1ShkZGdZ9U1NTNXjwYJUpU0YuLi566KGHFBMTY9P/unXrFBgYKFdXV7Vs2VLHjh3LUy5PT0/5+PioSpUqGjlypEqUKKFNmzZZt1+4cEG9e/dW6dKl5eXlpUceeUR79uyR9NcwQRMnTtSePXusTyJERkZKkt566y2FhITI3d1dfn5+GjBggFJSUqz9/n2IIQAAAAAAAAC4ExQIcM/57bff9Pjjj6tBgwbas2ePIiIitGjRIk2ePNnaZsSIEVq5cqWWLl2qn3/+WQEBAWrdurXOnTsnSTpx4oQ6dOigdu3aKTY2Vr1799aoUaPylSMrK0srV67U+fPn5eTkZF3/3HPP6fTp0/r666+1a9cu1atXT48++qjOnTunzp07a+jQoapZs6b1qYjOnTtLkuzs7DRnzhzt379fS5cu1TfffKMRI0YUwBUDAAAAAAAAACMKBCi01q5dKw8PD+vy3HPPSZLmzZsnPz8/zZ07V9WrV1f79u01ceJEzZw5U1lZWbp8+bIiIiL03//+V23btlVwcLAWLlwoV1dXLVq0SJIUERGhqlWraubMmQoKClLXrl0VFhaWp1wjR46Uh4eHnJ2d9eyzz6p48eLq3bu3JOn777/Xjh079Nlnn6l+/fqqVq2a3nzzTXl7e+vzzz+Xq6urPDw85ODgYH0qwtXVVZL06quvqmXLlvL399cjjzyiyZMn69NPP73t65eamqpLly7ZLKlpabfdHwAAAAAAAID7i4PZAYCbadmypSIiIqyv3d3dJUlxcXFq3LixLBaLdVvTpk2VkpKiX3/9VRcuXFB6erqaNm1q3e7o6KiGDRsqLi7O2kejRo1sjte4ceM85Ro+fLjCwsKUnJys4cOHa8CAAQoICJAk7dmzRykpKSpZsqTNPlevXlViYmKu/W7evFnTpk3TwYMHdenSJWVkZOjatWu6cuWK3Nzc8pTtRtOmTdPEiRNt1g0b0FsjBvbJd18AAAAAAABAflgs3Jt+L6BAgELL3d3d+sV7YVKqVCkFBAQoICBAn332mUJCQlS/fn0FBwcrJSVFvr6+ioqKMuyX2/wBx44d05NPPqn+/ftrypQpKlGihL7//nv16tVLaWlpt1UgGD16tIYMGWKz7tKRvfnuBwAAAAAAAMD9iTIO7jk1atTQ9u3blZ2dbV0XHR0tT09PVahQQVWrVpWTk5Oio6Ot29PT0xUTE6Pg4GBrHzt27LDp98cff8x3Fj8/P3Xu3FmjR4+WJNWrV0+///67HBwcrEWE60upUqUkSU5OTsrMzLTpZ9euXcrKytLMmTP1r3/9S4GBgTp58mS+89zI2dlZXl5eNovzDXMlAAAAAAAAACjaKBDgnjNgwACdOHFCL7/8sg4ePKg1a9ZowoQJGjJkiOzs7OTu7q7+/ftr+PDhWr9+vQ4cOKA+ffroypUr6tWrlySpX79+SkhI0PDhwxUfH69PPvlEkZGRt5XnlVde0f/+9z/t3LlToaGhaty4sdq3b6+NGzfq2LFj+uGHHzRmzBjt3LlTkuTv76+jR48qNjZWZ8+eVWpqqgICApSenq533nlHR44c0Ycffqj58+cX1CUDAAAAAAAAAAMKBLjnlC9fXuvWrdOOHTtUu3Zt9evXT7169dLYsWOtbaZPn66OHTuqW7duqlevng4fPqwNGzaoePHikqSKFStq5cqVWr16tWrXrq358+dr6tSpt5UnODhYjz32mMaPHy+LxaJ169apWbNm6tGjhwIDA/X888/r+PHjKlu2rCSpY8eOatOmjVq2bKnSpUtr2bJlql27tt566y3NmDFDDzzwgD7++GNNmzbtzi8WAAAAAAAAYAY7y/233Ics2TeO0wLgvnbmwI5bN/qHpTiXMDuCQabszY5gYK/MWzcyQVYhnHAoO7vw/Qe7/A8fmx3BIOPcebMjGCQ/+YrZEXJ0LcvF7AgGgUnrzY5gsKXNFLMjGDy6fozZEQzSivuaHSFHDpcvmB3BwO7iWbMjGOwNeMHsCAY1/oy+daN/WKZD4fu9KUkXPCuYHcHA68opsyMYuCUfMjuCwe9VHzY7goHPoSizI+TI5fGXzI5gsP9wstkRDConf292BINsB0ezI9wzUt1Lmh3BoEStwvd7qjC4vHDsrRvdY9z7TDY7QoErfN/sAAAAAAAAAACAu44CAQAAAAAAAAAARRAFAgAAAAAAAAAAiiAKBAAAAAAAAAAAFEEUCAAAAAAAAAAAKIIoEAAAAAAAAAAAUAQ5mB0AAAAAAAAAAHB/sdhxb/q9gHcJAAAAAAAAAIAiiAIBAAAAAAAAAABFEAUCAAAAAAAAAACKIAoEAAAAAAAAAAAUQUxSDAAAAAAAAAAoWBaL2QmQBxQIgCLkkkspsyMYuKanmB3B4KJDSbMjGNjpmtkRcuSScdnsCPeE7IoBZkcwcCxxwewIBtkqnH882lsyzY5gkHk43uwIBo+uH2N2BIMtbaaYHcGg6Y4IsyPk6FLpwvd7yvvcKbMjGHg6Fr6/W7LtHc2OcM9wTz1vdgQDu8x0syMYpJWqYHYEgxR5mR3BIM2nstkRcuRidoAc2FmyzI5gkFKy8L1/FhW+61RYpTq4mR3BoITZAYA7wBBDAAAAAAAAAAAUQRQIAAAAAAAAAAAogigQAAAAAAAAAABQBFEgAAAAAAAAAACgCKJAAAAAAAAAAABAEUSBAAAAAAAAAACAIsjB7AAAAAAAAAAAgPuMHfem3wt4lwAAAAAAAAAAKIIoEAAAAAAAAAAAUARRIAAAAAAAAAAAoAiiQHAPiY6OVkhIiBwdHdW+fXuz4+RJeHi46tSpY8qxo6KiZLFYdOHChTy1b9GihV599dW7mgkAAAAAAAAoEiyW+2+5D1EgKEAnTpxQz549Va5cOTk5OalSpUp65ZVX9McffxRI/0OGDFGdOnV09OhRRUZGFkifd+LYsWOyWCw5Lj/++ONdOWZ+Cg5NmjRRcnKyihUrlqf2q1at0uuvv2597e/vr1mzZt1GSls3KzxERkbK29v7jvsHAAAAAAAAgNvhYHaA+8WRI0fUuHFjBQYGatmyZapcubL279+v4cOH6+uvv9aPP/6oEiVK3NExEhMT1a9fP1WoUOG2+0hLS5OTk9Md5fi7zZs3q2bNmjbrSpYsWaDHyK/09HQ5OTnJx8cnz/vc6fsDAAAAAAAAAPcSniAoIAMHDpSTk5M2btyo5s2bq2LFimrbtq02b96s3377TWPGjLG29ff319SpU9WzZ095enqqYsWKeu+9927a9/U79f/44w/17NlTFotFkZGRyszMVK9evVS5cmW5uroqKChIs2fPttk3LCxM7du315QpU1SuXDkFBQVZ+/v000/18MMPy9XVVQ0aNNChQ4cUExOj+vXry8PDQ23bttWZM2duee4lS5aUj4+PzeLo6HjT9u+//75q1KghFxcXVa9eXfPmzbPZ/uuvv6pLly4qUaKE3N3dVb9+ff3000+KjIzUxIkTtWfPHuuTCtefpLBYLIqIiNBTTz0ld3d3TZkyJcchhqKjo9WiRQu5ubmpePHiat26tc6fPy/J9k7/Fi1a6Pjx43rttdesx7p8+bK8vLz0+eef2+RdvXq13N3d9eeff97yWuUmKipKDRs2lLu7u7y9vdW0aVMdP37cun3NmjWqV6+eXFxcVKVKFU2cOFEZGRl3dEwAAAAAAAAARRcFggJw7tw5bdiwQQMGDJCrq6vNNh8fH3Xt2lUrVqxQdna2df3MmTNVv3597d69WwMGDFD//v0VHx+fY/9+fn5KTk6Wl5eXZs2apeTkZHXu3FlZWVmqUKGCPvvsMx04cEDjx4/Xf/7zH3366ac2+2/ZskXx8fHatGmT1q5da10/YcIEjR07Vj///LMcHBz0wgsvaMSIEZo9e7a+++47HT58WOPHjy/AKyV9/PHHGj9+vKZMmaK4uDhNnTpV48aN09KlSyVJKSkpat68uX777Td9+eWX2rNnj0aMGKGsrCx17txZQ4cOVc2aNZWcnGy9DteFh4frmWee0b59+9SzZ0/DsWNjY/Xoo48qODhY27dv1/fff6927dopMzPT0HbVqlWqUKGCJk2aZD2Wu7u7nn/+eS1ZssSm7ZIlS/Tss8/K09Pztq9LRkaG2rdvr+bNm2vv3r3avn27XnrpJVn+/9hm3333nbp3765XXnlFBw4c0IIFCxQZGakpU6bc9jEBAAAAAAAAFG0MMVQAEhISlJ2drRo1auS4vUaNGjp//rzOnDmjMmXKSJIef/xxDRgwQJI0cuRIvf3229q6dauCgoIM+9vb28vHx0cWi0XFihWzGTZn4sSJ1n9XrlxZ27dv16effqpOnTpZ17u7u+v999+3Di107NgxSdKwYcPUunVrSdIrr7yiLl26aMuWLWratKkkqVevXnma66BJkyays7OtNaWkpOTYdsKECZo5c6Y6dOhgzXz9C+8XX3xRn3zyic6cOaOYmBjrkD8BAQHW/T08POTg4JDj0EEvvPCCevToYX195MgRm+1vvPGG6tevb/PEwt+HRrquRIkSsre3l6enp82xevfubZ3bwNfXV6dPn9a6deu0efPmHPvJq0uXLunixYt68sknVbVqVUmy+TxNnDhRo0aN0osvvihJqlKlil5//XWNGDFCEyZMuKNjAwAAAAAAACiaKBAUoBufELiVWrVqWf9tsVjk4+Oj06dPS5Latm2r7777TpJUqVIl7d+//6b9vPvuu1q8eLGSkpJ09epVpaWlGSbxDQkJyXHegRszlC1b1tr2xnXXM+VmxYoVNy2O3Ojy5ctKTExUr1691KdPH+v6jIwM60TCsbGxqlu37m3NB1C/fv1ct8fGxuq5557Ld783atiwoWrWrKmlS5dq1KhR+uijj1SpUiU1a9bsjvotUaKEwsLC1Lp1a7Vq1UqhoaHq1KmTfH19JUl79uxRdHS0zRMDmZmZunbtmq5cuSI3NzdDn6mpqUpNTTWsc3Z2vqOsAAAAAAAAAO4PDDFUAAICAmSxWBQXF5fj9ri4OBUvXlylS5e2rvv7GP0Wi0VZWVmS/hqjPzY2VrGxsVq3bt1Nj7t8+XINGzZMvXr10saNGxUbG6sePXooLS3Npp27u3uO+9+Y4fpQNn9fdz1Tbvz8/BQQEGCz5OT6UwULFy60nl9sbKx++eUX/fjjj5JkGKIpP252ntfdSd836t27t/XJiiVLlqhHjx7W65cTLy8vXbx40bD+woUL1sLI9b62b9+uJk2aaMWKFQoMDLRel5SUFE2cONHmuu3bt08JCQlycXHJ8bjTpk1TsWLFbJb58+ffwZkDAAAAAAAAuJ9QICgAJUuWVKtWrTRv3jxdvXrVZtvvv/+ujz/+WJ07d871S+QblS9f3vpFe6VKlW7aLjo6Wk2aNNGAAQNUt25dBQQEKDEx8Y7O5W4qW7asypUrpyNHjhgKCpUrV5b011MNsbGxOnfuXI59ODk55ThnQF7UqlVLW7ZsyXP7mx3r3//+t44fP645c+bowIED1mF/biYoKEg///yzYf3PP/+swMBAm3V169bV6NGj9cMPP+iBBx7QJ598IkmqV6+e4uPjDdctICDAMLzTdaNHj9bFixdtln79+uX19AEAAAAAAADc5ygQFJC5c+cqNTVVrVu31rfffqsTJ05o/fr1atWqlcqXL39XJpOtVq2adu7cqQ0bNujQoUMaN26cYmJiCvw4t/LHH3/o999/t1muXbuWY9uJEydq2rRpmjNnjg4dOqR9+/ZpyZIleuuttyRJXbp0kY+Pj9q3b6/o6GgdOXJEK1eu1Pbt2yVJ/v7+Onr0qGJjY3X27FnDEDq5GT16tGJiYjRgwADt3btXBw8eVEREhM6ePZtje39/f3377bf67bffbNoUL15cHTp00PDhw/XYY4+pQoUKuR63f//+OnTokAYPHqy9e/cqPj5eb731lpYtW6ahQ4dKko4eParRo0dr+/btOn78uDZu3KiEhATr0E3jx4/XBx98oIkTJ2r//v2Ki4vT8uXLNXbs2Jse19nZWV5eXjYLwwsBAAAAAADgn2Cxs7vvlvvR/XlWJrj+ZX2VKlXUqVMnVa1aVS+99JJatmyp7du339aY+rfSt29fdejQQZ07d1ajRo30xx9/WCc+/ieFhobK19fXZlm9enWObXv37q33339fS5YsUUhIiJo3b67IyEjrEwROTk7auHGjypQpo8cff1whISGaPn267O3tJUkdO3ZUmzZt1LJlS5UuXVrLli3Lc87AwEBt3LhRe/bsUcOGDdW4cWOtWbNGDg45T8UxadIkHTt2TFWrVrUZHkr6awLntLQ09ezZ85bHrVKlir799lsdPHhQoaGhatSokT799FN99tlnatOmjSTJzc1NBw8eVMeOHRUYGKiXXnpJAwcOVN++fSVJrVu31tq1a7Vx40Y1aNBA//rXv/T222/n+oQJAAAAAAAAAOTGkp2fmXUBSJI+/PBDvfbaazp58mSOE0AXVolHjpgdwcA1PcXsCAYXHUqaHcHAWTk/lWM258wrZke4JxRPvvlk82axS7lgdgSD49WfMDtCjjKycy4km8l/y1yzIxjYBwSZHcFgS5uCf4LzTjXdEWF2hBxdcy1udgQD7/hosyMYHH3gGbMjGJS/eMDsCAZZFnuzI+Qo3Sn3OcvM4Jh22ewIBnZZ6WZHMEgqVtvsCAYVL+0zO0KOvOq1MjuCQVzib2ZHMCiZmmx2BAOLbj0HJP6S6uBmdgSDCoEPmB2hULr64WSzIxQ41243H83jXlX4/o8XKMSuXLmi5ORkTZ8+XX379r2nigMAAAAAAAAAcCOGGALy4Y033lD16tXl4+Oj0aNHmx0HAAAAAAAAAG4bBQIgH8LDw5Wenq4tW7bIw8PD7DgAAAAAAAAAcNsoEAAAAAAAAAAAUARRIAAAAAAAAAAAoAhikmIAAAAAAAAAQMGycG/6vYB3CQAAAAAAAACAIogCAQAAAAAAAAAARRAFAgAAAAAAAAAAiiDmIAAAAAAAAAAAFCw7i9kJkAc8QQAAAAAAAAAAQBFEgQAAAAAAAAAAgCKIAgEAAAAAAAAAAEUQcxAARYh9VobZEQzS7F3MjmDgoMJ3nSzKNjtCjlLt3cyOYHAt29XsCAbuXmXMjmDg5OBodgSDK1mF772TCufPX1bdJmZHMMh0cDI7gkHTHRFmRzCIbtjf7Ag5qhn3P7MjGGSV8jU7gkF2duEbR/eKWymzIxg4Zlw1O0KOzrmUMzuCQQlLstkRDNIL4d/nhfG/xSnuZc2OkCMvswPkICu78N2betXJ0+wIBpbsLLMjGGRZ7M2OkCOnzGtmRwDuK4XvtzQAAAAAAAAAALjrKBAAAAAAAAAAAFAEUSAAAAAAAAAAAKAIokAAAAAAAAAAAEARxCTFAAAAAAAAAIACZbFwb/q9gHcJAAAAAAAAAIAiiAIBAAAAAAAAAABFEAUCAAAAAAAAAACKIOYgAAAAAAAAAAAULDuL2QmQBzxBAAAAAAAAAABAEUSBAIVKVFSULBaLLly4YFoGi8Wi1atX39VjhIWFqX379nf1GAAAAAAAAACQGwoEuKmwsDBZLBbDcvjwYVNz+fv7W7O4u7urXr16+uyzz0zNlF+zZ89WZGSk2TEAAAAAAAAAFGEUCJCrNm3aKDk52WapXLmy2bE0adIkJScna/fu3WrQoIE6d+6sH374wexYeVasWDF5e3ubHQMAAAAAAABAEUaBALlydnaWj4+PzWJvby9J2rZtmxo2bChnZ2f5+vpq1KhRysjIsO6bmpqqwYMHq0yZMnJxcdFDDz2kmJgYm/7XrVunwMBAubq6qmXLljp27Fiecnl6esrHx0eBgYF699135erqqv/973/KzMxUr169VLlyZbm6uiooKEizZ8827L948WLVrFnTmn3QoEE3PdaECRPk6+urvXv3SpJGjhypwMBAubm5qUqVKho3bpzS09Nt9pk8ebLKlCkjT09P9e7dW6NGjVKdOnWs2/8+xFCLFi00ePBgjRgxQiVKlJCPj4/Cw8Nt+jx48KAeeughubi4KDg4WJs3b/5HhkMCAAAAAAAAcH+iQIDb8ttvv+nxxx9XgwYNtGfPHkVERGjRokWaPHmytc2IESO0cuVKLV26VD///LMCAgLUunVrnTt3TpJ04sQJdejQQe3atVNsbKz1i/T8cnBwkKOjo9LS0pSVlaUKFSros88+04EDBzR+/Hj95z//0aeffmptHxERoYEDB+qll17Svn379OWXXyogIMDQb3Z2tl5++WV98MEH+u6771SrVi1JfxUnIiMjdeDAAc2ePVsLFy7U22+/bd3v448/1pQpUzRjxgzt2rVLFStWVERExC3PY+nSpXJ3d9dPP/2kN954Q5MmTdKmTZskSZmZmWrfvr3c3Nz0008/6b333tOYMWPyfa0AAAAAAAAA4DoHswOgcFu7dq08PDysr9u2bavPPvtM8+bNk5+fn+bOnSuLxaLq1avr5MmTGjlypMaPH6+rV68qIiJCkZGRatu2rSRp4cKF2rRpkxYtWqThw4crIiJCVatW1cyZMyVJQUFB2rdvn2bMmJHnfGlpaZo5c6YuXryoRx55RI6Ojpo4caJ1e+XKlbV9+3Z9+umn6tSpk6S/7u4fOnSoXnnlFWu7Bg0a2PSbkZGhf//739q9e7e+//57lS9f3rpt7Nix1n/7+/tr2LBhWr58uUaMGCFJeuedd9SrVy/16NFDkjR+/Hht3LhRKSkpuZ5LrVq1NGHCBElStWrVNHfuXG3ZskWtWrXSpk2blJiYqKioKPn4+EiSpkyZolatWuX5WgEAAAAAAADAjSgQIFctW7a0ufvd3d1dkhQXF6fGjRvLYrFYtzVt2lQpKSn69ddfdeHCBaWnp6tp06bW7Y6OjmrYsKHi4uKsfTRq1MjmeI0bN85TrpEjR2rs2LG6du2aPDw8NH36dD3xxBOSpHfffVeLFy9WUlKSrl69qrS0NOvwPqdPn9bJkyf16KOP5tr/a6+9JmdnZ/34448qVaqUzbYVK1Zozpw5SkxMVEpKijIyMuTl5WXdHh8frwEDBtjs07BhQ33zzTe5HvP6EwrX+fr66vTp09Y+/fz8rMWB633mJjU1VampqX9blyZnZ6dc9wMAAAAAAADumIXBa+4FvEvIlbu7uwICAqyLr6+v2ZEkScOHD1dsbKx+/fVXnT9/XiNHjpQkLV++XMOGDVOvXr20ceNGxcbGqkePHkpLS5Mkubq65qn/Vq1a6bffftOGDRts1m/fvl1du3bV448/rrVr12r37t0aM2aMtf874ejoaPPaYrEoKyvrtvubNm2aihUrZrNELFhwpzEBAAAAAAAA3CcoEOC21KhRQ9u3b1d2drZ1XXR0tDw9PVWhQgVVrVpVTk5Oio6Otm5PT09XTEyMgoODrX3s2LHDpt8ff/wxT8cvVaqUAgIC5OPjY/MUQ3R0tJo0aaIBAwaobt26CggIUGJionW7p6en/P39tWXLllz7f+qpp/TJJ5+od+/eWr58uXX9Dz/8oEqVKmnMmDGqX7++qlWrpuPHj9vsGxQUZJiM+e+v8ysoKEgnTpzQqVOn8tzn6NGjdfHiRZulf9++d5QDAAAAAAAAwP2DAgFuy4ABA3TixAm9/PLLOnjwoNasWaMJEyZoyJAhsrOzk7u7u/r376/hw4dr/fr1OnDggPr06aMrV66oV69ekqR+/fopISFBw4cPV3x8vD755BNFRkbeUa5q1app586d2rBhgw4dOqRx48YZvkgPDw/XzJkzNWfOHCUkJOjnn3/WO++8Y+jrmWee0YcffqgePXro888/t/aflJSk5cuXKzExUXPmzNEXX3xhs9/LL7+sRYsWaenSpUpISNDkyZO1d+9em0JGfrVq1UpVq1bViy++qL179yo6Oto6F8LN+nV2dpaXl5fNwvBCAAAAAAAAAK6jQIDbUr58ea1bt047duxQ7dq11a9fP/Xq1ctmAt/p06erY8eO6tatm+rVq6fDhw9rw4YNKl68uCSpYsWKWrlypVavXq3atWtr/vz5mjp16h3l6tu3rzp06KDOnTurUaNG+uOPPwzzAbz44ouaNWuW5s2bp5o1a+rJJ59UQkJCjv09++yzWrp0qbp166ZVq1bpqaee0muvvaZBgwapTp06+uGHHzRu3Dibfbp27arRo0dr2LBhqlevno4ePaqwsDC5uLjc9nnZ29tr9erVSklJUYMGDdS7d2+NGTNGku6oXwAAAAAAAABFlyX7xjFiANwVrVq1ko+Pjz788MMC6zM6OloPPfSQDh8+rKpVq+Zpn2OHDxXY8e9n6RZnsyMYOCjd7Ag5ytbtPxlzt1zLzttcI/+kcn8eNDuCgdOV82ZHMIgv09zsCDmyqPD9qVT1/I5bN/qHZTsUvqfUsiz2ZkcwiG7Y3+wIOaoZ9z+zIxiUObXP7AgGx8o2NjuCQYmMU7du9A9zzLhqdoQcnXX1MzuCQYnUZLMjGKTbF74bkM7blzY7gkHxzDNmR8hRuaBaZkcw2H+48H3OPXTJ7AgGluzbn4PwbimMf0tJklPmNbMjGBTGn73C4NpnM82OUOBcnhtqdoQC52B2AOB+c+XKFc2fP1+tW7eWvb29li1bps2bN2vTpk131O8XX3whDw8PVatWTYcPH9Yrr7yipk2b5rk4AAAAAAAAAAA3okAAFDCLxaJ169ZpypQpunbtmoKCgrRy5UqFhobeUb9//vmnRo4cqaSkJJUqVUqhoaGaOfP+q8QCAAAAAAAA+GdQIAAKmKurqzZv3lzg/Xbv3l3du3cv8H4BAAAAAAAAFE1MUgwAAAAAAAAAQBFEgQAAAAAAAAAAgCKIAgEAAAAAAAAAAEUQBQIAAAAAAAAAAIogCgQAAAAAAAAAgIJlZ3f/Lbfh3Xfflb+/v1xcXNSoUSPt2LEjT/stX75cFotF7du3v63j5hUFAgAAAAAAAAAACtiKFSs0ZMgQTZgwQT///LNq166t1q1b6/Tp07nud+zYMQ0bNkwPP/zwXc9IgQAAAAAAAAAAgAL21ltvqU+fPurRo4eCg4M1f/58ubm5afHixTfdJzMzU127dtXEiRNVpUqVu56RAgEAAAAAAAAAALeQmpqqS5cu2Sypqak5tk1LS9OuXbsUGhpqXWdnZ6fQ0FBt3779pseYNGmSypQpo169ehV4/pxQIAAAAAAAAAAAFCyL3X23TJs2TcWKFbNZpk2bluPpnz17VpmZmSpbtqzN+rJly+r333/PcZ/vv/9eixYt0sKFCwv87bgZh3/sSAAAAAAAAAAA3KNGjx6tIUOG2KxzdnYukL7//PNPdevWTQsXLlSpUqUKpM+8oEAAFCHZlsL30FC6nMyOYOCV/ofZEQyc0lLMjpCjy64lzY5gcD67uNkRDByvXTI7goElPc3sCAYV0o+YHSFH55x9zY5gcMm7otkRDIqfOmh2BINLpQPMjmBQM+5/ZkfI0f4a7cyOYOC69xOzIxgcvlD21o3+YTVLXDM7goFnVqbZEXJU7vx+syMYnC9WyewIBt6XksyOYFD8z8L33v254WuzI+Rs2gdmJzBw159mRzDwWjHL7AgGWenpZkcwcGve0uwIOTpToZ7ZEVCEOTs757kgUKpUKdnb2+vUqVM260+dOiUfHx9D+8TERB07dkzt2v3f3+ZZWVmSJAcHB8XHx6tq1ap3kD5nhe/bQgAAAAAAAAAA7mFOTk568MEHtWXLFuu6rKwsbdmyRY0bNza0r169uvbt26fY2Fjr8tRTT6lly5aKjY2Vn5/fXcnJEwQAAAAAAAAAABSwIUOG6MUXX1T9+vXVsGFDzZo1S5cvX1aPHj0kSd27d1f58uU1bdo0ubi46IEHHrDZ39vbW5IM6wsSBQIAAAAAAAAAAApY586ddebMGY0fP16///676tSpo/Xr11snLk5KSpKdnbmD/FAgAAAAAAAAAADgLhg0aJAGDRqU47aoqKhc942MjCz4QH/DHAQAAAAAAAAAABRBFAgAAAAAAAAAACiCGGIIAAAAAAAAAFCw7CxmJ0Ae8AQBAAAAAAAAAABFEAUCAAAAAAAAAACKIAoEAAAAAAAAAAAUQYWqQBAWFqb27dtbX2dnZ+ull15SiRIlZLFYFBsbe9eO3aJFC7366qt3rX8Ufn///BV24eHhqlOnjtkxAAAAAAAAACOL3f233Idu66y2b98ue3t7PfHEEwUaZvbs2YqMjLS+Xr9+vSIjI7V27VolJyfrgQceKNDj5UdmZqamT5+u6tWry9XVVSVKlFCjRo30/vvvF0j/kZGR8vb2LpC+ClJKSoocHR21fPlym/XPP/+8LBaLjh07ZrPe399f48aNu+PjFlTBJioqShaLRRaLRXZ2dipWrJjq1q2rESNGKDk52abt3z9/AAAAAAAAAHA/u60CwaJFi/Tyyy/r22+/1cmTJ+84RGZmprKyslSsWDGbL8kTExPl6+urJk2ayMfHRw4ODnd8rNs1ceJEvf3223r99dd14MABbd26VS+99JIuXLhgWqZ/goeHh+rXr6+oqCib9VFRUfLz87NZf/ToUR0/flyPPPLIPxsyD+Lj43Xy5EnFxMRo5MiR2rx5sx544AHt27fP2ubvnz8AAAAAAAAAuJ/lu0CQkpKiFStWqH///nriiSdyvOP6yy+/VLVq1eTi4qKWLVtq6dKlslgs1i/Tr98t/+WXXyo4OFjOzs5KSkqyGeIlLCxML7/8spKSkmSxWOTv7y9JSk1N1eDBg1WmTBm5uLjooYceUkxMjM3xt23bpoYNG8rZ2Vm+vr4aNWqUMjIyrNsvX76s7t27y8PDQ76+vpo5c+Ytz/vLL7/UgAED9Nxzz6ly5cqqXbu2evXqpWHDhkmSPvjgA5UsWVKpqak2+7Vv317dunWTJO3Zs0ctW7aUp6envLy89OCDD2rnzp2KiopSjx49dPHiRevd7uHh4dbzHTZsmMqXLy93d3c1atTI5kv569dy7dq1CgoKkpubm5599llduXJFS5culb+/v4oXL67BgwcrMzPTut+8efOs71HZsmX17LPP3vTcW7ZsaXPMuLg4Xbt2Tf3797dZHxUVJWdnZzVu3FiJiYl6+umnVbZsWXl4eKhBgwbavHmzTb83yxAWFqZt27Zp9uzZ1utx/UmFX375RW3btpWHh4fKli2rbt266ezZs7d8/8qUKSMfHx8FBgbq+eefV3R0tEqXLq3+/ftb2/x9iKHPP/9cISEhcnV1VcmSJRUaGqrLly/btJ04caJKly4tLy8v9evXT2lpadb9b/VZPX/+vLp27arSpUvL1dVV1apV05IlS6zbR44cqcDAQLm5ualKlSoaN26c0tPTb3muAAAAAAAAAJAX+S4QfPrpp6pevbqCgoL073//W4sXL1Z2drZ1+9GjR/Xss8+qffv22rNnj/r27asxY8YY+rly5YpmzJih999/X/v371eZMmVsts+ePVuTJk1ShQoVlJycbP1idcSIEVq5cqWWLl2qn3/+WQEBAWrdurXOnTsnSfrtt9/0+OOPq0GDBtqzZ48iIiK0aNEiTZ482dr38OHDtW3bNq1Zs0YbN25UVFSUfv7551zP28fHR998843OnDmT4/bnnntOmZmZ+vLLL63rTp8+ra+++ko9e/aUJHXt2lUVKlRQTEyMdu3apVGjRsnR0VFNmjTRrFmz5OXlpeTkZCUnJ1sLD4MGDdL27du1fPly7d27V88995zatGmjhIQEm2s5Z84cLV++XOvXr1dUVJSeeeYZrVu3TuvWrdOHH36oBQsW6PPPP5ck7dy5U4MHD9akSZMUHx+v9evXq1mzZjc995YtWyo+Pt46JM/WrVv10EMP6ZFHHrEpEGzdulWNGzeWi4uLUlJS9Pjjj2vLli3avXu32rRpo3bt2ikpKemWGWbPnq3GjRurT58+1uvh5+enCxcu6JFHHlHdunW1c+dOrV+/XqdOnVKnTp1yfe9y4urqqn79+ik6OlqnT582bE9OTlaXLl3Us2dPxcXFKSoqSh06dLD5rG/ZssW6bdmyZVq1apUmTpxo3X6rz+q4ceN04MABff3114qLi1NERIRKlSpl3d/T01ORkZE6cOCAZs+erYULF+rtt9/O97kCAAAAAAAAQE7yPWbPokWL9O9//1uS1KZNG128eFHbtm1TixYtJEkLFixQUFCQ/vvf/0qSgoKC9Msvv2jKlCk2/aSnp2vevHmqXbt2jscpVqyYPD09ZW9vLx8fH0l/3fkfERGhyMhItW3bVpK0cOFCbdq0SYsWLdLw4cM1b948+fn5ae7cubJYLKpevbpOnjypkSNHavz48bpy5YoWLVqkjz76SI8++qgkaenSpapQoUKu5/3WW2/p2WeflY+Pj2rWrKkmTZro6aeftuZwdXXVCy+8oCVLlui5556TJH300UeqWLGi9dokJSVp+PDhql69uiSpWrVqNudrsVis53q9/ZIlS5SUlKRy5cpJkoYNG6b169dryZIlmjp1qvVaRkREqGrVqpKkZ599Vh9++KFOnTolDw8PBQcHq2XLltq6das6d+6spKQkubu768knn5Snp6cqVaqkunXr3vTcmzZtKicnJ0VFRalLly6KiopS8+bN9eCDD+rs2bM6evSoKleurG3btqlXr16SpNq1a9u8t6+//rq++OILffnllxo0aFCuGYoVKyYnJye5ubnZXI+5c+eqbt261vOWpMWLF8vPz0+HDh1SYGBgru/h311/H44dO2YoUCUnJysjI0MdOnRQpUqVJEkhISE2bZycnLR48WK5ubmpZs2amjRpkoYPH67XX39dV69eveVnNSkpSXXr1lX9+vUlyfqUzHVjx461/tvf31/Dhg3T8uXLNWLEiHydJwAAAAAAAADkJF9PEMTHx2vHjh3q0qWLJMnBwUGdO3fWokWLbNo0aNDAZr+GDRsa+nJyclKtWrXyFTYxMVHp6elq2rSpdZ2jo6MaNmyouLg4SX8Nf9O4cWNZLBZrm6ZNmyolJUW//vqrEhMTlZaWpkaNGlm3lyhRQkFBQbkeOzg4WL/88ot+/PFH9ezZU6dPn1a7du3Uu3dva5s+ffpo48aN+u233yT9NfxPWFiYNcuQIUPUu3dvhYaGavr06UpMTMz1mPv27VNmZqYCAwPl4eFhXbZt22azr5ubm7U4IElly5aVv7+/PDw8bNZdv1O+VatWqlSpkqpUqaJu3brp448/1pUrV26aw83NTQ0aNLA+LXC9IOTg4KAmTZooKipKR44cUVJSklq2bCnpr6Gohg0bpho1asjb21seHh6Ki4uzPkGQ3wzSX0M0bd261eZaXP+S/1bXMifXnwa48bNyXe3atfXoo48qJCREzz33nBYuXKjz588b2ri5uVlfN27cWCkpKTpx4kSePqv9+/fX8uXLVadOHY0YMUI//PCDTf8rVqxQ06ZN5ePjIw8PD40dO9Z6/fIiNTVVly5dsln+PgQWAAAAAAAAgKIrXwWCRYsWKSMjQ+XKlZODg4McHBwUERGhlStX6uLFi/k6sKura45fzBZmdnZ2atCggV599VWtWrVKkZGRWrRokY4ePSpJqlu3rmrXrq0PPvhAu3bt0v79+xUWFmbdPzw8XPv379cTTzyhb775RsHBwfriiy9ueryUlBTZ29tr165dio2NtS5xcXGaPXu2tZ2jo6PNfhaLJcd1WVlZkv4auubnn3/WsmXL5Ovrq/Hjx6t27dq5Trh8/QmE/fv36+rVq6pXr54kqXnz5tq6dau2bt0qNzc3a+Fl2LBh+uKLLzR16lR99913io2NVUhIiHWM/tvJkJKSonbt2tlci9jYWCUkJOQ6RNLNXP+i/u937kuSvb29Nm3apK+//lrBwcF65513FBQUZH2vC0Lbtm11/Phxvfbaazp58qQeffRR69BS27dvV9euXfX4449r7dq12r17t8aMGWMzx8GtTJs2TcWKFbNZIuYvKLD8AAAAAAAAAO5teS4QZGRk6IMPPtDMmTNtvpzds2ePypUrp2XLlkn6a0ihnTt32uz790mEb1fVqlXl5OSk6Oho67r09HTFxMQoODhYklSjRg1t377dZqz46OhoeXp6qkKFCqpataocHR31008/WbefP39ehw4dynee68e8PnGtJPXu3VuRkZFasmSJQkND5efnZ7NPYGCgXnvtNW3cuFEdOnSwTkrr5ORkM4mw9FfBITMzU6dPn1ZAQIDNcuPQO7fDwcFBoaGheuONN7R3714dO3ZM33zzzU3bt2zZUgkJCfrkk0/00EMPyd7eXpLUrFkzbdu2TVFRUdahiKS/rnlYWJieeeYZhYSEyMfHxzrRcF4y5HQ96tWrp/3798vf399wPdzd3fN1/levXtV7772nZs2aqXTp0jm2sVgsatq0qSZOnKjdu3fLycnJpqCzZ88eXb161fr6xx9/lIeHh/z8/PL0WZWk0qVL68UXX9RHH32kWbNm6b333pMk/fDDD6pUqZLGjBmj+vXrq1q1ajp+/Hi+znH06NG6ePGizdK/X9989QEAAAAAAADcFovl/lvuQ3kuEKxdu1bnz59Xr1699MADD9gsHTt2tA4z1LdvXx08eFAjR47UoUOH9OmnnyoyMlJSzkO55Ie7u7v69++v4cOHa/369Tpw4ID69OmjK1euWMe+HzBggE6cOKGXX35ZBw8e1Jo1azRhwgQNGTJEdnZ28vDwUK9evTR8+HB98803+uWXXxQWFiY7u9wvxbPPPqu3335bP/30k44fP66oqCgNHDhQgYGB1mFuJOmFF17Qr7/+qoULF1onJ5b++kJ60KBBioqK0vHjxxUdHa2YmBjVqFFD0l93saekpGjLli06e/asrly5osDAQHXt2lXdu3fXqlWrdPToUe3YsUPTpk3TV199ddvXce3atZozZ45iY2N1/PhxffDBB8rKysp1mKUmTZrI2dlZ77zzjpo3b25d37BhQ50+fVpr1qyxDi8k/TW/wqpVq6xFpBdeeMH6BENeMvj7++unn37SsWPHdPbsWWVlZWngwIE6d+6cunTpopiYGCUmJmrDhg3q0aOHoZjwd6dPn9bvv/+uhIQELV++XE2bNtXZs2cVERGRY/uffvpJU6dO1c6dO5WUlKRVq1bpzJkz1vdLktLS0tSrVy8dOHBA69at04QJEzRo0CDZ2dnl6bM6fvx4rVmzRocPH9b+/fu1du1aa//VqlVTUlKSli9frsTERM2ZMyfXp01y4uzsLC8vL5vF2dk5X30AAAAAAAAAuH/luUCwaNEihYaGqlixYoZtHTt21M6dO7V3715VrlxZn3/+uVatWqVatWopIiJCY8aMkaQC+XJy+vTp6tixo7p166Z69erp8OHD2rBhg4oXLy5JKl++vNatW6cdO3aodu3a6tevn3r16mUz4et///tfPfzww2rXrp1CQ0P10EMP6cEHH8z1uK1bt9b//vc/tWvXToGBgXrxxRdVvXp1bdy4UQ4O/zfXc7FixdSxY0d5eHioffv21vX29vb6448/1L17dwUGBqpTp05q27atJk6cKOmvL+D79eunzp07q3Tp0nrjjTckSUuWLFH37t01dOhQBQUFqX379oqJiVHFihVv+xp6e3tr1apVeuSRR1SjRg3Nnz9fy5YtU82aNW+6j4uLi/71r3/pzz//tE66LP31nl5ff2OB4K233lLx4sXVpEkTtWvXTq1bt7YOS5SXDMOGDZO9vb2Cg4NVunRp60TN0dHRyszM1GOPPaaQkBC9+uqr8vb2vmWBJygoSOXKldODDz6o6dOnKzQ0VL/88ovN3fw38vLy0rfffqvHH39cgYGBGjt2rGbOnGmdcFiSHn30UVWrVk3NmjVT586d9dRTTyk8PNy6/VafVScnJ40ePVq1atVSs2bNZG9vr+XLl0uSnnrqKb322msaNGiQ6tSpox9++EHjxo3L9RwBAAAAAAAAID8s2TeOxXOXTJkyRfPnz9eJEyfu9qEKhUcffVQ1a9bUnDlzzI6CuyQsLEwXLlzQ6tWrzY6SL0cTD5sdwSBdTmZHMPBK/8PsCAZOaSlmR8jRZdeSZkcwOJ19Z0Ow3Q3V//jW7AgGdqlXb93oH5ZSpqrZEXJ0ztnX7AgGHpkXzI5gUPzUQbMjGFwqHWB2BINrDvkbFvGfsr9GO7MjGNTf+4nZEQx+ulzH7AgGNUvkbxjKf4LntXNmR8iR65WzZkcwOF+sktkRDLwvJZkdwcDxz8L3mfpzw9dmR8hRmWkfmB3B4Njh/A/pfLcVW/G22REMstLTzY5g4Na85a0bmeBMhXq3bvQPq1itxq0bFUHXvnzX7AgFzuWpgWZHKHAOt26Sf/PmzVODBg1UsmRJRUdH67///a8GDRp0Nw5VqJw/f15RUVGKiorSvHnzzI4DAAAAAAAAAMBN3ZUCQUJCgiZPnqxz586pYsWKGjp0qEaPHn03DlWo1K1bV+fPn9eMGTNyHc8fAAAAAAAAAACz3ZUCwdtvv6233y58j2vdbceOHTM7Av4h1yfeBgAAAAAAAIB7VZ4nKQYAAAAAAAAAAPcPCgQAAAAAAAAAABRBd2WIIQAAAAAAAABAEWbHven3At4lAAAAAAAAAACKIAoEAAAAAAAAAAAUQRQIAAAAAAAAAAAogpiDAAAAAAAAAABQsCwWsxMgD3iCAAAAAAAAAACAIogCAQAAAAAAAAAARRAFAgAAAAAAAAAAiiDmIACKEEt2ltkRDHwuxZsdwSC5WHWzIxi4OLiZHSFHxS8eMzuCQVpxF7MjGNif/tXsCEbXrpidwOBSxUZmR8hRaqaz2REMKu1aZ3YEI08vsxMYeJ87ZXYEg6xSvmZHyJHr3k/MjmCws9YLZkcwqHNgtdkRDEonxZodwcBy6oTZEXKUXrWW2REMyuz+yuwIBteq1TM7gsFxv4fNjmBQ9vlyZke4Z6So8P2N4PVUV7MjGFiys82OYHC1kI4fb5+dYXYE4L7CEwQAAAAAAAAAABRBFAgAAAAAAAAAACiCKBAAAAAAAAAAAFAEMQcBAAAAAAAAAKBgWbg3/V7AuwQAAAAAAAAAQBFEgQAAAAAAAAAAgCKIAgEAAAAAAAAAAEUQBQIAAAAAAAAAAIogJikGAAAAAAAAABQsO+5NvxfwLgEAAAAAAAAAUARRIICpoqKiZLFYdOHCBbOj/GPCw8NVp04ds2MAAAAAAAAAKOIoEMAqLCxMFovFsBw+fNjUXP7+/tYs7u7uqlevnj777DNTM92JYcOGacuWLWbHAAAAAAAAAFDEUSCAjTZt2ig5OdlmqVy5stmxNGnSJCUnJ2v37t1q0KCBOnfurB9++CHHtmlpaf9wuvzx8PBQyZIlzY4BAAAAAAAAoIijQAAbzs7O8vHxsVns7e0lSdu2bVPDhg3l7OwsX19fjRo1ShkZGdZ9U1NTNXjwYJUpU0YuLi566KGHFBMTY9P/unXrFBgYKFdXV7Vs2VLHjh3LUy5PT0/5+PgoMDBQ7777rlxdXfW///1P0l9PGLz++uvq3r27vLy89NJLL0mSVq5cqZo1a8rZ2Vn+/v6aOXOmTZ+pqakaOXKk/Pz85OzsrICAAC1atMi6/ZdfflHbtm3l4eGhsmXLqlu3bjp79qx1++eff66QkBC5urqqZMmSCg0N1eXLlyX9NXRSw4YN5e7uLm9vbzVt2lTHjx+XZBxiKCwsTO3bt9ebb74pX19flSxZUgMHDlR6erq1TXJysp544gm5urqqcuXK+uSTT+Tv769Zs2bl6foBAAAAAAAAwN9RIECe/Pbbb3r88cfVoEED7dmzRxEREVq0aJEmT55sbTNixAitXLlSS5cu1c8//6yAgAC1bt1a586dkySdOHFCHTp0ULt27RQbG6vevXtr1KhR+c7i4OAgR0dHmycF3nzzTdWuXVu7d+/WuHHjtGvXLnXq1EnPP/+89u3bp/DwcI0bN06RkZHWfbp3765ly5Zpzpw5iouL04IFC+Th4SFJunDhgh555BHVrVtXO3fu1Pr163Xq1Cl16tRJ0l9f2Hfp0kU9e/ZUXFycoqKi1KFDB2VnZysjI0Pt27dX8+bNtXfvXm3fvl0vvfSSLBbLTc9p69atSkxM1NatW7V06VJFRkYasp48eVJRUVFauXKl3nvvPZ0+fTrf1w4AAAAAAAAArnMwOwAKl7Vr11q/JJektm3b6rPPPtO8efPk5+enuXPnymKxqHr16jp58qRGjhyp8ePH6+rVq4qIiFBkZKTatm0rSVq4cKE2bdqkRYsWafjw4YqIiFDVqlWtd/IHBQVp3759mjFjRp7zpaWlaebMmbp48aIeeeQR6/pHHnlEQ4cOtb7u2rWrHn30UY0bN06SFBgYqAMHDui///2vwsLCdOjQIX366afatGmTQkNDJUlVqlSx7j937lzVrVtXU6dOta5bvHix/Pz8dOjQIaWkpCgjI0MdOnRQpUqVJEkhISGSpHPnzunixYt68sknVbVqVUlSjRo1cj2v4sWLa+7cubK3t1f16tX1xBNPaMuWLerTp48OHjyozZs3KyYmRvXr15ckvf/++6pWrVqerxsAAAAAAAAA/B0FAtho2bKlIiIirK/d3d0lSXFxcWrcuLHNXfBNmzZVSkqKfv31V124cEHp6elq2rSpdbujo6MaNmyouLg4ax+NGjWyOV7jxo3zlGvkyJEaO3asrl27Jg8PD02fPl1PPPGEdfv1L86vi4uL09NPP22zrmnTppo1a5YyMzMVGxsre3t7NW/ePMfj7dmzR1u3brUpllyXmJioxx57TI8++qhCQkLUunVrPfbYY3r22WdVvHhxlShRQmFhYWrdurVatWql0NBQderUSb6+vjc9v5o1a1qHcpIkX19f7du3T5IUHx8vBwcH1atXz7o9ICBAxYsXz+WK/TWEUmpq6t/WpcnZ2SnX/QAAAAAAAIA7lstoGig8GGIINtzd3RUQEGBdcvtS+580fPhwxcbG6tdff9X58+c1cuRIm+3XCxl55erqmuv2lJQU61BINy4JCQlq1qyZ7O3ttWnTJn399dcKDg7WO++8o6CgIB09elSStGTJEm3fvl1NmjTRihUrFBgYqB9//PGmx3N0dLR5bbFYlJWVla9z+rtp06apWLFiNkvEggV31CcAAAAAAACA+wcFAuRJjRo1tH37dmVnZ1vXRUdHy9PTUxUqVFDVqlXl5OSk6Oho6/b09HTFxMQoODjY2seOHTts+s3tS/MblSpVSgEBAfLx8cl1LP8b896Y5XrewMBA2dvbKyQkRFlZWdq2bVuO+9erV0/79++Xv7+/TcEkICDAWoywWCxq2rSpJk6cqN27d8vJyUlffPGFtY+6detq9OjR+uGHH/TAAw/ok08+ydO5/l1QUJAyMjK0e/du67rDhw/r/Pnzue43evRoXbx40Wbp37fvbWUAAAAAAAAAcP+hQIA8GTBggE6cOKGXX35ZBw8e1Jo1azRhwgQNGTJEdnZ2cnd3V//+/TV8+HCtX79eBw4cUJ8+fXTlyhX16tVLktSvXz8lJCRo+PDhio+P1yeffGIzEW9BGjp0qLZs2aLXX39dhw4d0tKlSzV37lwNGzZMkuTv768XX3xRPXv21OrVq3X06FFFRUXp008/lSQNHDhQ586dU5cuXRQTE6PExERt2LBBPXr0UGZmpn766SdNnTpVO3fuVFJSklatWqUzZ86oRo0aOnr0qEaPHq3t27fr+PHj2rhxoxISEm45D8HNVK9eXaGhoXrppZe0Y8cO7d69Wy+99JJcXV1zLZY4OzvLy8vLZmF4IQAAAAAAAADXUSBAnpQvX17r1q3Tjh07VLt2bfXr10+9evXS2LFjrW2mT5+ujh07qlu3bqpXr54OHz6sDRs2WMfKr1ixolauXKnVq1erdu3amj9/vs0kwAWpXr16+vTTT7V8+XI98MADGj9+vCZNmqSwsDBrm4iICD377LMaMGCAqlevrj59+ujy5cuSpHLlyik6OlqZmZl67LHHFBISoldffVXe3t6ys7OTl5eXvv32Wz3++OMKDAzU2LFjNXPmTLVt21Zubm46ePCgOnbsqMDAQL300ksaOHCg+t7B3fsffPCBypYtq2bNmumZZ55Rnz595OnpKRcXlzu9VAAAAAAAAEDBs9jdf8t9yJJ945gxAO4Jv/76q/z8/LR582Y9+uijed7v2OFDdzHV7Slx6bjZEQySi1U3O4KBS/YVsyPkqPjFY2ZHMDhTvJrZEQzK71tndgSja4XvM/Vbg2fNjpCjy5nGCevNFrhzidkRjDy9zE5glJlpdgKDrFKFY36nv/uzhL/ZEQx21nrB7AgGIQdWmx3BoPRvsWZHMLCcOmF2hBylV61ldgQDxyO/mB3B4Fq1emZHMPjdK9DsCAZlUxLNjpCj4rWbmx3B4JfDv5sdwaDc1cNmRzAqjF/PFdIJZq86FzM7gkH5wBCzIxRK1zYWwv9vuUMuj/UwO0KBczA7AIBb++abb5SSkqKQkBAlJydrxIgR8vf3V7NmzcyOBgAAAAAAAOAeRYEAuAekp6frP//5j44cOSJPT081adJEH3/8sRwdHc2OBgAAAAAAAOAeRYEAuAe0bt1arVu3NjsGAAAAAAAAgPvI/TmzAgAAAAAAAAAAyBUFAgAAAAAAAAAAiiAKBAAAAAAAAAAAFEEUCAAAAAAAAAAAKIKYpBgAAAAAAAAAULAsFrMTIA94ggAAAAAAAAAAgCKIAgEAAAAAAAAAAEUQBQIAAAAAAAAAAIog5iAAAAAAAAAAABQsO+5NvxfwLgEAAAAAAAAAUATxBAFQhNhlZ5odwSDNycPsCAYZ2YXvV+MVS+G7TpLk5F7W7AgGHqnnzY5gcLjms2ZHMEjNcjI7gkFqqqPZEXJU2umc2REMTjVob3YEg1MZPmZHMPB0TDE7gkF2tsXsCDk6fKHw/T6vc2C12REM9gW3NzuCQYtvZ5gdwSA1uInZEXJ00jXA7AgGPsHFzI5gkOJS0uwIBhZlmx3BYJflX2ZHyFGo2QFy4KFLZkcw2Gt50OwIBhnZhe8e3kpuv5sdIUfZKpx/TwH3qsL32wcAAAAAAAAAANx1FAgAAAAAAAAAACiCKBAAAAAAAAAAAFAEUSAAAAAAAAAAAKAIokAAAAAAAAAAAEAR5GB2AAAAAAAAAADA/SXbYjE7AvKAJwgAAAAAAAAAACiCKBAAAAAAAAAAAFAEUSAAAAAAAAAAAKAIYg4CAAAAAAAAAEDBsnBv+r2Ad6mQaNGihV599VXra39/f82aNcv62mKxaPXq1f94rnvRlStX1LFjR3l5eclisejChQtmRzIICwtT+/btzY4BAAAAAAAAoAijQJCLsLAwWSwWw3L48OHb7jMqKirHL61XrVql119//ab7JScnq23btrd93LvB399fFotFy5cvN2yrWbOmLBaLIiMj//FcS5cu1XfffacffvhBycnJKlas2B33WdBf6M+ePduUawMAAAAAAAAA11EguIU2bdooOTnZZqlcufJt9ZWenn7TbSVKlJCnp+dNt/v4+MjZ2fm2jnsr2dnZysjIuK19/fz8tGTJEpt1P/74o37//Xe5u7sXRLx8S0xMVI0aNfTAAw/Ix8dHFovFlBw5yczMVFZWlooVKyZvb2+z4wAAAAAAAAAowigQ3IKzs7N8fHxsFnt7e0nSmjVrVK9ePbm4uKhKlSqaOHGizRftFotFEREReuqpp+Tu7q4+ffqoZcuWkqTixYvLYrEoLCxMknGIob+7cYih8PDwHJ9suH5HelZWlqZNm6bKlSvL1dVVtWvX1ueff27t6/pTDF9//bUefPBBOTs76/vvv9eePXvUsmVLeXp6ysvLSw8++KB27tyZ6/Xp2rWrtm3bphMnTljXLV68WF27dpWDg+0UF2+99ZZCQkLk7u4uPz8/DRgwQCkpKdbtkZGR8vb21oYNG1SjRg15eHhYCzTX5XSd2rdvb3MdZ86cqW+//VYWi0UtWrSQJH344YeqX7++PD095ePjoxdeeEGnT5+26Wf//v168skn5eXlJU9PTz388MNKTExUeHi4li5dqjVr1livdVRUVI5Pg8TGxspisejYsWM25/Tll18qODhYzs7OSkpKMjyR0KJFCw0ePFgjRoxQiRIl5OPjo/DwcJt8Bw8e1EMPPSQXFxcFBwdr8+bNDD0FAAAAAAAA4LZRILhN3333nbp3765XXnlFBw4c0IIFCxQZGakpU6bYtAsPD9czzzyjffv2aeLEiVq5cqUkKT4+XsnJyZo9e3a+jz1s2DCbJxrefPNNubm5qX79+pKkadOm6YMPPtD8+fO1f/9+vfbaa/r3v/+tbdu22fQzatQoTZ8+XXFxcapVq5a6du2qChUqKCYmRrt27dKoUaPk6OiYa5ayZcuqdevWWrp0qaS/xv9fsWKFevbsaWhrZ2enOXPmaP/+/Vq6dKm++eYbjRgxwqbNlStX9Oabb+rDDz/Ut99+q6SkJA0bNizP12bVqlXq06ePGjdurOTkZK1atUrSX09vvP7669qzZ49Wr16tY8eOWYsKkvTbb7+pWbNmcnZ21jfffKNdu3apZ8+eysjI0LBhw9SpUyebp0maNGmS50xXrlzRjBkz9P7772v//v0qU6ZMju2WLl0qd3d3/fTTT3rjjTc0adIkbdq0SdJfTx60b99ebm5u+umnn/Tee+9pzJgxec4AAAAAAAAAAH/ncOsmRdvatWvl4eFhfd22bVt99tlnmjhxokaNGqUXX3xRklSlShW9/vrrGjFihCZMmGBt/8ILL6hHjx7W10ePHpUklSlT5raHmPHw8LBm+vHHHzV27FgtXbpUDzzwgFJTUzV16lRt3rxZjRs3tmb7/vvvtWDBAjVv3tzaz6RJk9SqVSvr66SkJA0fPlzVq1eXJFWrVi1PeXr27KmhQ4dqzJgx+vzzz1W1alXVqVPH0O7vkzBPnjxZ/fr107x586zr09PTNX/+fFWtWlWSNGjQIE2aNClvF0Z/DdXk5uYmJycn+fj42GS8rkqVKpozZ44aNGiglJQUeXh46N1331WxYsW0fPlya1EkMDDQuo+rq6tSU1Nt+syr9PR0zZs3T7Vr1861Xa1atayfnWrVqmnu3LnasmWLWrVqpU2bNikxMVFRUVHWDFOmTLF5/wAAAAAAAAAgPygQ3ELLli0VERFhfX19XP09e/YoOjra5omBzMxMXbt2TVeuXJGbm5skWe/qvxuSkpLUvn176x3uknT48GFduXLF8MVxWlqa6tata7Pu79mGDBmi3r1768MPP1RoaKiee+456xf1uXniiSfUt29fffvtt1q8eHGOTw9I0ubNmzVt2jQdPHhQly5dUkZGhuF6ubm52RzT19fXMBTQ7di1a5fCw8O1Z88enT9/XllZWZL+uobBwcGKjY3Vww8/fMsnJm6Hk5OTatWqdct2f29z47nHx8fLz8/PpkDRsGHDXPtLTU1Vamqq7bq0NDk7OeU1OgAAAAAAAID7GEMM3YK7u7sCAgKsi6+vryQpJSVFEydOVGxsrHXZt2+fEhIS5OLiYrP/3XD58mU99dRTaty4sc0d9tfH9P/qq69ssh04cMBmHoKcsoWHh2v//v164okn9M033yg4OFhffPHFLbM4ODioW7dumjBhgn766Sd17drV0ObYsWN68sknVatWLa1cuVK7du3Su+++K+mv4sV1f/+C3mKxKDs72/razs7O5rWU++TP0l/XqnXr1vLy8tLHH3+smJgY63ldP7arq+stz/Pv7Oz++vG5MU9OWVxdXfM0UXJO5369kHE7pk2bpmLFitks8+a/d9v9AQAAAAAAALi/8ATBbapXr57i4+MVEBCQr/2c/v/d25mZmbd97OzsbP373/9WVlaWPvzwQ5svn2+cCPfG4YTyKjAwUIGBgXrttdfUpUsXLVmyRM8888wt9+vZs6fefPNNde7cWcWLFzds37Vrl7KysjRz5kzrF+uffvppvvOVLl3aZtLizMxM/fLLL9bJn3Ny8OBB/fHHH5o+fbr8/PwkyTD5cq1atbR06VKlp6fn+BSBk5OT4T0rXbq0JCk5Odl6zrGxsfk+p7wICgrSiRMndOrUKZUtW1aSFBMTk+s+o0eP1pAhQ2zWnTpx9K7kAwAAAAAAAGxYuDf9XsC7dJvGjx+vDz74QBMnTtT+/fsVFxen5cuXa+zYsbnuV6lSJVksFq1du1Znzpyx3vGfH+Hh4dq8ebMWLFiglJQU/f777/r999919epVeXp6atiwYXrttde0dOlSJSYm6ueff9Y777xjnUg4J1evXtWgQYMUFRWl48ePKzo6WjExMapRo0aeMtWoUUNnz57VkiVLctweEBCg9PR0vfPOOzpy5Ig+/PBDzZ8/P9/n/sgjj+irr77SV199pYMHD6p///66cOFCrvtUrFhRTk5O1mN/+eWXev31123aDBo0SJcuXdLzzz+vnTt3KiEhQR9++KHi4+Ml/TVnwt69exUfH6+zZ88qPT1dAQEB8vPzU3h4uBISEvTVV19p5syZ+T6nvGjVqpWqVq2qF198UXv37lV0dLT1s3azpxOcnZ3l5eVlszC8EAAAAAAAAIDrKBDcptatW2vt2rXauHGjGjRooH/96196++23ValSpVz3K1++vHWC47Jly2rQoEH5Pva2bduUkpKiJk2ayNfX17qsWLFCkvT6669r3LhxmjZtmmrUqKE2bdroq6++UuXKlW/ap729vf744w91795dgYGB6tSpk9q2bauJEyfmOVfJkiVvOlRP7dq19dZbb2nGjBl64IEH9PHHH2vatGn5O3H99aTCiy++qO7du6t58+aqUqVKrk8PSH/d6R8ZGanPPvtMwcHBmj59ut58801D9m+++UYpKSlq3ry5HnzwQS1cuND6NEGfPn0UFBSk+vXrq3Tp0oqOjpajo6OWLVumgwcPqlatWpoxY4YmT56c73PKC3t7e61evVopKSlq0KCBevfurTFjxkiSzZBWAAAAAAAAAJBXluy/D+gO4J4QHR2thx56SIcPH87TZNKSlJQQd5dT5Z9b6gWzIxiccvE3O4KBneX256O4m7zTz5gdwcAu+/aHcLtbzjiWNzuCQWpW4XuiKDWz4CeKLwilnc6ZHcHAKfua2REMTmX4mB3BwNMx/09q3m3Z2beel8gMhy+UNTuCQZ1ih8yOYLAvuL3ZEQxafDvD7AgGqR6lzI6Qo5Ou+Rse9p/gc63wDQGa4lLS7AgGqZb8zxl3t524XMbsCDkKreVsdgSDY4cL3+/zY9f8zI5gkJFV+O7hreT+u9kRcpStwvf3VGDVimZHKJSuRi0zO0KBc23RxewIBY45CIB7xBdffCEPDw9Vq1ZNhw8f1iuvvKKmTZvmuTgAAAAAAAAAADeiQADcI/7880+NHDlSSUlJKlWqlEJDQ+/anAcAAAAAAAAA7n8UCIB7RPfu3dW9e3ezYwAAAAAAAAC4TxS+Ac4AAAAAAAAAAMBdxxMEAAAAAAAAAIAClW0pfBNKw4gnCAAAAAAAAAAAKIIoEAAAAAAAAAAAUARRIAAAAAAAAAAAoAiiQAAAAAAAAAAAQBHEJMUAAAAAAAAAgIJl4d70ewHvEgAAAAAAAAAARRAFAgAAAAAAAAAAiiAKBAAAAAAAAAAAFEHMQQAUIXbZmWZHMPA4edDsCAbJVaqYHcHATllmR8iR98l9ZkcwOF2xodkRDCpdiDU7goElM93sCAYJJRqbHeGeUfrkHrMjGJRwTTQ7gkG2vaPZEQyuuJUyO0KOapa4ZnYEg9JJsWZHMGjx7QyzIxhENRtpdgSDR/833OwIOSrvW/j+FnY9ccDsCAbOZSuZHcHgsqev2REMSjgkmx3hJgrf38KXsr3NjmAQ5BBvdgSDDHsnsyMYuF69aHaEHF1z8jQ7AnBf4QkCAAAAAAAAAACKIAoEAAAAAAAAAAAUQRQIAAAAAAAAAAAogpiDAAAAAAAAAABQsCwWsxMgD3iCAAAAAAAAAACAIogCAQAAAAAAAAAARRAFAgAAAAAAAAAAiiDmIAAAAAAAAAAAFCw77k2/F/AuAQAAAAAAAABQBFEgAAAAAAAAAACgCKJAAAAAAAAAAABAEUSBAChgYWFhat++vfXfFotFFotFTk5OCggI0KRJk5SRkSFJioqKsm63WCwqW7asOnbsqCNHjlj7s1gsWr16da7HAQAAAAAAAID8okAA3GVt2rRRcnKyEhISNHToUIWHh+u///2vTZv4+HidPHlSn332mfbv36927dopMzPTpMQAAAAAAAAAigIKBMBd5uzsLB8fH1WqVEn9+/dXaGiovvzyS5s2ZcqUka+vr5o1a6bx48frwIEDOnz4sEmJAQAAAAAAABQFFAiAf5irq6vS0tJy3S4p1zYAAAAAAAAAcKcoEAD/kOzsbG3evFkbNmzQI488kmOb5ORkvfnmmypfvryCgoL+4YQAAAAAAAAAihIHswMA97u1a9fKw8ND6enpysrK0gsvvKDw8HCbNhUqVFB2drauXLmi2rVra+XKlXJycrqj46ampio1NdV2XVqanO+wXwAAAAAAAOBWsi0WsyMgD3iCALjLWrZsqdjYWCUkJOjq1ataunSp3N3dbdp899132rt3ry5duqTY2Fg1atTIus3T01MXL1409HvhwgUVK1bspsedNm2aihUrZrO8u+D9gjsxAAAAAAAAAPc0CgTAXebu7q6AgABVrFhRDg45P7RTuXJlVa1aVZ6enoZtQUFB2rVrl826zMxM7dmzR4GBgTc97ujRo3Xx4kWbZWDf3nd2MgAAAAAAAADuGwwxBBRyQ4YMUa9evVS9enW1atVKly9f1jvvvKPz58+rd++bf+Hv7OwsZ2dnm3WXGF4IAAAAAAAAwP9HgQAo5Lp06aLs7Gy99dZbGjVqlNzc3PTggw/q22+/VdmyZc2OBwAAAAAAABhZGLzmXkCBAChgkZGROf47Jy1atFB2dvYt+3zhhRf0wgsv3GEyAAAAAAAAAPg/lHEAAAAAAAAAACiCKBAAAAAAAAAAAFAEUSAAAAAAAAAAAKAIokAAAAAAAAAAAEARRIEAAAAAAAAAAIAiiAIBAAAAAAAAAABFkIPZAQAAAAAAAAAA95dsC/em3wt4lwAAAAAAAAAAKIIoEAAAAAAAAAAAUARRIMD/Y+/e43uu//+P39/b7HxyGDPGHGbmNGchhfSZQz50IglDUhKSkk+ZU6Jyzil8mKQcSvKRKKJYoqktMjNqTTWHRJrDzPb+/eHr/fP2eo+N8Rrv2/VyeV8ue79ez9fzdX+93stnn9fj/Xw+AQAAAAAAAABOiDUIAAAAAAAAAACFy2IxOwHygREEAAAAAAAAAAA4IQoEAAAAAAAAAAA4IaYYApzIBRd3syMYHT9qdgID76qnzY5g4GLNNTuCQ5bMU2ZHMPDMzjQ7goFL9jmzIxhYLmSbHcHAzZJjdgSHXIpgrlwPL7MjGOS4eZod4bZQ7MJZsyM45Jdb9H7PLUcOmR3BIKtGM7MjGNz3vxfNjmCwqeNbZkdw6L5PXjA7gsHB+SvNjmAQOmqE2REM3LOL3t/nyD+LxWp2BAOvs3+ZHcHA6uJqdgQDi7XofXaS5FLMx+wIwB2FEQQAAAAAAAAAADghCgQAAAAAAAAAADghCgQAAAAAAAAAADghCgQAAAAAAAAAADghCgQAAAAAAAAAADghN7MDAAAAAAAAAADuLFYL302/HfApAQAAAAAAAADghCgQAAAAAAAAAADghCgQAAAAAAAAAADghFiDAAAAAAAAAABQuCwWsxMgHxhBgCIjLCxM06ZNs723WCxavXr1DfUZExOjzp0731Aft1LLli01ZMgQ2/sr7wkAAAAAAAAAFBYKBDcoJiZGFotFTz/9tGHfs88+K4vFopiYmFsf7A6QkZGhdu3a3dRzxMXFKTAwsFD6SkpK0r///W+VLl1anp6eCgsLU9euXXX06NF897Fq1SqNGzeuUPIAAAAAAAAAwNVQICgEoaGhWrZsmc6ePWvbdu7cOb3//vuqUKGCicn+v/Pnz5sdocCCg4Pl4eFhdox8OXbsmO677z6VKFFCGzZsUHJyshYtWqSQkBCdPn063/2UKFFCfn5+NzEpAAAAAAAAAFxEgaAQ1K9fX6GhoVq1apVt26pVq1ShQgXVq1fPru369et19913KzAwUCVLltQDDzyggwcP2vanpaXJYrFo1apVatWqlby9vRUVFaXt27fb2owePVp169a163fatGkKCwuzvb80tc748eMVEhKiiIgISdKhQ4fUpUsXBQYGqkSJEurUqZPS0tLyvLacnBz17dtXlSpVkpeXlyIiIjR9+nS7NpfONWbMGAUFBcnf319PP/20XVGiZcuWGjhwoAYOHKiAgACVKlVKI0eOlNVqzfPcV04xdK3sOTk5Gjp0qO3evvTSS1ftf8uWLerdu7f+/vtvWSwWWSwWjR49WpJ04sQJ9ezZU8WLF5e3t7fatWun1NTUPPuKj4/X33//rQULFqhevXqqVKmSWrVqpalTp6pSpUq2dl999ZUaN24sDw8PlS1bVi+//LIuXLhgd58un2LoclarVaNHj1aFChXk4eGhkJAQDRo0KM9MAAAAAAAAAHA1FAgKSZ8+fbRo0SLb+4ULF6p3796GdqdPn9bQoUOVkJCgTZs2ycXFRQ8++KByc3Pt2r3yyisaNmyYEhMTVa1aNXXr1s3uQXJ+bNq0SSkpKfriiy+0du1aZWdnKzo6Wn5+ftq6davi4+Pl6+urtm3b5jnCIDc3V+XLl9fKlSu1d+9excbG6j//+Y9WrFhhOFdycrK2bNmiDz74QKtWrdKYMWPs2ixevFhubm7auXOnpk+frilTpmjBggX5upb8ZJ88ebLi4uK0cOFCbdu2TX/99Zc+/vjjPPts1qyZpk2bJn9/f2VkZCgjI0PDhg2TdLHokZCQoDVr1mj79u2yWq1q3769srOzHfYVHBysCxcu6OOPP86zKPH777+rffv2atSokZKSkjRnzhz997//1WuvvZave/DRRx9p6tSpeuedd5SamqrVq1erdu3a+ToWAAAAAAAAAK7kZnaAO8UTTzyhESNG6Ndff5V08Rvly5Yt05YtW+zaPfzww3bvFy5cqKCgIO3du1e1atWybR82bJg6dOggSRozZoxq1qypAwcOqHr16vnO5OPjowULFsjd3V2S9N577yk3N1cLFiyQ5f9WEV+0aJECAwO1ZcsW/etf/zL0UaxYMbsH/ZUqVdL27du1YsUKdenSxbbd3d1dCxculLe3t2rWrKmxY8fqxRdf1Lhx4+TicrEOFRoaqqlTp8pisSgiIkK7d+/W1KlT1a9fv2tey/Lly6+Zfdq0aRoxYoQeeughSdLcuXO1YcOGPPt0d3dXQECALBaLgoODbdtTU1O1Zs0axcfHq1mzZpKkpUuXKjQ0VKtXr9ajjz5q6Ouuu+7Sf/7zHz3++ON6+umn1bhxY7Vu3Vo9e/ZUmTJlJEmzZ89WaGioZs6cKYvFourVq+uPP/7Q8OHDFRsba7tPeUlPT1dwcLDatGmjYsWKqUKFCmrcuPE17x0AAAAAAAAAOMIIgkISFBSkDh06KC4uTosWLVKHDh1UqlQpQ7vU1FR169ZNlStXlr+/v21aoPT0dLt2derUsf1ctmxZSSrQYreSVLt2bVtxQLq4iO6BAwfk5+cnX19f+fr6qkSJEjp37pzdNEdXmjVrlho0aKCgoCD5+vpq3rx5hrxRUVHy9va2vW/atKkyMzN16NAh27a77rrL9nD/UpvU1FTl5ORc81qulf3vv/9WRkaGmjRpYjvGzc1NDRs2vGbfV0pOTpabm5tdXyVLllRERISSk5PzPG78+PE6fPiw5s6dq5o1a2ru3LmqXr26du/ebeu3adOmdvegefPmyszM1G+//XbNXI8++qjOnj2rypUrq1+/fvr444+vOqokKytLp06dsntlZd1+a1EAAAAAAAAAt6tZs2YpLCxMnp6eatKkiXbu3Jln2/nz56tFixYqXry4ihcvrjZt2ly1fWGgQFCI+vTpo7i4OC1evFh9+vRx2KZjx47666+/NH/+fO3YsUM7duyQZFxEuFixYrafLz1QvjQNkYuLi2EaG0dT3/j4+Ni9z8zMVIMGDZSYmGj32r9/vx5//HGHeZctW6Zhw4apb9+++vzzz5WYmKjevXvf8kWPrye7GUqWLKlHH31UkyZNUnJyskJCQjRp0qRC6Ts0NFQpKSmaPXu2vLy8NGDAAN1zzz15Tns0YcIEBQQE2L3mvPNOoWQBAAAAAAAArsricue9Cmj58uUaOnSoRo0ape+//15RUVGKjo7O84vgW7ZsUbdu3bR582Zt375doaGh+te//qXff//9Rj+NPFEgKESX5sO/NF/+lY4fP66UlBS9+uqruu+++xQZGakTJ04U+DxBQUE6fPiwXZEgMTHxmsfVr19fqampKl26tKpWrWr3CggIcHjMpWl2BgwYoHr16qlq1aoORxskJSXp7NmztvfffvutfH19FRoaatt2qRhyeZvw8HC5urrecPaAgACVLVvW7hwXLlzQrl27rtqvu7u7YQRDZGSkLly4YNfXpc+uRo0a18x6ed9VqlTR6dOnbf1eWs/gkvj4ePn5+al8+fL56tPLy0sdO3bUjBkztGXLFm3fvt02QuFKI0aM0N9//233eqZ//3znBwAAAAAAAHD9pkyZon79+ql3796qUaOG5s6dK29vby1cuNBh+6VLl2rAgAGqW7euqlevrgULFig3N1ebNm26af4T2yIAAQAASURBVBkpEBQiV1dXJScna+/evQ4fehcvXlwlS5bUvHnzdODAAX355ZcaOnRogc/TsmVLHTt2TG+++aYOHjyoWbNm6bPPPrvmcd27d1epUqXUqVMnbd26Vb/88ou2bNmiQYMG5TnFTXh4uBISErRhwwbt379fI0eO1HfffWdod/78efXt21d79+7VunXrNGrUKA0cONBuXv309HQNHTpUKSkp+uCDD/T2229r8ODB+brm/GQfPHiwJk6cqNWrV2vfvn0aMGCATp48edV+w8LClJmZqU2bNunPP//UmTNnFB4erk6dOqlfv37atm2bkpKS9MQTT6hcuXLq1KmTw37Wrl2rJ554QmvXrtX+/fuVkpKiSZMmad26dbZjBgwYoEOHDum5557Tvn379Mknn2jUqFEaOnToNdcfkKS4uDj997//1Z49e/Tzzz/rvffek5eXlypWrOiwvYeHh/z9/e1eHh7uDtsCAAAAAAAAuDrHU3pnOWx7/vx57dq1S23atLFtc3FxUZs2bbR9+/Z8ne/MmTPKzs5WiRIlCiW/IxQICtmlB7GOuLi4aNmyZdq1a5dq1aql559/Xm+99VaBzxEZGanZs2dr1qxZioqK0s6dOzVs2LBrHuft7a2vv/5aFSpU0EMPPaTIyEj17dtX586dyzNz//799dBDD6lr165q0qSJjh8/rgEDBhja3XfffQoPD9c999yjrl276t///rdGjx5t16Znz546e/asGjdurGeffVaDBw/WU089la9rzk/2F154QT169FCvXr3UtGlT+fn56cEHH7xqv82aNdPTTz+trl27KigoSG+++aakiwsgN2jQQA888ICaNm0qq9WqdevW2U39dLkaNWrI29tbL7zwgurWrau77rpLK1as0IIFC9SjRw9JUrly5bRu3Trt3LlTUVFRevrpp9W3b1+9+uqr+boHgYGBmj9/vpo3b646depo48aN+t///qeSJUvm63gAAAAAAAAA18/RlN4TJkxw2PbPP/9UTk6OypQpY7e9TJkyOnz4cL7ON3z4cIWEhNgVGQqbxXrlZPZAAcXExOjkyZNavXp1nm1atmypunXratq0abcsF4zSDuw3O4JB8Hcfmx3B4Pcmj5odwcDFmmt2BIfK/rTB7AgGf4ffZXYEA9+Th67d6BazXHC8fomZDpa9x+wIDnm7nDY7gkGZYz+ZHcHggrvPtRtBOcU8zY7gUI5L0Rtl6L/7S7MjGJyp0czsCAbev+8zO4LBpo4F/xLUrXDfJy+YHcHg4DvLzI5gEDpqhNkRDC4U8zI7wm2jRO27zY5gsPvAEbMjGIT+U/T+lrK6XHv65VvNUkQfGZ7xunnfpL5eIRF1zI5QJP2TsN7sCIXOvXYrw4gBDw8PeXh4GNr+8ccfKleunL755hs1bdrUtv2ll17SV199ZZiO/UoTJ07Um2++qS1btqhOnZv3O+Z203oGAAAAAAAAADglq8VidoRCl1cxwJFSpUrJ1dVVR47YF0qPHDmi4ODgqx47adIkTZw4URs3brypxQGJKYYAAAAAAAAAAChU7u7uatCggd0Cw5cWHL58RMGV3nzzTY0bN07r169Xw4YNb3pORhDghsXFxV2zzZYtW256DgAAAAAAAAAoKoYOHapevXqpYcOGaty4saZNm6bTp0+rd+/eki6u2VquXDnbOgZvvPGGYmNj9f777yssLMy2VoGvr698fX1vSkYKBAAAAAAAAAAAFLKuXbvq2LFjio2N1eHDh1W3bl2tX7/etnBxenq6XFz+/yQ/c+bM0fnz5/XII4/Y9TNq1CiNHj36pmSkQAAAAAAAAAAAwE0wcOBADRw40OG+K2ddSUtLu/mBrsAaBAAAAAAAAAAAOCEKBAAAAAAAAAAAOCEKBAAAAAAAAAAAOCHWIAAAAAAAAAAAFC4L302/HfApAQAAAAAAAADghCgQAAAAAAAAAADghCgQAAAAAAAAAADghCgQAAAAAAAAAADghFikGHAiuRZXsyMY5JavbHYEA9fcC2ZHMPC8cNrsCA6dL1/N7AgGrjnnzY5gcN67uNkRDM67+5odwaB47jGzIzjkdiHb7AgGmQHlzY5gcM7Nx+wIBj5ZJ8yOYPCXZ4jZERwKOfGT2REMsqvUMTuCwR9eVc2OYFCubI7ZEQzu++QFsyM4tKnTZLMjGLT+PNbsCAZZRfD/M3gdP2R2BINs/1JmR7htWGQ1O4KBx4nfzY5gYLEWvfuU61n0/r6TpJO+RfPvKeB2xQgCAAAAAAAAAACcEAUCAAAAAAAAAACcEAUCAAAAAAAAAACcEGsQAAAAAAAAAAAKlVUWsyMgHxhBAAAAAAAAAACAE6JAAAAAAAAAAACAE6JAAAAAAAAAAACAE2INAgAAAAAAAABAobJa+G767YBPCQAAAAAAAAAAJ0SBAAAAAAAAAAAAJ0SBANdly5YtslgsOnnyZL6POXPmjB5++GH5+/sX+FgAAAAAAAAAQOGiQHCTxMTEyGKx6Omnnzbse/bZZ2WxWBQTE3Prg5lo8eLF2rp1q7755htlZGToxIkTslgsSkxMNCXP6NGjZbFYZLFY5ObmprCwMD3//PPKzMy84b7T0tJMvTYAAAAAAAAAuBYKBDdRaGioli1bprNnz9q2nTt3Tu+//74qVKhgYrL/7/z587fsXAcPHlRkZKRq1aql4OBgWSyWW3buvNSsWVMZGRlKS0vTG2+8oXnz5umFF14wO5adW/kZAQAAAAAAAHAeFAhuovr16ys0NFSrVq2ybVu1apUqVKigevXq2bVdv3697r77bgUGBqpkyZJ64IEHdPDgQdv+S99IX7VqlVq1aiVvb29FRUVp+/bttjajR49W3bp17fqdNm2awsLCbO9jYmLUuXNnjR8/XiEhIYqIiJAkHTp0SF26dFFgYKBKlCihTp06KS0trUDXu23bNrVo0UJeXl4KDQ3VoEGDdPr0aUlSy5YtNXnyZH399deyWCxq2bKlKlWqJEmqV6+ebVtevvrqKzVu3FgeHh4qW7asXn75ZV24cMG2v2XLlho0aJBeeukllShRQsHBwRo9evQ1M7u5uSk4OFjly5dX165d1b17d61Zs0aStGTJEjVs2FB+fn4KDg7W448/rqNHj9qOPXHihLp3766goCB5eXkpPDxcixYtkqQ8r61ly5YaMmSIXYbOnTvbjSYJCwvTuHHj1LNnT/n7++upp5665v0FAAAAAAAAgIKiQHCT9enTx/bQWJIWLlyo3r17G9qdPn1aQ4cOVUJCgjZt2iQXFxc9+OCDys3NtWv3yiuvaNiwYUpMTFS1atXUrVs3uwfl+bFp0yalpKToiy++0Nq1a5Wdna3o6Gj5+flp69atio+Pl6+vr9q2bZvvb68fPHhQbdu21cMPP6wff/xRy5cv17Zt2zRw4EBJFwsj/fr1U9OmTZWRkaFVq1Zp586dkqSNGzfatjny+++/q3379mrUqJGSkpI0Z84c/fe//9Vrr71m127x4sXy8fHRjh079Oabb2rs2LH64osvCnRvvLy8bNecnZ2tcePGKSkpSatXr1ZaWprdg/yRI0dq7969+uyzz5ScnKw5c+aoVKlSkpTva8vLpEmTFBUVpR9++EEjR4685v0FAAAAAAAAgIJyMzvAne6JJ57QiBEj9Ouvv0qS4uPjtWzZMm3ZssWu3cMPP2z3fuHChQoKCtLevXtVq1Yt2/Zhw4apQ4cOkqQxY8aoZs2aOnDggKpXr57vTD4+PlqwYIHc3d0lSe+9955yc3O1YMEC27Q/ixYtUmBgoLZs2aJ//etf1+xzwoQJ6t69u+3b8eHh4ZoxY4buvfdezZkzRyVKlJC3t7fc3d0VHBwsSTp16pQkqWTJkrZtjsyePVuhoaGaOXOmLBaLqlevrj/++EPDhw9XbGysXFwu1rnq1KmjUaNG2c4/c+ZMbdq0Sffff3++7suuXbv0/vvvq3Xr1pIuFncuqVy5smbMmKFGjRopMzNTvr6+Sk9PV7169dSwYUNJshupERQUlK9ry0vr1q3tpjp68sknr3p/PT09C3wOAAAAAAAA4Kax8N302wEFgpssKChIHTp0UFxcnKxWqzp06GD7lvnlUlNTFRsbqx07dujPP/+0jRxIT0+3KxDUqVPH9nPZsmUlSUePHi1QgaB27dq24oAkJSUl6cCBA/Lz87Nrd+7cObtpjq4mKSlJP/74o5YuXWrbZrValZubq19++UWRkZH5znel5ORkNW3a1G7NgubNmyszM1O//fabbT2Hy++NdPH+XD4lkCO7d++Wr6+vcnJydP78eXXo0EEzZ86UdLFgMHr0aCUlJenEiRN2n0mNGjX0zDPP6OGHH9b333+vf/3rX+rcubOaNWt23dd5uUtFh0uu5/5mZWUpKyvLsM3Dw6NQMgIAAAAAAAC4vVEguAX69Oljmwpm1qxZDtt07NhRFStW1Pz58xUSEqLc3FzVqlXLMMVPsWLFbD9femB+6cG1i4uLrFarXfvs7GzDuXx8fOzeZ2ZmqkGDBnYPny+59E34a8nMzFT//v01aNAgw75btSDz5fdGunh/rpyi6UoRERFas2aN3NzcFBISYiucnD59WtHR0YqOjtbSpUsVFBSk9PR0RUdH2z6Tdu3a6ddff9W6dev0xRdf6L777tOzzz6rSZMm5Xm+G/mMCnp/J0yYoDFjxthtG/Tccxo8eHCe+QAAAAAAAAA4DwoEt8ClufwtFouio6MN+48fP66UlBTNnz9fLVq0kHRxQdqCCgoK0uHDh2W1Wm3Fg8TExGseV79+fS1fvlylS5eWv79/gc97qY+9e/eqatWq+T7m0sP4nJycq7aLjIzURx99ZHdd8fHx8vPzU/ny5a8r7+UZHGXet2+fjh8/rokTJyo0NFSSlJCQYGgXFBSkXr16qVevXmrRooVefPFFTZo0Kc9rCwoKUkZGhu19Tk6O9uzZo1atWl015/Xc3xEjRmjo0KF2237/7bd8Hw8AAAAAAADgzsZEULeAq6urkpOTtXfvXrm6uhr2Fy9eXCVLltS8efN04MABffnll4YHu/nRsmVLHTt2TG+++aYOHjyoWbNm6bPPPrvmcd27d1epUqXUqVMnbd26Vb/88ou2bNmiQYMG6bd8PlAePny4vvnmGw0cOFCJiYlKTU3VJ598ctVFdEuXLi0vLy+tX79eR44c0d9//+2w3YABA3To0CE999xz2rdvnz755BONGjVKQ4cOta0/UNgqVKggd3d3vf322/r555+1Zs0ajRs3zq5NbGysPvnkEx04cEA//fST1q5da5vqJ69ra926tT799FN9+umn2rdvn5555hmdPHnymnmu5/56eHjI39/f7sX0QgAAAAAAALgVrBbLHfe6E1EguEUuPaB1xMXFRcuWLdOuXbtUq1YtPf/883rrrbcKfI7IyEjNnj1bs2bNUlRUlHbu3Klhw4Zd8zhvb299/fXXqlChgh566CFFRkaqb9++OnfuXL5HFNSpU0dfffWV9u/frxYtWqhevXqKjY1VSEhInse4ublpxowZeueddxQSEqJOnTo5bFeuXDmtW7dOO3fuVFRUlJ5++mn17dtXr776ar6yXY+goCDFxcVp5cqVqlGjhiZOnGiYOsjd3V0jRoxQnTp1dM8998jV1VXLli276rX16dNHvXr1Us+ePXXvvfeqcuXK1xw9IF3f/QUAAAAAAACAq7FYr5wQHcAd6+d8Ljp9KwX/8b3ZEQyOlo0yO4KB54XTZkdwyPvMn2ZHMDjv7mt2BAPXnPPXbnSLFcX7lO1aNEc5ueUa14qB0Tk3n2s3usV8sk6YHcHgL8+iWdwPOfGT2RFuC78G1jU7gkG50ylmRzDw+r3oZZKkTZ0mmx3BoPXnsWZHMMgKLGt2BAOPv4+YHcEg27+U2REc8q9/v9kRDPYcOGx2BIMq6V+YHcHAUgQfz+V6Fr2/7yTpaJnaZkcwCKtazewIRdKJpK/MjlDoikfda3aEQscIAgAAAAAAAAAAnBAFAgAAAAAAAAAAnBAFAgAAAAAAAAAAnBAFAgAAAAAAAAAAnBAFAgAAAAAAAAAAnBAFAgAAAAAAAAAAnJCb2QEAAAAAAAAAAHcWq4Xvpt8O+JQAAAAAAAAAAHBCFAgAAAAAAAAAAHBCFAgAAAAAAAAAAHBCrEEAAAAAAAAAAChcFovZCZAPjCAAAAAAAAAAAMAJUSAAAAAAAAAAAMAJMcUQ4EQsspodwejnZLMTGJwLaWp2BIPzxTzNjuBQwN97zY5gcD7I1+wIBm7nT5sdwcDj1FGzIxikBLcyO4JD/u6nzI5gEHTyoNkRDNzdMs2OYOCSk212BIMSlgyzIzh0IqCi2REMSv/wqdkRDIJrBJgdwcDrUNH73+KD81eaHcGh1p/Hmh3B4Mt/jTU7gkGzhHlmRzA4XSrM7AgGVgvft8wvq4reFCNnSlcxO4JBrkvRe0TnefpPsyM4VCw3y+wIwB2F/0UDAAAAAAAAAMAJUSAAAAAAAAAAAMAJUSAAAAAAAAAAAMAJUSAAAAAAAAAAAMAJFb0VUAAAAAAAAAAAtzUWdL898CkBAAAAAAAAAOCEKBAAAAAAAAAAAOCEKBAAAAAAAAAAAOCEKBAAAAAAAAAAAOCEWKQYAAAAAAAAAFCorLKYHQH5wAgCAAAAAAAAAACcEAUCE8XExMhisejpp5827Hv22WdlsVgUExNz64MVkrS0NFksFrm6uur333+325eRkSE3NzdZLBalpaWZE/A2dem+JiYmmh0FAAAAAAAAwG2MAoHJQkNDtWzZMp09e9a27dy5c3r//fdVoUIFE5P9f+fPn7+h48uVK6d3333XbtvixYtVrly5G+oXAAAAAAAAAHD9KBCYrH79+goNDdWqVats21atWqUKFSqoXr16dm3Xr1+vu+++W4GBgSpZsqQeeOABHTx40Lb/0jfLV61apVatWsnb21tRUVHavn27rc3o0aNVt25du36nTZumsLAw2/uYmBh17txZ48ePV0hIiCIiIiRJhw4dUpcuXRQYGKgSJUqoU6dO+fr2f69evbRo0SK7bYsWLVKvXr3stuXk5Khv376qVKmSvLy8FBERoenTp9u1uZRt0qRJKlu2rEqWLKlnn31W2dnZtjZLlixRw4YN5efnp+DgYD3++OM6evSoXT9r1qxReHi4PD091apVKy1evFgWi0UnT560tdm2bZtatGghLy8vhYaGatCgQTp9+rRtf1hYmF577TX17NlTvr6+qlixotasWaNjx46pU6dO8vX1VZ06dZSQkGB37vz0+/rrr6tPnz7y8/NThQoVNG/ePNv+SpUqSZLq1asni8Wili1bXvMzAAAAAAAAAIArUSAoAvr06WP3AH3hwoXq3bu3od3p06c1dOhQJSQkaNOmTXJxcdGDDz6o3Nxcu3avvPKKhg0bpsTERFWrVk3dunXThQsXCpRp06ZNSklJ0RdffKG1a9cqOztb0dHR8vPz09atWxUfHy9fX1+1bdv2miMM/v3vf+vEiRPatm2bpIsPyE+cOKGOHTvatcvNzVX58uW1cuVK7d27V7GxsfrPf/6jFStW2LXbvHmzDh48qM2bN2vx4sWKi4tTXFycbX92drbGjRunpKQkrV69WmlpaXZTNf3yyy965JFH1LlzZyUlJal///565ZVX7M5x8OBBtW3bVg8//LB+/PFHLV++XNu2bdPAgQPt2k2dOlXNmzfXDz/8oA4dOqhHjx7q2bOnnnjiCX3//feqUqWKevbsKavVWqB+J0+erIYNG+qHH37QgAED9MwzzyglJUWStHPnTknSxo0blZGRYVdcAgAAAAAAAID8cjM7AKQnnnhCI0aM0K+//ipJio+P17Jly7Rlyxa7dg8//LDd+4ULFyooKEh79+5VrVq1bNuHDRumDh06SJLGjBmjmjVr6sCBA6pevXq+M/n4+GjBggVyd3eXJL333nvKzc3VggULZLFcXIF80aJFCgwM1JYtW/Svf/0rz76KFSumJ554QgsXLtTdd9+thQsX6oknnlCxYsUM7caMGWN7X6lSJW3fvl0rVqxQly5dbNuLFy+umTNnytXVVdWrV1eHDh20adMm9evXT9LFgssllStX1owZM9SoUSNlZmbK19dX77zzjiIiIvTWW29JkiIiIrRnzx6NHz/edtyECRPUvXt3DRkyRJIUHh6uGTNm6N5779WcOXPk6ekpSWrfvr369+8vSYqNjdWcOXPUqFEjPfroo5Kk4cOHq2nTpjpy5IiCg4ML1O+AAQNsfUydOlWbN29WRESEgoKCJEklS5ZUcHDw1T9IAAAAAAAAAMgDBYIiICgoSB06dFBcXJysVqs6dOigUqVKGdqlpqYqNjZWO3bs0J9//mkbOZCenm5XIKhTp47t57Jly0qSjh49WqACQe3atW3FAUlKSkrSgQMH5OfnZ9fu3LlzdtMc5aVPnz5q1qyZXn/9da1cuVLbt293OKph1qxZWrhwodLT03X27FmdP3/eMCVSzZo15erqaneNu3fvtr3ftWuXRo8eraSkJJ04ccLuPtWoUUMpKSlq1KiRXZ+NGze2e5+UlKQff/xRS5cutW2zWq3Kzc3VL7/8osjISEn297pMmTKSLt67K7cdPXpUwcHB19WvxWJRcHCwYZqka8nKylJWVpZhm4eHR4H6AQAAAAAAAHBnokBQRPTp08c2zcysWbMctunYsaMqVqyo+fPnKyQkRLm5uapVq5Zhip/Lv5l/6dv+lx6Su7i42Ka7ueTy+fsv8fHxsXufmZmpBg0a2D3YvuTSN9qvpnbt2qpevbq6deumyMhI1apVS4mJiXZtli1bpmHDhmny5Mlq2rSp/Pz89NZbb2nHjh15Xt+la7x0fadPn1Z0dLSio6O1dOlSBQUFKT09XdHR0QVabDkzM1P9+/fXoEGDDPsuXzza0b2+2v2/nn6vvMb8mjBhgt2IDEka9NxzGjLYeG4AAAAAAACgMFktzG5/O6BAUERcmsvfYrEoOjrasP/48eNKSUnR/Pnz1aJFC0myzelfEEFBQTp8+LCsVqvt4fWVD+odqV+/vpYvX67SpUvL39+/wOeVLhZBBgwYoDlz5jjcHx8fr2bNmtmm1pGUr9EJl9u3b5+OHz+uiRMnKjQ0VJIMiwRHRERo3bp1dtu+++47u/f169fX3r17VbVq1QKd/1oKo99LIztycnKu2m7EiBEaOnSo3bY/fjt03ecFAAAAAAAAcGehjFNEuLq6Kjk5WXv37rWbPueS4sWLq2TJkpo3b54OHDigL7/80vDwNz9atmypY8eO6c0339TBgwc1a9YsffbZZ9c8rnv37ipVqpQ6deqkrVu36pdfftGWLVs0aNAg/fbbb/k6d79+/XTs2DE9+eSTDveHh4crISFBGzZs0P79+zVy5EjDg/trqVChgtzd3fX222/r559/1po1azRu3Di7Nv3799e+ffs0fPhw7d+/XytWrLAtcnypaDJ8+HB98803GjhwoBITE5WamqpPPvnEsJhwQRVGv6VLl5aXl5fWr1+vI0eO6O+//3bYzsPDQ/7+/nYvphcCAAAAAAAAcAkFgiLk0kNcR1xcXLRs2TLt2rVLtWrV0vPPP29bZLcgIiMjNXv2bM2aNUtRUVHauXOnhg0bds3jvL299fXXX6tChQp66KGHFBkZqb59++rcuXP5HlHg5uamUqVKyc3N8cCV/v3766GHHlLXrl3VpEkTHT9+3G40QX4EBQUpLi5OK1euVI0aNTRx4kRNmjTJrk2lSpX04YcfatWqVapTp47mzJmjV155RZJsD9Dr1Kmjr776Svv371eLFi1Ur149xcbGKiQkpEB5rlQY/bq5uWnGjBl65513FBISok6dOt1QJgAAAAAAAADOyWK9ckJ6wAmNHz9ec+fO1aFDd/YUPL8cPGB2BIMy2943O4JB+t19zI5g4KKCrUFxq4SmbzU7gsHpoMpmRzDwOHvC7AgGrudOmx3BICW4ldkRHPJ3PWV2BIOgkwWbgu9WuODmaXYEA5cc4zpLZsv28DU7gkNni/mZHcGg9A+fmh3BILNGc7MjGPimJZodweDg/JVmR3Co8pC+Zkcw+PJfY82OYNAsYZ7ZEQxyXN3NjmBQVOfVDqrZxOwIBrsPHDE7gkHIuaL3t1SuS9GbBdzz9J9mR3DoVECo2REMylWrbXaEIunY3p1mRyh0QTUamx2h0BW9f32AW2D27Nlq1KiRSpYsqfj4eL311ls3PH0QAAAAAAAAANxOKBDAKaWmpuq1117TX3/9pQoVKuiFF17QiBEjzI4FAAAAAAAAALcMBQI4palTp2rq1KlmxwAAAAAAAAAA0xTNSfMAAAAAAAAAAMBNRYEAAAAAAAAAAAAnRIEAAAAAAAAAAAAnRIEAAAAAAAAAAAAnRIEAAAAAAAAAAAAn5GZ2AAAAAAAAAADAncXKd9NvC3xKAAAAAAAAAAA4IQoEAAAAAAAAAAA4IQoEAAAAAAAAAAA4IQoEAAAAAAAAAAA4IRYpBpzIBRUzO4LB6UZtzY5gUMxy3uwIBp4XTpsdwaG0Ci3NjmDgpgtmRzAod/xXsyMYuGSeNDuCgVfIObMjOORizTU7goFrVtH7N8H9WLrZEQzOlypvdgSDbFdPsyM4FHiq6H1+58Lrmx3BINOzpNkRDDzKVDQ7gkHoqBFmR3Aoy+JqdgSDZgnzzI5g8E3Dp8yOYFAU75PnX7+ZHcGxmk3MTmDgYckyO4KBVxH8/HLdi+DfCBaL2Qkcsqpo5gJuV4wgAAAAAAAAAADACVEgAAAAAAAAAADACTHFEAAAAAAAAACgUFmL6DRVsMcIAgAAAAAAAAAAnBAFAgAAAAAAAAAAnBAFAgAAAAAAAAAAnBBrEAAAAAAAAAAACpXVwnfTbwd8SgAAAAAAAAAAOCEKBAAAAAAAAAAAOCEKBAAAAAAAAAAAOCEKBJAkxcfHq3bt2ipWrJg6d+5sdhwAAAAAAAAAwE1GgeA2cejQIfXp00chISFyd3dXxYoVNXjwYB0/frxQ+h86dKjq1q2rX375RXFxcYXSJwAAAAAAAACg6KJAcBv4+eef1bBhQ6WmpuqDDz7QgQMHNHfuXG3atElNmzbVX3/9dcPnOHjwoFq3bq3y5csrMDDwuvo4f/78Decw251wDQAAAAAAAACQHxQIbgPPPvus3N3d9fnnn+vee+9VhQoV1K5dO23cuFG///67XnnlFVvbsLAwvf766+rTp4/8/PxUoUIFzZs3L8++09LSZLFYdPz4cfXp00cWi0VxcXHKyclR3759ValSJXl5eSkiIkLTp0+3OzYmJkadO3fW+PHjFRISooiICFt/K1asUIsWLeTl5aVGjRpp//79+u6779SwYUP5+vqqXbt2Onbs2FWve8+ePWrXrp18fX1VpkwZ9ejRQ3/++adtf8uWLTVo0CC99NJLKlGihIKDgzV69Gi7Pk6ePKknn3xSQUFB8vf3V+vWrZWUlGTbP3r0aNWtW1cLFixQpUqV5OnpKUnat2+f7r77bnl6eqpGjRrauHGjLBaLVq9eLUlq3bq1Bg4caHeuY8eOyd3dXZs2bXJ4PZfu1+WGDBmili1b2t5/+OGHql27try8vFSyZEm1adNGp0+ftu1fsGCBIiMj5enpqerVq2v27NlXvYcAAAAAAAAAkBcKBEXcX3/9pQ0bNmjAgAHy8vKy2xccHKzu3btr+fLlslqttu2TJ09Ww4YN9cMPP2jAgAF65plnlJKS4rD/0NBQZWRkyN/fX9OmTVNGRoa6du2q3NxclS9fXitXrtTevXsVGxur//znP1qxYoXd8Zs2bVJKSoq++OILrV271rZ91KhRevXVV/X999/Lzc1Njz/+uF566SVNnz5dW7du1YEDBxQbG5vndZ88eVKtW7dWvXr1lJCQoPXr1+vIkSPq0qWLXbvFixfLx8dHO3bs0JtvvqmxY8fqiy++sO1/9NFHdfToUX322WfatWuX6tevr/vuu89u1MWBAwf00UcfadWqVUpMTFROTo46d+4sb29v7dixQ/PmzbMrwkjSk08+qffff19ZWVm2be+9957KlSun1q1b53ldV5ORkaFu3bqpT58+Sk5O1pYtW/TQQw/ZPtulS5cqNjZW48ePV3Jysl5//XWNHDlSixcvvq7zAQAAAAAAAHBubmYHwNWlpqbKarUqMjLS4f7IyEidOHFCx44dU+nSpSVJ7du314ABAyRJw4cP19SpU7V582ZFREQYjnd1dVVwcLAsFosCAgIUHBxs2zdmzBjbz5UqVdL27du1YsUKu4f0Pj4+WrBggdzd3SVdHJEgScOGDVN0dLQkafDgwerWrZs2bdqk5s2bS5L69u171bUOZs6cqXr16un111+3bVu4cKFCQ0O1f/9+VatWTZJUp04djRo1SpIUHh6umTNnatOmTbr//vu1bds27dy5U0ePHpWHh4ckadKkSVq9erU+/PBDPfXUU5IuTiv07rvvKigoSJK0fv16HTx4UFu2bLHdj/Hjx+v++++3ZXnooYc0cOBAffLJJ7b7ERcXp5iYGFksljyv62oyMjJ04cIFPfTQQ6pYsaIkqXbt2rb9o0aN0uTJk/XQQw9JuviZ7N27V++884569ep1XecEAAAAAAAAbgarru8ZGW4tCgS3ictHCFxLnTp1bD9bLBYFBwfr6NGjkqR27dpp69atkqSKFSvqp59+yrOfWbNmaeHChUpPT9fZs2d1/vx51a1b165N7dq1bcWBvDKUKVPG1vbybZcyOZKUlKTNmzfL19fXsO/gwYN2BYLLlS1b1tZvUlKSMjMzVbJkSbs2Z8+e1cGDB23vK1asaCsOSFJKSopCQ0PtiiWNGze268PT01M9evTQwoUL1aVLF33//ffas2eP1qxZk+c1XUtUVJTuu+8+1a5dW9HR0frXv/6lRx55RMWLF9fp06d18OBB9e3bV/369bMdc+HCBQUEBDjsLysry26EgySdz8qS+/8VSwAAAAAAAAA4NwoERVzVqlVlsViUnJysBx980LA/OTlZxYsXt3vAXaxYMbs2FotFubm5ki7OYX/27FmH7S63bNkyDRs2TJMnT1bTpk3l5+ent956Szt27LBr5+Pj4/D4y/u+9I36K7ddyuRIZmamOnbsqDfeeMOwr2zZsg7Pc2W/mZmZKlu2rLZs2WLo4/KFmPO6hmt58sknVbduXf32229atGiRWrdubfvmvyMuLi6GQk92drbtZ1dXV33xxRf65ptv9Pnnn+vtt9/WK6+8oh07dsjb21uSNH/+fDVp0sSuD1dXV4fnmzBhgt0oEEka+NxgDRr8fIGuEwAAAAAAAMCdiQJBEVeyZEndf//9mj17tp5//nm7dQgOHz6spUuXqmfPnvme1qZcuXL5ahcfH69mzZrZpiqSZPet+5utfv36+uijjxQWFiY3t+v7Na1fv74OHz4sNzc3hYWF5fu4iIgIHTp0SEeOHLGNfvjuu+8M7WrXrq2GDRtq/vz5ev/99zVz5syr9hsUFKQ9e/bYbUtMTDQUTpo3b67mzZsrNjZWFStW1Mcff6yhQ4cqJCREP//8s7p3756v6xgxYoSGDh1qt+3Qb4fzdSwAAAAAAACAOx+LFN8GZs6cqaysLEVHR+vrr7/WoUOHtH79et1///0qV66cxo8fX+jnDA8PV0JCgjZs2KD9+/dr5MiRDh+S3yzPPvus/vrrL3Xr1k3fffedDh48qA0bNqh3797KycnJVx9t2rRR06ZN1blzZ33++edKS0vTN998o1deeUUJCQl5Hnf//ferSpUq6tWrl3788UfFx8fr1VdflSRDIebJJ5/UxIkTZbVaHY7wuFzr1q2VkJCgd999V6mpqRo1apRdwWDHjh16/fXXlZCQoPT0dK1atUrHjh2zrT8xZswYTZgwQTNmzND+/fu1e/duLVq0SFOmTHF4Pg8PD/n7+9u9mF4IAAAAAAAAt4LV4nLHve5Ed+ZV3WEuPayvXLmyunTpoipVquipp55Sq1attH37dpUoUaLQz9m/f3899NBD6tq1q5o0aaLjx4/bjSa42UJCQhQfH6+cnBz961//Uu3atTVkyBAFBgbKxSV/v7YWi0Xr1q3TPffco969e6tatWp67LHH9Ouvv9pGBjji6uqq1atXKzMzU40aNdKTTz6pV155RdLFtQcu161bN7m5ualbt26GfVeKjo7WyJEj9dJLL6lRo0b6559/1LNnT9t+f39/ff3112rfvr2qVaumV199VZMnT1a7du0kXSxGLFiwQIsWLVLt2rV17733Ki4uTpUqVcrX/QAAAAAAAACAy1msBVn9FnBS8fHxuvvuu3XgwAFVqVLFtj0tLU1VqlTRd999p/r165uYMH9SD/5qdgSDwKwjZkcwOOVZyuwIBp4XTpsdwaFTroVfoLxRbrpgdgSDcr9tNzuCgUvmSbMjGKRVf8DsCA556JzZEQxKH91z7Ua3mOup42ZHMDhfqrzZEQwyfcteu5EJfDMzzI5gkOuS93pZZjnpV/R+p0qeOGB2BAOra9H77CQp1+J47S4zWV2KXqZvGj5ldgSDZgnzzI5g4PnXb2ZHcMirVf6mpL2V9h9MNzuCQfnfvzU7gkGu+9W/dGiKfE5nfaudLF70vihZvlotsyMUSX+k/Gh2hEIXElHH7AiFjjUIAAc+/vhj+fr6Kjw8XAcOHNDgwYPVvHlzW3EgOztbx48f16uvvqq77rrrtigOAAAAAAAAAMDlKBAADvzzzz8aPny40tPTVapUKbVp00aTJ0+27Y+Pj1erVq1UrVo1ffjhhyYmBQAAAAAAAIDrQ4EAcKBnz5526wNcqWXLlmJ2LgAAAAAAAAC3MxYpBgAAAAAAAADACVEgAAAAAAAAAADACTHFEAAAAAAAAACgUFktFrMjIB8YQQAAAAAAAAAAgBOiQAAAAAAAAAAAgBOiQAAAAAAAAAAAgBOiQAAAAAAAAAAAgBNikWIAAAAAAAAAQKGyikWKbweMIAAAAAAAAAAAwAlRIAAAAAAAAAAAwAkxxRDgRNyUbXYEg2JZmWZHMPBy9TQ7goFbznmzIzhULnOv2REM/gyobHYEg8PlG5kdwcDVesHsCAYXrEXzzxL/nDNmRzDYX+pusyMYFA/6y+wIBpnyNzuCgUVWsyM4VPyfn8yOYPBraAuzIxgUxc/vtF9ZsyMYuGefNjuCQ17HD5kdweB0qTCzIxg0S5hndgSDbxo+ZXYEgxbfzjA7gkNeZgdwoCj+22lJP2B2BANXl6I3FUtuWITZEQDcAowgAAAAAAAAAADACVEgAAAAAAAAAADACVEgAAAAAAAAAADACVEgAAAAAAAAAADACRXN1QABAAAAAAAAALctq4Xvpt8O+JQAAAAAAAAAAHBCFAgAAAAAAAAAAHBCFAgAAAAAAAAAAHBCrEEAAAAAAAAAAChUVlnMjoB8YAQBAAAAAAAAAABOiAIBTBcTE6POnTubHSNf4uLiFBgYWGT6AQAAAAAAAIDrRYEAiomJkcVikcViUbFixVSpUiW99NJLOnfunNnR7ghhYWGaNm2a3bauXbtq//795gQCAAAAAAAAALEGAf5P27ZttWjRImVnZ2vXrl3q1auXLBaL3njjjevuMzs7W8WKFSvElHcOLy8veXl5mR0DAAAAAAAAgBNjBAEkSR4eHgoODlZoaKg6d+6sNm3a6IsvvrDtd/Qt+Lp162r06NG29xaLRXPmzNG///1v+fj4aPz48crJyVHfvn1VqVIleXl5KSIiQtOnTy9QtkvT8axevVrh4eHy9PRUdHS0Dh06ZNduzpw5qlKlitzd3RUREaElS5bY7b+Ur127dvLy8lLlypX14Ycf2vZv2bJFFotFJ0+etG1LTEyUxWJRWlqaw2wHDx5Up06dVKZMGfn6+qpRo0bauHGjbX/Lli3166+/6vnnn7eN0rj8mgqaf8GCBXrwwQfl7e2t8PBwrVmzJr+3EQAAAAAAAADsUCCAwZ49e/TNN9/I3d29wMeOHj1aDz74oHbv3q0+ffooNzdX5cuX18qVK7V3717FxsbqP//5j1asWFGgfs+cOaPx48fr3XffVXx8vE6ePKnHHnvMtv/jjz/W4MGD9cILL2jPnj3q37+/evfurc2bN9v1M3LkSD388MNKSkpS9+7d9dhjjyk5ObnA13lJZmam2rdvr02bNumHH35Q27Zt1bFjR6Wnp0uSVq1apfLly2vs2LHKyMhQRkaGw37ym3/MmDHq0qWLfvzxR7Vv317du3fXX3/9dd35AQAAAAAAADgvphiCJGnt2rXy9fXVhQsXlJWVJRcXF82cObPA/Tz++OPq3bu33bYxY8bYfq5UqZK2b9+uFStWqEuXLvnuNzs7WzNnzlSTJk0kSYsXL1ZkZKR27typxo0ba9KkSYqJidGAAQMkSUOHDtW3336rSZMmqVWrVrZ+Hn30UT355JOSpHHjxumLL77Q22+/rdmzZxf4WiUpKipKUVFRtvfjxo3Txx9/rDVr1mjgwIEqUaKEXF1d5efnp+Dg4Dz7yW/+mJgYdevWTZL0+uuva8aMGdq5c6fatm17XfkBAAAAAAAAOC9GEECS1KpVKyUmJmrHjh3q1auXevfurYcffrjA/TRs2NCwbdasWWrQoIGCgoLk6+urefPm2b5hn19ubm5q1KiR7X316tUVGBho+/Z/cnKymjdvbndM8+bNDaMDmjZtanh/oyMIhg0bpsjISAUGBsrX11fJyckFvr785q9Tp47tZx8fH/n7++vo0aMO+8zKytKpU6fsXllZWQXKBQAAAAAAAODORYEAki4+bK5ataqioqK0cOFC7dixQ//9739t+11cXGS1Wu2Oyc7OdtjP5ZYtW6Zhw4apb9+++vzzz5WYmKjevXvr/PnzN+dCboCLy8X/HC6/TkfXeLlhw4bp448/1uuvv66tW7cqMTFRtWvXvmnXd+WizxaLRbm5uQ7bTpgwQQEBAXavOXPfuSm5AAAAAAAAgMtZLS533OtOdGdeFW6Ii4uL/vOf/+jVV1/V2bNnJUlBQUF28+efOnVKv/zyyzX7io+PV7NmzTRgwADVq1dPVatW1cGDBwuc6cKFC0pISLC9T0lJ0cmTJxUZGSlJioyMVHx8vOHcNWrUsNv27bffGt5f6iMoKEiS7K4zMTHxqrni4+MVExOjBx98ULVr11ZwcLBhQWN3d3fl5ORctZ/85i+IESNG6O+//7Z7PfN0/+vuDwAAAAAAAMCdhQIBHHr00Ufl6uqqWbNmSZJat26tJUuWaOvWrdq9e7d69eolV1fXa/YTHh6uhIQEbdiwQfv379fIkSP13XffFThPsWLF9Nxzz2nHjh3atWuXYmJidNddd6lx48aSpBdffFFxcXGaM2eOUlNTNWXKFK1atUrDhg2z62flypVauHCh9u/fr1GjRmnnzp0aOHCgJKlq1aoKDQ3V6NGjlZqaqk8//VSTJ0++5vWtWrVKiYmJSkpK0uOPP274Rn9YWJi+/vpr/f777/rzzz8d9pPf/AXh4eEhf39/u5eHh8d19wcAAAAAAADgzkKBAA65ublp4MCBevPNN3X69GmNGDFC9957rx544AF16NBBnTt3VpUqVa7ZT//+/fXQQw+pa9euatKkiY4fP25biLcgvL29NXz4cD3++ONq3ry5fH19tXz5ctv+zp07a/r06Zo0aZJq1qypd955R4sWLVLLli3t+hkzZoyWLVumOnXq6N1339UHH3xg+5Z+sWLF9MEHH2jfvn2qU6eO3njjDb322mtXzTVlyhQVL15czZo1U8eOHRUdHa369evbtRk7dqzS0tJUpUoV2yiFK+U3PwAAAAAAAAAUFov1yonlgSImLi5OQ4YM0cmTJ2+oH4vFoo8//lidO3culFy3o18OHjA7gkHxUwVb0PlWOONdyuwIBm45RW/dDknyPHfC7AgGfwZUNjvCbcHVesHsCAb/KMDsCA6VyHG8GLyZjriEmB3BoLjlL7MjGGTK3+wIBhYVzT+9K/+2xewIBr+GtjA7gkFR/PwCsh2PUDWTe/ZpsyM45HX8kNkRDE6XCjM7goFrEfy785uGT5kdwaDFtzPMjuCQf4NosyMYpB781ewIBuW3LzU7gpGLxewEBrlhEWZHcOhEqWpmRzAoX62W2RGKpLQD+82OUOjCqha9378bxQgCAAAAAAAAAACcEAUCAAAAAAAAAACcEAUCFHkxMTE3PL2QJFmtVqeeXggAAAAAAAAALkeBAAAAAAAAAAAAJ0SBAAAAAAAAAAAAJ0SBAAAAAAAAAAAAJ0SBAAAAAAAAAAAAJ+RmdgAAAAAAAAAAwJ3FauG76bcDPiUAAAAAAAAAAJwQBQIAAAAAAAAAAJwQBQIAAAAAAAAAAJwQBQIAAAAAAAAAAJwQBQIAAAAAAAAAAJyQm9kBANw6brnnzY5gcMa7lNkRDC64FDM7gkGxnHNmR3Dob79yZkcwyMz1MzuCQfjvm8yOYGA5ftjsCAbWqA5mR3DotFuA2REMwv/cbnYEA7fjGWZHMDgfXMnsCAaZPmXMjuDQPxs+MzuCQZnHQsyOYLDLcpfZEQxKuBW9//aKqmz/ovd3p9VS9L6z5/nXb2ZHMGjx7QyzIxhsvWuQ2REc6pCdYnaE28KF48fNjmBgtVrNjmDgXqbo/f89SXKx5podAbijFL2/RgAAAAAAAAAAwE1HgQAAAAAAAAAAACfEFEMAAAAAAAAAgEJllcXsCMgHRhAAAAAAAAAAAHATzJo1S2FhYfL09FSTJk20c+fOq7ZfuXKlqlevLk9PT9WuXVvr1q27qfkoEAAAAAAAAAAAUMiWL1+uoUOHatSoUfr+++8VFRWl6OhoHT161GH7b775Rt26dVPfvn31ww8/qHPnzurcubP27Nlz0zJSIAAAAAAAAAAAoJBNmTJF/fr1U+/evVWjRg3NnTtX3t7eWrhwocP206dPV9u2bfXiiy8qMjJS48aNU/369TVz5syblpECAQAAAAAAAACgUFktljvulZWVpVOnTtm9srKyHF7/+fPntWvXLrVp08a2zcXFRW3atNH27dsdHrN9+3a79pIUHR2dZ/vCQIEAAAAAAAAAAIBrmDBhggICAuxeEyZMcNj2zz//VE5OjsqUKWO3vUyZMjp8+LDDYw4fPlyg9oXB7ab1DAAAAAAAAADAHWLEiBEaOnSo3TYPDw+T0hQOCgQAAAAAAAAAAFyDh4dHvgsCpUqVkqurq44cOWK3/ciRIwoODnZ4THBwcIHaFwamGEK+hYWFadq0aWbHMNWWLVtksVh08uTJItEPAAAAAAAAgKLH3d1dDRo00KZNm2zbcnNztWnTJjVt2tThMU2bNrVrL0lffPFFnu0LAwUCJ9KyZUsNGTLEsD0uLk6BgYG3PI+zcHTfmzVrpoyMDAUEBJgTCgAAAAAAAMBNNXToUM2fP1+LFy9WcnKynnnmGZ0+fVq9e/eWJPXs2VMjRoywtR88eLDWr1+vyZMna9++fRo9erQSEhI0cODAm5aRKYZwTefPn5e7u7vZMe4o7u7uN3VoEAAAAAAAAABzde3aVceOHVNsbKwOHz6sunXrav369baFiNPT0+Xi8v+/w9+sWTO9//77evXVV/Wf//xH4eHhWr16tWrVqnXTMjKCAAYxMTHq3Lmzxo8fr5CQEEVERNj2/fPPP+rWrZt8fHxUrlw5zZo1y+7YKVOmqHbt2vLx8VFoaKgGDBigzMxM2/5LoxU2bNigyMhI+fr6qm3btsrIyMgzz6XpeD799FPVqVNHnp6euuuuu7Rnzx67dh999JFq1qwpDw8PhYWFafLkyXb7w8LCNG7cuDzzp6WlyWKxKDEx0bbt5MmTslgs2rJli8Nsx48fV7du3VSuXDl5e3urdu3a+uCDD+zu5VdffaXp06fLYrHIYrEoLS3N4RRD+cn/+uuvq0+fPvLz81OFChU0b968PO8bAAAAAAAAAHMNHDhQv/76q7KysrRjxw41adLEtm/Lli2Ki4uza//oo48qJSVFWVlZ2rNnj9q3b39T81EggEObNm1SSkqKvvjiC61du9a2/a233lJUVJR++OEHvfzyyxo8eLC++OIL234XFxfNmDFDP/30kxYvXqwvv/xSL730kl3fZ86c0aRJk7RkyRJ9/fXXSk9P17Bhw66Z6cUXX9TkyZP13XffKSgoSB07dlR2drYkadeuXerSpYsee+wx7d69W6NHj9bIkSMN/4FdK39BnTt3Tg0aNNCnn36qPXv26KmnnlKPHj20c+dOSdL06dPVtGlT9evXTxkZGcrIyFBoaKihn/zmnzx5sho2bKgffvhBAwYM0DPPPKOUlJTrzg8AAAAAAADcDFar5Y573YmYYggO+fj4aMGCBYaphZo3b66XX35ZklStWjXFx8dr6tSpuv/++yXJbq79sLAwvfbaa3r66ac1e/Zs2/bs7GzNnTtXVapUkXSxijZ27NhrZho1apTtPIsXL1b58uX18ccfq0uXLpoyZYruu+8+jRw50pZt7969euuttxQTE5Pv/AVVrlw5u+LGc889pw0bNmjFihVq3LixAgIC5O7uLm9v76tOKZTf/O3bt9eAAQMkScOHD9fUqVO1efNmu1EeAAAAAAAAAJAfjCCAQ7Vr13a47sCVK2Y3bdpUycnJtvcbN27Ufffdp3LlysnPz089evTQ8ePHdebMGVsbb29vW3FAksqWLaujR49eM9Pl5y5RooQiIiJs505OTlbz5s3t2jdv3lypqanKycnJd/6CysnJ0bhx41S7dm2VKFFCvr6+2rBhg9LT0wvUT37z16lTx/azxWJRcHBwnvcuKytLp06dsntlnT9foFwAAAAAAAAA7lwUCJyIv7+//v77b8P2kydPKiAgwG6bj49PgftPS0vTAw88oDp16uijjz7Srl27bHP8n7/swXSxYsXsjrNYLLJarQU+X2G7tCDI5VkuTWGUl7feekvTp0/X8OHDtXnzZiUmJio6OtrueguTo3uXm5vrsO2ECRMUEBBg95o1d/5NyQUAAAAAAADg9kOBwIlERETo+++/N2z//vvvVa1atXz18e233xreR0ZGSro4j35ubq4mT56su+66S9WqVdMff/xx48EdnPvEiRPav3+/7dyRkZGKj4+3ax8fH69q1arJ1dU1X/mDgoIkyW7B5MsXLHYkPj5enTp10hNPPKGoqChVrlxZ+/fvt2vj7u5uNwrAkfzmL4gRI0bo77//tns9+3S/6+oLAAAAAAAAwJ2HNQicyDPPPKOZM2dq0KBBevLJJ+Xh4aFPP/1UH3zwgf73v//lq4/4+Hi9+eab6ty5s7744gutXLlSn376qSSpatWqys7O1ttvv62OHTsqPj5ec+fOLbT8Y8eOVcmSJVWmTBm98sorKlWqlDp37ixJeuGFF9SoUSONGzdOXbt21fbt2zVz5ky7tQ+uld/Ly0t33XWXJk6cqEqVKuno0aN69dVXr5opPDxcH374ob755hsVL15cU6ZM0ZEjR1SjRg1bm7CwMO3YsUNpaWny9fVViRIlDP3kN39BeHh4yMPDw27b3w6mjQIAAAAAAAAKm5Xvpt8W+JScSOXKlfX1119r3759atOmjZo0aaIVK1Zo5cqVatu2bb76eOGFF5SQkKB69erptdde05QpUxQdHS1JioqK0pQpU/TGG2+oVq1aWrp0qSZMmFBo+SdOnKjBgwerQYMGOnz4sP73v//Z1kmoX7++VqxYoWXLlqlWrVqKjY3V2LFj7Rb4vVZ+SVq4cKEuXLigBg0aaMiQIXrttdeumunVV19V/fr1FR0drZYtWyo4ONhWtLhk2LBhcnV1VY0aNRQUFORwfYL85gcAAAAAAACAwmKxFoXJ34Gr2LJli1q1aqUTJ04oMDDwuvsJCwvTkCFDNGTIkELLdrs5lLrX7AgGrrkXzI5gcMGl2LUb3WJe2f+YHcGhc8V8zY5gcEKlzI5gEP77JrMjGFiOHzY7gsHhqA5mR3Ao2+Jx7Ua3WNk/fzQ7goHb8YxrN7rFzgdXMjuCQaZPGbMjOOQWN8nsCAbFHutrdgSDXZa7zI5gEOWWZHYEA9ecm7Me141yyz5rdgSDLA9/syMY+B49YHYEg2z/ovf33da7BpkdwaEO2SlmRzBIPfir2REMgtfOMDuCQVF8POdeu67ZERz6q3xdsyMYhETUMTtCkVQU//u/UeFVKpododAxggAAAAAAAAAAACdEgQAAAAAAAAAAACfEIsUo8lq2bFkoQ+3S0tJuPAwAAAAAAAAA3CEYQQAAAAAAAAAAgBOiQAAAAAAAAAAAgBNiiiEAAAAAAAAAQKGyymJ2BOQDIwgAAAAAAAAAAHBCFAgAAAAAAAAAAHBCFAgAAAAAAAAAAHBCrEEAAAAAAAAAAChUrEFwe2AEAQAAAAAAAAAATogCAQAAAAAAAAAATogCAQAAAAAAAAAATshitVqtZocAAAAAAAAAANw5Ug4eMjtCoYuoEmp2hELHCAIAAAAAAAAAAJwQBQIAAAAAAAAAAJwQBQIAAAAAAAAAAJwQBQIAAAAAAAAAAJyQm9kBAAAAAAAAAAB3FqssZkdAPjCCAAAAAAAAAAAAJ0SBAAAAAAAAAAAAJ0SBAAAAAAAAAAAAJ8QaBAAAAAAAAACAQsUaBLcHRhAAAAAAAAAAAOCEKBDcplq2bKkhQ4bc0nPGxcUpMDDwlp7zVktLS5PFYlFiYqIp54+JiVHnzp1t7834nAEAAAAAAAA4B6YYKsJiYmK0ePFiw/bU1FStWrVKxYoVu6V5unbtqvbt29/Sc95qoaGhysjIUKlSpUw5//Tp02W1Wk05NwAAAAAAAADnQoGgiGvbtq0WLVpkty0oKEiurq5XPe78+fNyd3cv1CxeXl7y8vIq1D7z42ZcS15cXV0VHBx8S87lSEBAgGnnBgAAAAAAAOBcmGKoiPPw8FBwcLDdy9XV1TD1TFhYmMaNG6eePXvK399fTz31lCRp27ZtatGihby8vBQaGqpBgwbp9OnTtuNmz56t8PBweXp6qkyZMnrkkUfyzHLlFEOjR49W3bp1tWTJEoWFhSkgIECPPfaY/vnnn6te00cffaSaNWvKw8NDYWFhmjx5st3+vK5l/vz5Cg0Nlbe3tx588EFNmTLFLs/BgwfVqVMnlSlTRr6+vmrUqJE2btxo6Pv1119Xnz595OfnpwoVKmjevHm2/Y6mGPrpp5/0wAMPyN/fX35+fmrRooUOHjzo8NpOnDih7t27KygoSF5eXgoPD7cr8OzevVutW7eWl5eXSpYsqaeeekqZmZm2/VdOMXSlgnxeAAAAAAAAAHA1FAjuIJMmTVJUVJR++OEHjRw5UgcPHlTbtm318MMP68cff9Ty5cu1bds2DRw4UJKUkJCgQYMGaezYsUpJSdH69et1zz33FOicBw8e1OrVq7V27VqtXbtWX331lSZOnJhn+127dqlLly567LHHtHv3bo0ePVojR45UXFzcVa8lPj5eTz/9tAYPHqzExETdf//9Gj9+vN0xmZmZat++vTZt2qQffvhBbdu2VceOHZWenm7XbvLkyWrYsKF++OEHDRgwQM8884xSUlIc5v399991zz33yMPDQ19++aV27dqlPn366MKFCw7bjxw5Unv37tVnn32m5ORkzZkzxzZd0enTpxUdHa3ixYvru+++08qVK7Vx40bb53EthfF5AQAAAAAAAMAlTDFUxK1du1a+vr629+3atdPKlSsdtm3durVeeOEF2/snn3xS3bt3t400CA8P14wZM3Tvvfdqzpw5Sk9Pl4+Pjx544AH5+fmpYsWKqlevXoHy5ebmKi4uTn5+fpKkHj16aNOmTYaH95dMmTJF9913n0aOHClJqlatmvbu3au33npLMTExeV7LK6+8onbt2mnYsGG247755hutXbvW1iYqKkpRUVG29+PGjdPHH3+sNWvW2D2Eb9++vQYMGCBJGj58uKZOnarNmzcrIiLCkHfWrFkKCAjQsmXLbGs+VKtWLc/7kZ6ernr16qlhw4aSLo5YuOT999/XuXPn9O6778rHx0eSNHPmTHXs2FFvvPGGypQpk2e/l/q+0c8LAAAAAAAAAC5hBEER16pVKyUmJtpeM2bMyLPtpYfSlyQlJSkuLk6+vr62V3R0tHJzc/XLL7/o/vvvV8WKFVW5cmX16NFDS5cu1ZkzZwqULywszFYckKSyZcvq6NGjebZPTk5W8+bN7bY1b95cqampysnJyfNaUlJS1LhxY7ttV77PzMzUsGHDFBkZqcDAQPn6+io5OdkwgqBOnTq2ny0Wi4KDg/PMnJiYqBYtWuR7QehnnnlGy5YtU926dfXSSy/pm2++se1LTk5WVFSUrThw6dpzc3PzHMFwuYJ+XllZWTp16pTdKysrK1/XAQAAAAAAANwIq9Vyx73uRBQIijgfHx9VrVrV9ipbtuxV214uMzNT/fv3tyswJCUlKTU1VVWqVJGfn5++//57ffDBBypbtqxiY2MVFRWlkydP5jvflQ/OLRaLcnNzC3SN+bmW/Bg2bJg+/vhjvf7669q6dasSExNVu3ZtnT9/3q5dQTIXdFHmdu3a6ddff9Xzzz+vP/74Q/fdd59t1MONKujnNWHCBAUEBNi9JkyYUChZAAAAAAAAANz+KBDcwerXr6+9e/faFRguvdzd3SVJbm5uatOmjd588039+OOPSktL05dffnnTMkVGRio+Pt5uW3x8vKpVqyZXV9c8j4uIiNB3331nt+3K9/Hx8YqJidGDDz6o2rVrKzg4WGlpaTeUt06dOtq6dauys7PzfUxQUJB69eql9957T9OmTbMtghwZGamkpCS7RaLj4+Pl4uLicHojRwryeY0YMUJ///233WvEiBH5vg4AAAAAAAAAdzYKBHew4cOH65tvvtHAgQOVmJio1NRUffLJJ7b5+NeuXasZM2YoMTFRv/76q959913l5ubm+2H19XjhhRe0adMmjRs3Tvv379fixYs1c+bMa37L/rnnntO6des0ZcoUpaam6p133tFnn30mi+X/D+0JDw/XqlWrbCMlHn/88RsezTBw4ECdOnVKjz32mBISEpSamqolS5bkOSVQbGysPvnkEx04cEA//fST1q5dq8jISElS9+7d5enpqV69emnPnj3avHmznnvuOfXo0eOa6w9IBf+8PDw85O/vb/fy8PC4/psBAAAAAAAA4I5CgeAOVqdOHX311Vfav3+/WrRooXr16ik2NlYhISGSpMDAQK1atUqtW7dWZGSk5s6dqw8++EA1a9a8aZnq16+vFStWaNmyZapVq5ZiY2M1duxYuwWKHWnevLnmzp2rKVOmKCoqSuvXr9fzzz8vT09PW5spU6aoePHiatasmTp27Kjo6GjVr1//hvKWLFlSX375pTIzM3XvvfeqQYMGmj9/fp5rEri7u2vEiBGqU6eO7rnnHrm6umrZsmWSJG9vb23YsEF//fWXGjVqpEceeUT33XefZs6cma8sZnxeAAAAAAAAwPWwynLHve5EFqvVajU7BHA9+vXrp3379mnr1q1mRwEAAAAAAABwmZ8OZJgdodDVrJr3+rC3KzezAwD5NWnSJN1///3y8fHRZ599psWLF2v27NlmxwIAAAAAAACA2xIFAtw2du7cqTfffFP//POPKleurBkzZujJJ580OxYAAAAAAAAA3JaYYggAAAAAAAAAUKiYYuj2wCLFAAAAAAAAAAA4IQoEAAAAAAAAAAA4IQoEAAAAAAAAAAA4IQoEAAAAAAAAAAA4ITezAwAAAAAAAAAA7ixWWcyOgHxgBAEAAAAAAAAAAE6IAgEAAAAAAAAAAE6IAgEAAAAAAAAAAE6IAgEAAAAAAAAAAE6IRYoBJ3Lg4C9mRzA4k+tjdgQDf8tJsyMYuOecMzuCQ3+5ljY7gkGutejVvovi79R5i6fZEQz8s4+bHcGhE8WK3u95UVQU/9tzseSaHcGgKN4nSfLRP2ZHMMiUv9kRDHx1yuwIBqesgWZHMLBYrGZHcMiioperKC7e6GHJMjuCQVH87Iqq8CoVzY5g8GmxCLMjGFRP+czsCAZWa9H796Co/nt+wVrM7AgGEVVCzY4AXLei+f9QAAAAAAAAAADATUWBAAAAAAAAAAAAJ8QUQwAAAAAAAACAQlUUp9KDESMIAAAAAAAAAABwQhQIAAAAAAAAAABwQhQIAAAAAAAAAABwQhQIAAAAAAAAAABwQixSDAAAAAAAAAAoVFYrixTfDhhBAAAAAAAAAACAE6JAAAAAAAAAAACAE6JAAAAAAAAAAACAE7otCwQtW7bUkCFDbuk54+LiFBgYaHofN/Pco0ePVt26dW9JnvwKCwvTtGnTCq2//PzuzJs3T6GhoXJxcSnUcwMAAAAAAABAUVJkCwQxMTGyWCyG14EDB7Rq1SqNGzfulubp2rWr9u/ff0vPWZgKI/+WLVtksVh08uTJwgmVD999952eeuqpW3a+U6dOaeDAgRo+fLh+//33W3ruKxV2cQQAAAAAAAAALudmdoCradu2rRYtWmS3LSgoSK6urlc97vz583J3dy/ULF5eXvLy8irUPm+lW5m/MO9/UFBQofSTX+np6crOzlaHDh1UtmzZ6+4nOztbxYoVK8RkAAAAAAAAAFC4iuwIAkny8PBQcHCw3cvV1dUwTUxYWJjGjRunnj17yt/f3/at723btqlFixby8vJSaGioBg0apNOnT9uOmz17tsLDw+Xp6akyZcrokUceyTPLlVP0XJqOZ8mSJQoLC1NAQIAee+wx/fPPP9e8rg0bNigyMlK+vr5q27atMjIybPscTYHTuXNnxcTE2F3va6+9pp49e8rX11cVK1bUmjVrdOzYMXXq1Em+vr6qU6eOEhIS8swvSRMnTlSZMmXk5+envn376ty5c3lmTktLU6tWrSRJxYsXl8VisWVq2bKlBg4cqCFDhqhUqVKKjo6WJH311Vdq3LixPDw8VLZsWb388su6cOGC3bUOHDhQAwcOVEBAgEqVKqWRI0fKarXaXevl36I/efKk+vfvrzJlysjT01O1atXS2rVrJUnHjx9Xt27dVK5cOXl7e6t27dr64IMP8v4grhAXF6fatWtLkipXriyLxaK0tDRJ0pw5c1SlShW5u7srIiJCS5YssTvWYrFozpw5+ve//y0fHx+NHz9ekvTJJ5+ofv368vT0VOXKlTVmzBjbPbBarRo9erQqVKggDw8PhYSEaNCgQbZ78+uvv+r555+3jZ6RpF9//VUdO3ZU8eLF5ePjo5o1a2rdunX5vkYAAAAAAAAAuKRIFwgKYtKkSYqKitIPP/ygkSNH6uDBg2rbtq0efvhh/fjjj1q+fLm2bdumgQMHSpISEhI0aNAgjR07VikpKVq/fr3uueeeAp3z4MGDWr16tdauXau1a9fqq6++0sSJE696zJkzZzRp0iQtWbJEX3/9tdLT0zVs2LACX+/UqVPVvHlz/fDDD+rQoYN69Oihnj176oknntD333+vKlWqqGfPnnYP2y+3YsUKjR49Wq+//roSEhJUtmxZzZ49O8/zhYaG6qOPPpIkpaSkKCMjQ9OnT7ftX7x4sdzd3RUfH6+5c+fq999/V/v27dWoUSMlJSVpzpw5+u9//6vXXnvNrt/FixfLzc1NO3fu1PTp0zVlyhQtWLDAYYbc3Fy1a9dO8fHxeu+997R3715NnDjRNqLk3LlzatCggT799FPt2bNHTz31lHr06KGdO3fm65527dpVGzdulCTt3LlTGRkZCg0N1ccff6zBgwfrhRde0J49e9S/f3/17t1bmzdvtjt+9OjRevDBB7V792716dNHW7duVc+ePTV48GDt3btX77zzjuLi4mzFg48++khTp07VO++8o9TUVK1evdpWoFi1apXKly+vsWPHKiMjw1ZEevbZZ5WVlaWvv/5au3fv1htvvCFfX998XR8AAAAAAABwq+TKcse97kRFeoqhtWvX2j38bNeunVauXOmwbevWrfXCCy/Y3j/55JPq3r277dv44eHhmjFjhu69917NmTNH6enp8vHx0QMPPCA/Pz9VrFhR9erVK1C+3NxcxcXFyc/PT5LUo0cPbdq0yfYA2JHs7GzNnTtXVapUkSQNHDhQY8eOLdB5Jal9+/bq37+/JCk2NlZz5sxRo0aN9Oijj0qShg8frqZNm+rIkSMKDg42HD9t2jT17dtXffv2lSS99tpr2rhxY56jCFxdXVWiRAlJUunSpQ2jEcLDw/Xmm2/a3r/yyisKDQ3VzJkzZbFYVL16df3xxx8aPny4YmNj5eJysTYVGhqqqVOnymKxKCIiQrt379bUqVPVr18/Q4aNGzdq586dSk5OVrVq1SRd/Kb/JeXKlbMrtjz33HPasGGDVqxYocaNG1/9huriNEwlS5aUdHFqo0v3bdKkSYqJidGAAQMkSUOHDtW3336rSZMm2UZVSNLjjz+u3r1729736dNHL7/8snr16mXLOm7cOL300ksaNWqU0tPTFRwcrDZt2qhYsWKqUKGCLWeJEiXk6uoqPz8/u88vPT1dDz/8sN1Ih7xkZWUpKyvLsM3Dw+Oa9wIAAAAAAADAna9IjyBo1aqVEhMTba8ZM2bk2bZhw4Z275OSkhQXFydfX1/bKzo6Wrm5ufrll190//33q2LFiqpcubJ69OihpUuX6syZMwXKFxYWZisOSFLZsmV19OjRqx7j7e1tKw7k9xhH6tSpY/u5TJkykmR7aHz5trz6Tk5OVpMmTey2NW3atMA5LmnQoIGh/6ZNm9qmxpGk5s2bKzMzU7/99ptt21133WXXpmnTpkpNTVVOTo7hHImJiSpfvrytOHClnJwcjRs3TrVr11aJEiXk6+urDRs2KD09/bqv69K1NG/e3G5b8+bNlZycbLfN0e/g2LFj7X4H+/Xrp4yMDJ05c0aPPvqozp49q8qVK6tfv376+OOP7aZgcmTQoEF67bXX1Lx5c40aNUo//vhjnm0nTJiggIAAu9c7c+cU8OoBAAAAAAAA3KmKdIHAx8dHVatWtb2utmisj4+P3fvMzEz179/frsCQlJSk1NRUValSRX5+fvr+++/1wQcfqGzZsoqNjVVUVJROnjyZ73xXLkJrsViUm5tb4GMunwbIxcXFMC1Qdnb2Vfu59IDd0bZr5SksV97/m+Faiyy/9dZbmj59uoYPH67NmzcrMTFR0dHROn/+/E3PJjn+HRwzZozd7+Du3buVmpoqT09PhYaGKiUlRbNnz5aXl5cGDBige+65x+HnfcmTTz6pn3/+WT169NDu3bvVsGFDvf322w7bjhgxQn///bfdq//TzxTqNQMAAAAAAAC4fRXpAsGNqF+/vvbu3WtXYLj0cnd3lyS5ubmpTZs2evPNN/Xjjz8qLS1NX375pam5g4KC7BYtzsnJ0Z49ewr9PJGRkdqxY4fdtm+//faqx1y6b46+3e+o/+3bt9sVO+Lj4+Xn56fy5cvbtjnKEB4ebltX4HJ16tTRb7/9pv379zs8Z3x8vDp16qQnnnhCUVFRqly5cp5tCyIyMlLx8fGGc9WoUeOqx9WvX18pKSkOfwcvTbHk5eWljh07asaMGdqyZYu2b9+u3bt3S7p4vx3d69DQUD399NNatWqVXnjhBc2fP9/h+T08POTv72/3YnohAAAAAAAA3ApWWe64152oSK9BcCOGDx+uu+66SwMHDtSTTz4pHx8f7d27V1988YVmzpyptWvX6ueff9Y999yj4sWLa926dcrNzVVERISpuVu3bq2hQ4fq008/VZUqVTRlypQCjWrIr8GDBysmJkYNGzZU8+bNtXTpUv30009XndO+YsWKslgsWrt2rdq3by8vL688F8gdMGCApk2bpueee04DBw5USkqKRo0apaFDh9oejksX59QfOnSo+vfvr++//15vv/22Jk+e7LDPe++9V/fcc48efvhhTZkyRVWrVtW+fftksVjUtm1bhYeH68MPP9Q333yj4sWLa8qUKTpy5Mg1H+Rfy4svvqguXbqoXr16atOmjf73v/9p1apVtgWN8xIbG6sHHnhAFSpU0COPPCIXFxclJSVpz549eu211xQXF6ecnBw1adJE3t7eeu+99+Tl5aWKFStKujiF1ddff63HHntMHh4eKlWqlIYMGaJ27dqpWrVqOnHihDZv3qzIyMgbuj4AAAAAAAAAzumOHUFQp04dffXVV9q/f79atGihevXqKTY2ViEhIZKkwMBArVq1Sq1bt1ZkZKTmzp2rDz74QDVr1jQ1d58+fdSrVy/17NlT9957rypXrmy3EG5h6dq1q0aOHKmXXnpJDRo00K+//qpnnrn69DPlypXTmDFj9PLLL6tMmTIaOHDgVduuW7dOO3fuVFRUlJ5++mn17dtXr776ql27nj176uzZs2rcuLGeffZZDR48WE899VSe/X700Udq1KiRunXrpho1auill16yfcv+1VdfVf369RUdHa2WLVsqODhYnTt3zv9NyUPnzp01ffp0TZo0STVr1tQ777yjRYsWqWXLllc9Ljo6WmvXrtXnn3+uRo0a6a677tLUqVNtBYDAwEDNnz9fzZs3V506dbRx40b973//sy2UPHbsWKWlpalKlSoKCgqSdHH0xrPPPqvIyEi1bdtW1apV0+zZs2/4GgEAAAAAAAA4H4v1ygnvgVukZcuWqlu3rqZNm2Z2FKdx4OAvZkcwOJN789evKCh/y0mzIxi455wzO4JDf7mWNjuCQa616NW+i+Lv1HmLp9kRDPyzj5sdwaETxYre73lRVBT/23Ox3Jq1mAqiKN4nSfLRP2ZHMMiUv9kRDHx1yuwIBqesgWZHMLBYiub/xbSo6OUqilMVeFiyzI5gUBQ/u6IqvEpFsyMYfFrM3JkaHKme8pnZEQys1qL370FR/ff8grXYtRvdYhFVQs2OUCT9kPqn2REKXb3wUmZHKHRF8/+hAAAAAAAAAACAm4oCAQAAAAAAAAAATuiOXaQYRd+WLVvMjgAAAAAAAAAATosRBAAAAAAAAAAAOCEKBAAAAAAAAAAAOCGmGAIAAAAAAAAAFCqr1WJ2BOQDIwgAAAAAAAAAAHBCFAgAAAAAAAAAAHBCFAgAAAAAAAAAAHBCrEEAAAAAAAAAAChUVrEGwe2AEQQAAAAAAAAAADghCgQAAAAAAAAAADghphgCnIhnzmmzIxi4uOaaHcHAI/uM2REMvM6dNDuCQy6eOWZHMDjmFmJ2BIOSJw6YHcGg2PE/zI5g8Fv4fWZHcMhTZ82OYBBw5rDZEQw8T2aYHcEgs2QlsyMYnHX3MzuCQ/7Lp5kdwcD/393NjmDwo6WB2REMItxSzI5g4HX2L7MjOORx4nezIxicKV3F7AgGXn/9ZnYEA0t60ftb6sLx42ZHcGzwZLMTGFRP+czsCAb7ItqZHcHAo4y72REM7p7V3+wIDv1V/R6zIzgQanYA4LoxggAAAAAAAAAAACdEgQAAAAAAAAAAACdEgQAAAAAAAAAAACdEgQAAAAAAAAAAACfEIsUAAAAAAAAAgEJltVrMjoB8YAQBAAAAAAAAAABOiAIBAAAAAAAAAABOiAIBAAAAAAAAAABOiDUIAAAAAAAAAACFyirWILgdMIIAAAAAAAAAAAAnRIEAAAAAAAAAAAAnRIHgDmKxWLR69WqzY1xTy5YtNWTIkCLTT1EUFxenwMBAs2MAAAAAAAAAuINRILgJLBbLVV+jR4/O89i0tDRZLBYlJiYWeq6YmBhbBnd3d1WtWlVjx47VhQsXCv1chWnLli2yWCw6efKk3fZVq1Zp3Lhx5oS6QlhYmCwWi5YtW2bYV7NmTVksFsXFxd36YAAAAAAAAACQBxYpvgkyMjJsPy9fvlyxsbFKSUmxbfP19TUjliSpbdu2WrRokbKysrRu3To9++yzKlasmEaMGGFaputVokQJsyPYCQ0N1aJFi/TYY4/Ztn377bc6fPiwfHx8TEwGAAAAAAAAAEaMILgJgoODba+AgABZLBbb+9KlS2vKlCkqX768PDw8VLduXa1fv952bKVKlSRJ9erVk8ViUcuWLSVJ3333ne6//36VKlVKAQEBuvfee/X9998XOJuHh4eCg4NVsWJFPfPMM2rTpo3WrFkjSTpx4oR69uyp4sWLy9vbW+3atVNqaqrt2EvT3qxevVrh4eHy9PRUdHS0Dh06ZGsTExOjzp07251zyJAhtutwZMmSJWrYsKH8/PwUHBysxx9/XEePHpV0cURFq1atJEnFixeXxWJRTEyMJOMUQ/nNv2HDBkVGRsrX11dt27a1K+jciO7du+urr76yux8LFy5U9+7d5eZmX4ubMmWKateuLR8fH4WGhmrAgAHKzMy8av+ffPKJ6tevL09PT1WuXFljxowp8qM/AAAAAAAAABRdFAhusenTp2vy5MmaNGmSfvzxR0VHR+vf//637UH2zp07JUkbN25URkaGVq1aJUn6559/1KtXL23btk3ffvutwsPD1b59e/3zzz83lMfLy0vnz5+XdPHhfkJCgtasWaPt27fLarWqffv2ys7OtrU/c+aMxo8fr3fffVfx8fE6efKk3Tfmr0d2drbGjRunpKQkrV69WmlpabYiQGhoqD766CNJUkpKijIyMjR9+nSH/eQ3/6RJk7RkyRJ9/fXXSk9P17Bhw24o/yVlypRRdHS0Fi9ebDvX8uXL1adPH0NbFxcXzZgxQz/99JMWL16sL7/8Ui+99FKefW/dulU9e/bU4MGDtXfvXr3zzjuKi4vT+PHjCyU7AAAAAAAAAOfDFEO32KRJkzR8+HDbQ/U33nhDmzdv1rRp0zRr1iwFBQVJkkqWLKng4GDbca1bt7brZ968eQoMDNRXX32lBx54oMA5rFarNm3apA0bNui5555Tamqq1qxZo/j4eDVr1kyStHTpUoWGhmr16tV69NFHJV18mD9z5kw1adJEkrR48WJFRkZq586daty4ccFviGT3AL1y5cqaMWOGGjVqpMzMTPn6+tqmEipdunSeC/cWJP/cuXNVpUoVSdLAgQM1duzY68qd17W88MILeuWVV/Thhx+qSpUqqlu3rqHd5SMfwsLC9Nprr+npp5/W7NmzHfY7ZswYvfzyy+rVq5eki/dp3LhxeumllzRq1CiHx2RlZSkrK8t+2/nz8nB3v76LAwAAAAAAAHBHYQTBLXTq1Cn98ccfat68ud325s2bKzk5+arHHjlyRP369VN4eLgCAgLk7++vzMxMpaenFyjD2rVr5evrK09PT7Vr105du3bV6NGjlZycLDc3N9uDf+likSIiIsIum5ubmxo1amR7X716dQUGBl4z/9Xs2rVLHTt2VIUKFeTn56d7771Xkgp0bfnN7+3tbSsOSFLZsmVt0xk5UrNmTfn6+srX11ft2rW7Zo4OHTooMzNTX3/9tRYuXOhw9IB0cYTIfffdp3LlysnPz089evTQ8ePHdebMGYftk5KSNHbsWFsWX19f9evXTxkZGXkeM2HCBAUEBNi9Zr2z4JrXAAAAAAAAANwoq9Vyx73uRIwguE306tVLx48f1/Tp01WxYkV5eHioadOmtumB8qtVq1aaM2eO3N3dFRISYpgb/0a5uLjIarXabbt8ip8rnT59WtHR0YqOjtbSpUsVFBSk9PR0RUdHF/ja8qNYsWJ27y0WiyHv5datW2fL7+Xldc3+3dzc1KNHD40aNUo7duzQxx9/bGiTlpamBx54QM8884zGjx+vEiVKaNu2berbt6/Onz8vb29vwzGZmZkaM2aMHnroIcM+T09Ph1lGjBihoUOH2m07ln7gmtcAAAAAAAAAwDlQILiF/P39FRISovj4eNu35CUpPj7eNj2P+/9N/5KTk2N3bHx8vGbPnq327dtLkg4dOqQ///yzwBl8fHxUtWpVw/bIyEhduHBBO3bssE3Rc/z4caWkpKhGjRq2dhcuXFBCQoItb0pKik6ePKnIyEhJUlBQkPbs2WPXd2JiouHB/CX79u3T8ePHNXHiRIWGhkqSEhIS7NrkdU+uJ39BVaxYscDH9OnTR5MmTVLXrl1VvHhxw/5du3YpNzdXkydPlovLxUE8K1asuGqf9evXV0pKisPPLi8eHh7y8PCw23aK6YUAAAAAAAAA/B+mGLrFXnzxRb3xxhtavny5UlJS9PLLLysxMVGDBw+WdHGefS8vL61fv15HjhzR33//LUkKDw/XkiVLlJycrB07dqh79+75+kZ7foWHh6tTp07q16+ftm3bpqSkJD3xxBMqV66cOnXqZGtXrFgxPffcc9qxY4d27dqlmJgY3XXXXbaCQevWrZWQkKB3331XqampGjVqlKFgcLkKFSrI3d1db7/9tn7++WetWbNG48aNs2tTsWJFWSwWrV27VseOHVNmZuZ1578VIiMj9eeff2rRokUO91etWlXZ2dm2a16yZInmzp171T5jY2P17rvvasyYMfrpp5+UnJysZcuW6dVXX70ZlwAAAAAAAADACVAguMUGDRqkoUOH6oUXXlDt2rW1fv16rVmzRuHh4ZIuTlEzY8YMvfPOOwoJCbE93P7vf/+rEydOqH79+urRo4cGDRqk0qVLF2q2RYsWqUGDBnrggQfUtGlTWa1WrVu3zu7b/97e3ho+fLgef/xxNW/eXL6+vlq+fLltf3R0tEaOHKmXXnpJjRo10j///KOePXvmec6goCDFxcVp5cqVqlGjhiZOnKhJkybZtSlXrpxtkd4yZcpo4MCB153/VilZsmSeBZyoqChNmTJFb7zxhmrVqqWlS5dqwoQJV+0vOjpaa9eu1eeff65GjRrprrvu0tSpU69rhAMAAAAAAABws+Xega87kcV6tQnYgcvExcVpyJAhOnnypNlRcJ1+25/3aA6znHctvJEwhcUr+x+zIxh4nTtpdgSHznkGmB3B4JhbiNkRDMJO7DI7gkGx43+YHcHgt/D7zI7gkKvynuLOLAFnDpsdwcDzZIbZEQwyS1YyO4LBWXc/syM45L98mtkRDKz/7m52BIMfLQ3MjmAQ4ZZidgQDr7N/mR3BIY8Tv5sdweBM6SpmRzDw+us3syMYWIrgWmoXjh83O4JDfoMnmx3B4ODPP5sdwWBfRDuzIxh4lCl6UwLfPau/2REc+qv6PWZHMAiJqGN2hCLp231/mx2h0N1Vveg9B7lRjCAAAAAAAAAAAMAJUSAAAAAAAAAAAMAJUSBAvsXExDC9EAAAAAAAAADcISgQAAAAAAAAAADghCgQAAAAAAAAAADghCgQAAAAAAAAAADghNzMDgAAAAAAAAAAuLNYrRazIyAfGEEAAAAAAAAAAIATokAAAAAAAAAAAIATokAAAAAAAAAAAIATokAAAAAAAAAAAIATYpFiAAAAAAAAAEChsopFim8HFAgAJ2K1FL1BQxZZzY5gkOvianYEg6KYSZIs1lyzIxhYrfwBki+uRe9PAFflmB0BN8DqVszsCAYWFb1/o4riv5uSlJudbXYEA4u16P2NcMFa9P6WuuDqbnYEA2uR/bul6P1O5boUvf89znX3NDuCgatL0fv7zloEf5+KqqL497lHmaL3b2fWkfNmRzByK3r/RklSbhF8tgHczvgvCgAAAAAAAAAAJ0SBAAAAAAAAAAAAJ0SBAAAAAAAAAAAAJ0SBAAAAAAAAAAAAJ0SBAAAAAAAAAAAAJ0SBAAAAAAAAAAAAJ+RmdgAAAAAAAAAAwJ3FarWYHQH5wAgCAAAAAAAAAACcEAUCAAAAAAAAAACcEAUCAAAAAAAAAACcEAUCAAAAAAAAAACcEAWCIsJisWj16tVmx7imli1basiQIUWmnztVWlqaLBaLEhMTzY4CAAAAAAAA4A5FgeAKFovlqq/Ro0fneezNfKgbExNjy+Du7q6qVatq7NixunDhQqGfqzBt2bJFFotFJ0+etNu+atUqjRs3zpxQVwgLCzN8zuXLlzc7FgAAAAAAAADcVG5mByhqMjIybD8vX75csbGxSklJsW3z9fU1I5YkqW3btlq0aJGysrK0bt06PfvssypWrJhGjBhhWqbrVaJECbMj2Bk7dqz69etne+/q6mpiGgAAAAAAAAC4+RhBcIXg4GDbKyAgQBaLxfa+dOnSmjJlisqXLy8PDw/VrVtX69evtx1bqVIlSVK9evVksVjUsmVLSdJ3332n+++/X6VKlVJAQIDuvfdeff/99wXO5uHhoeDgYFWsWFHPPPOM2rRpozVr1kiSTpw4oZ49e6p48eLy9vZWu3btlJqaajs2Li5OgYGBWr16tcLDw+Xp6ano6GgdOnTI1iYmJkadO3e2O+eQIUNs1+HIkiVL1LBhQ/n5+Sk4OFiPP/64jh49KuniiIpWrVpJkooXLy6LxaKYmBhJximG8pt/w4YNioyMlK+vr9q2bWtX0LkRl/JfegUFBUmScnNzNWHCBFWqVEleXl6KiorShx9+aDvu0giJDRs2qF69evLy8lLr1q119OhRffbZZ4qMjJS/v78ef/xxnTlzxnbc+vXrdffddyswMFAlS5bUAw88oIMHD1414549e9SuXTv5+vqqTJky6tGjh/78889CuX4AAAAAAAAAzocCQQFMnz5dkydP1qRJk/Tjjz8qOjpa//73v20Psnfu3ClJ2rhxozIyMrRq1SpJ0j///KNevXpp27Zt+vbbbxUeHq727dvrn3/+uaE8Xl5eOn/+vKSLD/cTEhK0Zs0abd++XVarVe3bt1d2drat/ZkzZzR+/Hi9++67io+P18mTJ/XYY4/dUIbs7GyNGzdOSUlJWr16tdLS0mxFgNDQUH300UeSpJSUFGVkZGj69OkO+8lv/kmTJmnJkiX6+uuvlZ6ermHDht1Q/muZMGGC3n33Xc2dO1c//fSTnn/+eT3xxBP66quv7NqNHj1aM2fO1DfffKNDhw6pS5cumjZtmt5//319+umn+vzzz/X222/b2p8+fVpDhw5VQkKCNm3aJBcXFz344IPKzc11mOPkyZNq3bq16tWrp4SEBK1fv15HjhxRly5dbur1AwAAAAAAANfDKssd97oTMcVQAUyaNEnDhw+3PVR/4403tHnzZk2bNk2zZs2yfeu8ZMmSCg4Oth3XunVru37mzZunwMBAffXVV3rggQcKnMNqtWrTpk3asGGDnnvuOaWmpmrNmjWKj49Xs2bNJElLly5VaGioVq9erUcffVTSxYf5M2fOVJMmTSRJixcvVmRkpHbu3KnGjRsX/IZI6tOnj+3nypUra8aMGWrUqJEyMzPl6+trm0qodOnSCgwMdNhHQfLPnTtXVapUkSQNHDhQY8eOva7cVxo+fLheffVV2/vXX39d/fv31+uvv66NGzeqadOmtmvctm2b3nnnHd1777229q+99pqaN28uSerbt69GjBihgwcPqnLlypKkRx55RJs3b9bw4cMlSQ8//LDd+RcuXKigoCDt3btXtWrVMuSbOXOm6tWrp9dff93umNDQUO3fv1/VqlUzHJOVlaWsrCz7befPy8PdvUD3BgAAAAAAAMCdiREE+XTq1Cn98ccftofAlzRv3lzJyclXPfbIkSPq16+fwsPDFRAQIH9/f2VmZio9Pb1AGdauXStfX195enqqXbt26tq1q0aPHq3k5GS5ubnZHvxLF4sUERERdtnc3NzUqFEj2/vq1asrMDDwmvmvZteuXerYsaMqVKggPz8/20PzglxbfvN7e3vbigOSVLZsWdt0Ro7UrFlTvr6+8vX1Vbt27a6a4cUXX1RiYqLt1bNnTx04cEBnzpzR/fffb+vH19dX7777rmE6oDp16th+LlOmjLy9vW3FgUvbLs+ampqqbt26qXLlyvL391dYWJikvO9bUlKSNm/ebJejevXqkpTn1EQTJkxQQECA3WvW3PlXvQ8AAAAAAAAAnAcjCG6BXr166fjx45o+fboqVqwoDw8PNW3a1DY9UH61atVKc+bMkbu7u0JCQuTmVrgfn4uLi6xWq922y6f4udLp06cVHR2t6OhoLV26VEFBQUpPT1d0dHSBry0/ihUrZvfeYrEY8l5u3bp1tvxeXl5X7btUqVKqWrWq3bZLi1N/+umnKleunN0+Dw+PPLNZLBaHWS+fPqhjx46qWLGi5s+fr5CQEOXm5qpWrVp53rfMzEx17NhRb7zxhmFf2bJlHR4zYsQIDR061G7b0UM/O2wLAAAAAAAAwPlQIMgnf39/hYSEKD4+3m5qmfj4eNv0PO7/N3VLTk6O3bHx8fGaPXu22rdvL0k6dOjQdS0u6+PjY3iILUmRkZG6cOGCduzYYZui5/jx40pJSVGNGjVs7S5cuKCEhARb3pSUFJ08eVKRkZGSpKCgIO3Zs8eu78TERMPD7kv27dun48ePa+LEiQoNDZUkJSQk2LXJ655cT/6Cqlix4nUfK0k1atSQh4eH0tPT7T7zG3Xp2ubPn68WLVpIkrZt23bVY+rXr6+PPvpIYWFh+S4MeXh4GAoZfzO9EAAAAAAAAG6B3Ly/14sihCmGCuDFF1/UG2+8oeXLlyslJUUvv/yyEhMTNXjwYEkX59n3+n/s3XdYFNf7NvB7UenVhorSBFEEC6LGXlBRsYGxYkHsBRvW2MUWY8EWGyhgrLFXxIJiR0CwIEoVE8GGgIAo5bx/8DI/1gXEJM4Zvz6f69orMrswd7bOzjnnedTUhAayaWlpAABzc3Ps2bMHjx8/xp07d+Ds7PzFGe1fw9zcHL1798bo0aNx/fp1REREYMiQITAwMEDv3r2F21WoUAFubm64c+cOQkND4eLigp9++kkYMOjYsSNCQkLg5+eH6OhoLFq0SGHAoChDQ0MoKytj06ZNiIuLw8mTJ+Hh4SF3GyMjI8hkMpw+fRqvX79GRkbGP84vNi0tLcyYMQPTpk2Dr68vYmNjERYWhk2bNsHX1/cf/109PT1UqlQJO3bsQExMDC5fvqww0/9zEydOREpKCgYNGoS7d+8iNjYW58+fx4gRI0odfCGEEEIIIYQQQgghhJCS0ADBV5g8eTKmT58Od3d3WFtbw9/fHydPnoS5uTmAghr/GzduxPbt21GjRg3h5La3tzfevXsHGxsbDB06FJMnT0bVqlX/02y7d+9GkyZN0KNHD7Ro0QKMMZw9e1Zu9r+6ujpmz56NwYMHo1WrVtDU1MTBgweF6+3t7bFgwQLMmjULTZs2xfv37zFs2LAS91mlShX4+Pjgzz//hKWlJVatWoU1a9bI3cbAwABLlizBnDlzoK+vj0mTJv3j/Dx4eHhgwYIFWLlyJerVq4euXbvizJkzMDEx+cd/U0lJCQcOHEBoaCisrKwwbdo0/Pbbb6X+TuHqlby8PHTp0gXW1taYOnUqdHV1oaREL2NCCCGEEEIIIYQQQsjXk7HSiriT/xk+Pj6YOnUqUlNTeUchHD2PjuQdQUGukvTKHinnfeAdQYFadirvCMXKqaDOO4KCl+Vr8Y6gwCQ15Ms3ElmF1JKbvPOSZNqad4Tvhk5WMu8IClQyvr584reWpVODdwQFHypo8Y5QLI29a3lHUCBzGs47goIwNOMdQYGFWizvCAo0s17zjlAstTfPeEdQ8L56Xd4RFKilS+8zplzcI94RFOS8kubzXHvqOt4RFMTExvOOoCChXS/eERR8fPnf93L8t+yOT+MdoVhvzKX3vaFmHSveESQp6FEm7wj/ubb1NXhH+M/R1GNCCCGEEEIIIYQQQggh5AdEAwSEEEIIIYQQQgghhBBCyA+IBgh+EC4uLlReiBBCCCGEEEIIIYQQQoiABggIIYQQQgghhBBCCCGEkB8QDRAQQgghhBBCCCGEEEII+U8xyP7nLt9SSkoKnJ2doa2tDV1dXYwcORIZGRml3t7NzQ0WFhZQU1ODoaEhJk+ejLS0tK/aLw0QEEIIIYQQQgghhBBCCCEcOTs749GjR7hw4QJOnz6NoKAgjBkzpsTbv3jxAi9evMCaNWvw8OFD+Pj4wN/fHyNHjvyq/Zb/t8EJIYQQQgghhBBCCCGEEPLPPH78GP7+/rh79y5sbW0BAJs2bUL37t2xZs0a1KhRQ+F3rKyscOTIEeHn2rVrY/ny5RgyZAhyc3NRvnzZTv3TCgJCCCGEEEIIIYQQQggh5As+fvyI9PR0ucvHjx//9d+9desWdHV1hcEBAOjUqROUlJRw586dMv+dtLQ0aGtrl3lwAKABAkIIIYQQQgghhBBCCCH/McZk/3OXlStXQkdHR+6ycuXKf31fJScno2rVqnLbypcvj4oVKyI5OblMf+PNmzfw8PAotSxRcWiAgBBCCCGEEEIIIYQQQgj5grlz5yItLU3uMnfu3BJvP2fOHMhkslIvUVFR/zpXeno6HBwcYGlpicWLF3/V71IPAkIIIYQQQgghhBBCCCHkC1RUVKCiolLm27u7u8PFxaXU25iamqJatWp49eqV3Pbc3FykpKSgWrVqpf7++/fv0bVrV2hpaeHYsWOoUKFCmfMBNEBACCGEEEIIIYQQQgghhPznqlSpgipVqnzxdi1atEBqaipCQ0PRpEkTAMDly5eRn5+P5s2bl/h76enpsLe3h4qKCk6ePAlVVdWvzkgDBIT8QHKUyj7CKZby+Z94R1CQJ5PeW2Neeek9dgDwXrki7wgKVPDvmwP912T5ebwjKMhX1+Id4btRLj+HdwQFeeWUeUcg/1C+rBzvCMVSb9eBdwQFH2Qy3hEUGKmXrf6rmNQ+pPGOoEDGGO8IxcpX1eAdQYFq5hveERRJ8LWXb2zBO4ICZX0D3hG+GzKZ9N4TWm8ZyzuCoq9oKCqWS33W845QrPqPO/KOQMh/rl69eujatStGjx6Nbdu2IScnB5MmTcLAgQNRo0YNAMDff/8NOzs7+Pn5oVmzZkhPT0eXLl2QlZWFP/74Q2iaDBQMTJQrV7bvHtJ79yGEEEIIIYQQQgghhBBCfiB79+7FpEmTYGdnByUlJfTt2xcbN24Urs/JycGTJ0+QlZUFAAgLC8OdO3cAAGZmZnJ/Kz4+HsbGxmXaLw0QEEIIIYQQQgghhBBCCCEcVaxYEfv27SvxemNjY7AiKzXbt28v9/M/pfSv/wIhhBBCCCGEEEIIIYQQQr47NEBACCGEEEIIIYQQQgghhPyAqMQQIYQQQgghhBBCCCGEkP/Uf1D9hoiAVhAQQgghhBBCCCGEEEIIIT8gGiAghBBCCCGEEEIIIYQQQn5ANEBACCGEEEIIIYQQQgghhPyAqAcBIYQQQgghhBBCCCGEkP9UPmS8I5AyoBUEhBBCCCGEEEIIIYQQQsgPiAYICCGEEEIIIYQQQgghhJAfEA0QkO+Ci4sL+vTpwzVD+/btMXXq1H/9d6Tw/0IIIYQQQgghhBBCCCHUg4D8Y+3bt0ejRo3g6en5TX9HKo4ePYoKFSr867+zYcMGMMb+g0SEEEIIIYQQQgghhBDyz9EAASFlVLFixf/k7+jo6Pwnf4cQQgghhBBCCCGEEEL+DSoxRP4RFxcXXL16FRs2bIBMJoNMJkNCQgKuXr2KZs2aQUVFBdWrV8ecOXOQm5tb6u/k5eVh5MiRMDExgZqaGiwsLLBhw4Z/nC0/Px8rV64U/l7Dhg1x+PBh4forV65AJpPh/PnzaNy4MdTU1NCxY0e8evUK586dQ7169aCtrY3BgwcjKytL+L3PSwz9/vvvMDc3h6qqKvT19fHzzz8L1x0+fBjW1tZQU1NDpUqV0KlTJ2RmZgr3Q9ESQx8/fsTkyZNRtWpVqKqqonXr1rh7965C3kuXLsHW1hbq6upo2bIlnjx58o/vI0IIIYQQQgghhBBCCKEBAvKPbNiwAS1atMDo0aORlJSEpKQkVKhQAd27d0fTpk0RERGBrVu3wtvbG8uWLSvxd2rVqoX8/HzUrFkTf/75JyIjI7Fw4UL88ssvOHTo0D/KtnLlSvj5+WHbtm149OgRpk2bhiFDhuDq1atyt1u8eDE2b96Mmzdv4vnz5+jfvz88PT2xb98+nDlzBgEBAdi0aVOx+wgJCcHkyZOxdOlSPHnyBP7+/mjbti0AICkpCYMGDYKrqyseP36MK1euwMnJqcSyQrNmzcKRI0fg6+uLsLAwmJmZwd7eHikpKXK3mzdvHtauXYuQkBCUL18erq6u/+j+IYQQQgghhBBCCCGEEIBKDJF/SEdHB8rKylBXV0e1atUAFJzArlWrFjZv3gyZTIa6devixYsXmD17NhYuXFjs7wBAuXLlsGTJEuFnExMT3Lp1C4cOHUL//v2/KtfHjx+xYsUKXLx4ES1atAAAmJqa4vr169i+fTvatWsn3HbZsmVo1aoVAGDkyJGYO3cuYmNjYWpqCgD4+eefERgYiNmzZyvsJzExERoaGujRowe0tLRgZGSExo0bAygYIMjNzYWTkxOMjIwAANbW1sXmzczMxNatW+Hj44Nu3boBAHbu3IkLFy7A29sbM2fOFG67fPlyIf+cOXPg4OCA7OxsqKqqlnhffPz4UWGbiorKF+5FQgghhBBCCCGEEEL+HcZkvCOQMqAVBOQ/8/jxY7Ro0QIy2f+9+Fu1aoWMjAz89ddfpf7uli1b0KRJE1SpUgWamprYsWMHEhMTvzpDTEwMsrKy0LlzZ2hqagoXPz8/xMbGyt22QYMGwr/19fWhrq4uDA4Ubnv16lWx++ncuTOMjIxgamqKoUOHYu/evUI5ooYNG8LOzg7W1tbo168fdu7ciXfv3hX7d2JjY5GTkyMMVABAhQoV0KxZMzx+/LjEvNWrVweAEvMBBSspdHR05C7btm0r8faEEEIIIYQQQgghhJAfCw0QEO4OHDiAGTNmYOTIkQgICEB4eDhGjBiBT58+ffXfysjIAACcOXMG4eHhwiUyMlKuDwFQcCK+kEwmk/u5cFt+fn6x+9HS0kJYWBj279+P6tWrY+HChWjYsCFSU1NRrlw5XLhwAefOnYOlpSU2bdoECwsLxMfHf/X/T2l5AZSYDwDmzp2LtLQ0ucu4ceP+VQZCCCGEEEIIIYQQQsj/DhogIP+YsrIy8vLyhJ/r1auHW7duydXav3HjBrS0tFCzZs1if6fwNi1btsSECRPQuHFjmJmZKcz2LytLS0uoqKggMTERZmZmcpdatWr9o79ZkvLly6NTp05YvXo17t+/j4SEBFy+fBlAwQn8Vq1aYcmSJbh37x6UlZVx7Ngxhb9Ru3ZtKCsr48aNG8K2nJwc3L17F5aWlv8qn4qKCrS1teUuVF6IEEIIIYQQQgghhBBSiHoQkH/M2NgYd+7cQUJCAjQ1NTFhwgR4enrCzc0NkyZNwpMnT7Bo0SJMnz4dSkpKxf5OxYoVYW5uDj8/P5w/fx4mJibYs2cP7t69CxMTk6/OpKWlhRkzZmDatGnIz89H69atkZaWhhs3bkBbWxvDhw//T/7fT58+jbi4OLRt2xZ6eno4e/Ys8vPzYWFhgTt37uDSpUvo0qULqlatijt37uD169eoV6+ewt/R0NDA+PHjMXPmTFSsWBGGhoZYvXo1srKyMHLkyP8kKyGEEEIIIYQQQgghhBSHBgjIPzZjxgwMHz4clpaW+PDhA+Lj43H27FnMnDkTDRs2RMWKFTFy5EjMnz+/1N8ZO3Ys7t27hwEDBkAmk2HQoEGYMGECzp07949yeXh4oEqVKli5ciXi4uKgq6sLGxsb/PLLL//V/zp0dXVx9OhRLF68GNnZ2TA3N8f+/ftRv359PH78GEFBQfD09ER6ejqMjIywdu1aoQnx51atWoX8/HwMHToU79+/h62tLc6fPw89Pb3/LC8hhBBCCCGEEEIIIWIqUmSESJiMMXqoCPlRxP3D0k3fUvn8r+818SNSy3nPO0Kx0lSq8I6gIE+CY98Gb8J5R1CglCu9197Lag15RyhWufwc3hEUSPE9QT3tBe8ICrJ0avCOoCBTWZd3hGLpP7/LO4KCD5WNeEdQ8Fb9vy1Z+V/Q+yC911753I+8IxRLOfMt7wgK8pTVeEdQIMvP+/KNRCbLk95ncbkPGbwjFEvVbhjvCApi4+J4R1Bg8OAs7wiKykvve8ylPut5RyhW/ceneEdQYGxWh3cESboQIc1jgn+jc8P/vfLd1IOAEEIIIYQQQgghhBBCCPkB0QAB+a4kJiZCU1OzxEtiYiLviIQQQgghhBBCCCGEEPJdkN76JUJKUaNGDYSHh5d6PSGEEEIIIYQQQgghhJAvowEC8l0pX748zMzMeMcghBBCCCGEEEIIIYSQ7x6VGCKEEEIIIYQQQgghhBBCfkA0QEAIIYQQQgghhBBCCCGE/ICoxBAhhBBCCCGEEEIIIYSQ/xSDjHcEUga0goAQQgghhBBCCCGEEEII+QHRAAEhhBBCCCGEEEIIIYQQ8gOiAQJCCCGEEEIIIYQQQggh5AdEPQgIIYQQQgghhBBCCCGE/KfyGe8EpCxoBQEhhBBCCCGEEEIIIYQQ8gOiFQSE/ECq+m/nHUFBUteJvCMoqMA+8o6g4J1KNd4RilVOlss7ggIlls87goIMnZq8IyhQzsnkHUFBufwc3hGKlSHT4R1BUQXeARSV06jEO4KCj+XVeUdQoJyXzTtCsV7XtOEdQUE5Jr3PGAYZ7wgKspW1eEdQoFRBg3eEYqVq1uAdQUGFfOkdd0rxeS5FUjzmBADpPcuBXCa9A5eUum15R1CQL5PeHN76jzvyjlCsR/V68o6gwDjnCe8IhPxj0nv3IYQQQgghhBBCCCGEEELIN0cDBIQQQgghhBBCCCGEEELID4gGCAghhBBCCCGEEEIIIYSQHxANEBBCCCGEEEIIIYQQQgghPyAaICCEEEIIIYQQQgghhBBCfkA0QEAIIYQQQgghhBBCCCGE/IDK8w5ACCGEEEIIIYQQQggh5H8LYzLeEUgZ0AoCQgghhBBCCCGEEEIIIeQHRAMEhBBCCCGEEEIIIYQQQsgPiAYICCGEEEIIIYQQQgghhJAfEA0QEEIIIYQQQgghhBBCCCE/IBogKKNbt26hXLlycHBw4B3lm/Lx8YFMJiv1kpCQwDvmf+rKlSuQyWRITU3lliEvLw8TJkxA9erV0b17d7x69Uru+vT0dMybNw9169aFqqoqqlWrhk6dOuHo0aNgjHFKTQghhBBCCCGEEEII+Z7RAEEZeXt7w83NDUFBQXjx4sU33RdjDLm5ud90HyUZMGAAkpKShEuLFi0wevRouW21atXiku1rffr0SfR95uTk/KPfO3DgABITE3H+/HnY2Nhg/vz5wnWpqalo2bIl/Pz8MHfuXISFhSEoKAgDBgzArFmzkJaW9l/FJ4QQQgghhBBCCCGE/EBogKAMMjIycPDgQYwfPx4ODg7w8fERrhs8eDAGDBggd/ucnBxUrlwZfn5+AID8/HysXLkSJiYmUFNTQ8OGDXH48GHh9oUz2M+dO4cmTZpARUUF169fR2xsLHr37g19fX1oamqiadOmuHjxoty+kpKS4ODgADU1NZiYmGDfvn0wNjaGp6encJvU1FSMGjUKVapUgba2Njp27IiIiIhi/1/V1NRQrVo14aKsrAx1dXXhZ1VVVYwdO7bEv7V48WI0atQIu3btgqGhITQ1NTFhwgTk5eVh9erVqFatGqpWrYrly5fL7Vcmk2Hr1q3o1q0b1NTUYGpqKncfAcDz58/Rv39/6OrqomLFiujdu7fcagYXFxf06dMHy5cvR40aNWBhYQEA2LNnD2xtbaGlpYVq1aph8ODBwgz9hIQEdOjQAQCgp6cHmUwGFxcXAFC4HwGgUaNGWLx4sULuXr16QUNDQ/j/OnHiBGxsbKCqqgpTU1MsWbKk1EGfd+/ewdjYGFZWVrC2tpZbzfDLL78gISEBd+7cwfDhw2FpaYk6depg9OjRCA8Ph6amZol/lxBCCCGEEEIIIYQQQkpCAwRlcOjQIdStWxcWFhYYMmQIdu3aJZR1cXZ2xqlTp5CRkSHc/vz588jKyoKjoyMAYOXKlfDz88O2bdvw6NEjTJs2DUOGDMHVq1fl9jNnzhysWrUKjx8/RoMGDZCRkYHu3bvj0qVLuHfvHrp27YqePXsiMTFR+J1hw4bhxYsXuHLlCo4cOYIdO3YolKfp168fXr16hXPnziE0NBQ2Njaws7NDSkrKV98XZflbsbGxOHfuHPz9/bF//354e3vDwcEBf/31F65evYpff/0V8+fPx507d+T+9oIFC9C3b19ERETA2dkZAwcOxOPHjwEUDLrY29tDS0sL165dw40bN6CpqYmuXbvKrRS4dOkSnjx5ggsXLuD06dPC73p4eCAiIgLHjx9HQkKCMAhQq1YtHDlyBADw5MkTJCUlYcOGDV91nyxevBiOjo548OABXF1dce3aNQwbNgxTpkxBZGQktm/fDh8fH4VBkaKGDBmCW7duQUVFBe7u7sIKgvz8fBw4cADOzs6oUaOGwu9pamqifPnyX5WXEEIIIYQQQgghhJBvjbH/vcv/IjqzWAbe3t4YMmQIAKBr165IS0vD1atX0b59e9jb20NDQwPHjh3D0KFDAQD79u1Dr169oKWlhY8fP2LFihW4ePEiWrRoAQAwNTXF9evXsX37drRr107Yz9KlS9G5c2fh54oVK6Jhw4bCzx4eHjh27BhOnjyJSZMmISoqChcvXsTdu3dha2sLAPDy8oK5ubnwO9evX0dwcDBevXoFFRUVAMCaNWtw/PhxHD58GGPGjCnz/VDWv5Wfn49du3ZBS0sLlpaW6NChA548eYKzZ89CSUkJFhYW+PXXXxEYGIjmzZsLf79fv34YNWqU8P964cIFbNq0Cb///jsOHjyI/Px8eHl5QSaTAQB2794NXV1dXLlyBV26dAEAaGhowMvLC8rKysLfdXV1Ff5tamqKjRs3omnTpsjIyICmpiYqVqwIAKhatSp0dXXLfH8UGjx4MEaMGCG3vzlz5mD48OHCPj08PDBr1iwsWrSo2L+hq6uL0NBQJCcno0qVKihXrhwA4M2bN3j37h3q1q371bkIIYQQQgghhBBCCCGkNDRA8AVPnjxBcHAwjh07BgAoX748BgwYAG9vb7Rv3x7ly5dH//79sXfvXgwdOhSZmZk4ceIEDhw4AACIiYlBVlaW3Il/oKA+fuPGjeW2FZ7kL5SRkYHFixfjzJkzSEpKQm5uLj58+CCsIHjy5AnKly8PGxsb4XfMzMygp6cn/BwREYGMjAxUqlRJ7m9/+PABsbGxX3VflPVvGRsbQ0tLS/hZX18f5cqVg5KSkty2z1c6FA6gFP05PDxc2HdMTIzc3wWA7OxsuX1bW1vLDQ4AQGhoKBYvXoyIiAi8e/cO+fn5AIDExERYWlqW9X+/RJ8/bhEREbhx44bcioG8vDxkZ2cjKysL6urqJf6tatWqyf38bxoQf/z4ER8/fpTblpOTC5UK9LInhBBCCCGEEEIIIYTQAMEXeXt7Izc3V668C2MMKioq2Lx5M3R0dODs7Ix27drh1atXuHDhAtTU1NC1a1cAEEoPnTlzBgYGBnJ/u3AWfiENDQ25n2fMmIELFy5gzZo1MDMzg5qaGn7++eevar6bkZGB6tWr48qVKwrXfe1s+bL+rQoVKshdJ5PJit1WeKK+rPtu0qQJ9u7dq3BdlSpVhH9/fh9mZmbC3t4e9vb22Lt3L6pUqYLExETY29t/8X5UUlJSOEFfXBPiz/eZkZGBJUuWwMnJSeG2qqqqpe7zc1WqVIGuri6ioqK+6veAgtJWS5Yskds2t1tL/OLQ6qv/FiGEEEIIIYQQQggh5H8PDRCUIjc3F35+fli7dq1QwqZQnz59sH//fowbNw4tW7ZErVq1cPDgQZw7dw79+vUTTohbWlpCRUUFiYmJcuWEyuLGjRtwcXERehlkZGTINeW1sLBAbm4u7t27hyZNmgAoWLHw7t074TY2NjZITk5G+fLlYWxs/A/uhf/zX/6t4ty+fRvDhg2T+7lwlYWNjQ0OHjyIqlWrQltbu8x/MyoqCm/fvsWqVatQq1YtAEBISIjcbQpXHOTl5cltr1KlCpKSkoSf09PTER8f/8V92tjY4MmTJzAzMytzzpIoKSlh4MCB2LNnDxYtWqTQhyAjIwOqqqrF9iGYO3cupk+fLrctZ9fif52JEEIIIYQQQgghhJAvyYeMdwRSBtSkuBSnT5/Gu3fvMHLkSFhZWcld+vbtC29vb+G2gwcPxrZt23DhwgU4OzsL27W0tDBjxgxMmzYNvr6+iI2NRVhYGDZt2gRfX99S929ubo6jR48iPDwcERERGDx4sNys+7p166JTp04YM2YMgoODce/ePYwZMwZqampCnf5OnTqhRYsW6NOnDwICApCQkICbN29i3rx5CifKv+S//FvF+fPPP7Fr1y48ffoUixYtQnBwMCZNmgSgoBl05cqV0bt3b1y7dg3x8fG4cuUKJk+ejL/++qvEv2loaAhlZWVs2rQJcXFxOHnyJDw8PORuY2RkBJlMhtOnT+P169fCqo+OHTtiz549uHbtGh48eIDhw4cLvQFKs3DhQvj5+WHJkiV49OgRHj9+jAMHDgiNh7/W8uXLUatWLTRv3hx+fn6IjIxEdHQ0du3ahcaNG8s1yC5KRUUF2trachcqL0QIIYQQQgghhBBCCClEAwSl8Pb2RqdOnaCjo6NwXd++fRESEoL79+8DKDiBHRkZCQMDA7RqJV/CxcPDAwsWLMDKlStRr149dO3aFWfOnIGJiUmp+1+3bh309PTQsmVL9OzZE/b29nL9BgDAz88P+vr6aNu2LRwdHTF69GhoaWkJpWxkMhnOnj2Ltm3bYsSIEahTpw4GDhyIZ8+eQV9f/6vuj//ybxVnyZIlOHDgABo0aAA/Pz/s379f6BGgrq6OoKAgGBoawsnJCfXq1cPIkSORnZ1d6oqCKlWqwMfHB3/++ScsLS2xatUqrFmzRu42BgYGWLJkCebMmQN9fX1hUGLu3Llo164devToAQcHB/Tp0we1a9f+4v+Hvb09Tp8+jYCAADRt2hQ//fQT1q9fDyMjo390v1SsWBG3b9/GkCFDsGzZMjRu3Bht2rTB/v378dtvvxX7/CSEEEIIIYQQQgghhJAvkbF/0wWVSM5ff/2FWrVq4eLFi7Czs+Mdp8xkMhmOHTuGPn368I7yPy1jyyzeERQkdZ3IO4KCCuzjl28ksk+yr+tfIZZyslzeERTksy+v9BGbVk4K7wgKlHMyeUdQkKFaiXeEYmXIpDcQq8nSeEdQoPnhDe8ICrJU9XhHUKDEyt6DSUy5ShW+fCORlWPS+4zJLCe99wP1vHTeERRI9Xn+qZz0jqcq5EvvuJNROYgykerzvIZFA94RFDyJfc47ggKt3HdfvpHI8mXSm8Obq6TMO0KxHtXryTuCAoecJ7wjSNLpMOkdz/1bPWz+96pz/O/9H/1gLl++jIyMDFhbWyMpKQmzZs2CsbEx2rZtyzsaIYQQQgghhBBCCCGEEAmjAYLvXE5ODn755RfExcVBS0sLLVu2xN69e4UmyYQQQgghhBBCCCGEEEJIcWiA4Dtnb28Pe3t73jH+Nap0RQghhBBCCCGEEEIIIeKSXoEzQgghhBBCCCGEEEIIIYR8czRAQAghhBBCCCGEEEIIIYT8gKjEECGEEEIIIYQQQgghhJD/FFUU/z7QCgJCCCGEEEIIIYQQQggh5AdEAwSEEEIIIYQQQgghhBBCyA+IBggIIYQQQgghhBBCCCGEkB8Q9SAghBBCCCGEEEIIIYQQ8p9iTMY7AikDWkFACCGEEEIIIYQQQgghhPyAaICAEEIIIYQQQgghhBBCCPkB0QABIYQQQgghhBBCCCGEEPIjYoQQ8hWys7PZokWLWHZ2Nu8ocqSYizKVDWUqOynmokxlQ5nKToq5KFPZUKayk2IuylQ2lKnspJiLMpUNZSo7KeaiTGUjxUyE8CJjjDHegxSEkO9Heno6dHR0kJaWBm1tbd5xBFLMRZnKhjKVnRRzUaayoUxlJ8VclKlsKFPZSTEXZSobylR2UsxFmcqGMpWdFHNRprKRYiZCeKESQ4QQQgghhBBCCCGEEELID4gGCAghhBBCCCGEEEIIIYSQHxANEBBCCCGEEEIIIYQQQgghPyAaICCEfBUVFRUsWrQIKioqvKPIkWIuylQ2lKnspJiLMpUNZSo7KeaiTGVDmcpOirkoU9lQprKTYi7KVDaUqeykmIsylY0UMxHCCzUpJoQQQgghhBBCCCGEEEJ+QLSCgBBCCCGEEEIIIYQQQgj5AdEAASGEEEIIIYQQQgghhBDyA6IBAkIIIYQQQgghhBBCCCHkB0QDBISQEuXm5sLPzw8vX77kHYUQQgghhBBCCCGEEPIfowECQkiJypcvj3HjxiE7O5t3lDJJTU3lHUGB1DKlp6fj+PHjePz4Me8o+PTpE/766y8kJibKXYi0dezYsdjndXp6Ojp27Ch+IAnLz8/H06dPcf36dQQFBcldeKLX3tf5Xj4DCflflJeXh/DwcLx79453FHz69AlPnjxBbm4u7yj0WUy+OSl9Z5AyqR0jxMTE4Pz58/jw4QMAgDHGOZF0pKenIz8/X2F7Xl4e0tPTOSQiRFrK8w5ACJG2Zs2aITw8HEZGRryjyPn1119hbGyMAQMGAAD69++PI0eOoFq1ajh79iwaNmxImf5/hrZt22LSpEn48OEDbG1tkZCQAMYYDhw4gL59+4qeKTo6Gq6urrh586bcdsYYZDIZ8vLyRM8UHx+Pa9eu4dmzZ8jKykKVKlXQuHFjtGjRAqqqqqLnKdS4cWPIZDKF7TKZDKqqqjAzM4OLiws6dOggWqYrV67g06dPCtuzs7Nx7do10XJI3e3btzF48GA8e/ZM4csZr+e5lF57JT23ixMWFvaN0yjKz8/H8uXLsW3bNrx8+RJPnz6FqakpFixYAGNjY4wcOVL0TCdPnix2e9H3AxMTk2+eQ+qP3caNG4vdXvR+atu2LcqVKydqLqk8flI3depUWFtbY+TIkcjLy0O7du1w8+ZNqKur4/Tp02jfvr3ombKysuDm5gZfX18AEN4P3NzcYGBggDlz5oieScqfxXv27MG2bdsQHx+PW7duwcjICJ6enjAxMUHv3r25ZEpNTUVwcDBevXqlcIJw2LBhXDJFR0cjMDCw2EwLFy4UPY8UvzP4+/tDU1MTrVu3BgBs2bIFO3fuhKWlJbZs2QI9PT3RMwHSPEZ4+/YtBgwYgMuXL0MmkyE6OhqmpqYYOXIk9PT0sHbtWtEzFfr06VOxz3NDQ0PRMhw7dgyzZ89GeHg41NXV5a7Lzs5G06ZNsWbNGvTs2VO0TIRIDQ0QEEJKNWHCBEyfPh3Pnz9HkyZNoKGhIXd9gwYNuOTatm0b9u7dCwC4cOECLly4gHPnzuHQoUOYOXMmAgICKBOAoKAgzJs3D0DBgRFjDKmpqfD19cWyZcu4HOy7uLigfPnyOH36NKpXr17mE03fwt69e7FhwwaEhIRAX18fNWrUgJqaGlJSUhAbGwtVVVU4Oztj9uzZXAbJunbtiq1bt8La2hrNmjUDANy9exf379+Hi4sLIiMj0alTJxw9evSbf+m+f/++8O/IyEgkJycLP+fl5cHf3x8GBgbfNMP3ZNy4cbC1tcWZM2e4P88LSem116dPH277Lotly5bB19cXq1evxujRo4XtVlZW8PT05PLlv0+fPpDJZMUOOBUO8rRu3RrHjx//pidNpP7YrV+/Hq9fv0ZWVpZwP7x79w7q6urQ1NTEq1evYGpqisDAQNSqVUu0XFJ5/KTu8OHDGDJkCADg1KlTiI+PR1RUFPbs2YN58+bhxo0bomeaO3cuIiIicOXKFXTt2lXY3qlTJyxevFjUAQKpfxZv3boVCxcuxNSpU7F8+XJh4FlXVxeenp5cBghOnToFZ2dnZGRkQFtbW+6zTyaTcRkg2LlzJ8aPH4/KlSujWrVqCpl4DBBI8TvDzJkz8euvvwIAHjx4AHd3d0yfPh2BgYGYPn06du/eLXomQJrHCNOmTUP58uWRmJiIevXqCdsHDBiA6dOncxkgkNLElK1bt2LWrFkKgwMAoKGhgdmzZ2Pz5s00QEB+bIwQQkohk8kULkpKSsJ/eVFVVWWJiYmMMcYmT57MxowZwxhj7MmTJ0xXV5cyFZNp6NChbPbs2Ywxxp49e8Y0NDS4ZFJXV2ePHz/msu+iGjVqxJo1a8a2bNki3EdFZWdns8DAQDZ27FhWuXJldujQIdEzjho1ii1dulRhu4eHBxs1ahRjjLGFCxeyJk2afPMsha/5wtf/5xd1dXXm7e39zXMUtWHDhjJfxKaurs6io6NF329ppPLa+x7Url2bXbx4kTHGmKamJouNjWWMMfb48WNu7+cXL15kzZs3ZxcvXmTp6eksPT2dXbx4kbVo0YKdOXOGXb9+ndWvX5+5urpyyScV+/btY+3bt2cxMTHCtujoaNaxY0d24MAB9vz5c9aqVSvWt29fUXNJ7fFzdHQs9uLi4sJWrFjBXr16JUqOz6moqLDnz58zxhgbPXo0mzJlCmOMsbi4OKalpcUlk6GhIbt16xZjTP79IDo6WvRMUvwsLqpevXrs2LFjjDH5++rBgwesUqVKXDKZm5uzKVOmsMzMTC77L46hoSFbtWoV7xhypPidQUNDg8XHxzPGGFu0aJHwvh0aGsr09fW5ZGJMmscI+vr6LDw8XCFTbGwst8evZcuWrG3btuzs2bPs3r17LDw8XO4ipurVq5d6XB4dHc2qV68uYiJCpIdWEBBCShUfH887QrH09PTw/Plz1KpVC/7+/li2bBmAghkJPEp3SDVTrVq1cOvWLVSsWBH+/v44cOAAgILZlLxK51haWuLNmzdc9l3UqlWrYG9vX+L1KioqaN++Pdq3b4/ly5cjISFBvHD/36FDhxAaGqqwfeDAgWjSpAl27tyJQYMGYd26dd88S3x8PBhjMDU1RXBwMKpUqSJcp6ysjKpVq4pesmP9+vVyPxfOGtbV1QVQUFJAXV0dVatWxeTJk0XN1rx5c8TExMDMzEzU/ZZGKq+978Hff/9d7GOXn5+PnJwcDomAKVOmYMeOHWjZsqWwzc7ODqqqqhgzZgwePXoET09PuLq6csknFfPnz8eRI0dQu3ZtYZuZmRnWrFmDvn37Ii4uDqtXrxZ9NqzUHj8dHZ1it6empmLnzp347bffEBQUBCsrK1HyFNLX10dkZCSqV68Of39/bN26FUBBmR+xP2MKvX79GlWrVlXYnpmZKfpKLCl+Fn+er3HjxgrbVVRUkJmZySFRwfv55MmTi505zMu7d+/Qr18/3jHkSPE7g7KyMrKysgAAFy9eFFZ7VKxYkWvNeCkeI2RmZhb7HE9JSYGKigqHREB4eDhCQ0NRt25dLvsv6t27d6X2j8nJyZFErxtCeKIBAkJIqaTWe6CQk5MTBg8eDHNzc7x9+xbdunUDANy7d4/bCTkpZpo6dSqcnZ2hqakJQ0NDoXZvUFAQrK2tuWT69ddfMWvWLKxYsQLW1taoUKGC3PXa2tqi5ChtcOBzlSpVQqVKlb5hmuKpqqri5s2bCs+fmzdvCl/W8vPzRfniZmRkhJycHAwfPhyVKlWSxHtD0QHMffv24ffff4e3tzcsLCwAAE+ePMHo0aMxduxY0bO5ubnB3d0dycnJxT7PeZRnk8prDyj4cv/06VNUrlwZenp6pZ5kS0lJES1XIUtLS1y7dk3heX748OFiT36JITY2ttjHSFtbG3FxcQAAc3NzUQeB8vLysH79ehw6dAiJiYkKNdF5PHZJSUnFngTIzc0VyrHUqFED79+/FzWX1B6/0kpz5OfnY/To0Zg7dy5OnTolSp5CI0aMQP/+/YUyaJ06dQIA3Llzh9tJpsJycW5ubgAgvF95eXmhRYsWomYpfE8qrtGmFJiYmBTbu8zf31+u7ImY7O3tERISAlNTUy77L06/fv0QEBCAcePG8Y4iKPqdwcjISBLfGVq3bo3p06ejVatWCA4OxsGDBwEU9AGpWbMml0yANI8R2rRpAz8/P3h4eAAoeJ/Kz8/H6tWrRe1VVpSUJqYYGxsjJCSkxM+RkJAQSXy3IYQnGiAghJRJZGRksV/+e/XqxSXP+vXrYWxsjOfPn2P16tXQ1NQEUHBiYMKECZTp/5swYQKaNWuG58+fo3PnzlBSUgIAmJqaCiscxFb4Zd/Ozk5uO+PYpFiq3NzcMG7cOISGhqJp06YACnoQeHl54ZdffgEAnD9/Ho0aNRIlT4UKFXDs2DEutXG/ZMGCBTh8+LAwOAAAFhYWWL9+PX7++Wc4OzuLmqdwdnLR2cBFa43zeJ5L6bW3fv16aGlpAQA8PT1F229ZLVy4EMOHD8fff/+N/Px8HD16FE+ePIGfnx9Onz7NJVOTJk0wc+ZM+Pn5CbOGX79+jVmzZgnvD9HR0aLW1V+yZAm8vLzg7u6O+fPnY968eUhISMDx48e5vU906NABY8eOhZeXl3Ci5t69exg/fjw6duwIoKCWtdgNgaX4+JVESUkJkydPFiY6iGnx4sWwsrLC8+fP0a9fP2Hma7ly5bg0AwaAFStWoFu3boiMjERubi42bNiAyMhI3Lx5E1evXuWSCZBek1sAmD59OiZOnIjs7GwwxhAcHIz9+/dj5cqV8PLy4pLJwcEBM2fORGRkZLGD4zy+y5iZmWHBggW4fft2sZnEXvUISPM7w+bNmzFhwgQcPnwYW7duFfprnDt3Tq4fiNikeIywevVq2NnZISQkBJ8+fcKsWbPw6NEjpKSkcOndAkhrYoqTkxPmzZuHzp07Q19fX+665ORkzJ8/X+h/Q8iPSsbYZ52yCCGkiLi4ODg6OuLBgwdyzfUKZ0/Rydzvw6dPnxAfH4/atWujfHm+Y8Nf+jLdrl07kZIULCedN28ejh49iooVK2LcuHFyJ3RfvnyJGjVqcH2e7927F5s3b8aTJ08AFJz0dnNzw+DBgwEAHz58gEwmE2359/Dhw9GoUSNMmzZNlP2Vlbq6Oq5evSqcaCsUHByM9u3bC0vUxfLs2bNSr+cxS0lKr73vwbVr17B06VJEREQgIyMDNjY2WLhwIbp06cIlz5MnT9C7d2/Ex8cLJ5GfP38OU1NTnDhxAnXq1MHx48fx/v17DB06VJRMtWvXxsaNG+Hg4AAtLS2Eh4cL227fvo19+/aJkqOo5ORkDB06FJcuXRJORuTm5sLOzg579uyBvr4+AgMDkZOTI+pjKcXHrzQxMTGwtbVFamoq7yiSEBcXh5UrV8q9H8yePZvbzOovNbkNCwvjkgsoOG5ZvHgxYmNjARSs2FmyZAmXxq0AhBPdxeE1YF/aAKVMJhNWFRHpktoxAgCkpaVh8+bNcpkmTpyI6tWrc8lT+Nr7fJUoj4kp79+/R4sWLZCYmIghQ4YIE4qioqKwd+9e1KpVC7dv3xYmrxDyI6IBAkJIqXr27Ily5crBy8sLJiYmCA4Oxtu3b+Hu7o41a9agTZs23LLt2bMH27dvR1xcHG7dugUjIyN4enrCxMQEvXv3pkwoqNnr5uYGX19fAAVLck1NTeHm5gYDAwNus/GkYvHixdi2bRtmzJiB1NRUbN68GQMGDMD27dsBFAwQVK9eXbJL+XlYtmwZ1q5dCzs7OzRp0gQaGhpy1/OY9QYUvFf9/fff8PLygo2NDQAgNDQUY8aMgYGBAU6ePMklF/k62dnZCivVxJxhJnX5+fkICAjA06dPARQMGBad6Sk2DQ0NPH78GIaGhqhevTrOnDkDGxsbxMXFoXHjxkhLS+OSCyj40l/0fiq6uogXqT1+pdm6dSt2796N4ODgb76vjRs3lvm2Yn/G5OTkYOzYsViwYIHoq05KY2RkhAkTJmD27Nm8o5QoKysLGRkZxfZvINIwffr0Mt9WjH5XnytXrhySkpIUnkNv375F1apVaaKaxEltYkpaWhrmzp2LgwcPCv0GdHV1MXDgQCxfvhx6enqi5iFEamiAgBBSqsqVK+Py5cto0KABdHR0EBwcDAsLC1y+fBnu7u64d+8el1xbt27FwoULMXXqVCxfvhwPHz6EqakpfHx84Ovri8DAQMqEgqaIN27cgKenJ7p27Yr79+8LsxUXL17M7fFLTU2Ft7c3Hj9+DACoX78+XF1dS2ya+K2Ym5tj/fr16NGjB4CCGZPdunVD69atsWvXLrx69Yr7CgKgYAVIcSUEDA0NRc8i1Vlvr1+/xvDhw+Hv7y83a9je3h4+Pj5cTlDExsbC09NTeJ5bWlpiypQpcs1TxSaV115RmZmZmD17Ng4dOoS3b98qXM/j9ff8+XPIZDKhxnFwcDD27dsHS0tLjBkzRvQ8UmVhYQE/Pz80b94crVu3Ro8ePTBnzhwcPHgQbm5uePXqFe+IpAQlDZqmpaUhNDQUXl5e8PLywsCBA795lrKeeOf1GaOjo4Pw8HBJDRBoa2sjPDxcUnX1gYJVjYwxoVnqs2fPcOzYMVhaWnKdWS1ln6/OFlNZa9PLZDJcvnz5G6dRpKSkhOTkZIVjuBcvXqB27dr48OGD6Jmk5P79+2W+LY/eV1LFGMObN2/AGEOVKlW4vPYIkSIaICCElEpPTw9hYWEwMTFB7dq14eXlhQ4dOiA2NhbW1tail+0oZGlpiRUrVqBPnz7Q0tJCREQETE1N8fDhQ7Rv355LQyQpZjIyMsLBgwfx008/yWWKiYmBjY0N0tPTRc8UEhICe3t7qKmpoVmzZgAK6up/+PABAQEBwuxvMairqyMyMhLGxsbCtr///hsdO3ZE06ZNsXr1atSqVYvbAEF0dDRcXV1x8+ZNue3Ur6FkT58+RVRUFACgbt26qFOnDpcc58+fR69evdCoUSO0atUKAHDjxg1ERETg1KlT6Ny5s+iZpPTaK2rixIkIDAyEh4cHhg4dii1btuDvv//G9u3bsWrVKtH7RwAFzf7GjBmDoUOHIjk5GXXq1IGVlRWio6Ph5ubGrb73pUuXcOnSpWIHDHft2iV6njlz5kBbWxu//PILDh48iCFDhsDY2BiJiYmYNm0aVq1aJXqmvLw8+Pj4lHg/8TjJVUhKj19Jqxa0tLRgYWGB6dOnizI48D2QYmm9kSNHomnTppJqcgsAXbp0gZOTE8aNG4fU1FRYWFhAWVkZb968wbp16zB+/Hguua5evYo1a9bIDdjPnDmT60poPz8//Pbbb4iOjgYA1KlTBzNnzpREiTHeClcVTZs2DR4eHkJfN6DgPT4oKAgJCQmiTnTS09Mr84nklJSUb5ymgJKSklwJ4JLw/M4gxYkphJDiUZNiQkiprKysEBERARMTEzRv3hyrV6+GsrIyduzYwXXWUnx8vNB8sCgVFRVkZmZySCTNTK9fvy525nRmZia32RLTpk1Dr169sHPnTqEfQm5uLkaNGoWpU6ciKChItCzVqlVDbGys3ACBgYEBAgMD0aFDB7i4uIiWpTguLi4oX748Tp8+jerVq0tuhgvPWW8lqVOnDrdBgaLmzJlT7AnSOXPmYPbs2VwGCKT02ivq1KlT8PPzQ/v27TFixAi0adMGZmZmMDIywt69e7kMEDx8+FAYRDl06BCsra1x48YNBAQEYNy4cVwGCJYsWYKlS5fC1tZWMu8HRZ/fAwYMgKGhIW7dugVzc3P07NmTS6YpU6bAx8cHDg4OsLKyksT9BEjv8aPSeWVnbm6OpUuX4saNG5IprSfFJrcAEBYWhvXr1wMADh8+jGrVquHevXs4cuQIFi5cyGWA4I8//sCIESPg5OQk3C83btyAnZ0dfHx8hJ5OYlq3bh0WLFiASZMmCZMIrl+/jnHjxuHNmzeSGoziofA5xBjDtm3bUK5cOeE6ZWVlGBsbY9u2baJm8vT0FHV/ZREfH887QqmKm5iybt06LF++XPSJKW/evMG8efOQlpaG+fPnw8rKSrR9E/K9oBUEhJBSnT9/HpmZmXByckJMTAx69OiBp0+folKlSjh48CA6duzIJZelpSVWrlyJ3r17y82M37RpE3bv3s2lOZsUM7Vt2xb9+vWDm5sbtLS0cP/+fZiYmMDNzQ3R0dHw9/cXPZOamhru3buHunXrym2PjIyEra2tqKtSRo0aBcYYvL29Fa77+++/0b59e8TFxXGbdaOhoYHQ0FCF+4o3Kc56k9qsYVVVVTx48ADm5uZy258+fYoGDRogOztb1DyAtF57RWlqaiIyMhKGhoaoWbMmjh49imbNmiE+Ph7W1tbIyMjgkunhw4cwNjZGr1690KpVK8yePRuJiYmwsLDgUtagevXqWL16Nc0u/YLKlSvDz88P3bt35x1FjhQfP8YYYmJi8OnTJ1hYWAgDh2KbPn06PDw8oKGh8cWa6DzqoEuxtJ4UMwEFKzOjoqJgaGiI/v37o379+li0aBGeP38OCwsLLp8z9erVw5gxYxROuq9btw47d+4UZjaLycTEBEuWLMGwYcPktvv6+mLx4sWinfh1cnKCj48PtLW14eTkVOptjx49Kkqmojp06ICjR49SbfjvVOGEj+ImpsTFxYk6MaVHjx6wsbFB/fr1MXPmTDx79oz7QD0hUkMrCAghpbK3txf+bWZmhqioKKSkpHzVMstvYfr06Zg4cSKys7PBGENwcDD279+PlStXwsvLizL9fytWrEC3bt0QGRmJ3NxcbNiwAZGRkbh58+YXG0d9K9ra2khMTFQ4Sfn8+XNoaWmJmmXBggVCOZrPGRgY4OrVq7hw4YKomYqytLTkUpqqNFKd9Sa1WcNVqlRBeHi4wgBBeHg4t4aNUnrtFWVqaor4+HgYGhqibt26OHToEJo1a4ZTp05BV1eXS6b69etj27ZtcHBwwIULF+Dh4QGgoO5xpUqVuGT69OkTWrZsyWXfJfH19UXlypXh4OAAAJg1axZ27NgBS0tL7N+/H0ZGRqJnUlZWhpmZmej7/RKpPX7x8fHo1asXIiMjARR85h05cgRNmzYVPcu9e/eQk5Mj/LskvN7XpThLV4qZgILvCsePH4ejoyPOnz8vHBO8evWKW8P5uLi4Ylc09erVC7/88guHREBSUlKx7wctW7ZEUlKSaDl0dHSE15UUS7583r8tLy8PDx48gJGRkWQGDbKzs/Hp0ye5bbye60DBpI/ExESFTL169RI9S0hIiNzgAACUL18es2bNgq2trahZwsLC8Ouvv8LS0hJDhw4tcZU9IT80RgghZRAdHc38/f1ZVlYWY4yx/Px8zokY++OPP5iZmRmTyWRMJpMxAwMD5uXlRZk+Exsby0aNGsWaNm3K6tWrx5ydndn9+/e55XFzc2M1a9ZkBw4cYImJiSwxMZHt37+f1axZk02ZMoVbLim6dOkSa9GiBQsMDGRv3rxhaWlpchcejI2Nma+vr8J2Hx8fZmxszCFRgUqVKrEzZ85w2//nlixZwnR1ddmqVatYUFAQCwoKYitXrmS6urps6dKlXDJJ9bW3bt06tmHDBsYYYxcuXGCqqqpMRUWFKSkpMU9PTy6ZAgMDma6uLlNSUmIjRowQts+dO5c5OjpyyTRr1ixuz52S1KlTh126dIkxxtjNmzeZmpoa2759O+vZsye3+2nNmjVswoQJkjhOKUpqj1/fvn1Z3bp12b59+9jRo0dZy5YtmY2NDe9Y5Ct9/PiRRUVFsZycHN5RGGOM/fnnn6xChQpMSUmJde7cWdi+YsUK1rVrVy6ZateuzbZt26awfevWrczMzIxDIsbq16/Pli9frrDdw8ODWVlZcUgkTVOmTBG+R+Xm5rKWLVsymUzGNDQ0WGBgILdcGRkZbOLEiaxKlSpMSUlJ4cJDbGwsa9CgAZPJZExJSUn4LsozU9WqVdn58+cVtvv7+7OqVauKmmX8+PGsZ8+ezM3NjTVp0kTUfRPyvaASQ4SQUr19+xb9+/dHYGAgZDIZoqOjYWpqCldXV+jp6WHt2rW8IyIrKwsZGRlcZwHk5uZi3759sLe3h76+viQy5eTkYOzYsViwYEGpS9HF9unTJ8ycORPbtm1Dbm4uAKBChQoYP348Vq1aBRUVFdEz/fnnn9i/fz+ePn0KoKBkzuDBg/Hzzz+LnqWowiaSn8+aZBybFKuqquLhw4cKM3Sjo6NhbW3NpXQOANSoUQNXrlyRRP8BoOAx8vT0xNq1a/HixQsABRlnzpyJyZMnc5kJK8XXXnGePXuG0NBQmJmZoUGDBtxy5OXlIT09XW6WYkJCAtTV1bm8t0+ZMgV+fn5o0KABGjRooFBznEfplaLlRGbPno2kpCT4+fnh0aNHaN++PV6/fi16JkdHRwQGBqJixYqoX7++wv3Eo0wGIL3Hr1q1ajh8+DBat24NoGBGc82aNZGenq5QY5+Xv/76CwBQs2ZNrjlcXV1LvZ5Hg/CsrCy4ubnB19cXQEH5OlNTU7i5ucHAwABz5swRPVOh5ORkJCUloWHDhsJxTHBwMLS1tbmUTNy6dSumTp0KV1dXYdb+jRs34OPjgw0bNmDs2LGiZzpy5AgGDBiATp06Casxb9y4gUuXLuHQoUNwdHQUPVOh169f48mTJwAACwsLVKlShVsWAwMDnDhxAra2tjh+/DgmTpyIwMBA7NmzB5cvX8aNGze45CrM4eHhgaFDh2LLli34+++/sX37dqxatYpL76SePXuiXLly8PLygomJCYKDg/H27Vu4u7tjzZo1XBpyT548GceOHcOaNWvkXnszZ85E3759Re3rkJ+fjwMHDuDdu3cYMmSIJFfMEMIbDRAQQko1bNgwvHr1Cl5eXqhXr55QV//8+fOYPn06Hj16xDuiZKirq+Px48dcSiqUREdHB+Hh4ZIaICiUlZWF2NhYAEDt2rWhrq4ueob8/HwMGjQIf/75J+rUqSN8cX38+DFiYmLQr18/7N+/n1tZgy+VgWrXrp1ISf6PlZUVBg8erLAsf9myZTh48CAePHggeiYAWLt2LeLi4rB582bu5YU+9/79ewDgWsanKCm89ory8/PDgAEDFAYoPn36hAMHDijUaP5RdejQocTrZDKZ6H02AKBq1ao4f/48GjdujMaNG2P69OkYOnQoYmNj0bBhQy79I0aMGFHq9bt37xYpiTypPX5KSkpISkqCvr6+sE1TUxMPHjzgesyQn5+PZcuWYe3atcLzR0tLC+7u7pg3b55wwllMn5+szcnJwcOHD5GamoqOHTtyGXSaMmUKbty4AU9PT3Tt2hX379+HqakpTpw4gcWLF5daqulHdOzYMaxdu1boN1CvXj3MnDkTvXv35pYpNDQU69evl8vk7u6Oxo0bc8mTmZkJNzc3+Pn5CX2cypUrh2HDhmHTpk1cjhVUVVURExODmjVrYsyYMVBXV4enpyfi4+PRsGFDpKeni54JAAwNDeHn54f27dtDW1sbYWFhMDMzw549e7B//36cPXtW9EyVK1fG5cuX0aBBA+jo6CA4OBgWFha4fPky3N3dubwnfC8TUwghBagHASGkVAEBATh//rzC7C1zc3M8e/aMU6qC5l6lnQTk0ZytWbNmuHfvnqQGCPr06YPjx49zqwtfGnV1dVhbW3PNsGHDBly8eBEnT55Ejx495K47efIkRowYgQ0bNmDq1Klc8vEYAPiSJUuWYMCAAQgKCip21hsv169fR2BgIM6dOyepWcOAdAYGCknhtVfUiBEj0LVrV4VZ+e/fv8eIESNEHSAoqb+Ojo4O6tSpgxkzZqBz586i5Snq81rMUtC5c2eMGjUKjRs3xtOnT4XGwI8ePYKxsTGXTLwGAL5Eao+fTCZDRkYG1NTUhG1KSkp4//693Ek3sWtpz5s3D97e3li1apVcn5vFixcjOzsby5cvFzUPUHBy+XP5+fkYP348ateuLXoeADh+/DgOHjyIn376Se49q379+sIAMA8dOnQo9ficx0AmUDDIw3NWfnGaNGmCP/74g3cMwfTp03H16lWcOnVK7rU3efJkuLu7Y+vWraJn0tfXR2RkJKpXrw5/f38hQ1ZWFsqVKyd6nkIpKSkwNTUFUPAemZKSAgBo3bo1xo8fzyVTXl6ecLxZuXJlvHjxAhYWFjAyMhJWhIhNWVkZGzZswMqVKyU1MYUQUjwaICCElCozM7PYD/GUlBSuo/6fn7DNycnBvXv34O/vj5kzZ3LJNGHCBLi7u+Ovv/5CkyZNFJbo8yiVYW5ujqVLl+LGjRvFZpo8ebIoOZycnODj4wNtbW04OTmVelsxT+Tu3r0bv/32m8LgAFDQzGv16tWiDxDcv38fVlZWUFJSwv3790u9LY/nVN++fXHnzh2sX78ex48fB1Aw6y04OJjbrDcA0NXV5f7l38bGBpcuXYKenh4aN25c6kmSsLAwUTJJ9bVXVGHJrM/99ddfoi8BL2m5e2pqKkJDQ9GjRw8cPny42IaXP6ItW7Zg/vz5eP78OY4cOSI0cA4NDcWgQYM4pyOlYYwplGRjjAnv47xK2fn6+sLLy0uuoWaDBg1gYGCACRMmcBkgKI6SkhKmT5+O9u3bY9asWaLvv6QGm5mZmVxX0TVq1Eju55ycHISHh+Phw4cYPnw4n1ASkZ6eLgy4fWnmO48mt0eOHMHhw4fRvn17YVv37t2hpqaG/v37cxkgGDFiBPr374/q1atDJpOhU6dOAIA7d+5wKVdVyNTUFPHx8TA0NETdunVx6NAhNGvWDKdOnYKuri6XTFZWVoiIiICJiQmaN2+O1atXQ1lZGTt27BAGM3iR2sQUQkjxaICAEFKsFy9eoEaNGmjTpg38/Pzg4eEBoGDGWX5+PlavXl3qcvlvbcqUKcVu37JlC0JCQkROU2DgwIEA5E+6y2QyrvXivb29oauri9DQUISGhspdJ5PJRBsg0NHREb6wamtrS6YETHR0tPBlozidOnXCpEmTRExU8OU6OTkZVatWRaNGjYTn0Od4PacA6c16A6Qxa7h3797CwGmfPn34hvn/pPraAyAMoshkMtjZ2aF8+f87LM3Ly0N8fDy6du0qaqYvncBq1KgRVq5cKdoAgdQHeHR1dbF582aF7UuWLBE1hxQH5wBpP35SW9FQKCUlpdgTf3Xr1hVm6UpFbGysUDZDbLa2tjhz5gzc3NwA/F+vIi8vL7Ro0YJLJgBYv359sdsXL14sasmxihUr4unTp6hcuXKJK8MKifW80tPTQ1JSEqpWrQpdXd1iM/H8zpCVlSVXcqxQ1apVkZWVJXoeoOB5Y2VlhefPn6Nfv37CMVa5cuW49tkYMWIEIiIi0K5dO8yZMwc9e/bE5s2bkZOTw6UfEADMnz8fmZmZAIClS5eiR48eaNOmDSpVqoSDBw+KlkPKn3uEkNLRAAEhpFj169fHli1b8Ntvv6Fjx44ICQnBp0+fMGvWLDx69AgpKSncGkOVplu3bpg7dy6Xk4Xx8fGi7/NLpJKp6OPh4+PDL8hn1NTUkJqaCkNDw2KvT09Ph6qqqqiZ4uPjhYZwUnn8PpeXl4djx44JdXMtLS3Ru3dvuRO8P6JFixYV+2+epPraA/5vECU8PBz29vbQ1NQUrlNWVoaxsTH69u3LKV3xevTogWXLlom2v6IDPFJtqJeamgpvb2/h/aB+/fpwdXUVNa8UB+cAaT9+UixhBwANGzbE5s2bsXHjRrntmzdvRsOGDblkmj59utzPjDEkJSXhzJkz3GbFr1ixAt26dUNkZCRyc3OxYcMGREZG4ubNm1/sX8TDkCFD0KxZM6xZs0aU/a1fv14ot7J+/XpJDI5fvnwZFStWBCDNAboWLVpg0aJF8PPzE459P3z4gCVLlnAddPr5558BANnZ2cI23qtRipZu7dSpE6KiohAaGgozMzMuq3sBwN7eXvi3mZkZoqKikJKS8sUBsv+alD/3CCGloybFhJBi/f7775g9eza6du2Kbdu2Ydu2bYiIiEBGRgZsbGwwceJEVK9enXdMBatXr8bvv/+OhIQE3lFICQob+n2+BDc9PR19+vQRtT6tg4MDDA0NS1w2PW7cOCQmJnJpNpaTk4OxY8diwYIFkmoy/ejRI/Tq1QvJycmwsLAAADx9+hRVqlTBqVOnYGVlxS3b4cOHcejQISQmJuLTp09y14k5axgAnj9/DplMJvRvCQ4Oxr59+2BpaYkxY8aImqWQlF57Rfn6+mLAgAGiD8b9Ew8ePEDnzp2RnJzMO4okhISEwN7eHmpqamjWrBkA4O7du/jw4QMCAgJgY2PDOaE0MMbw/PlzVKlSRa7mP0/5+fn47bffcPLkSXz69Al2dnZYtGgR93xXr14VPpsLT0reunULz58/x9mzZ9GmTRvRM32+YlZJSQlVqlRBx44d4erqym1wPDY2FqtWrZI7Pp89e7YkS3ns2bMHs2fPxosXL3hHkYTExETUqlVL4cRt4XtFSRNXvqWHDx/C3t4eHz9+FAbjIiIioKqqivPnz6N+/fqiZ8rLy8OKFSuwbds2vHz5Ek+fPoWpqSkWLFgAY2NjjBw5UvRM5H9Hdnb2d3HsSYhYaICAEFKi+Ph4jBw5EpGRkdixY4dcPVjePi8hwBhDcnIyXr9+jd9//120E3AnT55Et27dUKFCBZw8ebLU24p1/02fPh0eHh7Q0NBQmPX2OR7LYJWUlIQSOkW9evUKBgYGyMnJES3LzZs30b59e/Tp0wczZsxA3bp1wRjD48ePsXbtWpw4cQKBgYFCszax6ejoIDw8XFIDBC1atECVKlXg6+sLPT09AMC7d+/g4uKC169f4+bNm1xybdy4EfPmzYOLiwt27NiBESNGIDY2Fnfv3sXEiRNFr1vdpk0bjBkzBkOHDkVycjLq1KkDKysrREdHw83NDQsXLhQ1DyCt197nUlNTcfjwYcTGxmLmzJmoWLEiwsLCoK+vDwMDA265Pjd16lRERUXB39+fdxRJaNOmDczMzLBz507hJGlubi5GjRqFuLg4BAUFiZ5JioNz+fn5UFVVxaNHj2Bubs4lw+c8PDywePFidOrUCWpqajh//jwGDRqEXbt28Y6GFy9eYMuWLYiKigJQ0OdmwoQJqFGjBudk5Es+LylSuNoiJCQECxYs4LK6rly5ckJpn6Levn2LqlWrcinnI8VMQEGZob1798q99pydnbkNHC5duhS+vr5YunQpRo8ejYcPH8LU1BQHDx6Ep6cnbt26JWoePz+/Mt1u2LBh3ziJouzsbGzatAmBgYF49eoV8vPz5a4Xe6IMULAChTEm9DN89uwZjh07BktLS3Tp0kX0PEDB5/Hy5ctp0ImQYtAAASHkizZv3oxp06ahXr16CrOkeBxsAIr1jQtnc7Vv317UplVFT7gpKSmVeDsx64l26NABx44dg66uLtq3b1/islKZTCbqjOHChruNGjWSW2YNFMwQ8vf3x/bt20Vf/XHs2DGMGTNGoQatnp4etm/fzrXEyfDhw9GoUSO5pcy8qampISQkRGEm2cOHD9G0aVN8+PCBS666deti0aJFGDRoELS0tBAREQFTU1MsXLgQKSkpxdZJ/5b09PRw+/ZtWFhYYOPGjTh48CBu3LiBgIAAjBs3DnFxcaJlkeprr2i+Tp06QUdHBwkJCXjy5AlMTU0xf/58JCYmlvkL+X+hpEHVtLQ0hIWF4enTpwgKCkKTJk1Ey1SopNr6MpkMqqqqMDMzg4uLi6j9gdTU1HDv3j2Fz93IyEjY2tpyqVstxcE5oKD0kre3N3766Scu+/+cubk5ZsyYgbFjxwIALl68CAcHB3z48KHU45kfkVRXXwEFA7zFnQzkVeZkxIgRcj8XXW3B64RgSYPjL168QO3atbkctygpKeHly5dCSclCz549g6WlpVBL/kdnZmaG7du3w87OTu7YLioqCi1atMC7d+9EzaOkpARNTU2UL1++2P5gQMFnMo9+Kc7OzggICMDPP/8MfX19heMFHoNzXbp0gZOTE8aNG4fU1FRYWFhAWVkZb968wbp16zB+/HjRM0lt0IkQKfmxiwUTQr7o2bNnOHr0KPT09CRVY1wq9b2LfiH7/MsZLxs2bIC2tjYA4MqVK3zDFFHYcFcmk6Fjx44K16upqWHTpk2i53J0dIS9vT3Onz+P6OhoAECdOnXQpUsXYcYLL+bm5li6dClu3LiBJk2aQENDQ+56sZpMF1WnTh28fPlSYYDg1atXMDMzEz1PocTERLRs2RJAwXPp/fv3AIChQ4fip59+En2AICcnR6iJfvHiRWEFUd26dZGUlCRqFqm+9gpNmzYNLi4uWL16tVAzGgC6d++OwYMHi5rl3r17xW7X1tZG586dcfToUW4rerp27YqtW7fC2tparpzP/fv34eLigsjISHTq1AlHjx5F7969Rcmkra2NxMREhQGC58+fyz2WYnr48KFw/xw6dAjW1tZyg3O8BghWrVqFmTNnYuvWrVxLsRVKTExE9+7dhZ87deoEmUyGFy9eCKsvxPTmzRtkZmbCyMhI2Pbo0SOsWbMGmZmZ6NOnj+jvB4WuXLmiULYOKJixe+3aNQ6JgNDQUAwfPhyPHz9WOFHJq8ktAC49wEpS2MdCJpPBy8tLrs9NXl4egoKCRJ1UBPzfILRMJsOCBQvkjjPz8vJw584dNGrUSNRMhXx9fVG5cmU4ODgAAGbNmoUdO3bA0tIS+/fvl3ttiuXvv/8u9tgyPz+fy6rHevXq4eXLlxgyZAhcXV25DcQV5/Tp0zh79iy3Vc/FCQsLExqXHz58GNWqVcO9e/dw5MgRLFy4kMsAgZ+fH3bs2AE7OzuMGzdO2N6wYUNh5QwhPyppnOkjhEjSzp074e7ujk6dOuHRo0cKs1zElp6eXubbFp4g/9YqVqyIp0+fonLlynB1dcWGDRu4nRQp1LhxY2HZsqmpKe7evYtKlSpxzQQUlKxijMHU1BTBwcFyzydlZWVUrVoV5cqV45JNXV0djo6OXPZdGm9vb+jq6iI0NBShoaFy18lkMi4DBCtXrsTkyZOxePFiYSbs7du3sXTpUvz6669yr1OxXocAUK1aNaSkpMDIyAiGhoa4ffs2GjZsKDzvxFa/fn1s27YNDg4OuHDhAjw8PAAUzFgU+/Uo5dceUFDHfseOHQrbDQwMRK/1L8XGkYXevHkDd3d3LFiwQG77smXL8OzZMwQEBGDRokXw8PAQbYBgwIABGDlyJNasWSMM0N24cQMzZ87EoEGDRMnwOSkNzhU1bNgwZGVloWHDhlBWVlYo2SH2jNPc3FyF2ssVKlTgVmrMzc0NNWrUwNq1awEUDDq3adMGNWrUQO3ateHi4oK8vDwMHTpUtEyFq6+AglUxRd+PCldf8SqB5urqijp16sDb27vY2cIEwolJxhi2bdsm9zmnrKwMY2NjbNu2TdRMhYPQjDE8ePAAysrKcpkaNmyIGTNmiJqp0IoVK4SeXLdu3cLmzZvh6emJ06dPY9q0aTh69KjomSwtLXHt2jWFwYnDhw+jcePGoud59OgR7ty5g127dqFt27YwMzPDyJEj4ezsLOoxb3EMDAy4fwf9XFZWlpApICAATk5OUFJSwk8//YRnz55xySS1QSdCJIURQkgx7O3tmZ6eHvP19eUdRSCTyZiSklKZLmLR0NBgsbGxjDHGlJSU2KtXr0Tbd0kqVqzIbt++zRgruM+kkEmqLl26xOrVq8fS0tIUrktNTWWWlpYsKCiIQzLpkslkwqXw9Vbcz2K+DhljbOTIkWzx4sWMMcY2b97M1NTUWKdOnZiuri5zdXUVNQtjjAUGBjJdXV2mpKTERowYIWyfO3cuc3R0FD2PlFWpUoWFhYUxxhjT1NQU3lMDAgJYzZo1eUaTFG1tbRYdHa2wPTo6mmlrazPGGHv8+DHT1NQULdPHjx/Z5MmTmbKysvD6V1FRYVOnTmXZ2dmi5SiqWbNmbPbs2SwoKIipqqqy8PBwxhhjt27dYgYGBlwyMcaYj49PqRexyWQy1r17d+bo6Chcypcvz7p06SK3TSzGxsbsypUrws+//fYbq127NsvJyRF+bt68uWh5GGPFfs4VvairqzNvb29RMxXS1NQs9v2AKGrfvj1LSUnhHUOOi4tLsceePKmpqbFnz54xxhibNWsWGzp0KGOMsYcPH7LKlStzyXT8+HGmo6PDVq1axdTV1dlvv/3GRo0axZSVlVlAQACXTIWysrKYr68va9++PVNXV2eDBw/m9rnHGGNnz55lXbt2ZQkJCdwyfM7a2ppt2LCBJSYmMm1tbXbz5k3GGGMhISFMX1+fSyYbGxu2Z88expj8MeeSJUtY69atuWQiRCpoBQEhpFh5eXm4f/8+l2XmJSk6szMhIQFz5syBi4sLWrRoAaBgtouvry9WrlwpWqYWLVqgT58+aNKkCRhjmDx5comNvMRq/Ne3b1+0a9cO1atXh0wmg62tbYmzg8Wsg/65yMhIJCYmKizbF7MZtqenJ0aPHl3srB8dHR2MHTsW69atQ5s2bUTLJHVSnWG9Y8cOoczXxIkTUalSJdy8eRO9evUSamyLhf3/2fqJiYnIzc0VmjkDwJgxY7iWrnry5Ak2bdqEx48fAyhYLj9p0iTRyywU1atXLyxduhSHDh0CULA6JjExEbNnz+baA0RqVFVVcfPmTYWZbzdv3hRmghc2wxWLsrIyNmzYgJUrVyI2NhYAULt2ba7P8V9//RWOjo747bffMHz4cDRs2BAAcPLkSaH0EA/Dhw/ntu/iDBs2TGHW+ZAhQzilAZKTk2FsbCz8fPnyZTg5OQmlLXv16iXq8R0g7dVXdnZ2iIiI4Fra73shxeMWKZViKqSpqYm3b9/C0NAQAQEBQjkkVVVVbv2levfujVOnTmHp0qXQ0NDAwoULYWNjg1OnTqFz585cMhVSU1PDsGHDYGxsjEWLFuHAgQPYvHmzsIJNbLa2tsjOzoapqSnU1dVRoUIFuet59EVYuHAhBg8ejGnTpsHOzk74zh4QEMBlBUhhpuHDh+Pvv/9Gfn4+jh49iidPnsDPzw+nT5/mkokQqaAmxYSQ75KdnR1GjRqlUMJg37592LFjh2i191++fIn169cjNjYWR48ehb29fYkHhseOHRMlEwD4+/sjJiYGkydPxtKlS0tccjplyhTRMhWKi4uDo6MjHjx4AJlMJpR/KTxRIWbdXCMjI/j7+6NevXrFXh8VFYUuXbogMTFRtExFubq6lnq9WINO5OsUnqR99OgRzM3NeccRHDlyBAMHDoStra3wJe327du4e/cuDhw4wO1kfFpaGn7++WeEhITg/fv3qFGjBpKTk/HTTz/h3LlzCr03flTLli3DihUrMHr0aDRt2hRAQQ8CLy8v/PLLL5g3bx7Wr1+Ps2fP4sKFC6Lne/78OQCgVq1aou/7c3l5eUhPT5cbnEtISIC6urpCo1KxfOlzxNDQUKQk0qSvr4+AgABhQKdy5crYvn278L4UHR2Nxo0bIyMjg2dMyXjz5g2GDx+OZs2awcrKSuFkoJiTLb4Hf/31F06ePFnsxJR169ZxyRQSEoJDhw4Vm4lHOR9nZ2dERUWhcePG2L9/PxITE1GpUiWcPHkSv/zyCx4+fChqntzcXKxYsQKurq6SmrAGFJSp8fX1xe7du5GZmSn0JOA52aJTp05ITEzEyJEjiy07xmuQOjk5GUlJSWjYsCGUlJQAAMHBwdDW1uZ2f127dg1Lly5FREQEMjIyYGNjg4ULF3JrpE6IVNAAASHku6Suro6IiAiFk29Pnz5Fo0aNkJWVJXomExMThISESKLef6ERI0Zg48aNkqpJ2bNnT5QrVw5eXl4wMTFBcHAw3r59C3d3d6xZs0bU2fqqqqp4+PBhiTPwYmJiYG1tzW3m1Od9EXJycvDw4UOkpqaiY8eOXL5A+vv7Q1NTE61btwYAbNmyBTt37oSlpSW2bNkid0LuWytaH/pLxG4kV79+fXh7ewt9GqSgdu3acHZ2xtKlS+W2L1q0CH/88YcwA5yX69ev4/79+8KXtU6dOnHNI0V79+7F5s2b8eTJEwCAhYUF3NzchOatHz58gEwmE20VQW5uLpYsWYKNGzcKJ241NTXh5uaGRYsWKZy0FMOHDx/AGBNWMTx79gzHjh1DvXr1YG9vL3qeQkpKSqXWiRe7qayTk9MXbyOTyXDkyBER0hTMFK5cuTJ27tyJo0ePwtnZGcnJycJnypkzZzBjxgxh9ZOYpNi89dSpUxg6dGix/bl4NikODAxEhw4duOy7JJcuXUKvXr1gamqKqKgoWFlZISEhAYwx2NjY4PLly6JnOnDgAIYNGwZ7e3sEBASgS5cuePr0KV6+fAlHR0cuKwxSU1Mxf/58PH/+HOPHj0fXrl0BFBwjKCsrY968eaJn0tTUxMOHD+VWF/F06NAh7N69G1evXoW9vT1GjBgBBwcHrn2cCqmrq+PWrVvCIKsUpaen4/Lly7CwsChxcta3JOVBJ0KkgAYICCHfJQsLC/Tu3RurV6+W2z5r1iycOHFCOHlCpKdy5cq4fPkyGjRoAB0dHQQHB8PCwgKXL1+Gu7u70MBNDLVr18batWvRp0+fYq8/evQoZsyYwbUU0+fy8/Mxfvx41K5dG7NmzRJ9/9bW1vj111/RvXt3PHjwALa2tnB3d0dgYCDq1q0r6pfawhNuXzqU4XGy5NSpU1i9ejW2bt0KKysrUfddEnV1ddy/f19hQCw6OhoNGzbkMrBamrCwMCxcuJDLku/MzExauVAG48ePx9GjR7F06VK5cn+LFy9Gnz59hIaXYurSpQucnJwwbtw4pKamom7duqhQoQLevHmDdevWYfz48aJnAoCIiAi5n3NycnDv3j2sW7cOy5cvL9MJ+//SiBEjynQ7sd7T79+/Dzs7O6SnpyM3Nxe//PKL0NwdAIYOHQoNDQ3Rm8oCBcecW7duRceOHXHr1i3Y2dkJzVvLly/PZbDe2NgYPXr0wIIFC6Cvry/6/kuioqKCmjVrYsSIERg+fLgkVhQ1a9YM3bp1w5IlS6ClpYWIiAhUrVoVzs7O6Nq1K5f3hAYNGmDs2LGYOHGikMnExARjx45F9erVsWTJEtEzSVHv3r3h5OQkmRJtSkpKMDQ0hLOzc6mvu8mTJ4uYqoCNjQ1+//13SU1M6d+/P9q2bYtJkybhw4cPaNiwoTA4x2vlqtQGnQiRFB6NDwgh5N86c+YMU1VVZVZWVmzkyJFs5MiRzNramqmqqrIzZ87wjkdKoaury+Li4hhjjJmamrLLly8zxhiLiYlhampqomaZNGkSs7KyYh8+fFC4Lisri1lZWTE3NzdRM5VFVFQUq1atGpd9a2hosPj4eMYYY4sWLWJ9+/ZljDEWGhoqesOxhISEMl/EpqurKzRuVVVVZXp6enIXHrp168Z27dqlsH3Xrl2sS5cuHBIx5u/vz9zd3dncuXOFRnGPHz9mvXv3ZkpKSqxbt25ccmloaLARI0awa9eucdn/90JbW5udPXtWYfuZM2eExsliq1SpEnv48CFjjLGdO3eyBg0asLy8PHbo0CFWt25dLplKc/r0adauXTveMSTh9evX7Pjx4+z27dsK150+fVo4dhCbFJu3ampqspiYGC77Ls3r16/ZunXrWMOGDYWm1wcPHmQfP37klqnofaWrqyu8P4SHhzMjIyMumdTV1YVjqYoVK7L79+8zxhiLjIzkdnwnRVu3bmXVqlVj7u7ubN++fezEiRNyF7EZGRkxY2PjUi8mJiai52KMsfPnz7OWLVuywMBA9ubNG5aWliZ34UFfX5+Fh4czxhjbu3cvMzMzY5mZmez3339njRo14pKpV69ezMfHh8u+CZE6alJMCPkude/eHU+fPsXWrVsRFRUFoKB0zbhx4yQxW4mUzMrKSpgp1bx5c6xevRrKysrYsWMHTE1NRc0yf/58HD16FHXq1MGkSZNgYWEBoKD3wJYtW5CXl8dlSfWXxMbGIjc3l8u+lZWVhZnmFy9exLBhwwAAFStWLLbUwbdUtKxDUFAQWrZsKTS0LJSbm4ubN2+KXgLC09NT1P2VRa9evTB79myEhoYKM8xu376NP//8E0uWLMHJkyflbvuteXt7Y/To0ahYsSLevXsHLy8vrFu3Dm5ubhgwYAAePnzIZQk6APzxxx/w8fFBx44dYWxsDFdXVwwbNgw1atTgkgcoKEGzfv36EmtW82hAqKKiUuwsPBMTEygrK4ueBwCysrKEsnoBAQFwcnKCkpISfvrpJzx79oxLptJYWFjg7t27vGNIQuXKldG7d+9iryss78ODFJu3Ojk5ITAwELVr1+ay/5JUrlwZ06ZNw7Rp0xAWFobdu3djwoQJmDBhAgYPHoyRI0eKXgJFQ0NDeL+sXr06YmNjUb9+fQAFvRx40NPTw/v37wEABgYGePjwIaytrZGamiq51Xw8TZgwAUDxfSJ4rA5NSEgQdX9fo7AklJ2dndx2xhi3smNpaWmoWLEigIISpX379oW6ujocHBwwc+ZM0fMAQLdu3TBnzhw8ePAATZo0UVgtSv1byI+MSgwRQggR1fnz55GZmQknJyfExMSgR48eePr0KSpVqoSDBw+iY8eOouZ59uwZxo8fj/Pnz8s1TLa3t8eWLVtgYmIiap6iCk9CFGKMISkpCWfOnMHw4cOxefNm0TP16tULnz59QqtWreDh4YH4+HgYGBggICAAkyZNwtOnT0XPBADlypVDUlKSQgPSt2/fomrVqtzqMUtJYXO4LxHri2SDBg0wdOhQzJw5E0eOHEG/fv3w008/4dChQ5KpDfv69Wvs2bMHPj4+ePz4Mezt7eHq6opevXopDEZ9awsXLoSXlxfc3d0xf/58zJs3DwkJCTh+/DgWLlzIpaTB0qVLERUVhd27d0NFRQUA8PHjR4wcORLm5uZYtGiR6JkaNGiAUaNGwdHREVZWVvD390eLFi0QGhoKBwcHJCcni54JgMIAauH7+eLFixEVFYXw8HAuuciXSa15KwAsX74cnp6ecHBwgLW1tUK/Dx7vB8V58eIFduzYgVWrVqF8+fLIzs5GixYtsG3bNuEk/bfWp08fODg4YPTo0ZgxYwZOnDgBFxcXHD16FHp6erh48aIoOYoaPHgwbG1tMX36dHh4eGDTpk3o3bs3Lly4ABsbGy5lq8j37erVq6Ve365dO5GS/J86depg2bJlcHBwgImJCQ4cOICOHTsiIiICdnZ2XAboSjsW5tm/hRApoAECQsh34/79+7CysoKSktIXm5OK3ZBUqr40q7pt27ackslLSUmBnp5eqQ0cv7V3794hJiYGjDGYm5uL2my3JJ83+lNSUkKVKlXQsWNHuLq6in6CEgASExMxYcIEPH/+HJMnT8bIkSMBANOmTUNeXh42btwoeiag4L55+fIlqlSpIrf96dOnsLW1FX11A1Cw0mP37t2IjY3Fhg0bULVqVZw7dw6GhoainRiRMg0NDTx69AjGxsZgjEFFRQWBgYFo1aoV72jF2rRpE2bOnIlPnz6hcuXKGDduHObMmSM0w/3WateujY0bN8LBwQFaWloIDw8Xtt2+fRv79u0TJUdRjo6OuHTpElRUVIRZwREREfj06ZPCLEaxTngdPnwYgwcPRl5eHjp27IgLFy4AAFauXImgoCCcO3dOlByfK65JMWMMtWrVwoEDB4QeDkR6pNi8tbTJCzKZjGvvpJycHJw4cQK7du3ChQsXYGtri5EjR2LQoEF4/fo15s+fj7CwMERGRoqSJy4uDhkZGWjQoAEyMzPh7u6OmzdvwtzcHOvWrePSZDolJQXZ2dmoUaMG8vPzsXr1aiHT/PnzJXEMSsi/9fvvv2PKlCnQ1NSEkZERwsLCoKSkhE2bNuHo0aMIDAzkHZEQUgQNEBBCvhtKSkpITk5G1apVS21OKoXR/+zsbIXyD9ra2qLnkOKs6j/++AOOjo7UAJT8Jwobe544cQJdu3YVZjEDBSVZ7t+/DwsLC/j7+4ua6+rVq+jWrRtatWqFoKAgPH78GKampli1ahVCQkJw+PBhUfNIUdH3dABCo0axS42V5uXLl/D19YWPjw+ePXsGR0dHjBw5En/99Rd+/fVX1KhRAwEBAaJk0dDQwOPHj2FoaIjq1avjzJkzsLGxQVxcHBo3boy0tDRRchRV1ka3gHjNbgEgOTkZSUlJaNiwoTBbMDg4GNra2qhbt65oOYr6fHZn4YCvmZkZl8FeQr4FNzc37N+/H4wxDB06FKNGjYKVlZXcbZKTk4UT40Q64uPjkZubC3Nzc7nt0dHRqFChAremrlevXsWaNWvw+PFjAIClpSVmzpyJNm3acMkjZdeuXcP27dsRFxeHP//8EwYGBtizZw9MTEzQunVrLplCQkLw/PlzdO7cGZqamgCAM2fOQFdXV7ITQgj5UdHRKCHkuxEfHy/MDo6Pj+ecRlFWVhZmzZqFQ4cO4e3btwrX8zgZX1h38nNv377ldoJ+2rRpGDduHHr16oUhQ4bA3t4e5cqVEz3HuHHjMH/+/DKVMjl48CByc3Ph7OwsQrL/07FjRxw9ehS6urpy29PT09GnTx9cvnxZ1DyF8vPzERMTg1evXil8wRd7VYqOjg6Ague6lpYW1NTUhOuUlZXx008/YfTo0aJmAoA5c+Zg2bJlmD59ulAPHSh4THmUhip09+5dBAYGFvvYFVfj91vz8vISvjDm5ubCx8cHlStXlrsNj1IZR48exe7du3H+/HlYWlpiwoQJGDJkiNxrsWXLlqL2SKhZsyaSkpJgaGiI2rVrIyAgADY2Nrh7967cwJiYxDzp/zWqVauGjIwMXLhwAW3btoWamhqaNm3KdZWaTCYrcUVfUFCQZFb0kZJlZWUV2/+D56rVT58+IT4+HrVr15bEQFNkZCQ2bdoEJyenEt+XKleu/EPOHP6alYw8JhW5uLjA1dVVYYDgzp078PLywpUrV0TP9Mcff2DEiBFwcnISjgVu3LgBOzs7+Pj4YPDgwaJnkqojR45g6NChcHZ2RlhYGD5+/AigoA/AihUrcPbsWS65bG1tYWtrK7eNZ0+ZpUuXlnr9woULRUpCiPTQCgJCCPmPTJw4EYGBgfDw8MDQoUOxZcsW/P3339i+fTtWrVol6sllqc6qBgpOhvj7+2P//v04ceIE1NXV0a9fPzg7O6Nly5ai5ViwYAE2btyIVq1aoWfPnrC1tUWNGjWgqqqKd+/eITIyEtevX8eBAwdQo0YN7NixQ/STAJ/PsC706tUrGBgYICcnR9Q8QEFT28GDB+PZs2cKK3h4rt5ZsmQJZsyYIZmVKZqamnjw4AFMTEzkZsYnJCSgbt26yM7OFj3TihUrMH/+fFhYWEBfX1/uZKlMJhN9wMnY2PiLJ2x5lcrQ0dHBwIEDMWrUKDRt2rTY23z48AGrV68Wrc7+nDlzoK2tjV9++QUHDx7EkCFDYGxsjMTEREybNg2rVq0SJUdRHz58AGNMKLP07NkzHDt2DJaWlujSpYvoeYCCAfD+/fsjMDAQMpkM0dHRMDU1haurK/T09LB27VouuaS4ok+q8vLycPz4cWHGcP369dGrVy8ukwmAgl4kLi4uJR4z8XjssrKy4ObmBl9fXwAF5fRMTU3h5uYGAwMDzJkzR/RMUvI1ZSvFavBeXJmxz/FsKKutrY2wsDCYmZnJbY+JiYGtrS1SU1NFz1SvXj2MGTMG06ZNk9u+bt067Ny5U3iPIEDjxo0xbdo0DBs2TO648969e+jWrZto/XcK+2poaGgo9FL7HI+JKY0bN5b7OScnB/Hx8Shfvjxq166NsLAw0TMRIhX8pxkQQsg/4Ovri8qVKwszEGbNmoUdO3bA0tIS+/fv51JP9NSpU/Dz80P79u0xYsQItGnTBmZmZjAyMsLevXtFHSCQ6qxqAChfvjx69OiBHj16ICsrC8eOHcO+ffvQoUMH1KxZE7GxsaLk8PDwwKRJk+Dl5YXff/9doRaulpYWOnXqhB07dgj1hsVStMdGZGSk3EF9Xl4e/P39YWBgIGqmQuPGjYOtrS3OnDmD6tWrc52RW9SsWbPkBix4n6jU1dVFUlKSQp3oe/fucXvsNmzYgF27dsHFxYXL/j+XkJDAO0KJkpKSvthbQE1NTdQmvEUHAAYMGAAjIyOhZnXPnj1Fy1FU79694eTkhHHjxiE1NRXNmjWDsrIy3rx5g3Xr1mH8+PGiZ5o2bRoqVKiAxMREuRUeAwYMwPTp07kNEEhxRZ8UxcTEwMHBAX/99RcsLCwAFPSPqFWrFs6cOYPatWuLnmnq1KlIS0vDnTt30L59exw7dgwvX77EsmXLuD2f5s6di4iICFy5ckXuGKVTp05YvHgxtwGCkydPFrtdJpNBVVUVZmZmpfZP+K94enp+8318LamvmpDJZHj//r3C9rS0NG4DmHFxccV+vvXq1Qu//PILh0SKHBwc4OXlherVq3PN8eTJk2JXouno6Ig6uHPv3j1hAtO9e/dKvB2v7w/FZUpPT4eLiwscHR05JCJEQhghhHyH6tSpwy5dusQYY+zmzZtMTU2Nbd++nfXs2ZM5OjpyyaShocGePXvGGGPMwMCA3blzhzHGWFxcHNPQ0OCSafHixSwjI4PLvsvq9evXbNOmTax+/fpMSUmJW46UlBQWHh7Obt26xaKjo1l+fj63LDKZjCkpKTElJSUmk8kULurq6szb25tLNnV1dRYdHc1l36Xp3Lkz27p1K2OMsXfv3rGqVauymjVrMlVVVfb777+Lnsfd3Z21bt2aJSUlMS0tLRYdHc2uX7/OTE1N2eLFi0XPwxhj1apVY0+fPuWy7++NkpISe/nypcL2N2/ecHufevDgQYnXHTt2TLwgRVSqVIk9fPiQMcbYzp07WYMGDVheXh47dOgQq1u3LpdM+vr6LDw8nDHGmKamJouNjWWMMRYbG8vls9jR0ZE5OjoyJSUl1r17d+FnR0dH1qtXL2ZsbMzs7e1FzyVV3bp1Y127dmVv374Vtr1584Z17dqVde/enUumatWqCcd0Wlpa7MmTJ4wxxk6cOMFatWrFJZOhoSG7desWY0z+eR4dHc20tLS4ZGLs/45fPj9uKdympKTE2rZty1JSUrhlJMXr0aMH69evH8vNzRW25ebmsr59+7KuXbtyyVS7dm22bds2he1bt25lZmZmHBIpKvr648nExIRduHCBMSafydfXl9WrV49ntO/C/fv3mZGREe8YhHBFKwgIId+l58+fC0tgjx8/jp9//hljxoxBq1at0L59ey6ZTE1NER8fD0NDQ9StWxeHDh1Cs2bNcOrUKYUa8mKR2qzqQoUrB/bu3YtLly6hVq1aGDRoENfGrXp6etDT0+O2/6Li4+PBGIOpqSmCg4OF3htAwQqQqlWrciu10Lx5c8TExCgsQectLCwM69evBwAcPnwY1apVw71793DkyBEsXLhQ9JnMK1aswMSJE1GrVi3k5eXB0tISeXl5GDx4MObPny9qlkLTpk3Dli1bJDmzUmpYCRU4P378CGVlZZHTFLC3t8f169cVZt8eOXIEw4YNQ2ZmpuiZsrKyhB4bAQEBcHJygpKSEn766Sc8e/ZM9DwAkJmZWezqj5SUFC69GqS8ok+Krl69itu3b6NixYrCtkqVKmHVqlXcGlpmZmYKpaH09PTw+vVr1KlTB9bW1tzKUbx+/VqhXBVQkJXnyr4LFy5g3rx5WL58OZo1awagoEH4ggULMH/+fOjo6GDs2LGYMWMGvL29RcmUmJhY6vWGhoai5CgqKCio1Ot59CT59ddf0bZtW1hYWAgNgK9du4b09HRuPa/c3d0xefJkhIeHC2VIb9y4AR8fH2zYsIFLJqkaPXo0pkyZgl27dkEmk+HFixe4desWZsyYgQULFvCOJ3lpaWlIS0vjHYMQrmiAgBDyXdLU1MTbt29haGiIgIAAocahqqoqPnz4wCXTiBEjEBERgXbt2mHOnDno2bMnNm/ejJycHC41FgFpln8YOHAgTp8+DXV1dfTv3x8LFixAixYtRM8hZYUlsj5vIisFbm5ucHd3R3JyMqytrVGhQgW563k1a5TaiUplZWXs3LkTCxYswMOHD5GRkYHGjRsrNP8T04wZM+Dg4IDatWvD0tJS4bE7evQop2TSsXHjRgAFS9+LNlAGCsp7BQUFoW7dulyyjRo1Cp06dcKNGzdQrVo1AAUN1F1dXeHj48Mlk5mZGY4fPw5HR0ecP39eqBP96tUrLk02AaBNmzbw8/ODh4cHgILHMj8/H6tXr0aHDh1Ez1PYyNnY2BgzZ878YumqH52KikqxZU4yMjK4Dc5ZWFjgyZMnMDY2RsOGDbF9+3YYGxtj27Zt3MqKFJb6c3NzA/B/5Tq8vLy4HlNNmTIFO3bskOspZWdnB1VVVYwZMwaPHj2Cp6cnXF1dRcv0pX43PMrnFDeZqWhGHpksLS1x//59bN68GREREVBTU8OwYcMwadIkuQE7MY0fPx7VqlXD2rVrcejQIQAFfQkOHjyI3r17c8n0OSMjI4XjKR7mzJmD/Px82NnZISsrC23btoWKigpmzJghvE+ILTs7G5s2bUJgYCBevXql8L2GxwBr4XFeIcYYkpKSsGfPHnTr1k30PIRICTUpJoR8l5ydnREVFYXGjRtj//79SExMRKVKlXDy5En88ssvePjwIe+IePbsGUJDQ2FmZsbtpGnlypVx9epV1K9fH15eXti0aZPcrGoezb2cnZ3h7OwMe3t7brPgvxcrV66Evr6+whfpXbt24fXr15g9e7bomZSUlBS2yWQyro31gIKBiVGjRsHR0RFWVlbw9/dHixYtEBoaCgcHB9GasxW6fv06WrduLeo+v6Sw50aHDh0UmhQD/3ci80dWODv/2bNnqFmzptx7lLKyMoyNjbF06VI0b96cSz43NzcEBgYiKCgI/v7+GDVqFPbs2YO+fftyyXP48GEMHjwYeXl5sLOzQ0BAAICC966goCCcO3dO9EwPHz6EnZ0dbGxscPnyZfTq1QuPHj1CSkoKbty4waWGPVCwMiw3N1dhkDA6OhoVKlSAsbExl1xSM2zYMISFhcHb21uYgX7nzh2MHj0aTZo04TIY9scffyAnJwcjRoxAaGgounbtipSUFCgrK8PHxwcDBgwQPdP169fRrVs3DBkyBD4+Phg7diwiIyNx8+ZNXL16FU2aNBE9E1DQm+Xu3buwsrKS2/7gwQM0a9YMHz58wLNnz1CvXj1kZWWJkikiIkLu55ycHNy7dw/r1q3D8uXL4eTkJEqOoj6fqVyYacGCBVi+fDns7OxEzyQVGzduxJgxY6CqqorExETUqlVLMv2uvgefPn1CTEwMMjIyYGlpKTfRQWzOzs4ICAjAzz//XOxxp5h9nAp9vgpTSUkJVapUQceOHTF37lxhshEhPyIaICCEfJdSU1Mxf/58PH/+HOPHjxcatC1atAjKysqYN28e54TSoK6ujqioKBgaGqJ///6oX78+Fi1ahOfPn8PCwkK0L2fknzE2Nsa+ffvkZuIBBSdLBg4ciPj4eNEzfWk2Po8G4YD8icqOHTviwoULAPidqFRWVoaBgQEGDRqEIUOGwNLSUtT9F0dLSwsHDhwQmruTknXo0AFHjx6VTNmxopydnXH37l38/fff2LdvH/dZlMnJyUhKSkLDhg2FAcTg4GBoa2tzW22RlpYmzILNyMiAjY0NJk6cyLWJZLt27eDq6orhw4fLbf/jjz/g5eWFK1eu8AkmMampqRg+fDhOnTolzMrNzc1Fr169sHv3bm4lG4vKysoSjq0qV67MLUdsbCxWrVol9zyfPXs2rK2tuWVq3bo1tLS04OfnJ5RHfP36tVAGLSgoCBcvXsTEiRPx5MkTbjkB4MyZM/jtt98k9dq7evUqpk+fjtDQUFH2d//+fVhZWUFJSQn3798v9bZiTXYqX748Xrx4IZTTTEpKKracFilgaGiIe/fuoVKlSgCAzZs3Y9iwYdxW8RWlo6ODs2fPcisPRwj5OjRAQAgh/6FLly7h0qVLxS6j3LVrl+h5pDKruuhsoM+Xdn5u8uTJomT6HqiqquLx48cKs13i4uJgaWmJ7OxsTsmkSUonKt+8eYMDBw5g//79uHXrFho0aABnZ2cMGjQINWvWFDVLISMjI5w/f57bSdui0tPTy3xbKXzJ5eXkyZMK23JycjBt2jR06dIFvXr1ErYX/TeRHm1tbYSFhSn0b4mJiYGtrS1SU1P5BJOomJgYYZVjvXr1uPS9yczMxIwZM3Dy5El8+vQJdnZ22LRpk1xfICIvKioKffr0QXx8PGrVqgWgoG+YqakpTpw4gTp16uD48eN4//49hg4dyjVrTEwMGjZsyKV/S0mioqJga2uLjIwMUfanpKSE5ORkVK1aFUpKSsKK0M+JuULU0NAQc+fORffu3WFiYoKQkJASB+J49I+QmqKPIVDwWRMeHg5TU1POyQrKVh04cIDbSvriuLq6YsOGDQorBTIzM+Hm5sbl+zohUkEDBISQ79a1a9ewfft2xMXF4c8//4SBgQH27NkDExMTLqU9lixZgqVLl8LW1hbVq1dXWEZ57Ngx0TNJZVZ14QF+pUqVFE52FyWTyRAXFydKpqI+fPgAxphQG1oqzZzNzc2xaNEiDBkyRG77nj17sGjRIi73VaHIyEgkJibi06dPctt5n6SMiYlBbGws2rZtCzU1NaH0EU/x8fHYt28f9u/fj6ioKLRt25ZLw7/du3fD398fu3fv5l4HvfBERFmIdVJi+vTp8PDwgIaGhtDXpiRi9ZUprqRXccQ8eePk5AQfHx9oa2t/sTQHj74Wu3fvhqamJvr16ye3/c8//0RWVpbCDH6x6Ojo4MqVK2jcuLHc9tDQULRv377Yuvs/oqVLl2LGjBkK71EfPnzAb7/9hoULF4qWZfr06dixYwecnZ2hqqqK/fv3o1WrVlyO5z5X0iCrTCaDiooKt34NQEH/pICAADx9+hRAQQ+Hzp07l/n97L/2+X1VWHN88eLFiIqKQnh4uOiZPp+tX5hp1apVyM3NxfXr10XJ8ezZMxgaGkImk0lmheiOHTvg5uaG3NzcEm/Du6yllHw+QKClpYWIiAhJDBCcO3cOGzduxLZt27itMP5cSatS3rx5g2rVqpX6vCPkfx01KSaEfJeOHDmCoUOHwtnZGWFhYfj48SOAgrICK1aswNmzZ0XPtG3bNvj4+HCfEVXUzz//jNatWwuzqgvZ2dnB0dFRtBxFS+HwKIvzJZ83c27evDkqVKjAtZkzAIwePRpTp05FTk4OOnbsCKBglcqsWbPg7u7OJVNcXBwcHR3x4MEDuZlmhSd7eX1Ze/v2Lfr374/AwEDIZDJER0fD1NQUI0eOhJ6eHtauXcslF1AwQDZnzhw0bNgQCxYswNWrV7nk2LhxI2JjY6Gvrw9jY2OFpnpiNosLDAwU/p2QkIA5c+bAxcVFaK5569Yt+Pr6YuXKlaJlunfvHnJycoR/l0TMAScpNirX0dER7gMdHR3OaRStXLkS27dvV9hetWpVjBkzhtsAQdu2bbFy5Urs379f6G2Rl5eHlStXSq5fCU9LlizBuHHjFAYIsrKysGTJElEHCI4dO4bdu3cLg03Dhg3DTz/9hNzcXJQvz/drtK6ubqnvRTVr1oSLiwsWLVok2on5nJwcqKmpITw8HF27dhXKf/JW3H3FGEOtWrVw4MABLpkaNWpU7Gz9n376SdQZzEVP2krlBO6YMWMwaNAgPHv2DA0aNMDFixeF8jnk+2Jra4vs7GyYmppCXV1d4bgzJSVFtCzp6elgjIExhvfv30NVVVW4Li8vD2fPnqVSVuSHRwMEhJDv0rJly7Bt2zYMGzZM7uC+VatWWLZsGZdMnz59UqgVLwXVqlVDRkYGLly4IMyqbtq0KbdZ1VKaHVgoLCwM69evB1Cw6kJfX1+umTOvAYKZM2fi7du3mDBhgjBTX1VVFbNnz8bcuXO5ZJoyZQpMTExw6dIlmJiYIDg4GG/fvoW7uzvWrFnDJRMATJs2DRUqVEBiYiLq1asnbB8wYACmT5/ObYDgxo0b2Lt3Lw4fPozs7Gz07t1b1JPeRfXp04fLfovTrl074d9Lly7FunXrMGjQIGFbr169YG1tjR07doh2QrfooEXRfxN5RZtZS7GxdWJiYrEr1YyMjJCYmMghUYFff/0Vbdu2hYWFBdq0aQOgYCVkeno6lxVFUlXSqq+IiAhUrFhR1Cx//fWXXO3sJk2aoEKFCnjx4gX30iY+Pj6YN28eXFxchGbOwcHB8PX1xfz58/H69WusWbMGKioq+OWXX0TJVKFCBRgaGkpuVvfn7+eFTUnNzMy4DfR8PlmmMFPRk5Y8REdHIzAwsNhSqWIen2tpacHKygq7d+9Gq1atoKKiItq+v0deXl5CM+Lc3Fz4+PgolGXiUcJ10KBB+Pvvv7FixYpimxSLqXCgUCaToU6dOgrXy2QyLFmyhEMyQqSDSgwRQr5L6urqiIyMhLGxsdxSSp612WfPng1NTU0sWLBA9H2XpKRZ1a6urtxmVZe0tPPt27eoWrUqly+WUm/mnJGRgcePH0NNTQ3m5uZcvyhVrlwZly9fRoMGDaCjo4Pg4GBYWFjg8uXLcHd3L3Xm9bdUrVo1nD9/Hg0bNlR4T2jQoIFo9XwLzZ07FwcOHMCLFy/QuXNnODs7o3fv3txL+0iRuro6IiIiYG5uLrf96dOnaNSoEZfXX1paGvLy8hROSKakpKB8+fJc+iJMnjwZZmZmCl/yN2/ejJiYGHh6eoqeCShYlp+QkACZTAZjY2PuMz0NDQ2xefNmhXJnJ06cwMSJE/HXX39xSga8ePFCaJ6spqaGBg0aYNKkSaKf+JYiPT09yGQypKWlQVtbW+5EUl5eHjIyMjBu3Dhs2bJFtEzlypVDcnKyXM8BbW1tRERElFouUQx2dnYYO3Ys+vfvL7f90KFD2L59Oy5duoQ9e/Zg+fLliIqKEi2Xt7c3jh49ij179tDz+juzc+dOjB8/HpUrV0a1atXkXoMymUzUVYZS9/LlS8yYMUPoO/f5KTUxv8sYGxt/8cQ7rxKu6urquHXrltwqdl6uXr0Kxhg6duyII0eOyL0/KSsrw8jICDVq1OCYkBD+aAUBIeS7VK1aNcTExMDY2Fhu+/Xr17nVXMzOzsaOHTtw8eJFNGjQQGEZpVg1q4uS4qxqKc0OLGRmZobjx4/D0dER58+fx7Rp0wAAr169kkSDVE1NTTRt2pR3DAAFX3oKG3tVrlwZL168gIWFBYyMjPDkyRNuuTIzM4s9+Z6SksJlQCUoKAgzZ85E//79S2yuRwrUqlULO3fuxOrVq+W2e3l5CU0uxTZw4ED07NkTEyZMkNt+6NAhnDx5kksZuyNHjhTbtLhly5ZYtWqV6AMEjx49wvjx43Hjxg257e3atcPvv//OrRn2oEGDMHnyZGhpaaFt27YACk4MTJkyBQMHDuSSqVCNGjWwYsUKrhmkytPTE4wxuLq6YsmSJXLlq5SVlWFsbCyUIBMLYwx2dnZys8yzsrLQs2dPuRr/PE6c3rx5E9u2bVPY3rhxY9y6dQsA0Lp1a9FXzRQOWNaoUQNGRkbQ0NCQu57XSeYnT55g06ZNco2vJ02axO19CigoGbl+/Xq5TFOnTkWnTp245Fm2bBmWL1+O2bNnc9n/98TFxQWJiYlYsGBBsX3nxJSQkMBt319St25dfPjwgXcMAP+3crWwgTqvniiESBkNEBBCvkujR4/GlClTsGvXLshkMrx48QK3bt3CjBkzuM3gv3//Pho1agQAePjwodx1vA4cAwICcP78edSsWVNuu7m5+Rebkf3XCmcHFi7tLGl2IA8LFy7E4MGDMW3aNNjZ2QknIQICAhQaSootJCQEhw4dKrYhMI8GoFZWVsLsyebNm2P16tVQVlbGjh07uDZEa9OmDfz8/ODh4QGg4DWXn5+P1atXo0OHDqLn+fykqRR8qTEwr7IQ69evR9++fXHu3Dk0b94cQEGpjOjoaBw5coRLpjt37hQ7qNu+fXvMmzePQ6KCVVbF1fzX1tbGmzdvRM2SnJyMdu3aoUqVKli3bh3q1q0LxhgiIyOxc+dOtG3bFg8fPuRSz9fDwwMJCQlyJ3bz8/MxbNgwSZycz8rKKvb9vEGDBpwSSUNhKTETExO0atWKe41/AFi0aJHCtt69e3NIoqhWrVrw9vbGqlWr5LZ7e3sLA6tv376Fnp6eqLmkVMqu0JEjRzBw4EDY2toKx3e3b9+GtbU1Dhw4gL59+4qe6ffff8eUKVPw888/Y8qUKUKm7t27Y/369Zg4caLomd69e6fQ3J0U7/r167h27ZrwvY8Ub9WqVXB3d8fy5cthbW2tMHmOxySswl4b9FlMiCIqMUQI+S4xxrBixQqsXLlSKD+hoqKCGTNmCCcISUENz7CwMJibm8uVXQkJCYG9vT3evn0rWhZfX19hdqCnp6ckZgcWlZycLDRzLpxVEhwcDG1tbW4zzA4cOIBhw4bB3t4eAQEB6NKlC54+fYqXL1/C0dGRS/3v8+fPIzMzE05OToiJiUGPHj3w9OlTVKpUCQcPHhSaKYvt4cOHsLOzg42NDS5fvoxevXrh0aNHSElJwY0bN1C7dm3RM0mllm+hEydOyP2ck5ODe/fuwdfXF0uWLMHIkSNFz1Tor7/+wu+//y6UwqhXrx7GjRvHbQWBhoaGcAKpqAcPHqB58+Zcyh5ZWVlh3LhxmDRpktz2TZs2YevWrYiMjBQty+zZs3Hx4kXcuHFDoWb2hw8f0Lp1a3Tp0oVbvw2goERVYSkfa2tr7g04X79+jREjRuDcuXPFXi+1uu1E2k6ePIl+/fqhbt26wgrDkJAQREVF4fDhw+jRowe2bt2K6OhoLitYpaR27dpwdnbG0qVL5bYvWrQIf/zxB2JjY0XPVLNmTcyZM0fh/XzLli1YsWIF/v77b9EzjRw5Ek2bNuU2Wed7Ymlpib1793KfRCR1hd+nimsSLpPJuHzu0WcxISWjAQJCyHft06dPiImJQUZGBiwtLaGpqYkPHz5ATU2NdzRJ6N69O5o0aQIPDw9oaWnh/v37MDIywsCBA5Gfn4/Dhw+Lnunq1ato2bKlwiwSoqhBgwYYO3YsJk6cKAzwmJiYYOzYsahevbpkmmmlpKQIK0R4SktLE+p7Z2RkwMbGBhMnTkT16tVFz/I91fLdt28fDh48qDCA8CPr0KEDrKyssGnTJrntEydOxP3793Ht2jXRM+3atQuTJk3CzJkzhYG4S5cuYe3atfD09MTo0aNFy2JjY4M5c+Yo1D8vdODAAaxevZr787zwaw7v9yYAcHZ2xrNnz+Dp6Yn27dvj2LFjePnyJZYtW4a1a9fCwcGBd0TynUlISMD27duF8n4WFhYYO3asQvlNsaWmpuLw4cOIjY3FzJkzUbFiRYSFhUFfXx8GBgai51FXV8f9+/dhZmYmtz06OhoNGzbkMuCrqamJ8PDwYjM1btxY9L5JALBy5UqsW7cODg4Oxc725tHkVqoCAgKwdu1abN++nfvrTcquXr1a6vWFZX/ERJ/FhJSMBggIIf8zPn78iC1btmD16tVITk4Wff+ZmZlYtWqV0LDq8xnDPJpDSWVWdXp6eplvK9ZyUycnpzLflkcpH6BgFvOjR4+Exp9XrlyBtbU1Hj9+jI4dOyIpKUnUPDk5OVBTU0N4eDisrKxE3XdpcnJy0LVrV2zbtk2h0S0vRkZGmDBhwndRy5dXI+eiUlNT4e3tLdRirl+/PlxdXYstqSOGGzduoFOnTmjatCns7OwAFJyMv3v3LgICAtCmTRsuubZu3Yrly5fjxYsXAAqaEy5evBjDhg0TNYeuri5CQkIUTm4ViomJga2tLVJTU0XNVcjPzw+//fYboqOjAQB16tTBzJkzMXToUC55AKB69eo4ceIEmjVrBm1tbYSEhKBOnTo4efIkVq9ejevXr3PLRsh/5f79++jUqRN0dHSQkJCAJ0+ewNTUFPPnz0diYiL8/PxEz9S9e3f069cPI0aMkNu+e/duHDhwAOfPnxc90+DBg9G4cWPMnDlTbvuaNWsQEhKCAwcOiJ6ptMbbYja5nT59eplvy2t1jJ6eHrKyspCbmwt1dXWFwZSUlBQuuciX0WcxISXjX9yREEK+wsePH7F48WJcuHABysrKmDVrFvr06YPdu3dj3rx5KFeunNBgVmyjRo3C1atXMXToUO4NqwpZWVnh6dOn2Lx5M7S0tJCRkQEnJyfRZ1Xr6up+8f4Qe7kprxOPX0NPTw/v378HABgYGODhw4ewtrZGamoqlxlvFSpUgKGhoeSW31aoUAH379/nHUPO91LL98OHD9i4cSOXWZ2FCkueqampoVmzZgAKvvQvX74cAQEBsLGxET1Tq1atcOvWLfz22284dOgQ1NTU0KBBA3h7e3MdhBo/fjzGjx+P169fQ01NDZqamlxyvH//vtTB3MLPGx7WrVuHBQsWYNKkSWjVqhWAgnrR48aN+3/s3XlcjWn/B/DPKZVSEoqkvagoIvuIylIZ2cZW0YaIRDTMY7TYNSSRCaXCkCSyNJaKqIQmSkJ7WYohoRIt5/dHT/d0nMI8v2fu6+7pev8zus95vc7nZXKfc67vdX2/ePXqFbHPCFVVVcxMBjk5Ofz555/o06cP9PX1iZ+0oNourvXRdnd3h729PXx9fSEjI8Nct7S0hLW1NZFMVlZWWLNmDf744w8MHz4cQGO//5MnT8LHx0dg+LuVlRUrmfT09LB582Zcu3ZNYC5CcnIyVq1ahYCAAOa5bO3cLywsZOV1vubu3bvf9DyS37P8/f2JvXZbc+PGDezfvx8FBQU4efIklJSUcOTIEairq+O7775jPQ99L6ao1tETBBRFtSlr1qzB/v37MW7cOKSkpDB9BFNTU/Gvf/0LM2fOhKioKJFsXbp0wYULF5gFCdK4tKv6a0dMmyNx3JSrrK2tYWRkBHd3d2zcuBF79uzBlClTcOXKFQwaNIjIyYaQkBBER0fjyJEj6Nq1K+uv35qVK1dCQkJCaGAjKVzs5ft5Gyg+n4/3799DSkoKR48eZW1h5HOjR4+GlpYWDh48yAwmraurw4IFC1BQUIDr168TyUW1TlRUFDk5OZCXl2/x8RcvXkBHR4dIMVFdXR0+Pj5CpyrCw8Ph7e1NbBFsyJAh2LRpEyZOnAgrKyt06dIFW7duRUBAANOOhaK+FVf7aMvKyiI9PR2ampoCs6+Ki4vRt29f1NTUsJ6pqQ/617C5SeVLu/WbY3PnPvW/Y9KkSQgODibSYrO5U6dOYd68ebCxscGRI0eQnZ0NDQ0N7N27F7GxsYiNjWU9E30vpqjW0RMEFEW1KSdPnsThw4dhZWWFrKwsGBgYoK6uDhkZGcR37MvJyXFqwZRLu6rpov9/Zu/evcyX6XXr1kFMTAwpKSmYMWMGfv75Z1azXL9+HSNGjMDevXuRl5eHXr16QVVVFZ06dRJ4HqndN3V1dTh06BDi4uIwePBgoVxsH0PX0tLC+vXrmUG3XOjlu2vXLoH7pIiICOTl5TFs2DDIycmxnqdJWlqaQHEAADp06IAff/wRRkZGrOV49+4dsyv+a23R2GqF9rmoqChERka2uGOYzX97fD4fffr0+eLjpN6TS0tLMXLkSKHrI0eOZL0tW3Nubm7M63t5ecHc3By//fYbxMXFERYWRiwXF7SFln9cs2LFClRUVODWrVst9tEmRUJCosX755cKiv+0z1t+cgFXdut/7unTpzh79myL7zHtfdj15+rr63HmzBmB1ohWVlbENqo1d/36dXz48IHKwCRLAACjFklEQVR0DGzatAlBQUGYP3++QNusUaNGYdOmTUQy0fdiimodLRBQFNWmPH36FIMHDwbQ2D5HQkICK1euJF4cAICNGzfC09MT4eHhkJKSIh0HAGBra4uQkBDO7KoG8NXdwMbGxqzkGDRoEOLj4yEnJwdDQ8Mv/g6xufDWdFqgU6dOyMrKYha6REREsHbtWtZyfM7ExASlpaWYOnUqsQxfkpWVxbSiycnJEXiMxP3hwIEDkJaWRmJiotAJGh6PR6RAYG9vz/prfovOnTujpKQEOjo6AtefPHki0KLinyYnJ4fS0lIoKCi02haN7VZozQUEBGDdunWwt7dHTEwMHBwckJ+fjzt37mDp0qWsZrl69Sqrr/d3aGlpITIyEv/6178Erp84cYL103TNi062trbM9cGDB6O4uBiPHj2CiooKunfvzmourmne8o/P5+P06dOQlZVlCoR//PEHKioq/lYh4b8tPj6+1RlThw4dYj1PQkICYmJiYGRkBBEREaiqqmL8+PHo3Lkztm7dSmzQppWVFTZs2IDIyEgAje93JSUlWLNmDWbMmEEkE9dxZZh6fHw8rKysoKGhgUePHqF///4oKioCn88n0uqvSVpaWquFcVIFw7y8PFhaWuLZs2fo27cvgMYhz8rKyrhw4QJrM9647vHjxy1+r5OVlSU2o4i+F1NU62iBgKKoNqW+vh7i4uLMzx06dCDWg/lzO3fuRH5+Pnr06AE1NTWhHcMkdlZzbVc1AIwdO1boWvMvRWwtvE2ZMgUSEhIAwKlF7z179mDNmjXo1KkTsyjf1CuTpKYvsF5eXoSTtIxrC5Zc3B148eJFSEtLMz1fAwMDcfDgQejp6SEwMJDYKYLZs2fDyckJO3bsYApiycnJ8PDwwNy5c1nLkZCQwJwC49rvEwDs27cPBw4cwNy5cxEWFoYff/wRGhoa8PT0ZH0gIpdPhfn4+GD27Nm4fv060/IvOTkZ8fHxzKIlW5oXnUxNTREdHY0uXboAAKSkpIguunFJaGgo8+c1a9Zg1qxZCAoKYnbi1tfXw8XFhdjJHR8fH2zYsAFGRkacmTHF1T7aO3fuxA8//AAFBQV8+PABY8aMQVlZGUaMGIHNmzcTy5WYmIgdO3Ywu7319PTg4eFBbOA8wL1h6j/99BNWr14NHx8fyMjI4NSpU1BQUICNjQ3Mzc2JZIqIiMD8+fMxceJEXL58GRMmTEBOTg5evHiBadOmEckENJ4C1dTURGpqKvO54fXr17C1tcXy5ctx4cIFYtkAQFVVVeh7KAk9e/ZEXl4e1NTUBK4nJSVBQ0OD9Ty1tbXQ0dHB+fPnoaurC4C+F1NUc3QGAUVRbYqIiAgsLCyYhd1z587B1NRUaOGbxI4SHx+fLz5OYmHVxMSk1cd4PB4SEhJYTNPo7du3Aj/X1tbi7t27WL9+PTZv3gwzMzPWM3GJtrY2Zs2ahQkTJsDExASnT59udeGWrdMWQOO/vRcvXhBrEfB3PH36FADQu3dvwkkacWV3oL6+PrZv3w5LS0vcv38fRkZGWLVqFa5evQodHR2BRTo2ffr0CR4eHggKCkJdXR2AxhZpS5YswbZt25j7PVvq6uqwZcsWODo6cuZ3CGj8Evvw4UOoqqpCQUEBV65cwYABA5Cbm4vhw4fj9evXpCNyRnp6Ovz8/JjFQF1dXaxatQqGhoas5pCVlUVqaip0dXXb1D2UJHl5eSQlJTG7cps8fvwYI0eOJPJ7rqioCF9fX2ILty3heh/tpKQkZGZmorKyEoMGDcK4ceOIZTl69CgcHBwwffp0gaLh6dOnERYWRmR4cmvD1AMDA7Fp0yYiw9RlZGRw7949aGpqQk5ODklJSejXrx8yMjIwZcoUFBUVsZ7JwMAAzs7OWLp0KTPTQl1dHc7OzlBUVPzqd69/SqdOnZgWks1lZGRg1KhRqKysJJKLa7Zu3YqjR4/i0KFDGD9+PGJjY1FcXIyVK1di/fr1cHV1ZT2TkpIS4uLimAIBRVF/oQUCiqLaFAcHh296HqmFLuo/l5iYCHd3d/zxxx/EMvzxxx8CvUTZXkwCgDNnzmDx4sV4+fIleDweWnubZrvNyefFudaQOu7d0NDA9F5u+mImIyODVatWYd26dd88pPC/iWu7A6WlpZGVlQU1NTV4e3sjKysLUVFRSE9Ph6WlJcrKyojkalJdXc0samlqahJt1SYjI4P79+8L7XojSUNDA6dOnYKhoSGMjIywcOFCODs74/Lly5gzZw7rpwi4qLa2Fs7Ozli/fv03DwH9J82YMQPJycnQ1dVFYmIiRo4cKXAKsjkSBXsukpOTQ1hYGKZMmSJwPSYmBvb29njz5g3rmbp164bbt29zqm3I0aNHUVdXB3t7e/zxxx8wNzdHeXk500d79uzZpCNyhq6uLhYtWiS06O7n54eDBw8yn/vYxMVh6j179sTVq1ehq6sLPT09bNu2DVZWVkQXvTt16oQHDx5ATU0N3bp1w7Vr16Cvr4+HDx/C1NSU2FyZrl274vz580LzbpKTkzF58mT6fvxvfD4fW7ZswdatW1FdXQ2gcU7J6tWrsXHjRiKZtmzZgpycHAQHBwvMvqIoirYYoiiqjaEL//85ru2q/lyPHj3w+PFjIq/98uVLzJkzB9euXWPaP1RUVMDExAQRERGs7vicOnUqpk6disrKSnTu3BmPHz/mRIshoHHRVFJSknSMFq1bt46Zt9F8N563tzdqampYb23Q2u7AxYsX49WrV0R2B4qLizNf0OLi4piFia5du351KC8bpKSkmNMypOe4mJqaIjExkVMFAlNTU5w9exaGhoZwcHDAypUrERUVhbS0NKK92blETEwMp06dwvr160lHAdC4iBseHo78/HwkJiaiX79+xH+3uc7BwQFOTk7Iz8/H0KFDAQC3bt3Ctm3bvnmTyH/bggULcOzYMc78XgHc7qPNtXkNBQUFmDx5stB1KysroVklbOHiMPXhw4cjKSkJurq6sLS0xKpVq3D//n1ER0dj+PDhRDLJycnh/fv3ABp3fmdlZUFfXx8VFRXM5xkSvv/+eyxatAghISEC96nFixfDysqKWC6u4fF4WLduHTw8PJCXl4fKykro6ekJtQd++vQpevXqxcpmnjt37iA+Ph6XL1+Gvr4+J7oQUBRX0AIBRVHUf0l9fT127drV6iAtErtJuLirOjMzU+BnPp+P0tJSbNu2DQMHDmQ9DwC4urri/fv3ePDgAXPkNDs7G3Z2dli+fDmOHz/OeiZpaWlcvXoV6urqnNnhEhAQwJlixefCw8MRHBws8MXMwMAASkpKcHFxYb1AsGfPHvz6668CuwOtrKzQr18/eHt7EykQfPfdd3B3d8eoUaNw+/ZtnDhxAkDjUGeShUMu3qcsLCywdu1a3L9/v8X5LSQWAA4cOMAsti1duhTdunVDSkoKrKys4OzszHoerpo6dSrOnDlD5N/Y5yQlJbF48WIAjYM2t2/fzhShqZbt2LEDPXv2xM6dO5mFUkVFRXh4eGDVqlVEMtXU1ODAgQOIi4uDgYGBUG9vEvOcPseVPtpcnNegrKyM+Ph4aGlpCVyPi4uDsrIykUxcGqbexM/Pj3kP9vHxQWVlJZOH1O+4sbExrly5An19fcycORNubm5ISEjAlStXiLYkDQgIgJ2dHUaMGMHcD+rq6mBlZYXdu3cTy8VV4uLi0NPTa/VxPT093Lt3j5W5BF26dKED0ymqFbTFEEVR1H+Jp6cngoODsWrVKvz8889Yt24dioqKcObMGXh6emL58uWsZ/rpp58QEhICHx8foV3VCxcuJDIwTkREpMXWOcOHD8ehQ4ego6PDeiZZWVnExcVhyJAhAtdv376NCRMmoKKigvVMAFBSUvLFx1VUVFhKAoiKinJmYHJLOnbsiMzMTPTp00fg+uPHjzFw4EB8+PCB9TxZWVlCCxK5ubnQ19dHTU0Nq3mAxt8nFxcXPHnyBMuXL4eTkxMAYOXKlaivr0dAQADrmQDu3qdaw3Z7LwBITU3FuXPn8OnTJ5iZmREbGNmavLw85Ofnw9jYGJKSkuDz+cQWBpuKTWZmZi0Wd0i8F1P/maaTTaSGEzfh4jyn+vp6hIWFtbpTn1TLKi7Oa/j111+xYsUKODo6Mrv2k5OTERYWht27dxMpsJ46dQqzZ8/GuHHjWhymTnIAL5eUl5ejpqYGvXr1QkNDA3x9fZGSkgJtbW38/PPPrc7oYktubi4ePXoEoLGV1eef+ahv0zRfgsTgYoqi/kILBBRFUf8lmpqaCAgIwKRJkwQGfQUEBCA1NRXHjh1jPVOvXr0QFBQktNs1JiYGLi4uePbsGeuZiouLBX4WERGBvLw8OnbsyHqWJjIyMrhx44bQCYa7d+9izJgxxNqvNBVTWsP2DIKysjLOFgiGDRuGYcOGCS1yu7q64s6dO0hNTWU1T//+/WFtbS20O3DTpk04ceIE7t+/z2oeLuPifYpLoqKiMHv2bEhKSkJMTAzv3r3D9u3bsXr1atLR8Pr1a8yePRsJCQng8XjIzc2FhoYGHB0dIScnh507d7Ke6UuzB3g8HgoKClhM8xdHR8cvPk6i9QpX1dXV4dq1a8jPz4e1tTVkZGTw/PlzdO7cWag1RXu1bNkyhIWFYdKkSS3u1N+1axeRXFyc1wAAp0+fxs6dOwUGl3t4eAjNumDTH3/8gV27dhEfpk5RpLFdIKDvMRTVMlogoCiK+i/p1KkTHj58CBUVFSgqKuLChQsYNGgQCgoKYGhoiLdv37KeiWu7qrlqypQpqKiowPHjx9GrVy8AwLNnz2BjYwM5OTmcPn2aSK6MjAyBn2tra3H37l34+flh8+bNrPYdT0xMxKhRozjT7uhziYmJmDRpElRUVDBixAgAwM2bN/HkyRPExsZi9OjRrObh6u7AhoYG5OXltbjj1NjYmEgmLt6nDh8+jNmzZwsN5f706RMiIiKEBkv+kwYPHowhQ4YgMDAQoqKi2Lp1K3755RdODEGcP38+Xr58ieDgYOjq6jJf8C9dugR3d3c8ePCAdETO+PzffG1tLbKyslBRUQFTU1Pa9/jfiouLYW5ujpKSEnz8+BE5OTnQ0NCAm5sbPn78iKCgIKL5uDLPqXv37jh8+DAsLS2J5vjcmjVrIC0tzal5DdS3kZOTa3FTCo/HQ8eOHaGlpQV7e3tWZ4HExsZCVFQUEydOFLh++fJl1NfXw8LCgrUs7u7u2LhxIzp16gR3d/cvPpdES6YXL15g9erVzKmiz5f52D75+HewWSDg+nsMRZHEzW/5FEVRbVDv3r1RWloKFRUVaGpq4vLlyxg0aBDu3LkjtMjElgEDBmDv3r1Cu6r37t2LAQMGsJolISEBy5YtQ2pqqlC7gLdv32LkyJEICgpifSEXaPz7sLKygpqaGtOP9smTJ+jfvz+OHj3Kep4mLf0/MjIyQq9evfDLL7+wWiAYM2YMa6/1dxQUFEBdXR1jxoxBTk4O9u3bx+zGmz59OlxcXJiiD5tmzJiBW7duYdeuXThz5gyAxt2Bt2/fJrY7MDU1FdbW1iguLhb64kiibU4TLt2nmjg4OMDc3FzoxMz79+/h4ODAaoHg8ePHOHHiBERFRQEAq1atgqenJ16+fEn8RM/ly5dx6dIlocVSbW1todNibOByK6aWCs0NDQ1YsmQJ53Zbk+Tm5gYjIyNkZGSgW7duzPVp06Zh4cKFRDJxcU6KuLg4J9uZcHleQ1paGvP5QE9PD4MHDyaWBWhcsD19+rRApilTphDbiOHp6YnNmzfDwsKCGbx7+/ZtXLx4EUuXLkVhYSGWLFmCuro61v4trl27Ftu2bRO63tDQgLVr17JaILh79y5qa2uZP3ONvb09SkpKsH79es7M/+AiLr7HUBRX0AIBRVFt1uPHj7Fnzx6Bo7murq7o27cvkTzTpk1DfHw8hg0bBldXV9ja2iIkJAQlJSXEhiX6+vpi0qRJiIuLa3FXNZv8/f2xcOHCFnsJy8rKwtnZGX5+fkQKBMrKykhPT0dcXJxAL9Fx48axnuVb9O3bF3fu3CEdgxO0tbWZ2Qi9evVCbm4u9u3bhx49epCOhsGDBxMtMH1u8eLFMDIywoULFzj15ZFL96kmrfXQf/r0KWRlZVnNUl1dLXDfFBcXR8eOHVFZWUm8QFBVVQUpKSmh6+Xl5awXxj9vxeTn58eZVkytERERgbu7O8aOHYsff/yRdBxOuHHjBlJSUiAuLi5wXU1NjVi7sXXr1iEkJATbtm0TmpNSU1NDZE7KqlWrsHv3buzdu5cz93IAyMzMZNo1ZmVlCTxGKufTp08xd+5cJCcnM0PCKyoqMHLkSERERBA5DfLgwQNYWVmhrKyM+d6yfft2yMvL49y5c+jfvz/rmZKSkrBp0yZmsHqT/fv34/Llyzh16hQMDAwQEBDA2kJqbm5ui8NtdXR0kJeXx0qGJlevXm3xz1yRlJTUYrvUtoDNewMX32MoiitogYCiqDbp1KlTmDNnDoyMjJgFpdTUVPTv3x8RERGYMWMG65ma73CZPXs2VFVVmUFakydPZj0PAGZXdWBgILPwTWpXdUZGBrZv397q4xMmTMCOHTtYTCSIx+Nh/PjxGD9+PAAQG0zc3OezD/h8PkpLS+Ht7Q1tbW1Cqbjl853wv//+O6qqqgil+Utrx+IvXbqEhoYGVne9NcnNzUVUVBTndp1y6T5laGgIHo8HHo8HMzMzgZ2c9fX1KCwsJLIrPTg4WKAvbl1dHcLCwtC9e3fmGonhu6NHj8bhw4exceNGAI330aZBkl8a7PpP2Lp1KxYuXCjQimnLli2cLhAAQH5+Purq6kjH4IyGhoYWTzM9ffoUMjIyBBIB4eHhCA4OFpiTYmBgACUlJbi4uBApECQlJeHq1av4/fff0a9fP6Gd+qRaVnFx4XTBggWora3Fw4cPmcX4x48fw8HBAQsWLMDFixeJZOrXrx/S0tKYQbtv3ryBvb09Fi1ahJSUFNYzXbp0qcXP6WZmZli1ahUAwNLSEmvXrmUtk6ysLAoKCqCmpiZwPS8vT2gAPZscHR2xe/duoXtSVVUVXF1dicyUUVZWFvpM3FawmZuL7zEUxRV0BgFFUW2SpqYmbGxssGHDBoHrXl5eOHr0KPLz81nPVFNTQ3TQbnNNbVe4tKusY8eOyMrKanVxMi8vD/r6+kT6jW/fvh1qamqYPXs2AGDWrFk4deoUevbsidjYWGJtTloaUszn86GsrIyIiAimONaefT48me1BZ60xMDDAtm3bhPpDX7x4EWvWrBGaL8EGU1NT/Pjjj5xpu8LF+5SPjw/z31WrVgksyouLi0NNTQ0zZswQ2nn2T1JTU/vq3xGp4btZWVkwMzPDoEGDkJCQACsrKzx48ADl5eVITk5mtXWOtLQ07t27x7zHfPr0CZ06dcKzZ8+In7QAINSzuqnge+HCBdjZ2WHv3r2EknHL7NmzISsriwMHDkBGRgaZmZmQl5fHlClToKKigtDQUNYzcXFOytf6wJP4e2ouLy8P+fn5MDY2hqSkZKunstggKSmJlJQUofZ+f/zxB0aPHo3q6moimdLS0tCvXz+B61lZWRgyZAiR3ykVFRWsXLlS6NTzrl27sGvXLpSUlCAzMxMTJkxAWVkZK5mcnZ1x8+ZNnD59mnk/ycvLw4wZMzBkyBAEBwezkuNzoqKizOnV5l69eoWePXsSKfpevnwZO3fuxP79+4UKKlz35MkT9OrVi2ml+E/i4nsMRXEFPUFAUVSbVFpa2mIPaFtbW/zyyy8EEgEKCgqYNm0abG1tYWZmRqQnbZPmbVeAxg9DAQEBRNuuKCkpfbFAkJmZCUVFRZZTNQoKCsJvv/0GALhy5QquXLmC33//HZGRkfDw8MDly5eJ5Pp8J56IiAjk5eWhpaXFao/az08yfElLLaT+SU27vT+/RhqXjsU3cXV1xapVq1BWVgZ9fX2hHacGBgas5uHifcrLywtA46L8nDlziM2Paa6oqIh0hFb1798fOTk52Lt3L2RkZFBZWYnp06dj6dKlrN/PudyKCRDuWd10P9+5cyccHR0JpeKenTt3YuLEidDT00NNTQ2sra2Rm5uL7t274/jx40QycXFOClcXsV6/fo1Zs2bh6tWr4PF4yM3NhYaGBpycnCAnJ4edO3eynklZWZnpHd9cfX09kRlFANCnTx+8ePFCqEDw8uVLYqf81q9fjyVLluDq1avMDII7d+4gNjaWGdx65coVVmdS+fr6wtzcHDo6OkwrqKdPn2L06NFETh2/e/cOfD4ffD4f79+/F9gYVl9fj9jYWGLvN7Nnz0Z1dTU0NTUhJSUl9BmvvLyclRx/Zz5a00mnpvlvbODiewxFcQU9QUBRVJtkaWmJmTNnCu2gCg0NRUREBC5dusR6ptOnT+PYsWO4cOECZGVlMXv2bNja2sLIyIj1LFzcVe3q6opr167hzp07QictPnz4gKFDh8LExEToCzgbJCUlkZOTA2VlZbi5uaGmpgb79+9HTk4Ohg0bhjdv3rCeiUtaOsnQGrYH3YqIiMDCwoJZyD137hxMTU2Fjp6z3W6hZ8+eOHbsGExNTQWux8XFwdraGi9fvmQ1D4AWi5Y8Ho/Z2Uni/x3X7lNN7ty5g4aGBgwbNkzg+q1btyAqKkrkvs5FJSUlUFZWbvH+UFJSAhUVFdayiIiIYNOmTQKnPtasWQMPDw/irZiov6eurg4RERHIzMxEZWUlBg0aBBsbG0hKShLJk5iYiEmTJkFFRaXFOSkkZidx1fz58/Hy5UsEBwdDV1eXuadfunQJ7u7uePDgAeuZYmJisGXLFgQGBjL37rS0NLi6umLNmjWYOnUq65liY2Px448/wtvbG8OHDwfQ2Cp1w4YN2LZtG7777jvmuWxuvEhOTsbevXvx+PFjAI0zr1xdXTFy5EjWMnyOz+fjypUryMjIgKSkJAwMDGBsbEwky9c+D/N4PPj4+GDdunUspmoUHh7+xcft7OxYyfG1003NkSp0cu09hqK4ghYIKIpqk4KCguDp6YlZs2YJfLA+efIkfHx8BHYENe8Zy4b3798jKioKx48fR0JCAjQ0NGBrawtPT0/WMnBx4e3FixcYNGgQREVFsWzZMqYP7KNHjxAYGIj6+nqkp6cT2T3cq1cvREVFYeTIkejbty82bdqEmTNn4vHjxxgyZMjf2kH/35abm4urV6/i5cuXaGhoEHiMrd+pxMRE5s9FRUVYu3Yt7O3tBRZKwsPDsXXrVta+gDT51i8ibH8J4eKx+OLi4i8+rqqqylKSRly8TzUZOnQofvzxR/zwww8C16Ojo7F9+3bcunWLUDJuaa3NwuvXr6GgoMBq0YnLrZiotu/58+cCc1J0dXWJzElpLioqCpGRkSgpKcGnT58EHktPTyeSqWfPnrh06RIGDBggcE8vKCiAgYEBKisrWc8kJyeH6upq1NXVMacvm/78+WYCtnZZNy/YN923mpZlmv/MVvG+trYWzs7OWL9+PdTV1f/x12urEhMTwefzYWpqilOnTqFr167MY+Li4lBVVSV6T6Aoivr/oAUCiqLapG9t30NiV2xz2dnZsLGxQWZmJqs5REVFUVZWBnl5eQBgeiyS/tBfXFyMJUuW4NKlSwJfhCZOnIjAwEBi+ZYtW4bz589DW1sbd+/eRVFREaSlpREREQFfX19iX7QPHjyIJUuWoHv37ujZs6fA4hePxyOSy8zMDAsWLMDcuXMFrh87dgwHDhzAtWvXWM/ERW/fvoW5uTnS0tKEjsVHR0ejS5cuZANyAFfvU0BjP/vMzEyhYkVhYSEMDAzw/v17Qsm4RUREBC9evGD+HzYpLi6Gnp4eJwaGc8WLFy+wevVqxMfH4+XLl0JDGUl+ViHt7NmzsLCwgJiYGM6ePfvF57K96YOrAgICsG7dOtjb2+PAgQNwcHBAfn4+7ty5g6VLlxIZnAw03sfT09Ohra0tUCBIS0vDxIkT8fr1a9YzfW1ndXNsbXJovvHia9hq6SMrK4t79+4Rfw8OCAjAokWL0LFjx6+eKiZ1Iqy4uBjKyspE28m2pL6+HmfOnMHDhw8BAP369YOVlRUrvf3bksePH2PPnj3M35Ouri6WLVsGHR0dwskoiixaIKAoivovq6mpwdmzZ3Hs2DFcvHgRPXr0wNy5c7Ft2zbWMnC17UqTN2/eIC8vD3w+H9ra2pCTkyOSo0ltbS12796NJ0+ewN7enhlkt2vXLsjIyGDBggVEcqmqqsLFxQVr1qwh8votkZKSQkZGBrS1tQWu5+TkYODAgUSG/XEVl47FN8nPz4e/vz/zpUhPTw9ubm6sDpNtwuX7VLdu3XD+/HmhQeApKSmYNGlSu2871jRwd/fu3Vi4cCGkpKSYx+rr65lWTMnJyaQico6FhQVKSkqwbNkyKCoqCp12mDJlCqFk5DU/TfSlBTfSmz64REdHB15eXpg7d67AQrynpyfKy8uJDb22tLTE4MGDsXHjRqboq6qqijlz5qChoQFRUVFEclFfZ2dnh4EDBwoNKWaburo60tLS0K1bty8WK7hwIqy6urrFEzxsz3QCGk+pWlpa4tmzZ8wp7cePH0NZWRkXLlwg8jkP4N5Jp1OnTmHOnDkwMjJiPuOlpqbizp07iIiIwIwZM1jPRFFcQQsEFEVR/yWXLl3CsWPHcObMGXTo0AE//PADbGxsiCwIcrXtCvX3dO7cGffu3eNEy5Umffv2xZQpU+Dr6ytw/ccff0RMTAzTt5binkuXLsHKygoDBw7EqFGjADT2G87IyMC5c+cwfvx4VvNw+T41d+5clJaWIiYmBrKysgCAiooKTJ06FQoKCoiMjGQ9E5eYmJgAaNwFO2LECIiLizOPiYuLQ01NDatXrxYqJLZnMjIyuHHjBgYOHEg6CvU/QEpKCg8fPoSqqioUFBRw5coVDBgwALm5uRg+fDiRnfoAkJWVBTMzMwwaNAgJCQmwsrLCgwcPUF5ejuTkZGKLlNTXbdq0CTt37oSZmRkGDx4sVKyn81v+8ueff8LBwQG///57i4+TKGRaWlqCz+fjt99+Y1ofvX79Gra2thAREcGFCxdYz8TFk06ampqwsbHBhg0bBK57eXnh6NGjyM/PZz0TRXEFLRBQFNVmJSYmYseOHQI7YT08PIgNi5OSksL3338PGxsbWFpaQkxMjEgO6n+Hk5MThgwZgsWLF5OOwoiNjcWMGTOgpaXFDHC9ffs2cnNzcerUKVhaWhJOSLXG0NAQEydOFDrNtHbtWly+fJlYKy0uevbsGYyNjfH69WvmRNG9e/fQo0cPXLlyBcrKyqzk+DvzT9gcZNnEwcEBu3fvJvLabY2enh5+++035veJov4/NDQ0cOrUKRgaGsLIyAgLFy6Es7MzLl++jDlz5rDWS78lb9++xd69e5GRkcEMAF26dCkUFRWJZaK+juu79T+f0UCSjY0NiouL4e/vj7Fjx+L06dN48eIFU2SZNGkS65k6deqE1NRU6OvrC1zPyMjAqFGjiMz/4OJJJykpKWRmZkJLS0vgem5uLgYMGEBPQlPtGi0QUBTVJh09ehQODg6YPn26wE7Y06dPIywsDNbW1qxnev/+PWRkZFh/Xep/19atW+Hn54dJkyZBX19fqOhEajfX06dPsW/fPoFhjYsXL2Zt0ZT6z3Ts2BH3799vsT2UgYEBampqCCXjpqqqKvz2228CLaLmzp3LavFXRETkmxdDuNB65d27d0hISICOjg7t5fuZy5cvY+fOndi/fz/U1NRIx+GUr/UZb47uYm60YMECKCsrw8vLC4GBgfDw8MCoUaOQlpaG6dOnIyQkhHREivqvCAkJwa5du5CbmwsA0NbWxooVK4i1/wQARUVFxMTEYOjQoejcuTPS0tLQp08fnD17Fr6+vkhKSmI9U9euXXH+/HmMHDlS4HpycjImT55MpGjIxZNOlpaWmDlzptAp1tDQUERERODSpUusZ6IorqAFAoqi2iRdXV0sWrRIqE+mn58fDh48yJwqIKWmpkaozyLdYUn9XVzfzUW1LcrKyvDz88PMmTMFrkdGRmL16tUoKSkhlIxqTfNBlkVFRVi7di3s7e2Zvrk3b95EeHg4tm7dytpwzeZmzZoFY2NjLFu2DB8+fMCAAQNQVFQEPp9Pe/l+Rk5ODtXV1airq4OUlJRQoYnkjm/SvnUoKqn3PVNT0xaHy7979w5Tp05FQkIC65kaGhrQ0NCADh06AAAiIiKQkpICbW1tODs7C7T9oqi/iyu79T09PeHn5wdXV1eB9729e/di5cqVQm1i2NK5c2dkZmZCTU0NqqqqOHbsGEaNGoXCwkL069ePyC70+fPnIz09HSEhIRg6dCgA4NatW1i4cCEGDx6MsLAw1jNx8aRTUFAQPD09MWvWLAwfPhxA4wyCkydPwsfHB7169WKea2VlxXo+iiKJFggoimqTJCQk8ODBA6HjgXl5eejfvz+RnbBVVVVYs2YNIiMjW9wRwYXdnRT131BRUYGQkBCmENevXz84OjoyvdopbtqwYQN27dqFtWvXMjvMkpOTsX37dri7u2P9+vWEE3LLkSNHsH//fhQUFODmzZtQVVXFrl27oKGhQWSgrJmZGRYsWIC5c+cKXD927BgOHDiAa9eusZ6pZ8+euHTpEgYMGIBjx47By8sLGRkZCA8Px4EDB3D37l1WcnC9FRMAhIeHf/FxEgUe6ts0H6Lc3MuXL6GkpITa2lpCySjqv+vw4cP45ZdfmN36ffr0gYeHB+bNm0ckj7y8PAICAoTe944fPw5XV1e8evWKSK4hQ4Zg06ZNmDhxIqysrNClSxds3boVAQEBiIqKItLHvqKiAnZ2djh37hxTgK6rq4OVlRXCwsKIfEbn4kknERGRb3oej8ej392pdqcD6QAURVH/CWVlZcTHxwsVCOLi4oi1Ofnxxx9x9epV/Prrr5g3bx4CAwPx7Nkz7N+/X6jnd3t35MgRBAUFobCwkFl48/f3h7q6OpGFtzt37qChoYHpqd/k1q1bEBUVhZGREeuZuCotLQ0TJ06EpKQks0PJz88PmzdvxuXLlzFo0CDCCblBVFQUpaWlQgtKr1+/hoKCApEvHevXr4eMjAx27tyJn376CQDQq1cveHt707Ydn/n111/h6emJFStWYNOmTcz/Lzk5Ofj7+xO5T928eRNBQUFC142MjIi1Wnj79i0zDPHixYuYMWMGpKSkMGnSJHh4eLCWo0uXLpxvxUQLAH8f6V3MmZmZzJ+zs7NRVlbG/FxfX4+LFy9CSUmJ1UzfetJLRUXlH07CbdOnT//m50ZHR/+DSVr24sULrF69GvHx8Xj58iU+37NJ4j7l5+eH9evXY9myZUz71qSkJCxevBivXr0SOrXNhtra2hY/gw8ePBh1dXWs52ni5uaG0tJSAI3Dbc3NzfHbb79BXFycyE59oPF9MCYmBrm5uQItQD//rsymAwcOoKGhAQCwdOlSdOvWDSkpKbCysoKzszORTE15KIoSRk8QUBTVJv36669YsWIFHB0dBXbChoWFYffu3UQ+dKioqODw4cMYO3YsOnfujPT0dGhpaeHIkSM4fvw4YmNjWc/ERc0X3jZv3oysrCxoaGggLCwM4eHhuHr1KuuZhg4dih9//BE//PCDwPXo6Ghs374dt27dYj1Tk6dPn+Ls2bMoKSkRalvl5+fHep7Ro0dDS0sLBw8eZFob1NXVYcGCBSgoKMD169dZz8RFre04ff78OTQ1NfHhwwdCyRq9f/8eAOjclFbo6elhy5YtmDp1qsBgvaysLIwdO5bIrsW+fftiypQp8PX1Fbj+448/IiYmBo8fP2Y9U58+fbBp0yZMmjQJ6urqiIiIgKmpKTIyMmBmZsba3xPXWzF9jrYh/DKu9BxvPgOkpa/MkpKS2LNnDxwdHVnLJCoqyvy5pQIKn8+nO18Bof7iXxIaGvoPJmmZhYUFSkpKsGzZMigqKgoVwUgUodXV1eHj44P58+cLXA8PD4e3tzcKCwtZz+Tq6goxMTGhz7urV6/Ghw8fEBgYyHqmllRXV+PRo0dQUVFB9+7dScfhjJKSEigrKwv9fvP5fDx58qTdFzIpimtogYCiqDbr9OnT2LlzJ9PmRFdXFx4eHkQ+VAOAtLQ0srOzoaKigt69eyM6OhpDhw5FYWEh9PX1UVlZSSQX13Bx4U1aWhqZmZnQ0NAQuF5YWAgDAwNmMZVt8fHxsLKygoaGBh49eoT+/fsz/b0HDRpEpO+xpKQk7t69KzSANDs7G0ZGRkT6rnJJ07DNlStXYuPGjZCWlmYeq6+vx/Xr11FUVMRa6xUA+PDhA65cuQITExOhgsC7d+9w7do1TJw4ERISEqxl4jpJSUk8evQIqqqqAvep3NxcGBgYECnwxMbGYsaMGdDS0mJOO92+fRu5ubk4deoULC0tWc+0b98+uLm5QVpaGqqqqkhPT4eIiAj27NmD6OhoIgVfLrZiAmgbwm/FlZ7j7969Y/pja2ho4Pbt25CXl2ceFxcXh4KCgsCCPRs6dOiA3r17w97eHpMnT2YK9Z8bMGAAq7mov0dGRgY3btzAwIEDSUdhdOzYEVlZWUI7znNzc6Gvr0+kfaurqysOHz4MZWVlpl/8rVu3UFJSgvnz5wvMciGxaYY0d3d3bNy4EZ06dYK7u/sXn0vi74eLp2mBxpPjV69excuXL4VOFLTH3yOKakJbDFEU1ebU1dVhy5YtcHR0RFJSEuk4DA0NDRQWFkJFRQU6OjqIjIzE0KFDce7cOaHBdu1ZYWEhDA0Nha5LSEigqqqKQKLG137x4oVQgaC0tLTVL99s+Omnn7B69Wr4+PhARkYGp06dgoKCAmxsbGBubk4kU+fOnVFSUiJUIHjy5AndjQ5g165dABp3RwUFBQksHomLi0NNTa3FNjH/pAMHDuDs2bMtDlvr3LkzAgIC8OTJEyxdupTVXFymrq6Oe/fuQVVVVeD6xYsXoaurSySTpaUlcnNzsW/fPqZ9wOTJk7F48WJirfVcXFwwbNgwlJSUYPz48UxvXw0NDWzatIlIJi62YgJoG8Jv9euvv+LgwYMCBR4rKysYGBjA1dWVtQKBnJwcs7A1ZswYaGlpceKz3NOnTxEeHo7Q0FAEBQXB1tYWTk5OxO5Ln3v9+jU8PT1bXXxrz8O4m1NWVm7xVApJWlpaiIyMxL/+9S+B6ydOnIC2tjaRTFlZWUzryqa+/t27d0f37t2RlZXFPI+NNmRfW4Bvjq1F5rt37zIzUNjcePKtmk40fa6yshIdO3YkkAjYsmULfv75Z/Tt2xc9evQQyEd6KDdFkUZPEFAU1SZJS0sjKysLampqpKMwdu3aBVFRUSxfvhxxcXGYPHky+Hw+amtr4efnBzc3N9IROUFPTw9bt27FlClTBHbm7tmzB6GhoUhPT2c909y5c1FaWoqYmBhmiFdFRQWmTp0KBQUFREZGsp4JaNxhdu/ePWhqakJOTg5JSUno168fMjIyMGXKFBQVFbGeafny5Th9+jR27Ngh0N7Lw8MDM2bMgL+/P+uZuMjExATR0dGQk5MjHQVDhw7F+vXrMXny5BYfP3/+PDZs2IDbt2+znIy7goOD4e3tjZ07d8LJyQnBwcHIz8/H1q1bERwcjDlz5pCOSLWCi62YANqG8Ft16dIFd+7cEVqQzMnJwdChQ1FRUcFKDllZWaSmpkJXVxeioqIoKysTOEHABUlJSQgNDcXJkyehp6cHJycnODk5ffMQzn+CpaUl8vLy4OTkJLT4BpCbxREVFYXIyMgW2zWS+Nx5+fJl7Ny5E/v37+fMd5lTp05h9uzZGDduHDODIDk5GfHx8YiMjMS0adMIJyTLxMTkm57H4/GInPDlkqZiyu7du7Fw4UJISUkxj9XX1zMz3pKTk1nP1qNHD2zfvh329vasvzZFcR09QUBRVJtkZmaGxMREznyoBiAwvGvcuHF4+PAhswBgYGBAMBm3uLu7Y+nSpaipqQGfz8ft27dx/PhxZuGNhB07dsDY2BiqqqrM6YZ79+6hR48eOHLkCJFMANCpUyfmi6yioiLy8/PRr18/ACDSiglo/Lvi8XiYP38+MyBOTEwMS5Ysobtgm/m8tUp9fT3u378PVVVV1osGubm5X2w3YWBgwPT6photWLAAkpKS+Pnnn1FdXQ1ra2v06tULu3fvJlocqKioQEhICNNar1+/fnB0dGQKmyRwbU7Krl27MGPGDPz+++8ttmIipby8nDml1rlzZ2Yn9XfffYclS5YQy8U18+bNw6+//ir0u3PgwAHY2NiwlmPcuHEwMTGBrq4u+Hw+pk2bBnFx8RafS2ox8LvvvsN3332HLVu2YO7cuVi8eDFmzJjBDA4n4caNG0hKSuJUi6OAgACsW7cO9vb2iImJgYODA/Lz83Hnzh1iJ+dmz56N6upqaGpqQkpKSqBVDkDmpMWMGTNw69Yt7Nq1C2fOnAHQ2L719u3bLZ78ZdvTp08BAL179yby+iRa5v0djo6O2L17t9Bp3qqqKri6uuLQoUOsZWk6zcDn83H//n2Be6e4uDgGDBiA1atXs5anOREREaYARlGUIHqCgKKoNikoKAg+Pj6wsbHB4MGD0alTJ4HHW2qlQXHHb7/9Bm9vb+a4cK9eveDj4wMnJydimaqqqvDbb78hIyMDkpKSMDAwwNy5c4W+tLFp6tSpmDRpEhYuXIjVq1cjJiYG9vb2zM70uLg4Ytmqq6uZ/39NX3Cpv6xYsQL6+vpwcnJCfX09jI2NcfPmTUhJSeH8+fMYO3Ysa1lkZGRw7do1DB48uMXH//jjD4wdO5bYrA2uq66uRmVlpVAPXbalpaVh4sSJkJSUxNChQwE09tH98OEDLl++zLRhYBMX56QAjQtJzVsx6erqEm3FBDQW4vbs2YMxY8Zg3LhxGDhwIHbs2IGAgAD4+voyi1/tHVd6jn/48AHh4eHIz8/Hzp07hXbBNtfUWo5tKSkpOHToEE6ePIm+ffvC0dERixYtInqCYMiQIdizZw/z/44LdHR04OXlhblz5wqcXPX09ER5eTn27t3Leqbw8PAvPs6FYepc0NDQgE2bNmHnzp3MLDcZGRmsWrUK69atI/q7zjWt9ft/9eoVevbsyWzqYZODgwN2796Nzp07s/7arfH19cXz58/piWeKagEtEFAU1SZ96QMhj8djdejRzZs38fr1a3z//ffMtcOHD8PLywtVVVWYOnUq9uzZQweAtoArC29cVVBQgMrKShgYGKCqqgqrVq1CSkoKtLW14efnJ9QfnW2kd3NxmZKSEmJiYmBkZIQzZ85g6dKluHr1Ko4cOYKEhARWj1UPHz4c06ZNw5o1a1p8fOvWrYiJiUFqaiprmai/b/To0dDS0sLBgweZ2Sh1dXVYsGABCgoKcP36ddYzDR06FBYWFsyclIyMDIE5KXRn/F9oG8Jvw8U2HiYmJjh9+jQnZhCUlpbi8OHDCA0NxZs3b2BjYwNHR0f079+fdDQAjUXLtWvXwtPTE/379xfaZEFioVBKSgoPHz6EqqoqFBQUcOXKFQwYMAC5ubkYPnx4i0PDKW746aefEBISAh8fH2bXd1JSEry9vbFw4UJs3ryZSC4TE5Mv9qtnszj+7t078Pl8yMnJITc3V6AVWn19Pc6dO4e1a9fi+fPnrGVqCVe+MzQ0NGDSpEnIycmBnp6e0D0qOjqaUDKKIo8WCCiKov6fLCwsMHbsWGbx7f79+xg0aBDs7e2hq6uLX375Bc7OzvD29iYblCMKCwtRV1cn1F84NzcXYmJirLWNOnv2LCwsLCAmJoazZ89+8bn0RMpf6G6ub9OxY0fk5eWhd+/eWLRoEaSkpODv74/CwkIMGDAA7969Yy3LgQMH4O7ujoiICIFCJgCcO3cOc+fOhZ+fHxYtWsRaJi4yNDT85gF1JHpWS0pK4u7du0IDwrOzs2FkZITq6mrWM3FxTgrAzVZMnysuLsYff/xB2xC2IZ8+fUJhYSE0NTWZIh3bxMTEoKSkBDs7O1hZWbV6ypHU71Rubi6sra2F7pFNw0rZ3MDTRENDA6dOnYKhoSGMjIywcOFCODs74/Lly5gzZw7xwck1NTVC7dm4tOOapF69eiEoKEjoc3hMTAxcXFzw7NkzIrmat5UFgNraWty7dw9ZWVmws7PD7t27WcsiIiLyxc8uPB4PPj4+WLduHWuZmnDxO8OyZcsQHBwMExOTFuekhIaGsp6JoriCziCgKIr6f7p37x42btzI/BwREYFhw4bh4MGDAABlZWV4eXnRAsG/2dvbw9HRUahAcOvWLQQHB+PatWus5Jg6dSrKysqgoKCAqVOntvo8Ul9ouWrdunUICQnBtm3bhHZz1dTUENvNxTU9evRAdnY2FBUVcfHiRfz6668AGk/NiIqKsppl0aJFuH79OqysrKCjo4O+ffsCAB49eoScnBzMmjWr3RcHAHzxPsAFnTt3RklJiVCB4MmTJ0I9h9nCxTkpLbVi8vPzw+bNm4m1YmqJqqoq8VNgXPfkyRMAINoaCmhsN7Rs2TKmLUxOTg40NDTg6uoKJSUlrF27lrUs9fX1KCkpwcaNG7Fp0yYAjYvvzZH83GJjYwMxMTEcO3asxcU3EkxNTXH27FkYGhrCwcEBK1euRFRUFNLS0jB9+nQimaqqqrBmzRpERka2eIKBfu5sVF5eLvSeBzS2jSJZ2GmtrZi3tzezEM6Wq1evgs/nw9TUFKdOnRKYQSIuLg5VVVX06tWL1UxNuPidITw8HKdOncKkSZNYf22K4jp6goCiqDYlISEBy5YtQ2pqqtDumrdv32LkyJH49ddfYWxszFqmjh07Ijc3l/kC+91338HCwoLZqVFUVAR9fX3a3/vfOnfuzAxvbi4vLw9GRkaoqKggE4xDmgZZfk1BQcE/nEQYV3dzcY23tzf8/f2hqKiI6upq5OTkQEJCAocOHcLBgwdx8+ZN1jNFRkbi2LFjyM3NBZ/PR58+fWBtbY1Zs2axnoX6+5YvX47Tp09jx44dGDlyJAAgOTkZHh4emDFjBpF+ulyck8K1VkyHDx/+pufNnz//H07SNtTV1cHHxwcBAQHMQpu0tDRcXV3h5eVFZC6Qm5sbkpOT4e/vD3Nzc2RmZkJDQwMxMTHw9vZmBnKyobi4+JueR6r4JCUlhbt37zKFaC5oaGhAQ0MDcz+IiIhg2jU6Ozu3Onz6n9TUdnDjxo2YN28eAgMD8ezZM+zfvx/btm1jdSA3lw0bNgzDhg1DQECAwHVXV1fcuXOHc60R8/LyMHToUCLFi+LiYigrK3PqJC8XvzOoqqri0qVLLRaeKKq9oycIKIpqU/z9/bFw4cIWj97KysrC2dkZu3btYrVA0KNHDxQWFkJZWRmfPn1Ceno6fHx8mMffv39PdNAt1/B4vBaLJW/fvqU7pv6tqKgIqqqqsLa25tx8Bq7u5uIab29v9O/fH0+ePMHMmTOZGSSioqKs7jZtbtasWbQY8BW3b9/G4MGDWz3l8fHjR8TExBD5e9yxYwd4PB7mz5/PDBsUExPDkiVLsG3bNtbzAI0785sWcX18fFBZWYkTJ04wc1JISEtLEygOAECHDh3w448/wsjIiPU89vb2kJaWRocOHYR2ejdp+v9KNS78RUdHw9fXFyNGjADQOOvJ29sbr1+/Zk5jsenMmTM4ceIEhg8fLrAjvl+/fsjPz2c1C9dPnRgZGeHJkyecKRDU1dVhy5YtcHR0ZHqfz5kzB3PmzCGa69y5czh8+DDGjh0LBwcHprCpqqqK3377jRYI/s3X1xeTJk1CXFycwP3gyZMniI2NJZxO2M2bN9GxY0cir910b6iurkZJSYlQ2yoSbce4+J3B29sbXl5eCA0NbXXwPEW1V/QEAUVRbYqqqiouXrwIXV3dFh9/9OgRJkyYgJKSEtYyLVmyBBkZGdi+fTvOnDmD8PBwPH/+nNmR9Ntvv8Hf3x937txhLROXTZ48GZKSkjh+/DizCFdfX4/Zs2ejqqoKv//+O5Fc8fHxiI+Px8uXL9HQ0CDw2KFDh1jNcvLkSRw6dAjXrl2DhYUFHB0dYWlpyYldQW1tNxcX1NTUEPvCSP09oqKiKC0tZQpznTt3xr1795hTPS9evECvXr2IFjOrq6uZRUlNTU0iX3C9vLxgZmaG4cOHE9l9+yU9evTAkSNHMGHCBIHrly5dwvz58/HixQtW8/Tr1w8vXryAra0tHB0d6byBr5CVlUVERAQsLCwErsfGxmLu3Ll4+/Yt65mkpKSQlZUFDQ0NZhi3hoYGMjIyYGxsTCQTV508eRLe3t7w8PCAvr6+0AYZEr//0tLSyMrKYm3G1beQlpZGdnY2VFRU0Lt3b0RHR2Po0KEoLCyEvr4+621qgMa2R9u2bWv1szCJU6sA8Pz5cwQGBuLRo0cAAF1dXbi4uBBrmwNAqDUVn89HaWkp0tLSsH79enh5ebGe6c8//4SDg0Or36NIfG7h4ncGQ0ND5Ofng8/nQ01NTegeRWLGFEVxBT1BQFFUm/LixYsv7sbv0KED/vzzTxYTARs3bsT06dMxZswYSEtLIzw8XGDB5NChQ0ILFe3Z9u3bYWxsjL59+2L06NEAgBs3buDdu3dISEggksnHxwcbNmyAkZERFBUViffMnTlzJmbOnIlnz54hLCwMK1euhLOzM+bNmwcnJyeh+Q1samu7uUipr6/Hli1bEBQUhBcvXjA9q9evXw81NTU4OTmRjki14PN9My3toyG9t0ZKSgpycnLMn0k4fPgwNm7ciI4dO2LEiBEwMTGBiYkJhg0bRmx4a5PZs2fDycmpxVZMc+fOZT3PgwcPcOvWLRw6dAjGxsbQ0tKCk5MTbGxs6CDSFkhISLS4kKuurk6sGGVkZIQLFy7A1dUVAJjPCMHBwcz7INVo9uzZAABHR0fmGo/HIzqk2MzMDImJiZwqEGhoaKCwsBAqKirQ0dFBZGQkhg4dinPnzqFLly5EMi1YsACJiYmYN28eJz4L19bWwtzcHEFBQZybb/X5wHsRERH07dsXGzZsIPadb8WKFaioqMCtW7cwduxYnD59Gi9evGCGBJPAxe8MXJ83RVEk0RMEFEW1KZqamti5c2erb+7R0dFYvXo1kV0ub9++hbS0tFBrivLyckhLS3NulyVJz58/x969e5GRkQFJSUkYGBhg2bJlAoO12KSoqAhfX1/MmzePyOt/i8TERHh7e+P69et49eoVs0BIAhd3c3HNhg0bEB4ejg0bNmDhwoXM7tMTJ07A39+fyAwC6utERESY4eUABHYLA2RPEDQ0NDBf9Jt2l8rIyGDVqlVYt24d6yeMioqKcPXqVVy7dg2JiYkoKSlBp06dMGrUKKZg0DQkmE2fPn2Ch4cHgoKCWmzF1NTui4QPHz7g5MmTCA0Nxe3btzF16lQcOnSIaCau2bBhAx49eoTQ0FDm7+Xjx49McZzEztykpCRYWFjA1tYWYWFhcHZ2RnZ2NlJSUpCYmIjBgweznomrvjYjgUSLpKCgIPj4+MDGxgaDBw9Gp06dBB7/vD86G3bt2gVRUVEsX74ccXFxmDx5Mvh8Pmpra+Hn5wc3NzfWM3Xp0gUXLlxghslygby8PDMvgvoyRUVFxMTEYOjQoejcuTPS0tLQp08fnD17Fr6+vkhKSmI9U0lJCTp06NDid4a6ujqoqKiwnomiqNbRAgFFUW2Kq6srrl27hjt37gi17Pjw4QOGDh0KExMToaOMFPUl3bp1w+3bt6GpqUk6ipCamhpERUXh0KFDSE1NhZWVFcLDw1lfUCooKIC6ujrxHWVthZaWFvbv3w8zMzOBReZHjx5hxIgRePPmDemIVAu4XCD46aefEBISAh8fH2YBJykpCd7e3li4cCHxHZaFhYVMwSAmJgZVVVXMAj0JXGjF1Jrr16/Dy8uLEwVfrpk2bRri4+MhISGBAQMGAAAyMjLw6dMnmJmZCTw3OjqatVz5+fnYtm0bMjIyUFlZiUGDBmHNmjXQ19dnLQPX1dbWQkdHB+fPn2+1FSgJXyqekjrV8LmioiKkp6dDS0uLWBsydXV1xMbGcur/3cqVKyEhIUFszs7XpKWl4eHDhwAAPT09osXCzp07IzMzE2pqalBVVcWxY8cwatQoFBYWol+/fqiurmY90+dtG5u8fv0aCgoKxP7tVVRUICoqCvn5+fDw8EDXrl2Rnp6OHj16QElJiUgmiuIC2mKIoqg25eeff0Z0dDT69OmDZcuWMUPQHj16hMDAQNTX12PdunWEU1Kfy8zMRP/+/SEiIoLMzMwvPpfEF6MFCxbg2LFjWL9+Peuv3Zpbt24hJCQEkZGR0NDQgKOjI06dOkVsIUlbW1vgQ/7s2bMREBCAHj16EMnDdc+ePYOWlpbQ9YaGBtTW1hJIRH2r7OxslJWVAWhsJ/To0SNmx/6rV6+I5QoPD0dwcLDAblcDAwMoKSnBxcWFaIGguLgY169fR2JiIq5fv47a2loYGxsTywNwoxVTc8+ePUN4eDhCQ0NRVVUFW1tb/Prrr7Q48JkuXbpgxowZAteUlZUJpfmLpqYmDh48SDqGgLq6Oly7dg35+fmwtraGjIwMnj9/js6dO0NaWpr1PGJiYqipqWH9db/m8176XKSmpka8BdLGjRvh6emJ8PBwTtwzgcbf8UOHDiEuLq7F0x9+fn5Ecj19+hRz585FcnIy0xKqoqICI0eOREREBDMQm019+/bF48ePoaamhgEDBmD//v1QU1NDUFAQFBUVWc8DtN6SsbKykthsrszMTIwbNw6ysrIoKirCwoUL0bVrV0RHR6OkpASHDx8mkouiuICeIKAoqs0pLi7GkiVLcOnSJeaDB4/Hw8SJExEYGAh1dXXCCanPNd+VKyIiwvSj/RypnVxubm44fPgwDAwMYGBgIDTngu0vIP369cPLly9hbW0NR0dHZhclSV/bWU0JGjx4MFauXAlbW1uBv6sNGzbgypUruHHjBis5Ph+k9yVs7sblqq/dn0j20e7YsSMyMzPRp08fgeuPHz/GwIED8eHDB9aylJSU4Nq1a8yJgVevXmHkyJEYM2YMjI2NMXToUGJt9bjWiikyMhKhoaFITEzExIkT4eDggEmTJgm1I6S45d27d9/8XBKzJIqLi2Fubo6SkhJ8/PiRmXPj5uaGjx8/IigoiPVMALBlyxbk5OQgODiY+DwSrouPj8euXbuYHei6urpYsWIFxo0bRyQPF4e3mpiYfPHxq1evspREkLm5OSoqKhAeHs5sVnv8+DEcHBzQuXNnXLx4kfVMR48eRV1dHezt7fHHH3/A3Nwc5eXlEBcXR1hYGDMfhA3u7u4AgN27d2PhwoUCBaf6+nrcunULoqKiSE5OZi1Tk3HjxmHQoEHw9fUV+HyekpICa2trFBUVsZ6JoriCvmtTFNXmqKqqIjY2Fm/evEFeXh74fD60tbXpLjwOKywshLy8PPNnrsnMzMTAgQMBAFlZWQKPkWip8/DhQ3Tq1AmHDx/GkSNHWn1eeXk5i6mov8PT0xN2dnZ49uwZGhoaEB0djcePH+Pw4cM4f/48azmaD9Lj8/k4ffo0ZGVlYWRkBAD4448/UFFR8bcKCf/LuHh/ajJgwADs3btXqIXe3r17WS8iqqmpQUVFBUuWLMGSJUswePBgzix4r1u3DiEhIdi2bZtQK6aamhrWT1rMmTMHKioqWLlyJXr06IGioiIEBgYKPW/58uWs5qK+rEuXLl99/ydZMHRzc4ORkREyMjLQrVs35vq0adOwcOFC1vM0uXPnDuLj43H58mXo6+sL7fgmUYjesGHDFx/39PRkKclf9u3bBzc3N/zwww/MvIHU1FRYWlpi165dWLp0KeuZuDi8lVQB4GsSExORkpLCFAeAxh38e/bswejRo4lksrW1Zf48ePBgFBcX49GjR1BRUUH37t1ZzXL37l0AjffI+/fvC2wYEBcXx4ABA7B69WpWMzW5c+cO9u/fL3RdSUmJOT1KUe0VPUFAURRFccaHDx8gKSlJOgZx4eHh3/Q8Ozu7fzjJX0RFRVFWVsYUemRkZJCZmUlP7HzBjRs3sGHDBoGe1Z6enpgwYQKRPGvWrEF5eTmCgoKYxdz6+nq4uLigc+fO+OWXX4jkor5NYmIiJk2aBBUVFYwYMQIAcPPmTTx58gSxsbGsLkrMmTMHiYmJ+PjxI7777juMGTMGJiYmMDQ0JD6npFevXggKChIaPBoTEwMXFxc8e/aM1Txqampf/Tvh8XgoKChgKRH3RUVFITIyEiUlJfj06ZPAY2ztYk5MTPzm544ZM+YfTNKybt26MQuUzXfBFhUVQU9Pj0i/cQBwcHD44uOhoaEsJfmLoaGhwM+1tbUoLCxEhw4doKmpSWRnfO/evbF27VosW7ZM4HpgYCC2bNnC+n2KqxwdHbF7927IyMgIXK+qqoKrqysOHTpEJFefPn1w9OhRDB06VOD67du3YW1tjby8PCK5uMbBwQG7d+8mcsqqNQoKCrh06RIMDQ0F7p1XrlyBo6Mjnjx5QjoiRRFDCwQURVEUcR8/fsTevXvxyy+/0N0bHCUiIgILCwtmOPK5c+dgamrKid2BXFNXV4ctW7bA0dGRSB/a1sjLyyMpKUlgxxvQeCx+5MiReP36NaFk1Ld6/vw5AgMD8ejRIwCNLSlcXFzQq1cvInkePXrEtBlKTExETU0NUzAYO3YshgwZwnomLrViov6+gIAArFu3Dvb29jhw4AAcHByQn5+PO3fuYOnSpcSHcXOFnJwckpOToaenJ7DIlZSUhBkzZuDFixekI3Lau3fvYG9vj2nTpmHevHmsv760tDTu3bsnNKsoNzcXhoaGTHu09q61IbevXr1Cz549UVdXRyRXTEwMtmzZgsDAQOZEZlpaGlxdXbFmzRrWTmM0tfL5FqTmNXBFSUkJevfujUWLFuH169eIjIxE165dkZmZCVFRUUydOhXGxsbw9/cnHZWiiKEFAoqiKIoVHz9+hLe3N65cuQJxcXH8+OOPmDp1KkJDQ7Fu3TqIiopi2bJlWLNmDZF8aWlpre5YpIveX98V2ITE7kAukpaWRlZWFvGhg83JyckhLCwMU6ZMEbgeExMDe3t7vHnzhlAy6ksKCgqgrq5OfGf+t8jOzsaxY8ewZ88eVFVVEVm8GTZsGIYNGybUisnV1RV37txBamoq65mob6ejowMvLy/MnTtXYOHb09MT5eXl2Lt3L+mInDB79mzIysriwIEDzIk+eXl5TJkyBSoqKvS9+Bvcv38fkydPJtJz3NraGoaGhvDw8BC4vmPHDqSlpSEiIoKVHF27dkVOTg66d+8OOTm5L77PsNnW8t27d+Dz+ZCTk0Nubi5zehVoPPl47tw5rF27Fs+fP2ctU3NycnKorq5GXV0dM2uj6c+fb5z5J//evjajoQmPx0NCQsI/lqMtaCo2SUhI4IcffkBaWhrev3+PXr16oaysDCNGjEBsbKzQ/z+Kak/oDAKKoiiKFZ6enti/fz/GjRuHlJQUzJw5Ew4ODkhNTYWfnx9mzpxJrId1REQE5s+fj4kTJ+Ly5cuYMGECcnJy8OLFC0ybNo1IJq6hiw1/j5mZGRITEzlVIHBwcICTkxPy8/OZY/G3bt3Ctm3bvrkARLFPW1tbYAfl7NmzERAQgB49ehBO1ujFixe4du0aM7Q4JycHEhISxPow+/r6YtKkSYiLi2uxFRPFbSUlJRg5ciQAQFJSEu/fvwcAzJs3D8OHD6cFgn/bsWMHzM3Noaenh5qaGlhbWyM3Nxfdu3fH8ePHiWbjQouob/H27Vu8ffuWtddrXrTU09PD5s2bce3aNeY+lZqaiuTkZKxatYq1TLt27WLa93Bp53TTDBAejyd0GgxoXPD28fEhkKwRV/6uuDqjgYua9kXLysriypUrSEpKQmZmJtMClNRwcIriEnqCgKIoimKFhoYG/P39YWVlhaysLBgYGMDe3h4hISHEd8YaGBjA2dkZS5cuZXYsqqurw9nZGYqKikS/hFBtU1BQEHx8fGBjY4PBgwcL7Uj6vD86GxoaGrBjxw7s3r0bpaWlAABFRUW4ublh1apVnBkySwkSERFBWVkZUyBovqualMjISKYo8PjxY4iJiWHIkCEwMTGBiYkJRo4cybQjI4FrrZiob6ehoYFTp07B0NAQRkZGWLhwIZydnXH58mXMmTOH1V3MXFdXV4cTJ04IzLmxsbEhOsuJiy2iPj9NxOfzUVpaiiNHjmDMmDE4duwYKzm+dWYTnUnSOAOEz+fD1NQUp06dQteuXZnHxMXFoaqqSu/n1N8iIiKCFy9eCJxGoShKEC0QUBRFUawQFxdHYWEhlJSUADTuDLx9+zb09fUJJwM6deqEBw8eQE1NDd26dcO1a9egr6+Phw8fwtTUlFlMpahvJSIi0upjPB4P9fX1LKYR9u7dOwDg1OA4qmVcLBCIi4vDyMiIKQiMGjWK+ID5ttSKiWrdggULoKysDC8vLwQGBsLDwwOjRo1CWloapk+fjpCQENIRiautrYWOjg7Onz8PXV1d0nEEcLFF1OcL8yIiIpCXl4epqSl++uknoQG4FHcUFxdDRUWFk/f1+vp6nDlzBg8fPgQA9OvXD1ZWVsQ2W5iYmHzx76m9txgSERHBokWLICUl9cXntfdZDVT7RlsMURRFUayor6+HuLg483OHDh0gLS1NMNFf5OTkmDYGSkpKyMrKgr6+PioqKlBdXU043V/q6+tx//59qKqqQk5OjnQc6gsaGhpIR/giWhj4stevX8PT0xNXr17Fy5cvhf5/srmLuanNwufXSHrz5g3n+vRyvRUT9W0OHDjA/HtbunQpunXrhpSUFFhZWcHZ2ZlYrrq6Oly7dg35+fmwtraGjIwMnj9/js6dO7P+WUZMTAw1NTWsvua34mKLqMLCwlYfIzG0nMsFHq5RVVUlHaFFeXl5sLS0xLNnz9C3b18AwNatW6GsrIwLFy5AU1OT9UwDBw4U+Lm2thb37t1DVlYW7OzsWM/DRffv3xf4Lvo50p+tKIo0WiCgKIqiWMHn82Fvb8+0naipqcHixYuFFplIDAQ2NjbGlStXoK+vj5kzZ8LNzQ0JCQm4cuUKzMzMWM/TZMWKFdDX14eTkxPq6+sxZswYpKSkQEpKCufPn8fYsWOJZaPaBkNDw2/+wsOl3tCkzZs3D3l5eXByckKPHj2Ifmnk4r2Ta8UB4K/+wk1iY2OxdetWQmmEpaenQ0xMjDk1FxMTg9DQUOjp6cHb2/uLixbtiYiIiMAJrDlz5mDOnDkEEzXuYjY3N0dJSQk+fvyI8ePHQ0ZGBtu3b8fHjx8RFBTEeqalS5di+/btCA4OZoakckHPnj1RXl4OVVVVqKioIDU1FQMGDEBhYaHQv1GSPn78iMDAQPj6+qKsrIzV1+ZygYf6NsuXL4empiZSU1OZ9kevX7+Gra0tli9fjgsXLrCeadeuXS1e9/b2RmVlJctpuOn06dPMJgKKooRx59MERVEU9T/t890rtra2hJII27t3L/Nlbd26dRATE0NKSgpmzJiBn3/+mViuqKgo5u/p3LlzKCwsxKNHj3DkyBGsW7cOycnJxLJRX5eYmIgdO3Ywx8/19PTg4eHB6vDWqVOnsvZa/0tu3LiBpKQkDBgwgHQUTt87qW/n7OyMtWvXQl9fHwUFBZgzZw6mTZuGkydPorq6mjNDLylhbm5uMDIyQkZGBrp168ZcnzZtGhYuXEgk0507dxAfH4/Lly9DX1+fE5stAMDU1BRnz56FoaEhHBwcsHLlSkRFRTEtotj08eNHeHt748qVKxAXF8ePP/6IqVOn4tChQ/j5558hKiqKlStXspqpCVcLPNS3SUxMFCgOAEC3bt2wbds2jBo1imAyYba2thg6dCh27NhBOgpR9HQARX0dfTeiKIqiWBEaGko6Qquaf8AXERHB2rVrCab5y6tXr9CzZ08AjbthZ86ciT59+sDR0RG7d+8mnI76kqNHj8LBwQHTp0/H8uXLAQDJyckwMzNDWFgYrK2tWcnh5eXFyuv8r9HR0SHSeqIlXL53cgkXWzE1l5OTw7SAOHnyJIyNjXHs2DEkJydjzpw5tEDAYTdu3EBKSorQKQ81NTU8e/aMSKYuXbpgxowZRF77S7jUIsrT0xP79+/HuHHjkJKSgpkzZ8LBwQGpqanw8/PDzJkzifWL52qBp7l3794hISEBffv2pa2QPiMhIcG0z2qusrKSc6fBbt68iY4dO5KOQRyXTjBRFFfRAgFFURTV7jUNbP0cj8eDhIQEsQ/7PXr0QHZ2NhQVFXHx4kX8+uuvAIDq6mpiX2qpb7N582b4+voK7E5cvnw5/Pz8sHHjRtYKBC35448/BIbqGRoaEsvCVfv27cPatWvh6emJ/v37Q0xMTOBxOsOBe7jYiqk5Pp/PLJzGxcXh+++/BwAoKyvj1atXRDJR36ahoaHFwfJPnz4lNuCWS4XD6dOnIywsDJ07d8bRo0cxe/ZsZlc8yRZRJ0+exOHDh2FlZYWsrCwYGBigrq4OGRkZxIuHXCzwzJo1C8bGxli2bBk+fPgAIyMjFBUVgc/nIyIignN5Sfr++++xaNEihISEYOjQoQCAW7duYfHixbCysiKS6fMTOnw+H6WlpUhLS8P69euJZOKS0NBQyMrKko5BUZzG49NSGkVRFNXOiYiIfPHLYu/evWFvbw8vLy+B3sj/NG9vb/j7+0NRURHV1dXIycmBhIQEDh06hIMHD+LmzZusZaH+HgkJCTx48ABaWloC1/Py8tC/f38i/YdfvnyJOXPm4Nq1a+jSpQsAoKKiAiYmJoiIiIC8vDzrmbgqNzcX1tbWQnMZ+Hw+eDxei4uFFNkdpw4ODt/0PFILq6amplBWVsa4cePg5OSE7OxsaGlpITExEXZ2digqKiKSi/q62bNnQ1ZWFgcOHICMjAwyMzMhLy+PKVOmQEVFhVOL9SSIi4ujuLgYioqKEBUVFRgWTjpXYWEhlJSUADQOTb59+zYzB4QS1LNnT1y6dAkDBgzAsWPH4OXlhYyMDISHh+PAgQO4e/cuKznawuykiooK2NnZ4dy5c8wGgrq6OlhZWSEsLIzIQvTn74EiIiKQl5eHqakpJkyYwHoeiqLaHnqCgKIoimr3wsLCsG7dOtjb2zM7gW7fvo3w8HD8/PPP+PPPP7Fjxw5ISEjgX//6F2u5vL290b9/fzx58gQzZ85kdsaKiopypg0S1TJlZWXEx8cLFQji4uKgrKxMJJOrqyvev3+PBw8eMIu32dnZsLOzw/Lly3H8+HEiubjIxsYGYmJiOHbsGPEhxVzGpR2nXF+k9ff3h42NDc6cOYN169Yx94aoqCiMHDmScDpuqaurw7Vr15Cfnw9ra2vIyMjg+fPn6Ny5M6SlpVnPs2PHDpibm0NPTw81NTWwtrZGbm4uunfvTuy+qa6u/sX7UkFBAWtZdHR08NNPP8HExAR8Ph+RkZGtnrKaP38+a7nq6+sFToB26NCByO9PW/H27Vum5ebFixcxY8YMSElJYdKkSfDw8GAtR/PZSTU1Ndi3bx/09PQwYsQIAEBqaioePHgAFxcX1jJ9rkuXLoiJiUFeXh5zIlNXV1foMx+buP4eSFEU99ETBBRFUVS7Z2ZmBmdnZ8yaNUvgemRkJPbv34/4+HgcOXIEmzdvxqNHj4hkrKmpoT1E25Bff/0VK1asgKOjI7P4l5ycjLCwMOzevZv1XswAICsri7i4OAwZMkTg+u3btzFhwgRUVFSwnomrpKSkcPfuXfTt25d0FE7jyo5Trquvr0dycjL09fUhJycn8FhNTQ1ERUWF2li1V8XFxTA3N0dJSQk+fvyInJwcaGhowM3NDR8/fkRQUBCRXHV1dThx4gQyMjJQWVmJQYMGwcbGBpKSkkTyfD6HqLa2Fnfv3sXFixfh4eHB6iaClJQUuLu7Iz8/H+Xl5ZCRkWmxeMHj8VBeXs5aLhEREVhYWDCbK86dOwdTU1Oibcfk5ORa/LuRlZVFnz59sHr1aowfP561PM316dMHmzZtwqRJk6Curo6IiAiYmpoiIyMDZmZmRFqhLViwAIqKiti4caPAdS8vLzx58gSHDh1iNU9DQwN++eUXnD17Fp8+fYKZmRm8vLyI3QdakpaWxhQt9PT0MHjwYMKJKIpqK2iBgKIoimr3JCUlkZmZCW1tbYHrubm5GDBgAKqrq1FYWIh+/fqhurqatVz19fXYsmULgoKC8OLFC2ahZP369VBTU4OTkxNrWai/7/Tp09i5c6fA7jIPDw9MmTKFSB4ZGRncuHGDGZTa5O7duxgzZkyrszjaI2NjY3h6emLcuHGko3CapKQkcnJyoKysjPnz56NXr17Ytm0bSkpKoKenh8rKStIROaNjx454+PAh1NXVSUfhtKlTp0JGRgYhISHo1q0bMjIyoKGhgWvXrmHhwoXIzc1lNU9tbS10dHRw/vz5NjGoNTAwEGlpacR2E4uIiKCsrIwTLYa42HYsPDy8xesVFRX4448/cOLECURFRWHy5MmsZWqyb98+uLm5QVpaGioqKrh79y5ERESwZ88eREdH4+rVq6xnkpWVRVpaWoufz42MjPD27VtW82zcuBHe3t4YN24cJCUlcenSJcydO5f1QkVLnj59irlz5yI5OVmgjeTIkSMRERGB3r17kw1IURTn0RZDFEVRVLunrKyMkJAQbNu2TeB6SEgI0w7m9evXQjs//2mbN29GeHg4fH19sXDhQuZ6//794e/vTwsEHDdt2jRMmzaNdAyGqakp3NzccPz4cfTq1QsA8OzZM6xcuRJmZmaE03GLq6sr3Nzc4OHhAX19faHd3QYGBoSScYuysjJu3ryJrl274uLFi4iIiAAAvHnzhp54+kz//v1RUFBACwRfcePGDaSkpAi0hgEANTU1PHv2jPU8YmJiRGbG/KcsLCzw008/ESsQFBYWcmaeDRdbrtjZ2X3x8YEDB2Lr1q1ECgQuLi4YOnQonjx5gvHjxzMztzQ0NLBp0ybW8wCNRejk5GShAkFycjKR95jDhw9j3759zCnQuLg4TJo0CcHBwazOKGvJggULUFtbi4cPHzKnHx8/fgwHBwcsWLAAFy9eJJqPSyoqKhAVFYX8/Hx4eHiga9euSE9PR48ePZiZJRTVHtECAUVRFNXu7dixAzNnzsTvv//OtF9JS0vDo0ePEBUVBQC4c+cOZs+ezWquw4cP48CBAzAzM8PixYuZ6wMGDCDW6oj6sqZdd926dQMA7N27F/Pnz2+1HzOb9u7dCysrK6ipqTGFrydPnqB///44evQo4XTc0vRv3dHRkbnG4/HokOLPrFixAjY2NpCWloaqqirGjh0LALh+/TodBPqZTZs2YfXq1di4cSMGDx4s1OaEC/cILmhoaGjx39fTp08hIyNDIBGwdOlSbN++HcHBwejQgdtfn6Oiopg+8iSoqqoyf9bX10dsbCyxuTtt0ffff09sMR4AjIyMYGBggMLCQmhqaqJDhw6YNGkSsTwrVqzAkiVLkJ6ezswIu3XrFg4dOoT169eznqekpASWlpbMz+PGjQOPx8Pz58+J79BPTExESkqKQGvEvn37Ys+ePRg9ejTBZNySmZmJcePGQVZWFkVFRVi4cCG6du2K6OholJSU4PDhw6QjUhQx3P6EQ1EURVEssLKywuPHj7F//348fvwYQOMuvDNnzkBNTQ0AsGTJEtZzPXv2rMWBZw0NDaitrWU9D/V1T58+FVjc+te//gVLS0tOLP4pKysjPT0dcXFxTIFJV1eXttFpQWFhIekIbQIXd5xyVdOikpWVlUAPclp0EjRhwgT4+/vjwIEDABoLc5WVlfDy8hJYmGPTnTt3EB8fj8uXL0NfX59oD/smhoaGQr9HZWVl+PPPP7Fv3z7W87SkqKiIflb5mz5+/Ch0eoYt1dXVcHV1ZdogNbW1dHV1hZKSEqtzLZqsXbsWGhoa2L17N7ORQVdXF6GhoUJzw9hQV1cndHJBTEyME7/nysrKLeaor69nTo1SgLu7O+zt7eHr6ytQdLa0tIS1tTXBZBRFHi0QUBRFUe1abW0tzM3NERQUhK1bt5KOI0BPTw83btwQ2JEHNO4QNDQ0JJSK+ju4NuqJx+Nh/PjxxIYgtgW1tbUwNTVtMz3HSTMyMoKRkZHANZI7TrmKRP/utmjHjh0wNzeHnp4eampqYG1tjdzcXHTv3h3Hjx8nkqlLly6YMWMGkdduzdSpUwV+FhERgby8PMaOHQsdHR0yoaj/t5CQEKE5QWz56aefkJGRgWvXrsHc3Jy5Pm7cOHh7exMpEADArFmziBQDWsLn82Fvb88MvgYaB80vXrxYoHBIomj4yy+/wNXVFYGBgcx7clpaGtzc3LBjxw7W83DVnTt3sH//fqHrSkpKKCsrI5CIoriDFggoiqKodk1MTAyZmZmkY7TI09MTdnZ2ePbsGRoaGhAdHY3Hjx/j8OHDOH/+POl4VBsUHx+P+Ph4vHz5Eg0NDQKPcWHIHhe0tZ7jJPH5fERFReHq1ast/k6RWCThqjFjxpCO0CYoKysjIyMDJ06cQEZGBiorK+Hk5AQbGxtISkoSycTFXvZeXl6kI3zV6NGjif0/4yp3d/cWr799+xbp6enIycnB9evXWU7V6MyZMzhx4gSGDx8ucDqlX79+yM/PJ5KJa1qaIWFra0sgiTB7e3tUV1dj2LBhTCu0uro6dOjQAY6OjgItE8vLy0nFJE5CQgLv3r0Tup6Tk8OZ+SkURQotEFAURVHtnq2tbYtDikmbMmUKzp07hw0bNqBTp07w9PTEoEGDcO7cOboDnMOCg4MhLS0NoPHLWVhYGLp37y7wnOXLl7Oey8fHBxs2bICRkREUFRUFFgAoQW2p5zhJK1aswP79+2FiYoIePXrQ36mvuHHjBvbv34+CggKcPHkSSkpKOHLkCNTV1fHdd9+RjkdcbW0tdHR0cP78edjY2MDGxoZ0JE5raGhAXl5ei8U5Y2NjQqn+EhsbSzoC59y9e7fF6507d8b48eMRHR1NbJD5n3/+CQUFBaHrVVVVrN7bu3btipycHHTv3h1ycnJffG22F7q5WCxs4u/vTzpCm2BlZYUNGzYgMjISQOPJ2pKSEqxZs4ZzJ8Uoim08PtfOvlMURVEUy1xdXXH48GFoa2u3ODzSz8+PUDKqrVFTU/vqF2kej4eCggKWEv1FUVERvr6+mDdvHuuv3dZMmzYN8fHxkJaW5kzPcS7q2rUrjh49Sqw3fFty6tQpzJs3DzY2Njhy5Aiys7OhoaGBvXv3IjY2li6m/puSkhLi4uI41d5LXV39i/d1Evfz1NRUWFtbo7i4WKiVHemZFrm5ua2eKvL09CSUivoaY2NjzJw5E66urpCRkUFmZibU1dXh6uqK3NxcXLx4kZUc4eHhmDNnDiQkJJh5CK1paUc/RX3J27dv8cMPPyAtLQ3v379Hr169UFZWhhEjRiA2Nlbo8x5FtSe0QEBRFEW1eyYmJq0+xuPxkJCQwGIaivpndOvWDbdv34ampibpKJzn4ODwxce5vIuQTerq6vj9999pz/NvYGhoiJUrV2L+/PmQkZFBRkYGNDQ0cPfuXVhYWNDex/+2ZcsW5OTkcOr0zu7duwV+rq2txd27d3Hx4kV4eHgQ6c0+cOBA9OnTBz4+Pi2eCJOVlWU9EwAcPHgQS5YsQffu3dGzZ0+BXDweD+np6URyUV+XlJQECwsL2NraIiwsDM7OzsjOzkZKSgoSExMxePBg0hGpr6ivr8eZM2fw8OFDAI3toaysrCAqKko4GfckJSUhMzMTlZWVGDRoEMaNG0c6EkURRwsEFEVRFMUhXztO3Vx77iFK/X1r1qyBtLQ01q9fTzoK9T8iPDwcFy9exKFDh2iv8a+QkpJCdnY21NTUBAoEBQUFzEBeqm2d3gkMDERaWhqRgmGnTp2QkZEBLS0t1l/7S1RVVeHi4oI1a9aQjkL9BwoKCrB161Zm/segQYOwZs0a6OvrE8318uXLFk+kGBgYEErEPXl5ebC0tMSzZ8/Qt29fAMDjx4+hrKyMCxcu0M0hFEV9FTe2ZVAURVEURzx9+hQA0Lt3byKv37yH6OvXr7Fp0yZMnDgRI0aMAADcvHkTly5doou81DdpPhCxoaEBBw4cQFxcHAwMDCAmJibwXNpKi/q7Zs2ahePHj0NBQQFqampCv1N0t/Bfevbsiby8PKipqQlcT0pKgoaGBplQHNSlS5c20wfawsICP/30E5ECwbBhw5CXl8e5AsGbN28wc+ZM0jGov6m2thbOzs5Yv349Dh48SDoO448//oCdnR0ePnzIuVZaXLN8+XJoamoiNTUVXbt2BdD4PcLW1hbLly/HhQsXCCfkhoCAgBav83g8dOzYEVpaWjA2NqanLqh2iZ4goCiKotq9hoYGbNq0CTt37kRlZSUAQEZGBqtWrcK6desgIiJCJNeMGTNgYmKCZcuWCVzfu3cv4uLicObMGSK5qLbjS+2zmqOttIRFRUUhMjISJSUl+PTpk8BjdOG70axZs3D16lX88MMPLQ4p9vLyIpSMe7Zu3YqjR4/i0KFDGD9+PGJjY1FcXIyVK1di/fr1cHV1JR2R+pt8fX2xb98+FBUVsf7ap0+fxs8//wwPDw/o6+sLFedI7ax2cnLCkCFDsHjxYiKvT/3nZGVlce/ePWJDklsyYMAAaGpqYs2aNS2+x6iqqhJKxj2dOnVCamqq0GmPjIwMjBo1ivl+096pq6vjzz//RHV1NeTk5AA0FjalpKQgLS2Nly9fQkNDA1evXoWysjLhtBTFLnqCgKIoimr31q1bh5CQEGzbtg2jRo0C0Lir09vbGzU1Ndi8eTORXJcuXcL27duFrpubmxPpeUy1PVevXiUdoU0KCAjAunXrYG9vj5iYGDg4OCA/Px937tzB0qVLScfjjAsXLuDSpUv47rvvSEfhvLVr16KhoQFmZmaorq6GsbExJCQksHr1aloc4DhDQ0OBhUk+n4+ysjL8+eef2LdvH5FMTacsHB0dmWs8Hg98Pp/ozmotLS2sX7+eWaj8vHCxfPlyIrmor5s6dSrOnDmDlStXko7CKCgowKlTpzhxUubs2bPf/FwrK6t/MEnLJCQk8P79e6HrlZWVEBcXZz0PV23ZsgUHDhxAcHAw03YpLy8Pzs7OWLRoEUaNGoU5c+Zg5cqViIqKIpyWothFTxBQFEVR7V6vXr0QFBQk9IE+JiYGLi4uePbsGZFcqqqqWL58OVatWiVwfefOnQgICEBxcTGRXFTblpeXh/z8fBgbG0NSUpJZUKL+oqOjAy8vL8ydO1egX7ynpyfKy8uxd+9e0hE5QUdHB5GRkbQP9N/w6dMn5OXlobKyEnp6epCWliYdiVPU1dW/eD8qKChgMU0jHx8fgZ9FREQgLy+PsWPHEhvQ/bX3f1I7q7+0+5zH4xH5/0d9m6aTtGZmZhg8eLDQ/A8SxZ2pU6di3rx5nGg79q2niUkV6ObPn4/09HSEhIRg6NChAIBbt25h4cKFGDx4MMLCwljPxEWampo4deoUBg4cKHD97t27mDFjBgoKCpCSkoIZM2agtLSUTEiKIoQWCCiKoqh2r2PHjsjMzESfPn0Erj9+/BgDBw7Ehw8fiOQKCwvDggULYGFhgWHDhgFo/LB/8eJFHDx4EPb29kRyUV8nKiqK0tJSKCgoCFx//fo1FBQUiHx5fP36NdMShsfjITc3FxoaGnB0dIScnBx27tzJeiaukpKSwsOHD6GqqgoFBQVcuXIFAwYMQG5uLoYPH47Xr1+TjsgJFy5cwJ49exAUFCTUW58SdPjwYQwZMgS6uroC12tqahAZGYn58+cTSsYtu3fvFvi5trYWd+/excWLF+Hh4UFPz1HUP4SLxZ1Xr17Bzs4OQ4cORf/+/YVOpJDYqc9VFRUVsLOzw7lz55i/p7q6OlhZWSEsLAyysrKEE3KDlJQUrl+/DiMjI4Hrd+7cwZgxY1BdXY2ioiL079+ftmWi2h3aYoiiKIpq9wYMGIC9e/cKDa7au3cvBgwYQCgVYG9vD11dXQQEBCA6OhoAoKuri6SkJKZgQHFTa/svPn78SOyo98qVKyEmJoaSkhKBRcrZs2fD3d2dFgia6dmzJ8rLy6GqqgoVFRWkpqZiwIABKCwsbPX/bXtka2uL6upqaGpqQkpKSmjxpry8nFAy7rG3t0enTp0QFhYmsBv27du3cHBwoAWCf3Nzc2vxemBgINLS0lhO85eGhgbk5eXh5cuXaGhoEHjM2NiYUCogOzu7xTkppBdOX716BQDo3r070RzUtyssLCQdQcjNmzeRnJyM33//XegxOqRYUJcuXRATE4O8vDw8fPgQQON3Bi60Z+ISExMTODs7Izg4GIaGhgAaTw8sWbIEpqamAID79+9zahYHRbGFFggoiqKods/X1xeTJk1CXFwcRowYAaDxS8mTJ08QGxtLNNuwYcPw22+/Ec1AfbumIhOPx0NwcLBA+5D6+npcv36dWEuKy5cv49KlS+jdu7fAdW1tbdqu6jOmpqY4e/YsDA0N4eDgwPSiTUtLw/Tp00nH4wx/f3/SEdoUHx8fzJs3D/fv34e3tzfpOG2KhYUFfvrpJ4SGhrL+2qmpqbC2tkZxcbFQgZDUImVBQQGmTZuG+/fvM7MHmvIAIJKpoqIC69atw4kTJ/DmzRsAgJycHObMmYNNmzahS5curGei2jZXV1fY2tpi/fr16NGjB+k4AqqqqpCYmNhigY7NdkwNDQ345ZdfcPbsWXz69AlmZmbw8vKCpKQkaxnakpCQEMybNw+DBw8WOGlhZmaGkJAQAIC0tDTdNEO1S7TFEEVRFEUBeP78OQIDA/Ho0SMAjbtuXFxc0KtXL1ZzvHv3Dp07d2b+/CVNz6O4o2nHUXFxMXr37g1RUVHmMXFxcaipqWHDhg1EToDIyMggPT0d2traAn3109LSMHHiRNo2p5mGhgY0NDSgQ4fGvTQRERFISUmBtrY2nJ2d6cA/6m8TERFBWVkZs7A7atQoHDlyBO/evUOvXr3oTtiv8PX1xb59+1BUVMT6aw8cOBB9+vSBj48PFBUVhWYkkGjdMXnyZIiKiiI4OBjq6uq4ffs2Xr9+jVWrVmHHjh0YPXo0q3nKy8sxYsQIPHv2DDY2NswptezsbBw7dgzKyspISUmBnJwcq7moL3N3d8fGjRvRqVMnuLu7f/G5fn5+LKX6i4yMDO7du8cMk+WKu3fvwtLSEtXV1aiqqkLXrl3x6tUrSElJQUFBgdV2TBs3boS3tzfGjRsHSUlJXLp0CXPnzsWhQ4dYy9AWPXr0CDk5OQCAvn37om/fvoQTURR5tEBAURRFURzSvHe9iIhIi8Mam4bK0gUl7jIxMUF0dDSnFkMsLS0xePBgbNy4ETIyMsjMzISqqirmzJmDhoYGREVFkY5I1PTp0xEWFobOnTvj8OHDmD17NiQkJEjH4rz8/HyEhoYiPz8fu3fvhoKCAn7//XeoqKigX79+pONxRvN7e0lJCaysrMDj8RAUFISRI0fS+/m/GRoaCrzv8fl8lJWV4c8//8S+ffuwaNEi1jN16tQJGRkZnGrV0b17dyQkJMDAwACysrK4ffs2+vbti4SEBKxatQp3795lNc+KFSsQHx+PuLg4oZ3eZWVlmDBhAszMzLBr1y5Wc1FfZmJigtOnT6NLly4wMTFp9Xk8Hg8JCQksJmtkZ2eH0aNHY8GCBay/9peMHTsWffr0QVBQEGRlZZGRkQExMTHY2trCzc2N1ZOG2traWL16NZydnQEAcXFxmDRpEj58+PDNg5UpiqIAWiCgKIqiKE5JTEzEqFGj0KFDByQmJn7xuWPGjGEpFfWf+vTpEwoLC6GpqcnsRiclKysLZmZmGDRoEBISEmBlZYUHDx6gvLwcycnJnNuhxzZxcXEUFxdDUVGx1SHTlKDExERYWFhg1KhRuH79Oh4+fAgNDQ1s27YNaWlp7b7o1FzTCYKm36nq6mrY2NggPj4eVVVVtEDwbz4+PgI/i4iIQF5eHmPHjiXWns3U1BQ//vgjzM3Nibx+S+Tk5JCeng51dXVoamoiODgYJiYmyM/Ph76+Pqqrq1nNo6amhv3792PixIktPn7x4kUsXryYyAkQ6ssKCgqgrq7e4oYU0jZv3gx/f39MmjQJ+vr6QnNu2Gzl01yXLl1w69Yt9O3bF126dMHNmzehq6uLW7duwc7OjjmNzAYJCQnk5eVBWVmZudaxY0fk5eUJtZSkGj19+hRnz55tsT0UiZMyFMUVdAYBRVEURXFI80V/WgBouz58+IBly5YhPDwcAJCTkwMNDQ24urpCSUkJa9euZT1T//79kZOTg71790JGRgaVlZWYPn06li5dCkVFRdbzcI2Ojg5++uknmJiYgM/nIzIystU2XnSgbKO1a9di06ZNcHd3h4yMDHPd1NQUe/fuJZiMe7y8vARmkkhJSeH06dPw8vLC9evXCSbjFi8vL9IRhLi6umLVqlUoKytrcZHSwMCA9Uz9+/dHRkYG1NXVMWzYMPj6+kJcXBwHDhyAhoYG63lKS0u/eGKof//+KCsrYzER9a20tbUFCuKzZ89GQEAAJ3r+N81ySkxMFNo0w+PxiBUIxMTEmN35TafCdHV1ISsriydPnrCapa6uDh07dhTKV1tby2qOtiI+Ph5WVlbQ0NDAo0eP0L9/fxQVFYHP52PQoEGk41EUUfQEAUVRFEVxVGhoKKSlpTFz5kyB6ydPnkR1dTXs7OwIJaO+xs3NDcnJyfD394e5uTkyMzOhoaGBmJgYeHt7s97+gfq6lJQUuLu7Iz8/H+Xl5ZCRkWlxRyWPx0N5eTmBhNwjLS2N+/fvQ11dXWCuRVFREXR0dFBTU0M6ItUGNTQ0IC8vDy9fvkRDQ4PAY8bGxqznaalNR9NgYFLt/i5duoSqqipMnz4deXl5+P7775GTk4Nu3brhxIkTMDU1ZTWPkpISTpw4ge+++67Fx2/cuIHZs2fj+fPnrOaivu7z003N7+VUyyZMmAB7e3tYW1tj4cKFyMzMxPLly3HkyBG8efMGt27dYi2LiIgILCwsBFoinjt3DqampujUqRNzLTo6mrVMXDZ06FBYWFjAx8eH+V1XUFCAjY0NzM3NsWTJEtIRKYoYeoKAoiiKojhq69at2L9/v9B1BQUFLFq0iBYIOOzMmTM4ceIEhg8fLrDI3K9fP+Tn5xPJdPHiRUhLSzMLOIGBgTh48CD09PQQGBjIqXkJJIwcORKpqakAGr9w5+Tk0BZDX9GlSxeUlpYyw7mb3L17F0pKSoRSccfZs2dhYWEBMTExnD17ttXn8Xg8TJ48mcVk3JWamgpra2sUFxfj831spBbjCwsLWX/Nr2neykdLSwuPHj1CeXk55OTkiLSKmThxItatW4crV64IDXH/+PEj1q9fz6kWTRT1/7Flyxa8f/8eQGMbpPnz52PJkiXQ1tZGSEgIq1la+i5ga2vLaoa25OHDhzh+/DgAoEOHDvjw4QOkpaWxYcMGTJkyhRYIqHaNFggoiqIoiqNKSkqEFt4AQFVVFSUlJQQSUd/qzz//bHFxuaqqilifXw8PD2zfvh0AcP/+fbi7u2PVqlW4evUq3N3dERoaSiQXFxUWFkJeXp50DM6bM2cO1qxZg5MnT4LH46GhoQHJyclYvXo1bcMEYOrUqczO3KlTp7b6PDp0/i+LFy+GkZERLly4AEVFRU70RVdVVSUd4Zt07dqV2Gtv2LABRkZG0NbWxtKlS6GjowM+n4+HDx9i3759+PjxI44cOUIsH9U6Ho8n9O+MC//uAMDR0fGLjx86dIilJIKMjIyYPysoKODixYtEcgCgn93+pk6dOjFzBxQVFZGfn8+0R3v16hXJaBRFHC0QUBRFUe2SoaHhN38BSk9P/4fTtExBQQGZmZlQU1MTuJ6RkYFu3boRyUR9m6YFLldXVwB/fdkODg7GiBEjiGQqLCyEnp4eAODUqVOYPHkytmzZgvT0dFhaWhLJxFXNFwT19fURGxsrMACQarRlyxYsXboUysrKqK+vh56eHurr62FtbY2ff/6ZdDzimrfH+bxVDtWy3NxcREVFQUtLi3QUIdnZ2S0OtbSysmItw9cWTJuwvXDau3dv3Lx5Ey4uLvjpp5+Y0x88Hg/jx4/H3r176T2Uo/h8Puzt7ZkWNTU1NVi8eLFAexqATIuaN2/eCPxcW1uLrKwsVFRUsN5GqzlTU1NER0ejS5cuAtffvXuHqVOnIiEhgUww6quGDx+OpKQk6OrqwtLSEqtWrcL9+/cRHR2N4cOHk45HUUTRAgFFURTVLjXfzVlTU4N9+/ZBT0+PWbxNTU3FgwcP4OLiQighMHfuXCxfvhwyMjJM3+XExES4ublhzpw5xHJRX7dlyxZYWFggOzsbdXV12L17N7Kzs5GSkiI0aI8t4uLiqK6uBgDExcUxO7y7du2Kd+/eEcnUFhQVFdFhf60QFxfHwYMH4enpifv376OyshKGhobQ1tYmHY1qo4YNG4a8vDxOFQgKCgowbdo03L9/n5k9APxV+GXz9EdYWBhUVVVhaGgo1IKJNHV1dfz+++948+YNcnNzATS2PyJ5soH6us9b1HCpPc3p06eFrjU0NGDJkiXQ1NQkkKjRtWvXhAqFQOP3iRs3bhBIRH0rPz8/VFZWAgB8fHxQWVmJEydOQFtbG35+foTTURRZdEgxRVEU1e4tWLAAioqK2Lhxo8B1Ly8vPHnyhNgR5k+fPmHevHk4efIkOnRorOk3NDRg/vz5CAoKEurzS3FLfn4+tm3bhoyMDFRWVmLQoEFYs2YN9PX1ieSxsrLCp0+fMGrUKGzcuBGFhYVQUlLC5cuXsWzZMuTk5BDJxXV0YGPrNmzYgNWrV0NKSkrg+ocPH/DLL7/A09OTUDJuCAgI+ObnLl++/B9M0nacPn0aP//8Mzw8PKCvrw8xMTGBxw0MDFjPNHnyZIiKiiI4OBjq6uq4ffs2Xr9+jVWrVmHHjh0YPXo0a1mWLl2K48ePQ1VVFQ4ODrC1taUL8FS78/jxY4wdOxalpaWsvm5mZiYAYODAgUhISBD4t1dfX4+LFy9i//79KCoqYjUX9W3q6+uRnJwMAwMDodMfFEXRAgFFURRFQVZWFmlpaUK7XnNzc2FkZIS3b98SStYoJycHGRkZkJSUhL6+fpvph0xxS0lJCVxcXPDkyRMsX74cTk5OAICVK1eivr7+by1mtieWlpYICQmBoqIi6SicIyoqitLSUqF5G69fv4aCgkK776vf0gyZlvB4PBQUFPzDadoGERERoWtNu/ZJzWro3r07EhISYGBgAFlZWdy+fRt9+/ZFQkICVq1ahbt377Ka5+PHj4iOjsahQ4eQkpKCSZMmwcnJCRMmTOBM73iK+ifFxsbCzs4Of/75J6uvKyIiwvwba2kZTVJSEnv27PnmVmAU+zp27IiHDx9+8/szRbUntMUQRVEU1e5JSkoiOTlZqECQnJyMjh07Ekr1lz59+qBPnz6kY1BtnIqKCs6fPy90fdeuXQTStB2xsbGkI3BW06Lt5zIyMuiuZjTO/aD+Hi7+ndXX10NGRgZAY7Hg+fPn6Nu3L1RVVfH48WPW80hISGDu3LmYO3cuiouLERYWBhcXF9TV1eHBgweQlpZmPRNF/RPc3d0Ffubz+SgtLcWFCxeEWiOxobCwEHw+HxoaGrh9+zbk5eWZx8TFxaGgoABRUVHWc1Hfrn///igoKKAFAopqAS0QUBRFUe3eihUrsGTJEqSnp2Po0KEAgFu3buHQoUNYv349q1nc3d2xceNGdOrUSeiL0edor0zuab67rDU8Hg91dXUsJfpLSUnJFx9XUVFhKUnbkJubi6tXr+Lly5dCA2bbe+scOTk58Hg88Hg89OnTR+B3vr6+HpWVlVi8eDHBhFRbxcUTcv3790dGRgbU1dUxbNgw+Pr6QlxcHAcOHCDeeqzpPYfP57f7EzvU/57PT+eIiIhAXl4eO3fuJLJLv+n+xJWh82fPnv3m57I5TJ3LNm3ahNWrV2Pjxo0YPHiw0DDuzp07E0pGUeTRFkMURVEUBSAyMhK7d+/Gw4cPAQC6urpwc3PDrFmzWM1hYmKC06dPo0uXLjAxMfnic69evcpSKupbxcTEtPrYzZs3ERAQgIaGBtTU1LCYqtHXihd0cekvBw8exJIlS9C9e3f07NlT4O+Nx+MhPT2dYDrywsPDwefz4ejoCH9/f8jKyjKPiYuLQ01NjRn43p7Rgu9/Ljs7GyUlJUKDQEkscl26dAlVVVWYPn068vLy8P333yMnJwfdunXDiRMnYGpqymqe5i2GkpKS8P3338PBwQHm5uYttmiiKOq/Lz8/H/7+/sz3Bj09Pbi5ubE6PPlb/72Tas/GRc3/zpp/tiPZxo6iuIIWCCiKoiiKov5Bjx8/xtq1a3Hu3DnY2Nhgw4YNRHbJZmRkCPxcW1uLu3fvws/PD5s3b8b06dNZz8RVqqqqcHFxwZo1a0hH4bTExESMGjWKGaJOCaIF37+voKAA06ZNw/3795md8cBfCzlcWbwpLy9nTtKwycXFBREREVBWVoajoyNsbGzQvXt3VjNQVHt36dIlWFlZYeDAgRg1ahSAxrakGRkZOHfuHMaPH084IdWaxMTELz4+ZswYlpJQFPfQAgFFURRFAaioqEBUVBQKCgqwevVqdO3aFenp6ejRoweUlJSIZHJ0dMTu3buZ3sdNqqqq4OrqikOHDhHJRX2b58+fw8vLC+Hh4Zg4cSK2bt2K/v37k44l5MKFC/jll19w7do10lE4o3Pnzrh37x7x9iFcl56eDjExMejr6wNoPEETGhoKPT09eHt7Q1xcnHBCqq2ZPHkyREVFERwcDHV1ddy+fRuvX7/GqlWrsGPHDowePZp0RKJERESgoqICQ0PDLxYnoqOjWUxFUf+MFy9eYPXq1YiPj8fLly+FBgOTKhgaGhpi4sSJ2LZtm8D1tWvX4vLly+3+lCFFUW0TLRBQFEVR7V5mZibGjRsHWVlZFBUV4fHjx9DQ0MDPP/+MkpISHD58mEguUVFRlJaWQkFBQeD6q1ev0LNnTyJ97Kmve/v2LbZs2YI9e/Zg4MCB2L59O6cXtfLy8jBgwABUVVWRjsIZTk5OGDJkCO2j/xVDhgzB2rVrMWPGDBQUFEBPTw/Tp0/HnTt3MGnSJPj7+5OOyBm04PttunfvjoSEBBgYGEBWVha3b99G3759kZCQgFWrVgn1JP8nfWuPczb/39nb23/TqYXQ0FAW0lDUP8vCwgIlJSVYtmwZFBUVhX73p0yZQiRXx44dcf/+fWhrawtcz8nJgYGBAZE2kkDj+0liYmKL7dmWL19OJBMX3bhxA/v370dBQQFOnjwJJSUlHDlyBOrq6vjuu+9Ix6MoYuh5YIqiKKrdc3d3h729PXx9fQUWbywtLWFtbc16nnfv3oHP54PP5+P9+/fo2LEj81h9fT1iY2OFigYUN/j6+mL79u3o2bMnjh8/TuzLa0vevXsn8DOfz0dpaSm8vb2FvuS2d1paWli/fj1SU1Ohr68PMTExgcfpF+1GOTk5GDhwIADg5MmTGDNmDI4dO4bk5GTMmTOHFgiaCQ8Px7Zt24QKBB8+fMDhw4dpgeDf6uvrmb+j7t274/nz5+jbty9UVVXx+PFjVrOEhYVBVVUVhoaGQjuXSQkLCyMdgaJYk5SUhBs3bjDvM1whLy+Pe/fuCX12unfvHrHP53fv3oWlpSWqq6tRVVWFrl274tWrV5CSkoKCggL93PJvp06dwrx582BjY4P09HR8/PgRwF+be2JjYwknpChyaIGAoiiKavfu3LmD/fv3C11XUlJCWVkZ63m6dOkCHo8HHo+HPn36CD3O4/Hg4+PDei7q69auXQtJSUloaWkhPDwc4eHhLT6PRPuHpt+r5vh8PpSVlREREcF6Hi47cOAApKWlkZiYKNSvlsfj0S/a/8bn89HQ0AAAiIuLw/fffw8AUFZWxqtXr0hG4wxa8P17+vfvj4yMDKirq2PYsGHw9fWFuLg4Dhw4wHrLryVLluD48eMoLCyEg4MDbG1t0bVrV1YzUFR7pqyszJniHABs2LABq1evxsKFC7Fo0SIUFBRg5MiRABpnEGzfvv2rA+n/KStXrsTkyZMRFBQEWVlZpKamQkxMDLa2tnBzcyOSiYs2bdqEoKAgzJ8/X+Cz76hRo7Bp0yaCySiKPNpiiKIoimr3FBQUcOnSJRgaGkJGRgYZGRnQ0NDAlStX4OjoiCdPnrCaJzExEXw+H6ampjh16pTAgoS4uDhUVVXRq1cvVjNR34bL7R8+X+gWERGBvLw8tLS06JBZ6j9iamoKZWVljBs3Dk5OTsjOzoaWlhYSExNhZ2eHoqIi0hGJExER+eI9oangu27dOhZTcdelS5dQVVWF6dOnIy8vD99//z1ycnLQrVs3nDhxAqampqzm+fjxI6Kjo3Ho0CGkpKRg0qRJcHJywoQJE1gfUExR7c3ly5exc+dO7N+/H2pqaqTjMK0/5eXl4e/vj507d+L58+cAgF69esHDwwPLly8ncm/o0qULbt26hb59+6JLly64efMmdHV1cevWLdjZ2eHRo0esZ+IiKSkpZGdnQ01NTeA7X1ObRFLtoSiKC2iBgKIoimr3FixYgNevXyMyMhJdu3ZFZmYmREVFMXXqVBgbGxNrk1FcXAwVFRW6CEFRhDTtgu/evTvhJNyUkZEBGxsbPHnyBO7u7vDy8gIAuLq64vXr1zh27BjhhOTRgu//X3l5OeTk5Ii/FxYXFyMsLAyHDx9GXV0dHjx4AGlpaaKZKOp/zef/1quqqlBXVwcpKSmhdn/l5eWsZhMREUFZWZnAqa/3798DgFD7OLbJy8sjJSUF2tra6NOnD/bs2YOJEyfi0aNHGDx4MJ0z9W8aGho4cOAAxo0bJ1AgOHz4MLZt24bs7GzSESmKGLpdjKIoimr3du7ciR9++AEKCgr48OEDxowZg7KyMowYMQKbN28mluvhw4d48uQJMzArMDAQBw8ehJ6eHgIDAyEnJ0csG9U25efnw9/fHw8fPgQA6Onpwc3NDZqamoSTcUdFRQXWrVuHEydO4M2bNwAaFyzmzJmDTZs2oUuXLmQDcsiAAQOQlZUldP2XX36BqKgogUTcM2bMGNTV1cHOzg5GRkZQVlYmHanN4Upbn6bTIHw+H/X19aTjUNT/JK7Prvm8UEm6MNDE0NAQd+7cgba2NsaMGQNPT0+8evUKR44cQf/+/UnH44yFCxfCzc0Nhw4dAo/Hw/Pnz3Hz5k2sXr0a69evJx2PooiiJwgoiqIo6t+SkpKQmZmJyspKDBo0COPGjSOaR19fH9u3b4elpSXu378PIyMjrFq1ClevXoWOjg6RNjVU23Xp0iVYWVlh4MCBGDVqFIDGnrkZGRk4d+4cxo8fTzgheeXl5RgxYgSePXsGGxsb6OrqAgCys7Nx7NgxKCsrIyUlhRbn/s3Ozg5OTk4wNjYmHYXzZGRkcP/+fU60yeAiR0fHb3oe28Ocm7cYSkpKwvfffw8HBweYm5tDRESE1SwURZElIiICWVnZr55mYvtkAwCkpaXh/fv3MDExwcuXLzF//nzmREFISAjnBj2TwufzsWXLFmzduhXV1dUAAAkJCaxevRobN24knI6iyKIFAoqiKIriKGlpaWRlZUFNTQ3e3t7IyspCVFQU0tPTYWlpSWSAMtV2GRoaYuLEidi2bZvA9bVr1+Ly5ctIT08nlIw7VqxYgfj4eMTFxaFHjx4Cj5WVlWHChAkwMzPDrl27CCXklqlTpyI2NhaqqqpwcHCAnZ0dlJSUSMfipClTpmD69Omws7MjHYWTREREoKqqCkNDwy8OJT19+jRrmVxcXBAREQFlZWU4OjrCxsaGthujqHZMREQE/v7+kJWV/eLz6H2e+z59+oS8vDxUVlZCT0+PtoujKNACAUVRFEUBAOLj4xEfH4+XL1+ioaFB4DG2dyw26dq1K5KSkqCnp4fvvvsO8+fPx6JFi1BUVAQ9PT1m5wtFfYuOHTvi/v370NbWFriek5MDAwMDOpgNgJqaGvbv34+JEye2+PjFixexePFiOny3mT///BNHjhxBeHg4srOzMW7cODg6OmLq1KlC/aLbs6CgIPj4+MDGxgaDBw9Gp06dBB63srIilIwbli5diuPHjzPFJltbW+KthURERKCiogJDQ8Mv7hiOjo5mMRVFUaS0NIOAK0xNTREdHS3UBvHdu3eYOnUqEhISyATjmKNHj2L69OmQkpIiHYWiOIcWCCiKoqh2z8fHBxs2bICRkREUFRWFFgLY3LHYnJWVFT59+oRRo0Zh48aNKCwshJKSEi5fvoxly5YhJyeHSC6qbVJWVoafnx9mzpwpcD0yMhKrV69GSUkJoWTcISEhgfz8fPTu3bvFx58+fQotLS1aTGlFeno6QkNDERwcDGlpadja2sLFxUWoKNUefakdDY/Hoz3tIdjOJyUlBZMmTYKTkxMmTJhAZECxvb39N70ubfdHUe2DqKgoSktLOVkgaK148fLlSygpKaG2tpZQMm6Rl5fHhw8fYGVlBVtbW0ycOJHOTKKof6NDiimKoqh2LygoCGFhYZg3bx7pKAL27t0LFxcXREVF4ddff2Vad/z+++8wNzcnnI5qaxYuXIhFixahoKAAI0eOBNA4g2D79u1wd3cnnI4bunfvjqKiolYLBIWFhcR3NXNVaWkprly5gitXrkBUVJSZnaKnpwdfX1+sXLmSdESiPj+ZRgmTkJDA3LlzMXfuXBQXFyMsLAwuLi6oq6vDgwcPWG8BERYWxurrURTFbVzcW5uZmcn8OTs7W6D9aH19PS5evEhb/zVTWlqKixcv4vjx45g1axakpKQwc+ZM2NjYMJ+NKaq9oicIKIqiqHavW7duuH37NjQ1NUlHoah/DJ/Ph7+/P3bu3Innz58DAHr16gUPDw8sX76cyA5drnF0dER+fj6uXLkCcXFxgcc+fvyIiRMnQkNDg1jbMa6pra3F2bNnERoaisuXL8PAwAALFiyAtbU1OnfuDKDxBJajoyPevHlDOC131NTUoGPHjqRjcNqTJ08QGhqKsLAwfPr0CY8ePaI9oimKoj4jIiLCfH5raWlPUlISe/bs+eZB8O1JdXU1Tp8+jWPHjiEuLg69e/dGfn4+6VgURQwtEFAURVHt3po1ayAtLY3169eTjiIkPz8foaGhyM/Px+7du6GgoIDff/8dKioq6NevH+l4VBv1/v17AICMjAzhJNzy9OlTGBkZQUJCAkuXLoWOjg74fD4ePnyIffv24ePHj0hLS4OysjLpqJzQvXt3NDQ0YO7cuVi4cCEGDhwo9JyKigoYGhqisLCQ/YAcUl9fjy1btiAoKAgvXrxATk4ONDQ0sH79eqipqcHJyYl0ROKatxhKSkrC999/DwcHB5ibm3+xRRNFUf+bqqqqsG3btlZnhBUUFBBKxh3FxcXg8/nQ0NDA7du3IS8vzzwmLi4OBQUF2kLnC169eoWIiAgEBQXh4cOHtN0f1a7RFkMURVFUu1dTU4MDBw4gLi4OBgYGQoM1/fz8iORKTPy/9u40Ksrz/v/4ZwYNAQJI6kogbnAEl0MUa1xq2miMWo/GYl2oUQGxKCamWm20xj2oNbjUYo/bIMQ2LlWiEteoiVTFKomiVnEBraAhR0WKilFh+D/w/6MhLgEXbmbm/Ton5zD33A/eD4wy93eu69qj7t27q0OHDkpJSVFMTIxq166t9PR0WSwWrVu3zpAu2D4GAw/m4+Oj1NRURUdHa8KECaXfxjOZTOrSpYvi4uIYDnzP/Pnz1bdv30d+G75GjRoOPxyQpJiYGCUmJmrOnDkaNmxY6fXmzZtrwYIFDj8giI6O1urVq+Xr66uIiAitWrVKNWvWNDoLgIEiIyO1Z88eDRo06IFnhEGqX7++JLaxq4j/Wznw97//Xbt27ZKvr69CQ0P5XAWHxwoCAIDDe/311x/6nslk0u7duyux5n/atWunvn37asyYMXJ3d1d6enrpN4RCQkKUk5NjSBdsS8uWLcv1ofrrr7+uhBrbce3aNZ05c0aS5Ofnx9kD5fCf//xHN2/eVEBAAN/4/gE/Pz8tWbJEnTt3LvP3eUZGhtq1a+fwWzCZzWa9/PLLP/r3VVJSUiVWATBSjRo1tHnzZnXo0MHoFJuQmZmpBQsW6OTJk5Kkpk2b6r333mML1e8ZMGCAPvvsM7m6uqpfv34aOHCg2rVrZ3QWUCWwggAA4PC++OILoxMe6NixY/rkk0/uu167dm1duXLFgCLYot69e5f+XFJSolmzZmn48OE88P4RXl5eatOmjdEZVVJ8fLzy8/PLHG7929/+VhaLRZLUpEkTbd++ndUW33Px4kX5+fndd91qteru3bsGFFUtgwcP5tvBAMrw8vLid5Vy2r59u3r16qVXXnmldKCyb98+NWvWTMnJyerSpYvBhVWDk5OT1q5dq65du9639dLx48fVvHlzg8oA47GCAACAKsrHx0dr165V+/bty3zj9NNPP9XYsWM5SAuP5ft/loDH0bZtW0VFRSk8PFyStG3bNvXs2VMJCQkKDAzUO++8o6ZNm2r58uUGl1YdwcHBGj16tN5+++0y/w9Onz5dn3/+uf75z38anQgAVcrf/vY3bdy4UYmJiXJ1dTU6p0pr2bKlunbtqtmzZ5e5Pn78eO3YsYNVog9x/fp1rVq1SsuXL9dXX33FGQRwaKwgAAA4pJCQECUkJMjDw0MhISGPvNeoLQ0GDBig999/X//4xz9kMplktVq1b98+jR07VoMHDzakCQDOnDmj1q1bl77euHGj3nrrLQ0cOFCSNHPmzNLhAe6ZPHmyhgwZoosXL8pqtSopKUmnTp3Sxx9/rM8++8zoPACocubOnavMzEzVqVNHDRo0uO+MMB56/8/Jkye1du3a+65HRERowYIFlR9UxaWkpMhisWj9+vXy9vZWSEiIFi1aZHQWYCgGBAAAh+Tp6Vm6nYGnp6fBNQ82c+ZMjRw5Ur6+viouLlbTpk1VXFys3/zmN/rggw+MzgPgoG7duiUPD4/S1/v37y9zyG6jRo2Um5trRFqV9dZbbyk5OVnTp0+Xm5ubJk+erFatWrH1AwA8xPe3SMSj1apVS0eOHJG/v3+Z60eOHFHt2rUNqqpacnNzlZCQIIvFooKCAvXr10+3b9/Whg0b1LRpU6PzAMOxxRAAAFVcdna2jh07phs3bqhly5b3/fIPVARbDOFJBQYGKiYmRiEhIbpy5Yrq1q2rf/3rXwoODpYkHTx4UL169WJIICkrK0sNGzZkf30AwFM3ffp0jR07VrGxsZo/f77Gjx+v9u3bS7p3BsGf/vQnjRkzRpMmTTK41Fg9e/ZUSkqKevTooYEDB6pbt25ycnJS9erVlZ6ezoAAECsIAACocqxWqz766CNt2rRJd+7cUefOnTVlyhS5uLgYnQYbtHDhwjKvi4qKlJCQoJo1a5a5PmrUqMrMgg0bMmSIRo4cqX//+9/avXu3AgICSocD0r0VBRz0d4+/v7+++eab0m9w9u/fXwsXLlSdOnUMLgMA2Lpp06Zp+PDhmjRpktzd3TV37lxNmDBBkuTt7a2pU6fy+52krVu3atSoURoxYgRftAIeghUEAABIWrdundauXasLFy7ozp07Zd6r7D1OZ8yYoalTp+qNN96Qi4uLtm/frtDQUMXHx1dqB+xDw4YNf/Qek8mkrKysSqiBPbBarZo6daqSk5NVt25dzZs3T4GBgaXv9+3bV926dSuz7ZCjMpvNys3NLR0QsIIHAB7uxRdf1OnTp1WzZk15eXk9cvVVXl5eJZZVTT/8N0a6d/CudO/fG9xz4MABWSwWrVmzRoGBgRo0aJAGDBigevXqsYIA+P8YEAAAHN7ChQs1ceJEhYWFaenSpQoPD1dmZqYOHTqkkSNHKiYmplJ7/P39NXbsWEVFRUmSdu7cqR49eujWrVsym82V2gIAeHwMCACg/BITEzVgwAA5OzsrMTHxkfcOGTKkkqqqLrPZrG+//Va1atUyOsUm3Lx5U2vWrFF8fLwOHjyo4uJizZs3TxEREQxU4PAYEAAAHF5AQICmTJmi0NDQMg9vJk+erLy8PMXFxVVqj7Ozs86ePStfX9/Sa88//7zOnj0rHx+fSm0BADw+Jycn5ebmlj68cXd319GjR8u1sgcAgEcxm83y9PT80XNuWG1xv1OnTslisWjlypXKz89Xly5dtGnTJqOzAMMwIAAAODxXV1edPHlS9evXV+3atfX5558rKChIZ86cUdu2bXX16tVK7fnhAyWJh0oAYIvMZrO6d+8uZ2dnSVJycrI6deokNze3MvclJSUZkQcAsGFms1kLFiyQp6fnI+9jtcXDFRcXKzk5WfHx8QwI4NA4pBgA4PDq1q2rvLw81a9fXy+//LIOHDigoKAgnTt3TkbM0UtKShQWFlb6QEmSvvvuOw0fPrzMQyUeKAFA1fbDhzJvv/22QSUAAHs0YMCAMmcQoGKcnJzUu3dv9e7d2+gUwFAMCAAADq9Tp07atGmTWrZsqfDwcI0ePVrr1q1TWlqaQkJCKr3nQd/y4aESANieFStWGJ0AALBTP7a1EACUF1sMAQAcntVqldVqVbVq9+bmq1ev1v79++Xv76+oqCg999xzBhcCAAAAwP+YzWbl5uayggDAE2NAAABwaEVFRZo5c6YiIiI4ABh2p6CgoNz3enh4PMMS2IsxY8aU+9558+Y9wxIAgCMpKCjQ7t271aRJEwUGBhqdAwB2hQEBAMDhvfDCCzp+/LgaNGhgdArwVJnN5nIvPy8uLn7GNbAHr7/+epnXX3/9tYqKitSkSRNJ0unTp+Xk5KTg4GDt3r3biEQAgB3o16+fXnvtNb3zzju6deuWgoKCdP78eZWUlGj16tXq06eP0YkAYDc4gwAA4PA6d+6sPXv2MCCA3fniiy9Kfz5//rzGjx+vsLAwtWvXTpKUmpqqxMREzZo1y6hE2Jjv/5maN2+e3N3dlZiYKC8vL0nStWvXFB4ero4dOxqVCACwAykpKZo4caIk6dNPP1VJSYny8/OVmJioDz/8kAEBADxFrCAAADi8xYsXa9q0aRo4cKCCg4Pl5uZW5v1evXoZVAY8PZ07d1ZkZKRCQ0PLXP/kk0+0dOlSffnll8aEwWa99NJL2rFjh5o1a1bm+vHjx/Xmm2/q0qVLBpUBAGydi4uLTp8+LV9fXw0ePFje3t6aPXu2Lly4oKZNm+rGjRtGJwKA3WAFAQDA4UVHR0t68H7ZJpOJrVdgF1JTU7V48eL7rrdu3VqRkZEGFMHWFRQU6PLly/ddv3z5sq5fv25AEQDAXvj6+io1NVUvvviitm3bptWrV0u6t1Lt+eefN7gOAOyL2egAAACMZrVaH/ofwwHYC19fXy1btuy+68uXL5evr68BRbB1v/rVrxQeHq6kpCTl5OQoJydH69ev19ChQxUSEmJ0HgDAhv3ud7/TwIED5ePjo3r16ukXv/iFpHtbD7Vo0cLYOACwM2wxBAAA4AC2bNmiPn36yM/PT6+++qok6eDBgzpz5ozWr1+vX/7ylwYXwtYUFhZq7Nixio+P1927dyVJ1apV09ChQ/XRRx/dt10bAAAVkZaWpuzsbHXp0kUvvPCCJGnz5s2qUaOGOnToYHAdANgPBgQAAIdmtVqVkJCgpKQknT9/XiaTSQ0bNtSvf/1rDRo0SCaTyehE4KnJycnRX//6V2VkZEiSAgMDNXz4cFYQ4IncvHlTmZmZkqTGjRszGAAAPDV37tzRuXPn1LhxY1Wrxi7ZAPAsMCAAADiskpIS9ezZU1u2bFFQUJACAgJUUlKikydP6tixY+rVq5c2bNhgdCYAVHk5OTmSJB8fH4NLAAD2oLCwUO+++64SExMlSadPn1ajRo307rvv6qWXXtL48eMNLgQA+8EZBAAAh5WQkKCUlBTt2rVLhw8f1qpVq7R69Wqlp6dr586d2r17tz7++GOjM4GnJj8/X3PnzlVkZKQiIyM1f/58/fe//zU6CzbKarVq+vTp8vT0VP369VW/fn3VqFFDM2bMkNVqNToPAGDDJkyYoPT0dH355ZdlDiV+4403tGbNGgPLAMD+sIIAAOCw3nzzTXXq1Omh30CaOXOm9uzZo+3bt1dyGfD0paWlqWvXrnJxcVGbNm0kSYcOHdKtW7e0Y8cOtWrVyuBC2JoJEybIYrFo2rRppXtB7927V1OnTtWwYcMUExNjcCEAwFbVr19fa9asUdu2beXu7q709HQ1atRIZ8+eVatWrVRQUGB0IgDYDQYEAACHVbduXW3btk2vvPLKA98/fPiwunfvrtzc3MoNA56Bjh07ys/PT8uWLSvdw7eoqEiRkZHKyspSSkqKwYWwNd7e3lq8eLF69epV5vrGjRsVHR2tixcvGlQGALB1rq6uOn78uBo1alRmQJCenq7XXnuNFZAA8BSxxRAAwGHl5eWpTp06D32/Tp06unbtWiUWAc9OWlqa3n///TIH/FWrVk1/+MMflJaWZmAZbFVeXp4CAgLuux4QEKC8vDwDigAA9qJ169bavHlz6WuTySRJWr58udq1a2dUFgDYJY6ABwA4rOLi4jIPS3/IyclJRUVFlVgEPDseHh66cOHCfQ90s7Oz5e7ublAVbFlQUJDi4uK0cOHCMtfj4uIUFBRkUBUAwB7MnDlT3bt314kTJ1RUVKQ///nPOnHihPbv3689e/YYnQcAdoUBAQDAYZWUlCgsLEzOzs4PfP/27duVXAQ8O/3799fQoUMVGxur9u3bS5L27duncePGKTQ01OA62KI5c+aoR48e2rlzZ+m3OVNTU5Wdna0tW7YYXAcAsGU/+9nPlJ6erlmzZqlFixal5yWlpqaqRYsWRucBgF3hDAIAgMMKDw8v130rVqx4xiXAs3fnzh2NGzdOixcvLl0ZU716dY0YMUKzZ89+6KAMeJRLly5p0aJFysjIkCQFBgYqOjpa3t7eBpcBAGzV3bt3FRUVpUmTJqlhw4ZG5wCA3WNAAAAA4EAKCwuVmZkpSWrcuLFcXV0NLgIAACjL09NTR44cYUAAAJWALYYAAAAciKurq7y8vEp/Bp5Efn6+LBaLTp48KUlq1qyZIiIi5OnpaXAZAMCW9e7dWxs2bNDo0aONTgEAu8cKAgAAAAdgtVr14Ycfau7cubpx44Ykyd3dXb///e81ceJEmc1mgwtha9LS0tS1a1e5uLioTZs2kqRDhw7p1q1bpXtFAwDwOP7vd5bOnTsrODhYbm5uZd4fNWqUQWUAYH8YEAAAADiACRMmyGKxaNq0aerQoYMkae/evZo6daqGDRummJgYgwthazp27Cg/Pz8tW7ZM1ardW5hcVFSkyMhIZWVlKSUlxeBCAICtetTWQiaTSVlZWZVYAwD2jQEBAACAA/D29tbixYvVq1evMtc3btyo6OhoXbx40aAy2CoXFxcdPnxYAQEBZa6fOHFCrVu3VmFhoUFlAAAAAMqLteQAAAAOIC8v774HuZIUEBCgvLw8A4pg6zw8PHThwoX7rmdnZ8vd3d2AIgAAAAAVxSHFAAAADiAoKEhxcXFauHBhmetxcXEKCgoyqAq2rH///ho6dKhiY2PVvn17SdK+ffs0btw4hYaGGlwHALA1Y8aM0YwZM+Tm5qYxY8Y88t558+ZVUhUA2D8GBAAAAA5gzpw56tGjh3bu3Kl27dpJklJTU5Wdna0tW7YYXAdbFBsbK5PJpMGDB6uoqEiSVL16dY0YMUKzZ882uA4AYGsOHz6su3fvlv78MCaTqbKSAMAhcAYBAACAg7h06ZIWLVqkjIwMSVJgYKCio6Pl7e1tcBlsxdGjR9W8eXOZzf/bqbSwsFCZmZmSpMaNG8vV1dWoPACAjcvKylLDhg0ZAgBAJWJAAAAAYMf4oI2nycnJSd98841q166tRo0a6dChQ/rJT35idBYAwE58/98Z6d52dgsXLlSdOnUMLgMA+8UhxQAAAHbM399fly9fLn3dv39/ffvttwYWwZbVqFFD586dkySdP39eVqvV4CIAgD354XdYt2zZops3bxpUAwCOgTMIAAAA7NiDPmjPmjXLoBrYuj59+ujnP/+56tWrJ5PJpNatW8vJyemB92ZlZVVyHQAAAICKYkAAAAAAoFyWLl2qkJAQnT17VqNGjdKwYcPk7u5udBYAwE6YTKb7tkVkm0QAeLYYEAAAANgxPmjjaevWrZsk6auvvtJ7773HgAAA8NSUlJQoLCxMzs7OkqTvvvtOw4cPl5ubW5n7kpKSjMgDALvEIcUAAAB2zGw2q3v37qUftJOTk9WpUyc+aAMAgConPDy8XPetWLHiGZcAgONgQAAAAGDH+KCNpykkJEQJCQny8PBQSEjII+9l6AQAAABUfWwxBAAAYMd48I+nydPTs3SLKk9PT4NrAAAAADwpVhAAAAAAqJCSkhJlZ2erVq1acnFxMToHAAAAwGMyGx0AAAAAwLaUlJTIz89POTk5RqcAAAAAeAIMCAAAAABUiNlslr+/v65evWp0CgAAAIAnwIAAAAAAQIXNnj1b48aN0/Hjx41OAQAAAPCYOIMAAAAAQIV5eXmpsLBQRUVFeu655+47iyAvL8+gMgAAAADlVc3oAAAAAAC2Z8GCBUYnAAAAAHhCrCAAAAAAAAAAAMABsYIAAAAAQIUVFBQ88LrJZJKzs7Oee+65Si4CAAAAUFGsIAAAAABQYWazWSaT6aHv+/j4KCwsTFOmTJHZbK7EMgAAAADlxQoCAAAAABWWkJCgiRMnKiwsTG3atJEkHTx4UImJifrggw90+fJlxcbGytnZWX/84x8NrgUAAADwIKwgAAAAAFBhnTt3VlRUlPr161fm+tq1a7VkyRLt2rVLK1euVExMjDIyMgyqBAAAAPAoDAgAAAAAVJiLi4uOHj0qf3//MtfPnDmjoKAgFRYW6ty5c2rWrJkKCwsNqgQAAADwKGwGCgAAAKDCfH19ZbFY7rtusVjk6+srSbp69aq8vLwqOw0AAABAOXEGAQAAAIAKi42NVd++fbV161b99Kc/lSSlpaUpIyND69atkyQdOnRI/fv3NzITAAAAwCOwxRAAAACAx3L+/HktWbJEp06dkiQ1adJEUVFRatCggbFhAAAAAMqFAQEAAACAp+r48eNq3ry50RkAAAAAfgRnEAAAAAB4YtevX9fSpUvVpk0bBQUFGZ0DAAAAoBwYEAAAAAB4bCkpKRoyZIjq1aun2NhYderUSQcOHDA6CwAAAEA5cEgxAAAAgArJzc1VQkKCLBaLCgoK1K9fP92+fVsbNmxQ06ZNjc4DAAAAUE6sIAAAAABQbj179lSTJk109OhRLViwQJcuXdJf/vIXo7MAAAAAPAZWEAAAAAAot61bt2rUqFEaMWKE/P39jc4BAAAA8ARYQQAAAACg3Pbu3avr168rODhYr776quLi4nTlyhWjswAAAAA8BlNJSUmJ0REAAAAAbMvNmze1Zs0axcfH6+DBgyouLta8efMUEREhd3d3o/MAAAAAlAMDAgAAAABP5NSpU7JYLFq5cqXy8/PVpUsXbdq0yegsAAAAAD+CAQEAAACAp6K4uFjJycmKj49nQAAAAADYAAYEAAAAAAAAAAA4IA4pBgAAAAAAAADAATEgAAAAAAAAAADAATEgAAAAAAAAAADAATEgAAAAAAAAAADAATEgAAAAAAAAAADAATEgAAAAAAAAAADAATEgAAAAAAAAAADAATEgAAAAAAAAAADAAf0//R8Od0e39jgAAAAASUVORK5CYII=\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "# Split features and target\n", "X = df_encoded.drop(columns=['total_emission'])\n", "y = df_encoded['total_emission']\n", "\n", "# Fit Random Forest\n", "rf = RandomForestRegressor(n_estimators=100, random_state=42)\n", "rf.fit(X, y)\n", "\n", "# Feature importance\n", "importances = rf.feature_importances_\n", "feature_names = X.columns\n", "importance_df = pd.DataFrame({'Feature': feature_names, 'Importance': importances})\n", "importance_df = importance_df.sort_values(by='Importance', ascending=False)\n", "\n", "# Plot top 20 important features\n", "plt.figure(figsize=(12, 8))\n", "sns.barplot(data=importance_df.head(20), x='Importance', y='Feature', palette='viridis')\n", "plt.title(\"🌲 Random Forest Feature Importance (Top 20)\", fontsize=16)\n", "plt.tight_layout()\n", "plt.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 785 }, "id": "cMcbvbZ9waj5", "outputId": "940be531-a091-4f1f-9cbd-d7ab62429fbc" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYFFf/NvB76B0EUUCpSlNRwRYrGo1YI1YsCaBYYomxEHsBe+/dKKAxj71FY+9i14ANsETEKPaCWJBy3j98d36uu4uguMTk/lzXXpc7c2bmOzO75Nn7OeeMJIQQICIiIiIiIiIi0iKdwi6AiIiIiIiIiIj+exhKERERERERERGR1jGUIiIiIiIiIiIirWMoRUREREREREREWsdQioiIiIiIiIiItI6hFBERERERERERaR1DKSIiIiIiIiIi0jqGUkREREREREREpHUMpYiIiIiIiIiISOsYShERERWw69evIzExMU+vly9f5mmf0dHRkCRJ6aWjowMLCwv4+vpi6NChePDgwWc+s4JRt25dSJKEgwcPFnYpH+XgwYMq90Ld6+nTp4Vd6j+C4n7n9urXr19hl/mvEBoaCkmSEBoaWtil0D/Uli1bIEkSpk+fDgCIiIjI09+z91//hL/fSUlJmDVrFpo0aYISJUrAwMAAFhYWqFKlCiZOnIj09PRct7937x769OkDV1dXGBoaonjx4mjbti3OnTuntv3Ro0chSRIGDRr0OU6H6D9Lr7ALICIi+repX78+bt68mae2Bw4cQN26dfO8b1NTU7Rp0wYAkJ2djZs3b+L48eOIi4tDVFQUjhw5And3948pmz5CSEiIxnUGBgZarOTzCQ0NRUxMDKKioj4p7KhQoQIqVqyodl3VqlU/er+fQpIkAIAQolCOTwUvIiICkZGRGD16NCIiIgq7nH+UjIwMDBgwAI6OjujduzcAoGLFimr/ju3cuRP37t3T+L21s7P73OV+UP369XH79m0YGRmhcuXKqFOnDu7du4fjx4/jzJkzWLZsGfbv3w8nJyeVba9cuYLatWvj/v37cHNzQ2BgIG7cuIH169dj8+bNWLt2LVq2bKm0Ta1atdC0aVPMnj0b3bp1439riQoIQykiIqLPIC8/4PX08v+f4aJFiyI6Olpp2aVLl+Dv74979+6hX79+2L59e773Sx/n/XtBmgUGBjIkICpEc+fOxV9//YX58+fDyMgIwNvvZWBgoErbunXr4t69e//o762npyfGjBmDdu3awczMTF6enJyMZs2a4dKlSwgNDcX+/fuVthNCoH379rh//z6+//57REVFQVdXFwCwZMkS9OjRA8HBwbh69apK+BYZGYnt27dj8ODB2Lhx4+c/SaL/AA7fIyIi+sKVLVsWAwYMAADs2bMHGRkZhVwRERH9k2RnZ2Pu3LkwMjJCp06dCrucArFv3z506dJFKZACABcXFyxatAjA297If//9t9L6HTt24M8//4SVlRUWLFggB1IA0L17d9SvXx/p6emYPXu2yjErVaqEChUqYMuWLUhOTi74kyL6D2IoRURE9C9Qvnx5AEBmZiYeP36stO7BgweYM2cOmjRpAldXVxgbG8PCwgKVK1fG5MmT8fr1a7X7VMwdAgAbNmxArVq1YGFhAVNTU9SsWRN//PGHxnpu3bqFLl26wN7eHkZGRnB3d8fw4cPx6tWrXM/j5cuXmDRpEvz8/GBubg4TExOULVsWI0aMwJMnT1TaJycnQ5IkuLi4ICcnB3PmzEH58uVhYmICe3t7/PDDD/L1yMjIwNixY+Hl5QVjY2M4ODjgp59+wosXL3KtqaDs2rULzZo1Q7FixWBgYAAHBwcEBQXhzJkzatu/O/fWkSNH0Lx5c9ja2kJHR0eph9arV68wffp0fPXVV7CysoKRkRE8PT0xaNAgPHr0SO2+161bhwYNGsDGxgb6+vqwsbFBmTJl0K1bN5w/fx7A/13bmJgYAEDnzp2V5pT5nL0nrly5gh49eqBUqVIwMjKCpaUl6tSpg19//VVt+5s3b2Ly5Mn4+uuv4eTkBENDQ1hZWaFWrVpYvHgxcnJylNor5tFReH++HMWPTUU7TeeqmF/s/SG47y5/+fIlRo0aBW9vb5iYmMDFxUWp7dmzZ9GpUye5bmtrawQEBOT6/cqvd+vJyMhAZGQkPDw8YGRkBCcnJwwePFj+O/Ds2TOEh4fDzc0NRkZGcHFxQUREBLKyslT2q5jDKjo6GvHx8WjVqhVsbW1hbGyM8uXLY/bs2cjOztZY1+rVq1G/fn1YW1vD0NAQzs7O6NKlC65cuaK2vYuLi3x/tmzZgq+//hrW1tby90SSJERGRgJ426Pl3Xv6bs/Vy5cvY/To0ahZs6Y8F5GNjQ0aNGiAtWvXfvAaZmZmYvLkyShbtiyMjY1hY2ODVq1aISEhQeO5PnnyBGPGjEHlypVhaWkJY2NjuLm5oV27dtixY4dK+6ysLPzyyy+oW7eufH1cXV3Rs2dP3Lp1S+NxNNm6dStSUlIQGBgIS0vLfG//vk+5d5s2bZL/e2Jubo66desW6OcdAHx9feV/v3+9Nm3aBAD49ttvVQItAOjYsSMAaOwJFRoaipycHCxcuLCgyiX6bxNERERUoJydnUVUVNQH2+nq6ooDBw7kaZ9RUVECgHB2dla7ftWqVQKA0NXVFW/evFFat3LlSgFAlChRQvj7+4v27duL+vXrCzMzMwFAVK9eXbx+/VplnwAEADFq1CghSZKoWbOmCAoKEhUqVBAAhCRJYuPGjSrbJSQkiGLFigkAwt7eXrRt21Y0adJEGBsbi+rVq4vq1asLACrn/ujRI1GxYkUBQFhYWIhvv/1WtG7dWhQtWlQAEK6uruLGjRtK29y4cUO+Lh06dBDGxsaiUaNGIjAwUK7B19dXpKeni1q1asn7bdasmbC0tBQAROPGjfN0DxQOHDggX5u8GjFihHzNatasKTp06CCfq66urli2bJnKNv7+/gKA6NWrl9DR0RFlypQR7du3Fw0bNhS//fabEEKI27dvCx8fHwFAWFtbiwYNGoiWLVsKZ2dnAUC4uLiI5ORkpf1GRkYKAEJPT0/UqVNHdOjQQTRp0kSUK1dOSJIkZs6cKYQQ4sGDByIkJESUKlVKABA1a9YUISEh8mvTpk15OnfFeYwePTpP7deuXSuMjIwEAOHl5SVatmwpvv76a2FqaioAiM6dO6tsM3bsWPkzUr9+fdG+fXvh7+8vDAwMBADRqlUrkZOTI7fftGmTCAkJke/ju+cVEhIiHjx4IIQQYvTo0bnWrvgs+Pv7q11erVo1UaVKFWFqaioaN24sgoKCRIMGDeR2s2bNEjo6OgKAqFixomjTpo2oVauWXHdkZGSerpmC4pxCQkLU1lO9enXh7++v9nvQrFkz8ejRI+Hp6SlsbW1F69atRcOGDeV78cMPP2g8Xs+ePYWRkZFwcXERQUFBomHDhvI5tGnTRunaCyFETk6OCA4Olj+HX3/9tWjfvr3w8PAQAISJiYnYsWOHyvEUn+s+ffoIAKJy5cqiQ4cOwt/fXxw+fFiEhITIf58qVKigdE+XLl0q7ycsLEz+fAUEBIigoCBRvXp1+V70799f5diKa1ijRg3RoEEDYWJiIho1aiRat24tHB0dBQBhZWWl8jdKCCHi4uJEiRIlBABhaWkpmjRpIh/T2NhY5fOTlpYm6tatKwAIMzMz4e/vL9q0aSM8PT0FAGFjYyPOnTuXyydBleJ6//LLL3lqr+l7+6n3rn///kr3rmrVqvL3cM6cOfk6p9z8+eef8n7fvyeVKlXK9Xjx8fHy3+v09HSV9RcvXhQAhIeHR4HVS/RfxlCKiIiogBVGKNWxY0cBQDRt2lRl3eXLl8Xx48dVlj9+/Fg0bNhQABBTpkxRWa/4H/RWVlbixIkTSusUP9bV/Y/yKlWqCACiXbt24tWrV/LymzdvygGHulAqKChI/iH/8OFDefnz589F48aN5R+E71KEUgBEqVKllAKYhw8fCnd3dwFA+Pj4iKpVqyrt96+//hJFihQRAMTRo0dVzkOT/IZSO3bsEACEkZGR2L17t9K6X375RQAQ+vr64uLFi0rrFD8KAYj58+er7DcnJ0fUrFlTABBhYWEiLS1NXpeZmSkGDhwoAIh69erJy1+/fi2MjY2FmZmZSExMVNlncnKySEhIUFqmCB7y8plWJz+h1Pnz54WhoaEwMjISGzZsUKlNEcDFxMQorTt16pS4cOGCyv5u374thxRr165VWf+h+/ipoRQAUb58eZGamqqy7c6dO4UkSaJo0aLi0KFDSuvOnz8vSpYsKQCIgwcPaqzvfR8KpQCofA+Sk5Pl74GPj49o3ry5ePHihbz+9OnTQk9PT+jo6IibN2+qPZ4iPM3MzJTXXbx4Udja2goAYtGiRUrbLVy4UAAQRYsWFX/++ae8PCcnR77mVlZW4v79+0rbKYINXV1dsWXLFrXX4EP3TAghDh48KK5fv66yPDExUb7uJ0+eVFr37jX09fVVuqevXr0SAQEBAoDo3r270nbp6elyaBUcHCyeP3+utP7p06diz549SssUf8+bNWsm7t27p7Ru5syZAoBwd3cXWVlZGs/xfYoaLl26lKf2mr63n3rvJEkSv/76q9K61atXC0mShJ6entrv8cdQ/PfEz89PZZ21tbUAIDZv3qx228ePH8v3+v2/y0K8PVcrKysBQNy6datA6iX6L2MoRUREVMC0FUplZWWJ69evi8GDB8vr1P3Qyk1SUpIAIKpUqaKyLrf/9/r169dyD4uUlBR5+dGjRwUAYWpqqvTDV2HTpk1qQ6mbN28KHR0dIUmSiI+PV9nu77//lntsxMbGysvfDaW2b9+ust2MGTPkH0Lqfuz8+OOP+e6R8u6PU02vd+9//fr1BQAxYMAAtftr1qyZACC6deumtFzxo/Drr79Wu50i7KpYsaJSGKCQnZ0typUrJwDI537//n05KMmrggqlNL3e/UwrfkhOmzZN7b5OnTolAIhKlSrl+fi7du0SAETbtm1V1mkjlDp8+LDabatVqyYAiPXr16tdv3btWgFAtG7dWmN97/tQKKXpe9C3b1+5V877IYgQQjRv3lxtGKg4nr29vVIArTB37lw5QHmXIpxW97clJydHlC9fXgAQ48ePV1qnCDa6dOmi8RrkJZTKzeLFiwUA8fPPPystf/caxsXFqWx34sQJAUC4ubkpLZ81a5b8Pc1LiHT58mUhSZJwcHBQCprf1aRJEwFA/P7773k6pwcPHggAQkdHJ89BlqZQ6lPvXWBgoNrjtW7dWu3fwY+h+O+lrq6uOHLkiMp6fX19AUAlDFR48+aN/P09duyY2jaKHr+awlEiyjs+fY+IiOgLcvPmTaW5cBSqVq2K3bt3a5wrJDs7GwcPHsSxY8eQmpqKV69eQbz9P6cAAElJSRqP2bx5c5VlhoaGcHNzw59//onbt2/D0dERwNt5VwCgUaNGsLGxUdmuRYsWsLS0xLNnz5SWHz58GDk5OfDz85Pnx3pXiRIlEBAQgC1btuDAgQOoUaOG0no9PT00bNhQZTvFI7udnJxQrlw5jevv3Lmj7tQ/SN2j1AGgdOnSAN7OCxMbGwsAGp/GGBYWhm3btuHAgQNq17dp00btcsVTFlu3bq32SY46OjqoU6cOLl68iGPHjqFcuXKwtbWFi4sLzp8/j4EDByIsLAxlypTJ9RwLiqZHyxctWhQAkJOTI8+tExQUpHYflStXhpmZGf7880+8fv1afoIY8HbOsN27d+P06dO4f/8+MjIyIITA8+fPAeT+Gf9cihUrhtq1a6ssf/jwIU6dOgVjY2O13y8A8jxVx44dK7B6PvQ9qFSpEooVK6ZxvabvSbt27ZTuhUJISAh+/PFHXL16FXfu3IGDgwP+/vtvXL9+XV7/PkmS0LlzZ/Tv3x8HDhzAsGHDVNpo+k7kR3p6ujzh9cOHD/HmzRsAQGpqKgDNnxcnJydUqFBBZbm3tzcA4Pbt20rLd+7cCeDt9/zdCbU1+eOPPyCEQOPGjWFubq62jWIOpmPHjqFZs2Yf3Oe9e/cAAJaWlnmqQZOCuHea/maGhIRgw4YN8n9DPta+ffvQo0cPAMCUKVNQq1atT9qfJor/vimuLRF9PIZSREREXxBTU1P5B1lGRgYSEhIQHx+PU6dOoUePHli9erXKNlevXkXLli1x6dIljftNS0vTuM7JyUntcgsLCwBQmihd8ZQjV1dXtdsoJiWPj49XWq74IadpOwAoVaqUUtt32dvbqw1mFJPYajoHxY8+TZO9f8i7E46r8+jRI3nfms4tt/MCoDIxtsJff/0FABg5ciRGjhyZax0PHjyQ/71ixQq0adMGM2bMwIwZM2BtbY1q1arhm2++wffffy+HRAXtQ4+Wf/Tokfw5VIScuXn06BFKlCgBADhx4gSCgoKQkpKisX1un/HPRdO9u3HjBoQQePXqFQwNDXPdx7v37lNp+h586vdE02fb3NwcNjY2ePToEf7++284ODjIn3MbGxv5b8j7PvY7kVe///47OnfurPFBAIDmz8uH/h6+//TTmzdvAgC8vLzyVJvie71s2TIsW7Ys17Z5/Wwo/k8ATdc7rwri3mn6rCiWv/+kvPw4evQoWrRogTdv3mD06NHyU2nfZ25ujsePH2t8yEV6err8b03nqViu7gEcRJQ/DKWIiIi+IEWLFlUJQjZu3IigoCCsWbMGderUQa9evZTWt2nTBpcuXUKzZs0waNAglClTBhYWFtDX18ebN28++KNYR+ef/7DeD9X4JZyDJsbGxmqXK54oV6tWLfmHoCZly5aV/127dm0kJydj+/btOHToEI4dO4Zdu3Zhx44dGD16NDZt2oT69esX3Ank0btPyNPUm+Jdis/ty5cvERgYiHv37qFz587o2bMnSpcuDQsLC+jq6uLKlSvw9PSUewV+rprV+dC9MzMzQ+vWrQu8Lk0K83tSkNdf03XNi9u3byMoKAivXr3CoEGD0KlTJ7i4uMDMzAw6OjrYvXs3AgICNNb7uf+WKD4bFStWVNsj613VqlXL0z6trKwAFE4wm18f+zk5duwYmjRpghcvXmD48OG5BuAuLi54/PixxhBb8bQ+SZLg7Oysto0i6CtSpMhH1UtE/4ehFBER0ReuVatWGDJkCMaNG4dRo0ahU6dO8jC+xMREnD9/HsWKFcOmTZtUehNdvXq1QGtR9FxJTk7W2EbRc0DddopeAuoo1inafglsbGxgaGiIjIwM/PXXX2qHJn7seSl6E7Vo0QLh4eH52tbY2Bht2rSRe909ePAAI0aMwJIlS9ClSxe19+hzK1q0KIyNjfHq1StMmzYtzz22Dh8+jHv37sHPzw/Lly9XWf8pn3EDAwMAkIcAvu9jr5Pi3kmShOXLl3/RoSnwtueXOs+fP5d7I5UsWRLA/33OFT3j1PVE+Zzf9d9//x2vXr1Cy5YtMXnyZJX1Bf030cnJCQkJCUhMTESDBg0+2F7x2ahZsybmzZtXIDUohmQ+ffoU2dnZHz2EryDu3Y0bN9SGbYr/Zig+J/lx4sQJNGrUCM+fP8ewYcMwbty4XNv7+fnh3LlzOHPmjNr1iuXu7u5yL8L3KT7XxYsXz3e9RKTsy/4vIBEREQEAhg4dCnt7ezx69AgzZsyQlz9+/BgA4ODgoHZ426+//lqgdfj7+wN4O4+K4tjv2rp1K54+faqyvE6dOtDR0UFcXJzK0D7g7TwvirlZ6tWrV6A1f056enrynCaahvopgpT8nlfjxo0BAOvWrfvkXii2traYMmUKACAlJUVpSIoimMnKyvqkY3yIrq4uvvnmGwDA2rVr87yd4nOmaVhVbp9xfX19AJrPTfHDOiEhQe16xbxe+eXg4IDy5cvj+fPn8uf6S7Zu3TqVYWsAsHLlSgBv51hTXMuSJUvKPfvUfSeEEPLyj/muf+jzqvi8qOsBI4TAb7/9lu9j5qZRo0YA3n7Ps7OzP9he8b3eunXrRw8rfl/RokXh6OgIIQQSExM/ej8Fce8Un4n3rVixAsD/zaWWV6dOnUJAQIAcSI0fP/6D27Rs2RLA22usbgif4jPQqlUrtdvn5OTIfxMqVaqUr3qJSBVDKSIion8BExMTeV6hWbNmyaGCh4cHdHV1ceHCBZUJZH///XfMnDmzQOuoXbs2/Pz8kJ6ejt69eyv9UL1165bGHj1OTk5o27YthBDo0aOH0lwvL168QPfu3fH69WvUqFFDZZLzf7qBAwcCABYuXIh9+/YprYuOjsbWrVuhr6+Pn376KV/7bdGiBapUqYJTp06hc+fOaueXefLkCRYtWiT/QL958yZ++eUXtcN4fv/9dwBvh6O82wNC0XMhtznJCsro0aNhYGCAn3/+GTExMWqHx128eBEbN26U3ysmmN63bx8uX76s1HbJkiVYs2aNxuN96Ny+/vpr6OjoYNeuXTh06JC8XAiBOXPmYMOGDXk/ufcoenN07txZvvbvEkLg5MmT2L1790cfQ1vu3LmD8PBwpdAlISEBY8aMAQD0799fqb3i78DYsWOVQmghBMaNG4e4uDhYWVmhW7du+a7lQ/dU8XlZv369PKk58PZhEKNGjSrQieUBoGvXrihZsiT+/PNPdOvWTSUESUtLw969e+X3vr6+aN26NW7duoVWrVqp7XX64sULrFq1Kl+TbCtCouPHj3/cifx/n3rvNm3apDL34fr167Fhwwbo6enhxx9/zHMtZ86cQcOGDZGWlpbnQAp4G/z5+vri6dOn6NWrl9LndsmSJdi3bx/MzMw0/k2+dOkSnj17Bg8Pjy+q5y7RP5aWn/ZHRET0r+fs7CyioqI+2E5XV1ccOHAgT/tUPOLa2dlZY5s3b97Ij+seNmyYvPynn36SHwfu7+8vOnToIPz8/AQAMWLECPnR1+/TtFxB8cjw98/h0qVLwtbWVgAQDg4Ool27dqJZs2bCxMREfPXVV/KjtN/f7uHDh6JChQoCgLC0tBSBgYGiTZs28r5cXV3FjRs3lLa5ceNGrtdF8Rh3f39/tesV1zUkJETjeWraZ37+Z5TiOkuSJGrVqiU6duwo3wNdXV2xbNkylW00Xd933b59W1SsWFEAEKampqJGjRqiffv2olWrVqJixYpCV1dXABCvXr0SQgjx559/CgBCX19fVKlSRbRr1060a9dO+Pr6yvX98ssvSseIj48XOjo6QkdHRzRo0EB07txZhIWF5flR6JoeLa/J2rVrhYmJiQAgSpYsKRo2bCg6deokGjduLEqWLCkAiKCgIKVtWrRoIQAIAwMD0bBhQ9G+fXvh5eUlJEkSw4cP1/gZCQ8PFwBE0aJFRbt27URYWJgICwsTDx8+lNsovj+6urqibt26olWrVqJUqVJCX19fDBkyRO3n60OfO4XZs2cLPT09AUCULl1aNG3aVHTs2FF88803olixYgKAGDx4cJ6umxBChISEqP08f+r3YPTo0WrvoeJ4P/zwgzAyMhKurq6iffv2IiAgQBgYGAgAomXLliInJ0dpu5ycHPH9998LAEJPT0/Ur19fdOjQQXh6egoAwtjYWPzxxx8qdTg7OwsAKn8H3nX37l1hamoqAIiaNWuK0NBQERYWJpYvXy6EECIzM1NUqlRJABBmZmaiadOmol27dsLZ2Vno6+uLwYMHf/Q91fR34dy5c8LOzk4AEFZWVqJp06YiKChI1KhRQxgbG6vsMy0tTdSvX1/+TCu+q23bthVVqlSRr21CQoLGWt63ceNGAUC0a9cuT+01fW8/9d7169dPABBVqlQRHTt2FNWqVZOv24wZM/J8PkIIUaRIEfmahoSEaHypu06JiYnyf1vc3NxEUFCQqFq1qnxeGzdu1HjcGTNmCABi0KBB+aqXiNRjKEVERFTACiuUEkKI//3vfwKAMDc3l39Y5+TkiGXLlolKlSoJMzMzYWlpKWrVqiVWr14thND8Q+pjQykhhLh586YIDQ0VxYsXFwYGBsLNzU0MHjxYvHjxItftXrx4ISZOnCgqVqwoTExMhJGRkfD29hbDhg0Tjx8/Vmn/pYRSQgixY8cO0aRJE2FjYyP09PSEnZ2daNu2rTh58qTa9nkJpYQQ4vXr12LRokWiXr168r6LFSsmKlasKHr37i127dolt01LSxOzZs0SLVu2FO7u7sLMzEyYmpoKDw8PERwcLM6cOaP2GJs2bRI1a9YU5ubmQpKkfIVM+Q2lhHh7X/v37y/KlSsnTE1NhZGRkXB2dhZ169YVkyZNEteuXVNq/+bNGzF16lTh4+MjTExMhLW1tWjYsKHYvXt3rp+RV69eiUGDBonSpUvLP/TfDz1ycnLE9OnThbe3tzAwMBDW1taiefPm4uzZsxo/X3kNpYQQ4sKFC6J79+7C3d1dGBkZCRMTE+Hm5iYCAgLEnDlzxO3bt/N83QorlIqKihLnzp0TzZs3FzY2NsLQ0FCULVtWzJgxQ2RmZmqs97fffhN169YVVlZWQl9fXzg6OorQ0FCRmJiotn1eQikhhDh8+LBo0KCBKFKkiNDR0VE5t+fPn4thw4YJT09PYWRkJIoVKyYCAwPFmTNnPume5vZ34cGDB2LEiBHCx8dHmJqaCmNjYzkM2blzp0r77Oxs8dtvv4kmTZqI4sWLC319fWFjYyPKlSsnOnfuLDZt2iTevHmT63V4V1ZWlnBychJGRkZq/5a+70Pf20+5d2vXrhXVq1eX//7Url1b/P7773k+FwXF9f7QS9Pf0NTUVNG7d2/h7OwsDAwMhK2trWjVqpU4e/ZsrsetUKGC0NHR+eDnkIjyRhLiMzyKhIiI6D/MxcUFERERCA0NzbWdnp4e9u7dm+85NIiI/glCQ0MRExODqKioD/69o8I3bdo0/Pzzz5gzZ06+hskVBBcXF9y8eRM3btyAi4uLVo9dkM6ePYvKlSujZcuWSsOIiejjcU4pIiIiIiKif7kff/wRbm5umDJlSoFNov5fM2rUKBgYGKh9ciMRfRzVx/AQERHRJ0tNTf2kpxwREREVJENDQ8yYMQOBgYGYN2+exgdPkHpHjx7FH3/8gZ9//hnu7u6FXQ7RvwZDKSIios9g2LBhGDZsWGGXQUREJGvRogU4e8vHqVWrFq8d0WfAOaWIiIiIiIiIiEjrOKcUERERERERERFpHUMpIiIiIiIiIiLSOs4pRUT5lpOTgzt37sDc3BySJBV2OURERERERPQPIoTA8+fP4eDgAB0dzf2hGEoRUb7duXMHjo6OhV0GERERERER/YPdunULJUuW1LieoRQR5Zu5uTmAt39gLCwsCrkaIiIiIiIi+idJS0uDo6Oj/NtRE4ZSRJRviiF7FhYWDKWIiIiIiIhIrQ9N98KJzomIiIiIiIiISOvYU4qIPlpgmW7Q09Ev7DKIiIiIiIj+E3an/FrYJRQo9pQiIiIiIiIiIiKtYyhFRERERERERERax1CKiIiIiIiIiIi0jqEUERERERERERFpHUMpIiIiIiIiIiLSOoZSRERERERERESkdQyliIiIiIiIiIhI6xhKkUaSJGHz5s2FXcYH1a1bF/369fvH7OefKDo6GlZWVoVdBhEREREREZGModQXQJKkXF8REREat01OToYkSYiLiyvwukJDQ+UaDAwMULp0aYwZMwZZWVkFfqyCdPDgQUiShKdPnyot37hxI8aOHVs4Rb3HxcUFkiRh9erVKuvKli0LSZIQHR2t/cKIiIiIiIiICoheYRdAH5aamir/e82aNRg1ahSSkpLkZWZmZoVRFgCgUaNGiIqKQkZGBv744w/07t0b+vr6GDp0aKHV9LGsra0LuwQljo6OiIqKQvv27eVlJ06cwN27d2FqalqIlRERERERERF9OvaU+gLY2dnJL0tLS0iSJL8vVqwYZsyYgZIlS8LQ0BAVK1bEzp075W1dXV0BAL6+vpAkCXXr1gUAnD59Gt988w2KFi0KS0tL+Pv749y5c/muzdDQEHZ2dnB2dkbPnj3RoEEDbN26FQDw5MkTBAcHo0iRIjAxMUHjxo1x9epVeVvFkLLNmzfD3d0dRkZGCAgIwK1bt+Q2oaGhCAwMVDpmv3795PNQZ+XKlahcuTLMzc1hZ2eHjh074v79+wDe9hyrV68eAKBIkSKQJAmhoaEAVIfv5bX+Xbt2wdvbG2ZmZmjUqJFSiPgpOnXqhEOHDildj+XLl6NTp07Q01POk2fMmAEfHx+YmprC0dERvXr1Qnp6eq7737JlC/z8/GBkZAQ3NzdERkb+43u5ERERERER0b8HQ6kv3OzZszF9+nRMmzYN58+fR0BAAL799ls5PDl16hQAYO/evUhNTcXGjRsBAM+fP0dISAiOHj2KEydOwN3dHU2aNMHz588/qR5jY2O8efMGwNtA6cyZM9i6dSuOHz8OIQSaNGmCzMxMuf3Lly8xfvx4rFixArGxsXj69KlSz6CPkZmZibFjxyI+Ph6bN29GcnKyHDw5Ojpiw4YNAICkpCSkpqZi9uzZaveT1/qnTZuGlStX4vDhw0hJSUF4ePgn1a9QvHhxBAQEICYmRj7WmjVr0KVLF5W2Ojo6mDNnDi5duoSYmBjs378fgwYN0rjvI0eOIDg4GD/99BMuX76MxYsXIzo6GuPHjy+Q2omIiIiIiIg+hMP3vnDTpk3D4MGD5SBn8uTJOHDgAGbNmoX58+fD1tYWAGBjYwM7Ozt5u6+//lppP0uWLIGVlRUOHTqEZs2a5bsOIQT27duHXbt24ccff8TVq1exdetWxMbGokaNGgCAVatWwdHREZs3b0bbtm0BvA2Q5s2bh2rVqgEAYmJi4O3tjVOnTqFq1ar5vyCAUmjj5uaGOXPmoEqVKkhPT4eZmZk8TK9YsWIaJ//OT/2LFi1CqVKlAAB9+vTBmDFjPqpuTecycOBADB8+HOvXr0epUqVQsWJFlXbv9vBycXHBuHHj8MMPP2DBggVq9xsZGYkhQ4YgJCQEwNvrNHbsWAwaNAijR49WaZ+RkYGMjAz5fVpa2qedGBEREREREf3nsafUFywtLQ137txBzZo1lZbXrFkTCQkJuW577949dOvWDe7u7rC0tISFhQXS09ORkpKSrxq2bdsGMzMzGBkZoXHjxggKCkJERAQSEhKgp6cnh03A22DM09NTqTY9PT1UqVJFfu/l5QUrK6sP1p+bs2fPonnz5nBycoK5uTn8/f0BIF/nltf6TUxM5EAKAOzt7eWhguqULVsWZmZmMDMzQ+PGjT9YR9OmTZGeno7Dhw9j+fLlantJAW97wtWvXx8lSpSAubk5vv/+ezx69AgvX75U2z4+Ph5jxoyRazEzM0O3bt2QmpqqdpuJEyfC0tJSfjk6On6wdiIiIiIiIqLcsKfUf1RISAgePXqE2bNnw9nZGYaGhqhevbo89C6v6tWrh4ULF8LAwAAODg4qcx19Kh0dHQghlJa9O3zufS9evEBAQAACAgKwatUq2NraIiUlBQEBAfk+t7zQ19dXei9Jkkq97/rjjz/k+o2NjT+4fz09PXz//fcYPXo0Tp48iU2bNqm0SU5ORrNmzdCzZ0+MHz8e1tbWOHr0KMLCwvDmzRuYmJiobJOeno7IyEi0atVKZZ2RkZHKsqFDh2LAgAHy+7S0NAZTRERERERE9EkYSn3BLCws4ODggNjYWLk3EADExsbKQ98MDAwAANnZ2UrbxsbGYsGCBWjSpAkA4NatW3j48GG+azA1NUXp0qVVlnt7eyMrKwsnT56Uh789evQISUlJKFOmjNwuKysLZ86cketNSkrC06dP4e3tDQCwtbXFxYsXlfYdFxenEgYpJCYm4tGjR5g0aZIcmpw5c0apjaZr8jH155ezs3O+t+nSpQumTZuGoKAgFClSRGX92bNnkZOTg+nTp0NH523nx7Vr1+a6Tz8/PyQlJam9d+oYGhrC0NAw37UTERERERERacLhe1+4n3/+GZMnT8aaNWuQlJSEIUOGIC4uDj/99BOAt/MmGRsbY+fOnbh37x6ePXsGAHB3d8fKlSuRkJCAkydPolOnTnnquZNX7u7uaNGiBbp164ajR48iPj4e3333HUqUKIEWLVrI7fT19fHjjz/i5MmTOHv2LEJDQ/HVV1/JIdXXX3+NM2fOYMWKFbh69SpGjx6tElK9y8nJCQYGBpg7dy7++usvbN26FWPHjlVq4+zsDEmSsG3bNjx48EDtU+ryWr82eHt74+HDh4iKilK7vnTp0sjMzJTPeeXKlVi0aFGu+xw1ahRWrFiByMhIXLp0CQkJCVi9ejVGjBjxOU6BiIiIiIiISAVDqS9c3759MWDAAAwcOBA+Pj7YuXMntm7dCnd3dwBvh3/NmTMHixcvhoODgxyoLFu2DE+ePIGfnx++//579O3bF8WKFSvQ2qKiolCpUiU0a9YM1atXhxACf/zxh1IvJxMTEwwePBgdO3ZEzZo1YWZmhjVr1sjrAwICMHLkSAwaNAhVqlTB8+fPERwcrPGYtra2iI6Oxrp161CmTBlMmjQJ06ZNU2pTokQJeaLv4sWLo0+fPh9dv7bY2NhoDA0rVKiAGTNmYPLkyShXrhxWrVqFiRMn5rq/gIAAbNu2Dbt370aVKlXw1VdfYebMmR/Vk4uIiIiIiIjoY0gitwlwiD6j6Oho9OvXD0+fPi3sUiif0tLSYGlpiXol2kFPR/shHRERERER0X/R7pRfC7uEPFH8Znz27BksLCw0tmNPKSIiIiIiIiIi0jqGUkREREREREREpHUMpajQhIaGcugeERERERER0X8UQykiIiIiIiIiItI6hlJERERERERERKR1DKWIiIiIiIiIiEjrGEoREREREREREZHWMZQiIiIiIiIiIiKt0yvsAojoy7X58lJYWFgUdhlERERERET0BWJPKSIiIiIiIiIi0jqGUkREREREREREpHUMpYiIiIiIiIiISOsYShERERERERERkdYxlCIiIiIiIiIiIq1jKEVERERERERERFqnV9gFENGXq3X1gdDXNSjsMoiI/pP+OD+/sEsgIiIi+iTsKUVERERERERERFrHUIqIiIiIiIiIiLSOoRQREREREREREWkdQykiIiIiIiIiItI6hlJERERERERERKR1DKWIiIiIiIiIiEjrGEoREREREREREZHWMZQiIiIiIiIiIiKtYyhF9IWLiIhAxYoVC7sMIiIiIiIionxhKPUFCw0NhSRJmDRpktLyzZs3Q5KkfO3LxcUFs2bNylM7SZKUXiVLlszXsQpaXmv/twoPD8e+ffsKuwwiIiIiIiKifGEo9YUzMjLC5MmT8eTJE60dc8yYMUhNTZVff/7550fvKzMzswAr+/fJzs5GTk5Orm3MzMxgY2OjpYqIiIiIiIiICgZDqS9cgwYNYGdnh4kTJ+ba7ujRo6hduzaMjY3h6OiIvn374sWLFwCAunXr4ubNm+jfv7/c+yk35ubmsLOzk1+2trbyuoULF6JUqVIwMDCAp6cnVq5cqbStJElYuHAhvv32W5iammL8+PEAgC1btsDPzw9GRkZwc3NDZGQksrKyAABCCERERMDJyQmGhoZwcHBA3759813706dP0aNHDxQvXhxGRkYoV64ctm3bJq/fsGEDypYtC0NDQ7i4uGD69OlK27u4uGDChAno0qULzM3N4eTkhCVLlsjra9SogcGDBytt8+DBA+jr6+Pw4cMAgIyMDISHh6NEiRIwNTVFtWrVcPDgQbl9dHQ0rKyssHXrVpQpUwaGhoZISUnBwYMHUbVqVZiamsLKygo1a9bEzZs3AagO38vJycGYMWNQsmRJGBoaomLFiti5c6e8Pjk5GZIkYePGjahXrx5MTExQoUIFHD9+XOO1IyIiIiIiIipoDKW+cLq6upgwYQLmzp2Lv//+W22b69evo1GjRmjdujXOnz+PNWvW4OjRo+jTpw8AYOPGjShZsqRSD6iPsWnTJvz0008YOHAgLl68iB49eqBz5844cOCAUruIiAi0bNkSFy5cQJcuXXDkyBEEBwfjp59+wuXLl7F48WJER0fLgdWGDRswc+ZMLF68GFevXsXmzZvh4+OTr9pzcnLQuHFjxMbG4tdff8Xly5cxadIk6OrqAgDOnj2Ldu3aoX379rhw4QIiIiIwcuRIREdHK+1n+vTpqFy5Mv7880/06tULPXv2RFJSEgCgU6dOWL16NYQQcvs1a9bAwcEBtWvXBgD06dMHx48fx+rVq3H+/Hm0bdsWjRo1wtWrV+VtXr58icmTJ+OXX37BpUuXYG1tjcDAQPj7++P8+fM4fvw4unfvrjGAmz17NqZPn45p06bh/PnzCAgIwLfffqt0DAAYPnw4wsPDERcXBw8PD3To0EEOAt+XkZGBtLQ0pRcRERERERHRp5DEu7+g6YsSGhqKp0+fYvPmzahevTrKlCmDZcuWYfPmzWjZsqUcjnTt2hW6urpYvHixvO3Ro0fh7++PFy9ewMjICC4uLujXrx/69euX6zFdXFyQmpoKfX19edmECRPQt29f1KxZE2XLllXqPdSuXTu8ePEC27dvB/C2p1S/fv0wc+ZMuU2DBg1Qv359DB06VF7266+/YtCgQbhz5w5mzJiBxYsX4+LFi0rHfbemD9W+e/duNG7cGAkJCfDw8FBZ36lTJzx48AC7d++Wlw0aNAjbt2/HpUuX5OPUrl1b7v0lhICdnR0iIyPxww8/4MGDB3BwcMD+/fvlEKpGjRqoU6cOJk2ahJSUFLi5uSElJQUODg5K51+1alVMmDAB0dHR6Ny5M+Li4lChQgUAwOPHj2FjY4ODBw/C399fpfaIiAhs3rwZcXFxAIASJUqgd+/eGDZsmNymatWqqFKlCubPn4/k5GS4urril19+QVhYGADg8uXLKFu2LBISEuDl5aX2GJGRkSrLG5TpCn1dA43XnYiIPp8/zs8v7BKIiIiI1EpLS4OlpSWePXsGCwsLje3YU+pfYvLkyYiJiUFCQoLKuvj4eERHR8PMzEx+BQQEICcnBzdu3Mj3sX7++WfExcXJr+DgYABAQkICatasqdS2Zs2aKjVVrlxZpb4xY8Yo1detWzekpqbi5cuXaNu2LV69egU3Nzd069YNmzZt0tijR5O4uDiULFlSbSCVW+1Xr15Fdna2vKx8+fLyvyVJgp2dHe7fvw8AsLW1RcOGDbFq1SoAwI0bN3D8+HF06tQJAHDhwgVkZ2fDw8ND6VwPHTqE69evy/s1MDBQOo61tTVCQ0MREBCA5s2bY/bs2Rp7hKWlpeHOnTt5ug/vHsPe3h4A5HN539ChQ/Hs2TP5devWLbXtiIiIiIiIiPJKr7ALoIJRp04dBAQEYOjQoQgNDVVal56ejh49esjzML3Lyckp38cqWrQoSpcu/bGlwtTUVKW+yMhItGrVSqWtkZERHB0dkZSUhL1792LPnj3o1asXpk6dikOHDqntOaWOsbHxR9f7rvePJ0mS0kTknTp1Qt++fTF37lz89ttv8PHxkYcapqenQ1dXF2fPnpWHDSqYmZkp1fr+0LyoqCj07dsXO3fuxJo1azBixAjs2bMHX331VYGci+J4miZVNzQ0hKGh4Ucfi4iIiIiIiOh9DKX+RSZNmoSKFSvC09NTabmfnx8uX76ca5BkYGCg1CPoY3h7eyM2NhYhISHystjYWJQpUybX7fz8/JCUlJRrfcbGxmjevDmaN2+O3r17w8vLCxcuXICfn1+eai9fvjz+/vtvXLlyRW1vKUXt74qNjYWHh4dKgJSbFi1aoHv37ti5cyd+++03uRcZAPj6+iI7Oxv379+Xh/flh6+vL3x9fTF06FBUr14dv/32m0ooZWFhAQcHB8TGxioN9YuNjUXVqlXzfUwiIiIiIiKiz4Wh1L+Ij48POnXqhDlz5igtHzx4ML766iv06dMHXbt2hampKS5fvow9e/Zg3rx5AN7Ol3T48GG0b98ehoaGKFq0aL6P//PPP6Ndu3bw9fVFgwYN8Pvvv2Pjxo3Yu3dvrtuNGjUKzZo1g5OTE9q0aQMdHR3Ex8fj4sWLGDduHKKjo5GdnY1q1arBxMQEv/76K4yNjeHs7Jzn2v39/VGnTh20bt0aM2bMQOnSpZGYmAhJktCoUSMMHDgQVapUwdixYxEUFITjx49j3rx5WLBgQb6ugampKQIDAzFy5EgkJCSgQ4cO8joPDw906tQJwcHBmD59Onx9ffHgwQPs27cP5cuXR9OmTdXu88aNG1iyZAm+/fZbODg4ICkpCVevXlUKvN71888/Y/To0ShVqhQqVqyIqKgoxMXFycMKiYiIiIiIiP4JOKfUv8yYMWNUhmCVL18ehw4dwpUrV1C7dm34+vpi1KhRSpNtjxkzBsnJyShVqhRsbW0/6tiBgYGYPXs2pk2bhrJly2Lx4sWIiopC3bp1c90uICAA27Ztw+7du1GlShV89dVXmDlzphw6WVlZYenSpahZsybKly+PvXv34vfff4eNjU2+at+wYQOqVKmCDh06oEyZMhg0aJDcw8rPzw9r167F6tWrUa5cOYwaNQpjxoxRGQqZF506dUJ8fDxq166tMjwyKioKwcHBGDhwIDw9PREYGIjTp0/nOozSxMQEiYmJaN26NTw8PNC9e3f07t0bPXr0UNu+b9++GDBgAAYOHAgfHx/s3LkTW7duhbu7e77PhYiIiIiIiOhz4dP3iCjfFE9S4NP3iIgKD5++R0RERP9UfPoeERERERERERH9YzGUIiIiIiIiIiIirWMoRUREREREREREWsdQioiIiIiIiIiItI6hFBERERERERERaR1DKSIiIiIiIiIi0jqGUkREREREREREpHV6hV0AEX25NhyfDgsLi8Iug4iIiIiIiL5A7ClFRERERERERERax1CKiIiIiIiIiIi0jqEUERERERERERFpHUMpIiIiIiIiIiLSOoZSRERERERERESkdQyliIiIiIiIiIhI6/QKuwAi+nK1bTgS+nqGhV0GEX1m245OKewSiIiIiOhfiD2liIiIiIiIiIhI6xhKERERERERERGR1jGUIiIiIiIiIiIirWMoRUREREREREREWsdQioiIiIiIiIiItI6hFBERERERERERaR1DKSIiIiIiIiIi0jqGUkREREREREREpHUMpYiIiIiIiIiISOsYShH9g4WGhiIwMFD+tyRJkCQJBgYGKF26NMaMGYOsrCwAwMGDB+X1kiShePHiaN26Nf766y95f5IkYfPmzbkeh4iIiIiIiEgbGEoRfUEaNWqE1NRUXL16FQMHDkRERASmTp2q1CYpKQl37tzBunXrcOnSJTRv3hzZ2dmFVDERERERERGRegyliL4ghoaGsLOzg7OzM3r27IkGDRpg69atSm2KFSsGe3t71KlTB6NGjcLly5dx7dq1QqqYiIiIiIiISD29wi6AiD6esbExHj16lOt6AHjz5s0nHScjIwMZGRny+7S0tE/aHxERERERERF7ShF9gYQQ2Lt3L3bt2oWvv/5abZvU1FRMmzYNJUqUgKen5ycdb+LEibC0tJRfjo6On7Q/IiIiIiIiIoZSRF+Qbdu2wczMDEZGRmjcuDGCgoIQERGh1KZkyZIwNTWFg4MDXrx4gQ0bNsDAwOCTjjt06FA8e/ZMft26deuT9kdERERERETE4XtEX5B69eph4cKFMDAwgIODA/T0VL/CR44cgYWFBYoVKwZzc3Oldebm5nj27JnKNk+fPoWlpaXG4xoaGsLQ0PDTT4CIiIiIiIjo/2NPKaIviKmpKUqXLg0nJye1gRQAuLq6olSpUiqBFAB4enri7NmzSsuys7MRHx8PDw+Pz1IzERERERERkTrsKUX0HzJgwACEhYXBy8sL33zzDV68eIG5c+fiyZMn6Nq1a2GXR0RERERERP8hDKWI/kM6dOgAIQRmzJiBIUOGwMTEBJUqVcLhw4dRvHjxwi6PiIiIiIiI/kMkIYQo7CKI6MuSlpYGS0tLNKzWF/p6nGuK6N9u29EphV0CEREREX1BFL8Znz17BgsLC43tOKcUERERERERERFpHUMpIiIiIiIiIiLSOoZSRERERERERESkdQyliIiIiIiIiIhI6xhKERERERERERGR1jGUIiIiIiIiIiIirWMoRUREREREREREWqdX2AUQ0Zdr3e6xsLCwKOwyiIiIiIiI6AvEnlJERERERERERKR1DKWIiIiIiIiIiEjrGEoREREREREREZHWMZQiIiIiIiIiIiKtYyhFRERERERERERax1CKiIiIiIiIiIi0Tq+wCyCiL1eb1uOhr29Y2GUQ/SNt/2NMYZdARERERPSPxp5SRERERERERESkdQyliIiIiIiIiIhI6xhKERERERERERGR1jGUIiIiIiIiIiIirWMoRUREREREREREWsdQioiIiIiIiIiItI6hFBERERERERERaR1DKSIiIiIiIiIi0jqGUv8AoaGhCAwM/OzHiYiIQMWKFT/7cT4nSZKwefPmQjn2+9evIO7byJEj0b17908r7BPt3LkTFStWRE5OTqHWQURERERERP8tDKU+IDQ0FJIkQZIk6Ovro3jx4vjmm2+wfPnyAvsRP3v2bERHRxfIvv7tUlNT0bhx40I5dnh4OPbt21dg+7t79y5mz56N4cOHqyz/8ccf4ebmBkNDQzg6OqJ58+Yqxz527BiaNGmCIkWKwMjICD4+PpgxYways7PlNsnJyQgLC4OrqyuMjY1RqlQpjB49Gm/evJHbNGrUCPr6+li1alWBnRsRERERERHRhzCUyoNGjRohNTUVycnJ2LFjB+rVq4effvoJzZo1Q1ZWlsbtMjMz87R/S0tLWFlZFVC12vVuuKENdnZ2MDQ01OoxFczMzGBjY1Ng+/vll19Qo0YNODs7y8uSk5NRqVIl7N+/H1OnTsWFCxewc+dO1KtXD71795bbbdq0Cf7+/ihZsiQOHDiAxMRE/PTTTxg3bhzat28PIQQAIDExETk5OVi8eDEuXbqEmTNnYtGiRRg2bJhSLaGhoZgzZ06BnRsRERERERHRhzCUygNDQ0PY2dmhRIkS8PPzw7Bhw7Blyxbs2LFDqYeTJElYuHAhvv32W5iammL8+PHIzs5W6qni6emJ2bNnK+3//WFgdevWRd++fTFo0CBYW1vDzs4OERERSts8ffoUXbt2ha2tLSwsLPD1118jPj5eqc2kSZNQvHhxmJubIywsDK9fv/7guR46dAhVq1aFoaEh7O3tMWTIEKXgrW7duujTpw/69euHokWLIiAgAACwdetWuLu7w8jICPXq1UNMTAwkScLTp08BAI8ePUKHDh1QokQJmJiYwMfHB//73/+Ujp2X835/+N7ff/+NDh06wNraGqampqhcuTJOnjyp9tzevHmDPn36wN7eHkZGRnB2dsbEiRPl9SkpKWjRogXMzMxgYWGBdu3a4d69e/L6Dw1/XL9+PXx8fGBsbAwbGxs0aNAAL1680Nh+9erVaN68udKyXr16QZIknDp1Cq1bt4aHhwfKli2LAQMG4MSJEwCAFy9eoFu3bvj222+xZMkSVKxYES4uLujatStiYmKwfv16rF27FsDbQDUqKgoNGzaEm5sbvv32W4SHh2Pjxo1Kx23evDnOnDmD69eva6yXiIiIiIiIqCAxlPpIX3/9NSpUqKDy4z4iIgItW7bEhQsX0KVLF+Tk5KBkyZJYt24dLl++jFGjRmHYsGFyaKBJTEwMTE1NcfLkSUyZMgVjxozBnj175PVt27bF/fv3sWPHDpw9exZ+fn6oX78+Hj9+DABYu3YtIiIiMGHCBJw5cwb29vZYsGBBrse8ffs2mjRpgipVqiA+Ph4LFy7EsmXLMG7cOJXaDAwMEBsbi0WLFuHGjRto06YNAgMDER8fjx49eqgMSXv9+jUqVaqE7du34+LFi+jevTu+//57nDp1Kl/n/a709HT4+/vj9u3b2Lp1K+Lj4zFo0CCNwyrnzJmDrVu3Yu3atUhKSsKqVavg4uICAMjJyUGLFi3w+PFjHDp0CHv27MFff/2FoKCgXK+ZQmpqKjp06IAuXbogISEBBw8eRKtWreQeS+97/PgxLl++jMqVKyst27lzJ3r37g1TU1OVbRS96Xbv3o1Hjx4hPDxcpU3z5s3h4eGhEvi969mzZ7C2tlZa5uTkhOLFi+PIkSNqt8nIyEBaWprSi4iIiIiIiOhT6BV2AV8yLy8vnD9/XmlZx44d0blzZ6VlkZGR8r9dXV1x/PhxrF27Fu3atdO47/Lly2P06NEAAHd3d8ybNw/79u3DN998g6NHj+LUqVO4f/++PJRt2rRp2Lx5M9avX4/u3btj1qxZCAsLQ1hYGABg3Lhx2Lt3b669pRYsWABHR0fMmzcPkiTBy8sLd+7cweDBgzFq1Cjo6OjI9UyZMkXebsiQIfD09MTUqVMBAJ6enrh48SLGjx8vtylRooRSiPLjjz9i165dWLt2LapWrZqn837fb7/9hgcPHuD06dNyyFK6dGmN55eSkgJ3d3fUqlULkiQpDZvbt28fLly4gBs3bsDR0REAsGLFCpQtWxanT59GlSpVNO4XeBtKZWVloVWrVvJ+fXx8cq1FCAEHBwd52bVr1yCEgJeXV67HunLlCgDA29tb7XovLy+5zfuuXbuGuXPnYtq0aSrrHBwccPPmTbXbTZw4UelzTERERERERPSp2FPqEwghIEmS0rJ3e74ozJ8/H5UqVYKtrS3MzMywZMkSpKSk5Lrv8uXLK723t7fH/fv3AQDx8fFIT0+HjY0NzMzM5NeNGzfk4VcJCQmoVq2a0j6qV6+e6zETEhJQvXp1pXOqWbMm0tPT8ffff8vLKlWqpLRdUlKSSmjzbtAEANnZ2Rg7dix8fHxgbW0NMzMz7Nq1S+U65Hbe74uLi4Ovr69Krx9NQkNDERcXB09PT/Tt2xe7d++W1yUkJMDR0VEOpACgTJkysLKyQkJCwgf3XaFCBdSvXx8+Pj5o27Ytli5diidPnmhs/+rVKwCAkZGRvExTrypN8tv+9u3baNSoEdq2bYtu3bqprDc2NsbLly/Vbjt06FA8e/ZMft26dStfxyYiIiIiIiJ6H0OpT5CQkABXV1elZe8Pu1q9ejXCw8MRFhaG3bt3Iy4uDp07d/7gBOH6+vpK7yVJkoelpaenw97eHnFxcUqvpKQk/PzzzwVwZrlTN7TsQ6ZOnYrZs2dj8ODBOHDgAOLi4hAQEKByHXI77/cZGxvnqwY/Pz/cuHEDY8eOxatXr9CuXTu0adMmfyeiga6uLvbs2YMdO3agTJkymDt3Ljw9PXHjxg217YsWLQoASsGVu7s7JElCYmJirsfy8PAAAI1hWUJCgtxG4c6dO6hXrx5q1KiBJUuWqN3u8ePHsLW1VbvO0NAQFhYWSi8iIiIiIiKiT8FQ6iPt378fFy5cQOvWrXNtFxsbixo1aqBXr17w9fVF6dKlP3kyaT8/P9y9exd6enooXbq00ksRdnh7e6tM+K2YKFsTb29vHD9+XKkHTmxsLMzNzVGyZEmN23l6euLMmTNKy06fPq30PjY2Fi1atMB3332HChUqwM3NTeMQs7wqX7484uLi5Hm08sLCwgJBQUFYunQp1qxZgw0bNuDx48fw9vbGrVu3lHoAXb58GU+fPkWZMmXytG9JklCzZk1ERkbizz//hIGBATZt2qS2balSpWBhYYHLly/Ly6ytrREQEID58+ernSBdMWl8w4YNYW1tjenTp6u02bp1K65evYoOHTrIy27fvo26deuiUqVKiIqKkodhvuv169e4fv06fH1983SuRERERERERJ+KoVQeZGRk4O7du7h9+zbOnTuHCRMmoEWLFmjWrBmCg4Nz3dbd3R1nzpzBrl27cOXKFYwcOVIlsMmvBg0aoHr16ggMDMTu3buRnJyMY8eOYfjw4XI49NNPP2H58uWIiorClStXMHr0aFy6dCnX/fbq1Qu3bt3Cjz/+iMTERGzZsgWjR4/GgAED1AYZCj169EBiYiIGDx6MK1euYO3atfJTCRVDAd3d3bFnzx4cO3YMCQkJ6NGjh9KT7T5Ghw4dYGdnh8DAQMTGxuKvv/7Chg0bcPz4cbXtZ8yYgf/9739ITEzElStXsG7dOtjZ2cHKygoNGjSAj48POnXqhHPnzuHUqVMIDg6Gv7+/2iGZ7zt58qQ8qXxKSgo2btyIBw8eaJz3SUdHBw0aNMDRo0eVls+fPx/Z2dmoWrUqNmzYgKtXryIhIQFz5syRh1+amppi8eLF2LJlC7p3747z588jOTkZy5YtQ2hoKNq0aSPPV6YIpJycnDBt2jQ8ePAAd+/exd27d5WOe+LECRgaGn5wiCcRERERERFRQWEolQc7d+6Evb09XFxc0KhRIxw4cABz5szBli1boKurm+u2PXr0QKtWrRAUFIRq1arh0aNH6NWr1yfVI0kS/vjjD9SpUwedO3eGh4cH2rdvj5s3b6J48eIAgKCgIIwcORKDBg1CpUqVcPPmTfTs2TPX/ZYoUQJ//PEHTp06hQoVKuCHH35AWFgYRowYket2rq6uWL9+PTZu3Ijy5ctj4cKF8tP3FBOxjxgxAn5+fggICEDdunXlMOlTGBgYYPfu3ShWrBiaNGkCHx8fTJo0SeM9MTc3x5QpU1C5cmVUqVIFycnJ+OOPP6CjowNJkrBlyxYUKVIEderUQYMGDeDm5oY1a9bkqRYLCwscPnwYTZo0gYeHB0aMGIHp06ejcePGGrfp2rUrVq9erTQ80c3NDefOnUO9evUwcOBAlCtXDt988w327duHhQsXyu3atGmDAwcOICUlBbVr14anpydmzpyJ4cOHY/Xq1XIYuGfPHly7dg379u1DyZIlYW9vL7/e9b///Q+dOnWCiYlJns6XiIiIiIiI6FNJIr+zJRPlwfjx47Fo0SJOiJ0LIQSqVauG/v37Kw2307aHDx/KQzDfnyNNk7S0NFhaWuKbBoOgr2/4mSsk+jJt/2NMYZdARERERFQoFL8Znz17luucxOwpRQViwYIFOH36NP766y+sXLkSU6dORUhISGGX9Y8mSRKWLFmCrKysQq0jOTkZCxYsyHMgRURERERERFQQ9Aq7APp3uHr1KsaNG4fHjx/DyckJAwcOxNChQwu7rH+8ihUromLFioVaQ+XKlfM0bxYRERERERFRQWIoRQVi5syZmDlzZmGXQURERERERERfCA7fIyIiIiIiIiIirWMoRUREREREREREWsdQioiIiIiIiIiItI6hFBERERERERERaR0nOieij7Z+w3BYWFgUdhlERERERET0BWJPKSIiIiIiIiIi0jqGUkREREREREREpHUMpYiIiIiIiIiISOsYShERERERERERkdYxlCIiIiIiIiIiIq1jKEVERERERERERFqnV9gFENGXq+X3E6Gnb1TYZRBptGv96MIugYiIiIiINGBPKSIiIiIiIiIi0jqGUkREREREREREpHUMpYiIiIiIiIiISOsYShERERERERERkdYxlCIiIiIiIiIiIq1jKEVERERERERERFrHUIqIiIiIiIiIiLSOoRQREREREREREWkdQykiIiIiIiIiItI6hlL/IqGhoZAkCT/88IPKut69e0OSJISGhmq/sAKSnJwMSZKgq6uL27dvK61LTU2Fnp4eJElCcnJy4RT4hVJc17i4uMIuhYiIiIiIiP5DGEr9yzg6OmL16tV49eqVvOz169f47bff4OTkVIiV/Z83b9580vYlSpTAihUrlJbFxMSgRIkSn7RfIiIiIiIiItIehlL/Mn5+fnB0dMTGjRvlZRs3boSTkxN8fX2V2u7cuRO1atWClZUVbGxs0KxZM1y/fl1er+hBs3HjRtSrVw8mJiaoUKECjh8/LreJiIhAxYoVlfY7a9YsuLi4yO9DQ0MRGBiI8ePHw8HBAZ6engCAW7duoV27drCysoK1tTVatGiRp15OISEhiIqKUloWFRWFkJAQpWXZ2dkICwuDq6srjI2N4enpidmzZyu1UdQ2bdo02Nvbw8bGBr1790ZmZqbcZuXKlahcuTLMzc1hZ2eHjh074v79+0r72bp1K9zd3WFkZIR69eohJiYGkiTh6dOncpujR4+idu3aMDY2hqOjI/r27YsXL17I611cXDBu3DgEBwfDzMwMzs7O2Lp1Kx48eIAWLVrAzMwM5cuXx5kzZ5SOnZf9TpgwAV26dIG5uTmcnJywZMkSeb2rqysAwNfXF5IkoW7duh+8B0RERERERESfiqHUv1CXLl2UQpvly5ejc+fOKu1evHiBAQMG4MyZM9i3bx90dHTQsmVL5OTkKLUbPnw4wsPDERcXBw8PD3To0AFZWVn5qmnfvn1ISkrCnj17sG3bNmRmZiIgIADm5uY4cuQIYmNjYWZmhkaNGn2wJ9W3336LJ0+e4OjRowDehjJPnjxB8+bNldrl5OSgZMmSWLduHS5fvoxRo0Zh2LBhWLt2rVK7AwcO4Pr16zhw4ABiYmIQHR2N6OhoeX1mZibGjh2L+Ph4bN68GcnJyUrDIG/cuIE2bdogMDAQ8fHx6NGjB4YPH650jOvXr6NRo0Zo3bo1zp8/jzVr1uDo0aPo06ePUruZM2eiZs2a+PPPP9G0aVN8//33CA4OxnfffYdz586hVKlSCA4OhhAiX/udPn06KleujD///BO9evVCz549kZSUBAA4deoUAGDv3r1ITU1VCjQVMjIykJaWpvQiIiIiIiIi+hSSUPy6pS9eaGgonj59iqVLl8LR0VEOHby8vHDr1i107doVVlZWSoHLux4+fAhbW1tcuHAB5cqVQ3JyMlxdXfHLL78gLCwMAHD58mWULVsWCQkJ8PLyQkREBDZv3qw0H9GsWbMwa9YsuddTaGgodu7ciZSUFBgYGAAAfv31V4wbNw4JCQmQJAnA22F9VlZW2Lx5Mxo2bKhSn6KeP//8EzExMXj27BmWL1+OLl26wMrKCsHBwfD19cWNGzeUemq9q0+fPrh79y7Wr18v13bw4EFcv34durq6AIB27dpBR0cHq1evVruPM2fOoEqVKnj+/DnMzMwwZMgQbN++HRcuXJDbjBgxAuPHj8eTJ09gZWWFrl27QldXF4sXL5bbHD16FP7+/njx4gWMjIzg4uKC2rVrY+XKlQCAu3fvwt7eHiNHjsSYMWMAACdOnED16tWRmpoKOzu7j9qvEAJ2dnaIjIzEDz/8oHRd3+/1phAREYHIyEiV5V9/OwR6+kZqtyH6J9i1fnRhl0BERERE9J+TlpYGS0tLPHv2DBYWFhrbsafUv5CtrS2aNm2K6OhoREVFoWnTpihatKhKu6tXr6JDhw5wc3ODhYWFHOSkpKQotStfvrz8b3t7ewBQGb72IT4+PnIgBQDx8fG4du0azM3NYWZmBjMzM1hbW+P169dKQwg16dKlC9atW4e7d+9i3bp16NKli9p28+fPR6VKlWBrawszMzMsWbJE5fzKli0rB1KKc3z3/M6ePYvmzZvDyckJ5ubm8Pf3B/B/1ykpKQlVqlRR2mfVqlWV3sfHxyM6Olo+VzMzMwQEBCAnJwc3btyQ2717rYsXLy5fu/eXKer7mP1KkgQ7O7t83cOhQ4fi2bNn8uvWrVt53paIiIiIiIhIHb3CLoA+jy5dushDuObPn6+2TfPmzeHs7IylS5fCwcEBOTk5KFeunMrwOX19ffnfil5NiiF+Ojo6eL+z3bvzMSmYmpoqvU9PT0elSpWwatUqlba2trYfOj34+PjAy8sLHTp0gLe3N8qVK6fy9LjVq1cjPDwc06dPR/Xq1WFubo6pU6fi5MmTGs9PcY6K83vx4gUCAgIQEBCAVatWwdbWFikpKQgICMjXhO3p6eno0aMH+vbtq7Lu3Qno1V3r3K7/x+z3/XPMC0NDQxgaGua5PREREREREdGHMJT6l1LMzSRJEgICAlTWP3r0CElJSVi6dClq164NAPIcTflha2uLu3fvQgghBybvh0Pq+Pn5Yc2aNShWrFiuXfly06VLF/Tq1QsLFy5Uuz42NhY1atRAr1695GV56YX1rsTERDx69AiTJk2Co6MjAKhMNO7p6Yk//vhDadnp06eV3vv5+eHy5csoXbp0vo7/IQWxX0UPtuzs7IIqi4iIiIiIiOiDOHzvX0pXVxcJCQm4fPmy0tA0hSJFisDGxgZLlizBtWvXsH//fgwYMCDfx6lbty4ePHiAKVOm4Pr165g/fz527Njxwe06deqEokWLokWLFjhy5Ahu3LiBgwcPom/fvvj777/zdOxu3brhwYMH6Nq1q9r17u7uOHPmDHbt2oUrV65g5MiRKmHRhzg5OcHAwABz587FX3/9ha1bt2Ls2LFKbXr06IHExEQMHjwYV65cwdq1a+V5uxRB3eDBg3Hs2DH06dMHcXFxuHr1KrZs2aIyIXl+FcR+ixUrBmNjY+zcuRP37t3Ds2fPPqkmIiIiIiIiorxgKPUvZmFhobEXkmIi77Nnz6JcuXLo378/pk6dmu9jeHt7Y8GCBZg/fz4qVKiAU6dOITw8/IPbmZiY4PDhw3ByckKrVq3g7e2NsLAwvH79Os89p/T09FC0aFHo6anv8NejRw+0atUKQUFBqFatGh49eqTUayovbG1tER0djXXr1qFMmTKYNGkSpk2bptTG1dUV69evx8aNG1G+fHksXLhQfvqeYshb+fLlcejQIVy5cgW1a9eGr68vRo0aBQcHh3zV876C2K+enh7mzJmDxYsXw8HBAS1atPikmoiIiIiIiIjygk/fI/oMxo8fj0WLFv1rJwRXPEmBT9+jfzo+fY+IiIiISPvy+vQ9zilFVAAWLFiAKlWqwMbGBrGxsZg6deonD80jIiIiIiIi+jdjKEVUAK5evYpx48bh8ePHcHJywsCBAzF06NDCLouIiIiIiIjoH4uhFFEBmDlzJmbOnFnYZRARERERERF9MTjRORERERERERERaR1DKSIiIiIiIiIi0jqGUkREREREREREpHUMpYiIiIiIiIiISOs40TkRfbRNK4fCwsKisMsgIiIiIiKiLxB7ShERERERERERkdYxlCIiIiIiIiIiIq1jKEVERERERERERFrHUIqIiIiIiIiIiLSOoRQREREREREREWkdQykiIiIiIiIiItI6vcIugIi+XM26T4aegVFhl0FfmP0rRhZ2CURERERE9A/AnlJERERERERERKR1DKWIiIiIiIiIiEjrGEoREREREREREZHWMZQiIiIiIiIiIiKtYyhFRERERERERERax1CKiIiIiIiIiIi0jqEUERERERERERFpHUMpIiIiIiIiIiLSOoZS/0J169ZFv3795PcuLi6YNWuW/F6SJGzevFnrdX2JXr58idatW8PCwgKSJOHp06eFXZKK0NBQBAYGFnYZRERERERERPnCUEpLQkNDIUmSyuvatWsfvc+DBw+qDUo2btyIsWPHatwuNTUVjRs3/ujjfg4uLi6QJAmrV69WWVe2bFlIkoTo6Git1xUTE4MjR47g2LFjSE1NhaWl5Sfvs6BDpNmzZxfKtSEiIiIiIiL6FAyltKhRo0ZITU1Verm6un7UvjIzMzWus7a2hrm5ucb1dnZ2MDQ0/KjjfogQAllZWR+1raOjI6KiopSWnThxAnfv3oWpqWlBlJdv169fh7e3N8qVKwc7OztIklQodaiTnZ2NnJwcWFpawsrKqrDLISIiIiIiIsoXhlJaZGhoCDs7O6WXrq4uAGDLli3w8/ODkZER3NzcEBkZqRTuSJKEhQsX4ttvv4WpqSm6deuGevXqAQCKFCkCSZIQGhoKQHX43vveHb4XERGhtgeXoudNTk4OJk6cCFdXVxgbG6NChQpYv369vC9Fb60dO3agUqVKMDQ0xNGjRxEfH4969erB3NwcFhYWqFSpEs6cOZPr9enUqRMOHTqEW7duycuWL1+OTp06QU9PT6ntjBkz4OPjA1NTUzg6OqJXr15IT0+X10dHR8PKygq7du2Ct7c3zMzM5FBQQd11CgwMVLqO06dPx+HDhyFJEurWrQsAWLlyJSpXrgxzc3PY2dmhY8eOuH//vtJ+Ll26hGbNmsHCwgLm5uaoXbs2rl+/joiICMTExGDLli3ytT548KDaXm9xcXGQJAnJyclK57R161aUKVMGhoaGSElJUel5VbduXfTt2xeDBg2CtbU17OzsEBERoVRfYmIiatWqBSMjI5QpUwZ79+7lsE4iIiIiIiLSKoZS/wBHjhxBcHAwfvrpJ1y+fBmLFy9GdHQ0xo8fr9QuIiICLVu2xIULFxAZGYkNGzYAAJKSkpCamorZs2fn+9jh4eFKPbemTZsGExMTVK5cGQAwceJErFixAosWLcKlS5fQv39/fPfddzh06JDSfoYMGYJJkyYhISEB5cuXR6dOnVCyZEmcPn0aZ8+exZAhQ6Cvr59rLcWLF0dAQABiYmIAvJ3Pac2aNejSpYtKWx0dHcyZMweXLl1CTEwM9u/fj0GDBim1efnyJaZNm4aVK1fi8OHDSElJQXh4eJ6vzcaNG9GtWzdUr14dqamp2LhxI4C3vdTGjh2L+Ph4bN68GcnJyXKQBQC3b99GnTp1YGhoiP379+Ps2bPo0qULsrKyEB4ejnbt2in1mqtRo0aea3r58iUmT56MX375BZcuXUKxYsXUtouJiYGpqSlOnjyJKVOmYMyYMdizZw+Atz2sAgMDYWJigpMnT2LJkiUYPnx4rsfNyMhAWlqa0ouIiIiIiIjoU+h9uAkVlG3btsHMzEx+37hxY6xbtw6RkZEYMmQIQkJCAABubm4YO3YsBg0ahNGjR8vtO3bsiM6dO8vvb9y4AQAoVqzYRw/fMjMzk2s6ceIERowYgZiYGJQrVw4ZGRmYMGEC9u7di+rVq8u1HT16FIsXL4a/v7+8nzFjxuCbb76R36ekpODnn3+Gl5cXAMDd3T1P9XTp0gUDBw7E8OHDsX79epQqVQoVK1ZUaff+RO7jxo3DDz/8gAULFsjLMzMzsWjRIpQqVQoA0KdPH4wZMyZvFwZvh0GamJjAwMAAdnZ2SjUquLm5Yc6cOahSpQrS09NhZmaG+fPnw9LSEqtXr5aDOA8PD3kbY2NjZGRkKO0zrzIzM7FgwQJUqFAh13bly5eXPzvu7u6YN28e9u3bh2+++QZ79uzB9evXcfDgQbmG8ePHK92/902cOBGRkZH5rpeIiIiIiIhIE4ZSWlSvXj0sXLhQfq+YJyk+Ph6xsbFKPaOys7Px+vVrvHz5EiYmJgAg9176HFJSUhAYGCj35AGAa9eu4eXLlyphxZs3b+Dr66u07P3aBgwYgK5du2LlypVo0KAB2rZtK4dDuWnatCl69OiBw4cPY/ny5Wp7SQHA3r17MXHiRCQmJiItLQ1ZWVkq18vExETpmPb29irD7D7G2bNnERERgfj4eDx58gQ5OTkA3l7DMmXKIC4uDrVr1/5gz7CPYWBggPLly3+w3ftt3j33pKQkODo6KoViVatWzXV/Q4cOxYABA+T3aWlpcHR0zE/pREREREREREoYSmmRqakpSpcurbI8PT0dkZGRaNWqlco6IyMjpe0/hxcvXuDbb79F9erVlXoSKeZo2r59O0qUKKG0zfsTpb9fW0REBDp27Ijt27djx44dGD16NFavXo2WLVvmWouenh6+//57jB49GidPnsSmTZtU2iQnJ6NZs2bo2bMnxo8fD2traxw9ehRhYWF48+aNHEq9HwpJkgQhhPxeR0dH6T2Q+wTywNtrFRAQgICAAKxatQq2trZISUlBQEAA3rx5A+BtT6j80tF5O5L23XrU1WJsbJynydbVnbsiPPsYhoaGn21yfCIiIiIiIvpvYij1D+Dn54ekpCS1gVVuDAwMALztVfWxhBD47rvvkJOTg5UrVyoFHu9Opv3uUL288vDwgIeHB/r3748OHTogKirqg6EU8HZ43LRp0xAUFIQiRYqorD979ixycnIwffp0OcxZu3ZtvuuztbVVmvg8OzsbFy9elCeQVycxMRGPHj3CpEmT5J5C70/gXr58ecTExCAzM1NtbykDAwOVe2ZrawsASE1Nlc85Li4u3+eUF56enrh16xbu3buH4sWLAwBOnz79WY5FREREREREpAknOv8HGDVqFFasWIHIyEhcunQJCQkJWL16NUaMGJHrds7OzpAkCdu2bcODBw+Unj6XVxEREdi7dy8WL16M9PR03L17F3fv3sWrV69gbm6O8PBw9O/fHzExMbh+/TrOnTuHuXPnypORq/Pq1Sv06dMHBw8exM2bNxEbG4vTp0/D29s7TzV5e3vj4cOHiIqKUru+dOnSyMzMxNy5c/HXX39h5cqVWLRoUb7P/euvv8b27duxfft2JCYmomfPnkpPv1PHyckJBgYG8rG3bt2KsWPHKrXp06cP0tLS0L59e5w5cwZXr17FypUrkZSUBODtHFjnz59HUlISHj58iMzMTJQuXRqOjo6IiIjA1atXsX37dkyfPj3f55QX33zzDUqVKoWQkBCcP38esbGx8mctL72wiIiIiIiIiAoCQ6l/gICAAGzbtg27d+9GlSpV8NVXX2HmzJlwdnbOdbsSJUrIk6QXL14cffr0yfexDx06hPT0dNSoUQP29vbya82aNQCAsWPHYuTIkZg4cSK8vb3RqFEjbN++Ha6urhr3qauri0ePHiE4OBgeHh5o164dGjdunK+Jsm1sbDQOg6tQoQJmzJiByZMno1y5cli1ahUmTpyYvxPH2x5ZISEhCA4Ohr+/P9zc3HLtJQW87dEUHR2NdevWoUyZMpg0aRKmTZumUvv+/fuRnp4Of39/VKpUCUuXLpV7TXXr1g2enp6oXLkybG1tERsbC319ffzvf/9DYmIiypcvj8mTJ2PcuHH5Pqe80NXVxebNm5Geno4qVaqga9eu8tP33h0uSkRERERERPQ5SeL9SXWI6D8nNjYWtWrVwrVr1/I0IX1aWhosLS1RO2gY9AwYZFH+7F8xsrBLICIiIiKiz0jxm/HZs2ewsLDQ2I5zShH9B23atAlmZmZwd3fHtWvX8NNPP6FmzZp5CqSIiIiIiIiICgJDKaL/oOfPn2Pw4MFISUlB0aJF0aBBg882hxURERERERGROgyliP6DgoODERwcXNhlEBERERER0X8YJzonIiIiIiIiIiKtYyhFRERERERERERax1CKiIiIiIiIiIi0jqEUERERERERERFpHUMpIiIiIiIiIiLSOj59j4g+2rYlg2FhYVHYZRAREREREdEXiD2liIiIiIiIiIhI6xhKERERERERERGR1jGUIiIiIiIiIiIirWMoRUREREREREREWsdQioiIiIiIiIiItI6hFBERERERERERaZ1eYRdARF+ugJ8mQ8/AqLDLoC/AkcUjC7sEIiIiIiL6h2FPKSIiIiIiIiIi0jqGUkREREREREREpHUMpYiIiIiIiIiISOsYShERERERERERkdYxlCIiIiIiIiIiIq1jKEVERERERERERFrHUIqIiIiIiIiIiLSOoRTRP1RycjIkSUJcXNxnP5aLiwtmzZr12Y9DREREREREpMBQiv6TQkNDIUmSyuvatWuFVk9gYGChHJuIiIiIiIioMOgVdgFEhaVRo0aIiopSWmZra5vv/bx58wYGBgYFVRYRERERERHRfwJ7StF/lqGhIezs7JReurq6OHToEKpWrQpDQ0PY29tjyJAhyMrKkrerW7cu+vTpg379+qFo0aIICAgAAFy8eBGNGzeGmZkZihcvju+//x4PHz6Ut1u/fj18fHxgbGwMGxsbNGjQAC9evEBERARiYmKwZcsWucfWwYMHVerNzs5GWFgYXF1dYWxsDE9PT8yePVupjaLH1bRp02Bvbw8bGxv07t0bmZmZcpv79++jefPmMDY2hqurK1atWlXAV5aIiIiIiIjow9hTiugdt2/fRpMmTRAaGooVK1YgMTER3bp1g5GRESIiIuR2MTEx6NmzJ2JjYwEAT58+xddff42uXbti5syZePXqFQYPHox27dph//79SE1NRYcOHTBlyhS0bNkSz58/x5EjRyCEQHh4OBISEpCWlib33LK2tsadO3eUasvJyUHJkiWxbt062NjY4NixY+jevTvs7e3Rrl07ud2BAwdgb2+PAwcO4Nq1awgKCkLFihXRrVs3AG+Dqzt37uDAgQPQ19dH3759cf/+/c98ZYmIiIiIiIiUMZSi/6xt27bBzMxMft+4cWN4eHjA0dER8+bNgyRJ8PLywp07dzB48GCMGjUKOjpvOxe6u7tjypQp8rbjxo2Dr68vJkyYIC9bvnw5HB0dceXKFaSnpyMrKwutWrWCs7MzAMDHx0dua2xsjIyMDNjZ2WmsV19fH5GRkfJ7V1dXHD9+HGvXrlUKpYoUKYJ58+ZBV1cXXl5eaNq0Kfbt24du3brhypUr2LFjB06dOoUqVaoAAJYtWwZvb+9cr1VGRgYyMjLk92lpabm2JyIiIiIiIvoQDt+j/6x69eohLi5Ofs2ZMwcJCQmoXr06JEmS29WsWRPp6en4+++/5WWVKlVS2ld8fDwOHDgAMzMz+eXl5QUAuH79OipUqID69evDx8cHbdu2xdKlS/HkyZN81zx//nxUqlQJtra2MDMzw5IlS5CSkqLUpmzZstDV1ZXf29vbyz2hEhISoKenp1S/l5cXrKyscj3uxIkTYWlpKb8cHR3zXTsRERERERHRuxhK0X+WqakpSpcuLb/s7e3zte270tPT0bx5c6WQKy4uDlevXkWdOnWgq6uLPXv2YMeOHShTpgzmzp0LT09P3LhxI8/HXL16NcLDwxEWFobdu3cjLi4OnTt3xps3b5Ta6evrK72XJAk5OTl5Po46Q4cOxbNnz+TXrVu3Pml/RERERERERBy+R/QOb29vbNiwAUIIubdUbGwszM3NUbJkSY3b+fn5YcOGDXBxcYGenvqvlSRJqFmzJmrWrIlRo0bB2dkZmzZtwoABA2BgYIDs7Oxca4uNjUWNGjXQq1cvedn169fzdX5eXl7IysrC2bNn5eF7SUlJePr0aa7bGRoawtDQMF/HIiIiIiIiIsoNe0oRvaNXr164desWfvzxRyQmJmLLli0YPXo0BgwYIM8npU7v3r3x+PFjdOjQAadPn8b169exa9cudO7cGdnZ2Th58iQmTJiAM2fOICUlBRs3bsSDBw/kuZxcXFxw/vx5JCUl4eHDh0pPy1Nwd3fHmTNnsGvXLly5cgUjR47E6dOn83V+np6eaNSoEXr06IGTJ0/i7Nmz6Nq1K4yNjfN3oYiIiIiIiIg+EUMponeUKFECf/zxB06dOoUKFSrghx9+QFhYGEaMGJHrdg4ODoiNjUV2djYaNmwIHx8f9OvXD1ZWVtDR0YGFhQUOHz6MJk2awMPDAyNGjMD06dPRuHFjAEC3bt3g6emJypUrw9bWVn6q37t69OiBVq1aISgoCNWqVcOjR4+Uek3lVVRUFBwcHODv749WrVqhe/fuKFasWL73Q0RERERERPQpJCGEKOwiiOjLkpaWBktLS3wVOgx6BkaFXQ59AY4sHlnYJRARERERkZYofjM+e/YMFhYWGtuxpxQREREREREREWkdQykiIiIiIiIiItI6hlJERERERERERKR1DKWIiIiIiIiIiEjrGEoREREREREREZHWMZQiIiIiIiIiIiKtYyhFRERERERERERax1CKiIiIiIiIiIi0Tq+wCyCiL9eu2YNhYWFR2GUQERERERHRF4g9pYiIiIiIiIiISOsYShERERERERERkdYxlCIiIiIiIiIiIq1jKEVERERERERERFrHUIqIiIiIiIiIiLSOoRQREREREREREWmdXmEXQERfrvqDJkPP0Kiwy6B/kOOzRxZ2CURERERE9IVgTykiIiIiIiIiItI6hlJERERERERERKR1DKWIiIiIiIiIiEjrGEoREREREREREZHWMZQiIiIiIiIiIiKtYyhFRERERERERERax1CKiIiIiIiIiIi0jqEU/SMkJydDkiTExcUVdikfdPDgQUiShKdPn+bazsXFBbNmzfrs9YSGhiIwMPCzH4eIiIiIiIioIDGUos8uNDQUkiRBkiTo6+vD1dUVgwYNwuvXr+U2jo6OSE1NRbly5T5rLXfv3sWPP/4INzc3GBoawtHREc2bN8e+ffs+ep/R0dGwsrJSWX769Gl07979E6pVpim4mz17NqKjowvsOERERERERETaoFfYBdB/Q6NGjRAVFYXMzEycPXsWISEhkCQJkydPBgDo6urCzs7us9aQnJyMmjVrwsrKClOnToWPjw8yMzOxa9cu9O7dG4mJiQV6PFtb2wLdnyaWlpZaOQ4RERERERFRQWJPKdIKQ0ND2NnZwdHREYGBgWjQoAH27Nkjr1fXC+jSpUto1qwZLCwsYG5ujtq1a+P69evy+l9++QXe3t4wMjKCl5cXFixYkGsNvXr1giRJOHXqFFq3bg0PDw+ULVsWAwYMwIkTJzTW8fTpU0iShIMHD6rs8+DBg+jcuTOePXsm9waLiIgAoDx8r2PHjggKClLaNjMzE0WLFsWKFSsAADt37kStWrVgZWUFGxsbNGvWTOl8XV1dAQC+vr6QJAl169YFoDp8LyMjA3379kWxYsVgZGSEWrVq4fTp00o1S5KEffv2oXLlyjAxMUGNGjWQlJSU6/UjIiIiIiIiKkgMpUjrLl68iGPHjsHAwEBjm9u3b6NOnTowNDTE/v37cfbsWXTp0gVZWVkAgFWrVmHUqFEYP348EhISMGHCBIwcORIxMTFq9/f48WPs3LkTvXv3hqmpqcp6dcPv8qJGjRqYNWsWLCwskJqaitTUVISHh6u069SpE37//Xekp6fLy3bt2oWXL1+iZcuWAIAXL15gwIABOHPmDPbt2wcdHR20bNkSOTk5AIBTp04BAPbu3YvU1FRs3LhRbU2DBg3Chg0bEBMTg3PnzqF06dIICAjA48ePldoNHz4c06dPx5kzZ6Cnp4cuXbp81DUgIiIiIiIi+hgcvkdasW3bNpiZmSErKwsZGRnQ0dHBvHnzNLafP38+LC0tsXr1aujr6wMAPDw85PWjR4/G9OnT0apVKwBvexFdvnwZixcvRkhIiMr+rl27BiEEvLy8CvS8DAwMYGlpCUmSch1+GBAQAFNTU2zatAnff/89AOC3337Dt99+C3NzcwBA69atlbZZvnw5bG1tcfnyZZQrV04eDmhjY6PxWC9evMDChQsRHR2Nxo0bAwCWLl2KPXv2YNmyZfj555/ltuPHj4e/vz8AYMiQIWjatClev34NIyMjlf1mZGQgIyNDfp+WlvbBa0NERERERESUG/aUIq2oV68e4uLicPLkSYSEhKBz584qIcy74uLiULt2bTmQeteLFy9w/fp1hIWFwczMTH6NGzdOabjbu4QQBXYuH0NPTw/t2rXDqlWrALw9hy1btqBTp05ym6tXr6JDhw5wc3ODhYUFXFxcAAApKSl5Ps7169eRmZmJmjVrysv09fVRtWpVJCQkKLUtX768/G97e3sAwP3799Xud+LEibC0tJRfjo6Oea6JiIiIiIiISB32lCKtMDU1RenSpQG87QFUoUIFLFu2DGFhYWrbGxsba9yXYgjc0qVLUa1aNaV1urq6ardxd3eHJEkfnMxcR+dtTvtuiJWZmZnrNnnVqVMn+Pv74/79+9izZw+MjY3RqFEjeX3z5s3h7OyMpUuXwsHBATk5OShXrhzevHlTIMd/37uBnyRJACAPFXzf0KFDMWDAAPl9WloagykiIiIiIiL6JOwpRVqno6ODYcOGYcSIEXj16pXaNuXLl8eRI0fUBkLFixeHg4MD/vrrL5QuXVrppZgM/H3W1tYICAjA/Pnz8eLFC5X1T58+BfB/T8xLTU2V17076bk6BgYGyM7OzrUN8Hb+KUdHR6xZswarVq1C27Zt5WDo0aNHSEpKwogRI1C/fn14e3vjyZMnKscBkOuxSpUqBQMDA8TGxsrLMjMzcfr0aZQpU+aDNWpiaGgICwsLpRcRERERERHRp2AoRYWibdu20NXVxfz589Wu79OnD9LS0tC+fXucOXMGV69excqVK+UnxEVGRmLixImYM2cOrly5ggsXLiAqKgozZszQeMz58+cjOzsbVatWxYYNG3D16lUkJCRgzpw5qF69OoC3PbS++uorTJo0CQkJCTh06BBGjBiR67m4uLggPT0d+/btw8OHD/Hy5UuNbTt27IhFixZhz549SkP3ihQpAhsbGyxZsgTXrl3D/v37lXomAUCxYsVgbGyMnTt34t69e3j27JnK/k1NTdGzZ0/8/PPP2LlzJy5fvoxu3brh5cuXGnulERERERERERUGhlJUKPT09NCnTx9MmTJFbc8lGxsb7N+/H+np6fD390elSpWwdOlSuWdR165d8csvvyAqKgo+Pj7w9/dHdHS0xp5SAODm5oZz586hXr16GDhwIMqVK4dvvvkG+/btw8KFC+V2y5cvR1ZWFipVqoR+/fph3LhxuZ5LjRo18MMPPyAoKAi2traYMmWKxradOnXC5cuXUaJECaV5n3R0dLB69WqcPXsW5cqVQ//+/TF16lSVazZnzhwsXrwYDg4OaNGihdpjTJo0Ca1bt8b3338PPz8/XLt2Dbt27UKRIkVyPQ8iIiIiIiIibZJEYc8ATURfnLS0NFhaWqJyj2HQM1R9Wh/9dx2fPbKwSyAiIiIiokKm+M347NmzXKd/YU8pIiIiIiIiIiLSOoZSRERERERERESkdQyliIiIiIiIiIhI6xhKERERERERERGR1jGUIiIiIiIiIiIirWMoRUREREREREREWsdQioiIiIiIiIiItI6hFBERERERERERaZ1eYRdARF+ufVMGw8LCorDLICIiIiIioi8Qe0oREREREREREZHWMZQiIiIiIiIiIiKtYyhFRERERERERERax1CKiIiIiIiIiIi0jqEUERERERERERFpHUMpIiIiIiIiIiLSOr3CLoCIvlx1R02CrqFRYZdBWnR68qjCLoGIiIiIiP4l2FOKiIiIiIiIiIi0jqEUERERERERERFpHUMpIiIiIiIiIiLSOoZSRERERERERESkdQyliIiIiIiIiIhI6xhKERERERERERGR1jGUIiIiIiIiIiIirWMoRR+lbt266Nev3yfvZ8mSJXB0dISOjg5mzZr12Y/3bxEdHQ0rK6tc20RERKBixYry+9DQUAQGBn7WuoiIiIiIiIjy6j8TSh0/fhy6urpo2rRpYZeiJC0tDcOHD4eXlxeMjIxgZ2eHBg0aYOPGjRBCFNhxCiuQePXqFaytrVG0aFFkZGQorUtLS0OfPn0wePBg3L59G927d9e4n40bN2Ls2LGfu9xcRUdHQ5IkSJIEHR0d2NvbIygoCCkpKYVaV17Nnj0b0dHRhV0GEREREREREYD/UCi1bNky/Pjjjzh8+DDu3LmTa1shBLKysj57TU+fPkWNGjWwYsUKDB06FOfOncPhw4cRFBSEQYMG4dmzZ5+9hvdlZmYW6P42bNiAsmXLwsvLC5s3b1Zal5KSgszMTDRt2hT29vYwMTFR2f7NmzcAAGtra5ibmxdobR/DwsICqampuH37NjZs2ICkpCS0bdu2sMvKE0tLyw/2riIiIiIiIiLSlv9EKJWeno41a9agZ8+eaNq0qUpvkYMHD0KSJOzYsQOVKlWCoaEhjh49ipycHEycOBGurq4wNjZGhQoVsH79enm77OxshIWFyes9PT0xe/bsPNc1bNgwJCcn4+TJkwgJCUGZMmXg4eGBbt26IS4uDmZmZgCAjIwMhIeHo0SJEjA1NUW1atVw8OBBeT+KoVy7du2Ct7c3zMzM0KhRI6SmpgJ4O4wrJiYGW7ZskXv6HDx4EMnJyZAkCWvWrIG/vz+MjIywatUqPHr0CB06dECJEiVgYmICHx8f/O9///uoa79s2TJ89913+O6777Bs2TKlmn18fAAAbm5ukCQJycnJ8pCzX375Ba6urjAyMgKgOnwvIyMDgwcPhqOjIwwNDVG6dGl5/3m5L4qeY9OmTYO9vT1sbGzQu3fvD4ZykiTBzs4O9vb2qFGjBsLCwnDq1CmkpaXJbbZs2QI/Pz8YGRnBzc0NkZGRSiGnJElYuHAhGjduDGNjY7i5uSl9rhSfx6dPn8rL4uLi5Gv0rs2bN8Pd3R1GRkYICAjArVu3NNb+fm+5nJwcTJkyBaVLl4ahoSGcnJwwfvz4XM+fiIiIiIiIqKDoFXYB2rB27Vp4eXnB09MT3333Hfr164ehQ4dCkiSldkOGDMG0adPg5uaGIkWKYOLEifj111+xaNEiuLu74/Dhw/juu+9ga2sLf39/5OTkoGTJkli3bh1sbGxw7NgxdO/eHfb29mjXrl2uNeXk5GD16tXo1KkTHBwcVNYrAikA6NOnDy5fvozVq1fDwcEBmzZtQqNGjXDhwgW4u7sDAF6+fIlp06Zh5cqV0NHRwXfffYfw8HCsWrUK4eHhSEhIQFpaGqKiogC87Xmk6DE2ZMgQTJ8+Hb6+vjAyMsLr169RqVIlDB48GBYWFti+fTu+//57lCpVClWrVs3zdb9+/TqOHz8uD0Xs378/bt68CWdnZwQFBcHR0RENGjTAqVOn4OjoCFtbWwDAtWvXsGHDBmzcuBG6urpq9x0cHIzjx49jzpw5qFChAm7cuIGHDx/K1zYv9+XAgQOwt7fHgQMHcO3aNQQFBaFixYro1q1bns7v/v372LRpE3R1deU6jxw5guDgYMyZMwe1a9fG9evX5WGJo0ePlrcdOXIkJk2ahNmzZ2PlypVo3749Lly4AG9v7zxf35cvX2L8+PFYsWIFDAwM0KtXL7Rv3x6xsbF52n7o0KFYunQpZs6ciVq1aiE1NRWJiYl5Pj4RERERERHRp/hPhFKK3joA0KhRIzx79gyHDh1C3bp1ldqNGTMG33zzDYC3PXEmTJiAvXv3onr16gDe9ug5evQoFi9eDH9/f+jr6yMyMlLe3tXVFcePH8fatWs/GEo9fPgQT548gZeXV67tUlJSEBUVhZSUFDm8Cg8Px86dOxEVFYUJEyYAeDvsbtGiRShVqhSAt0HWmDFjALwNuIyNjZGRkQE7OzuVY/Tr1w+tWrVSWhYeHi7/+8cff8SuXbuwdu3afIVSy5cvR+PGjVGkSBEAQEBAAKKiohAREQFjY2PY2NgAAGxtbZXqevPmDVasWCGHVO+7cuUK1q5diz179qBBgwYA3t4bhbzelyJFimDevHnQ1dWFl5cXmjZtin379uUaSj179gxmZmYQQuDly5cAgL59+8LU1BQAEBkZiSFDhiAkJESua+zYsRg0aJBSKNW2bVt07doVADB27Fjs2bMHc+fOxYIFCz50WWWZmZmYN28eqlWrBgCIiYmBt7c3Tp069cH79Pz5c8yePRvz5s2Tay1VqhRq1aqltn1GRobSnGDv9gwjIiIiIiIi+hj/+lAqKSkJp06dwqZNmwAAenp6CAoKwrJly1RCqcqVK8v/vnbtGl6+fCmHVApv3ryBr6+v/H7+/PlYvnw5UlJS8OrVK7x580bpiWea5HUS8wsXLiA7OxseHh5KyzMyMuRQBwBMTEzkQAoA7O3tcf/+/Twd493zBt4Of5swYQLWrl2L27dv482bN8jIyFA755Mm2dnZiImJURo2p+i9NWrUKOjoaB456uzsrDGQAt4OZdPV1YW/v7/GNnm5L2XLllXqiWVvb48LFy7kel7m5uY4d+4cMjMzsWPHDqxatUppyFt8fDxiY2OVlmVnZ+P169d4+fKlfA0VQadC9erVERcXl+ux36enp4cqVarI7728vGBlZYWEhIQPhlIJCQnIyMhA/fr183SsiRMnKgV9RERERERERJ/qXx9KLVu2DFlZWUpD5IQQMDQ0xLx582BpaSkvV/R2Ad7OQwUA27dvR4kSJZT2aWhoCABYvXo1wsPDMX36dFSvXh3m5uaYOnUqTp48+cG6bG1tYWVl9cHhUunp6dDV1cXZs2dVhrK9O8RPX19faZ0kSXkOvt49bwCYOnUqZs+ejVmzZsHHxwempqbo16+fPOl4XuzatQu3b99GUFCQ0vLs7Gzs27dPJezLrZ73GRsb57o+r/dF3TXLycnJdd86OjooXbo0AMDb2xvXr19Hz549sXLlSgBv71dkZKRKzzMA8vxYH6II7N69fwU9Af2HruH7hg4digEDBsjv09LS4OjoWKA1ERERERER0X/LvzqUysrKwooVKzB9+nQ0bNhQaV1gYCD+97//4YcfflC7bZkyZWBoaIiUlBSNPXJiY2NRo0YN9OrVS152/fr1PNWmo6OD9u3bY+XKlRg9erTKvFLp6ekwMjKCr68vsrOzcf/+fdSuXTtP+1bHwMAA2dnZeWobGxuLFi1ayEMec3JycOXKFZQpUybPx1u2bBnat2+P4cOHKy0fP348li1blmso9SE+Pj7IycnBoUOH5OF779f/sfclv4YMGYJSpUqhf//+8PPzg5+fH5KSkuTgSpMTJ04gODhY6b2iB56il1hqaqo89FFdL6qsrCycOXNG7hWVlJSEp0+f5mleKnd3dxgbG2Pfvn3yMMLcGBoaymEsERERERERUUH4V4dS27Ztw5MnTxAWFqbUIwoAWrdujWXLlmkMpczNzREeHo7+/fsjJycHtWrVwrNnzxAbGwsLCwuEhITA3d0dK1aswK5du+Dq6oqVK1fi9OnTcHV1zVN948ePx8GDB1GtWjWMHz8elStXhr6+Po4cOYKJEyfi9OnT8PDwQKdOnRAcHCxPRv7gwQPs27cP5cuXR9OmTfN0LBcXF+zatQtJSUmwsbFRuR7vcnd3x/r163Hs2DEUKVIEM2bMwL179/IcSj148AC///47tm7dinLlyimtCw4ORsuWLfH48eM87UvTuYSEhKBLly7yROc3b97E/fv30a5du0++L/nh6OiIli1bYtSoUdi2bRtGjRqFZs2awcnJCW3atIGOjg7i4+Nx8eJFjBs3Tt5u3bp1qFy5MmrVqoVVq1bh1KlT8tMDS5cuDUdHR0RERGD8+PG4cuUKpk+frnJsfX19/Pjjj5gzZw709PTQp08ffPXVV3ma98vIyAiDBw/GoEGDYGBggJo1a+LBgwe4dOkSwsLCCu4CEREREREREWmgeWKff4Fly5ahQYMGagOY1q1b48yZMzh//rzG7ceOHYuRI0di4sSJ8Pb2RqNGjbB9+3Y53OjRowdatWqFoKAgVKtWDY8ePVLqnfMh1tbWOHHiBL777juMGzcOvr6+qF27Nv73v/9h6tSpct1RUVEIDg7GwIED4enpicDAQJw+fRpOTk55Pla3bt3g6emJypUrw9bWNtcntI0YMQJ+fn4ICAhA3bp1YWdnh8DAwDwfa8WKFTA1NVU7X1H9+vVhbGyMX3/9Nc/7U2fhwoVo06YNevXqBS8vL3Tr1g0vXrwA8On3Jb/69++P7du349SpUwgICMC2bduwe/du/D/27juuyvr///jzAIJsxFBEUXCAuAhniuUsHJmkqamVKFqunLjKhSPNlZajcqENSdOsnKmFGZmrIE2ciVhhlgM+OBHO7w9/nK8nUAHx4Hjcb7dzu3Gu6329r9d1XRyL5+39fp86deroiSee0DvvvKNy5cqZHRMZGano6GjVqFFDy5cv14oVK0yhX5EiRbRixQodOnRINWrU0Ntvv20WaGVxcHDQiBEj1KVLFwUHB8vJyUmfffZZruseM2aMhg4dqrFjxyogIECdOnXK9TpkAAAAAADcLYMxtwsPASgQBoNBX3zxRZ6CvvtNamqqXF1dFTRwlKztcrdWFh4Oe94eW9glAAAAALjPZf3NmJKSIhcXl1u2e6hHSgEAAAAAAOD+RCh1Dzk5Od3ytWPHjsIuDwAAAAAAoNA81AudF7acvjEtS+nSpS1XCO4rzJgFAAAAAIBQ6p6qWLFiYZcAAAAAAABwX2L6HgAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMUZjHwVGIA8Sk1Nlaurq1JSUuTi4lLY5QAAAAAA7iO5/ZuRkVIAAAAAAACwOEIpAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMXZFHYBAB5cDd+aImu7ooVdBvLpl8hxhV0CAAAAgEcYI6UAAAAAAABgcYRSAAAAAAAAsDhCKQAAAAAAAFgcoRQAAAAAAAAsjlAKAAAAAAAAFkcoBQAAAAAAAIsjlAIAAAAAAIDFEUrhvhATEyODwaALFy7k+phLly6pffv2cnFxyfOxAAAAAACgcOU7lProo48UHBwsLy8vnTx5UpI0e/ZsffnllwVWHP5PWFiYDAaDevfunW1fv379ZDAYFBYWZvnCCtGyZcu0Y8cO/fjjj0pOTtb58+dlMBgUFxdXKPWMHz9eBoNBBoNBNjY28vHx0eDBg5WWlnbXfScmJhbqtQEAAAAAUNDyFUotWLBAQ4YMUatWrXThwgVlZGRIktzc3DR79uyCrA838fb2VnR0tC5fvmzaduXKFX366acqW7ZsIVb2f65du2axcx0/flwBAQGqVq2aPD09ZTAYLHbuW6lataqSk5OVmJiot99+Wx9++KGGDh1a2GWZseQzAgAAAADgVvIVSr333ntauHCh3nzzTVlbW5u2165dW/v37y+w4mCuZs2a8vb21po1a0zb1qxZo7JlyyooKMis7aZNm9SwYUO5ubmpePHievbZZ3X8+HHT/qyRN2vWrFGTJk3k4OCgwMBA7dy509Rm/Pjxevzxx836nT17tnx8fEzvw8LCFBoaqsmTJ8vLy0v+/v6SpFOnTqljx45yc3OTu7u72rZtq8TExDxd7w8//KAnn3xS9vb28vb21oABA3Tx4kVJUuPGjTVz5kx9//33MhgMaty4sXx9fSVJQUFBpm23sn37dtWtW1d2dnYqVaqURo4cqevXr5v2N27cWAMGDNDw4cPl7u4uT09PjR8//o4129jYyNPTU2XKlFGnTp3UtWtXffXVV5JujC6sXbu2nJ2d5enpqS5duujMmTOmY8+fP6+uXbvKw8ND9vb2qlSpkpYuXSpJt7y2xo0ba9CgQWY1hIaGmo2a8/Hx0cSJE/XKK6/IxcVFr7766h3vLwAAAAAA91q+QqkTJ05kC0Ekyc7Ojj9q77EePXqYggpJWrJkibp3756t3cWLFzVkyBDt3btX27Ztk5WVlZ5//nllZmaatXvzzTcVERGhuLg4+fn5qXPnzmbhTG5s27ZNhw8f1pYtW7Ru3Tqlp6crJCREzs7O2rFjh2JjY+Xk5KQWLVrkepTO8ePH1aJFC7Vv316//vqrPvvsM/3www/q37+/pBthXK9evVS/fn0lJydrzZo12r17tyRp69atpm05+fPPP9WqVSvVqVNH8fHxWrBggRYvXqxJkyaZtVu2bJkcHR21a9cuTZs2TRMmTNCWLVvydG/s7e1N15yenq6JEycqPj5ea9euVWJioll4NGbMGB08eFAbN25UQkKCFixYoMcee0yScn1ttzJjxgwFBgbql19+0ZgxY+54fwEAAAAAuNds8nOQr6+v4uLiVK5cObPtmzZtUkBAQIEUhpy99NJLGjVqlGkdr9jYWEVHRysmJsasXfv27c3eL1myRB4eHjp48KCqVatm2h4REaHWrVtLkiIjI1W1alUdO3ZMlStXznVNjo6OWrRokWxtbSVJH3/8sTIzM7Vo0SLTlLqlS5fKzc1NMTExeuaZZ+7Y55QpU9S1a1fTKKBKlSrp3XffVaNGjbRgwQK5u7vLwcFBtra28vT0lCSlpqZKkooXL27alpP58+fL29tbc+fOlcFgUOXKlfXXX39pxIgRGjt2rKysbmS1NWrU0Lhx40znnzt3rrZt26ann346V/dl3759+vTTT9W0aVNJNwLFLOXLl9e7776rOnXqKC0tTU5OTkpKSlJQUJBq164tSWYj0jw8PHJ1bbfStGlTs2mEPXv2vO39LVq0qNnxV69e1dWrV03vs+41AAAAAAD5la9QasiQIerXr5+uXLkio9Go3bt3a8WKFZoyZYoWLVpU0DXiJh4eHmrdurWioqJkNBrVunVr02iamx09elRjx47Vrl279O+//5pGSCUlJZmFUjVq1DD9XKpUKUnSmTNn8hRKVa9e3RRISVJ8fLyOHTsmZ2dns3ZXrlwxm0J4O/Hx8fr111/1ySefmLYZjUZlZmbqxIkTdxV+JiQkqH79+mZrUAUHBystLU1//PGHaX2um++NdOP+3DzdLif79++Xk5OTMjIydO3aNbVu3Vpz586VdCOkGj9+vOLj43X+/HmzZ1KlShX16dNH7du3188//6xnnnlGoaGhatCgQb6v82ZZQVeWvN7fKVOmKDIyskBqAQAAAABAymco1bNnT9nb22v06NG6dOmSunTpIi8vL82ZM0cvvvhiQdeI/+jRo4dpmtW8efNybNOmTRuVK1dOCxculJeXlzIzM1WtWrVs0+eKFCli+jkrpMkKS6ysrGQ0Gs3ap6enZzuXo6Oj2fu0tDTVqlXLLPDIkjXi507S0tL02muvacCAAdn2WWpR95vvjXTj/vx3+uN/+fv766uvvpKNjY28vLxMYd3FixcVEhKikJAQffLJJ/Lw8FBSUpJCQkJMz6Rly5Y6efKkNmzYoC1btqhZs2bq16+fZsyYccvz3c0zysv9HTVqlIYMGWJ6n5qaKm9v79vcCQAAAAAAbi/PodT169f16aefKiQkRF27dtWlS5eUlpamEiVK3Iv6kIOstZkMBoNCQkKy7T979qwOHz6shQsX6sknn5R0Y1HrvPLw8NDp06dlNBpNgVVcXNwdj6tZs6Y+++wzlShRQi4uLnk+b1YfBw8eVMWKFXN9TFYAlPVtkLcSEBCg1atXm11XbGysnJ2dVaZMmXzVe3MNOdV86NAhnT17VlOnTjWFOXv37s3WzsPDQ926dVO3bt305JNPatiwYZoxY8Ytr83Dw0PJycmm9xkZGTpw4ICaNGly2zrzen/t7OxkZ2eXq7YAAAAAAORGnhc6t7GxUe/evXXlyhVJkoODA4GUhVlbWyshIUEHDx40+/bDLMWKFVPx4sX14Ycf6tixY/r222/NRrnkVuPGjfXPP/9o2rRpOn78uObNm6eNGzfe8biuXbvqscceU9u2bbVjxw6dOHFCMTExGjBggP74449cnXvEiBH68ccf1b9/f8XFxeno0aP68ssvb7sQd4kSJWRvb69Nmzbp77//VkpKSo7t+vbtq1OnTun111/XoUOH9OWXX2rcuHEaMmSIaT2pgla2bFnZ2trqvffe0++//66vvvpKEydONGszduxYffnllzp27Jh+++03rVu3zjSN7lbX1rRpU61fv17r16/XoUOH1KdPH124cOGO9eTn/gIAAAAAUJDy9Rd43bp19csvvxR0LcgDFxeXW45CsrKyUnR0tPbt26dq1app8ODBmj59ep7PERAQoPnz52vevHkKDAzU7t27FRERccfjHBwc9P3336ts2bJq166dAgICFB4eritXruR65FSNGjW0fft2HTlyRE8++aSCgoI0duxYeXl53fIYGxsbvfvuu/rggw/k5eWltm3b5tiudOnS2rBhg3bv3q3AwED17t1b4eHhGj16dK5qyw8PDw9FRUVp1apVqlKliqZOnZptWp6tra1GjRqlGjVq6KmnnpK1tbWio6Nve209evRQt27d9Morr6hRo0YqX778HUdJSfm7vwAAAAAAFCSD8b8L0uTCypUrNWrUKA0ePFi1atXKtl7NfxeIBvBwSU1Nlaurq6qPGClru6J3PgD3pV8ixxV2CQAAAAAeQll/M6akpNx2cEq+FjrPWsz85kWSDQaDaY2eO63pAwAAAAAAgEdbvkKpEydOFHQdAAAAAAAAeITkK5QqV65cQdcBAAAAAACAR0i+Qqnly5ffdv8rr7ySr2IAAAAAAADwaMhXKDVw4ECz9+np6bp06ZJsbW3l4OBAKAUAAAAAAIDbssrPQefPnzd7paWl6fDhw2rYsKFWrFhR0DUCAAAAAADgIZOvUConlSpV0tSpU7ONogIAAAAAAAD+q8BCKUmysbHRX3/9VZBdAgAAAAAA4CGUrzWlvvrqK7P3RqNRycnJmjt3roKDgwukMAD3vx/eGCUXF5fCLgMAAAAA8ADKVygVGhpq9t5gMMjDw0NNmzbVzJkzC6IuAAAAAAAAPMTyFUplZmYWdB0AAAAAAAB4hORrTakJEybo0qVL2bZfvnxZEyZMuOuiAAAAAAAA8HAzGI1GY14Psra2VnJyskqUKGG2/ezZsypRooQyMjIKrEAA95/U1FS5uroqJSWFNaUAAAAAAGZy+zdjvkZKGY1GGQyGbNvj4+Pl7u6eny4BAAAAAADwCMnTmlLFihWTwWCQwWCQn5+fWTCVkZGhtLQ09e7du8CLBAAAAAAAwMMlT6HU7NmzZTQa1aNHD0VGRsrV1dW0z9bWVj4+Pqpfv36BFwng/tRg1hRZF7Ur7DJwB/Ejxxd2CQAAAACQTZ5CqW7dukmSfH191aBBAxUpUuSeFAUAAAAAAICHW55CqSyNGjUy/XzlyhVdu3bNbD8LHwMAAAAAAOB28rXQ+aVLl9S/f3+VKFFCjo6OKlasmNkLAAAAAAAAuJ18hVLDhg3Tt99+qwULFsjOzk6LFi1SZGSkvLy8tHz58oKuEQAAAAAAAA+ZfE3f+/rrr7V8+XI1btxY3bt315NPPqmKFSuqXLly+uSTT9S1a9eCrhMAAAAAAAAPkXyNlDp37pzKly8v6cb6UefOnZMkNWzYUN9//33BVQcAAAAAAICHUr5CqfLly+vEiROSpMqVK2vlypWSboygcnNzK7DiAAAAAAAA8HDKVyjVvXt3xcfHS5JGjhypefPmqWjRoho8eLCGDRtWoAUCAAAAAADg4ZOvNaUGDx5s+rl58+Y6dOiQ9u3bp4oVK6pGjRoFVhxwL8TExKhJkyY6f/48I/sAAAAAACgk+RopdbMrV66oXLlyateuHYEU8iwsLEwGgyHb69ixY4VST0xMTI713PyKiYkplNrulcTERBkMBsXFxRV2KQAAAACAR0i+QqmMjAxNnDhRpUuXlpOTk37//XdJ0pgxY7R48eICLRAPvxYtWig5Odns5evrWyi1NGjQwKyOjh07ZquvQYMGpvbXrl0rlDoLyoNePwAAAADgwZWvUGry5MmKiorStGnTZGtra9perVo1LVq0qMCKw6PBzs5Onp6eZi9ra2tJ0vbt21W3bl3Z2dmpVKlSGjlypK5fv2469urVqxowYIBKlCihokWLqmHDhtqzZ49Z/xs2bJCfn5/s7e3VpEkTJSYm3rIWW1tbszrs7e3N6nv//fdVt25dLVq0SL6+vipatKgkadOmTWrYsKHc3NxUvHhxPfvsszp+/Lip36zRSGvWrFGTJk3k4OCgwMBA7dy509Tm5MmTatOmjYoVKyZHR0dVrVpVGzZskPR/I7jWr1+vGjVqqGjRonriiSd04MABs/pXr16tqlWrys7OTj4+Ppo5c6bZfh8fH02cOFGvvPKKXFxc9Oqrr5oCwKCgIBkMBjVu3DiXTw4AAAAAgPzLVyi1fPlyffjhh+rataspPJCkwMBAHTp0qMCKw6Ptzz//VKtWrVSnTh3Fx8drwYIFWrx4sSZNmmRqM3z4cK1evVrLli3Tzz//rIoVKyokJETnzp2TJJ06dUrt2rVTmzZtFBcXp549e2rkyJF3VdexY8e0evVqrVmzxjTl7eLFixoyZIj27t2rbdu2ycrKSs8//7wyMzPNjn3zzTcVERGhuLg4+fn5qXPnzqaQrV+/frp69aq+//577d+/X2+//bacnJzMjh82bJhmzpypPXv2yMPDQ23atFF6erokad++ferYsaNefPFF7d+/X+PHj9eYMWMUFRVl1seMGTMUGBioX375RWPGjNHu3bslSVu3blVycrLWrFmT7ZqvXr2q1NRUsxcAAAAAAHcjXwud//nnn6pYsWK27ZmZmaY/kIHcWrdunVn40rJlS61atUrz58+Xt7e35s6dK4PBoMqVK+uvv/7SiBEjNHbsWF2+fFkLFixQVFSUWrZsKUlauHChtmzZosWLF2vYsGFasGCBKlSoYBox5O/vbwp88uvatWtavny5PDw8TNvat29v1mbJkiXy8PDQwYMHVa1aNdP2iIgItW7dWpIUGRmpqlWr6tixY6pcubKSkpLUvn17Va9eXZJUvnz5bOceN26cnn76aUnSsmXLVKZMGX3xxRfq2LGjZs2apWbNmmnMmDGSJD8/Px08eFDTp09XWFiYqY+mTZtq6NChpvdZwXLx4sXl6emZ4zVPmTJFkZGRub5HAAAAAADcSb5GSlWpUkU7duzItv3zzz9XUFDQXReFR0uTJk0UFxdner377ruSpISEBNWvX18Gg8HUNjg4WGlpafrjjz90/PhxpaenKzg42LS/SJEiqlu3rhISEkx91KtXz+x89evXv6t6y5UrZxZISdLRo0fVuXNnlS9fXi4uLvLx8ZEkJSUlmbW7+csASpUqJUk6c+aMJGnAgAGaNGmSgoODNW7cOP3666/Zzn1z7e7u7vL39ze71pvvhXTjfh09elQZGRmmbbVr187rJWvUqFFKSUkxvU6dOpXnPgAAAAAAuFm+RkqNHTtW3bp1059//qnMzEytWbNGhw8f1vLly7Vu3bqCrhEPOUdHxxxH3t2vHB0ds21r06aNypUrp4ULF8rLy0uZmZmqVq1atoXEixQpYvo5K2zLmuLXs2dPhYSEaP369frmm280ZcoUzZw5U6+//vo9r/9O7OzsZGdnV6B1AAAAAAAebXkaKfX777/LaDSqbdu2+vrrr7V161Y5Ojpq7NixSkhI0Ndff22aWgTcrYCAAO3cuVNGo9G0LTY2Vs7OzipTpowqVKggW1tbxcbGmvanp6drz549qlKliqmPrDWTsvz0008FWufZs2d1+PBhjR49Ws2aNVNAQIDOnz+fr768vb3Vu3dvrVmzRkOHDtXChQvN9t9c+/nz53XkyBEFBARIunGtN98L6cb98vPzM1v77b+yvqzg5tFUAAAAAADca3kaKVWpUiUlJyerRIkSevLJJ+Xu7q79+/erZMmS96o+PML69u2r2bNn6/XXX1f//v11+PBhjRs3TkOGDJGVlZUcHR3Vp08fDRs2TO7u7ipbtqymTZumS5cuKTw8XJLUu3dvzZw5U8OGDVPPnj21b9++bAt/361ixYqpePHi+vDDD1WqVCklJSXlazH1QYMGqWXLlvLz89P58+f13XffmQKnLBMmTFDx4sVVsmRJvfnmm3rssccUGhoqSRo6dKjq1KmjiRMnqlOnTtq5c6fmzp2r+fPn3/a8JUqUkL29vTZt2qQyZcqoaNGicnV1zXP9AAAAAADkRZ5GSt08YkWSNm7cqIsXLxZoQUCW0qVLa8OGDdq9e7cCAwPVu3dvhYeHa/To0aY2U6dOVfv27fXyyy+rZs2aOnbsmDZv3qxixYpJksqWLavVq1dr7dq1CgwM1Pvvv6+33nqrQOu0srJSdHS09u3bp2rVqmnw4MGaPn16nvvJyMhQv379FBAQoBYtWsjPzy9boDR16lQNHDhQtWrV0unTp/X111+bRjrVrFlTK1euVHR0tKpVq6axY8dqwoQJZouc58TGxkbvvvuuPvjgA3l5ealt27Z5rh0AAAAAgLwyGP+bNN2GlZWVTp8+rRIlSkiSnJ2dFR8fn+O3hAEoODExMWrSpInOnz8vNze3wi5HqampcnV1VdVxI2VdlLWm7nfxI8cXdgkAAAAAHiFZfzOmpKTIxcXllu3yNFLKYDCYfRNa1jYAAAAAAAAgL/K0ppTRaFRYWJjpW7iuXLmi3r17Z/s2rzVr1hRchQAAAAAAAHjo5CmU6tatm9n7l156qUCLAZCzxo0bZ1vTDQAAAACAB1meQqmlS5feqzoAAAAAAADwCMnTmlIAAAAAAABAQSCUAgAAAAAAgMURSgEAAAAAAMDi8rSmFADc7Mcho+Ti4lLYZQAAAAAAHkCMlAIAAAAAAIDFEUoBAAAAAADA4gilAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALM6msAsA8OAKfv8tWRe1K+wy8P/FDYgs7BIAAAAAINcYKQUAAAAAAACLI5QCAAAAAACAxRFKAQAAAAAAwOIIpQAAAAAAAGBxhFIAAAAAAACwOEIpAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWRygFFLLExEQZDAbFxcXdsk1MTIwMBoMuXLhgsboAAAAAALiXCKVw3zl9+rRef/11lS9fXnZ2dvL29labNm20bdu2QqknLCxMBoNBBoNBRYoUka+vr4YPH64rV64USP/e3t5KTk5WtWrVCqQ/AAAAAAAeBDaFXQBws8TERAUHB8vNzU3Tp09X9erVlZ6ers2bN6tfv346dOhQjselp6erSJEi96yuFi1aaOnSpUpPT9e+ffvUrVs3GQwGvf3223fdt7W1tTw9PQugSgAAAAAAHhyMlMJ9pW/fvjIYDNq9e7fat28vPz8/Va1aVUOGDNFPP/1kamcwGLRgwQI999xzcnR01OTJkyVJCxYsUIUKFWRrayt/f3999NFHZv1nHdeyZUvZ29urfPny+vzzz+9Yl52dnTw9PeXt7a3Q0FA1b95cW7ZsMe3PzMzUlClT5OvrK3t7ewUGBpr1e/78eXXt2lUeHh6yt7dXpUqVtHTpUkk5T9/bsGGD/Pz8ZG9vryZNmigxMdGsnvHjx+vxxx832zZ79mz5+PiYbVu0aJECAgJUtGhRVa5cWfPnzzftu3btmvr3769SpUqpaNGiKleunKZMmXLHewEAAAAAQEFgpBTuG+fOndOmTZs0efJkOTo6Ztvv5uZm9n78+PGaOnWqZs+eLRsbG33xxRcaOHCgZs+erebNm2vdunXq3r27ypQpoyZNmpiOGzNmjKZOnao5c+boo48+0osvvqj9+/crICAgV3UeOHBAP/74o8qVK2faNmXKFH388cd6//33ValSJX3//fd66aWX5OHhoUaNGmnMmDE6ePCgNm7cqMcee0zHjh3T5cuXc+z/1KlTateunfr166dXX31Ve/fu1dChQ3NV280++eQTjR07VnPnzlVQUJB++eUX9erVS46OjurWrZveffddffXVV1q5cqXKli2rU6dO6dSpUzn2dfXqVV29etX0PjU1Nc/1AAAAAABwM0Ip3DeOHTsmo9GoypUr56p9ly5d1L17d9P7zp07KywsTH379pUk0+iqGTNmmIVSHTp0UM+ePSVJEydO1JYtW/Tee++ZjSL6r3Xr1snJyUnXr1/X1atXZWVlpblz50q6Edi89dZb2rp1q+rXry9JKl++vH744Qd98MEHatSokZKSkhQUFKTatWtLUrYRTTfLGu01c+ZMSZK/v7/279+f56mC48aN08yZM9WuXTtJkq+vrw4ePKgPPvhA3bp1U1JSkipVqqSGDRvKYDCYhWz/NWXKFEVGRubp/AAAAAAA3A7T93DfMBqNeWqfFfBkSUhIUHBwsNm24OBgJSQkmG3LCo5ufv/fNv/VpEkTxcXFadeuXerWrZu6d++u9u3bS7oRpl26dElPP/20nJycTK/ly5fr+PHjkqQ+ffooOjpajz/+uIYPH64ff/zxludKSEhQvXr1blvznVy8eFHHjx9XeHi4WU2TJk0y1RQWFqa4uDj5+/trwIAB+uabb27Z36hRo5SSkmJ63WpEFQAAAAAAucVIKdw3KlWqJIPBcMvFzP8rpyl+94qjo6MqVqwoSVqyZIkCAwO1ePFihYeHKy0tTZK0fv16lS5d2uw4Ozs7SVLLli118uRJbdiwQVu2bFGzZs3Ur18/zZgxI1/1WFlZZQvx0tPTTT9n1bRw4cJsAZe1tbUkqWbNmjpx4oQ2btyorVu3qmPHjmrevHmOa2zZ2dmZrgUAAAAAgILASCncN9zd3RUSEqJ58+bp4sWL2fZfuHDhtscHBAQoNjbWbFtsbKyqVKlitu3mBdOz3ud2PSnpRiD0xhtvaPTo0bp8+bKqVKkiOzs7JSUlqWLFimYvb29v03EeHh7q1q2bPv74Y82ePVsffvjhLa9j9+7dt63Zw8NDp0+fNgumbl4ovWTJkvLy8tLvv/+erSZfX19TOxcXF3Xq1EkLFy7UZ599ptWrV+vcuXO5vhcAAAAAAOQXI6VwX5k3b56Cg4NVt25dTZgwQTVq1ND169e1ZcsWLViw4LbT7IYNG6aOHTsqKChIzZs319dff601a9Zo69atZu1WrVql2rVrq2HDhvrkk0+0e/duLV68OE91dujQQcOGDdO8efMUERGhiIgIDR48WJmZmWrYsKFSUlIUGxsrFxcXdevWTWPHjlWtWrVUtWpVXb16VevWrbtlENa7d2/NnDlTw4YNU8+ePbVv3z5FRUWZtWncuLH++ecfTZs2TS+88II2bdqkjRs3ysXFxdQmMjJSAwYMkKurq1q0aKGrV69q7969On/+vIYMGaJZs2apVKlSCgoKkpWVlVatWiVPT89sC8oDAAAAAHAvMFIK95Xy5cvr559/VpMmTTR06FBVq1ZNTz/9tLZt26YFCxbc9tjQ0FDNmTNHM2bMUNWqVfXBBx9o6dKlaty4sVm7yMhIRUdHq0aNGlq+fLlWrFiRbTTVndjY2Kh///6aNm2aLl68qIkTJ2rMmDGaMmWKAgIC1KJFC61fv940KsnW1lajRo1SjRo19NRTT8na2lrR0dE59l22bFmtXr1aa9euVWBgoN5//3299dZbZm0CAgI0f/58zZs3T4GBgdq9e7ciIiLM2vTs2VOLFi3S0qVLVb16dTVq1EhRUVGmmpydnTVt2jTVrl1bderUUWJiojZs2CArK/5ZAAAAAADcewZjXleXBh5gBoNBX3zxhUJDQwu7lAdaamqqXF1dVe3tEbIuylpT94u4AXxDIgAAAIDCl/U3Y0pKitmMnv9iSAQAAAAAAAAsjlAKAAAAAAAAFsdC53ikMFsVAAAAAID7AyOlAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALI6FzgHkW2zvN+Ti4lLYZQAAAAAAHkCMlAIAAAAAAIDFEUoBAAAAAADA4gilAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALM6msAsA8OBqunyibOztCruMR8ZP4ZMKuwQAAAAAKDCMlAIAAAAAAIDFEUoBAAAAAADA4gilAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALI5QCgAAAAAAABZHKAUAAAAAAACLI5TCQyUsLEyhoaGFXUauREVFyc3N7b7pBwAAAAAASyKUQoEKCwuTwWCQwWBQkSJF5Ovrq+HDh+vKlSuFXdpDwcfHR7Nnzzbb1qlTJx05cqRwCgIAAAAAIJ9sCrsAPHxatGihpUuXKj09Xfv27VO3bt1kMBj09ttv57vP9PR0FSlSpACrfHjY29vL3t6+sMsAAAAAACBPGCmFAmdnZydPT095e3srNDRUzZs315YtW0z7cxrt8/jjj2v8+PGm9waDQQsWLNBzzz0nR0dHTZ48WRkZGQoPD5evr6/s7e3l7++vOXPm5Km2rKlua9euVaVKlVS0aFGFhITo1KlTZu0WLFigChUqyNbWVv7+/vroo4/M9mfV17JlS9nb26t8+fL6/PPPTftjYmJkMBh04cIF07a4uDgZDAYlJibmWNvx48fVtm1blSxZUk5OTqpTp462bt1q2t+4cWOdPHlSgwcPNo1Gu/ma8lr/okWL9Pzzz8vBwUGVKlXSV199ldvbCAAAAADAXSOUwj114MAB/fjjj7K1tc3zsePHj9fzzz+v/fv3q0ePHsrMzFSZMmW0atUqHTx4UGPHjtUbb7yhlStX5qnfS5cuafLkyVq+fLliY2N14cIFvfjii6b9X3zxhQYOHKihQ4fqwIEDeu2119S9e3d99913Zv2MGTNG7du3V3x8vLp27aoXX3xRCQkJeb7OLGlpaWrVqpW2bdumX375RS1atFCbNm2UlJQkSVqzZo3KlCmjCRMmKDk5WcnJyTn2k9v6IyMj1bFjR/36669q1aqVunbtqnPnzuXY59WrV5Wammr2AgAAAADgbhBKocCtW7dOTk5OKlq0qKpXr64zZ85o2LBhee6nS5cu6t69u8qXL6+yZcuqSJEiioyMVO3ateXr66uuXbuqe/fueQ6l0tPTNXfuXNWvX1+1atXSsmXL9OOPP2r37t2SpBkzZigsLEx9+/aVn5+fhgwZonbt2mnGjBlm/XTo0EE9e/aUn5+fJk6cqNq1a+u9997L83VmCQwM1GuvvaZq1aqpUqVKmjhxoipUqGAaweTu7i5ra2s5OzvL09NTnp6eOfaT2/rDwsLUuXNnVaxYUW+99ZbS0tJM9+C/pkyZIldXV9PL29s739cJAAAAAIBEKIV7oEmTJoqLi9OuXbvUrVs3de/eXe3bt89zP7Vr1862bd68eapVq5Y8PDzk5OSkDz/80DSSKLdsbGxUp04d0/vKlSvLzc3NNMopISFBwcHBZscEBwdnGwVVv379bO/vdqRURESEAgIC5ObmJicnJyUkJOT5+nJbf40aNUw/Ozo6ysXFRWfOnMmxz1GjRiklJcX0+u90RwAAAAAA8oqFzlHgHB0dVbFiRUnSkiVLFBgYqMWLFys8PFySZGVlJaPRaHZMenp6jv3cLDo6WhEREZo5c6bq168vZ2dnTZ8+Xbt27bpHV5J/VlY38t6brzOna7xZRESEtmzZohkzZqhixYqyt7fXCy+8oGvXrt2TGv+7cLzBYFBmZmaObe3s7GRnZ3dP6gAAAAAAPJoYKYV7ysrKSm+88YZGjx6ty5cvS5I8PDzM1kNKTU3ViRMn7thXbGysGjRooL59+yooKEgVK1bU8ePH81zT9evXtXfvXtP7w4cP68KFCwoICJAkBQQEKDY2Ntu5q1SpYrbtp59+yvY+qw8PDw9JMrvOuLi429YVGxursLAwPf/886pevbo8PT2zLYpua2urjIyM2/aT2/oBAAAAAChMhFK45zp06CBra2vNmzdPktS0aVN99NFH2rFjh/bv369u3brJ2tr6jv1UqlRJe/fu1ebNm3XkyBGNGTNGe/bsyXM9RYoU0euvv65du3Zp3759CgsL0xNPPKG6detKkoYNG6aoqCgtWLBAR48e1axZs7RmzRpFRESY9bNq1SotWbJER44c0bhx47R79271799fklSxYkV5e3tr/PjxOnr0qNavX6+ZM2fe8frWrFmjuLg4xcfHq0uXLtlGLvn4+Oj777/Xn3/+qX///TfHfnJbPwAAAAAAhYlQCvecjY2N+vfvr2nTpunixYsaNWqUGjVqpGeffVatW7dWaGioKlSocMd+XnvtNbVr106dOnVSvXr1dPbsWfXt2zfP9Tg4OGjEiBHq0qWLgoOD5eTkpM8++8y0PzQ0VHPmzNGMGTNUtWpVffDBB1q6dKkaN25s1k9kZKSio6NVo0YNLV++XCtWrDCNRipSpIhWrFihQ4cOqUaNGnr77bc1adKk29Y1a9YsFStWTA0aNFCbNm0UEhKimjVrmrWZMGGCEhMTVaFCBdNorP/Kbf0AAAAAABQmg/G/i/sAD7GoqCgNGjRIFy5cuKt+DAaDvvjiC4WGhhZIXQ+a1NRUubq6qtZ7EbKxZ60pS/kp/PbBJgAAAADcD7L+ZkxJSZGLi8st2zFSCgAAAAAAABZHKAUAAAAAAACLI5TCIyUsLOyup+5JktFofGSn7gEAAAAAUBAIpQAAAAAAAGBxhFIAAAAAAACwOEIpAAAAAAAAWByhFAAAAAAAACzOprALAPDg+vaVMXJxcSnsMgAAAAAADyBGSgEAAAAAAMDiCKUAAAAAAABgcYRSAAAAAAAAsDhCKQAAAAAAAFgcoRQAAAAAAAAsjlAKAAAAAAAAFmdT2AUAeHCFfj5eNg52hV3GQ+2bF6cUdgkAAAAAcE8wUgoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMURSgEAAAAAAMDiCKUAAAAAAABgcYRSAAAAAAAAsDhCKQAAAAAAAFgcoRQAAAAAAAAs7qEOpcLCwhQaGmp6bzQa9eqrr8rd3V0Gg0FxcXH37NyNGzfWoEGD7ln/uP/99/fvfjd+/Hg9/vjjhV0GAAAAAOARcV+EUjt37pS1tbVat25doP3OmTNHUVFRpvebNm1SVFSU1q1bp+TkZFWrVq1Az5cXGRkZmjp1qipXrix7e3u5u7urXr16WrRoUYH0HxUVJTc3twLpqyClpaWpSJEiio6ONtv+4osvymAwKDEx0Wy7j4+PxowZc9fnLaiQMCYmRgaDQQaDQVZWVnJ1dVVQUJCGDx+u5ORks7b//f0DAAAAAAD/574IpRYvXqzXX39d33//vf7666+77i8jI0OZmZlydXU1C2aOHz+uUqVKqUGDBvL09JSNjc1dnyu/IiMj9c4772jixIk6ePCgvvvuO7366qu6cOFCodVkCU5OTqpdu7ZiYmLMtsfExMjb29ts+4kTJ3Ty5Ek1bdrUskXmwuHDh/XXX39pz549GjFihLZu3apq1app//79pjb//f0DAAAAAAD/p9BDqbS0NH322Wfq06ePWrdunePIkq+++kqVKlVS0aJF1aRJEy1btkwGg8EU4GSNCvrqq69UpUoV2dnZKSkpyWz6VFhYmF5//XUlJSXJYDDIx8dHknT16lUNGDBAJUqUUNGiRdWwYUPt2bPH7Pzbt29X3bp1ZWdnp1KlSmnkyJG6fv26af/Fixf1yiuvyMnJSaVKldLMmTPveN1fffWV+vbtqw4dOsjX11eBgYEKDw9XRESEJGn58uUqXry4rl69anZcaGioXn75ZUlSfHy8mjRpImdnZ7m4uKhWrVrau3evYmJi1L17d6WkpJhG9YwfP950vRERESpdurQcHR1Vr149syAo616uW7dO/v7+cnBw0AsvvKBLly5p2bJl8vHxUbFixTRgwABlZGSYjps/f77pGZUsWVIvvPDCLa+9SZMmZudMSEjQlStX1KdPH7PtMTExsrOzU/369XX8+HG1bdtWJUuWlJOTk+rUqaOtW7ea9XurGsLCwrR9+3bNmTPHdD+yRmQdOHBALVu2lJOTk0qWLKmXX35Z//777x2fX4kSJeTp6Sk/Pz+9+OKLio2NlYeHh/r06WNq89/pe59//rmqV68ue3t7FS9eXM2bN9fFixfN2kZGRsrDw0MuLi7q3bu3rl27Zjr+Tr+r58+fV9euXeXh4SF7e3tVqlRJS5cuNe0fMWKE/Pz85ODgoPLly2vMmDFKT0+/47UCAAAAAHAvFHootXLlSlWuXFn+/v566aWXtGTJEhmNRtP+EydO6IUXXlBoaKji4+P12muv6c0338zWz6VLl/T2229r0aJF+u2331SiRAmz/XPmzNGECRNUpkwZJScnm/6YHz58uFavXq1ly5bp559/VsWKFRUSEqJz585Jkv7880+1atVKderUUXx8vBYsWKDFixdr0qRJpr6HDRum7du368svv9Q333yjmJgY/fzzz7e9bk9PT3377bf6559/ctzfoUMHZWRk6KuvvjJtO3PmjNavX68ePXpIkrp27aoyZcpoz5492rdvn0aOHKkiRYqoQYMGmj17tlxcXJScnKzk5GRT2NW/f3/t3LlT0dHR+vXXX9WhQwe1aNFCR48eNbuX7777rqKjo7Vp0ybFxMTo+eef14YNG7RhwwZ99NFH+uCDD/T5559Lkvbu3asBAwZowoQJOnz4sDZt2qSnnnrqltfepEkTHT582DTd7bvvvlPDhg3VtGlTs1Dqu+++U/369VW0aFGlpaWpVatW2rZtm3755Re1aNFCbdq0UVJS0h1rmDNnjurXr69evXqZ7oe3t7cuXLigpk2bKigoSHv37tWmTZv0999/q2PHjrd9djmxt7dX7969FRsbqzNnzmTbn5ycrM6dO6tHjx5KSEhQTEyM2rVrZ/a7vm3bNtO+FStWaM2aNYqMjDTtv9Pv6pgxY3Tw4EFt3LhRCQkJWrBggR577DHT8c7OzoqKitLBgwc1Z84cLVy4UO+8806uru/q1atKTU01ewEAAAAAcDcKb/7a/7d48WK99NJLkqQWLVooJSVF27dvV+PGjSVJH3zwgfz9/TV9+nRJkr+/vw4cOKDJkyeb9ZOenq758+crMDAwx/O4urrK2dlZ1tbW8vT0lHRjhNOCBQsUFRWlli1bSpIWLlyoLVu2aPHixRo2bJjmz58vb29vzZ07VwaDQZUrV9Zff/2lESNGaOzYsbp06ZIWL16sjz/+WM2aNZMkLVu2TGXKlLntdc+aNUsvvPCCPD09VbVqVTVo0EBt27Y11WFvb68uXbpo6dKl6tChgyTp448/VtmyZU33JikpScOGDVPlypUlSZUqVTK7XoPBYLrWrPZLly5VUlKSvLy8JEkRERHatGmTli5dqrfeest0LxcsWKAKFSpIkl544QV99NFH+vvvv+Xk5KQqVaqoSZMm+u6779SpUyclJSXJ0dFRzz77rJydnVWuXDkFBQXd8tqDg4Nla2urmJgYde7cWTExMWrUqJFq1aqlf//9VydOnJCvr6+2b9+u8PBwSVJgYKDZs504caK++OILffXVV+rfv/9ta3B1dZWtra0cHBzM7sfcuXMVFBRkum5JWrJkiby9vXXkyBH5+fnd9hn+V9ZzSExMzBaKJicn6/r162rXrp3KlSsnSapevbpZG1tbWy1ZskQODg6qWrWqJkyYoGHDhmnixIm6fPnyHX9Xk5KSFBQUpNq1a0uSaTRgltGjR5t+9vHxUUREhKKjozV8+PA7XtuUKVPMAjIAAAAAAO5WoY6UOnz4sHbv3q3OnTtLkmxsbNSpUyctXrzYrE2dOnXMjqtbt262vmxtbVWjRo08nf/48eNKT09XcHCwaVuRIkVUt25dJSQkSLoxtax+/foyGAymNsHBwUpLS9Mff/yh48eP69q1a6pXr55pv7u7u/z9/W977ipVqujAgQP66aef1KNHD505c0Zt2rRRz549TW169eqlb775Rn/++aekG1PrwsLCTLUMGTJEPXv2VPPmzTV16lQdP378tufcv3+/MjIy5OfnJycnJ9Nr+/btZsc6ODiYAilJKlmypHx8fOTk5GS2LWtE0NNPP61y5cqpfPnyevnll/XJJ5/o0qVLt6zDwcFBderUMY2KygohbWxs1KBBA8XExOj3339XUlKSmjRpIunGNM+IiAgFBATIzc1NTk5OSkhIMI2UymsN0o3pj999953ZvcgKlu50L3OSNerp5t+VLIGBgWrWrJmqV6+uDh06aOHChTp//ny2Ng4ODqb39evXV1pamk6dOpWr39U+ffooOjpajz/+uIYPH64ff/zRrP/PPvtMwcHB8vT0lJOTk0aPHm26f3cyatQopaSkmF6nTp3K3U0BAAAAAOAWCjWUWrx4sa5fvy4vLy/Z2NjIxsZGCxYs0OrVq5WSkpKnvuzt7XMMA+5nVlZWqlOnjgYNGqQ1a9YoKipKixcv1okTJyRJQUFBCgwM1PLly7Vv3z799ttvCgsLMx0/fvx4/fbbb2rdurW+/fZbValSRV988cUtz5eWliZra2vt27dPcXFxpldCQoLmzJljalekSBGz4wwGQ47bMjMzJd2YFvbzzz9rxYoVKlWqlMaOHavAwMDbLtqeNdLqt99+0+XLl1WzZk1JUqNGjfTdd9/pu+++k4ODgynsi4iI0BdffKG33npLO3bsUFxcnKpXr25acyk/NaSlpalNmzZm9yIuLk5Hjx697fTDW8kKh/47QkmSrK2ttWXLFm3cuFFVqlTRe++9J39/f9OzLggtW7bUyZMnNXjwYP31119q1qyZadrmzp071bVrV7Vq1Urr1q3TL7/8ojfffNNszarbsbOzk4uLi9kLAAAAAIC7UWih1PXr17V8+XLNnDnTLBCIj4+Xl5eXVqxYIenGdL29e/eaHfvfhcjzq0KFCrK1tVVsbKxpW3p6uvbs2aMqVapIkgICArRz506ztX9iY2Pl7OysMmXKqEKFCipSpIh27dpl2n/+/HkdOXIkz/VknTNr8WtJ6tmzp6KiorR06VI1b95c3t7eZsf4+flp8ODB+uabb9SuXTvTwta2trZmC5FLN0KujIwMnTlzRhUrVjR73TytLT9sbGzUvHlzTZs2Tb/++qsSExP17bff3rJ9kyZNdPToUX366adq2LChrK2tJUlPPfWUtm/frpiYGNM0P+nGPQ8LC9Pzzz+v6tWry9PT07RYeW5qyOl+1KxZU7/99pt8fHyy3Q9HR8c8Xf/ly5f14Ycf6qmnnpKHh0eObQwGg4KDgxUZGalffvlFtra2ZiFifHy8Ll++bHr/008/ycnJSd7e3rn6XZUkDw8PdevWTR9//LFmz56tDz/8UJL0448/qly5cnrzzTdVu3ZtVapUSSdPnszTNQIAAAAAUJAKLZRat26dzp8/r/DwcFWrVs3s1b59e9MUvtdee02HDh3SiBEjdOTIEa1cudL0DX13OzLK0dFRffr00bBhw7Rp0yYdPHhQvXr10qVLl0xrGfXt21enTp3S66+/rkOHDunLL7/UuHHjNGTIEFlZWcnJyUnh4eEaNmyYvv32Wx04cEBhYWGysrr9rX3hhRf0zjvvaNeuXTp58qRiYmLUr18/+fn5maaQSVKXLl30xx9/aOHChaYFzqUbIUj//v0VExOjkydPKjY2Vnv27FFAQICkG6N10tLStG3bNv3777+6dOmS/Pz81LVrV73yyitas2aNTpw4od27d2vKlClav359vu/junXr9O677youLk4nT57U8uXLlZmZedspjA0aNJCdnZ3ee+89NWrUyLS9bt26OnPmjL788kvT1D3pxnpZa9asMQWXXbp0MY3Uyk0NPj4+2rVrlxITE/Xvv/8qMzNT/fr107lz59S5c2ft2bNHx48f1+bNm9W9e/dsAdZ/nTlzRqdPn9bRo0cVHR2t4OBg/fvvv1qwYEGO7Xft2qW33npLe/fuVVJSktasWaN//vnH9Lwk6dq1awoPD9fBgwe1YcMGjRs3Tv3795eVlVWuflfHjh2rL7/8UseOHdNvv/2mdevWmfqvVKmSkpKSFB0drePHj+vdd9+97ag6AAAAAADutUILpRYvXqzmzZvL1dU127727dtr7969+vXXX+Xr66vPP/9ca9asUY0aNbRgwQLTt+/Z2dnddR1Tp05V+/bt9fLLL6tmzZo6duyYNm/erGLFikmSSpcurQ0bNmj37t0KDAxU7969FR4ebrZo9PTp0/Xkk0+qTZs2at68uRo2bKhatWrd9rwhISH6+uuv1aZNG/n5+albt26qXLmyvvnmG9nY/N/6866urmrfvr2cnJwUGhpq2m5tba2zZ8/qlVdekZ+fnzp27KiWLVuaFqNu0KCBevfurU6dOsnDw0PTpk2TJC1dulSvvPKKhg4dKn9/f4WGhmrPnj0qW7Zsvu+hm5ub1qxZo6ZNmyogIEDvv/++VqxYoapVq97ymKJFi+qJJ57Q//73P9PC7dKNZ5q1/eZQatasWSpWrJgaNGigNm3aKCQkxDTlLzc1REREyNraWlWqVJGHh4dpsffY2FhlZGTomWeeUfXq1TVo0CC5ubndMVT09/eXl5eXatWqpalTp6p58+Y6cOCA2ailm7m4uOj7779Xq1at5Ofnp9GjR2vmzJmmRcslqVmzZqpUqZKeeuopderUSc8995zGjx9v2n+n31VbW1uNGjVKNWrU0FNPPSVra2tFR0dLkp577jkNHjxY/fv31+OPP64ff/xRY8aMue01AgAAAABwLxmMN89Le0BMnjxZ77///iOz2HKzZs1UtWpVvfvuu4VdCu6RsLAwXbhwQWvXri3sUnIlNTVVrq6uarJ4sGwc7j4cxq198+KUwi4BAAAAAPIk62/GlJSU265JbHPLPfeR+fPnq06dOipevLhiY2M1ffp09e/fv7DLuufOnz+vmJgYxcTEaP78+YVdDgAAAAAAQIF5IEKpo0ePatKkSTp37pzKli2roUOHatSoUYVd1j0XFBSk8+fP6+23377t+kwAAAAAAAAPmgdy+h6AwsX0Pcth+h4AAACAB01up+8V2kLnAAAAAAAAeHQRSgEAAAAAAMDiCKUAAAAAAABgcYRSAAAAAAAAsLgH4tv3ANyf1r4w/raL1gEAAAAAcCuMlAIAAAAAAIDFEUoBAAAAAADA4gilAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALI5QCgAAAAAAABZnU9gFAHhwhW98U0Uc7Aq7jIfWp21mFHYJAAAAAHDPMFIKAAAAAAAAFkcoBQAAAAAAAIsjlAIAAAAAAIDFEUoBAAAAAADA4gilAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYHKEUcI/ExMTIYDDowoULhV1KjqKiouTm5mZ6P378eD3++OOFVg8AAAAA4NFCKIVHQlhYmAwGQ7bXsWPHCrUuHx8fUy0ODg6qXr26Fi1alKc+8hsmderUSUeOHMnzcQAAAAAAFARCKTwyWrRooeTkZLOXr69vYZelCRMmKDk5WQcOHNBLL72kXr16aePGjff8vPb29ipRosQ9Pw8AAAAAADkhlMIjw87OTp6enmYva2trSdL27dtVt25d2dnZqVSpUho5cqSuX79uOvbq1asaMGCASpQooaJFi6phw4bas2ePWf8bNmyQn5+f7O3t1aRJEyUmJuaqLmdnZ3l6eqp8+fIaMWKE3N3dtWXLFtP+CxcuqGfPnvLw8JCLi4uaNm2q+Ph4STem4EVGRio+Pt404ioqKkqSNGvWLFWvXl2Ojo7y9vZW3759lZaWZur3v9P3AAAAAACwJEIpPPL+/PNPtWrVSnXq1FF8fLwWLFigxYsXa9KkSaY2w4cP1+rVq7Vs2TL9/PPPqlixokJCQnTu3DlJ0qlTp9SuXTu1adNGcXFx6tmzp0aOHJmnOjIzM7V69WqdP39etra2pu0dOnTQmTNntHHjRu3bt081a9ZUs2bNdO7cOXXq1ElDhw5V1apVTaO/OnXqJEmysrLSu+++q99++03Lli3Tt99+q+HDhxfAHQMAAAAA4O4RSuGRsW7dOjk5OZleHTp0kCTNnz9f3t7emjt3ripXrqzQ0FBFRkZq5syZyszM1MWLF7VgwQJNnz5dLVu2VJUqVbRw4ULZ29tr8eLFkqQFCxaoQoUKmjlzpvz9/dW1a1eFhYXlqq4RI0bIyclJdnZ2euGFF1SsWDH17NlTkvTDDz9o9+7dWrVqlWrXrq1KlSppxowZcnNz0+effy57e3s5OTnJxsbGNPrL3t5ekjRo0CA1adJEPj4+atq0qSZNmqSVK1fm695dvXpVqampZi8AAAAAAO6GTWEXAFhKkyZNtGDBAtN7R0dHSVJCQoLq168vg8Fg2hccHKy0tDT98ccfunDhgtLT0xUcHGzaX6RIEdWtW1cJCQmmPurVq2d2vvr16+eqrmHDhiksLEzJyckaNmyY+vbtq4oVK0qS4uPjlZaWpuLFi5sdc/nyZR0/fvy2/W7dulVTpkzRoUOHlJqaquvXr+vKlSu6dOmSHBwcclVblilTpigyMjJPxwAAAAAAcDuEUnhkODo6msKe+8ljjz2mihUrqmLFilq1apWqV6+u2rVrq0qVKkpLS1OpUqUUExOT7bjbrQeVmJioZ599Vn369NHkyZPl7u6uH374QeHh4bp27VqeQ6lRo0ZpyJAhpvepqany9vbOUx8AAAAAANyM6Xt45AUEBGjnzp0yGo2mbbGxsXJ2dlaZMmVUoUIF2draKjY21rQ/PT1de/bsUZUqVUx97N6926zfn376Kc+1eHt7q1OnTho1apQkqWbNmjp9+rRsbGxMwVXW67HHHpMk2draKiMjw6yfffv2KTMzUzNnztQTTzwhPz8//fXXX3muJ4udnZ1cXFzMXgAAAAAA3A1CKTzy+vbtq1OnTun111/XoUOH9OWXX2rcuHEaMmSIrKys5OjoqD59+mjYsGHatGmTDh48qF69eunSpUsKDw+XJPXu3VtHjx7VsGHDdPjwYX366aemb8HLq4EDB+rrr7/W3r171bx5c9WvX1+hoaH65ptvlJiYqB9//FFvvvmm9u7dK0ny8fHRiRMnFBcXp3///VdXr15VxYoVlZ6ervfee0+///67PvroI73//vsFdcsAAAAAALhrhFJ45JUuXVobNmzQ7t27FRgYqN69eys8PFyjR482tZk6darat2+vl19+WTVr1tSxY8e0efNmFStWTJJUtmxZrV69WmvXrlVgYKDef/99vfXWW/mqp0qVKnrmmWc0duxYGQwGbdiwQU899ZS6d+8uPz8/vfjiizp58qRKliwpSWrfvr1atGihJk2ayMPDQytWrFBgYKBmzZqlt99+W9WqVdMnn3yiKVOm3P3NAgAAAACggBiMN89ZAoBcSE1Nlaurq16I7q8iDnaFXc5D69M2Mwq7BAAAAADIs6y/GVNSUm67/AsjpQAAAAAAAGBxhFIAAAAAAACwOEIpAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMURSgEAAAAAAMDibAq7AAAPrsUtJ8vFxaWwywAAAAAAPIAYKQUAAAAAAACLI5QCAAAAAACAxRFKAQAAAAAAwOIIpQAAAAAAAGBxhFIAAAAAAACwOEIpAAAAAAAAWJxNYRcA4ME16vsI2TnaFnYZD41ZTeYWdgkAAAAAYDGMlAIAAAAAAIDFEUoBAAAAAADA4gilAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALI5QCgAAAAAAABZHKAUAAAAAAACLI5SCRezcuVPW1tZq3bp1YZdikpqaqjfffFOVK1dW0aJF5enpqebNm2vNmjUyGo2FXR4AAAAAAA81m8IuAI+GxYsX6/XXX9fixYv1119/ycvLK8d2RqNRGRkZsrG5t7+aFy5cUMOGDZWSkqJJkyapTp06srGx0fbt2zV8+HA1bdpUbm5u97SGvLDUfQEAAAAAwFIYKYV7Li0tTZ999pn69Omj1q1bKyoqyrQvJiZGBoNBGzduVK1atWRnZ6cffvhBmZmZmjJlinx9fWVvb6/AwEB9/vnnpuMyMjIUHh5u2u/v7685c+bkuqY33nhDiYmJ2rVrl7p166YqVarIz89PvXr1UlxcnJycnCRJH330kWrXri1nZ2d5enqqS5cuOnPmTLb6N2/erKCgINnb26tp06Y6c+aMNm7cqICAALm4uKhLly66dOmS6bg7Xd+t7svVq1c1YMAAlShRQkWLFlXDhg21Z88es2vbvn276tatKzs7O5UqVUojR47U9evXTfsbN26sAQMGaPjw4XJ3d5enp6fGjx+f63sHAAAAAEBBIJTCPbdy5UpVrlxZ/v7+eumll7RkyZJs0+NGjhypqVOnKiEhQTVq1NCUKVO0fPlyvf/++/rtt980ePBgvfTSS9q+fbukG6FOmTJltGrVKh08eFBjx47VG2+8oZUrV96xnszMTEVHR6tr1645jthycnIyjUhKT0/XxIkTFR8fr7Vr1yoxMVFhYWHZjhk/frzmzp2rH3/8UadOnVLHjh01e/Zsffrpp1q/fr2++eYbvffee6b2d7q+W92X4cOHa/Xq1Vq2bJl+/vlnVaxYUSEhITp37pwk6c8//1SrVq1Up04dxcfHa8GCBVq8eLEmTZpk1u+yZcvk6OioXbt2adq0aZowYYK2bNlyx3sHAAAAAEBBMRhZPAf3WHBwsDp27KiBAwfq+vXrKlWqlFatWqXGjRsrJiZGTZo00dq1a9W2bVtJ0tWrV+Xu7q6tW7eqfv36pn569uypS5cu6dNPP83xPP3799fp06fNRhzl5MyZMypZsqRmzZqlwYMH5+la9u7dqzp16uh///ufnJycTPVv3bpVzZo1kyRNnTpVo0aN0vHjx1W+fHlJUu/evZWYmKhNmzbl6vpyui8XL15UsWLFFBUVpS5duki6EZr5+Pho0KBBGjZsmN58802tXr1aCQkJMhgMkqT58+drxIgRSklJkZWVlRo3bqyMjAzt2LHDdO66deuqadOmmjp1ao7XffXqVV29etX0PjU1Vd7e3ur7dS/ZOdrm6R7i1mY1mVvYJQAAAADAXUtNTZWrq6tSUlLk4uJyy3YsUIN76vDhw9q9e7e++OILSZKNjY06deqkxYsXq3HjxqZ2tWvXNv187NgxXbp0SU8//bRZX9euXVNQUJDp/bx587RkyRIlJSXp8uXLunbtmh5//PE71pSXHHbfvn0aP3684uPjdf78eWVmZkqSkpKSVKVKFVO7GjVqmH4uWbKkHBwcTIFU1rbdu3fn6fok8/ty/PhxpaenKzg42LStSJEiqlu3rhISEiRJCQkJql+/vimQkm6Egmlpafrjjz9UtmzZbPVKUqlSpcymJf7XlClTFBkZecv9AAAAAADkFaEU7qnFixfr+vXrZtPkjEaj7OzsNHfu/40KcXR0NP2clpYmSVq/fr1Kly5t1p+dnZ0kKTo6WhEREZo5c6bq168vZ2dnTZ8+Xbt27bpjTR4eHnJzc9OhQ4du2+7ixYsKCQlRSEiIPvnkE3l4eCgpKUkhISG6du2aWdsiRYqYfjYYDGbvs7ZlBVq5ub4sN9+XgnS7+nIyatQoDRkyxPQ+a6QUAAAAAAD5RSiFe+b69etavny5Zs6cqWeeecZsX2hoqFasWKHKlStnO65KlSqys7NTUlKSGjVqlGPfsbGxatCggfr27Wvadvz48VzVZWVlpRdffFEfffSRxo0bl21dqbS0NBUtWlSHDh3S2bNnNXXqVFMAs3fv3lyd43Zyc305qVChgmxtbRUbG6ty5cpJujF9b8+ePRo0aJAkKSAgQKtXr5bRaDSNloqNjZWzs7PKlCmT75rt7OyyBWYAAAAAANwNQincM+vWrdP58+cVHh4uV1dXs33t27fX4sWLNX369GzHOTs7KyIiQoMHD1ZmZqYaNmyolJQUxcbGysXFRd26dVOlSpW0fPlybd68Wb6+vvroo4+0Z88e+fr65qq2yZMnKyYmRvXq1dPkyZNVu3ZtFSlSRDt27NCUKVO0Z88elS1bVra2tnrvvffUu3dvHThwQBMnTrzr+5Kb68uJo6Oj+vTpo2HDhsnd3V1ly5bVtGnTdOnSJYWHh0uS+vbtq9mzZ+v1119X//79dfjwYY0bN05DhgyRlRXfawAAAAAAuH8QSuGeWbx4sZo3b54tkJJuhFLTpk3Tr7/+muOxEydOlIeHh6ZMmaLff/9dbm5uqlmzpt544w1J0muvvaZffvlFnTp1ksFgUOfOndW3b19t3LgxV7W5u7vrp59+0tSpUzVp0iSdPHlSxYoVU/Xq1TV9+nS5urrKYDAoKipKb7zxht59913VrFlTM2bM0HPPPZf/m5LL67uVqVOnKjMzUy+//LL+97//qXbt2tq8ebOKFSsmSSpdurQ2bNigYcOGKTAwUO7u7goPD9fo0aPvumYAAAAAAAoS374HIM+yvkmBb98rWHz7HgAAAICHQW6/fY/5PAAAAAAAALA4Qik8lJycnG752rFjR2GXBwAAAADAI481pfBQiouLu+W+0qVLW64QAAAAAACQI0IpPJQqVqxY2CUAAAAAAIDbYPoeAAAAAAAALI5QCgAAAAAAABZHKAUAAAAAAACLI5QCAAAAAACAxbHQOYB8m/LUDLm4uBR2GQAAAACABxAjpQAAAAAAAGBxhFIAAAAAAACwOEIpAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAAAi7Mp7AIAPLhm/PiqijraFnYZD4U3nlxe2CUAAAAAgEUxUgoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMURSgEAAAAAAMDiCKUAAAAAAABgcYRSAAAAAAAAsDhCKQAAAAAAAFgcoRQKhY+Pj2bPnl3YZRSqmJgYGQwGXbhw4b7oBwAAAAAASyKUQr40btxYgwYNyrY9KipKbm5uFq/nUZHTfW/QoIGSk5Pl6upaOEUBAAAAAJAPhFKwqGvXrhV2CQ8dW1tbeXp6ymAwFHYpAAAAAADkGqEU7qmwsDCFhoZq8uTJ8vLykr+/v2nf//73P3Xu3FmOjo4qXbq05s2bZ3bsrFmzVL16dTk6Osrb21t9+/ZVWlqaaX/WqKzNmzcrICBATk5OatGihZKTk29ZT9ZUt/Xr16tGjRoqWrSonnjiCR04cMCs3erVq1W1alXZ2dnJx8dHM2fONNvv4+OjiRMn3rL+xMREGQwGxcXFmbZduHBBBoNBMTExOdZ29uxZde7cWaVLl5aDg4OqV6+uFStWmN3L7du3a86cOTIYDDIYDEpMTMxx+l5u6n/rrbfUo0cPOTs7q2zZsvrwww9ved8AAAAAAChohFK457Zt26bDhw9ry5YtWrdunWn79OnTFRgYqF9++UUjR47UwIEDtWXLFtN+Kysrvfvuu/rtt9+0bNkyffvttxo+fLhZ35cuXdKMGTP00Ucf6fvvv1dSUpIiIiLuWNOwYcM0c+ZM7dmzRx4eHmrTpo3S09MlSfv27VPHjh314osvav/+/Ro/frzGjBmjqKgosz7uVH9eXblyRbVq1dL69et14MABvfrqq3r55Ze1e/duSdKcOXNUv3599erVS8nJyUpOTpa3t3e2fnJb/8yZM1W7dm398ssv6tu3r/r06aPDhw/nu34AAAAAAPLCprALwMPP0dFRixYtkq2trdn24OBgjRw5UpLk5+en2NhYvfPOO3r66aclyWztJB8fH02aNEm9e/fW/PnzTdvT09P1/vvvq0KFCpKk/v37a8KECXesady4cabzLFu2TGXKlNEXX3yhjh07atasWWrWrJnGjBljqu3gwYOaPn26wsLCcl1/XpUuXdosUHv99de1efNmrVy5UnXr1pWrq6tsbW3l4OAgT0/PW/aT2/pbtWqlvn37SpJGjBihd955R999953ZaLYsV69e1dWrV03vU1NT83WNAAAAAABkYaQU7rnq1atnC6QkqX79+tneJyQkmN5v3bpVzZo1U+nSpeXs7KyXX35ZZ8+e1aVLl0xtHBwcTIGUJJUqVUpnzpy5Y003n9vd3V3+/v6mcyckJCg4ONisfXBwsI4ePaqMjIxc159XGRkZmjhxoqpXry53d3c5OTlp8+bNSkpKylM/ua2/Ro0app8NBoM8PT1vee+mTJkiV1dX0yunEVoAAAAAAOQFoRTyxcXFRSkpKdm2X7hwIdu3wDk6Oua5/8TERD377LOqUaOGVq9erX379pnWbLp5sfQiRYqYHWcwGGQ0GvN8voJmZXXjo3VzLVnTA29l+vTpmjNnjkaMGKHvvvtOcXFxCgkJuWeLw+d07zIzM3NsO2rUKKWkpJhep06duic1AQAAAAAeHUzfQ774+/vrm2++ybb9559/lp+fX676+Omnn7K9DwgIkHRjXaTMzEzNnDnTFPCsXLnyLqs2P1fZsmUlSefPn9eRI0dM5w4ICFBsbKxZ+9jYWPn5+cna2jpX9Xt4eEiSkpOTFRQUJElmi57nJDY2Vm3bttVLL70kScrMzNSRI0dUpUoVUxtbW1uz0U45yW39eWFnZyc7O7t8HQsAAAAAQE4IpZAvffr00dy5czVgwAD17NlTdnZ2Wr9+vVasWKGvv/46V33ExsZq2rRpCg0N1ZYtW7Rq1SqtX79eklSxYkWlp6frvffeU5s2bRQbG6v333+/wOqfMGGCihcvrpIlS+rNN9/UY489ptDQUEnS0KFDVadOHU2cOFGdOnXSzp07NXfuXLO1rO5Uv729vZ544glNnTpVvr6+OnPmjEaPHn3bmipVqqTPP/9cP/74o4oVK6ZZs2bp77//NgulfHx8tGvXLiUmJsrJyUnu7u7Z+slt/QAAAAAAFCam7yFfypcvr++//16HDh1S8+bNVa9ePa1cuVKrVq1SixYtctXH0KFDtXfvXgUFBWnSpEmaNWuWQkJCJEmBgYGaNWuW3n77bVWrVk2ffPKJpkyZUmD1T506VQMHDlStWrV0+vRpff3116Z1r2rWrKmVK1cqOjpa1apV09ixYzVhwgSzRcLvVL8kLVmyRNevX1etWrU0aNAgTZo06bY1jR49WjVr1lRISIgaN24sT09PU1CWJSIiQtbW1qpSpYo8PDxyXG8qt/UDAAAAAFCYDMb7YQEewEJiYmLUpEkTnT9/Xm5ubvnux8fHR4MGDTL7hsBHSWpqqlxdXTVmYycVdcy+iD3y7o0nlxd2CQAAAABQILL+ZkxJSZGLi8st2zFSCgAAAAAAABZHKAUAAAAAAACLY6FzPFIaN26sgpixmpiYePfFAAAAAADwCGOkFAAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMURSgEAAAAAAMDi+PY9APkW0eBDubi4FHYZAAAAAIAHECOlAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALI5QCgAAAAAAABZHKAUAAAAAAACLsynsAgA8uKJ2d5K9Y5HCLuOB1av+V4VdAgAAAAAUGkZKAQAAAAAAwOIIpQAAAAAAAGBxhFIAAAAAAACwOEIpAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAAAiyOUwkPLx8dHs2fPNr03GAxau3btXfUZFham0NDQu+rDkho3bqxBgwaZ3v/3ngAAAAAAUFgIpe4zYWFhMhgM6t27d7Z9/fr1k8FgUFhYmOULewgkJyerZcuW9/QcUVFRcnNzK5C+4uPj9dxzz6lEiRIqWrSofHx81KlTJ505cybXfaxZs0YTJ04skHoAAAAAAChIhFL3IW9vb0VHR+vy5cumbVeuXNGnn36qsmXLFmJl/+fatWuFXUKeeXp6ys7OrrDLyJV//vlHzZo1k7u7uzZv3qyEhAQtXbpUXl5eunjxYq77cXd3l7Oz8z2sFAAAAACA/CGUug/VrFlT3t7eWrNmjWnbmjVrVLZsWQUFBZm13bRpkxo2bCg3NzcVL15czz77rI4fP27an5iYKIPBoDVr1qhJkyZycHBQYGCgdu7caWozfvx4Pf7442b9zp49Wz4+Pqb3WdPWJk+eLC8vL/n7+0uSTp06pY4dO8rNzU3u7u5q27atEhMTb3ltGRkZCg8Pl6+vr+zt7eXv7685c+aYtck6V2RkpDw8POTi4qLevXubBWGNGzdW//791b9/f7m6uuqxxx7TmDFjZDQab3nu/07fu1PtGRkZGjJkiOneDh8+/Lb9x8TEqHv37kpJSZHBYJDBYND48eMlSefPn9crr7yiYsWKycHBQS1bttTRo0dv2VdsbKxSUlK0aNEiBQUFydfXV02aNNE777wjX19fU7vt27erbt26srOzU6lSpTRy5Ehdv37d7D7dPH3vZkajUePHj1fZsmVlZ2cnLy8vDRgw4JY1AQAAAABQkAil7lM9evTQ0qVLTe+XLFmi7t27Z2t38eJFDRkyRHv37tW2bdtkZWWl559/XpmZmWbt3nzzTUVERCguLk5+fn7q3LmzWXiRG9u2bdPhw4e1ZcsWrVu3Tunp6QoJCZGzs7N27Nih2NhYOTk5qUWLFrccSZWZmakyZcpo1apVOnjwoMaOHas33nhDK1euzHauhIQExcTEaMWKFVqzZo0iIyPN2ixbtkw2NjbavXu35syZo1mzZmnRokW5upbc1D5z5kxFRUVpyZIl+uGHH3Tu3Dl98cUXt+yzQYMGmj17tlxcXJScnKzk5GRFRERIuhG07d27V1999ZV27twpo9GoVq1aKT09Pce+PD09df36dX3xxRe3DML+/PNPtWrVSnXq1FF8fLwWLFigxYsXa9KkSbm6B6tXr9Y777yjDz74QEePHtXatWtVvXr1XB0LAAAAAMDdsinsApCzl156SaNGjdLJkycl3Rg5Ex0drZiYGLN27du3N3u/ZMkSeXh46ODBg6pWrZppe0REhFq3bi1JioyMVNWqVXXs2DFVrlw51zU5Ojpq0aJFsrW1lSR9/PHHyszM1KJFi2QwGCRJS5culZubm2JiYvTMM89k66NIkSJm4ZKvr6927typlStXqmPHjqbttra2WrJkiRwcHFS1alVNmDBBw4YN08SJE2VldSNL9fb21jvvvCODwSB/f3/t379f77zzjnr16nXHa/nss8/uWPvs2bM1atQotWvXTpL0/vvva/Pmzbfs09bWVq6urjIYDPL09DRtP3r0qL766ivFxsaqQYMGkqRPPvlE3t7eWrt2rTp06JCtryeeeEJvvPGGunTpot69e6tu3bpq2rSpXnnlFZUsWVKSNH/+fHl7e2vu3LkyGAyqXLmy/vrrL40YMUJjx4413adbSUpKkqenp5o3b64iRYqobNmyqlu3bo5tr169qqtXr5rep6am3rZvAAAAAADuhJFS9ykPDw+1bt1aUVFRWrp0qVq3bq3HHnssW7ujR4+qc+fOKl++vFxcXExT7pKSksza1ahRw/RzqVKlJClPC2ZLUvXq1U2BlHRjIe5jx47J2dlZTk5OcnJykru7u65cuWI2hfC/5s2bp1q1asnDw0NOTk768MMPs9UbGBgoBwcH0/v69esrLS1Np06dMm174oknTIFSVpujR48qIyPjjtdyp9pTUlKUnJysevXqmY6xsbFR7dq179j3fyUkJMjGxsasr+LFi8vf318JCQm3PG7y5Mk6ffq03n//fVWtWlXvv/++KleurP3795v6rV+/vtk9CA4OVlpamv7444871tWhQwddvnxZ5cuXV69evfTFF1/ccvTclClT5Orqanp5e3vn9vIBAAAAAMgRI6XuYz169FD//v0l3QhyctKmTRuVK1dOCxculJeXlzIzM1WtWrVs0+eKFCli+jkrxMia4mdlZZVtilhO08ocHR3N3qelpalWrVr65JNPsrX18PDIsd7o6GhFRERo5syZql+/vpydnTV9+nTt2rUrx/b3Sn5qLwzFixdXhw4d1KFDB7311lsKCgrSjBkztGzZsrvu29vbW4cPH9bWrVu1ZcsW9e3bV9OnT9f27dvNfl8kadSoURoyZIjpfWpqKsEUAAAAAOCuEErdx7LWNzIYDAoJCcm2/+zZszp8+LAWLlyoJ598UpL0ww8/5Pk8Hh4eOn36tIxGoymwiouLu+NxNWvW1GeffaYSJUrIxcUlV+fKmsLWt29f07acRlXFx8fr8uXLsre3lyT99NNPcnJyMgtC/htk/fTTT6pUqZKsra0LpPZSpUpp165deuqppyRJ169f1759+1SzZs1b9mtra5ttpFZAQICuX7+uXbt2mabvZT27KlWq3LHWm/uuUKGC6dv3AgICtHr1arPnFhsbK2dnZ5UpUyZXfdrb26tNmzZq06aN+vXrZxqJ9d9rtLOze2C+uRAAAAAA8GBg+t59zNraWgkJCTp48GCOQUuxYsVUvHhxffjhhzp27Ji+/fZbs9EsudW4cWP9888/mjZtmo4fP6558+Zp48aNdzyua9eueuyxx9S2bVvt2LFDJ06cUExMjAYMGHDL6WOVKlXS3r17tXnzZh05ckRjxozRnj17srW7du2awsPDdfDgQW3YsEHjxo1T//79zdZJSkpK0pAhQ3T48GGtWLFC7733ngYOHJira85N7QMHDtTUqVO1du1aHTp0SH379tWFCxdu26+Pj4/S0tK0bds2/fvvv7p06ZIqVaqktm3bqlevXvrhhx8UHx+vl156SaVLl1bbtm1z7GfdunV66aWXtG7dOh05ckSHDx/WjBkztGHDBtMxffv21alTp/T666/r0KFD+vLLLzVu3DgNGTLkjutJSVJUVJQWL16sAwcO6Pfff9fHH38se3t7lStXLlf3EAAAAACAu0EodZ9zcXG55UgeKysrRUdHa9++fapWrZoGDx6s6dOn5/kcAQEBmj9/vubNm6fAwEDt3r3b9K1xt+Pg4KDvv/9eZcuWVbt27RQQEKDw8HBduXLlljW/9tprateunTp16qR69erp7NmzZqOmsjRr1kyVKlXSU089pU6dOum5557T+PHjzdq88sorunz5surWrat+/fpp4MCBevXVV3N1zbmpfejQoXr55ZfVrVs301TD559//rb9NmjQQL1791anTp3k4eGhadOmSbqxiHqtWrX07LPPqn79+jIajdqwYUO2aXJZqlSpIgcHBw0dOlSPP/64nnjiCa1cuVKLFi3Syy+/LEkqXbq0NmzYoN27dyswMFC9e/dWeHi4Ro8enat74ObmpoULFyo4OFg1atTQ1q1b9fXXX6t48eK5Oh4AAAAAgLthMN7q++aBQhIWFqYLFy5o7dq1t2zTuHFjPf7445o9e7bF6sL/SU1Nlaurq+ZsaSF7x5yDNdxZr/pfFXYJAAAAAFDgsv5mTElJue1yP4yUAgAAAAAAgMURSgEAAAAAAMDi+PY93HeioqLu2CYmJuae1wEAAAAAAO4dRkoBAAAAAADA4gilAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALI5v3wOQb2F1P5OLi0thlwEAAAAAeAAxUgoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMURSgEAAAAAAMDiCKUAAAAAAABgcYRSAAAAAAAAsDibwi4AwINr/d4QOTjyz0h+ta23o7BLAAAAAIBCw0gpAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMURSgEAAAAAAMDiCKUAAAAAAABgcYRSAAAAAAAAsDhCqUdYbGysqlevriJFiig0NLSwy8mV8ePH6/HHHy+Uc8fExMhgMOjChQu5at+4cWMNGjTontYEAAAAAMCDilDqPnbq1Cn16NFDXl5esrW1Vbly5TRw4ECdPXu2QPofMmSIHn/8cZ04cUJRUVEF0ufdSExMlMFgyPH1008/3ZNz5iXkatCggZKTk+Xq6pqr9mvWrNHEiRNN7318fDR79ux8VGnuVmFXVFSU3Nzc7rp/AAAAAAAswaawC0DOfv/9d9WvX19+fn5asWKFfH199dtvv2nYsGHauHGjfvrpJ7m7u9/VOY4fP67evXurTJky+e7j2rVrsrW1vas6/mvr1q2qWrWq2bbixYsX6DnyKj09Xba2tvL09Mz1MXf7fAAAAAAAeJgxUuo+1a9fP9na2uqbb75Ro0aNVLZsWbVs2VJbt27Vn3/+qTfffNPU1sfHR2+99ZZ69OghZ2dnlS1bVh9++OEt+84akXT27Fn16NFDBoNBUVFRysjIUHh4uHx9fWVvby9/f3/NmTPH7NiwsDCFhoZq8uTJ8vLykr+/v6m/lStX6sknn5S9vb3q1KmjI0eOaM+ePapdu7acnJzUsmVL/fPPP3e89uLFi8vT09PsVaRIkVu2X7RokQICAlS0aFFVrlxZ8+fPN9v/xx9/qHPnznJ3d5ejo6Nq166tXbt2KSoqSpGRkYqPjzeNyMoaMWYwGLRgwQI999xzcnR01OTJk3OcvhcbG6vGjRvLwcFBxYoVU0hIiM6fPy/JfERT48aNdfLkSQ0ePNh0rosXL8rFxUWff/65Wb1r166Vo6Oj/ve//93xXt1OTEyM6tatK0dHR7m5uSk4OFgnT5407f/yyy9Vs2ZNFS1aVOXLl1dkZKSuX79+V+cEAAAAACC3CKXuQ+fOndPmzZvVt29f2dvbm+3z9PRU165d9dlnn8loNJq2z5w5U7Vr19Yvv/yivn37qk+fPjp8+HCO/Xt7eys5OVkuLi6aPXu2kpOT1alTJ2VmZqpMmTJatWqVDh48qLFjx+qNN97QypUrzY7ftm2bDh8+rC1btmjdunWm7ePGjdPo0aP1888/y8bGRl26dNHw4cM1Z84c7dixQ8eOHdPYsWML8E5Jn3zyicaOHavJkycrISFBb731lsaMGaNly5ZJktLS0tSoUSP9+eef+uqrrxQfH6/hw4crMzNTnTp10tChQ1W1alUlJyeb7kOW8ePH6/nnn9f+/fvVo0ePbOeOi4tTs2bNVKVKFe3cuVM//PCD2rRpo4yMjGxt16xZozJlymjChAmmczk6OurFF1/U0qVLzdouXbpUL7zwgpydnfN9X65fv67Q0FA1atRIv/76q3bu3KlXX31VBoNBkrRjxw698sorGjhwoA4ePKgPPvhAUVFRmjx5co79Xb16VampqWYvAAAAAADuBtP37kNHjx6V0WhUQEBAjvsDAgJ0/vx5/fPPPypRooQkqVWrVurbt68kacSIEXrnnXf03Xffyd/fP9vx1tbW8vT0lMFgkKurq9mUtMjISNPPvr6+2rlzp1auXKmOHTuatjs6OmrRokWmaXuJiYmSpIiICIWEhEiSBg4cqM6dO2vbtm0KDg6WJIWHh+dq7aoGDRrIyso8L01LS8ux7bhx4zRz5ky1a9fOVHNWyNKtWzd9+umn+ueff7Rnzx7TdLqKFSuajndycpKNjU2O0/K6dOmi7t27m97//vvvZvunTZum2rVrm43M+u+0wyzu7u6ytraWs7Oz2bl69uxpWquqVKlSOnPmjDZs2KCtW7fm2E9upaamKiUlRc8++6wqVKggSWa/T5GRkRo5cqS6desmSSpfvrwmTpyo4cOHa9y4cdn6mzJlitnvBgAAAAAAd4tQ6j5280ioO6lRo4bpZ4PBIE9PT505c0aS1LJlS+3YsUOSVK5cOf3222+37GfevHlasmSJkpKSdPnyZV27di3bQuDVq1fPcR2pm2soWbKkqe3N27Jqup3PPvvsloHczS5evKjjx48rPDxcvXr1Mm2/fv26aTHyuLg4BQUF5Wt9p9q1a992f1xcnDp06JDnfm9Wt25dVa1aVcuWLdPIkSP18ccfq1y5cnrqqafuql93d3eFhYUpJCRETz/9tJo3b66OHTuqVKlSkqT4+HjFxsaajYzKyMjQlStXdOnSJTk4OJj1N2rUKA0ZMsT0PjU1Vd7e3ndVIwAAAADg0UYodR+qWLGiDAaDEhIS9Pzzz2fbn5CQoGLFisnDw8O07b9rLhkMBmVmZkq6sebS5cuXc2x3s+joaEVERGjmzJmqX7++nJ2dNX36dO3atcusnaOjY47H39x31jSx/27Lqul2vL29zUYz3UrW6KmFCxeqXr16Zvusra0lKdv0x7y41XVmuZu+b9azZ0/NmzdPI0eO1NKlS9W9e3fT/cuJi4uLUlJSsm2/cOGC2TcDLl26VAMGDNCmTZv02WefafTo0dqyZYueeOIJpaWlKTIy0jTC7GZFixbNts3Ozk52dnb5vEIAAAAAALJjTan7UPHixfX0009r/vz5pjApy+nTp/XJJ5+oU6dOtw0ubla6dGlVrFhRFStWVLly5W7ZLjY2Vg0aNFDfvn0VFBSkihUr6vjx43d1LfdSyZIl5eXlpd9//910fVkvX19fSTdGb8XFxencuXM59mFra5vjGlC5UaNGDW3bti3X7W91rpdeekknT57Uu+++q4MHD5qm1N2Kv7+/fv7552zbf/75Z/n5+ZltCwoK0qhRo/Tjjz+qWrVq+vTTTyVJNWvW1OHDh7Pdt4oVK2abOgkAAAAAwL3AX5/3qblz5+rq1asKCQnR999/r1OnTmnTpk16+umnVbp06VsuSH03KlWqpL1792rz5s06cuSIxowZoz179hT4ee7k7NmzOn36tNnrypUrObaNjIzUlClT9O677+rIkSPav3+/li5dqlmzZkmSOnfuLE9PT4WGhio2Nla///67Vq9erZ07d0q68c2FJ06cUFxcnP79919dvXo113WOGjVKe/bsUd++ffXrr7/q0KFDWrBggf79998c2/v4+Oj777/Xn3/+adamWLFiateunYYNG6ZnnnlGZcqUue15+/TpoyNHjmjAgAH69ddfdfjwYc2aNUsrVqzQ0KFDJUknTpzQqFGjtHPnTp08eVLffPONjh49apoWOXbsWC1fvlyRkZH67bfflJCQoOjoaI0ePTrX1w8AAAAAwN0glLpPZQVE5cuXV8eOHVWhQgW9+uqratKkiXbu3JmvNZLu5LXXXlO7du3UqVMn1atXT2fPnjUtnm5JzZs3V6lSpcxea9euzbFtz549tWjRIi1dulTVq1dXo0aNFBUVZRopZWtrq2+++UYlSpRQq1atVL16dU2dOtU0va99+/Zq0aKFmjRpIg8PD61YsSLXdfr5+embb75RfHy86tatq/r16+vLL7+UjU3Os2InTJigxMREVahQwWzqpXRjEfhr167l+C1//1W+fHl9//33OnTokJo3b6569epp5cqVWrVqlVq0aCFJcnBw0KFDh9S+fXv5+fnp1VdfVb9+/fTaa69JkkJCQrRu3Tp98803qlOnjp544gm98847tx1JBwAAAABAQTIY87KaNoB74qOPPtLgwYP1119/5biI/P0mNTVVrq6u+nTbE3JwZGm6/Gpbb0dhlwAAAAAABS7rb8aUlBS5uLjcsh1/TQKF6NKlS0pOTtbUqVP12muvPRCBFAAAAAAABYHpe0AhmjZtmipXrixPT0+NGjWqsMsBAAAAAMBiCKWAQjR+/Hilp6dr27ZtcnJyKuxyAAAAAACwGEIpAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAAAi7Mp7AIAPLha194sFxeXwi4DAAAAAPAAYqQUAAAAAAAALI5QCgAAAAAAABZHKAUAAAAAAACLI5QCAAAAAACAxRFKAQAAAAAAwOIIpQAAAAAAAGBxNoVdAIAH1559T8nRybqwy7ivPVFnX2GXAAAAAAD3JUZKAQAAAAAAwOIIpQAAAAAAAGBxhFIAAAAAAACwOEIpAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMURSgEAAAAAAMDiCKWA+5jRaFTz5s0VEhKSbd/8+fPl5uamP/74oxAqAwAAAADg7hBKAfcxg8GgpUuXateuXfrggw9M20+cOKHhw4frvffeU5kyZQr0nOnp6QXaHwAAAAAAOSGUAu5z3t7emjNnjiIiInTixAkZjUaFh4frmWeeUVBQkFq2bCknJyeVLFlSL7/8sv7991/TsZs2bVLDhg3l5uam4sWL69lnn9Xx48dN+xMTE2UwGPTZZ5+pUaNGKlq0qD755JPCuEwAAAAAwCOGUAp4AHTr1k3NmjVTjx49NHfuXB04cEAffPCBmjZtqqCgIO3du1ebNm3S33//rY4dO5qOu3jxooYMGaK9e/dq27ZtsrKy0vPPP6/MzEyz/keOHKmBAwcqISEhx6mCV69eVWpqqtkLAAAAAIC7YTAajcbCLgLAnZ05c0ZVq1bVuXPntHr1ah04cEA7duzQ5s2bTW3++OMPeXt76/Dhw/Lz88vWx7///isPDw/t379f1apVU2Jionx9fTV79mwNHDjwluceP368IiMjs23f+m2gHJ2sC+YCH1JP1NlX2CUAAAAAgEWlpqbK1dVVKSkpcnFxuWU7RkoBD4gSJUrotddeU0BAgEJDQxUfH6/vvvtOTk5OplflypUlyTRF7+jRo+rcubPKly8vFxcX+fj4SJKSkpLM+q5du/Ztzz1q1CilpKSYXqdOnSr4CwQAAAAAPFJsCrsAALlnY2MjG5sbH9u0tDS1adNGb7/9drZ2pUqVkiS1adNG5cqV08KFC+Xl5aXMzExVq1ZN165dM2vv6Oh42/Pa2dnJzs6ugK4CAAAAAABCKeCBVbNmTa1evVo+Pj6moOpmZ8+e1eHDh7Vw4UI9+eSTkqQffvjB0mUCAAAAAJAjpu8BD6h+/frp3Llz6ty5s/bs2aPjx49r8+bN6t69uzIyMlSsWDEVL15cH374oY4dO6Zvv/1WQ4YMKeyyAQAAAACQRCgFPLC8vLwUGxurjIwMPfPMM6pevboGDRokNzc3WVlZycrKStHR0dq3b5+qVaumwYMHa/r06YVdNgAAAAAAkvj2PQD5kPVNCnz73p3x7XsAAAAAHjV8+x4AAAAAAADuW4RSAAAAAAAAsDhCKQAAAAAAAFgcoRQAAAAAAAAsjlAKAAAAAAAAFkcoBQAAAAAAAIsjlAIAAAAAAIDF2RR2AQAeXHVqfS8XF5fCLgMAAAAA8ABipBQAAAAAAAAsjlAKAAAAAAAAFsf0PQB5ZjQaJUmpqamFXAkAAAAA4H6T9bdi1t+Ot0IoBSDPzp49K0ny9vYu5EoAAAAAAPer//3vf3J1db3lfkIpAHnm7u4uSUpKSrrtPzC4/6Smpsrb21unTp1ikfoHDM/uwcRze3Dx7B5MPLcHF8/uwcWzezDd6+dmNBr1v//9T15eXrdtRygFIM+srG4sR+fq6sp/eB5QLi4uPLsHFM/uwcRze3Dx7B5MPLcHF8/uwcWzezDdy+eWmwEMLHQOAAAAAAAAiyOUAgAAAAAAgMURSgHIMzs7O40bN052dnaFXQryiGf34OLZPZh4bg8unt2Dief24OLZPbh4dg+m++W5GYx3+n4+AAAAAAAAoIAxUgoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMURSgGPqHnz5snHx0dFixZVvXr1tHv37tu2X7VqlSpXrqyiRYuqevXq2rBhg9l+o9GosWPHqlSpUrK3t1fz5s119OhRszbnzp1T165d5eLiIjc3N4WHhystLa3Ar+1hVpDPLT09XSNGjFD16tXl6OgoLy8vvfLKK/rrr7/M+vDx8ZHBYDB7TZ069Z5c38OsoD9zYWFh2Z5LixYtzNrwmbt7Bf3c/vvMsl7Tp083teEzVzDy8ux+++03tW/f3nTvZ8+ena8+r1y5on79+ql48eJycnJS+/bt9ffffxfkZT0SCvrZTZkyRXXq1JGzs7NKlCih0NBQHT582KxN48aNs33uevfuXdCX9lAr6Oc2fvz4bM+kcuXKZm34zBWMgn52Of13zGAwqF+/fqY2fOYKRl6e3cKFC/Xkk0+qWLFiKlasmJo3b56tfaH8TWcE8MiJjo422traGpcsWWL87bffjL169TK6ubkZ//777xzbx8bGGq2trY3Tpk0zHjx40Dh69GhjkSJFjPv37ze1mTp1qtHV1dW4du1aY3x8vPG5554z+vr6Gi9fvmxq06JFC2NgYKDxp59+Mu7YscNYsWJFY+fOne/59T4sCvq5Xbhwwdi8eXPjZ599Zjx06JBx586dxrp16xpr1apl1k+5cuWMEyZMMCYnJ5teaWlp9/x6Hyb34jPXrVs3Y4sWLcyey7lz58z64TN3d+7Fc7v5eSUnJxuXLFliNBgMxuPHj5va8Jm7e3l9drt37zZGREQYV6xYYfT09DS+8847+eqzd+/eRm9vb+O2bduMe/fuNT7xxBPGBg0a3KvLfCjdi2cXEhJiXLp0qfHAgQPGuLg4Y6tWrYxly5Y1+1w1atTI2KtXL7PPXUpKyr26zIfOvXhu48aNM1atWtXsmfzzzz9mbfjM3b178ezOnDlj9ty2bNlilGT87rvvTG34zN29vD67Ll26GOfNm2f85ZdfjAkJCcawsDCjq6ur8Y8//jC1KYy/6QilgEdQ3bp1jf369TO9z8jIMHp5eRmnTJmSY/uOHTsaW7dubbatXr16xtdee81oNBqNmZmZRk9PT+P06dNN+y9cuGC0s7Mzrlixwmg0Go0HDx40SjLu2bPH1Gbjxo1Gg8Fg/PPPPwvs2h5mBf3ccrJ7926jJOPJkydN28qVK5fj/3Ag9+7Fs+vWrZuxbdu2tzwnn7m7Z4nPXNu2bY1NmzY128Zn7u7l9dnd7Fb3/059XrhwwVikSBHjqlWrTG0SEhKMkow7d+68i6t5tNyLZ/dfZ86cMUoybt++3bStUaNGxoEDB+anZBjvzXMbN26cMTAw8JbH8ZkrGJb4zA0cONBYoUIFY2Zmpmkbn7m7dzfPzmg0Gq9fv250dnY2Llu2zGg0Ft7fdEzfAx4x165d0759+9S8eXPTNisrKzVv3lw7d+7M8ZidO3eatZekkJAQU/sTJ07o9OnTZm1cXV1Vr149U5udO3fKzc1NtWvXNrVp3ry5rKystGvXrgK7vofVvXhuOUlJSZHBYJCbm5vZ9qlTp6p48eIKCgrS9OnTdf369fxfzCPmXj67mJgYlShRQv7+/urTp4/Onj1r1gefufyzxGfu77//1vr16xUeHp5tH5+5/MvPsyuIPvft26f09HSzNpUrV1bZsmXzfd5Hzb14djlJSUmRJLm7u5tt/+STT/TYY4+pWrVqGjVqlC5dulRg53yY3cvndvToUXl5eal8+fLq2rWrkpKSTPv4zN09S3zmrl27po8//lg9evSQwWAw28dnLv8K4tldunRJ6enppn8LC+tvOpt8HQXggfXvv/8qIyNDJUuWNNtesmRJHTp0KMdjTp8+nWP706dPm/ZnbbtdmxIlSpjtt7Gxkbu7u6kNbu1ePLf/unLlikaMGKHOnTvLxcXFtH3AgAGqWbOm3N3d9eOPP2rUqFFKTk7WrFmz7vKqHg336tm1aNFC7dq1k6+vr44fP6433nhDLVu21M6dO2Vtbc1n7i5Z4jO3bNkyOTs7q127dmbb+czdnfw8u4Lo8/Tp07K1tc0W6t/udwDm7sWz+6/MzEwNGjRIwcHBqlatmml7ly5dVK5cOXl5eenXX3/ViBEj/l97dx9b4/3/cfx1hnPqrqe09GZNqyhrrMeoqTOhFptgNixZSxrUhsWGLW5md2XUrFnIslmIYGp3aWRzs80YVU0odVNtjDUdXbEtbjZaWjZ3/fz+8HO+37MWbZ1z+rU+H0njynV9rs/1ua53Ptfleudzro+Ki4u1bt06jxz338xbcYuPj1dGRoa6du2qU6dOad68eerXr58OHz6s1q1b0+c8wBd9bsOGDSovL1dKSorbevrcvfFE7GbPnq2wsDBXEqqh3ulISgEAdO3aNSUmJsoYo2XLlrltmz59umvZ4XDIarXqxRdf1HvvvSebzebrpuL/jRo1yrUcGxsrh8OhTp06KScnRwMHDmzAlqG2PvnkEyUnJ8vPz89tPX0O8J6XX35Zhw8f1q5du9zWT5o0ybUcGxur0NBQDRw4UCUlJerUqZOvmwlJQ4YMcS07HA7Fx8crMjJSa9eurXGEKf43rVq1SkOGDFFYWJjbevpcw0pPT1dmZqZycnKq/T/E1/j5HtDIBAUFqUmTJtVmJjlz5oxCQkJq3CckJOSO5W/9e7cyZ8+eddt+/fp1nT9//rbHxX94I2633EpInThxQtu2bXMbJVWT+Ph4Xb9+XcePH6/7iTRC3ozdf+vYsaOCgoJ07NgxVx30ufrzdtx27typ4uJiTZgw4a5toc/VTX1i54k6Q0JCdPXqVZWXl3vsuI2NN2L336ZMmaLvvvtOO3bsUHh4+B3LxsfHS5Lrnorb83bcbgkICFCXLl3cnnP0uXvj7didOHFCWVlZtX7WSfS52rqX2C1atEjp6enaunWrHA6Ha31DvdORlAIaGavVqri4OG3fvt21rqqqStu3b5fT6axxH6fT6VZekrZt2+YqHxUVpZCQELcyFy9e1N69e11lnE6nysvLlZ+f7yqTnZ2tqqoq10MIt+eNuEn/SUgdPXpUWVlZCgwMvGtbCgsL9cADD1QbuouaeSt2//Tbb7/p3LlzCg0NddVBn6s/b8dt1apViouLU/fu3e/aFvpc3dQndp6oMy4uTs2aNXMrU1xcrJMnT9b7uI2NN2In3ZzifMqUKVq/fr2ys7MVFRV1130KCwslyXVPxe15K27/VFlZqZKSEldM6HP3ztuxW716tdq3b6+nnnrqrmXpc3VT39i9//77SktL05YtW9y+CyU14DtdvT6PDuC+lpmZaWw2m8nIyDA//fSTmTRpkgkICDCnT582xhgzZswY8/rrr7vK5+bmmqZNm5pFixaZoqIiM3fu3GrTnKenp5uAgACzceNGc+jQITN8+PAapw/t0aOH2bt3r9m1a5eJjo5mevo68HTcrl69ap555hkTHh5uCgsL3abkvXLlijHGmN27d5sPPvjAFBYWmpKSEvP555+bdu3ambFjx/r+AtzHPB27iooKM3PmTLNnzx5TWlpqsrKyTM+ePU10dLT5+++/XfXQ5+6NN+6Vxhhz4cIF06JFC7Ns2bJqx6TPeUZdY3flyhVTUFBgCgoKTGhoqJk5c6YpKCgwR48erXWdxtycnj4iIsJkZ2ebAwcOGKfTaZxOp+9O/F/AG7GbPHmysdvtJicnx+1Zd/nyZWOMMceOHTPz5883Bw4cMKWlpWbjxo2mY8eOpn///r49+fuYN+I2Y8YMk5OTY0pLS01ubq554oknTFBQkDl79qyrDH3u3nkjdsbcnAkuIiLCzJ49u9ox6XOeUdfYpaenG6vVar766iu3e2FFRYVbGV+/05GUAhqpJUuWmIiICGO1Wk3v3r1NXl6ea1tCQoIZN26cW/m1a9eaLl26GKvVarp162Y2bdrktr2qqsqkpqaa4OBgY7PZzMCBA01xcbFbmXPnzpnRo0ebVq1aGX9/fzN+/Hi3myDuzpNxKy0tNZJq/NuxY4cxxpj8/HwTHx9v7Ha78fPzMzExMWbhwoVuiQ/Ujidjd/nyZTNo0CDTrl0706xZMxMZGWkmTpzo9nJsDH3OEzx9rzTGmOXLl5vmzZub8vLyatvoc55Tl9jd7n6YkJBQ6zqNMeavv/4yL730kmnTpo1p0aKFGTlypDl16pQ3T/NfydOxu92zbvXq1cYYY06ePGn69+9v2rZta2w2m+ncubOZNWuWuXDhgo/O+N/B03FLSkoyoaGhxmq1mgcffNAkJSWZY8eOuR2TPucZ3rhf/vDDD0ZStfcBY+hznlSX2EVGRtYYu7lz57rKNMQ7ncUYY+o3xgoAAAAAAACoH74pBQAAAAAAAJ8jKQUAAAAAAACfIykFAAAAAAAAnyMpBQAAAAAAAJ8jKQUAAAAAAACfIykFAAAAAAAAnyMpBQAAAAAAAJ8jKQUAAAAAAACfIykFAAAAAAAAnyMpBQAAgPtGSkqKRowY0dDNqNHx48dlsVhUWFjY0E0BAOC+QFIKAAAAuEdXr15t6CYAAHDfISkFAACA+9KAAQM0depUvfrqq2rTpo2Cg4O1YsUKXbp0SePHj1fr1q3VuXNnbd682bVPTk6OLBaLNm3aJIfDIT8/P/Xp00eHDx92q/vrr79Wt27dZLPZ1KFDBy1evNhte4cOHZSWlqaxY8fK399fkyZNUlRUlCSpR48eslgsGjBggCRp//79evLJJxUUFCS73a6EhAQdPHjQrT6LxaKVK1dq5MiRatGihaKjo/XNN9+4lTly5IiGDRsmf39/tW7dWv369VNJSYlr+8qVKxUTEyM/Pz899NBDWrp06T1fYwAAvImkFAAAAO5ba9asUVBQkPbt26epU6dq8uTJeu655/TYY4/p4MGDGjRokMaMGaPLly+77Tdr1iwtXrxY+/fvV7t27fT000/r2rVrksXAqUEAAATTSURBVKT8/HwlJiZq1KhR+vHHH/XOO+8oNTVVGRkZbnUsWrRI3bt3V0FBgVJTU7Vv3z5JUlZWlk6dOqV169ZJkioqKjRu3Djt2rVLeXl5io6O1tChQ1VRUeFW37x585SYmKhDhw5p6NChSk5O1vnz5yVJv//+u/r37y+bzabs7Gzl5+fr+eef1/Xr1yVJX3zxhebMmaN3331XRUVFWrhwoVJTU7VmzRqPX3MAADzFYowxDd0IAAAAoDZSUlJUXl6uDRs2aMCAAbpx44Z27twpSbpx44bsdrueffZZffrpp5Kk06dPKzQ0VHv27FGfPn2Uk5Ojxx9/XJmZmUpKSpIknT9/XuHh4crIyFBiYqKSk5P1xx9/aOvWra7jvvbaa9q0aZOOHDki6eZIqR49emj9+vWuMsePH1dUVJQKCgr0yCOP3PYcqqqqFBAQoC+//FLDhg2TdHOk1Ntvv620tDRJ0qVLl9SqVStt3rxZgwcP1ptvvqnMzEwVFxerWbNm1ers3Lmz0tLSNHr0aNe6BQsW6Pvvv9fu3bvrc6kBAPA6RkoBAADgvuVwOFzLTZo0UWBgoGJjY13rgoODJUlnz55128/pdLqW27Ztq65du6qoqEiSVFRUpL59+7qV79u3r44ePaobN2641vXq1atWbTxz5owmTpyo6Oho2e12+fv7q7KyUidPnrztubRs2VL+/v6udhcWFqpfv341JqQuXbqkkpISvfDCC2rVqpXrb8GCBW4/7wMA4H9N04ZuAAAAAFBf/0zSWCwWt3UWi0XSzdFJntayZctalRs3bpzOnTunDz/8UJGRkbLZbHI6ndU+jl7Tudxqd/PmzW9bf2VlpSRpxYoVio+Pd9vWpEmTWrURAICGQFIKAAAAjU5eXp4iIiIkSWVlZfr5558VExMjSYqJiVFubq5b+dzcXHXp0uWOSR6r1SpJbqOpbu27dOlSDR06VJL066+/6s8//6xTex0Oh9asWaNr165VS14FBwcrLCxMv/zyi5KTk+tULwAADYmkFAAAABqd+fPnKzAwUMHBwXrrrbcUFBSkESNGSJJmzJihRx99VGlpaUpKStKePXv08ccf33U2u/bt26t58+basmWLwsPD5efnJ7vdrujoaH322Wfq1auXLl68qFmzZt1x5FNNpkyZoiVLlmjUqFF64403ZLfblZeXp969e6tr166aN2+epk2bJrvdrsGDB+vKlSs6cOCAysrKNH369PpeJgAAvIpvSgEAAKDRSU9P1yuvvKK4uDidPn1a3377rWukU8+ePbV27VplZmbq4Ycf1pw5czR//nylpKTcsc6mTZvqo48+0vLlyxUWFqbhw4dLklatWqWysjL17NlTY8aM0bRp09S+ffs6tTcwMFDZ2dmqrKxUQkKC4uLitGLFCteoqQkTJmjlypVavXq1YmNjlZCQoIyMDEVFRdX94gAA4CPMvgcAAIBG49bse2VlZQoICGjo5gAA0KgxUgoAAAAAAAA+R1IKAAAAAAAAPsfP9wAAAAAAAOBzjJQCAAAAAACAz5GUAgAAAAAAgM+RlAIAAAAAAIDPkZQCAAAAAACAz5GUAgAAAAAAgM+RlAIAAAAAAIDPkZQCAAAAAACAz5GUAgAAAAAAgM+RlAIAAAAAAIDP/R/haqF3ZEN/DwAAAABJRU5ErkJggg==\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "\n", "# Optional: subset just the numeric columns if needed\n", "numeric_df = df_encoded[columns_to_measure]\n", "\n", "# Compute correlation matrix\n", "corr_matrix = numeric_df.corr()\n", "\n", "# Plot heatmap\n", "plt.figure(figsize=(20, 16))\n", "sns.heatmap(\n", " corr_matrix,\n", " cmap=\"coolwarm\",\n", " annot=False, # Set to True if you want actual values shown\n", " fmt=\".2f\",\n", " linewidths=0.5,\n", " cbar_kws={'label': 'Correlation Coefficient'}\n", ")\n", "plt.title(\"📊 Correlation Heatmap of Agri-Climate Features\", fontsize=18)\n", "plt.xticks(rotation=45, ha='right')\n", "plt.yticks(rotation=0)\n", "plt.tight_layout()\n", "plt.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "X5UKpGo2wjAN", "outputId": "74182543-934e-40be-94f9-38e21b4a63c6" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAB0UAAAY1CAYAAABdRAZRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XmcTuX/x/H3mX3MatAMYoas2Zf4FppRg0mRKEK2UIqQJPuQLUTImjAqWbJWdpNJ2ZUpsssgoSJpyMww5/eH35zH3GYxN8Ntxuv5eNyPx9znXNd1Puc6y839ua/rGKZpmgIAAAAAAAAAAACAXMrJ0QEAAAAAAAAAAAAAwJ1EUhQAAAAAAAAAAABArkZSFAAAAAAAAAAAAECuRlIUAAAAAAAAAAAAQK5GUhQAAAAAAAAAAABArkZSFAAAAAAAAAAAAECuRlIUAAAAAAAAAAAAQK5GUhQAAAAAAAAAAABArkZSFAAAAAAAAAAAAECuRlIUAAAAcJCQkBAZhqGoqKj7cvvAnXb58mUNGjRIZcuWlaenpwzDkGEYio2NdXRo2W7IkCEyDENhYWEOjSOlj2NiYuxaBwAAAAB3moujAwAAAMC948svv9Tvv/+e5fKFChVS48aNb2lb165d05IlS/T1119r27Zt+uOPP3T58mX5+/urVKlSqlOnjlq3bq3y5cvfUvv3s6ioKMXFxSksLMzhCZI7oX379po7d66Cg4MVFxeXadmYmBjVrVtXkrRx48Z7pj9iY2O1fPly+fv7q2fPno4OJ9dq0aKFvv76a0mSp6enAgMDJUmurq631N7q1avVsGFDSVKRIkUUFxcnJ6fc+VvjzZs3a+HChdq0aZNOnTqlCxcuyNvbW0WLFtX//vc/vfDCC3ryySdlGIajQ73jYmJiFBMTo5CQELVv394hMcTFxalYsWJZKjtnzhyHxZli+fLlio2NVeXKldWkSROHxgIAAACkICkKAAAAy/jx4/Xtt99muXxoaOgtJUW3bdumdu3a6dChQ9YyV1dX+fj46Ny5c9q8ebM2b96s9957T02bNtX8+fPl5uZm93buV1FRUdZxzCwJ+NBDD8nDw0N+fn53KTKkiI2N1dChQxUcHExS9A45cOCAlRBduHChmjdvftttzpo1y/r75MmTWr9+vRo0aHDb7WaH/Pnzq3Tp0ipatOhttXPmzBm1a9dO69ats5Y5OTnJz89P8fHx+vnnn/Xzzz/ro48+UpUqVbRo0SKVKFEiS22XLl1akpQnT57bivFui4mJ0dChQxUaGurwZKMk+fr6ytPTM8P1ma27W5YvX665c+eqXbt2JEUBAABwz8idP2kFAADALWvRooVM07zpq3Xr1rfU/ldffaWwsDAdOnRI+fLl06hRo3To0CElJibq3LlzSkxM1M6dO9W3b1/5+vpq6dKlunz5cjbvJSQpOjpaBw4c0HPPPefoUIBst2fPHklSvnz5siUh+ueff+rLL7+Us7OzXnvtNUm2SVJH69atmw4cOKBPPvnklts4duyYqlevrnXr1snV1VWvvfaatm/frsTERJ0/f14JCQk6evSoJk6cqGLFimn37t3au3dvlts/cOCADhw4oBo1atxyjJAmTpyoM2fOZPhq0aKFo0MEAAAA7kkkRQEAAHDXHD58WC+99JISEhL08MMPKzY2Vn379lXJkiWtMs7OzqpevbpGjRqlY8eO6dlnn3VgxAByqpQfU3h7e2dLe59++qmSkpJUr1499enTR4ZhaMWKFTp37ly2tO9oCQkJatq0qU6dOiUfHx+tX79eU6dOVY0aNeTs7Czp+jNBixcvru7du+vQoUOKjIy01gEAAADAvY6kKAAAAO6agQMH6uLFi/Lw8NCyZcv04IMPZlo+ICBAy5cvT3d61zNnzujtt99WuXLl5OXlJS8vL5UrV059+vTR2bNn020vLi5OhmHIMAzFxcXp6NGjeuWVV1SsWDG5u7srJCRE0vWpElPKSdLu3bvVunVrPfjgg3J1dU0zJW1iYqKmTp2qunXrKn/+/HJzc1NQUJCeffZZrV692v6O0vURW6NHj1ZERIRKlSolLy8veXt76+GHH1bPnj114sSJNHWioqJkGIY1de7QoUOt/Ui93ylCQkJkGIaioqLSjeHatWuaPXu2nnjiCeXPn1/u7u4qXLiwXnjhBcXExGQYe1hYmAzD0JAhQ2SapmbOnKmaNWvK19dXPj4+evTRR/XZZ5/dUr/cKZs3b9ZLL72k4OBga0rhGjVqaPTo0YqPj0+3zuXLlzV//ny1bdtWlStXVoECBeTu7q5ChQqpSZMmGR57wzDUoUMHSdLx48fTHKMhQ4ZYZdu3by/DMKwpO6OiovToo4/Kz89PefPmVXh4uDZt2mSVv3r1qj788ENVq1ZNvr6+8vPzU8OGDfXjjz9muO/btm3TO++8ozp16lj77+/vr//973+Z7n/KvhiGoZiYGJ05c0bdunVTsWLF5OHhoaCgILVu3VoHDhzIsH5WXLlyRRMmTNBjjz2mvHnzysPDQ8HBwWrbtq1iY2PTlB8yZIhNn93Yx7c6/WnKqNB27dopJCREjz/+uBITE7N0LiclJWn8+PGqXLmyvLy8FBAQoLCwMC1evFiS7TVzo9R9/Mcff6hXr14qVaqU8uTJY/M8z5T9vtXn5s6ePdvqzylTpig0NDTT8i4uLhoyZIiefvrpLG8j9b6kduO9+fjx4+rcubOKFi0qDw8PPfTQQxo4cKAuXbpk1dm7d69eeuklFSlSRB4eHipZsqSGDx+upKSkdLf9999/a9asWWrevLkqVKiggIAA61xq1aqVtm3blqZOSlxDhw6VJH377bdprtf07p9xcXHq2bOnypUrJ29vb+XJk0dlypRRjx490r1332nJycmaN2+eGjZsqMDAQLm5ualAgQKqX7++5s+fL9M006135swZffjhh3r22WdVtmxZ+fn5ydPTUyVKlFCnTp30yy+/pKmT8vk5d+5cSdLcuXPT9Fnq45/ROZFadlwfKVauXKlmzZqpcOHCcnd3V968efX4449r2rRpSkxMzDCGhQsX6qmnnlJgYKBcXV3l7++vkiVLqnHjxpoyZYquXLmSYV0AAADcQ0wAAADg/4WGhpotWrTIUtnWrVuboaGhWW77zJkzppOTkynJ7Nix4y1GeF1MTIzp7+9vSjIlmV5eXqaXl5f1Pm/evOZ3332Xpt6xY8esMvPmzTO9vb1NSWaePHlMLy8vMzg42DRN09y4caNVbvHixaarq6spyfT19TU9PDxs9jsuLs4sV66cVd4wDNPPz896L8ns0qVLuvsRHBxsSjLnzJmTZl1oaKhV383NzcyXL5/Vf5JMPz+/NPu4YMECMzAw0IrXy8vLDAwMtHmdOHEiS9u/cOGCGRYWZm3P2dnZ9Pf3Nw3DsJb17t073f1KiX3gwIHms88+a0oyXVxcTF9fX5t+GTx4cLr1b6Zdu3amJOt4ZSb1sdy4cWOa9deuXTO7d+9uE5e3t7fp7OxsvS9durQZFxeXpu6cOXPSHPc8efLYtPXWW2+lqRcYGGj1hZOTU5pjNHbs2DT72q5dO+tvFxcX08fHx9qGi4uL+dVXX5lXrlwx69evb50zqa+JPHnymLt27Uq3j1LHmydPHjNv3rw2yx5++GHz7NmzmdadPXu2GRQUZEoyPT09rWtLkunh4WGuXr36pscqPb/99ptZvnx5qy1XV1eb68vJycmcNGmSTZ2xY8dm2sfdu3e3O46tW7da94D//vvPNE3TnD17tinJrFChQqZ14+Pjzccff9zmWsqbN691LfXr18+6ZiIjI9PUT6k3c+ZMMzAw0OrTlHMgRWRkpCnJrvtyag8//LApySxZsqSZnJx8S22kjje96y2jdanvzUuWLLHu776+vjbXYp06dczExETz66+/tq41Pz8/m/tSRp9hKf2T+hi4u7vbXMMTJ060qXPixAkzMDDQupZcXV3TXK8LFiywqfPZZ5/ZtOvu7m56enpa7318fMy1a9fa3a+p+yi9e3ZGzp07Z3P+pfRZ6veNGzc2ExIS0tRNueek3GcCAgJMFxcXm31bvHixTZ3NmzebgYGBpoeHh3Wu3thnmzdvtspndr6kyI7r4/Lly+bzzz9vs9++vr42587//vc/8/z582m20aFDhzSfETfe648dO3bzgwEAAACHIykKAAAAy51Mis6fP9/68vDrr7++xQivf0md8oX5ww8/bH7//ffWuk2bNpmlS5c2JZkBAQHmb7/9ZlM39ZfK3t7eZs2aNc2dO3da6w8ePGiapm0izdvb22zYsKG5f/9+q9yhQ4dM07ye7ChTpowpyQwLCzNjYmLMK1eumKZ5Pak4fvx4Kzk0YcKENPuSWVKyR48e5pQpU8xDhw6Z165dM03TNJOSkszt27ebERERpiSzUKFC5uXLl9PUzewL5Kxuv1mzZlZybdKkSealS5dM0zTN06dPmy+//LLVP9OmTctw+3nz5jX9/PzMqKgoK86TJ0+ajRo1spJVKX1pj+xMig4cONCUZD7wwAPmlClTzHPnzpmmaZqJiYnmxo0bzSpVqpiSzKpVq1rHIcXy5cvN3r17m99//73VP6Zpmr///rs5dOhQKzm9YsWKNNtNSajebB9S9tXf39/09PQ0Z8yYYfXlgQMHzGrVqpmSzJCQELNbt25mQECAuWjRIjMxMdFMTk42d+3aZT700EOmJLNWrVrpbqNRo0bmwoULzdOnT1vLLl++bC5dutS6np577rl066ZOshQtWtRct26dlVDbvn27WaFCBSv5cPLkyUz39UZXr141a9asabX/2WefWYmbo0ePms8884yVzFq1alWa+lnt46zo1KmTKdn+oOPixYtWYmTHjh0Z1n311Vet83306NHmv//+a5qmaf75559WQj7lnpZZ0sfb29ssXbq0GR0dbZ2LKfcs07y9pOjp06et7WT0Y4esut2kqL+/v/nkk0+av/zyi2ma18/FSZMmWcnRgQMHmn5+fmaLFi2sHyv8+++/5oABA6w21q9fn2bbM2bMMCMjI81du3ZZ51FycrL566+/mj169DANwzCdnZ3NH3/8MU3drPbtunXrTCcnJ9PFxcXs06ePeezYMTM5OdlMTk42Dxw4YL7wwgvW9XD8+PEs9Gb6fZTVpOjVq1et+3HlypXNr776yrpXxcfHm3PnzjUfeOABU5LZs2fPNPWHDRtmjh071tyzZ4+ZlJRkmub1H5Ls3bvXbN26tSld//HNqVOn0tRN/YOOzGRXUvRm18dLL71kSjKLFy9uzps3z/znn39M0zTN//77z1yxYoVZvHhxU5LZpEkTm/a/++47m+s35TPCNE3zr7/+MteuXWu2a9cu3T4AAADAvYekKAAAACx3MimaknySdFtfHnbp0sVKuKVO4qQ4efKkNUKsa9euNutSf6kcHBxsJSdulDqRVqNGDfPq1avplnv33XetL8oTExPTLbN06VJTkpk/f37rS+UUmSUlM3P16lWzYsWKpiTz008/TbP+dpOi27Zts/Z/xowZ6dZNSZrmz5/fGjl34/Ylmd98802auleuXDELFSpkSjKHDx+e+c6mI+XL9vRGWd74Sj3qMb1EjLOzs+np6WnGxsamu62LFy+aDz74oCnJXLZsmV1xjh071pRkPvnkk2nW2ZsUlWR+9tlnadYfOXLEZrRSeiOko6OjrfX2JiZ/++03093d3TQMI90kTkq7bm5u5r59+9KsP3v2rBkQEGBKMl9//XW7tr1gwQKr/fRG1iUlJVlJ0/Lly6dZn11J0fj4eGvU2aZNm2zWpSSGMhoNfvz4cWuE97Bhw9Itk/oYZ5b0uVli+XaSohs2bLC2M2/ePLvrp3a7SdFy5cpZPy5JrU2bNlaZevXqpTuatU6dOmmS11nVtWvXDOtmpW+vXbtmlixZMtP7pmmaZuPGjU1JZo8ePeyKL3Uf+fr6ZnjPGzRokFXnk08+MSWZZcqUMS9cuJBuu7t27TINwzDd3NwyHBGekaeffjrDc/tuJ0Uzuz42bdpk/fgl9WwJqZ08edIaEbx7925r+ejRo01JZv369TPdDwAAAOQMPFMUAAAAd8W5c+esvwMCAm6pDdM0tWjRIklSly5dFBQUlKbMgw8+qC5dukiSFixYkGFb3bp1k7e39023+fbbb8vZ2TnddSnPGOzVq5dcXV3TLdOkSRP5+vrqr7/+0g8//HDT7WWFs7OzIiIiJEnff/99trSZ2sKFCyVd78tOnTqlW2bYsGGSpL/++kvr169Pt0ytWrVUt27dNMvd3d3VoEEDSdLPP/98y3EmJyfr7Nmzmb7+/vvvDOtHRUXp2rVrioiIUKVKldIt4+PjoyZNmkiS1q5da1d8Kc9a3Lp1q65du2ZX3RsVLVpUrVq1SrP8oYceUokSJSRJderUUe3atdOUCQ0Nlbu7uyT7+7tw4cKqVKmSTNPUli1bMiz3wgsvqGzZsmmWP/DAA9b1mHJeZVVK+UcffVT169dPs97FxUWRkZGSrj9fcs+ePXa1n1WLFi3Sv//+q2LFiqXp33bt2kmS5s+fr//++y9N3SVLlig5OVl58uTRm2++mW77gwYNylIcbdq0uelzmG9Vdtyfs8ubb75pna+ppdwzJKlv377pPi/ydu4rKdfrrd5TN23apMOHDyt//vwZ3jclqW3btpLsv5+kdvHixQzveRcvXrTKpXxGvfbaa+k+m1uSqlWrpnLlyikxMVEbN260K47b7bPslNn1kdIPrVu3VpEiRdIt8+CDD1qfV6mPjb+/vyTpzz//vO37OAAAABzPxdEBAAAAAFl17NgxnT9/XpIUHh6eYbl69eppzJgxOnfunI4dO6ZixYqlKVOrVq0sbTOjcqdOndLx48clSR07dswwcSpJ8fHxkqTjx4+rZs2aWdquJH333XeaNWuWtm3bpt9++02XLl1KU+a3337LcntZtWvXLklS3bp15eSU/u8oy5Ytq8KFC+vUqVPatWuXGjVqlKZMZvtaqFAhSbKO560IDg5WXFxcpmViYmLSTcxK0ubNmyVJ69atSzfBniL18bvR2bNnNXXqVK1bt06HDh3SP//8k+aL88uXL+vvv/9W/vz5M401M9WrV083CSRJgYGBOnLkiB555JF01zs7Oyt//vw6depUukni5ORkLViwQAsWLFBsbKz+/PNPXblyJU25zM61J554ItN1I0eOzPR6TE/KeZjZtV63bl05Ozvr2rVr2rVrlypUqJCltu0xe/ZsSdeTLjcegyeffNK6DhYvXqw2bdrYrP/xxx8lXT9+Xl5e6bb/0EMPqUiRIjp58mSmcWT1npXT1ahRI93lgYGB1t8ZnespZTL6McSvv/6qqVOnauPGjTp69Kj+/fdfJScn25S51Xtqyv3kn3/+se5v6UlMTJSU/v0kq+bMmaP27dtnWubatWvatm2bJGnIkCEaOXJkhmVT7sPpxfTTTz9pxowZ+v777xUXF6f4+HiZpmlT5k58Dtkrs+sj5djMmjVLn3/+eYbl/vnnH0m2/fDkk0/Kw8NDu3fvVp06ddSxY0c98cQTWb6PAQAA4N5CUhQAAAB3Rb58+ay/z58/n+mXxhn5448/rL8LFy6cYbnUo0X++OOPdL+8fOCBB7K0zYzK/f7779bff/31V5baunz5cpbKSdI777yjMWPGWO+dnZ2VN29eubm5SbqeqLt06VK6idLbldLPmfWxdL2fT506ZXNcUvPx8cmwrovL9f+KJCUl3WKUty/lGGa1H288flu3blXDhg114cIFa5m3t7fy5MkjwzB07do169y4dOnSbSVFs9KXt9Lfly9f1jPPPGMzQszNzU0BAQHW6Ofz588rKSkp0z7K7FxJvS6j6zE9WTkPPTw8lD9/fp09ezbD8/B2HDx40BoFlzLCLzUnJye1adNG7733nmbPnp0mKfrnn39K0k3vd4ULF75pUjSr96wb9ejRI8NRumfOnJGU9v7sSBmdxynncFbKpHdfWbZsmVq2bKmEhARrma+vrzw8PGQYhhITE/X333/f8j015X6SlJSks2fP3rR8eiOLs9P58+etfc1sxHxqN97jJk+erB49eliJY8Mw5OfnZ43k/e+//3Tx4sU78jlkr8yuj5Rjc/HiRZuRtBlJ3Q8PPfSQPv74Y3Xp0kVbt27V1q1bJUkFChRQ3bp11apVKzVu3DjDH60AAADg3sL0uQAAALgrypUrZ/29e/duB0ZyXWYjO7NSLvVowP3798s0zZu+bjayJ8X69euthOjrr7+uPXv2KCEhQefPn9eZM2d05swZayrOG0fsIOtSjuE777yTpeMXExNj1b169apatmypCxcuqHLlylq1apUuXryof//9V2fPntWZM2esUVrSvXucRowYoY0bN8rT01MffPCBjh8/ritXrujcuXPWuZYy4vde3Yc7KWWUqCSVKFFChmGkeb333nuSpG+//VZHjx5Nt53sSJhk9Z51o3/++SfDqVZTPPzww9bf98L9ObudO3dO7du3V0JCgp544gnFxMTo8uXLVt+cOXNGX3zxxW1tI+V+UrNmzSzdT+709ZT6M2r16tVZimfIkCFWnf3796tnz55KTk7WCy+8oB07dujKlSv6+++/rXvD+PHjJd0b94bMro+Uvpg2bVqW+iEqKsqmfuvWrXX8+HFNnz5dLVq0UJEiRfTnn39q0aJFatKkiUJDQ7OUbAUAAIDjkRQFAADAXZF6KtZly5bdUhupR4JkNl1f6nW3OrrqZlJPt3o70yCmJ+VZqA0aNNCUKVNUvnz5NF/4pozwuhNS+uxmUyKmrL9TfXynpRzDWzl+W7du1fHjx+Xs7Kyvv/5aTz31VJrRa3fyGGWXlHNt8ODB6tmzp4oWLZomgZeV/Th16lSW1tlzrmTlPExJ4NrbdlZcvXpVn3zySZbLm6Zpk0SVro8mk2xHlqcns/67XVFRUTdNyhUsWNBKjK5YseKeSHJlp5QfLeTNm1dfffWVQkND5enpaVPmdq/X27mf3An58uWzRs7eSkyLFy/WtWvXVLZsWS1YsECPPPKINVNBiuy4x6V8tqU3ZXeKlGltb1V2HJuAgAC9+uqrWrBggU6cOKEjR45Yz7b97rvvbBLKAAAAuHeRFAUAAMBdERgYqGbNmkmSPv/8cx06dCjLdVO+oC9WrJgCAgIkSdHR0RmW37Bhg6TrXwrfqed+hYSEWNN6fvXVV9nadso0mlWqVEl3vWma+uabbzKsn5J8vtXERvXq1SVJGzduTPO8vRQHDhywEjkZPd/vXpfyDLoNGzZk+oV8elKOUYECBTKc3jXlPEzP7R6j7HKzcy0uLk5Hjhy5aTupp9/NaF1AQIBd12PKeZjZtR4TE6OrV69Kyv7zcOXKlTpz5oxcXV3122+/6d9//83wNW7cOEnS3LlzbUboVa1aVdL156NmNMXor7/+etOpc++Grl27SpIOHz6szz77LMv1MrpH3EtS+rd06dLKkydPumVu93pNuZ+cOXPGeh6uI7m6ulrPZ72Vz6iUPqtUqVKGz5bOjntc3rx5bbZ3o3///Vf79++/abyZSTk2X3/99W21k9pDDz2kUaNGqVWrVpKuz/AAAACAex9JUQAAANw1w4cPl7e3t/777z81bdr0pqOj/v77bzVr1swaJWIYhlq0aCFJmjFjRrqjVH7//XfNmDFDktSyZcts3gNbnTt3liTNmjXrplNO2vOcPj8/P0nSTz/9lO766dOn69dff82wvq+vryTZPOvSHi+++KKk66PXPv7443TLDB48WJKUP39+hYeH39J2HO3ll1+Wi4uL/vrrL0VGRmZaNjExUfHx8db7lGN04zSkKX777TdNmjQpw/Zu9xhll5uda3379s1SO1988YUOHjyYZvlff/1lXY8p125WpZyHW7du1bp169Ksv3r1qt59911JUvny5VW+fHm72r+ZWbNmSZKefPJJFS5cWN7e3hm+XnzxRTk5OenUqVNau3at1UbTpk3l5OSkS5cuaeLEieluZ8SIEdka963q2LGjKlSoIOl6gnTTpk2Zlr927ZreffddrVy58m6Ed1tSzvNDhw6l+wOI2NhYff755xnWz8r1WrduXZUoUUKS9OabbyoxMTHTmO7Gs1tfeeUVSddHyq5atcqueFL6bM+ePekmNlevXm0zpfiNsnqPq1SpkiRpyZIl6a5///33bZ4DeytS+mHv3r2aNm1apmUvXbpkc+xutu2UEccZJY4BAABwb+FfbQAAALhrSpUqpU8//VRubm765ZdfVLlyZY0ePdpmJNq1a9e0e/duDR48WMWLF9fSpUtt2ujfv7/8/f11/vx5hYeHa8uWLda6zZs3Kzw8XBcuXFBAQECWEzq36q233lKFChV05coV1a1bV5MnT7am8pSufxm8evVqtW3bVnXq1MlyuxEREZKuf+k8bNgwa4TZhQsXNHLkSL3xxhvKly9fhvVTkkOrVq26pWk5a9SoYY3qfeONNzR58mRdvnxZ0vVRUJ07d7aevzds2DB5eHjYvY17wUMPPaRBgwZJksaMGaO2bdtq79691vqrV68qNjZW7777rkqUKKHY2FhrXe3ateXl5SXTNNW8eXNr5PO1a9e0du1ahYWFZfocyZRjdPHiRS1atOgO7F3WpJxrw4cP19KlS61Rl8eOHVOrVq20aNEiayRXZjw8PBQREaENGzZYCZSdO3cqPDxcf/31l3x8fOy+Hps1a2Y9z7R58+b6/PPPlZSUZMXXrFkzbd26VZKsZ/Bml9OnT1tJpObNm9+0fKFChazRaCnJVEkKDg5Wx44dJV3/IcH7779vJdfPnTunXr16afbs2fL398/W+G+Fu7u7li1bpoIFC+rff/9VeHi4unbtqp07d9qMfo2Li9PUqVNVpkwZRUZG2qy7V9WvX19OTk46f/68Wrdubd0XExMTtWjRItWvXz/N9NeppVyvv/zyi81nTmouLi6aPn26XFxc9P333+vxxx9XdHS0dc5K10cFT58+XY888oimTp2ajXuYvpdeeknh4eEyTVPPPfechg8fbjOV86VLl7Rx40Z17dpVxYsXt6mbcm/45Zdf1LVrVytpeunSJc2YMUPPP/98lj6HvvvuOx04cCDDcik/Xlq7dq0iIyOtZ3P+9ddf6t+/v4YPH37b10doaKg6dOgg6XrC/80337T5YVFCQoK2bdumPn36KDg4WH/88Ye1rlu3bmrevLmWLFliszw+Pl7Tp0+3pth++umnbytGAAAA3CUmAAAA8P9CQ0PNFi1aZKls69atzdDQ0Fvazvfff2+WKFHClGS93NzczICAANPJyclaZhiG2bJlSzMxMdGmfkxMjOnn52eV8/LyMr28vKz3/v7+5qZNm9Js99ixY1aZY8eOZRjfxo0brXI3c+rUKfN///ufTcz+/v6mr6+vzf6VKFEiTd3g4GBTkjlnzhyb5YmJiWadOnVs2sybN6/VN08//bQ5cOBAU1K6x+DQoUOmh4eHKcl0cnIyAwMDzeDgYDM4ONg8efLkTbdvmqZ54cIFMzQ01IrBxcXFzJs3r2kYhrWsd+/e6fZJSr3IyMgM+y0yMjLD+G+mXbt2piQzODj4pmVTH8uNGzemWZ+cnGwOGjTIZr88PT3NfPnymc7OzjbH8Pvvv7epO23aNJv13t7eVr/nz5/f/PLLLzM935588klrvY+Pj3WMPvjggzT72q5duwz3MSv9ndGxjouLMwMDA22Oc+pra+TIkZm2n1Ju9uzZZlBQkCnJzJMnj+nt7W2tc3d3N7/++usMY8vMb7/9ZpYrV87mPuHv72+9d3JyMidOnJhu3Tlz5mT5PLnRqFGjTEmmq6uref78+SzVmTRpklXnjz/+sJb/+++/Zu3ata2YnZ2dba6lgQMHmo8//rgpyRw1alSadjM7f1O7nWsqtVOnTtmcmyn9HBAQYLq5udksr1mzpnn06NEsx5vRuqzcm7NyX87smL/zzjs2sfv5+Zmurq6mJLNYsWLmvHnzMmw/KSnJLF26tLU+b9681vX6xRdf2JRdtmyZ6ePjY5V1dXU18+XLZ7q7u9tsf/jw4RnuR3pS91F69+yM/PPPP+Yzzzxjs21fX1/T39/f5r7n4uKSpu6LL75oU8/f39+6L1arVs388MMPM+zv8+fPmwUKFLDq5s+f3+qzrVu3WuWuXr1q1q1bN83nnWEYpmEY5tixY7N0D7rZ9ZGQkGB26tQpzT079Wdryuu3336z6qXcg1PXSX0PkmTWrl3bjI+Pz/IxAQAAgOMwUhQAAAB3Xa1atXTgwAHNnz9frVu3VokSJeTh4aF///1XAQEBql27tgYMGKD9+/fr888/l6urq0390NBQ7d+/X2+99ZbKli2r5ORkmaapsmXLqnfv3tq/f79dIzNvR6FChfT9999r/vz5aty4sQoWLKjLly8rMTFRISEhatSokSZMmHDTqShTc3V11bp16xQZGalSpUrJ1dVVpmmqRo0amjZtmr788ks5OztnWL9kyZLauHGjGjdurAIFCujcuXM6fvy4jh8/bo0EvBk/Pz9FR0dr1qxZCgsLk4+Pj+Lj4xUUFKRmzZpp48aNGjt2bJb36V5lGIbeffdd/fzzz3r99ddVtmxZOTs7659//lHevHn12GOP6e2339aWLVuskYApunTpopUrVyosLEze3t66evWqChcurDfeeEM//fSTNRVpRhYvXqw333xTpUqVUlJSknWM7uaUusHBwdq1a5c6duyoQoUKSbo+6vOZZ57R2rVr1a9fvyy1U6xYMe3evVtdu3ZVgQIFlJiYqAceeEAtW7bU7t27b3kUVeHChbVr1y6NHz9e//vf/+Tp6anLly+rSJEiatOmjX744Qd17979ltrOzOzZsyVJ4eHhWRopK0nPP/+8nJyclJSUpE8//dRa7u3trejoaI0dO1YVK1aUm5ubTNNUaGioli5dqmHDhlnH/F4YMVqoUCFt2LBBmzZtUteuXVWxYkX5+/vr4sWL8vT0VKVKldSlSxfFxMRo27ZtaUYY3qvee+89ffLJJ6pRo4Y8PT2VlJSkEiVKqH///tq9e7d1/qfHxcVF0dHR6tSpk4oVK6ZLly5Z12vqabUlqUmTJjpy5IgiIyNVo0YNeXt768KFC3J3d1elSpXUqVMnLVu2TG+//fad3mVJ16ex/eqrr7Rq1Sq1aNFCRYsWVUJCgi5fvqzChQurfv36GjVqVLrTX8+bN08TJkxQxYoV5e7urmvXrqlChQoaNWqUNm/eLG9v7wy3mzdvXm3atEkvvviiChcurH/++cfqs9RTGDs7O2vlypUaOnSoypQpIzc3NxmGofr162v9+vXq3bt3tvSDm5ubZs6cqS1btqh9+/Z66KGHdO3aNcXHx+uBBx5QWFiYBg8erJ9//tnmOdGDBg3SpEmT9Nxzz6lMmTJycXGx6tSrV0+zZ89WTEyMvLy8siVOAAAA3FmGad7kqfcAAAC4b4SFhSkoKEgLFiy4admXXnpJv/32W6bPFAOQu6VMEbxx40aFhYU5NpgcKj4+Xvny5VNiYqI2bdp0137QAQAAAAD3G0aKAgAAAADgIOPHj1diYqICAgL0yCOPODocAAAAAMi1SIoCAAAAAHCH/Pvvv3rxxRe1Zs0am6mRjx8/rrfffltDhgyRJPXs2VMeHh6OCRIAAAAA7gNMnwsAAABLWFiYvv322yyXDw0NZfpc4D7G9Lk3d+HCBZvnkvr4+Ei6nixN0axZMy1YsEAuLi53PT4AAAAAuF/wPy4AAABY3n77bb300ktZLl+wYME7GA0A5Hze3t6aPHmy1q9fr7179+rPP//Uf//9p4IFC6p69epq27atmjVrZiWYAQAAAOBu2LRpk8aOHasffvhBp0+f1rJly9SkSZNM68TExKhXr1765ZdfVKRIEQ0cOFDt27e/K/FmB0aKAgAAAAAAAAAAAPeR1atXa/PmzapWrZqaNm1606TosWPHVL58eXXp0kWdOnVSdHS0evbsqZUrV6pBgwZ3L/DbQFIUAAAAAAAAAAAAyOESEhKUkJBgs8zd3V3u7u6Z1jMM46ZJ0XfeeUcrV67U3r17rWUvvviiLly4oDVr1txW3HcL0+cCAAAAAAAAAAAgx1npWtrRIdxTdg5oqaFDh9osi4yM1JAhQ2677a1btyo8PNxmWYMGDdSzZ8/bbvtuISkK3Gdy4ofE00kHNWz+VUeHYbdBLV00atE1R4dht37NndV35hVHh2G39zp7aMSCnNffA150zrFxT16V8yab6NbQyJFxS9djz6nnSk6Ne/TiZEeHYbd3nnfSp5scHYX92jyuHPtZ//7SnHee9G7qlGPP7zFLcl7cfZo5acKXOe+zp2fjnPmZ2a2hkWPPk5ELc97npST1b+GcY//fE/lJkqPDsNvQtq459h4+8aucd0/p0SjnPu/53Xk5799Wg1u75NjPnpx6fufEz57+LZx1+bsvHB2G3fLUecHRIeA+0a9fP/Xq1ctm2c1GiWbVmTNnFBgYaLMsMDBQFy9e1H///SdPT89s2c6dRFIUAAAAAAAAAAAAyOGyMlXu/czJ0QEAAAAAAAAAAAAAuHcFBQXp7NmzNsvOnj0rX1/fHDFKVCIpCgAAAAAAAAAAACATjz76qKKjo22WrV+/Xo8++qiDIrIfSVEAAAAAAAAAAADgPhIfH6/Y2FjFxsZKko4dO6bY2FidOHFC0vXnk7Zt29Yq36VLF/3666/q06ePDhw4oKlTp2rRokV68803HRH+LeGZogAAAAAAAAAAAMhxDFfD0SHkWLt27VLdunWt97169ZIktWvXTlFRUTp9+rSVIJWkYsWKaeXKlXrzzTc1ceJEPfjgg/r444/VoEGDux77rSIpCgAAAAAAAAAAANxHwsLCZJpmhuujoqLSrbN79+47GNWdxfS5AAAAAAAAAAAAAHI1kqIAAAAAAAAAAAAAcjWSogAAAAAAAAAAAAByNZ4pCgAAAAAAAAAAgBzHycVwdAjIQRgpCgAAAAAAAAAAACBXIykKAAAAAAAAAAAAIFcjKQoAAAAAAAAAAAAgVyMpCgAAAAAAAAAAACBXc3F0AAAAAAAAAAAAAIC9DFfG/iHrOFsAAAAAAAAAAAAA5GokRYFsZpqmwsPD1aBBgzTrpk6dKn9/f/32228OiAwAAAAAAAAAAOD+RFIUyGaGYWjOnDnavn27ZsyYYS0/duyY+vTpow8//FAPPvhgtm4zKSkpW9sDAAAAAAAAAADITUiKAndAkSJFNHHiRPXu3VvHjh2TaZrq2LGj6tevrypVquipp56St7e3AgMD1aZNG/31119W3TVr1qh27dry9/dXvnz59Mwzz+jo0aPW+ri4OBmGoYULFyo0NFQeHh6aN2+eI3YTAAAAAAAAAAAgRyApCtwh7dq105NPPqmXX35ZkydP1t69ezVjxgw98cQTqlKlinbt2qU1a9bo7Nmzat68uVXv0qVL6tWrl3bt2qXo6Gg5OTnpueeeU3Jysk37ffv2VY8ePbR///50p+oFAAAAAAAAAADAdS6ODgDIzT766COVK1dOmzZt0pIlSzRjxgxVqVJFI0eOtMrMnj1bRYoU0aFDh1SqVCk1a9bMpo3Zs2erQIEC2rdvn8qXL28t79mzp5o2bZrhthMSEpSQkGCzzN3dPZv2DAAAAAAAAAAAx3JyMRwdAnIQRooCd9ADDzygV199VWXLllWTJk30008/aePGjfL29rZeZcqUkSRritzDhw+rZcuWKl68uHx9fRUSEiJJOnHihE3b1atXz3Tbo0aNkp+fn81r1KhR2b+TAAAAAAAAAAAA9zhGigJ3mIuLi1xcrl9q8fHxatSokUaPHp2mXMGCBSVJjRo1UnBwsGbOnKlChQopOTlZ5cuXV2Jiok15Ly+vTLfbr18/9erVy2aZu7u7NoyYfzu7AwAAAAAAAAAAkOOQFAXuoqpVq2rJkiUKCQmxEqWpnTt3TgcPHtTMmTNVp04dSdL3339/S9tyd3dnulwAAAAAAAAAAAAxfS5wV3Xt2lXnz59Xy5YttXPnTh09elRr165Vhw4ddO3aNeXNm1f58uXTRx99pCNHjuibb75JM9oTAAAAAAAAAAAA9mGkKHAXFSpUSJs3b9Y777yj+vXrKyEhQcHBwYqIiJCTk5MMw9CCBQvUvXt3lS9fXqVLl9akSZMUFhbm6NABAAAAAAAAALinGK6Go0NADkJSFLjDhgwZoiFDhljvS5YsqaVLl2ZYPjw8XPv27bNZZpqm9XdISIjNewAAAAAAAAAAAGSO6XMBAAAAAAAAAAAA5GokRQEAAAAAAAAAAADkaiRFAQAAAAAAAAAAAORqPFMUAAAAAAAAAAAAOY6Ti+HoEJCDMFIUAAAAAAAAAAAAQK5GUhQAAAAAAAAAAABArkZSFAAAAAAAAAAAAECuRlIUAAAAAAAAAAAAQK7m4ugAAAAAAAAAAAAAAHsZroajQ0AOwkhRAAAAAAAAAAAAALkaSVEAAAAAAAAAAAAAuRpJUQAAAAAAAAAAAAC5GklRAAAAAAAAAAAAALkaSVEAAAAAAAAAAAAAuZqLowMAAAAAAAAAAAAA7OXkYjg6BOQgjBQFAAAAAAAAAAAAkKuRFAUAAAAAAAAAAACQqxmmaZqODgIAAAAAAAAAAACwx7dlKzs6hHtK6P5YR4dwT+OZosB9Ztj8q44OwW6DWrpopWtpR4dht6eTDqrnh/GODsNuE97wVp/p/zk6DLuN6eKpY0ePODoMuxV7qIS+/jHnXZfPVHXRjHWOjsJ+r9aX3l+a7Ogwbknvpk7qNOIvR4dht48H5Ncn3zo6Cvu1DZUWbMl5vx188TFDoxfnvHP8needNG2No6Ow32sR0pglOa+/+zRz0uC5iY4Ow27vtnPTqh+THB2G3RpWddX8zTnvftKylqH9R085Ogy7lX2osP7au9XRYdgtf/lHtePAP44O45bUKOOnf37c4Ogw7OZXNVyfbnJ0FPZr87j05a5rjg7Dbo2rO2v6WkdHYb8uDRwdwa3rNj7n3VMm9/LTyIU57/zu38JZoxblvLj7NXfW+BU5798ovZ41FPlJzvs34dC2ro4OAYBIigIAAAAAAAAAACAHMpwNR4eAHIRnigIAAAAAAAAAAADI1UiKAgAAAAAAAAAAAMjVSIoCAAAAAAAAAAAAyNVIigIAAAAAAAAAAADI1VwcHQAAAAAAAAAAAABgLydnw9EhIAdhpCgAAAAAAAAAAACAXI2kKAAAAAAAAAAAAIBcjaQoAAAAAAAAAAAAgFyNpCgAAAAAAAAAAACAXI2kKAAAAAAAAAAAAIBczcXRAQAAAAAAAAAAAAD2MpwMR4eAHISRogAAAAAAAAAAAAByNZKiAAAAAAAAAAAAAHI1kqKAneLi4mQYhmJjYzMsExMTI8MwdOHChbsWFwAAAAAAAAAAANJHUhS37cyZM3rjjTdUvHhxubu7q0iRImrUqJGio6MdEk/79u1lGIYMw5Crq6uKFSumPn366MqVK9nSfpEiRXT69GmVL18+W9oDAAAAAAAAAADAneXi6ACQs8XFxalWrVry9/fX2LFjVaFCBSUlJWnt2rXq2rWrDhw4kG69pKQkubq63rG4IiIiNGfOHCUlJemHH35Qu3btZBiGRo8efdttOzs7KygoKBuiBAAAAAAAAAAAt8pwZuwfso6zBbfl9ddfl2EY2rFjh5o1a6ZSpUqpXLly6tWrl7Zt22aVMwxD06ZNU+PGjeXl5aURI0ZIkqZNm6aHHnpIbm5uKl26tD799FOb9lPqPfXUU/L09FTx4sW1ePHim8bl7u6uoKAgFSlSRE2aNFF4eLjWr19vrU9OTtaoUaNUrFgxeXp6qlKlSjbt/v3332rdurUKFCggT09PlSxZUnPmzJGU/vS5q1atUqlSpeTp6am6desqLi7OJp4hQ4aocuXKNssmTJigkJAQm2Uff/yxypYtKw8PD5UpU0ZTp0611iUmJqpbt24qWLCgPDw8FBwcrFGjRt20LwAAAAAAAAAAAO53jBTFLTt//rzWrFmjESNGyMvLK816f39/m/dDhgzRe++9pwkTJsjFxUXLli1Tjx49NGHCBIWHh+vrr79Whw4d9OCDD6pu3bpWvUGDBum9997TxIkT9emnn+rFF1/Unj17VLZs2SzFuXfvXm3ZskXBwcHWslGjRumzzz7T9OnTVbJkSW3atEkvvfSSChQooNDQUA0aNEj79u3T6tWrlT9/fh05ckT//fdfuu2fPHlSTZs2VdeuXfXKK69o165deuutt7IUW2rz5s3T4MGDNXnyZFWpUkW7d+9W586d5eXlpXbt2mnSpEn68ssvtWjRIhUtWlQnT57UyZMn7d4OAAAAAAAAAADA/YakKG7ZkSNHZJqmypQpk6XyrVq1UocOHaz3LVu2VPv27fX6669LkjW69P3337dJir7wwgvq1KmTJGnYsGFav369PvzwQ5tRlDf6+uuv5e3tratXryohIUFOTk6aPHmyJCkhIUEjR47Uhg0b9Oijj0qSihcvru+//14zZsxQaGioTpw4oSpVqqh69eqSlGZEZ2opo13HjRsnSSpdurT27Nlj91S9kZGRGjdunJo2bSpJKlasmPbt26cZM2aoXbt2OnHihEqWLKnatWvLMAybJG96EhISlJCQYLPM3d1dkrNdcQEAAAAAAAAAAOR0TJ+LW2aapl3lUxKMKfbv369atWrZLKtVq5b2799vsywlcZn6/Y1lblS3bl3FxsZq+/btateunTp06KBmzZpJup7MvXz5surVqydvb2/r9cknn+jo0aOSpNdee00LFixQ5cqV1adPH23ZsiXDbe3fv181a9bMNOabuXTpko4ePaqOHTvaxDR8+HArpvbt2ys2NlalS5dW9+7dtW7dukzbHDVqlPz8/GxeTLcLAAAAAAAAAADuR4wUxS0rWbKkDMPQgQMHslQ+vSl27xQvLy+VKFFCkjR79mxVqlRJs2bNUseOHRUfHy9JWrlypQoXLmxT7/pISumpp57S8ePHtWrVKq1fv15PPvmkunbtqvfff/+W4nFyckqTRE5KSrL+Tolp5syZaRKszs7XR3ZWrVpVx44d0+rVq7VhwwY1b95c4eHhGT5jtV+/furVq1ea/Ruz9JZ2AQAAAAAAAACAe4qTs+HoEJCDMFIUtywgIEANGjTQlClTdOnSpTTrL1y4kGn9smXLavPmzTbLNm/erIcffthm2bZt29K8z+rzRKXrCcn+/ftr4MCB+u+///Twww/L3d1dJ06cUIkSJWxeRYoUseoVKFBA7dq102effaYJEyboo48+ynA/duzYkWnMBQoU0JkzZ2wSo7GxsdbfgYGBKlSokH799dc0MRUrVswq5+vrqxYtWmjmzJlauHChlixZovPnz6cbl7u7u3x9fW1eKUlfAAAAAAAAAACA+wkjRXFbpkyZolq1aqlGjRp69913VbFiRV29elXr16/XtGnTMp3m9u2331bz5s1VpUoVhYeH66uvvtLSpUu1YcMGm3JffPGFqlevrtq1a2vevHnasWOHZs2aZVecL7zwgt5++21NmTJFvXv3Vu/evfXmm28qOTlZtWvX1j///KPNmzfL19dX7dq10+DBg1WtWjWVK1dOCQkJ+vrrrzNMxHbp0kXjxo3T22+/rU6dOumHH35QVFSUTZmwsDD9+eefGjNmjJ5//nmtWbNGq1evlq+vr1Vm6NCh6t69u/z8/BQREaGEhATt2rVLf//9t3r16qXx48erYMGCqlKlipycnPTFF18oKChI/v7+dvUFAAAAAAAAAADA/YaRorgtxYsX148//qi6devqrbfeUvny5VWvXj1FR0dr2rRpmdZt0qSJJk6cqPfff1/lypXTjBkzNGfOHIWFhdmUGzp0qBYsWKCKFSvqk08+0fz589OMJr0ZFxcXdevWTWPGjNGlS5c0bNgwDRo0SKNGjVLZsmUVERGhlStXWqMy3dzc1K9fP1WsWFGPP/64nJ2dtWDBgnTbLlq0qJYsWaLly5erUqVKmj59ukaOHGlTpmzZspo6daqmTJmiSpUqaceOHerdu7dNmU6dOunjjz/WnDlzVKFCBYWGhioqKsqKycfHR2PGjFH16tX1yCOPKC4uTqtWrZKTE5cxAAAAAAAAAABAZhgpittWsGBBTZ48WZMnT86wzI3P00zx2muv6bXXXsu0/UKFCmndunVZjufGUZop+vbtq759+1rve/TooR49eqRbduDAgRo4cGC660JCQtLszzPPPKNnnnnGZlmHDh1s3nfp0kVdunSxWda/f3+b961atVKrVq3S3W7nzp3VuXPndNcBAAAAAAAAAAAgYwwxAwAAAAAAAAAAAJCrMVIUAAAAAAAAAAAAOY7hZDg6BOQgJEVxT8to2l0AAAAAAAAAAAAgq5g+FwAAAAAAAAAAAECuRlIUAAAAAAAAAAAAQK5GUhQAAAAAAAAAAABArsYzRQEAAAAAAAAAAJDjODkbjg4BOQgjRQEAAAAAAAAAAADkaiRFAQAAAAAAAAAAAORqJEUBAAAAAAAAAAAA5GokRQEAAAAAAAAAAADkai6ODgAAAAAAAAAAAACwl+FsODoE5CCMFAUAAAAAAAAAAACQq5EUBQAAAAAAAAAAAJCrkRQFAAAAAAAAAAAAkKuRFAUAAAAAAAAAAACQq5EUBQAAAAAAAAAAAJCrGaZpmo4OAgAAAAAAAAAAALDHD3VrOTqEe0q1jZsdHcI9zcXRAQC4u0YtuuboEOzWr7mzen4Y7+gw7DbhDW+tdC3t6DDs9nTSQa2JTXR0GHaLqOymNyZcdHQYdvuwp2+OjXv8ipz3u6pezxp6d95VR4dxSwa3dtGw+Tkv9kEtXfTa2AuODsNu097214DZCY4Ow24jXnbPkef44NYueuej/xwdht1Gv+KpoZ8lOToMu0W+5KqZGxwdhf06hyvHXpe9p112dBh2e/+1POox8V9Hh2G3iT18cuzn5ftLkx0dxi3p3dRJ/WflvGtzZEd3jViQ8/5/POBFZ01f6+go7NelgXLs/x9yqjFLct49pU8zJ81Y5+go7PdqfWnKakdHYb+uT+Xc6zKnnt8AHI8rEQAAAAAAAAAAAECuRlIUAAAAAAAAAAAAQK5GUhQAAAAAAAAAAABArsYzRQEAAAAAAAAAAJDjGE459/nPuPsYKQoAAAAAAAAAAAAgVyMpCgAAAAAAAAAAACBXIykKAAAAAAAAAAAAIFcjKQoAAAAAAAAAAAAgV3NxdAAAAAAAAAAAAACAvZycDUeHgByEkaIAAAAAAAAAAAAAcjWSogAAAAAAAAAAAAByNZKiAAAAAAAAAAAAAHI1kqIAAAAAAAAAAAAAcjUXRwcAAAAAAAAAAAAA2MtwMhwdAnIQRooCAAAAAAAAAAAAyNVIigLZ7MyZM6pXr568vLzk7+8vSTIMQ8uXL3doXAAAAAAAAAAAAPcrkqLIVn/++adee+01FS1aVO7u7goKClKDBg20efNmR4d213zwwQc6ffq0YmNjdejQIUnS6dOn9dRTTzk4MgAAAAAAAAAAgPsTzxRFtmrWrJkSExM1d+5cFS9eXGfPnlV0dLTOnTvn6NDumqNHj6patWoqWbKktSwoKCjTOklJSXJ1db3ToQEAAAAAAAAAANyXGCmKbHPhwgV99913Gj16tOrWravg4GDVqFFD/fr1U+PGja1y48ePV4UKFeTl5aUiRYro9ddfV3x8vCTp4sWL8vT01OrVq23aXrZsmXx8fHT58mVJ0jvvvKNSpUopT548Kl68uAYNGqSkpCSr/JAhQ1S5cmV9+umnCgkJkZ+fn1588UX9+++/VpmwsDB1795dffr0UUBAgIKCgjRkyBCb7WYWa3pCQkK0ZMkSffLJJzIMQ+3bt5dkO31uXFycDMPQwoULFRoaKg8PD82bN0+S9PHHH6ts2bLy8PBQmTJlNHXqVKvtxMREdevWTQULFpSHh4eCg4M1atSoLB4dAAAAAAAAAACA+xcjRZFtvL295e3treXLl+t///uf3N3d0y3n5OSkSZMmqVixYvr111/1+uuvq0+fPpo6dap8fX31zDPP6PPPP7eZbnbevHlq0qSJ8uTJI0ny8fFRVFSUChUqpD179qhz587y8fFRnz59rDpHjx7V8uXL9fXXX+vvv/9W8+bN9d5772nEiBFWmblz56pXr17avn27tm7dqvbt26tWrVqqV6/eTWNNz86dO9W2bVv5+vpq4sSJ8vT0zLC/+vbtq3HjxqlKlSpWYnTw4MGaPHmyqlSpot27d6tz587y8vJSu3btNGnSJH355ZdatGiRihYtqpMnT+rkyZNZP0AAAAAAAAAAAOQihhNj/5B1JEWRbVxcXBQVFaXOnTtr+vTpqlq1qkJDQ/Xiiy+qYsWKVrmePXtaf4eEhGj48OHq0qWLlWhs3bq12rRpo8uXLytPnjy6ePGiVq5cqWXLlln1Bg4caNNG7969tWDBApukaHJysqKiouTj4yNJatOmjaKjo22SohUrVlRkZKQkqWTJkpo8ebKio6OtpOjNYr1RgQIF5O7uLk9Pz5tOmduzZ081bdrUeh8ZGalx48ZZy4oVK6Z9+/ZpxowZateunU6cOKGSJUuqdu3aMgxDwcHBmbafkJCghIQEm2XXE9Vc9gAAAAAAAAAA4P5CCh3ZqlmzZvr999/15ZdfKiIiQjExMapataqioqKsMhs2bNCTTz6pwoULy8fHR23atNG5c+esqXEbNmwoV1dXffnll5KkJUuWyNfXV+Hh4VYbCxcuVK1atRQUFCRvb28NHDhQJ06csIklJCTESohKUsGCBfXHH3/YlEmdrE2vzM1ivR3Vq1e3/r506ZKOHj2qjh07WiNuvb29NXz4cB09elSS1L59e8XGxqp06dLq3r271q1bl2n7o0aNkp+fn82L6XYBAAAAAAAAAMD9iKQosp2Hh4fq1aunQYMGacuWLWrfvr01GjMuLk7PPPOMKlasqCVLluiHH37QlClTJF1/ZqYkubm56fnnn9fnn38uSfr888/VokULubhcH+G4detWtW7dWg0bNtTXX3+t3bt3a8CAAVb9FK6urjbvDcNQcnJylstkJdbb4eXlZf2d8pzSmTNnKjY21nrt3btX27ZtkyRVrVpVx44d07Bhw/Tff/+pefPmev755zNsv1+/fvrnn39sXv369bvtuAEAAAAAAAAAAHIa5tHEHffwww9r+fLlkqQffvhBycnJGjdunJz+f67vRYsWpanTunVr1atXT7/88ou++eYbDR8+3Fq3ZcsWBQcHa8CAAday48ePZ3vcWY01OwQGBqpQoUL69ddf1bp16wzL+fr6qkWLFmrRooWef/55RURE6Pz58woICEhT1t3dPYPnul7LxsgBAAAAAAAAAADufSRFkW3OnTunF154QS+//LIqVqwoHx8f7dq1S2PGjNGzzz4rSSpRooSSkpL04YcfqlGjRtq8ebOmT5+epq3HH39cQUFBat26tYoVK6aaNWta60qWLKkTJ05owYIFeuSRR9I8bzS7ZDXW7DJ06FB1795dfn5+ioiIUEJCgnbt2qW///5bvXr10vjx41WwYEFVqVJFTk5O+uKLLxQUFCR/f/87FhMAAAAAAAAAAPcqw8lwdAjIQZg+F9nG29tbNWvW1AcffKDHH39c5cuX16BBg9S5c2dNnjxZklSpUiWNHz9eo0ePVvny5TVv3rx0n3NpGIZatmypn376Kc3IycaNG+vNN99Ut27dVLlyZW3ZskWDBg3K9v3JaqzZpVOnTvr44481Z84cVahQQaGhoYqKilKxYsUkST4+PhozZoyqV6+uRx55RHFxcVq1apU1ihUAAAAAAAAAAADpY6Qoso27u7tGjRp108Thm2++qTfffNNmWZs2bdKUGz16tEaPHp1uG2PGjNGYMWNslvXs2dP6e8iQIRoyZEia9anLxMTEpGk3ZZpfe2PNrA1JMk3T+jskJMTmfWqtWrVSq1at0l3XuXNnde7cOdNtAwAAAAAAAAAAIC2GmAEAAAAAAAAAAADI1UiKAgAAAAAAAAAAAMjVmD4XAAAAAAAAAAAAOY6Ts+HoEJCDMFIUAAAAAAAAAAAAQK5GUhQAAAAAAAAAAABArkZSFAAAAAAAAAAAAECuRlIUAAAAAAAAAAAAQK5GUhQAAAAAAAAAAABArubi6AAAAAAAAAAAAAAAexlOhqNDQA7CSFEAAAAAAAAAAAAAuRpJUQAAAAAAAAAAAAC5GklRAAAAAAAAAAAAALkaSVEAAAAAAAAAAAAAuZqLowMAAAAAAAAAAAAA7GU4MfYPWcfZAgAAAAAAAAAAACBXIykKAAAAAAAAAAAAIFczTNM0HR0EAAAAAAAAAAAAYI/9zeo5OoR7Stkl6x0dwj2NZ4oC95m+M684OgS7vdfZQ32m/+foMOw2poun1sQmOjoMu0VUdtNK19KODsNuTycd1NDPkhwdht0iX3JVu8FnHB2G3ea+G6TJq3Le76q6NTQ0ZbWjo7g1XZ+Sxi3PeX3+VhNDr4294Ogw7DbtbX+NXHjN0WHYrX8LZ41alPPi7tfcOcf29+jFyY4Ow27vPO+kxdtzXtzP13TKsffBnPpv8Jwad069LmducHQUt6ZzuDR4bs77f8+77dxy5L8Luz4lRcU4Ogr7tQ+TPvnW0VHYr22ooyO4ddPXOjoC+3VpIC3fmfP+TdjkEecc+2+rnHpd5tTPHQCOR1IUAAAAAAAAAAAAOY7hZDg6BOQgPFMUAAAAAAAAAAAAQK5GUhQAAAAAAAAAAABArkZSFAAAAAAAAAAAAECuRlIUAAAAAAAAAAAAQK5GUhQAAAAAAAAAAABArubi6AAAAAAAAAAAAAAAexlOhqNDQA7CSFEAAAAAAAAAAAAAuRpJUQAAAAAAAAAAAAC5GklRAAAAAAAAAAAAALkaSVEAAAAAAAAAAAAAuZqLowMAAAAAAAAAAAAA7GU4GY4OATkII0UBAAAAAAAAAAAA5GokRQEAAAAAAAAAAADkaiRFAQAAAAAAAAAAAORqJEWBbGaapl555RUFBATIMAzFxsYqLCxMPXv2dHRoAAAAAAAAAAAA9yUXRwcApKd9+/aaO3dumuWHDx9WiRIlHBDR9ZguXLig5cuXZ1puzZo1ioqKUkxMjIoXL678+fNr6dKlcnV1vTuBAgAAAAAAAABwHzCcGPuHrCMpintWRESE5syZY7OsQIECt9RWYmKi3NzcsiOsmzp69KgKFiyoxx57zFoWEBCQaZ27GR8AAAAAAAAAAMD9hhQ67lnu7u4KCgqyeTk7O0uSvv32W9WoUUPu7u4qWLCg+vbtq6tXr1p1w8LC1K1bN/Xs2VP58+dXgwYNJEl79+7VU089JW9vbwUGBqpNmzb666+/rHqLFy9WhQoV5OnpqXz58ik8PFyXLl3SkCFDNHfuXK1YsUKGYcgwDMXExKSJuX379nrjjTd04sQJGYahkJAQK57U0+eGhIRo2LBhatu2rXx9ffXKK69Ikr7//nvVqVNHnp6eKlKkiLp3765Lly5Z9aZOnaqSJUvKw8NDgYGBev7557OruwEAAAAAAAAAAHItkqLIcU6dOqWGDRvqkUce0U8//aRp06Zp1qxZGj58uE25uXPnys3NTZs3b9b06dN14cIFPfHEE6pSpYp27dqlNWvW6OzZs2revLkk6fTp02rZsqVefvll7d+/XzExMWratKlM01Tv3r3VvHlzRURE6PTp0zp9+rTNSNAUEydO1LvvvqsHH3xQp0+f1s6dOzPcj/fff1+VKlXS7t27NWjQIB09elQRERFq1qyZfv75Zy1cuFDff/+9unXrJknatWuXunfvrnfffVcHDx7UmjVr9Pjjj2djzwIAAAAAAAAAAOROTJ+Le9bXX38tb29v6/1TTz2lL774QlOnTlWRIkU0efJkGYahMmXK6Pfff9c777yjwYMHy+n/5xAvWbKkxowZY9UfPny4qlSpopEjR1rLZs+erSJFiujQoUOKj4/X1atX1bRpUwUHB0uSKlSoYJX19PRUQkKCgoKCMozZz89PPj4+cnZ2zrScJD3xxBN66623rPedOnVS69atrRGlJUuW1KRJkxQaGqpp06bpxIkT8vLy0jPPPCMfHx8FBwerSpUqGbafkJCghIQEm2Xu7u6ZxgQAAAAAAAAAAJAbkRTFPatu3bqaNm2a9d7Ly0uStH//fj366KMyDMNaV6tWLcXHx+u3335T0aJFJUnVqlWzae+nn37Sxo0bbRKtKY4ePar69evrySefVIUKFdSgQQPVr19fzz//vPLmzXsndk/Vq1dPE9/PP/+sefPmWctM01RycrKOHTumevXqKTg4WMWLF1dERIQiIiL03HPPKU+ePOm2P2rUKA0dOtRmWWRkpFS4b/bvDAAAAAAAAAAAwD2MpCjuWV5eXipRosRt1U8tPj5ejRo10ujRo9OULViwoJydnbV+/Xpt2bJF69at04cffqgBAwZo+/btKlas2C3HYU98r776qrp3756mbNGiReXm5qYff/xRMTExWrdunQYPHqwhQ4Zo586d8vf3T1OnX79+6tWrl80yd3d3RX5iZut+AAAAAAAAAADgCE7Oxs0LAf+PpChynLJly2rJkiUyTdMaLbp582b5+PjowQcfzLBe1apVtWTJEoWEhMjFJf1T3zAM1apVS7Vq1dLgwYMVHBysZcuWqVevXnJzc9O1a9fuyD6lxLdv375ME8EuLi4KDw9XeHi4IiMj5e/vr2+++UZNmzZNU9bd3T2D6XKvZGPUAAAAAAAAAAAA9z4nRwcA2Ov111/XyZMn9cYbb+jAgQNasWKFIiMj1atXL+t5ounp2rWrzp8/r5YtW2rnzp06evSo1q5dqw4dOujatWvavn27Ro4cqV27dunEiRNaunSp/vzzT5UtW1aSFBISop9//lkHDx7UX3/9paSkpGzdr3feeUdbtmxRt27dFBsbq8OHD2vFihXq1q2bpOvPWJ00aZJiY2N1/PhxffLJJ0pOTlbp0qWzNQ4AAAAAAAAAAIDchqQocpzChQtr1apV2rFjhypVqqQuXbqoY8eOGjhwYKb1ChUqpM2bN+vatWuqX7++KlSooJ49e8rf319OTk7y9fXVpk2b1LBhQ5UqVUoDBw7UuHHj9NRTT0mSOnfurNKlS6t69eoqUKCANm/enK37VbFiRX377bc6dOiQ6tSpoypVqmjw4MEqVKiQJMnf319Lly7VE088obJly2r69OmaP3++ypUrl61xAAAAAAAAAAAA5DZMn4t7UlRUVKbrQ0NDtWPHjgzXx8TEpLu8ZMmSWrp0abrrypYtqzVr1mTYZoECBbRu3bpM45Kknj17qmfPnpnGExcXl27dRx55JMNt1K5dO8P9AgAAAAAAAAAAQMZIigIAAAAAAAAAACDHMZwMR4eAHITpcwEAAAAAAAAAAADkaiRFAQAAAAAAAAAAAORqJEUBAAAAAAAAAAAA5GokRQEAAAAAAAAAAADkai6ODgAAAAAAAAAAAACwl+HE2D9kHWcLAAAAAAAAAAAAgFyNpCgAAAAAAAAAAACAXI2kKAAAAAAAAAAAAIBcjaQoAAAAAAAAAAAAgFyNpCgAAAAAAAAAAACAXM3F0QEAAAAAAAAAAAAA9jKcDEeHgByEkaIAAAAAAAAAAAAAcjWSogAAAAAAAAAAAAByNZKiAAAAAAAAAAAAAHI1kqIAAAAAAAAAAAAAcjUXRwcAAAAAAAAAAAAA2MtwMhwdAnIQwzRN09FBAAAAAAAAAAAAAPY4/koTR4dwTwn+aLmjQ7inMVIUuM+MWHDN0SHYbcCLzjp29Iijw7BbsYdK6I0JFx0dht0+7OmroZ8lOToMu0W+5KqVrqUdHYbdnk46qMmrct7vk7o1NHLs/SQnxi1dj/21sRccHYbdpr3tr8++y3nn+Et1DM3fnPPiblkr516bU1Y7Ogr7dX1KGrkw5/V3/xbOmvhVzju/ezQytCY20dFh2C2isptmrHN0FPZ7tb6058hZR4dhtwolAhV35JCjw7BbSIlSWr075/0bXJKequKq2MN/OjoMu1UuWUDvfPSfo8Ow2+hXPHPkufJUFdcc+9mTU/X8MN7RIdhtwhvemrnB0VHYr3O4NPsbR0dhv5efkN6dd9XRYdhtcGsXDZuf8+Ie1JJUDHAv4JmiAAAAAAAAAAAAAHI1kqIAAAAAAAAAAAAAcjXGbAMAAAAAAAAAACDHMZwY+4es42wBAAAAAAAAAAAAkKuRFAUAAAAAAAAAAACQq5EUBQAAAAAAAAAAAJCrkRQFAAAAAAAAAAAAkKu5ODoAAAAAAAAAAAAAwF6Gk+HoEJCDMFIUAAAAAAAAAAAAQK5GUhQAAAAAAAAAAABArkZSFAAAAAAAAAAAAECuRlIUAAAAAAAAAAAAQK5GUhQAAAAAAAAAAABArubi6AAAAAAAAAAAAAAAexlOjP1D1nG24JbFxcXJMAzFxsY6OpSbiomJkWEYunDhQqblQkJCNGHChDseT/v27dWkSZM7vh0AAAAAAAAAAACQFEUG2rdvL8MwZBiGXF1dVaxYMfXp00dXrlyxyhQpUkSnT59W+fLl72gsZ86c0RtvvKHixYvL3d1dRYoUUaNGjRQdHX3LbUZFRcnf3z/N8p07d+qVV165jWhtZZQ4njhxoqKiorJtOwAAAAAAAAAAAMgY0+ciQxEREZozZ46SkpL0ww8/qF27djIMQ6NHj5YkOTs7Kygo6I7GEBcXp1q1asnf319jx45VhQoVlJSUpLVr16pr1646cOBAtm6vQIEC2dpeRvz8/O7KdgAAAAAAAAAAAMBIUWTC3d1dQUFBKlKkiJo0aaLw8HCtX7/eWp/eKMhffvlFzzzzjHx9feXj46M6dero6NGj1vqPP/5YZcuWlYeHh8qUKaOpU6dmGsPrr78uwzC0Y8cONWvWTKVKlVK5cuXUq1cvbdu2LcM4Lly4IMMwFBMTk6bNmJgYdejQQf/88481GnbIkCGSbKfPbdWqlVq0aGFTNykpSfnz59cnn3wiSVqzZo1q164tf39/5cuXT88884zN/hYrVkySVKVKFRmGobCwMElpp89NSEhQ9+7d9cADD8jDw0O1a9fWzp07bWI2DEPR0dGqXr268uTJo8cee0wHDx7MtP8AAAAAAAAAAABAUhRZtHfvXm3ZskVubm4Zljl16pQef/xxubu765tvvtEPP/ygl19+WVevXpUkzZs3T4MHD9aIESO0f/9+jRw5UoMGDdLcuXPTbe/8+fNas2aNunbtKi8vrzTr05v+Nisee+wxTZgwQb6+vjp9+rROnz6t3r17pynXunVrffXVV4qPj7eWrV27VpcvX9Zzzz0nSbp06ZJ69eqlXbt2KTo6Wk5OTnruueeUnJwsSdqxY4ckacOGDTp9+rSWLl2abkx9+vTRkiVLNHfuXP34448qUaKEGjRooPPnz9uUGzBggMaNG6ddu3bJxcVFL7/88i31AQAAAAAAAAAAOZ5h8Er9QqaYPhcZ+vrrr+Xt7a2rV68qISFBTk5Omjx5coblp0yZIj8/Py1YsECurq6SpFKlSlnrIyMjNW7cODVt2lTS9VGU+/bt04wZM9SuXbs07R05ckSmaapMmTLZul9ubm7y8/OTYRiZTv/boEEDeXl5admyZWrTpo0k6fPPP1fjxo3l4+MjSWrWrJlNndmzZ6tAgQLat2+fypcvb03Hmy9fvgy3denSJU2bNk1RUVF66qmnJEkzZ87U+vXrNWvWLL399ttW2REjRig0NFSS1LdvXz399NO6cuWKPDw80rSbkJCghIQEm2Xu7u7isgcAAAAAAAAAAPcbRooiQ3Xr1lVsbKy2b9+udu3aqUOHDmmSgKnFxsaqTp06VkI0tUuXLuno0aPq2LGjvL29rdfw4cNtpptNzTTNbNuXW+Hi4qLmzZtr3rx5kq7vw4oVK9S6dWurzOHDh9WyZUsVL15cvr6+CgkJkSSdOHEiy9s5evSokpKSVKtWLWuZq6uratSoof3799uUrVixovV3wYIFJUl//PFHuu2OGjVKfn5+Nq9Ro0ZlOS4AAAAAAAAAAIDcgiFjyJCXl5dKlCgh6foIyEqVKmnWrFnq2LFjuuU9PT0zbCtlCtqZM2eqZs2aNuucnZ3TrVOyZEkZhqEDBw5kGqeT0/XcfuokalJSUqZ1sqp169YKDQ3VH3/8ofXr18vT01MRERHW+kaNGik4OFgzZ85UoUKFlJycrPLlyysxMTFbtn+j1Aln4/+HwqdM1Xujfv36qVevXjbL3N3d9f6yOxIaAAAAAAAAAADAPYuRosgSJycn9e/fXwMHDtR///2XbpmKFSvqu+++SzchGRgYqEKFCunXX39ViRIlbF7FihVLt72AgAA1aNBAU6ZM0aVLl9Ksv3DhgiRZU9SePn3aWhcbG5vp/ri5uenatWuZlpGuP3+0SJEiWrhwoebNm6cXXnjBSkyeO3dOBw8e1MCBA/Xkk0+qbNmy+vvvv9NsR1Km23rooYfk5uamzZs3W8uSkpK0c+dOPfzwwzeNMSPu7u7y9fW1eV2fPhcAAAAAAAAAAOD+QlIUWfbCCy/I2dlZU6ZMSXd9t27ddPHiRb344ovatWuXDh8+rE8//VQHDx6UJA0dOlSjRo3SpEmTdOjQIe3Zs0dz5szR+PHjM9zmlClTdO3aNdWoUUNLlizR4cOHtX//fk2aNEmPPvqopOsjVP/3v//pvffe0/79+/Xtt99q4MCBme5LSEiI4uPjFR0drb/++kuXL1/OsGyrVq00ffp0rV+/3mbq3Lx58ypfvnz66KOPdOTIEX3zzTdpRmY+8MAD8vT01Jo1a3T27Fn9888/adr38vLSa6+9prfffltr1qzRvn371LlzZ12+fDnDUbkAAAAAAAAAANzvDCeDV6qXvaZMmaKQkBB5eHioZs2a2rFjR6blJ0yYoNKlS8vT01NFihTRm2++qStXrtzq4bvrSIoiy1xcXNStWzeNGTMm3ZGb+fLl0zfffKP4+HiFhoaqWrVqmjlzpjWyslOnTvr44481Z84cVahQQaGhoYqKispwpKgkFS9eXD/++KPq1q2rt956S+XLl1e9evUUHR2tadOmWeVmz56tq1evqlq1aurZs6eGDx+e6b489thj6tKli1q0aKECBQpozJgxGZZt3bq19u3bp8KFC9s899PJyUkLFizQDz/8oPLly+vNN9/U2LFj0/TZpEmTNGPGDBUqVEjPPvtsutt477331KxZM7Vp00ZVq1bVkSNHtHbtWuXNmzfT/QAAAAAAAAAAALDXwoUL1atXL0VGRurHH39UpUqV1KBBA/3xxx/plv/888/Vt29fRUZGav/+/Zo1a5YWLlyo/v373+XIbx3PFEW6oqKi0l3et29f9e3bV9L1EY6pn+MpXZ9Cd+3atRm226pVK7Vq1cquWAoWLKjJkydr8uTJGZYpW7astmzZYrMsdWxhYWFpYp02bZpNYlWS4uLi0m37xropwsPDtW/fvgy3K11PBnfq1Mlm2Y396+HhoUmTJmnSpEnpbie9+CtXrpxhXAAAAAAAAAAAABkZP368OnfurA4dOkiSpk+frpUrV2r27NlWHii1LVu2qFatWlaOJyQkRC1bttT27dvvaty3g5GiAAAAAAAAAAAAQA6XkJCgixcv2rwSEhLSlEtMTNQPP/yg8PBwa5mTk5PCw8O1devWdNt+7LHH9MMPP1hT7P76669atWqVGjZseGd25g4gKQoAAAAAAAAAAADkcKNGjZKfn5/Na9SoUWnK/fXXX7p27ZoCAwNtlgcGBurMmTPptt2qVSu9++67ql27tlxdXfXQQw8pLCwsR02fS1IUAAAAAAAAAAAAyOH69eunf/75x+bVr1+/bGk7JiZGI0eO1NSpU/Xjjz9q6dKlWrlypYYNG5Yt7d8NPFMUAAAAAAAAAAAAOY7hxNi/1Nzd3eXu7n7Tcvnz55ezs7POnj1rs/zs2bMKCgpKt86gQYPUpk0bderUSZJUoUIFXbp0Sa+88ooGDBggpxxwLO79CAEAAAAAAAAAAABkCzc3N1WrVk3R0dHWsuTkZEVHR+vRRx9Nt87ly5fTJD6dnZ0lSaZp3rlgsxEjRQEAAAAAAAAAAID7SK9evdSuXTtVr15dNWrU0IQJE3Tp0iV16NBBktS2bVsVLlzYeiZpo0aNNH78eFWpUkU1a9bUkSNHNGjQIDVq1MhKjt7rSIoCAAAAAAAAAAAA95EWLVrozz//1ODBg3XmzBlVrlxZa9asUWBgoCTpxIkTNiNDBw4cKMMwNHDgQJ06dUoFChRQo0aNNGLECEftgt1IigIAAAAAAAAAAAD3mW7duqlbt27prouJibF57+LiosjISEVGRt6FyO4MkqIAAAAAAAAAAADIcQwnw9EhIAdxunkRAAAAAAAAAAAAAMi5SIoCAAAAAAAAAAAAyNVIigIAAAAAAAAAAADI1UiKAgAAAAAAAAAAAMjVXBwdAAAAAAAAAAAAAGAvw4mxf8g6zhYAAAAAAAAAAAAAuRpJUQAAAAAAAAAAAAC5GklRAAAAAAAAAAAAALmaYZqm6eggAAAAAAAAAAAAAHucefslR4dwTwka+5mjQ7inuTg6AAB314gF1xwdgt0GvOisr3+86ugw7PZMVRe9MeGio8Ow24c9fdVu8BlHh2G3ue8GafKqnPc7n24NDa10Le3oMOz2dNLBHHs/6T3tsqPDuCXvv5Ynx95T5mx0dBT261BXendezvvsGdzaJcfGPWW1o6OwX9enpD7T/3N0GHYb08VTnUeec3QYdpvZP5+Gzc955/egli6a/Y2jo7Dfy09I45bnvH9bvdXEyLH9/fn3Oa+/JalVbSNHxt6qtqGhnyU5Ogy7Rb7kqpELc96/w/u3cFa38f84Ogy7Te7l5+gQbllO7e8eE/91dBh2m9jDJ8f294DZCY4Ow24jXnZX5Cc57/49tK2ro0MAIJKiAAAAAAAAAAAAyIEMJ8PRISAH4ZmiAAAAAAAAAAAAAHI1kqIAAAAAAAAAAAAAcjWSogAAAAAAAAAAAAByNZKiAAAAAAAAAAAAAHI1F0cHAAAAAAAAAAAAANjLcDIcHQJyEEaKAgAAAAAAAAAAAMjVSIoCAAAAAAAAAAAAyNVIigIAAAAAAAAAAADI1UiKAgAAAAAAAAAAAMjVXBwdAAAAAAAAAAAAAGA3J8b+Ies4WwAAAAAAAAAAAADkaiRFAQAAAAAAAAAAAORqJEUBAAAAAAAAAAAA5GokRW9B+/bt1aRJkzu+nSFDhqhy5cp3fDt3kmEYWr58uUO2fWP/ZcdxGzRokF555ZXbC+w2rVmzRpUrV1ZycrJD4wAAAAAAAAAAAMgpcl1StH379jIMQ4ZhyNXVVYGBgapXr55mz56dbUmkiRMnKioqKlvayu1Onz6tp556yiHb7t27t6Kjo7OtvTNnzmjixIkaMGBAmuVvvPGGihcvLnd3dxUpUkSNGjVKs+0tW7aoYcOGyps3rzw8PFShQgWNHz9e165ds8rExcWpY8eOKlasmDw9PfXQQw8pMjJSiYmJVpmIiAi5urpq3rx52bZvAAAAAAAAAAAAuVmuS4pK15NGp0+fVlxcnFavXq26deuqR48eeuaZZ3T16tUM6yUlJWWpfT8/P/n7+2dTtHdX6uTa3RAUFCR3d/e7us0U3t7eypcvX7a19/HHH+uxxx5TcHCwtSwuLk7VqlXTN998o7Fjx2rPnj1as2aN6tatq65du1rlli1bptDQUD344IPauHGjDhw4oB49emj48OF68cUXZZqmJOnAgQNKTk7WjBkz9Msvv+iDDz7Q9OnT1b9/f5tY2rdvr0mTJmXbvgEAAAAAAAAAkNOkDJLjdf2FzOXKpKi7u7uCgoJUuHBhVa1aVf3799eKFSu0evVqmxGehmFo2rRpaty4sby8vDRixAhdu3bNZqRe6dKlNXHiRJv2b5yGNSwsTN27d1efPn0UEBCgoKAgDRkyxKbOhQsX1KlTJxUoUEC+vr564okn9NNPP9mUee+99xQYGCgfHx917NhRV65cuem+fvvtt6pRo4bc3d1VsGBB9e3b1ybxGxYWpm7duqlnz57Knz+/GjRoIEn68ssvVbJkSXl4eKhu3bqaO3euDMPQhQsXJEnnzp1Ty5YtVbhwYeXJk0cVKlTQ/Pnzbbadlf2+cfrc3377TS1btlRAQIC8vLxUvXp1bd++Pd19S0xMVLdu3VSwYEF5eHgoODhYo0aNstafOHFCzz77rLy9veXr66vmzZvr7Nmz1vqbTT+8ePFiVahQQZ6ensqXL5/Cw8N16dKlDMsvWLBAjRo1sln2+uuvyzAM7dixQ82aNVOpUqVUrlw59erVS9u2bZMkXbp0SZ07d1bjxo310UcfqXLlygoJCVGnTp00d+5cLV68WIsWLZJ0PaE/Z84c1a9fX8WLF1fjxo3Vu3dvLV261Ga7jRo10q5du3T06NEM4wUAAAAAAAAAAMB1uTIpmp4nnnhClSpVSpNcGjJkiJ577jnt2bNHL7/8spKTk/Xggw/qiy++0L59+zR48GD179/fSlplZO7cufLy8tL27ds1ZswYvfvuu1q/fr21/oUXXtAff/yh1atX64cfflDVqlX15JNP6vz585KkRYsWaciQIRo5cqR27dqlggULaurUqZlu89SpU2rYsKEeeeQR/fTTT5o2bZpmzZql4cOHp4nNzc1Nmzdv1vTp03Xs2DE9//zzatKkiX766Se9+uqraaaEvXLliqpVq6aVK1dq7969euWVV9SmTRvt2LHDrv1OLT4+XqGhoTp16pS+/PJL/fTTT+rTp0+G0xpPmjRJX375pRYtWqSDBw9q3rx5CgkJkSQlJyfr2Wef1fnz5/Xtt99q/fr1+vXXX9WiRYtM+yzF6dOn1bJlS7388svav3+/YmJi1LRpU2vE5o3Onz+vffv2qXr16jbL1qxZo65du8rLyytNnZTRxOvWrdO5c+fUu3fvNGUaNWqkUqVKpUk4p/bPP/8oICDAZlnRokUVGBio7777Liu7CwAAAAAAAAAAcF9zcXQAd1OZMmX0888/2yxr1aqVOnToYLNs6NCh1t/FihXT1q1btWjRIjVv3jzDtitWrKjIyEhJUsmSJTV58mRFR0erXr16+v7777Vjxw798ccf1lSy77//vpYvX67FixfrlVde0YQJE9SxY0d17NhRkjR8+HBt2LAh09GiU6dOVZEiRTR58mQZhqEyZcro999/1zvvvKPBgwfLycnJimfMmDFWvb59+6p06dIaO3asJKl06dLau3evRowYYZUpXLiwTRLvjTfe0Nq1a7Vo0SLVqFEjS/t9o88//1x//vmndu7caSX5SpQokeH+nThxQiVLllTt2rVlGIbNtLXR0dHas2ePjh07piJFikiSPvnkE5UrV047d+7UI488kmG70vWk6NWrV9W0aVOr3QoVKmQai2maKlSokLXsyJEjMk1TZcqUyXRbhw4dkiSVLVs23fVlypSxytzoyJEj+vDDD/X++++nWVeoUCEdP348w+0mJCQoISHBZtn18+++uuwBAAAAAAAAAADun5GikmSaZpo5lVOP/EsxZcoUVatWTQUKFJC3t7c++ugjnThxItO2K1asaPO+YMGC+uOPPyRJP/30k+Lj45UvXz55e3tbr2PHjlnTn+7fv181a9a0aePRRx/NdJv79+/Xo48+arNPtWrVUnx8vH777TdrWbVq1WzqHTx4ME3SMHWiU5KuXbumYcOGqUKFCgoICJC3t7fWrl2bph8y2+8bxcbGqkqVKmlGPWakffv2io2NVenSpdW9e3etW7fOWrd//34VKVLESohK0sMPPyx/f3/t37//pm1XqlRJTz75pCpUqKAXXnhBM2fO1N9//51h+f/++0+S5OHhYS3LaFRpRuwtf+rUKUVEROiFF15Q586d06z39PTU5cuXM6w/atQo+fn52bxSTz8MAAAAAAAAAABwv7ivhozt379fxYoVs1l247SnCxYsUO/evTVu3Dg9+uij8vHx0dixYzN87mUKV1dXm/eGYVjTwsbHx6tgwYKKiYlJUy9litU7Kb2pXW9m7NixmjhxoiZMmKAKFSrIy8tLPXv2VGJiok25zPb7Rp6ennbFULVqVR07dkyrV6/Whg0b1Lx5c4WHh2vx4sX27Uw6nJ2dtX79em3ZskXr1q3Thx9+qAEDBmj79u1pzhFJyp8/vyTp77//VoECBSRdHxlrGIYOHDiQ6bZKlSol6fr599hjj6VZv3//fj388MM2y37//XfVrVtXjz32mD766KN02z1//rwVS3r69eunXr162Sxzd3fX+8syDRcAAAAAAAAAgBzBcLqvxv7hNt03Z8s333yjPXv2qFmzZpmW27x5sx577DG9/vrrqlKlikqUKGGN5rxVVatW1ZkzZ+Ti4qISJUrYvFKSbWXLlk2TeN22bVum7ZYtW1Zbt261GYG4efNm+fj46MEHH8ywXunSpbVr1y6bZTt37rR5v3nzZj377LN66aWXVKlSJRUvXjzDKV6zqmLFioqNjbWeo5oVvr6+atGihWbOnKmFCxdqyZIlOn/+vMqWLauTJ0/q5MmTVtl9+/bpwoULaRKMGTEMQ7Vq1dLQoUO1e/duubm5admy9DOGDz30kHx9fbVv3z5rWUBAgBo0aKApU6bo0qVLaepcuHBBklS/fn0FBARo3Lhxacp8+eWXOnz4sFq2bGktO3XqlMLCwlStWjXNmTPHmgY5tStXrujo0aOqUqVKhvvn7u4uX19fm1fK9M0AAAAAAAAAAAD3k1yZFE1ISNCZM2d06tQp/fjjjxo5cqSeffZZPfPMM2rbtm2mdUuWLKldu3Zp7dq1OnTokAYNGpQmYWiv8PBwPfroo2rSpInWrVunuLg4bdmyRQMGDLCSkz169NDs2bM1Z84cHTp0SJGRkfrll18ybff111/XyZMn9cYbb+jAgQNasWKFIiMj1atXr3QTaSleffVVHThwQO+8844OHTqkRYsWKSoqSpKsqXhLlixpjaTcv3+/Xn31VZ09e/a2+qFly5YKCgpSkyZNtHnzZv36669asmSJtm7dmm758ePHa/78+Tpw4IAOHTqkL774QkFBQfL391d4eLgqVKig1q1b68cff9SOHTvUtm1bhYaGpjsl8o22b9+ukSNHateuXTpx4oSWLl2qP//8M8Pnfjo5OSk8PFzff/+9zfIpU6bo2rVrqlGjhpYsWaLDhw9r//79mjRpkjX9sZeXl2bMmKEVK1bolVde0c8//6y4uDjNmjVL7du31/PPP289rzYlIVq0aFG9//77+vPPP3XmzBmdOXPGZrvbtm2Tu7v7TadYBgAAAAAAAAAAQC5Niq5Zs0YFCxZUSEiIIiIitHHjRk2aNEkrVqyQs7NzpnVfffVVNW3aVC1atFDNmjV17tw5vf7667cVj2EYWrVqlR5//HF16NBBpUqV0osvvqjjx48rMDBQktSiRQsNGjRIffr0UbVq1XT8+HG99tprmbZbuHBhrVq1Sjt27FClSpXUpUsXdezYUQMHDsy0XrFixbR48WItXbpUFStW1LRp0zRgwABJskYSDhw4UFWrVlWDBg0UFhZmJTNvh5ubm9atW6cHHnhADRs2VIUKFfTee+9leEx8fHw0ZswYVa9eXY888oji4uK0atUqOTk5yTAMrVixQnnz5tXjjz+u8PBwFS9eXAsXLsxSLL6+vtq0aZMaNmyoUqVKaeDAgRo3bpyeeuqpDOt06tRJCxYssJkeuHjx4vrxxx9Vt25dvfXWWypfvrzq1aun6OhoTZs2zSr3/PPPa+PGjTpx4oTq1Kmj0qVL64MPPtCAAQO0YMECKxm9fv16HTlyRNHR0XrwwQdVsGBB65Xa/Pnz1bp1a+XJkydL+wsAAAAAAAAAAHA/y3XPFI2KirJGPd5M6mlnU7i7u2vOnDmaM2eOzfJRo0bZbCO19J4Vunz5cpv3Pj4+mjRpkiZNmpRhPP3791f//v1tlo0ePTrD8pIUGhqqHTt2ZLg+vdgkqXHjxmrcuLH1fsSIEXrwwQfl4eEh6frUsDfuQ1bavrHOjX0cHByc5WeCdu7cWZ07d85wfdGiRbVixYoM1w8ZMkRDhgyx3qc+bmXLltWaNWuyFEeKiIgIFSpUSAsXLrSZ7rZgwYKaPHmyJk+enGn9OnXq3HSb7du3V/v27TMt89dff2nx4sVppkAGAAAAAAAAAABA+nJdUhRZM3XqVD3yyCPKly+fNm/erLFjx6pbt26ODuueZhiGPvroI+3Zs8ehccTFxWnq1KkqVqyYQ+MAAAAAAAAAAMCRDCfD0SEgByEpep86fPiwhg8frvPnz6to0aJ666231K9fP0eHdc+rXLmyKleu7NAYqlevnqXnpgIAAAAAAAAAAOA6kqL3qQ8++EAffPCBo8MAAAAAAAAAAAAA7jgnRwcAAAAAAAAAAAAAAHcSSVEAAAAAAAAAAAAAuRrT5wIAAAAAAAAAACDncWLsH7KOswUAAAAAAAAAAABArkZSFAAAAAAAAAAAAECuRlIUAAAAAAAAAAAAQK5GUhQAAAAAAAAAAABArkZSFAAAAAAAAAAAAECu5uLoAAAAAAAAAAAAAAB7GU6Go0NADsJIUQAAAAAAAAAAAAC5GklRAAAAAAAAAAAAALkaSVEAAAAAAAAAAAAAuRpJUQAAAAAAAAAAAAC5moujAwAAAAAAAAAAAADsZRiM/UPWGaZpmo4OAgAAAAAAAAAAALDH3yNec3QI95S8A6Y5OoR7GiNFgfvM5FU573cQ3RoamrHO0VHY79X60vgVOa+/ez1r5NjzZMSCa44Ow24DXnTOsXGvdC3t6DDs9nTSQV3+7gtHh3FL8tR5QaMW5bxzpV9zZ/WfleDoMOw2sqO7fjx0ztFh2K1qqXz6+6dvHR2G3fJWCtUPh847Ogy7VSsVoK9+uOroMOzWqJqLvt93ydFh2K32w146eXifo8OwW5GSD6vnh/GODsNuE97w1vqfct79u14l9xx7fi/dkezoMG5J0xpO2vBzzjtXwiu659jPnpELc96/Cfu3cNbuw385Ogy7VSmZ39Eh3LIxS3LePaVPs5x7P4nec8XRYdjtyQoeitn7n6PDsFtYeU/N3ODoKOzXOdzREQCQeKYoAAAAAAAAAAAAgFyOpCgAAAAAAAAAAACAXI3pcwEAAAAAAAAAAJDzOBmOjgA5CCNFAQAAAAAAAAAAAORqJEUBAAAAAAAAAAAA5GokRQEAAAAAAAAAAADkaiRFAQAAAAAAAAAAAORqJEUBAAAAAAAAAAAA5Goujg4AAAAAAAAAAAAAsJfhxNg/ZB1nCwAAAAAAAAAAAIBcjaQoAAAAAAAAAAAAgFyNpCgAAAAAAAAAAACAXI2kKAAAAAAAAAAAAIBczcXRAQAAAAAAAAAAAAD2MpwMR4eAHISRogAAAAAAAAAAAAByNZKi94iwsDD17NkzS2VjYmJkGIYuXLiQYZmoqCj5+/tnS2w5zfLly1WiRAk5OztnuU/vpri4OBmGodjYWEeHAgAAAAAAAAAAcF8gKZqO9u3byzAMGYYhNzc3lShRQu+++66uXr16221nlNBcunSphg0blqU2HnvsMZ0+fVp+fn63Hc+tioqKkmEYKlu2bJp1X3zxhQzDUEhIyN0PTNKrr76q559/XidPnsxyn2Ymu5OYRYoU0enTp1W+fPlsaQ8AAAAAAAAAAACZIymagYiICJ0+fVqHDx/WW2+9pSFDhmjs2LF3bHsBAQHy8fHJUlk3NzcFBQXJMBw7V7aXl5f++OMPbd261Wb5rFmzVLRoUYfEFB8frz/++EMNGjRQoUKFstynd0tiYqKcnZ0VFBQkFxce6QsAAAAAAAAAAHA3kBTNgLu7u4KCghQcHKzXXntN4eHh+vLLLyVJCQkJ6t27twoXLiwvLy/VrFlTMTExVt3jx4+rUaNGyps3r7y8vFSuXDmtWrVKcXFxqlu3riQpb968MgxD7du3l5R2+tyEhAS98847KlKkiNzd3VWiRAnNmjVLUvqjTaOiolS0aFHlyZNHzz33nM6dO5dmn1asWKGqVavKw8NDxYsX19ChQ63Rr6ZpasiQISpatKjc3d1VqFAhde/ePdM+cnFxUatWrTR79mxr2W+//aaYmBi1atXKpuzRo0f17LPPKjAwUN7e3nrkkUe0YcMGmzIhISEaOXKkXn75Zfn4+Kho0aL66KOPrPXp7XdsbKwMw1BcXJxiYmKsJOgTTzwhwzAUExOjc+fOqWXLlipcuLDy5MmjChUqaP78+TbbTk5O1pgxY1SiRAm5u7uraNGiGjFihCSpWLFikqQqVarIMAyFhYVJSn/K4yZNmljHNGWfhg0bprZt28rX11evvPJKmpGnKfsVHR2t6tWrK0+ePHrsscd08OBBm7aHDx+uBx54QD4+PurUqZP69u2rypUrZ3yAAAAAAAAAAADIzQwnXqlfyBQ9lEWenp5KTEyUJHXr1k1bt27VggUL9PPPP+uFF15QRESEDh8+LEnq2rWrEhIStGnTJu3Zs0ejR4+Wt7e3ihQpoiVLlkiSDh48qNOnT2vixInpbq9t27aaP3++Jk2apP3792vGjBny9vZOt+z27dvVsWNHdevWTbGxsapbt66GDx9uU+a7775T27Zt1aNHD+3bt08zZsxQVFSUlfhbsmSJPvjgA82YMUOHDx/W8uXLVaFChZv2y8svv6xFixbp8uXLkq4nZyMiIhQYGGhTLj4+Xg0bNlR0dLR2796tiIgINWrUSCdOnLApN27cOFWvXl27d+/W66+/rtdeey1NcjAjqROJS5Ys0enTp/XYY4/pypUrqlatmlauXKm9e/fqlVdeUZs2bbRjxw6rbr9+/fTee+9p0KBB2rdvnz7//HNrH1LKbdiwQadPn9bSpUuzFE+K999/X5UqVdLu3bs1aNCgDMsNGDBA48aN065du+Ti4qKXX37ZWjdv3jyNGDFCo0eP1g8//KCiRYtq2rRpdsUBAAAAAAAAAABwv2L+zpswTVPR0dFau3at3njjDZ04cUJz5szRiRMnVKhQIUlS7969tWbNGs2ZM0cjR47UiRMn1KxZMyupWLx4cau9gIAASdIDDzwgf3//dLd56NAhLVq0SOvXr1d4eHiaNm40ceJERUREqE+fPpKkUqVKacuWLVqzZo1VZujQoerbt6/atWtntTds2DD16dNHkZGROnHihIKCghQeHi5XV1cVLVpUNWrUuGn/VKlSRcWLF9fixYvVpk0bRUVFafz48fr1119tylWqVEn/x96dh1VR/v8ffx12BBU3BFdUBJdwCzWkUszCJdPc/ZiGWyquIW7lAm5oibkllSnY5lKamhluiRWRa6il4pJbRVmZllqowO8Pv56fJ1w4RI3n9Hxc11wX55577nnNOAL19r6nbt265s9TpkzR+++/r3Xr1mnIkCHm9tatWysyMlKSNGbMGL300kvatm2bAgMD75rFxcVF3t7ekq7fZx8fH0lS+fLlFR0dbe43dOhQbdy4UStXrlSjRo30+++/a+7cuVqwYIH5/lSrVk0PPvigJKlMmTKSpFKlSpnHtEbz5s01cuRI8+eTJ0/est+0adPUtGlTSdLYsWPVpk0b/fnnn3Jzc9P8+fPVt29f9e7dW5I0ceJEbdq0SRcvXrztebOyspSVlWXR5urqKsnF6msAAAAAAAAAAACwZcwUvY3169fL09NTbm5uatWqlbp27aqYmBgdOHBA2dnZCggIkKenp3nbvn27jh8/LkkaNmyYpk6dqtDQUE2aNEn79++36tzp6elydHQ0F8ju5tChQ2rcuLFFW0hIiMXnffv2afLkyRaZ+/fvr8zMTF2+fFmdO3fWH3/8oapVq6p///56//33zUvr3k2fPn2UmJio7du369KlS2rdunWePhcvXlR0dLRq1qwpLy8veXp66tChQ3lmitapU8f8tclkko+Pj86ePZuvHLeTnZ2tKVOmKCgoSCVLlpSnp6c2btxoPvehQ4eUlZWlRx555G+d53aCg4Pz1e/ma/f19ZUk87VnZGTkKVLfrWgdFxen4sWLW2xxcXHWRAcAAAAAAAAAALALzBS9jbCwMCUkJMjFxUXlypWTk9P1W3Xx4kU5Ojpqz549cnR0tDjmxvK2/fr1U3h4uD788ENt2rRJcXFxio+P19ChQ/N1bnd398K9mP/LHRsbqw4dOuTZ5+bmpooVKyojI0NbtmzR5s2bFRkZqRdffFHbt2+Xs7PzHcfu0aOHRo8erZiYGPXs2dN8r24WHR2tzZs3a9asWfL395e7u7s6depkXpL4hr+ey2QyKScnR5Lk4HC9hp+bm2vef/Xq1bte+4svvqi5c+dqzpw5CgoKkoeHh0aMGGE+d0Hvt4ODg0WW2+Xx8PDI13g3X7vJZJIk87UXxLhx4xQVFWXR5urqqkVbCzwkAAAAAAAAAACATWKm6G14eHjI399flSpVsijy1a9fX9nZ2Tp79qz8/f0ttpuXVq1YsaIGDhyo1atXa+TIkVq0aJGk60u8StdnL95OUFCQcnJytH379nxlrVmzpnbs2GHR9sUXX1h8btCggTIyMvJk9vf3Nxcb3d3d1bZtW82bN08pKSlKS0vTgQMH7nr+kiVL6oknntD27dst3oN5s9TUVEVEROjJJ59UUFCQfHx8bruM7O3cWMY2MzPT3Jaenn7X41JTU9WuXTs99dRTqlu3rqpWraojR46Y91evXl3u7u7auvXW1cLb/ZmVKVPGIkt2dra++uqrfF+PNQIDA7Vr1y6Ltr9+/itXV1cVK1bMYru+fC4AAAAAAAAAAMB/CzNFrRQQEKAePXqoV69eio+PV/369fXTTz9p69atqlOnjtq0aaMRI0aoVatWCggI0K+//qpt27apZs2akqTKlSvLZDJp/fr1at26tdzd3c0zTG/w8/PT008/rT59+mjevHmqW7euTp06pbNnz6pLly55Mg0bNkyhoaGaNWuW2rVrp40bN1q8T1S6/g7Kxx9/XJUqVVKnTp3k4OCgffv26auvvtLUqVOVlJSk7OxsNW7cWEWKFNFbb70ld3d3Va5cOV/3JSkpSQsXLlSpUqVuub969epavXq12rZtK5PJpAkTJlg9C9Lf318VK1ZUTEyMpk2bpiNHjig+Pv6ux1WvXl3vvfeePv/8c5UoUUKzZ8/Wjz/+qFq1akm6PlN2zJgxGj16tFxcXBQaGqqffvpJX3/9tfr27Stvb2+5u7srOTlZFSpUkJubm4oXL67mzZsrKipKH374oapVq6bZs2fr/PnzVl1Tfg0dOlT9+/dXcHCwmjRpohUrVmj//v13fNcsAAAAAAAAAAD2zORgMjoCbAgzRQsgMTFRvXr10siRIxUYGKj27dtr165dqlSpkqTrMwYHDx6smjVrqmXLlgoICNDChQslSeXLl1dsbKzGjh2rsmXLasiQIbc8R0JCgjp16qTIyEjVqFFD/fv316VLl27Z94EHHtCiRYs0d+5c1a1bV5s2bdL48eMt+oSHh2v9+vXatGmTGjZsqAceeEAvvfSSuejp5eWlRYsWKTQ0VHXq1NGWLVv0wQcf3LbI+Vfu7u537Dt79myVKFFCTZo0Udu2bRUeHq4GDRrka+wbnJ2dtWzZMh0+fFh16tTRzJkzNXXq1LseN378eDVo0EDh4eFq1qyZfHx81L59e4s+EyZM0MiRIzVx4kTVrFlTXbt2Nb/P08nJSfPmzdOrr76qcuXKqV27dpKuv0v16aefVq9evdS0aVNVrVpVYWFhVl1TfvXo0UPjxo1TdHS0GjRooBMnTigiIkJubm7/yPkAAAAAAAAAAADsiSn3ry9FBGATHn30Ufn4+OjNN9+06rgFG2zvr/yQ1ia9usnoFNYb8Jg0e63t3e+odiabfU6mLb/90uT3que7Odps7g+dA42OYbU2VzN0+dN3jY5RIEUe6qy4lbb3rIzr4qjnFmcZHcNq0/u6au+RX4yOYbUGAaX06778vYLhXlKiblPtOXLO6BhWuz+gpD7Yc83oGFZre7+TPjt4639weS97sJaHzhw9aHQMq1WsXksj5l80OobV5gz11OZ9tvf9+9G6rjb7fK/ead1qSveKDo0ctGW/7T0rLeq42uzPnukrbO93wue6OurLoz8bHcNq9auXNjpCgb2wyva+p4zuaLvfT7Ye+NPoGFZ7JMhNKV/9YXQMqzW7z12Lthidwnr9WxidwH79NnuE0RHuKcWi5hgd4Z7G8rmADbh8+bJeeeUVhYeHy9HRUcuWLdOWLVu0efNmo6MBAAAAAAAAAADc8yiKAjbAZDJpw4YNmjZtmv78808FBgZq1apVatGCf2IEAAAAAAAAAABwNxRFARvg7u6uLVtscF0IAAAAAAAAAAD+KQ4ORieADeFpAQAAAAAAAAAAAGDXKIoCAAAAAAAAAAAAsGsURQEAAAAAAAAAAADYNYqiAAAAAAAAAAAAAOyak9EBAAAAAAAAAAAAAGuZTCajI8CGMFMUAAAAAAAAAAAAgF2jKAoAAAAAAAAAAADArlEUBQAAAAAAAAAAAGDXKIoCAAAAAAAAAAAAsGsURQEAAAAAAAAAAADYNSejAwAAAAAAAAAAAABWc2DuH/KPpwUAAAAAAAAAAACAXaMoCgAAAAAAAAAAAMCumXJzc3ONDgEAAAAAAAAAAABY4/f5o4yOcE8pOvRFoyPc03inKPAfs2CD7f07iCGtTZq1OsfoGFaL7uCgyW9fMzqG1Sb2cNLLHxmdwnqDW0nTlmcbHcNqz3dzVHTCZaNjWG3WoCK6/Om7RsewWpGHOutD50CjYxRIm6sZGp90xegYVpsa4aLBs84bHcNqL0d76YfDXxodw2o+Nerrj5RlRsewmnuz7vrm+HGjY1itarVqSjv0m9ExrBZSs5j2HvnF6BhWaxBQSj8d3Gl0DKuVqdVI/ab9bHQMq73+fGmlfPWH0TGs1uw+d+08fMHoGFZrVKO4lnxsdIqC6dNcNnvPbfVnT/wa2/vv+pHtTco8nG50DKv51qhndIQCm7jU9v7bYfLTLjpy/LTRMawWUK2SDh773ugYVqvlX05f2OD37wdqFNfKNNv7/4RdQli0E7gXUBQFAAAAAAAAAACAzTE5mIyOABvCP08AAAAAAAAAAAAAYNcoigIAAAAAAAAAAACwaxRFAQAAAAAAAAAAANg1iqIAAAAAAAAAAAAA7JqT0QEAAAAAAAAAAAAAq5mY+4f842kBAAAAAAAAAAAAYNcoigIAAAAAAAAAAACwaxRFAQAAAAAAAAAAANg1iqIAAAAAAAAAAAAA7JqT0QEAAAAAAAAAAAAAqzmYjE4AG8JMUQAAAAAAAAAAAAB2jaIoAAAAAAAAAAAAALtGURQAAAAAAAAAAACAXaMoCgAAAAAAAAAAAMCuURTFPS8lJUUmk0nnz583OgoAAAAAAAAAAABsEEVRWCUiIkImkynPduzYMUPy3CiY3mlLSUkxJNs/5eTJkzKZTEpPTzc6CgAAAAAAAAAAhjGZHNhu2nBnTkYHgO1p2bKlEhMTLdrKlCljSJYmTZooMzPT/Hn48OH67bffLPKVLFnS/PWVK1fk4uLyr2YsTFeuXDE6AgAAAAAAAAAAgM2hbAyrubq6ysfHx2JzdHSUJG3fvl2NGjWSq6urfH19NXbsWF27ds18bFZWloYNGyZvb2+5ubnpwQcf1K5duyzG37BhgwICAuTu7q6wsDCdPHnytllcXFwscri7u1vke+WVV9SoUSO9/vrrqlKlitzc3CRJycnJevDBB+Xl5aVSpUrp8ccf1/Hjx83j3piNuXr1aoWFhalIkSKqW7eu0tLSzH1OnTqltm3bqkSJEvLw8FDt2rW1YcMGSf9/BuuHH36oOnXqyM3NTQ888IC++uori/yrVq1S7dq15erqKj8/P8XHx1vs9/Pz05QpU9SrVy8VK1ZMzzzzjKpUqSJJql+/vkwmk5o1a5bPPzkAAAAAAAAAAID/JoqiKDTfffedWrdurYYNG2rfvn1KSEjQ4sWLNXXqVHOf0aNHa9WqVVq6dKn27t0rf39/hYeH69y5c5KkM2fOqEOHDmrbtq3S09PVr18/jR079m/lOnbsmFatWqXVq1ebl5y9dOmSoqKitHv3bm3dulUODg568sknlZOTY3Hs888/r+joaKWnpysgIEDdu3c3F3kHDx6srKwsffLJJzpw4IBmzpwpT09Pi+NHjRql+Ph47dq1S2XKlFHbtm119epVSdKePXvUpUsXdevWTQcOHFBMTIwmTJigpKQkizFmzZqlunXr6ssvv9SECRO0c+dOSdKWLVuUmZmp1atX/637AwAAAAAAAAAAYO9YPhdWW79+vUXxr1WrVnr33Xe1cOFCVaxYUQsWLJDJZFKNGjX0/fffa8yYMZo4caL++OMPJSQkKCkpSa1atZIkLVq0SJs3b9bixYs1atQoJSQkqFq1auYZk4GBgeaCY0FduXJFb7zxhsUSvx07drTos2TJEpUpU0YHDx7UfffdZ26Pjo5WmzZtJEmxsbGqXbu2jh07pho1auj06dPq2LGjgoKCJElVq1bNc+5Jkybp0UcflSQtXbpUFSpU0Pvvv68uXbpo9uzZeuSRRzRhwgRJUkBAgA4ePKgXX3xRERER5jGaN2+ukSNHmj/fmJVbqlQp+fj43Pa6s7KylJWVZdHm6uoqyXaXDwYAAAAAAAAAACgIZorCamFhYUpPTzdv8+bNkyQdOnRIISEhMplM5r6hoaG6ePGivv32Wx0/flxXr15VaGioeb+zs7MaNWqkQ4cOmcdo3LixxflCQkL+Vt7KlSvneefp0aNH1b17d1WtWlXFihWTn5+fJOn06dMW/erUqWP+2tfXV5J09uxZSdKwYcM0depUhYaGatKkSdq/f3+ec9+cvWTJkgoMDLS41pvvhXT9fh09elTZ2dnmtuDgYGsvWZIUFxen4sWLW2xxcXEFGgsAAAAAAAAAgHuOg4nt5g13RFEUVvPw8JC/v795u1EsvFd5eHjkaWvbtq3OnTunRYsWaceOHdqxY4ek67NKb+bs7Gz++kax98YSu/369dM333yjnj176sCBAwoODtb8+fP/lfz5MW7cOF24cMFiGzduXCGnAwAAAAAAAAAAuPdRFEWhqVmzptLS0pSbm2tuS01NVdGiRVWhQgVVq1ZNLi4uSk1NNe+/evWqdu3apVq1apnHuPHOzBu++OKLQs35yy+/KCMjQ+PHj9cjjzyimjVr6tdffy3QWBUrVtTAgQO1evVqjRw5UosWLbLYf3P2X3/9VUeOHFHNmjUlXb/Wm++FdP1+BQQEmJfIvRUXl+vL3948m/RWXF1dVaxYMYvt+vK5AAAAAAAAAAAA/y0URVFoIiMjdebMGQ0dOlSHDx/W2rVrNWnSJEVFRcnBwUEeHh4aNGiQRo0apeTkZB08eFD9+/fX5cuX1bdvX0nSwIEDdfToUY0aNUoZGRl65513lJSUVKg5S5QooVKlSum1117TsWPH9PHHHysqKsrqcUaMGKGNGzfqxIkT2rt3r7Zt22YueN4wefJkbd26VV999ZUiIiJUunRptW/fXpI0cuRIbd26VVOmTNGRI0e0dOlSLViwQNHR0Xc8r7e3t9zd3ZWcnKwff/xRFy5csDo7AAAAAAAAAADAfwlFURSa8uXLa8OGDdq5c6fq1q2rgQMHqm/fvho/fry5z4wZM9SxY0f17NlTDRo00LFjx7Rx40aVKFFCklSpUiWtWrVKa9asUd26dfXKK69o+vTphZrTwcFBy5cv1549e3Tffffp2Wef1Ysvvmj1ONnZ2Ro8eLBq1qypli1bKiAgQAsXLrToM2PGDA0fPlz333+/fvjhB33wwQfmmZ4NGjTQypUrtXz5ct13332aOHGiJk+erIiIiDue18nJSfPmzdOrr76qcuXKqV27dlZnBwAAAAAAAAAA+C9xMjoAbMvdZm02bdo0z/K3N3Nzc9O8efM0b9682/Z5/PHH9fjjj1u09e7du0D5YmJiFBMTk6dfixYtdPDgQYu2m5f99fPzs/gsSV5eXhZt+Xl/6IMPPqivvvrqtvs7duyojh073nb/yZMnb9ner18/9evX767nBwAAAAAAAADAXpkcmPuH/ONpAQAAAAAAAAAAAGDXKIoCAAAAAAAAAAAAsGssnwv8A5o1a5Zn+V0AAAAAAAAAAAAYg5miAAAAAAAAAAAAAOwaRVEAAAAAAAAAAAAAdo3lcwEAAAAAAAAAAGB7TCajE8CGMFMUAAAAAAAAAAAAgF2jKAoAAAAAAAAAAADArlEUBQAAAAAAAAAAAGDXKIoCAAAAAAAAAAAAsGtORgcAAAAAAAAAAAAArObA3D/kH08LAAAAAAAAAAAAALtGURQAAAAAAAAAAACAXaMoCgAAAAAAAAAAAMCuURQFAAAAAAAAAAAAYNecjA4AAAAAAAAAAAAAWM1kMjoBbAgzRQEAAAAAAAAAAADYNVNubm6u0SEAAAAAAAAAAAAAa1xeOtnoCPeUIk9PNDrCPY3lc4H/mGnLs42OYLXnuzmq37SfjY5htdefL60py64ZHcNqE7o7KX6N7f17mZHtTRr04nmjY1gtYZSXhs75zegYVps/opjiVtre95NxXRw1PumK0TEKZGqEiz50DjQ6htXaXM3QYz2/NDqG1Ta9WV+xb101OobVJj3lrIlLbe8Zn/y0i03+3Zwa4aKBM381OobVXhlTQm9+YnQK6/V8WDb7u9X/xn5rdAyrvTOjgs0+38Pn/m50DKvNHV5UCzbY3u/gkjSktclmn5XnFmcZHcNq0/u6asT8i0bHsNqcoZ56YVWO0TGsNrqj7S6y9/pWoxNYr98j0uS3be9n/cQeTjb738e2mnv2Wtv7mRnVjiVegXuB7f5kBwAAAAAAAAAAAIB8oCgKAAAAAAAAAAAAwK6xfC4AAAAAAAAAAABsjsmBuX/IP54WAAAAAAAAAAAAAHaNoigAAAAAAAAAAAAAu0ZRFAAAAAAAAAAAAIBdoygKAAAAAAAAAAAAwK45GR0AAAAAAAAAAAAAsJqJuX/IP54WAAAAAAAAAAAAAHaNoigAAAAAAAAAAAAAu0ZRFAAAAAAAAAAAAIBdoygKAAAAAAAAAAAAwK45GR0AAAAAAAAAAAAAsJqDyegEsCHMFAUAAAAAAAAAAABg1yiKAoXo5MmTMplMSk9P/8fP5efnpzlz5vzj5wEAAAAAAAAAALB1FEVhMyIiImQymfJsx44dMyxP+/btDTk3AAAAAAAAAAAA8o93isKmtGzZUomJiRZtZcqUsXqcK1euyMXFpbBiAQAAAAAAAAAA4B7GTFHYFFdXV/n4+Fhsjo6O2r59uxo1aiRXV1f5+vpq7Nixunbtmvm4Zs2aaciQIRoxYoRKly6t8PBwSdJXX32lVq1aydPTU2XLllXPnj31888/m4977733FBQUJHd3d5UqVUotWrTQpUuXFBMTo6VLl2rt2rXmGaspKSl58mZnZ6tv376qUqWK3N3dFRgYqLlz51r0uTHjdNasWfL19VWpUqU0ePBgXb161dzn7Nmzatu2rdzd3VWlShW9/fbbhXxnAQAAAAAAAAAA7BczRWHzvvvuO7Vu3VoRERF64403dPjwYfXv319ubm6KiYkx91u6dKkGDRqk1NRUSdL58+fVvHlz9evXTy+99JL++OMPjRkzRl26dNHHH3+szMxMde/eXS+88IKefPJJ/f777/r000+Vm5ur6OhoHTp0SL/99pt55mrJkiX1/fffW2TLyclRhQoV9O6776pUqVL6/PPP9cwzz8jX11ddunQx99u2bZt8fX21bds2HTt2TF27dlW9evXUv39/SdcLp99//722bdsmZ2dnDRs2TGfPnv2H7ywAAAAAAAAAAPcuk4m5f8g/iqKwKevXr5enp6f5c6tWrRQQEKCKFStqwYIFMplMqlGjhr7//nuNGTNGEydOlIPD9W+K1atX1wsvvGA+durUqapfv76mT59ubluyZIkqVqyoI0eO6OLFi7p27Zo6dOigypUrS5KCgoLMfd3d3ZWVlSUfH5/b5nV2dlZsbKz5c5UqVZSWlqaVK1daFEVLlCihBQsWyNHRUTVq1FCbNm20detW9e/fX0eOHNFHH32knTt3qmHDhpKkxYsXq2bNmne8V1lZWcrKyrJoc3V1FX/tAQAAAAAAAADAfw0ldNiUsLAwpaenm7d58+bp0KFDCgkJkclkMvcLDQ3VxYsX9e2335rb7r//foux9u3bp23btsnT09O81ahRQ5J0/Phx1a1bV4888oiCgoLUuXNnLVq0SL/++qvVmV9++WXdf//9KlOmjDw9PfXaa6/p9OnTFn1q164tR0dH82dfX1/zTNBDhw7JycnJIn+NGjXk5eV1x/PGxcWpePHiFltcXJzV+QEAAAAAAAAAAGwdU8ZgUzw8POTv71/gY2928eJFtW3bVjNnzszT19fXV46Ojtq8ebM+//xzbdq0SfPnz9fzzz+vHTt2qEqVKvk65/LlyxUdHa34+HiFhISoaNGievHFF7Vjxw6Lfs7OzhafTSaTcnJyrLxCS+PGjVNUVJRFm6urq2a9/7eGBQAAAAAAAAAAsDkURWHzatasqVWrVik3N9c8WzQ1NVVFixZVhQoVbntcgwYNtGrVKvn5+cnJ6dZ/FUwmk0JDQxUaGqqJEyeqcuXKev/99xUVFSUXFxdlZ2ffMVtqaqqaNGmiyMhIc9vx48etur4aNWro2rVr2rNnj3n53IyMDJ0/f/6Ox7m6uv7fcrl/defMAAAAAAAAAAAA9oblc2HzIiMjdebMGQ0dOlSHDx/W2rVrNWnSJEVFRZnfJ3orgwcP1rlz59S9e3ft2rVLx48f18aNG9W7d29lZ2drx44dmj59unbv3q3Tp09r9erV+umnn8zv8vTz89P+/fuVkZGhn3/+WVevXs1zjurVq2v37t3auHGjjhw5ogkTJmjXrl1WXV9gYKBatmypAQMGaMeOHdqzZ4/69esnd3d3624UAAAAAAAAAAD2xMHEdvOGO6IoCptXvnx5bdiwQTt37lTdunU1cOBA9e3bV+PHj7/jceXKlVNqaqqys7P12GOPKSgoSCNGjJCXl5ccHBxUrFgxffLJJ2rdurUCAgI0fvx4xcfHq1WrVpKk/v37KzAwUMHBwSpTpoxSU1PznGPAgAHq0KGDunbtqsaNG+uXX36xmDWaX4mJiSpXrpyaNm2qDh066JlnnpG3t7fV4wAAAAAAAAAAAPwXsXwubEZSUtJt9zVt2lQ7d+687f6UlJRbtlevXl2rV6++5b6aNWsqOTn5tmOWKVNGmzZtytOem5tr/trV1VWJiYlKTEy06BMXF2f++lbXNWfOHIvPPj4+Wr9+vUVbz549b5sNAAAAAAAAAAAA/x8zRQEAAAAAAAAAAADYNYqiAAAAAAAAAAAAAOway+cCAAAAAAAAAADA9piY+4f842kBAAAAAAAAAAAAYNcoigIAAAAAAAAAAACwaxRFAQAAAAAAAAAAANg1iqIAAAAAAAAAAAAA7JqT0QEAAAAAAAAAAAAAq5lMRieADWGmKAAAAAAAAAAAAAC7RlEUAAAAAAAAAAAAgF2jKAoAAAAAAAAAAADArlEUBQAAAAAAAAAAAGDXKIoCAAAAAAAAAAAAsGtORgcAAAAAAAAAAAAArObA3D/kH08LAAAAAAAAAAAAALtGURQAAAAAAAAAAACAXaMoCgAAAAAAAAAAAMCumXJzc3ONDgEAAAAAAAAAAABY489VLxkd4Z7i1vFZoyPc05yMDgDg3zVtebbREaz2fDdHvbHd6BTW69VUGvTieaNjWC1hlJfN5n7rU9v7dz5PPWRS4jajU1ivd5j03OIso2NYbXpfVw2edd7oGAXycrSXHuv5pdExrLbpzfr60DnQ6BhWa3M1QyMXXjI6htXiIz00dM5vRsew2vwRxRSdcNnoGFabNaiITX5PeTnaS88vsb3v4dP6uGrI7AtGx7Dagqjiin3rqtExrDbpKWebzW2r/82zaIvRKQqmfwvb/e/Mme/lGB3DamM6OSgh2egU1hvUUjb7PcVWjV30p9ERrDajv5vN/r2MW2l73wfHdXHUnHW29/9RRjxh0uhX/jA6htVeGOhudAT7ZWJBVOQfTwsAAAAAAAAAAAAAu0ZRFAAAAAAAAAAAAIBdoygKAAAAAAAAAAAAwK5RFAUAAAAAAAAAAABg15yMDgAAAAAAAAAAAABYzcFkdALYEGaKAgAAAAAAAAAAALBrFEUBAAAAAAAAAAAA2DWKogAAAAAAAAAAAADsGkVRAAAAAAAAAAAA4D/m5Zdflp+fn9zc3NS4cWPt3Lnzjv3Pnz+vwYMHy9fXV66urgoICNCGDRv+pbR/n5PRAQAAAAAAAAAAAAD8e1asWKGoqCi98soraty4sebMmaPw8HBlZGTI29s7T/8rV67o0Ucflbe3t9577z2VL19ep06dkpeX178fvoAoigIAAAAAAAAAAMD2mFgQ9WZZWVnKysqyaHN1dZWrq2uevrNnz1b//v3Vu3dvSdIrr7yiDz/8UEuWLNHYsWPz9F+yZInOnTunzz//XM7OzpIkPz+/wr+IfxBPCwAAAAAAAAAAAGDj4uLiVLx4cYstLi4uT78rV65oz549atGihbnNwcFBLVq0UFpa2i3HXrdunUJCQjR48GCVLVtW9913n6ZPn67s7Ox/7HoKGzNFAQAAAAAAAAAAABs3btw4RUVFWbTdapbozz//rOzsbJUtW9aivWzZsjp8+PAtx/7mm2/08ccfq0ePHtqwYYOOHTumyMhIXb16VZMmTSq8i/gHURQFAAAAAAAAAAAAbNztlsotDDk5OfL29tZrr70mR0dH3X///fruu+/04osvUhQFAAAAAAAAAAAAcG8pXbq0HB0d9eOPP1q0//jjj/Lx8bnlMb6+vnJ2dpajo6O5rWbNmvrhhx905coVubi4/KOZCwPvFAUMEBMTo3r16hkdAwAAAAAAAAAA22Uysd285ZOLi4vuv/9+bd261dyWk5OjrVu3KiQk5JbHhIaG6tixY8rJyTG3HTlyRL6+vjZREJUoiv7rIiIiZDKZNGPGDIv2NWvWyGTFAytJfn5+mjNnTr76mUwmi61ChQpWnauw5Te7vYqOjrb4ZgMAAAAAAAAAAPBviYqK0qJFi7R06VIdOnRIgwYN0qVLl9S7d29JUq9evTRu3Dhz/0GDBuncuXMaPny4jhw5og8//FDTp0/X4MGDjboEq7F8rgHc3Nw0c+ZMDRgwQCVKlPhXzjl58mT179/f/Pnm6c3Wunr1qpydnQsjll3Kzs6WyWSSg8Pt/82Bp6enPD09/8VUAAAAAAAAAAAA13Xt2lU//fSTJk6cqB9++EH16tVTcnKyypYtK0k6ffq0RZ2jYsWK2rhxo5599lnVqVNH5cuX1/DhwzVmzBijLsFqzBQ1QIsWLeTj46O4uLg79vvss8/00EMPyd3dXRUrVtSwYcN06dIlSVKzZs106tQpPfvss+bZn3dStGhR+fj4mLcyZcqY9yUkJKhatWpycXFRYGCg3nzzTYtjTSaTEhIS9MQTT8jDw0PTpk2TJK1du1YNGjSQm5ubqlatqtjYWF27dk2SlJubq5iYGFWqVEmurq4qV66chg0bZnX28+fPa8CAASpbtqzc3Nx03333af369eb9q1atUu3ateXq6io/Pz/Fx8dbHO/n56fp06erT58+Klq0qCpVqqTXXnvNvL9JkyZ5/sL+9NNPcnZ21ieffCJJysrKUnR0tMqXLy8PDw81btxYKSkp5v5JSUny8vLSunXrVKtWLbm6uur06dNKSUlRo0aN5OHhIS8vL4WGhurUqVOS8i6fm5OTo8mTJ6tChQpydXU1f/O54eTJkzKZTFq9erXCwsJUpEgR1a1bV2lpabe9dwAAAAAAAAAAALczZMgQnTp1SllZWdqxY4caN25s3peSkqKkpCSL/iEhIfriiy/0559/6vjx43ruuef+1iS8fxtFUQM4Ojpq+vTpmj9/vr799ttb9jl+/Lhatmypjh07av/+/VqxYoU+++wzDRkyRJK0evVqVahQQZMnT1ZmZqYyMzMLlOX999/X8OHDNXLkSH311VcaMGCAevfurW3btln0i4mJ0ZNPPqkDBw6oT58++vTTT9WrVy8NHz5cBw8e1KuvvqqkpCRzwXTVqlV66aWX9Oqrr+ro0aNas2aNgoKCrMqek5OjVq1aKTU1VW+99ZYOHjyoGTNmmP+C7dmzR126dFG3bt104MABxcTEaMKECXn+ksbHxys4OFhffvmlIiMjNWjQIGVkZEiSevTooeXLlys3N9fcf8WKFSpXrpweeughSde/KaSlpWn58uXav3+/OnfurJYtW+ro0aPmYy5fvqyZM2fq9ddf19dff62SJUuqffv2atq0qfbv36+0tDQ988wzty0Az507V/Hx8Zo1a5b279+v8PBwPfHEExbnkKTnn39e0dHRSk9PV0BAgLp3724uRAMAAAAAAAAAAODWWD7XIE8++aTq1aunSZMmafHixXn2x8XFqUePHhoxYoQkqXr16po3b56aNm2qhIQElSxZUo6OjuYZoHczZswYjR8/3vx5+vTpGjZsmGbNmqWIiAhFRkZKur6G9BdffKFZs2YpLCzM3P9///ufeR1pSerTp4/Gjh2rp59+WpJUtWpVTZkyRaNHj9akSZN0+vRp+fj4qEWLFnJ2dlalSpXUqFEjScp39i1btmjnzp06dOiQAgICzOe5Yfbs2XrkkUc0YcIESVJAQIAOHjyoF198UREREeZ+rVu3Nl/fmDFj9NJLL2nbtm0KDAxUly5dNGLECPOsXEl655131L17d5lMJp0+fVqJiYk6ffq0ypUrJ+n6+0CTk5OVmJio6dOnS7q+pPDChQtVt25dSdK5c+d04cIFPf7446pWrZokqWbNmre91lmzZmnMmDHq1q2bJGnmzJnatm2b5syZo5dfftncLzo6Wm3atJEkxcbGqnbt2jp27Jhq1KiRZ8ysrCxlZWVZtLm6uoq/9gAAAAAAAAAAu3CH19gBf8XTYqCZM2eaX2D7V/v27VNSUpL53ZOenp4KDw9XTk6OTpw4YfW5Ro0apfT0dPPWq1cvSdKhQ4cUGhpq0Tc0NDRPpuDg4Dz5Jk+ebJGvf//+yszM1OXLl9W5c2f98ccfqlq1qvr376/333/f6hmN6enpqlChgrkg+le3y3706FFlZ2eb2+rUqWP+2mQyycfHR2fPnpUklSlTRo899pjefvttSdKJEyeUlpamHj16SJIOHDig7OxsBQQEWFzr9u3bdfz4cfO4Li4uFucpWbKkIiIiFB4errZt22ru3Lm3nRH722+/6fvvv8/Xn8PN5/D19ZUk87X8VVxcnIoXL26x3W3JZgAAAAAAAAAAAHvElDEDPfzwwwoPD9e4ceMsZjZK0sWLFzVgwADzezhvVqlSJavPVbp0afn7+xc0qjw8PPLki42NVYcOHfL0dXNzU8WKFZWRkaEtW7Zo8+bNioyM1Isvvqjt27fL2dk5X+d0d3cvcN6b/fV8JpNJOTk55s89evTQsGHDNH/+fL3zzjsKCgoyL/V78eJFOTo6as+ePXnWxfb09LTI+telcRMTEzVs2DAlJydrxYoVGj9+vDZv3qwHHnigUK7lxvluvpabjRs3TlFRURZtrq6umvV+gU8PAAAAAAAAAABgkyiKGmzGjBmqV6+eAgMDLdobNGiggwcP3rGQ6eLiYjEjsiBq1qyp1NRU8zK4kpSamqpatWrd8bgGDRooIyPjjvnc3d3Vtm1btW3bVoMHD1aNGjV04MABNWjQIF/Z69Spo2+//VZHjhy55WzRG9lvlpqaqoCAAKte7NuuXTs988wzSk5O1jvvvGOeRStJ9evXV3Z2ts6ePWteXtca9evXV/369TVu3DiFhITonXfeyVMULVasmMqVK6fU1FQ1bdrU4lpuLDlcEK6urv+3XO5f/b1nBgAAAAAAAAAAwNZQFDVYUFCQevTooXnz5lm0jxkzRg888ICGDBmifv36ycPDQwcPHtTmzZu1YMECSZKfn58++eQTdevWTa6uripdurTV5x81apS6dOmi+vXrq0WLFvrggw+0evVqbdmy5Y7HTZw4UY8//rgqVaqkTp06ycHBQfv27dNXX32lqVOnKikpSdnZ2WrcuLGKFCmit956S+7u7qpcuXK+szdt2lQPP/ywOnbsqNmzZ8vf31+HDx+WyWRSy5YtNXLkSDVs2FBTpkxR165dlZaWpgULFmjhwoVW3QMPDw+1b99eEyZM0KFDh9S9e3fzvoCAAPXo0UO9evVSfHy86tevr59++klbt25VnTp1zO/3/KsTJ07otdde0xNPPKFy5copIyNDR48etSi43mzUqFGaNGmSqlWrpnr16ikxMVHp6enmZX0BAAAAAAAAAABQcLxT9B4wefLkPEug1qlTR9u3b9eRI0f00EMPqX79+po4caLKlStncdzJkydVrVo1lSlTpkDnbt++vebOnatZs2apdu3aevXVV5WYmKhmzZrd8bjw8HCtX79emzZtUsOGDfXAAw/opZdeMhc9vby8tGjRIoWGhqpOnTrasmWLPvjgA5UqVcqq7KtWrVLDhg3VvXt31apVS6NHjzbPMG3QoIFWrlyp5cuX67777tPEiRM1efLkPEsR50ePHj20b98+PfTQQ3mWJ05MTFSvXr00cuRIBQYGqn379tq1a9cdlzEuUqSIDh8+rI4dOyogIEDPPPOMBg8erAEDBtyy/7BhwxQVFaWRI0cqKChIycnJWrdunapXr271tQAAAAAAAAAAAMASM0X/ZUlJSXna/Pz8lJWVlae9YcOG2rRp023HeuCBB7Rv3767nvPkyZN33D9o0CANGjTotvtzc3Nv2R4eHq7w8PBb7mvfvr3at29/2zHzm71kyZJasmTJbfd37NhRHTt2vO3+W117enp6nrZWrVrd9jqdnZ0VGxur2NjYW+6PiIjIU4gtW7as3n//9i/vjImJUUxMjPmzg4ODJk2apEmTJt2yv5+fX558Xl5et80MAAAAAAAAAIDdM5mMTgAbwkxRAAAAAAAAAAAAAHaNoigAAAAAAAAAAAAAu0ZRFAAAAAAAAAAAAIBdoygKAAAAAAAAAAAAwK45GR0AAAAAAAAAAAAAsJqJuX/IP54WAAAAAAAAAAAAAHaNoigAAAAAAAAAAAAAu0ZRFAAAAAAAAAAAAIBdoygKAAAAAAAAAAAAwK45GR0AAAAAAAAAAAAAsJoDc/+QfzwtAAAAAAAAAAAAAOwaRVEAAAAAAAAAAAAAdo2iKAAAAAAAAAAAAAC7RlEUAAAAAAAAAAAAgF2jKAoAAAAAAAAAAADArjkZHQAAAAAAAAAAAACwmslkdALYEFNubm6u0SEAAAAAAAAAAAAAa/y5cbHREe4pbuF9jY5wT2OmKPAfM/O9HKMjWG1MJwct/9z2/v1GtyYmPb8ky+gYVpvWx1XTV2QbHcNqz3V11LJU23tOuoeaNPnta0bHsNrEHk7ae+QXo2NYrUFAKf1w+EujYxSIT436in3rqtExrDbpKWeNXHjJ6BhWi4/00IfOgUbHsFqbqxn6+lim0TGsVtvfVxe/WGd0DKt5PvCEth34w+gYVgsLctfLHxmdwnqDW0k/f5VmdAyrlb4vRPFrbO93lJHtTdqVcd7oGFZrGOil7V9fNjqG1ZrWLqLXtxqdomD6PSJ99KXt/Y7Sqr6zUg9eNDqG1UJreWrQi+eNjmG1hFFeSvnK9n5mNrvP3egIBTbmNdu73zOfcdfKNNv7/1ZdQhxsNvcb241OYb1eTaU562zvd6sRTzCbEbgX8E5RAAAAAAAAAAAAAHaNoigAAAAAAAAAAAAAu8byuQAAAAAAAAAAALA9Jub+If94WgAAAAAAAAAAAADYNYqiAAAAAAAAAAAAAOwaRVEAAAAAAAAAAAAAdo2iKAAAAAAAAAAAAAC75mR0AAAAAAAAAAAAAMBqJpPRCWBDmCkKAAAAAAAAAAAAwK5RFAUAAAAAAAAAAABg1yiKAgAAAAAAAAAAALBrFEUBAAAAAAAAAAAA2DUnowMAAAAAAAAAAAAAVnNg7h/yj6cFAAAAAAAAAAAAgF2jKAoAAAAAAAAAAADArlEUlZSSkiKTyaTz588bHaVQNGvWTCNGjPhbY8TExKhevXp37BMREaH27dv/rfP8V3HvAAAAAAAAAAAA/j33XFE0IiJCJpMpz3bs2DFDc/n5+WnOnDl52vNTPPwvy83N1WuvvabGjRvL09NTXl5eCg4O1pw5c3T58mWj4/3jTp48KZPJpPT0dIv2uXPnKikpyZBMAAAAAAAAAAAA/zVORge4lZYtWyoxMdGirUyZMgalwd/Rs2dPrV69WuPHj9eCBQtUpkwZ7du3T3PmzJGfn99/drZk8eLFjY4AAAAAAAAAAADwn3HPzRSVJFdXV/n4+Fhsjo6OkqTt27erUaNGcnV1la+vr8aOHatr166Zj83KytKwYcPk7e0tNzc3Pfjgg9q1a5fF+Bs2bFBAQIDc3d0VFhamkydPFlr2nJwcTZ48WRUqVJCrq6vq1aun5ORk8/5bLdWbnp4uk8lkznHq1Cm1bdtWJUqUkIeHh2rXrq0NGzaY+3/11Vdq1aqVPD09VbZsWfXs2VM///xznhyjR49WyZIl5ePjo5iYGIv9p0+fVrt27eTp6alixYqpS5cu+vHHH297XdnZ2YqKipKXl5dKlSql0aNHKzc39473YuXKlXr77be1bNkyPffcc2rYsKH8/PzUrl07ffzxxwoLC8vXPbsx23L16tUKCwtTkSJFVLduXaWlpZn73OmeJSUlycvLyyLbmjVrZDKZzJ9vzPhdsmSJKlWqJE9PT0VGRio7O1svvPCCfHx85O3trWnTplmMYzKZlJCQoFatWsnd3V1Vq1bVe++9Z95fpUoVSVL9+vVlMpnUrFkzSXmXz73bc3vjudm6dauCg4NVpEgRNWnSRBkZGXf8MwAAAAAAAAAAwF7lmkxsN224s3uyKHo73333nVq3bq2GDRtq3759SkhI0OLFizV16lRzn9GjR2vVqlVaunSp9u7dK39/f4WHh+vcuXOSpDNnzqhDhw5q27at0tPT1a9fP40dO7bQMs6dO1fx8fGaNWuW9u/fr/DwcD3xxBM6evRovscYPHiwsrKy9Mknn+jAgQOaOXOmPD09JUnnz59X8+bNVb9+fe3evVvJycn68ccf1aVLF4sxli5dKg8PD+3YsUMvvPCCJk+erM2bN0u6XoRs166dzp07p+3bt2vz5s365ptv1LVr19tmio+PV1JSkpYsWaLPPvtM586d0/vvv3/H63j77bcVGBiodu3a5dlnMpnMsyXze8+ef/55RUdHKz09XQEBAerevbu5IH6ne5Zfx48f10cffaTk5GQtW7ZMixcvVps2bfTtt99q+/btmjlzpsaPH68dO3ZYHDdhwgR17NhR+/btU48ePdStWzcdOnRIkrRz505J0pYtW5SZmanVq1ff8tx3e25vvgfx8fHavXu3nJyc1KdPH6uuEQAAAAAAAAAA4L/onlw+d/369RYFrVatWundd9/VwoULVbFiRS1YsEAmk0k1atTQ999/rzFjxmjixIn6448/lJCQoKSkJLVq1UqStGjRIm3evFmLFy/WqFGjlJCQoGrVqik+Pl6SFBgYaC6i3c2YMWM0fvx4i7YrV66oVq1a5s+zZs3SmDFj1K1bN0nSzJkztW3bNs2ZM0cvv/xyvq7/9OnT6tixo4KCgiRJVatWNe9bsGCB6tevr+nTp5vblixZoooVK+rIkSMKCAiQJNWpU0eTJk2SJFWvXl0LFizQ1q1b9eijj2rr1q06cOCATpw4oYoVK0qS3njjDdWuXVu7du1Sw4YN82SaM2eOxo0bpw4dOkiSXnnlFW3cuPGO13H06FEFBgbe9Xrze8+io6PVpk0bSVJsbKxq166tY8eOqUaNGne8Z/mVk5OjJUuWqGjRoqpVq5bCwsKUkZGhDRs2yMHBQYGBgeZsjRs3Nh/XuXNn9evXT5I0ZcoUbd68WfPnz9fChQvNyz6XKlVKPj4+tzzvpUuX7vrc3jBt2jQ1bdpUkjR27Fi1adNGf/75p9zc3PKMm5WVpaysLIs2V1dXSc5W3xsAAAAAAAAAAABbdk/OFA0LC1N6erp5mzdvniTp0KFDCgkJsVj2NDQ0VBcvXtS3336r48eP6+rVqwoNDTXvd3Z2VqNGjcwz9w4dOmRR0JKkkJCQfOUaNWqURa709HQNHDjQvP+3337T999/b3H+GxlvnD8/hg0bpqlTpyo0NFSTJk3S/v37zfv27dunbdu2ydPT07zVqFFD0vWZjjfUqVPHYkxfX1+dPXtW0vV7ULFiRXNBVJJq1aolLy+vW+a8cOGCMjMzLe6bk5OTgoOD73gdd1teV7Lunt18Tb6+vpJkvqY73bP88vPzU9GiRc2fy5Ytq1q1asnBwcGi7cY5b/jr8xMSEmLVn3d+ntsb7nQP/iouLk7Fixe32OLi4vKdCwAAAAAAAAAAwF7ck0VRDw8P+fv7m7cbxR+jlS5d2iKXv7+/SpYsadUYNwpsNxcMr169atGnX79++uabb9SzZ08dOHBAwcHBmj9/viTp4sWL5qV/b96OHj2qhx9+2DyGs7PlbECTyaScnByrsv5dAQEBOnz4cKGNd/M13SiM37imO90zBweHPAXav97zv45/4xz3wn282Z3uwV+NGzdOFy5csNjGjRv3r+QEAAAAAAAAAAC4l9yTRdHbqVmzptLS0iwKXKmpqSpatKgqVKigatWqycXFRampqeb9V69e1a5du8xL3NasWdP8nscbvvjii0LJV6xYMZUrV87i/Dcy3jj/jeVUMzMzzfvT09PzjFWxYkUNHDhQq1ev1siRI7Vo0SJJUoMGDfT111/Lz88vT4HWw8MjXzlr1qypM2fO6MyZM+a2gwcP6vz58xZLAd9QvHhx+fr6WrxL89q1a9qzZ88dz/O///1PR44c0dq1a/Psy83N1YULF/J1z/LrdvesTJky+v3333Xp0iVz31vd84L66/PzxRdfqGbNmpIkFxcXSVJ2dvZtj8/Pc1sQrq6uKlasmMV2fflcAAAAAAAAAADsgMmB7eYNd2RTdygyMlJnzpzR0KFDdfjwYa1du1aTJk1SVFSUHBwc5OHhoUGDBmnUqFFKTk7WwYMH1b9/f12+fFl9+/aVJA0cOFBHjx7VqFGjlJGRoXfeeUdJSUmFlnHUqFGaOXOmVqxYoYyMDI0dO1bp6ekaPny4JMnf318VK1ZUTEyMjh49qg8//ND8ftMbRowYoY0bN+rEiRPau3evtm3bZi6yDR48WOfOnVP37t21a9cuHT9+XBs3blTv3r3vWHi7WYsWLRQUFKQePXpo79692rlzp3r16qWmTZvedknc4cOHa8aMGVqzZo0OHz6syMhInT9//o7n6dKli7p27aru3btr+vTp2r17t06dOqX169erRYsW2rZtW77uWX7c6Z41btxYRYoU0XPPPafjx48X+p/5u+++qyVLlujIkSOaNGmSdu7cqSFDhkiSvL295e7uruTkZP3444+6cOFCnuPz89wCAAAAAAAAAACg4GyqKFq+fHlt2LBBO3fuVN26dTVw4ED17dtX48ePN/eZMWOGOnbsqJ49e6pBgwY6duyYNm7cqBIlSkiSKlWqpFWrVmnNmjWqW7euXnnlFU2fPr3QMg4bNkxRUVEaOXKkgoKClJycrHXr1ql69eqSri9/umzZMh0+fFh16tTRzJkzNXXqVIsxsrOzNXjwYNWsWVMtW7ZUQECAFi5cKEnmWZXZ2dl67LHHFBQUpBEjRsjLy8vi3Zd3YjKZtHbtWpUoUUIPP/ywWrRooapVq2rFihW3PWbkyJHq2bOnnn76aYWEhKho0aJ68skn73qed955R7Nnz9aaNWvUtGlT1alTRzExMWrXrp3Cw8Pzdc/y4073rGTJknrrrbe0YcMGBQUFadmyZYqJicn32HcTGxur5cuXq06dOnrjjTe0bNky8wxPJycnzZs3T6+++qrKlSundu3a3XKMuz23AAAAAAAAAAAAKDhT7l9ftggg30wmk95//321b9/e6Cj5NvM9496JWlBjOjlo+ee2962qWxOTnl+SZXQMq03r46rpK/I38/xe8lxXRy1Ltb3npHuoSZPfvmZ0DKtN7OGkvUd+MTqG1RoElNIPh780OkaB+NSor9i38r4T+1436SlnjVx46e4d7zHxkR760DnQ6BhWa3M1Q18fy7x7x3tMbX9fXfxindExrOb5wBPaduAPo2NYLSzIXS9/ZHQK6w1uJf38VZrRMaxW+r4Qxa+xvd9RRrY3aVfGeaNjWK1hoJe2f33Z6BhWa1q7iF7fanSKgun3iPTRl7b3O0qr+s5KPXjR6BhWC63lqUEvnjc6htUSRnkp5Svb+5nZ7D53oyMU2JjXbO9+z3zGXSvTbO//W3UJcbDZ3G9sNzqF9Xo1leass73frUY8YTI6gt36Y9vbRke4p7iH9TA6wj3NpmaKAgAAAAAAAAAAAIC1nIwOAAAAAAAAAAAAAFjNxNw/5B9FUeBvYPVpAAAAAAAAAACAex8ldAAAAAAAAAAAAAB2jaIoAAAAAAAAAAAAALtGURQAAAAAAAAAAACAXaMoCgAAAAAAAAAAAMCuORkdAAAAAAAAAAAAALBWrslkdATYEGaKAgAAAAAAAAAAALBrFEUBAAAAAAAAAAAA2DWKogAAAAAAAAAAAADsGkVRAAAAAAAAAAAAAHbNyegAAAAAAAAAAAAAgNVMzP1D/vG0AAAAAAAAAAAAALBrFEUBAAAAAAAAAAAA2DWKogAAAAAAAAAAAADsGkVRAAAAAAAAAAAAAHbNlJubm2t0CAAAAAAAAAAAAMAalz991+gI95QiD3U2OsI9zcnoAAD+XW9+YnQC6/V8WJr5Xo7RMaw2ppODJr99zegYVpvYw0lxK7ONjmG1cV0cNW257eV+vpujzT4nv+7bbnQMq5Wo21R/pCwzOkaBuDfrrolLrxgdw2qTn3bR0Dm/GR3DavNHFNPXxzKNjmG12v6++tA50OgYVmtzNUNfHfvB6BhWu8/fRxv2XjU6htVaN3DWzsMXjI5htUY1iuvE8WNGx7BalWr+enqi7T3fSyf7aOuBP42OYbVHgtz0wR7b+92q7f1OemGV7f03jySN7uig93bYXvZOjR2UcfyM0TGsFlitomattr37Hd3BQceOnzA6htX8q1UxOkKBjVx4yegIVouP9LDZ31E+O2h79/vBWh42m9tWf+4AMB5/EwEAAAAAAAAAAADYNYqiAAAAAAAAAAAAAOwaRVEAAAAAAAAAAAAAdo2iKAAAAAAAAAAAAAC75mR0AAAAAAAAAAAAAMBqDsz9Q/7xtAAAAAAAAAAAAACwaxRFAQAAAAAAAAAAANg1iqIAAAAAAAAAAAAA7BpFUQAAAAAAAAAAAAB2zcnoAAAAAAAAAAAAAIC1ck0moyPAhjBTFAAAAAAAAAAAAIBdoygKAAAAAAAAAAAAwK5RFAUAAAAAAAAAAABg1yiKAgAAAAAAAAAAALBrFEWB/5OSkiKTyaTz588bHeWWkpKS5OXlZf4cExOjevXqGZYHAAAAAAAAAABDmRzYbt5wR9wh3JMiIiJkMpnybMeOHTM0l5+fnzlLkSJFFBQUpNdff92qMQpazOzatauOHDli9XEAAAAAAAAAAAD/dRRFcc9q2bKlMjMzLbYqVaoYHUuTJ09WZmamvvrqKz311FPq37+/Pvroo3/8vO7u7vL29v7HzwMAAAAAAAAAAGBvKIrinuXq6iofHx+LzdHRUZK0fft2NWrUSK6urvL19dXYsWN17do187FZWVkaNmyYvL295ebmpgcffFC7du2yGH/Dhg0KCAiQu7u7wsLCdPLkyXzlKlq0qHx8fFS1alWNGTNGJUuW1ObNm837z58/r379+qlMmTIqVqyYmjdvrn379km6vgRubGys9u3bZ55xmpSUJEmaPXu2goKC5OHhoYoVKyoyMlIXL140j/vX5XMBAAAAAAAAAACQPxRFYXO+++47tW7dWg0bNtS+ffuUkJCgxYsXa+rUqeY+o0eP1qpVq7R06VLt3btX/v7+Cg8P17lz5yRJZ86cUYcOHdS2bVulp6erX79+Gjt2rFU5cnJytGrVKv36669ycXExt3fu3Flnz57VRx99pD179qhBgwZ65JFHdO7cOXXt2lUjR45U7dq1zbNfu3btKklycHDQvHnz9PXXX2vp0qX6+OOPNXr06EK4YwAAAAAAAAAAAP9tFEVxz1q/fr08PT3NW+fOnSVJCxcuVMWKFbVgwQLVqFFD7du3V2xsrOLj45WTk6NLly4pISFBL774olq1aqVatWpp0aJFcnd31+LFiyVJCQkJqlatmuLj4xUYGKgePXooIiIiX7nGjBkjT09Pubq6qlOnTipRooT69esnSfrss8+0c+dOvfvuuwoODlb16tU1a9YseXl56b333pO7u7s8PT3l5ORknv3q7u4uSRoxYoTCwsLk5+en5s2ba+rUqVq5cmWB719WVpZ+++03iy0rK6vA4wEAAAAAAAAAANgqJ6MDALcTFhamhIQE82cPDw9J0qFDhxQSEiKTyWTeFxoaqosXL+rbb7/V+fPndfXqVYWGhpr3Ozs7q1GjRjp06JB5jMaNG1ucLyQkJF+5Ro0apYiICGVmZmrUqFGKjIyUv7+/JGnfvn26ePGiSpUqZXHMH3/8oePHj99x3C1btiguLk6HDx/Wb7/9pmvXrunPP//U5cuXVaRIkXxlu1lcXJxiY2Mt2iZNmqRqzWOsHgsAAAAAAAAAgHtNrom5f8g/iqK4Z3l4eJiLjfeS0qVLy9/fX/7+/nr33XcVFBSk4OBg1apVSxcvXpSvr69SUlLyHHen94GePHlSjz/+uAYNGqRp06apZMmS+uyzz9S3b19duXKlQEXRcePGKSoqyqLN1dVVK3dYPRQAAAAAAAAAAIBNoygKm1OzZk2tWrVKubm55tmiqampKlq0qCpUqKBSpUrJxcVFqampqly5siTp6tWr2rVrl0aMGGEeY926dRbjfvHFF1ZnqVixorp27apx48Zp7dq1atCggX744Qc5OTnJz8/vlse4uLgoOzvbom3Pnj3KyclRfHy8HByu/8uWv7N0rnS9AOrq6vq3xgAAAAAAAAAAALAHzCuGzYmMjNSZM2c0dOhQHT58WGvXrtWkSZMUFRUlBwcHeXh4aNCgQRo1apSSk5N18OBB9e/fX5cvX1bfvn0lSQMHDtTRo0c1atQoZWRk6J133lFSUlKB8gwfPlwffPCBdu/erRYtWigkJETt27fXpk2bdPLkSX3++ed6/vnntXv3bkmSn5+fTpw4ofT0dP3888/KysqSv7+/rl69qvnz5+ubb77Rm2++qVdeeaWwbhkAAAAAAAAAAMB/GkVR2Jzy5ctrw4YN2rlzp+rWrauBAweqb9++Gj9+vLnPjBkz1LFjR/Xs2VMNGjTQsWPHtHHjRpUoUUKSVKlSJa1atUpr1qxR3bp19corr2j69OkFylOrVi099thjmjhxokwmkzZs2KCHH35YvXv3VkBAgLp166ZTp06pbNmykqSOHTuqZcuWCgsLU5kyZbRs2TLVrVtXs2fP1syZM3Xffffp7bffVlxc3N+/WQAAAAAAAAAAAGD5XNyb7jZrs2nTptq5c+dt97u5uWnevHmaN2/ebfs8/vjjevzxxy3aevfufcfznjx58pbtycnJ5q+LFi16x3O7urrqvffey9P+7LPP6tlnn7Vo69mzp/nriIgIRUREmD/HxMQoJibmjnkBAAAAAAAAALBb//eKPSA/mCkKAAAAAAAAAAAAwK5RFAUAAAAAAAAAAABg1yiKAgAAAAAAAAAAALBrFEUBAAAAAAAAAAAA2DUnowMAAAAAAAAAAAAA1so1MfcP+cfTAgAAAAAAAAAAAMCuURQFAAAAAAAAAAAAYNcoigIAAAAAAAAAAACwaxRFAQAAAAAAAAAAANg1J6MDAAAAAAAAAAAAAFYzmYxOABvCTFEAAAAAAAAAAAAAdo2iKAAAAAAAAAAAAAC7RlEUAAAAAAAAAAAAgF2jKAoAAAAAAAAAAADArlEUBQAAAAAAAAAAAGDXnIwOAAAAAAAAAAAAAFjNxNw/5B9PCwAAAAAAAAAAAAC7ZsrNzc01OgQAAAAAAAAAAABgjd93Jxsd4Z5SNLil0RHuaSyfC/zHTFl2zegIVpvQ3UkJNvizbVBLacxrfxgdw2ozn3HX9BXZRsew2nNdHfXyR0ansN7gVrLZ3HuOnDM6htXuDyipb44fNzpGgVStVk3jk64YHcNqUyNcFJ1w2egYVps1qIgufrHO6BhW83zgCX117AejY1jtPn8ffegcaHQMq7W5mqF1u23vZ+YTwY5atMXoFNbr30I6c/Sg0TGsVrF6LY1d9KfRMaw2o7+bNuy9anQMq7Vu4KwP9tjef/O0vd9Jb31qm/9m/amHTDb7vXDTPtv73eqxui56dsFFo2NY7aUhnvroS9v7ntKqvrPREQrMVn/2JKUYncJ6Ec2kN7YbncJ6vZrabu4FG2zvZ+aQ1iajIwAQy+cCAAAAAAAAAAAAsHPMFAUAAAAAAAAAAIDNyTUxCxf5x0xRAAAAAAAAAAAAAHaNoigAAAAAAAAAAAAAu0ZRFAAAAAAAAAAAAIBdoygKAAAAAAAAAAAAwK45GR0AAAAAAAAAAAAAsJqJuX/IP54WAAAAAAAAAAAAAHaNoigAAAAAAAAAAAAAu0ZRFAAAAAAAAAAAAIBdoygKAAAAAAAAAAAAwK5RFAUAAAAAAAAAAABg15yMDgAAAAAAAAAAAABYK1cmoyPAhjBTFAAAAAAAAAAAAIBdoygKAAAAAAAAAAAAwK5RFLUhqampCgoKkrOzs9q3b290nHyJiYlRvXr1DDl3SkqKTCaTzp8/n6/+zZo104gRI/7RTAAAAAAAAAAAAPj3URQtRGfOnFGfPn1Urlw5ubi4qHLlyho+fLh++eWXQhk/KipK9erV04kTJ5SUlFQoY/4dJ0+elMlkuuX2xRdf/CPntKbI2qRJE2VmZqp48eL56r969WpNmTLF/NnPz09z5swpQEpLtyu2JiUlycvL62+PDwAAAAAAAAAAgDtzMjqAvfjmm28UEhKigIAALVu2TFWqVNHXX3+tUaNG6aOPPtIXX3yhkiVL/q1zHD9+XAMHDlSFChUKPMaVK1fk4uLyt3L81ZYtW1S7dm2LtlKlShXqOax19epVubi4yMfHJ9/H/N0/HwAAAAAAAAAA8O/JNTH3D/nH01JIBg8eLBcXF23atElNmzZVpUqV1KpVK23ZskXfffednn/+eXNfPz8/TZ8+XX369FHRokVVqVIlvfbaa7cd+8aMzF9++UV9+vSRyWRSUlKSsrOz1bdvX1WpUkXu7u4KDAzU3LlzLY6NiIhQ+/btNW3aNJUrV06BgYHm8VauXKmHHnpI7u7uatiwoY4cOaJdu3YpODhYnp6eatWqlX766ae7XnupUqXk4+NjsTk7O9+2/+uvv66aNWvKzc1NNWrU0MKFCy32f/vtt+revbtKliwpDw8PBQcHa8eOHUpKSlJsbKz27dtnnpF6Y8asyWRSQkKCnnjiCXl4eGjatGm3XD43NTVVzZo1U5EiRVSiRAmFh4fr119/lWQ5o7NZs2Y6deqUnn32WfO5Ll26pGLFium9996zyLtmzRp5eHjo999/v+u9upOUlBQ1atRIHh4e8vLyUmhoqE6dOmXev3btWjVo0EBubm6qWrWqYmNjde3atb91TgAAAAAAAAAAgP8CiqKF4Ny5c9q4caMiIyPl7u5usc/Hx0c9evTQihUrlJuba26Pj49XcHCwvvzyS0VGRmrQoEHKyMi45fgVK1ZUZmamihUrpjlz5igzM1Ndu3ZVTk6OKlSooHfffVcHDx7UxIkT9dxzz2nlypUWx2/dulUZGRnavHmz1q9fb26fNGmSxo8fr71798rJyUn/+9//NHr0aM2dO1effvqpjh07pokTJxbinZLefvttTZw4UdOmTdOhQ4c0ffp0TZgwQUuXLpUkXbx4UU2bNtV3332ndevWad++fRo9erRycnLUtWtXjRw5UrVr11ZmZqb5PtwQExOjJ598UgcOHFCfPn3ynDs9PV2PPPKIatWqpbS0NH322Wdq27atsrOz8/RdvXq1KlSooMmTJ5vP5eHhoW7duikxMdGib2Jiojp16qSiRYsW+L5cu3ZN7du3V9OmTbV//36lpaXpmWeekclkkiR9+umn6tWrl4YPH66DBw/q1VdfVVJSkqZNm1bgcwIAAAAAAAAAAPxXsHxuITh69Khyc3NVs2bNW+6vWbOmfv31V/3000/y9vaWJLVu3VqRkZGSpDFjxuill17Stm3bFBgYmOd4R0dH+fj4yGQyqXjx4hZLwsbGxpq/rlKlitLS0rRy5Up16dLF3O7h4aHXX3/dvGzuyZMnJUnR0dEKDw+XJA0fPlzdu3fX1q1bFRoaKknq27dvvt5d2qRJEzk4WNbXL168eMu+kyZNUnx8vDp06GDOfKPI9/TTT+udd97RTz/9pF27dpmXs/X39zcf7+npKScnp1sui/u///1PvXv3Nn/+5ptvLPa/8MILCg4OtpiZ+tdlf28oWbKkHB0dVbRoUYtz9evXz/yuUl9fX509e1YbNmzQli1bbjlOfv3222+6cOGCHn/8cVWrVk2SLJ6n2NhYjR07Vk8//bQkqWrVqpoyZYpGjx6tSZMm3XLMrKwsZWVlWbS5urpKcvxbWQEAAAAAAAAAAGwNM0UL0c0zQe+mTp065q9NJpN8fHx09uxZSVKrVq3k6ekpT0/P2xbtbnj55Zd1//33q0yZMvL09NRrr72m06dPW/QJCgq65XtEb85QtmxZc9+b225kupMVK1YoPT3dYruVS5cu6fjx4+rbt6/5+jw9PTV16lQdP35c0vXZnPXr1y/Q+z2Dg4PvuP/GTNG/o1GjRqpdu7Z5Zutbb72lypUr6+GHH/5b45YsWVIREREKDw9X27ZtNXfuXGVmZpr379u3T5MnT7a4b/3791dmZqYuX758yzHj4uJUvHhxiy0uLu5v5QQAAAAAAAAAALBFzBQtBP7+/jKZTDp06JCefPLJPPsPHTqkEiVKqEyZMua2v75z02QyKScnR9L1d27+8ccft+x3s+XLlys6Olrx8fEKCQlR0aJF9eKLL2rHjh0W/Tw8PG55/M1j31im9a9tNzLdScWKFS1mc97OjdmjixYtUuPGjS32OTpen7341+WHrXG767zh74x9s379+unll1/W2LFjlZiYqN69e5vv360UK1ZMFy5cyNN+/vx5FS9e3Pw5MTFRw4YNU3JyslasWKHx48dr8+bNeuCBB3Tx4kXFxsaaZ9jezM3N7ZbnHTdunKKioizaXF1d9cLq/F4pAAAAAAAAAAD3MBNz/5B/PC2FoFSpUnr00Ue1cOFCczHzhh9++EFvv/22unbtesfC2c3Kly8vf39/+fv7q3Llyrftl5qaqiZNmigyMlL169eXv7+/ecblvahs2bIqV66cvvnmG/P13diqVKki6frs1fT0dJ07d+6WY7i4uNzyHaD5UadOHW3dujXf/W93rqeeekqnTp3SvHnzdPDgQfOStrcTGBiovXv35mnfu3evAgICLNrq16+vcePG6fPPP9d9992nd955R5LUoEEDZWRk5Llv/v7+eZYuvsHV1VXFihWz2K4vnwsAAAAAAAAAAPDfQlG0kCxYsEBZWVkKDw/XJ598ojNnzig5OVmPPvqoypcvr2nTphX6OatXr67du3dr48aNOnLkiCZMmKBdu3YV+nnu5pdfftEPP/xgsf3555+37BsbG6u4uDjNmzdPR44c0YEDB5SYmKjZs2dLkrp37y4fHx+1b99eqamp+uabb7Rq1SqlpaVJkvz8/HTixAmlp6fr559/zvPOzDsZN26cdu3apcjISO3fv1+HDx9WQkKCfv7551v29/Pz0yeffKLvvvvOok+JEiXUoUMHjRo1So899pgqVKhwx/MOGjRIR44c0bBhw7R//35lZGRo9uzZWrZsmUaOHClJOnHihMaNG6e0tDSdOnVKmzZt0tGjR83vFZ04caLeeOMNxcbG6uuvv9ahQ4e0fPlyjR8/Pt/XDwAAAAAAAAAA8F9FUbSQ3ChQVq1aVV26dFG1atX0zDPPKCwsTGlpaQV6R+bdDBgwQB06dFDXrl3VuHFj/fLLL4qMjCz089xNixYt5Ovra7GtWbPmln379eun119/XYmJiQoKClLTpk2VlJRkninq4uKiTZs2ydvbW61bt1ZQUJBmzJhhXl63Y8eOatmypcLCwlSmTBktW7Ys3zkDAgK0adMm7du3T40aNVJISIjWrl0rJ6dbryI9efJknTx5UtWqVbNY+liS+vbtqytXrqhPnz53PW/VqlX1ySef6PDhw2rRooUaN26slStX6t1331XLli0lSUWKFNHhw4fVsWNHBQQE6JlnntHgwYM1YMAASVJ4eLjWr1+vTZs2qWHDhnrggQf00ksv3XEmMQAAAAAAAAAAAK7jnaKFqHLlykpKSrprv5MnT+ZpS09Pv+tx58+ft/js6uqqxMREJSYmWrTHxcWZv75VHj8/P+Xm5lq0NWvWLE9bRESEIiIibpvnVuP8VUxMjGJiYiza/ve//+l///vfbY+pXLmy3nvvvVvuc3V1veW+W+W41TU1bdpUqamptxw7JSXF4vMDDzygffv23bLvd999p1KlSqldu3a33P9XDRs21KZNm267v2zZsnr//ffvOEZ4eLjCw8PzdT4AAAAAAAAAAAD8fxRFAStcvnxZmZmZmjFjhgYMGCAXFxejIwEAAAAAAAAAAOAuWD4XsMILL7ygGjVqyMfHR+PGjTM6DgAAAAAAAAAA/1m5JhPbTRvujKIoYIWYmBhdvXpVW7dulaenp9FxAAAAAAAAAAAAkA8URQEAAAAAAAAAAADYNYqiAAAAAAAAAAAAAOwaRVEAAAAAAAAAAAAAds3J6AAAAAAAAAAAAACAtXJNzP1D/vG0AAAAAAAAAAAAALBrFEUBAAAAAAAAAAAA2DWKogAAAAAAAAAAAADsGkVRAAAAAAAAAAAAAHbNyegAAAAAAAAAAAAAgNVMJqMTwIYwUxQAAAAAAAAAAACAXaMoCgAAAAAAAAAAAMCuURQFAAAAAAAAAAAAYNcoigIAAAAAAAAAAACwa6bc3Nxco0MAAAAAAAAAAAAA1jh34DOjI9xTSgY9aHSEe5qT0QEA/Ltmrc4xOoLVojs46IVVtpd7dEcHxb511egYVpv0lLNmvmd793tMJwdNX5FtdAyrPdfVUaNf+cPoGFZ7YaC7PthzzegYVmt7v5PSDv1mdIwCCalZTANn/mp0DKu9MqaEBs86b3QMq70c7aVtB2zv72ZYkLs27LW9nz2tGzhr3W7b+x7+RLCjPnQONDqG1dpczbDZ3wm/OHzB6BhWe6BGcZv9Wb9oi9EprNe/hbT8c9v7t9/dmpg0PumK0TEKZGqEi978xOgU1uv5sJSQbHQK6w1qKUUnXDY6htVmDSqiVzYancJ6A8ONTlBwtvqcxK+xve/hI9ubNHut7eWOamey2d8J+X6Cm+WaWBAV+cfTAgAAAAAAAAAAAMCuURQFAAAAAAAAAAAAYNcoigIAAAAAAAAAAACwaxRFAQAAAAAAAAAAANg1J6MDAAAAAAAAAAAAANbKlcnoCLAhzBQFAAAAAAAAAAAAYNcoigIAAAAAAAAAAACwaxRFAQAAAAAAAAAAANg1iqIAAAAAAAAAAAAA7JqT0QEAAAAAAAAAAAAAa+WamPuH/ONpAQAAAAAAAAAAAGDXKIoCAAAAAAAAAAAAsGsURQEAAAAAAAAAAADYNYqiAAAAAAAAAAAAAO4ZzZs31/nz5/O0//bbb2revHmBxnT6m5kAAAAAAAAAAACAf5/JZHQC/ENSUlJ05cqVPO1//vmnPv300wKNSVEU95SUlBSFhYXp119/lZeXlyEZTCaT3n//fbVv3/4fO0dERITOnz+vNWvW/GPnAAAAAAAAAAAAsCX79+83f33w4EH98MMP5s/Z2dlKTk5W+fLlCzQ2RVHcVkREhJYuXZqn/ejRo/L39zcg0XV+fn46deqUJKlIkSIKDAzUuHHj1LlzZ8MyWWvu3LnKzc01OgYAAAAAAAAAAMA9o169ejKZTDKZTLdcJtfd3V3z588v0NgURXFHLVu2VGJiokVbmTJlDErz/02ePFn9+/fXb7/9pvj4eHXt2lXly5dXkyZNjI6WL8WLFzc6AgAAAAAAAAAAwD3lxIkTys3NVdWqVbVz506LmpSLi4u8vb3l6OhYoLEdCisk7JOrq6t8fHwsthsP2/bt29WoUSO5urrK19dXY8eO1bVr18zHZmVladiwYfL29pabm5sefPBB7dq1y2L8DRs2KCAgQO7u7goLC9PJkyfzlato0aLy8fFRQECAXn75Zbm7u+uDDz5Qdna2+vbtqypVqsjd3V2BgYGaO3dunuOXLFmi2rVrm7MPGTLktueaNGmSfH19zVO2x4wZo4CAABUpUkRVq1bVhAkTdPXqVYtjpk6dKm9vbxUtWlT9+vXT2LFjVa9ePfP+iIgIi+V5mzVrpmHDhmn06NEqWbKkfHx8FBMTYzHm4cOH9eCDD8rNzU21atXSli1bZDKZWIIXAAAAAAAAAADYhcqVK8vPz085OTkKDg5W5cqVzZuvr2+BC6ISM0VRQN99951at26tiIgIvfHGGzp8+LD69+8vNzc3czFv9OjRWrVqlZYuXarKlSvrhRdeUHh4uI4dO6aSJUvqzJkz6tChgwYPHqxnnnlGu3fv1siRI63O4uTkJGdnZ125ckU5OTmqUKGC3n33XZUqVUqff/65nnnmGfn6+qpLly6SpISEBEVFRWnGjBlq1aqVLly4oNTU1Dzj5ubmatiwYVq/fr0+/fRT85LBRYsWVVJSksqVK6cDBw6of//+Klq0qEaPHi1JevvttzVt2jQtXLhQoaGhWr58ueLj41WlSpU7XsfSpUsVFRWlHTt2KC0tTREREQoNDdWjjz6q7OxstW/fXpUqVdKOHTv0+++/F+heAQAAAAAAAAAA2IKjR49q27ZtOnv2rHJyciz2TZw40erxKIrijtavXy9PT0/z51atWundd9/VwoULVbFiRS1YsEAmk0k1atTQ999/rzFjxmjixIn6448/lJCQoKSkJLVq1UqStGjRIm3evFmLFy/WqFGjlJCQoGrVqik+Pl6SFBgYqAMHDmjmzJn5znflyhXFx8frwoULat68uZydnRUbG2veX6VKFaWlpWnlypXmoujUqVM1cuRIDR8+3NyvYcOGFuNeu3ZNTz31lL788kt99tlnFi/tHT9+vPlrPz8/RUdHa/ny5eai6Pz589W3b1/17t1b0vW/mJs2bdLFixfveC116tTRpEmTJEnVq1fXggULtHXrVj366KPavHmzjh8/rpSUFPn4+EiSpk2bpkcfffS242VlZSkrK8uizdXVVZLzHXMAAAAAAAAAAGALclkQ1W4tWrRIgwYNUunSpeXj4yOTyWTeZzKZKIqi8IWFhSkhIcH82cPDQ5J06NAhhYSEWDyEoaGhunjxor799ludP39eV69eVWhoqHm/s7OzGjVqpEOHDpnHaNy4scX5QkJC8pVrzJgxGj9+vP788095enpqxowZatOmjSTp5Zdf1pIlS3T69Gn98ccfunLlinnp2rNnz+r777/XI488csfxn332Wbm6uuqLL75Q6dKlLfatWLFC8+bN0/Hjx3Xx4kVdu3ZNxYoVM+/PyMhQZGSkxTGNGjXSxx9/fMdz1qlTx+Kzr6+vzp49ax6zYsWK5oLojTHvJC4uzqJALF1fCtizjvXfKAAAAAAAAAAAAP4tU6dO1bRp0zRmzJhCG5MSOu7Iw8ND/v7+5s3X19foSJKkUaNGKT09Xd9++61+/fVX81+K5cuXKzo6Wn379tWmTZuUnp6u3r1768qVK5Ikd3f3fI3/6KOP6rvvvtPGjRst2tPS0tSjRw+1bt1a69ev15dffqnnn3/ePP7f4exsOYPTZDLlmQ5ujXHjxunChQsW27hx4/5uTAAAAAAAAAAAgH/Ur7/+qs6dOxfqmBRFUSA1a9ZUWlqacnNzzW2pqakqWrSoKlSooGrVqsnFxcXiXZ1Xr17Vrl27VKtWLfMYO3futBj3iy++yNf5S5cuLX9//zxTplNTU9WkSRNFRkaqfv368vf31/Hjx837ixYtKj8/P23duvWO4z/xxBN655131K9fPy1fvtzc/vnnn6ty5cp6/vnnFRwcrOrVq+vUqVMWxwYGBmrXrl0WbX/9bK3AwECdOXNGP/74Y77HdHV1VbFixSy268vnAgAAAAAAAAAA3Ls6d+6sTZs2FeqYLJ+LAomMjNScOXM0dOhQDRkyRBkZGZo0aZKioqLk4OAgDw8PDRo0SKNGjVLJkiVVqVIlvfDCC7p8+bL69u0rSRo4cKDi4+M1atQo9evXT3v27FFSUtLfylW9enW98cYb2rhxo6pUqaI333xTu3btUpUqVcx9YmJiNHDgQHl7e6tVq1b6/ffflZqaqqFDh1qM9eSTT+rNN99Uz5495eTkpE6dOql69eo6ffq0li9froYNG+rDDz/U+++/b3Hc0KFD1b9/fwUHB6tJkyZasWKF9u/fr6pVqxb4uh599FFVq1ZNTz/9tF544QX9/vvv5neb3lwUBgAAAAAAAAAAsHX+/v6aMGGCvvjiCwUFBeVZbXPYsGFWj0lRFAVSvnx5bdiwQaNGjVLdunVVsmRJ9e3b11yok6QZM2YoJydHPXv21O+//67g4GBt3LhRJUqUkCRVqlRJq1at0rPPPqv58+erUaNGmj59uvr06VPgXAMGDNCXX36prl27ymQyqXv37oqMjNRHH31k7vP000/rzz//1EsvvaTo6GiVLl1anTp1uuV4nTp1Ml+Dg4ODOnTooGeffVZDhgxRVlaW2rRpowkTJigmJsZ8TI8ePfTNN98oOjpaf/75p7p06aKIiIg8s2Kt4ejoqDVr1qhfv35q2LChqlatqhdffFFt27aVm5tbgccFAAAAAAAAAMBW5TJpyG699tpr8vT01Pbt27V9+3aLfSaTiaIoCtfdZm02bdr0joU+Nzc3zZs3T/Pmzbttn8cff1yPP/64RVvv3r3veN6TJ0/edp+rq6sSExOVmJho0R4XF2fxecCAARowYMAtx7h5SWBJ6tKli7p06WL+/MILL+iFF16w6DNixAiLzxMmTNCECRPMnx999FH5+/ubP//13qakpOTJsWbNGovPNWrU0GeffWb+fGNp4pvHBQAAAAAAAAAAsHUnTpwo9DEpigKF7PLly3rllVcUHh4uR0dHLVu2TFu2bNHmzZv/1rjvv/++PD09Vb16dR07dkzDhw9XaGioqlWrVkjJAQAAAAAAAAAA7h1XrlzRiRMnVK1aNTk5/b2ypkMhZQLwf0wmkzZs2KCHH35Y999/vz744AOtWrVKLVq0+Fvj/v777xo8eLBq1KihiIgINWzYUGvXri2k1AAAAAAAAAAAAPeGy5cvq2/fvipSpIhq166t06dPS5KGDh2qGTNmFGhMZooChczd3V1btmwp9HF79eqlXr16Ffq4AAAAAAAAAAAA95Jx48Zp3759SklJUcuWLc3tLVq0UExMjMaOHWv1mBRFAQAAAAAAAAAAYHNyTSyIaq/WrFmjFStW6IEHHpDJZDK3165dW8ePHy/QmDwtAAAAAAAAAAAAAO4ZP/30k7y9vfO0X7p0yaJIag2KogAAAAAAAAAAAADuGcHBwfrwww/Nn28UQl9//XWFhIQUaEyWzwUAAAAAAAAAAABwz5g+fbpatWqlgwcP6tq1a5o7d64OHjyozz//XNu3by/QmMwUBQAAAAAAAAAAAHDPePDBB5Wenq5r164pKChImzZtkre3t9LS0nT//fcXaExmigIAAAAAAAAAAAC4p1SrVk2LFi0qtPEoigIAAAAAAAAAAMDm5MpkdAQUot9++03FihUzf30nN/pZg6IoAAAAAAAAAAAAAEOVKFFCmZmZ8vb2lpeXl0ymvEXv3NxcmUwmZWdnWz0+RVEAAAAAAAAAAADgP+bll1/Wiy++qB9++EF169bV/Pnz1ahRo7set3z5cnXv3l3t2rXTmjVrCi3Pxx9/rJIlS0qStm3bVmjj3kBRFAAAAAAAAAAAAPgPWbFihaKiovTKK6+ocePGmjNnjsLDw5WRkSFvb+/bHnfy5ElFR0froYceKvRMTZs2veXXhcWh0EcEAAAAAAAAAAAA8K/KysrSb7/9ZrFlZWXdsu/s2bPVv39/9e7dW7Vq1dIrr7yiIkWKaMmSJbcdPzs7Wz169FBsbKyqVq36T12GJCkxMVHvvvtunvZ3331XS5cuLdCYFEUBAAAAAAAAAABgc3JNDmw3bXFxcSpevLjFFhcXl+e+XblyRXv27FGLFi3MbQ4ODmrRooXS0tJue78nT54sb29v9e3b9x/587xZXFycSpcunafd29tb06dPL9CYLJ8LAAAAAAAAAAAA2Lhx48YpKirKos3V1TVPv59//lnZ2dkqW7asRXvZsmV1+PDhW4792WefafHixUpPTy+0vHdy+vRpValSJU975cqVdfr06QKNacrNzc39u8EAAAAAAAAAAACAf9P3GfuNjnBPKRdYJ1/9vv/+e5UvX16ff/65QkJCzO2jR4/W9u3btWPHDov+v//+u+rUqaOFCxeqVatWkqSIiAidP39ea9asKbT8N6tUqZIWLFigJ554wqJ97dq1Gjx4sL799lurx2SmKPAfM/O9HKMjWG1MJwdNXHrF6BhWm/y0ixZtMTqF9fq3kN7bYXvPSafGDpr7ge39O5/hbU3qP/0Xo2NYbdFzpfTZwUtGx7Dag7U8tPeI7d1vSWoQUEpvfmJ0Cuv1fFh6fsmt311xL5vWx1Uvf2R0CusNbiXtPHzB6BhWa1SjuM3+zJy12vZ+ZkZ3cNCHzoFGx7Bam6sZWvKx0Sms16e59GDb7UbHsNpnHzTVtOXZRsew2vPdHJW4zegU1usdJm3eZ3s/LyXp0bqumrPO9n4PH/GEScnptvffmS3rudjk77MNAkrp8tLJRsewWpGnJxodocBs9XeUP9cuMDqG1dzaDdGf78YbHcNqbp1Hav/Rs0bHsFqd6t42+3MHuJeULl1ajo6O+vHHHy3af/zxR/n4+OTpf/z4cZ08eVJt27Y1t+XkXP9Z4+TkpIyMDFWrVq1QM3bv3l3Dhg1T0aJF9fDDD0uStm/fruHDh6tbt24FGpOiKAAAAAAAAAAAAPAf4eLiovvvv19bt25V+/btJV0vcm7dulVDhgzJ079GjRo6cOCARdv48eP1+++/a+7cuapYsWKhZ5wyZYpOnjypRx55RE5OTuaMvXr14p2iAAAAAAAAAAAA+O/INTELt6CioqL09NNPKzg4WI0aNdKcOXN06dIl9e7dW5LUq1cvlS9fXnFxcXJzc9N9991ncbyXl5ck5WkvLC4uLlqxYoWmTJmiffv2yd3dXUFBQapcuXKBx6QoCgAAAAAAAAAAAPyHdO3aVT/99JMmTpyoH374QfXq1VNycrLKli0rSTp9+rQcHBwMTikFBAQoICCgUMaiKAoAAAAAAAAAAAD8xwwZMuSWy+VKUkpKyh2PTUpKKvQ8UVFRmjJlijw8PBQVFXXHvrNnz7Z6fIqiAAAAAAAAAAAAAAz15Zdf6urVq5KkvXv3ynSb5ZFv1343FEUBAAAAAAAAAAAAGGru3LkqVqyYpLvPVC0I4xcDBgAAAAAAAAAAAPCfVr9+ff3888+SpKpVq+qXX34p1PGZKQoAAAAAAAAAAACbk6uCLaOKe5OXl5dOnDghb29vnTx5Ujk5OYU6PkVRAAAAAAAAAAAAAIbq2LGjmjZtKl9fX5lMJgUHB8vR0fGWfb/55hurx6coCgAAAAAAAAAAAMBQr732mjp06KBjx45p2LBh6t+/v4oWLVpo41MUBQAAAAAAAAAAAGCo/fv367HHHlPLli21Z88eDR8+vFCLog6FNhIAAAAAAAAAAAAAFED9+vX1888/S5K2b9+uK1euFOr4zBQFAAAAAAAAAACAzck1MffPnnh5eenEiRPy9vbWyZMnlZOTU6jjUxQFAAAAAAAAAAAAYKiOHTuqadOm8vX1lclkUnBwsBwdHW/Z95tvvrF6fIqiAAAAAAAAAAAAAAz12muvqUOHDjp27JiGDRum/v37F+o7Re+pomhERITOnz+vNWvWSJJyc3M1YMAAvffee/r111/15Zdfql69ev/IuZs1a6Z69eppzpw5/8j4uPf99fm718XExGjNmjVKT083OgoAAAAAAAAAAMDf1rJlS0nSnj17NHz48EItihZoseW0tDQ5OjqqTZs2hRZEkubOnaukpCTz5+TkZCUlJWn9+vXKzMzUfffdV6jns0Z2drZmzJihGjVqyN3dXSVLllTjxo31+uuvF8r4SUlJ8vLyKpSxCtPFixfl7Oys5cuXW7R369ZNJpNJJ0+etGj38/PThAkT/vZ5mzVrphEjRvztcVJSUmQymWQymeTg4KDixYurfv36Gj16tDIzMy36/vX5AwAAAAAAAAAAwL8vMTFRRYsW1bFjx7Rx40b98ccfkq5PqCyoAhVFFy9erKFDh+qTTz7R999/X+CT35Cdna2cnBwVL17cojB4/Phx+fr6qkmTJvLx8ZGTk3ETW2NjY/XSSy9pypQpOnjwoLZt26ZnnnlG58+fNyzTv8HT01PBwcFKSUmxaE9JSVHFihUt2k+cOKFTp06pefPm/27IfMjIyND333+vXbt2acyYMdqyZYvuu+8+HThwwNznr88fAAAAAAAAAAC4d+XKxHbTZk/OnTunRx55RAEBAWrdurV5olvfvn01cuTIAo1pdVH04sWLWrFihQYNGqQ2bdrccmbdunXrVL16dbm5uSksLExLly6VyWQyFxBvzIpct26datWqJVdXV50+fVoRERFq3769pOtLmQ4dOlSnT5+WyWSSn5+fJCkrK0vDhg2Tt7e33Nzc9OCDD2rXrl0W59++fbsaNWokV1dX+fr6auzYsbp27Zp5/6VLl9SrVy95enrK19dX8fHxd73udevWKTIyUp07d1aVKlVUt25d9e3bV9HR0ZKkN954Q6VKlVJWVpbFce3bt1fPnj0lSfv27VNYWJiKFi2qYsWK6f7779fu3buVkpKi3r1768KFC+ZZjTExMebrjY6OVvny5eXh4aHGjRtbFCJv3Mv169crMDBQRYoUUadOnXT58mUtXbpUfn5+KlGihIYNG6bs7GzzcQsXLjT/GZUtW1adOnW67bWHhYVZnPPQoUP6888/NWjQIIv2lJQUubq6KiQkRMePH1e7du1UtmxZeXp6qmHDhtqyZYvFuLfLEBERoe3bt2vu3Lnm+3FjRupXX32lVq1aydPTU2XLllXPnj31888/3/XPz9vbWz4+PgoICFC3bt2UmpqqMmXKaNCgQeY+Nz9/kvTee+8pKChI7u7uKlWqlFq0aKFLly5Z9I2NjVWZMmVUrFgxDRw4UFeuXDEff7dn9ddff1WPHj1UpkwZubu7q3r16kpMTDTvHzNmjAICAlSkSBFVrVpVEyZM0NWrV+96rQAAAAAAAAAAALZsxIgRcnZ21unTp1WkSBFze9euXZWcnFygMa0uiq5cuVI1atRQYGCgnnrqKS1ZssRiquqJEyfUqVMntW/fXvv27dOAAQP0/PPP5xnn8uXLmjlzpl5//XV9/fXX8vb2ttg/d+5cTZ48WRUqVFBmZqa5mDR69GitWrVKS5cu1d69e+Xv76/w8HCdO3dOkvTdd9+pdevWatiwofbt26eEhAQtXrxYU6dONY89atQobd++XWvXrtWmTZuUkpKivXv33vG6fXx89PHHH+unn3665f7OnTsrOztb69atM7edPXtWH374ofr06SNJ6tGjhypUqKBdu3Zpz549Gjt2rJydndWkSRPNmTNHxYoVU2ZmpjIzM83F1iFDhigtLU3Lly/X/v371blzZ7Vs2VJHjx61uJfz5s3T8uXLlZycrJSUFD355JPasGGDNmzYoDfffFOvvvqq3nvvPUnS7t27NWzYME2ePFkZGRlKTk7Www8/fNtrDwsLU0ZGhrkKv23bNj344INq3ry5RVF027ZtCgkJkZubmy5evKjWrVtr69at+vLLL9WyZUu1bdtWp0+fvmuGuXPnKiQkRP379zffj4oVK+r8+fNq3ry56tevr927dys5OVk//vijunTpcsc/u1txd3fXwIEDlZqaqrNnz+bZn5mZqe7du6tPnz46dOiQUlJS1KFDB4tnfevWreZ9y5Yt0+rVqxUbG2vef7dndcKECTp48KA++ugjHTp0SAkJCSpdurT5+P/H3p3HRVX9fxx/D6tsrqGIgrgA4r6XWu5Gai5p6RctJZcyNU0lzdwwc8nccyk30MrIiszMncQFza2k3FBIw/pimlvhijC/P/w5X0cWGdKGodfz8biPB3Puuee+72UQ8MM518PDQ5GRkTpy5IjmzJmjxYsXa9asWRZfKwAAAAAAAAAAgC3ZtGmT3nnnHZUtW9as3d/fX7/88kuexrR4PdqlS5fq+eefl3T7YaeXL1/Wtm3b1KxZM0nSBx98oMDAQL377ruSpMDAQB06dEiTJk0yGyctLU0LFixQzZo1szxPkSJF5OHhIXt7e3l5eUm6PcNz4cKFioyMVJs2bSRJixcv1ubNm7V06VK9/vrrWrBggXx8fDRv3jwZDAZVrlxZ//3vfzVy5EiNGzdOV69e1dKlS/XRRx+pZcuWkqTly5dnuqn3mjlzpp599ll5eXmpatWqatSokTp27GjK4eLiou7duysiIkLPPfecJOmjjz6Sr6+v6d4kJyfr9ddfV+XKlSXd/sTdfb0Gg8F0rXf6R0REKDk5Wd7e3pKksLAwbdiwQREREZo8ebLpXi5cuFAVK1aUJD377LP68MMP9fvvv8vd3V1VqlRR8+bNtXXrVnXr1k3Jyclyc3PT008/LQ8PD5UrV061a9fO9tobN24sJycnxcbGKiQkRLGxsWratKnq1q2rP/74QydPnlT58uW1bds29enTR5JUs2ZNs8/txIkT9eWXX2rNmjUaNGhQjhmKFCkiJycnubq6mt2PefPmqXbt2qbrlqRly5bJx8dHx48fV0BAQI6fw3vd+TycOnUqU1E+JSVFt27dUufOnVWuXDlJUvXq1c36ODk5admyZXJ1dVXVqlX11ltv6fXXX9fEiRN17dq1+75Xk5OTVbt2bdWrV0+STLOh7xgzZozpYz8/P4WFhSkqKkojRozI1fXduHEj08xlZ2dnSY65Oh4AAAAAAAAAAMAarly5YjZD9I4LFy78f63DchbNFE1ISNDevXsVEhIiSXJwcFC3bt20dOlSsz7169c3O65BgwaZxnJyclKNGjUsCpuUlKS0tDQ1btzY1Obo6KgGDRro6NGjkm4v7dqwYUMZDP9bO7lx48ZKTU3Vr7/+qqSkJN28eVOPPvqoaX/x4sUVGBiY47mrVKmiQ4cO6bvvvlPv3r119uxZtW/fXn379jX16devnzZt2qTffvtN0u2lbUNDQ01Zhg0bpr59+6pVq1aaOnWqkpKScjznTz/9pPT0dAUEBMjd3d20bdu2zexYV1dXU0FUkkqVKiU/Pz+5u7ubtd2ZEdm6dWuVK1dOFSpU0AsvvKCPP/5YV69ezTaHq6ur6tevb5oVeqcI7uDgoEaNGik2NlY///yzkpOT1bx5c0m3l1kOCwtTUFCQihYtKnd3dx09etQ0U9TSDNLt5Ye3bt1qdi/uFDbvdy+zcmfW593vlTtq1qypli1bqnr16nruuee0ePFiXbx4MVOfu78gGzZsqNTUVJ0+fTpX79VXXnlFUVFRqlWrlkaMGKFdu3aZjf/pp5+qcePG8vLykru7u8aMGWO6f7kxZcoUFSlSxGybMmVKro8HAAAAAAAAAACwhieeeEIrVqwwvTYYDMrIyNC0adNMtShLWVQUXbp0qW7duiVvb285ODjIwcFBCxcu1BdffKHLly9bdGIXF5csi1H5mZ2dnerXr6/XXntN0dHRioyM1NKlS3Xy5ElJUu3atVWzZk2tWLFCBw4c0OHDhxUaGmo6Pjw8XIcPH1a7du307bffqkqVKvryyy+zPV9qaqrs7e114MABHTx40LQdPXpUc+bMMfVzdDSf+WcwGLJsy8jIkHR7Wdbvv/9en3zyiUqXLq1x48apZs2apme+ZuXOTNPDhw/r2rVrqlOnjiSpadOm2rp1q7Zu3SpXV1dTsTksLExffvmlJk+erB07dujgwYOqXr266ZmbecmQmpqq9u3bm92LgwcP6sSJEzku/5udO8XJe2doSpK9vb02b96s9evXq0qVKnrvvfcUGBho+lw/CG3atNEvv/yioUOH6r///a9atmxpWjZ59+7d6tGjh9q2bau1a9fqhx9+0OjRo82eWXo/o0aN0uXLl822UaNGPbD8AAAAAAAAAAAAD8O0adO0aNEitWnTRjdv3tSIESNUrVo1bd++Xe+8806exsx1UfTWrVtasWKFZsyYYVaQio+Pl7e3tz755BNJt5fL3b9/v9mxd54H+ndVrFhRTk5OiouLM7WlpaVp3759qlKliiQpKChIu3fvNnv2Y1xcnDw8PFS2bFlVrFhRjo6O2rNnj2n/xYsXdfz4cYvz3DnnlStXTG19+/ZVZGSkIiIi1KpVK/n4+JgdExAQoKFDh2rTpk3q3LmzIiIiJN2eOZuenm7Wt3bt2kpPT9fZs2dVqVIls+3uZWXzwsHBQa1atdK0adP0448/6tSpU/r222+z7d+8eXOdOHFCK1eu1OOPPy57e3tJUpMmTbRt2zbFxsaaltmVbt/z0NBQPfPMM6pevbq8vLx06tSpXGfI6n7UqVNHhw8flp+fX6b74ebmZtH1X7t2TYsWLVKTJk3k6emZZR+DwaDGjRtrwoQJ+uGHH+Tk5GRWxI6Pj9e1a9dMr7/77ju5u7vLx8cnV+9VSfL09FSvXr300Ucfafbs2Vq0aJEkadeuXSpXrpxGjx6tevXq5WmNbGdnZxUuXNhsy+uUcgAAAAAAAAAA8hujwY7trq0gqVatmo4fP67HH39cHTt21JUrV9S5c2f98MMPZqunWiLXzxRdu3atLl68qD59+qhIkSJm+7p06aKlS5eqf//+evnllzVz5kyNHDlSffr00cGDBxUZGSkp62VKLeHm5qZXXnlFr7/+uooXLy5fX19NmzZNV69eNT3LcsCAAZo9e7ZeffVVDRo0SAkJCRo/fryGDRsmOzs7ubu7q0+fPnr99ddVokQJlSxZUqNHj5adXc5vlmeffVaNGzdWo0aN5OXlpZMnT2rUqFEKCAgwLeEqSd27d1dYWJgWL15sNq332rVrev311/Xss8+qfPny+vXXX7Vv3z516dJF0u3ZiqmpqYqJiTEtyxoQEKAePXqoZ8+emjFjhmrXrq1z584pJiZGNWrUULt27fJ0H9euXauff/5ZTZo0UbFixbRu3TplZGTkuIRwo0aN5OzsrPfee0+jR482tTdo0EBnz57VV199ZTYL0d/fX9HR0Wrfvr0MBoPGjh1rmqmamwx+fn7as2ePTp06JXd3dxUvXlwDBw7U4sWLFRISohEjRqh48eJKTExUVFSUlixZYirUZuXs2bO6fv26/vrrLx04cEDTpk3TH3/8oejo6Cz779mzRzExMXryySdVsmRJ7dmzR+fOnVNQUJCpz82bN9WnTx+NGTNGp06d0vjx4zVo0CDZ2dnl6r06btw41a1bV1WrVtWNGze0du1a0/j+/v5KTk5WVFSU6tevr2+++SbHWcUAAAAAAAAAAAAFSZEiRcxqUn9XrsvGS5cuVatWrTIVRKXbRdH9+/frxx9/VPny5fX5558rOjpaNWrU0MKFC02BH8QstalTp6pLly564YUXVKdOHSUmJmrjxo0qVqyYJKlMmTJat26d9u7dq5o1a6p///6mwtUd7777rp544gm1b99erVq10uOPP666devmeN7g4GB9/fXXat++vQICAtSrVy9VrlxZmzZtkoPD/2rLRYoUUZcuXeTu7q5OnTqZ2u3t7XX+/Hn17NlTAQEB6tq1q9q0aaMJEyZIul107N+/v7p16yZPT09NmzZNkhQREaGePXtq+PDhCgwMVKdOnbRv3z75+vrm+R4WLVpU0dHRatGihYKCgvT+++/rk08+UdWqVbM9plChQnrsscf0119/qVmzZqZ2Z2dnU/vdazjPnDlTxYoVU6NGjdS+fXsFBwebltzNTYawsDDZ29urSpUq8vT0VHJysry9vRUXF6f09HQ9+eSTql69ul577TUVLVr0vkXtwMBAeXt7q27dupo6dapatWqlQ4cOmc3avFvhwoW1fft2tW3bVgEBARozZoxmzJihNm3amPq0bNlS/v7+atKkibp166YOHTooPDzctP9+71UnJyeNGjVKNWrUUJMmTWRvb6+oqChJUocOHTR06FANGjRItWrV0q5duzR27NgcrxEAAAAAAAAAAKCguHTpkmbMmKG+ffuqb9++mjVrlsWP87ybwXj3OrMPyaRJk/T+++/r9OnTD/tU+ULLli1VtWpVzZ0719pR8JCEhobq0qVLWr16tbWjWOydzzPu3ymfGfmsncYtz/3zVPOLt3o5afEWa6ewXL9W0ud7bO998uyjdprz9UP/lvbADWlvUL/J560dw2KL3yyhnUeu3L9jPvN4FTd9f9z27rck1QkooQ+3WzuF5V5oIo1edsPaMSw2qbez5q+3dgrLDWwj7T2W918OrKVB5SI2+z1zerTtfc8M62ynbxyzXyUmv2qXlqBl2T/xI9/q3UJ6vP02a8ew2M6vm2pSVPr9O+Yzo/9jr4it1k5huRebS5vjbe/7pSS1rums2Wts7+fw1zoYtOGg7f2e+VQtJ5v8ebZOQAldXf6WtWNYzLXXOGtHyDNb/Rnl+lfzrB3DYoU6DtL1z2ZYO4bFCj03XD+eOGvtGBar4V/SZr/v4OH4JTHB2hHylXKVbO93vezs379fwcHBcnFxUYMGDSTdflzntWvXtGnTJrOJeLmV6+VzLbFgwQLVr19fJUqUUFxcnN59910NGjToYZwqX7l48aJiY2MVGxurBQsWWDsOAAAAAAAAAAAAYHOGDh2qDh06aPHixaYVW2/duqW+ffvqtdde0/btls8eeChF0RMnTujtt9/WhQsX5Ovrq+HDh5s9b7Kgql27ti5evKh33nknx+dzAgAAAAAAAAAA4O8xilm4BdX+/fvNCqKS5ODgoBEjRqhevXp5GvOhFEVnzZqlWbNmPYyh87VTp05ZOwL+IZGRkdaOAAAAAAAAAAAAUCAVLlxYycnJqly5sln76dOn5eHhkacx7R5EMAAAAAAAAAAAAAB4ELp166Y+ffro008/1enTp3X69GlFRUWpb9++CgkJydOYD2WmKAAAAAAAAAAAAADkxfTp02UwGNSzZ0/dunVLkuTo6KhXXnlFU6dOzdOYFEUBAAAAAAAAAAAA5BtOTk6aM2eOpkyZoqSkJElSxYoV5erqmucxKYoCAAAAAAAAAADA5hgNPCWyoElPT9fhw4fl7+8vFxcXubq6qnr16pKka9eu6ccff1S1atVkZ2f55553CwAAAAAAAAAAAACr+/DDD9W7d285OTll2ufo6KjevXtr5cqVeRqboigAAAAAAAAAAAAAq1u6dKnCwsJkb2+faZ+Dg4NGjBihRYsW5WlsiqIAAAAAAAAAAAAArC4hIUGPPfZYtvvr16+vo0eP5mlsiqIAAAAAAAAAAAAArO7KlSv6888/s93/119/6erVq3kam6IoAAAAAAAAAAAAbI5RBra7toLA399fu3btynb/zp075e/vn6exKYoCAAAAAAAAAAAAsLru3btrzJgx+vHHHzPti4+P17hx49S9e/c8je3wd8MBAAAAAAAAAAAAwN81dOhQrV+/XnXr1lWrVq1UuXJlSdKxY8e0ZcsWNW7cWEOHDs3T2BRFAQAAAAAAAAAAAFido6OjNm3apFmzZmnlypXavn27jEajAgICNGnSJL322mtydHTM09gURQEAAAAAAAAAAADkC46OjhoxYoRGjBjxQMflmaIAAAAAAAAAAAAACjSD0Wg0WjsEAAAAAAAAAAAAYImkn3+2doR8pWKFCtaOkK+xfC7wLzPtiwxrR7DYiC52Wvd9mrVjWKxtHUeNXnbD2jEsNqm3s2astr2/lxneyaANB29aO4bFnqrlpImf3LJ2DIuNDXHQ6RNHrB3DYj7+VXTuyF5rx8gTzyoNbPa9MmjmZWvHsNi8YUX0x6Hd1o5hsUeqNdTJpERrx7BY+YqVbPbflO+O2d77+7HKRbTsW2unsFzvFtI3joHWjmGxdmkJmr3G9n62eq2DQT+c+MPaMSxW2/8Rm/xe71mlgTbH297vDpLUuqazzh7Zb+0YFitZpZ6+PmB7P1u1r+ugN5fa3ntlch9nRe+1vf+P6NzAdhfZe+29VGtHsNjsV921arftvU+6NrTT53tsL/ezj9rps+9sL/dzj9lp/nprp7DcwDbWTgBAYvlcAAAAAAAAAAAAAAUcRVEAAAAAAAAAAAAABRrL5wIAAAAAAAAAAADIN9LT0xUZGamYmBidPXtWGRnmS35/+63lz4WhKAoAAAAAAAAAAACbYzQarB0BD8mQIUMUGRmpdu3aqVq1ajIY/v7nmqIoAAAAAAAAAAAAgHwjKipKq1atUtu2bR/YmDxTFAAAAAAAAAAAAEC+4eTkpEqVKj3QMSmKAgAAAAAAAAAAAMg3hg8frjlz5shoND6wMVk+FwAAAAAAAAAAAEC+sXPnTm3dulXr169X1apV5ejoaLY/Ojra4jEpigIAAAAAAAAAAMDmGFkQtcAqWrSonnnmmQc6JkVRAAAAAAAAAAAAAPlGRETEAx+ToigAAAAAAAAAAACAfOfcuXNKSEiQJAUGBsrT0zPPYzGvGAAAAAAAAAAAAEC+ceXKFfXu3VulS5dWkyZN1KRJE3l7e6tPnz66evVqnsakKAoAAAAAAAAAAAAg3xg2bJi2bdumr7/+WpcuXdKlS5f01Vdfadu2bRo+fHiexmT5XAAAAAAAAAAAAAD5xhdffKHPP/9czZo1M7W1bdtWLi4u6tq1qxYuXGjxmMwUhVXFxsbKYDDo0qVL1o7yjwkPD1etWrWsHQMAAAAAAAAAAJtmlIHtrq0guXr1qkqVKpWpvWTJkiyfi78vNDRUBoMh05aYmGjVXH5+fqYsbm5uqlOnjj777DOrZvo7wsLCFBMTY+0YAAAAAAAAAAAA+VLDhg01fvx4Xb9+3dR27do1TZgwQQ0bNszTmCyfCzNPPfWUIiIizNo8PT2tlOZ/3nrrLfXr109//vmnZsyYoW7dugahGxcAAQAASURBVKlMmTJq1KhRpr43b96Uk5OTFVLmjru7u9zd3a0dAwAAAAAAAAAAIF+aM2eOgoODVbZsWdWsWVOSFB8fr0KFCmnjxo15GpOZojDj7OwsLy8vs83e3l6StG3bNjVo0EDOzs4qXbq03njjDd26dct07I0bNzR48GCVLFlShQoV0uOPP659+/aZjb9u3ToFBATIxcVFzZs316lTp3KVy8PDQ15eXgoICND8+fPl4uKir7/+WtLtmaQTJ05Uz549VbhwYb300kuSbq83XbVqVTk7O8vPz08zZswwG/PGjRsaOXKkfHx85OzsrEqVKmnp0qWm/YcOHVKbNm3k7u6uUqVK6YUXXtAff/xh2v/555+revXqcnFxUYkSJdSqVStduXJF0u1lgRs0aCA3NzcVLVpUjRs31i+//CIp8/K5oaGh6tSpk6ZPn67SpUurRIkSGjhwoNLS0kx9UlJS1K5dO7m4uKh8+fJauXKl/Pz8NHv27FzdPwAAAAAAAAAAAFtRrVo1nThxQlOmTFGtWrVUq1YtTZ06VSdOnFDVqlXzNCYzRZErv/32m9q2bavQ0FCtWLFCx44dU79+/VSoUCGFh4dLkkaMGKEvvvhCy5cvV7ly5TRt2jQFBwcrMTFRxYsX1+nTp9W5c2cNHDhQL730kvbv36/hw4dbnMXBwUGOjo66efOmqW369OkaN26cxo8fL0k6cOCAunbtqvDwcHXr1k27du3SgAEDVKJECYWGhkqSevbsqd27d2vu3LmqWbOmTp48aSp6Xrp0SS1atFDfvn01a9YsXbt2TSNHjlTXrl317bffKiUlRSEhIZo2bZqeeeYZ/fXXX9qxY4eMRqNu3bqlTp06qV+/fvrkk0908+ZN7d27VwZD9ut5b926VaVLl9bWrVuVmJiobt26qVatWurXr58p6x9//KHY2Fg5Ojpq2LBhOnv2rMX3DgAAAAAAAAAAwBa4urqa6iQPAkVRmFm7dq3Z0q5t2rTRZ599pgULFsjHx0fz5s2TwWBQ5cqV9d///lcjR47UuHHjdO3aNS1cuFCRkZFq06aNJGnx4sXavHmzli5dqtdff10LFy5UxYoVTTM2AwMD9dNPP+mdd97Jdb6bN29qxowZunz5slq0aGFqb9GihVmBtUePHmrZsqXGjh0rSQoICNCRI0f07rvvKjQ0VMePH9eqVau0efNmtWrVSpJUoUIF0/Hz5s1T7dq1NXnyZFPbsmXL5OPjo+PHjys1NVW3bt1S586dVa5cOUlS9erVJUkXLlzQ5cuX9fTTT6tixYqSpKCgoByvq1ixYpo3b57s7e1VuXJltWvXTjExMerXr5+OHTumLVu2aN++fapXr54kacmSJfL3989xzBs3bujGjRtmbc7OzpIcczwOAAAAAAAAAABbYFT2k5Fge9asWaM2bdrI0dFRa9asybFvhw4dLB6foijMNG/eXAsXLjS9dnNzkyQdPXpUDRs2NJvt2LhxY6WmpurXX3/VpUuXlJaWpsaNG5v2Ozo6qkGDBjp69KhpjEcffdTsfLl9GO7IkSM1ZswYXb9+Xe7u7po6daratWtn2n+nWHjH0aNH1bFjR7O2xo0ba/bs2UpPT9fBgwdlb2+vpk2bZnm++Ph4bd26NctnfyYlJenJJ59Uy5YtVb16dQUHB+vJJ5/Us88+q2LFiql48eIKDQ1VcHCwWrdurVatWqlr164qXbp0ttdXtWpV0zLFklS6dGn99NNPkqSEhAQ5ODioTp06pv2VKlVSsWLFcrhj0pQpUzRhwgSztvHjx8u1+rgcjwMAAAAAAAAAAPinderUSWfOnFHJkiXVqVOnbPsZDAalp6dbPD7PFIUZNzc3VapUybTlVMj7J73++us6ePCgfv31V128eFEjR44023+neJtbLi4uOe5PTU1V+/btdfDgQbPtxIkTatKkiezt7bV582atX79eVapU0XvvvafAwECdPHlSkhQREaHdu3erUaNG+vTTTxUQEKDvvvsu2/M5OprP3jQYDMrIyLDomu41atQoXb582WwbNWrU3xoTAAAAAAAAAADgYcjIyFDJkiVNH2e35aUgKlEURS4FBQVp9+7dMhqNpra4uDh5eHiobNmyqlixopycnBQXF2fan5aWpn379qlKlSqmMfbu3Ws2bk6Fwrs98sgjqlSpkry8vHJ8Nufdee/OcidvQECA7O3tVb16dWVkZGjbtm1ZHl+nTh0dPnxYfn5+ZkXiSpUqmQqwBoNBjRs31oQJE/TDDz/IyclJX375pWmM2rVra9SoUdq1a5eqVaumlStX5upa7xUYGKhbt27phx9+MLUlJibq4sWLOR7n7OyswoULm223l88FAAAAAAAAAADIv1asWJHpEYHS7ccsrlixIk9jUhRFrgwYMECnT5/Wq6++qmPHjumrr77S+PHjNWzYMNnZ2cnNzU2vvPKKXn/9dW3YsEFHjhxRv379dPXqVfXp00eS1L9/f504cUKvv/66EhIStHLlSkVGRj6UvMOHD1dMTIwmTpyo48ePa/ny5Zo3b57CwsIkSX5+furVq5d69+6t1atX6+TJk4qNjdWqVaskSQMHDtSFCxcUEhKiffv2KSkpSRs3btSLL76o9PR07dmzR5MnT9b+/fuVnJys6OhonTt3TkFBQTp58qRGjRql3bt365dfftGmTZt04sSJ+z5XNDuVK1dWq1at9NJLL2nv3r364Ycf9NJLL8nFxSVXBWIAAAAAAAAAAABb8uKLL+ry5cuZ2v/66y+9+OKLeRqToihypUyZMlq3bp327t2rmjVrqn///urTp4/GjBlj6jN16lR16dJFL7zwgurUqaPExERt3LjR9OxLX19fffHFF1q9erVq1qyp999/X5MnT34oeevUqaNVq1YpKipK1apV07hx4/TWW28pNDTU1GfhwoV69tlnNWDAAFWuXFn9+vXTlStXJEne3t6Ki4tTenq6nnzySVWvXl2vvfaaihYtKjs7OxUuXFjbt29X27ZtFRAQoDFjxmjGjBlq06aNXF1ddezYMXXp0kUBAQF66aWXNHDgQL388st5vp4VK1aoVKlSatKkiZ555hn169dPHh4eKlSo0N+9VQAAAAAAAAAA2CSjDGx3bQWJ0WjMcmLYr7/+qiJFiuRpTIe/GwoFx/1mbTZt2jTT8rd3K1SokObOnau5c+dm2+fpp5/W008/bdZ2v4r+qVOn8rS/S5cu6tKlS7bHFSpUSDNnztTMmTOz3O/v76/o6Ogs9wUFBWnDhg1Z7itVqpTZMrr3Cg8PV3h4uOl1Vvd99uzZZq9Lly6tdevWmV7/+uuvOnv2rCpVqpTteQAAAAAAAAAAAGxJ7dq1ZTAYZDAY1LJlSzk4/K+UmZ6erpMnT+qpp57K09gURQEb8O233yo1NVXVq1dXSkqKRowYIT8/PzVp0sTa0QAAAAAAAAAAAB6ITp06SZIOHjyo4OBgubu7m/Y5OTnJz88vxwlxOaEoCtiAtLQ0vfnmm/r555/l4eGhRo0a6eOPP5ajo6O1owEAAAAAAAAAADwQ48ePlyT5+fmpW7duD/QxghRFARsQHBys4OBga8cAAAAAAAAAAAB46Hr16vXAx6QoCgAAAAAAAAAAACDfSE9P16xZs7Rq1SolJyfr5s2bZvsvXLhg8Zh2DyocAAAAAAAAAAAA8E8xysB211aQTJgwQTNnzlS3bt10+fJlDRs2TJ07d5adnZ3Cw8PzNCZFUQAAAAAAAAAAAAD5xscff6zFixdr+PDhcnBwUEhIiJYsWaJx48bpu+++y9OYFEUBAAAAAAAAAAAA5BtnzpxR9erVJUnu7u66fPmyJOnpp5/WN998k6cxKYoCAAAAAAAAAAAAyDfKli2rlJQUSVLFihW1adMmSdK+ffvk7OycpzEpigIAAAAAAAAAAADIN5555hnFxMRIkl599VWNHTtW/v7+6tmzp3r37p2nMR0eZEAAAAAAAAAAAADgn2A0GqwdAQ/J1KlTTR9369ZNvr6+2r17t/z9/dW+ffs8jUlRFAAAAAAAAAAAAEC+1bBhQzVs2PBvjUFRFAAAAAAAAAAAAIBVrVmzJtd9O3ToYPH4FEUBAAAAAAAAAAAAWFWnTp1y1c9gMCg9Pd3i8SmKAgAAAAAAAAAAALCqjIyMhzo+RVEAAAAAAAAAAADYHKMM1o6Af8D169dVqFChvz2O3QPIAgAAAAAAAAAAAAAPRHp6uiZOnKgyZcrI3d1dP//8syRp7NixWrp0aZ7GpCgKAAAAAAAAAAAAIN+YNGmSIiMjNW3aNDk5OZnaq1WrpiVLluRpTIPRaDQ+qIAAAAAAAAAAAADAP+FwYoq1I+QrVSuVtnaEB6ZSpUr64IMP1LJlS3l4eCg+Pl4VKlTQsWPH1LBhQ128eNHiMXmmKPAvM3uN7f0dxGsdDPokzvZyhzQ2KGzhVWvHsNj0V1z1xuLr1o5hsan9CumDTdZOYbmXn5SWfWvtFJbr3UJ67b1Ua8ew2OxX3dV30h/WjpEnS0Y/ou5v/GrtGBZbObWsJnyUZu0YFhv/vKNmrLa97z3DOxnUa9wZa8ew2PK3vGz2e8+I969ZO4bFpvV30ePtt1k7hsV2ft3UZn+W/cYx0NoxLNYuLUE7j1yxdgyLPV7FTZ99l2HtGBZ77jE7m/zZSrr985Wt/r42Pdr23ithne00etkNa8ew2KTezmrb+ydrx7DYumXVrR0hz2z1/d1pwHFrx7DY6gUBNvv+Hr/C9n5Xm9DTUeOW37R2DIu91cvp/p0AmPntt99UqVKlTO0ZGRlKS8vbv18snwsAAAAAAAAAAAAg36hSpYp27NiRqf3zzz9X7dq18zQmM0UBAAAAAAAAAABgc4wyWDsCHpJx48apV69e+u2335SRkaHo6GglJCRoxYoVWrt2bZ7GZKYoAAAAAAAAAAAAgHyjY8eO+vrrr7Vlyxa5ublp3LhxOnr0qL7++mu1bt06T2MyUxQAAAAAAAAAAABAvnDr1i1NnjxZvXv31ubNmx/YuMwUBQAAAAAAAAAAAJAvODg4aNq0abp169YDHZeiKAAAAAAAAAAAAIB8o2XLltq2bdsDHZPlcwEAAAAAAAAAAGBzjDJYOwIekjZt2uiNN97QTz/9pLp168rNzc1sf4cOHSwek6IoAAAAAAAAAAAAgHxjwIABkqSZM2dm2mcwGJSenm7xmBRFAQAAAAAAAAAAAOQbGRkZD3xMnikKAAAAAAAAAAAAIF9IS0uTg4ODDh069EDHpSgKAAAAAAAAAAAAIF9wdHSUr69vnpbIzQlFUQAAAAAAAAAAANgco9HAdtdWkIwePVpvvvmmLly48MDG5JmiAAAAAAAAAAAAAPKNefPmKTExUd7e3ipXrpzc3NzM9n///fcWj0lRFAAAAAAAAAAAAEC+0alTpwc+JkVRAAAAAAAAAAAAAPnG+PHjH/iYPFM0n2jWrJlee+0102s/Pz/Nnj3b9NpgMGj16tX/eC5bdPXqVXXp0kWFCxeWwWDQpUuXrB0pk9DQ0IfyVw4AAAAAAAAAAAAFxYEDB/TRRx/po48+0g8//PC3xqIomoPQ0FAZDIZMW2JiYp7HjI2NzbJQFx0drYkTJ2Z7XEpKitq0aZPn8z4Mfn5+MhgMioqKyrSvatWqMhgMioyM/MdzLV++XDt27NCuXbuUkpKiIkWK/O0xH3QRc86cOVa5NwAAAAAAAAAAFBQZMrDdtRUkZ8+eVYsWLVS/fn0NHjxYgwcPVt26ddWyZUudO3cuT2NSFL2Pp556SikpKWZb+fLl8zRWWlpatvuKFy8uDw+PbPd7eXnJ2dk5T+e9H6PRqFu3buXpWB8fH0VERJi1fffddzpz5kymh97+U5KSkhQUFKRq1arJy8tLBkP++YcgPT1dGRkZKlKkiIoWLWrtOAAAAAAAAAAAAPnOq6++qr/++kuHDx/WhQsXdOHCBR06dEh//vmnBg8enKcxKYreh7Ozs7y8vMw2e3t7SdJXX32lOnXqqFChQqpQoYImTJhgVlw0GAxauHChOnToIDc3N/Xr10/NmzeXJBUrVkwGg0GhoaGSMi+fe6+7l88NDw/PcgbrnZmHGRkZmjJlisqXLy8XFxfVrFlTn3/+uWmsO7NV169fr7p168rZ2Vk7d+5UfHy8mjdvLg8PDxUuXFh169bV/v37c7w/PXr00LZt23T69GlT27Jly9SjRw85OJg/snbmzJmqXr263Nzc5OPjowEDBig1NdW0PzIyUkWLFtXGjRsVFBQkd3d3U1H6jqzuU6dOnczu44wZM7R9+3YZDAY1a9ZMkvThhx+qXr168vDwkJeXl7p3766zZ8+ajXP48GE9/fTTKly4sDw8PPTEE08oKSlJ4eHhWr58ub766ivTvY6Njc1y1u/BgwdlMBh06tQps2tas2aNqlSpImdnZyUnJ2eaedqsWTMNHjxYI0aMUPHixeXl5aXw8HCzfMeOHdPjjz+uQoUKqUqVKtqyZQvLKgMAAAAAAAAAgAJnw4YNWrBggYKCgkxtVapU0fz587V+/fo8jUlRNI927Nihnj17asiQITpy5Ig++OADRUZGatKkSWb9wsPD9cwzz+inn37ShAkT9MUXX0iSEhISlJKSojlz5lh87rCwMLOZq9OnT5erq6vq1asnSZoyZYpWrFih999/X4cPH9bQoUP1/PPPa9u2bWbjvPHGG5o6daqOHj2qGjVqqEePHipbtqz27dunAwcO6I033pCjo2OOWUqVKqXg4GAtX75c0u3neX766afq3bt3pr52dnaaO3euDh8+rOXLl+vbb7/ViBEjzPpcvXpV06dP14cffqjt27crOTlZYWFhub430dHR6tevnxo2bKiUlBRFR0dLuj1Ld+LEiYqPj9fq1at16tQpUyFVkn777Tc1adJEzs7O+vbbb3XgwAH17t1bt27dUlhYmLp27Wo2a7hRo0a5znT16lW98847WrJkiQ4fPqySJUtm2W/58uVyc3PTnj17NG3aNL311lvavHmzpNszTDt16iRXV1ft2bNHixYt0ujRo3OdAQAAAAAAAAAAwFZkZGRkWaNydHRURkZGnsZ0uH+Xf7e1a9fK3d3d9LpNmzb67LPPNGHCBL3xxhvq1auXJKlChQqaOHGiRowYofHjx5v6d+/eXS+++KLp9cmTJyVJJUuWzPPyqe7u7qZM3333ncaMGaPly5erWrVqunHjhiZPnqwtW7aoYcOGpmw7d+7UBx98oKZNm5rGeeutt9S6dWvT6+TkZL3++uuqXLmyJMnf3z9XeXr37q3hw4dr9OjR+vzzz1WxYkXVqlUrU7+7Z3j6+fnp7bffVv/+/bVgwQJTe1pamt5//31VrFhRkjRo0CC99dZbubsxur0Msaurq5ycnOTl5WWW8Y4KFSpo7ty5ql+/vlJTU+Xu7q758+erSJEiioqKMn2RBQQEmI5xcXHRjRs3zMbMrbS0NC1YsEA1a9bMsV+NGjVM7x1/f3/NmzdPMTExat26tTZv3qykpCTFxsaaMkyaNMns83evGzdu6MaNG2Ztt5dgdrL4GgAAAAAAAAAAAP4pLVq00JAhQ/TJJ5/I29tb0u0JbkOHDlXLli3zNCYzRe+jefPmOnjwoGmbO3euJCk+Pl5vvfWWqUDp7u6ufv36KSUlRVevXjUdf2f25sOQnJysTp06mWYySlJiYqKuXr2q1q1bm2VbsWKFkpKSzI6/N9uwYcPUt29ftWrVSlOnTs3UPzvt2rVTamqqtm/frmXLlmU5S1SStmzZopYtW6pMmTLy8PDQCy+8oPPnz5vdL1dXV1NBVJJKly6daZnbvDhw4IDat28vX19feXh4mIrDycnJkm4ve/vEE0/cd2ZsXjg5OalGjRr37Xdvn7uvPSEhQT4+PmZF2QYNGuQ43pQpU1SkSBGzbcqUKXm4AgAAAAAAAAAAgH/OvHnz9Oeff8rPz08VK1ZUxYoVVb58ef35559677338jQmM0Xvw83NTZUqVcrUnpqaqgkTJqhz586Z9hUqVMjs+IfhypUr6tChgxo2bGg2k/LOMzq/+eYblSlTxuyY27ME/+febOHh4erevbu++eYbrV+/XuPHj1dUVJSeeeaZHLM4ODjohRde0Pjx47Vnzx59+eWXmfqcOnVKTz/9tF555RVNmjRJxYsX186dO9WnTx/dvHlTrq6ukpSpKGkwGGQ0Gk2v7ezszF5Lt2di5uTKlSsKDg5WcHCwPv74Y3l6eio5OVnBwcG6efOmpNszQS1lZ3f7bwruzpNVFhcXFxkMhvuOl9W153UKuCSNGjVKw4YNM2tzdnbWwo15HhIAAAAAAAAAgHzDqPv/3ztsk4+Pj77//ntt2bJFx44dkyQFBQWpVatWeR6Tomge1alTRwkJCVkWTHPi5HR76dL09PQ8n9toNOr5559XRkaGPvzwQ7OCW5UqVeTs7Kzk5GSzpXJzKyAgQAEBARo6dKhCQkIUERFx36KodHt52unTp6tbt24qVqxYpv0HDhxQRkaGZsyYYSomrlq1yuJ8np6eSklJMb1OT0/XoUOH1Lx582yPOXbsmM6fP6+pU6fKx8dHkrR//36zPjVq1NDy5cuVlpaW5WxRJyenTJ8zT09PSVJKSorpmg8ePGjxNeVGYGCgTp8+rd9//12lSpWSJO3bty/HY5ydnTMVwm8zZtEGAAAAAAAAAACQfxgMBrVu3TrHRwlaguVz82jcuHFasWKFJkyYoMOHD+vo0aOKiorSmDFjcjyuXLlyMhgMWrt2rc6dO2ea2WmJ8PBwbdmyRR988IFSU1N15swZnTlzRteuXZOHh4fCwsI0dOhQLV++XElJSfr+++/13nvvafny5dmOee3aNQ0aNEixsbH65ZdfFBcXp3379ikoKChXmYKCgvTHH38oIiIiy/2VKlVSWlqa3nvvPf3888/68MMP9f7771t87S1atNA333yjb775RseOHdMrr7yiS5cu5XiMr6+vnJycTOdes2aNJk6caNZn0KBB+vPPP/Wf//xH+/fv14kTJ/Thhx8qISFB0u1noP74449KSEjQH3/8obS0NFWqVEk+Pj4KDw/XiRMn9M0332jGjBkWX1NutG7dWhUrVlSvXr30448/Ki4uzvRey80sVAAAAAAAAAAAgPzu22+/VZUqVfTnn39m2nf58mVVrVpVO3bsyNPYFEXzKDg4WGvXrtWmTZtUv359PfbYY5o1a5bKlSuX43FlypTRhAkT9MYbb6hUqVIaNGiQxefetm2bUlNT1ahRI5UuXdq0ffrpp5KkiRMnauzYsZoyZYqCgoL01FNP6ZtvvlH58uWzHdPe3l7nz59Xz549FRAQoK5du6pNmzaaMGFCrnOVKFEi22Voa9asqZkzZ+qdd95RtWrV9PHHH+fp+Za9e/dWr1691LNnTzVt2lQVKlTIcZaodHtGZ2RkpD777DNVqVJFU6dO1fTp0zNl//bbb5WamqqmTZuqbt26Wrx4sWnWaL9+/RQYGKh69erJ09NTcXFxcnR01CeffKJjx46pRo0aeuedd/T2229bfE25YW9vr9WrVys1NVX169dX3759NXr0aEnmyzUDAAAAAAAAAADYqtmzZ6tfv34qXLhwpn1FihTRyy+/rJkzZ+ZpbJbPzUFkZGSO++88pzI79z778o6xY8dq7NixZm2xsbFmr0+dOpXtWPf2vZfBYNCQIUM0ZMiQLPc3a9YsUzYnJyd98sknOY57r3sz3uveGZxDhw7V0KFDzdpeeOEF08ehoaEKDQ0129+pUyezrI6OjlqwYIEWLFiQ7Xlnz56dqS0kJEQhISFmbffegxo1amjjxqwfuOnp6alNmzZlam/cuLF+/PHHbMfN6pqkzO+trD6nq1evNntduXJl7dy50/Q6Li5OkixewhkAAAAAAAAAACA/io+P1zvvvJPt/ieffDLTxLfcoigK2Igvv/xS7u7u8vf3V2JiooYMGaLGjRurYsWK1o4GAAAAAAAAAMA/zmjk8XIFze+//25axTMrDg4OOnfuXJ7GZvlcwEb89ddfGjhwoCpXrqzQ0FDVr19fX331lbVjAQAAAAAAAAAAPBBlypTRoUOHst3/448/qnTp0nkam5migI3o2bOnevbsae0YAAAAAAAAAAAAD0Xbtm01duxYPfXUUypUqJDZvmvXrmn8+PF6+umn8zQ2RVEAAAAAAAAAAAAAVjdmzBhFR0crICBAgwYNUmBgoCTp2LFjmj9/vtLT0zV69Og8jU1RFAAAAAAAAAAAAIDVlSpVSrt27dIrr7yiUaNGyWg0SpIMBoOCg4M1f/58lSpVKk9jUxQFAAAAAAAAAACAzTHKYO0IeAjKlSundevW6eLFi0pMTJTRaJS/v7+KFSv2t8alKAoAAAAAAAAAAAAgXylWrJjq16//wMaze2AjAQAAAAAAAAAAAEA+RFEUAAAAAAAAAAAAQIFGURQAAAAAAAAAAABAgUZRFAAAAAAAAAAAAECB5mDtAAAAAAAAAAAAAICljEaDtSPAhjBTFAAAAAAAAAAAAECBRlEUAAAAAAAAAAAAQIFGURQAAAAAAAAAAABAgUZRFAAAAAAAAAAAAECBZjAajUZrhwAAAAAAAAAAAAAssS/hkrUj5Cv1A4taO0K+5mDtAAD+WfPW2d7fQQxqa9DRpN+sHcNiQRXLaMicv6wdw2JzhnjojcXXrR3DYlP7FdJPib9bO4bFqlcqpRmrbe/rcngngzbH37B2DIu1rums2EPXrB0jT5pVc1H/dy5aO4bF3h9ZTBM+SrN2DIuNf97RJn+xqh9YVDE/2d6/4S2rF9K6723vfdK2jqMWb7F2Csv1ayVNikq3dgyLjf6PvX448Ye1Y1istv8j2nnkirVjWOzxKm76xjHQ2jEs1i4tQceTkq0dw2IBFX315V7b+7qUpGca2OtkUqK1Y1isfMVK2vKj7f0826qGs5bEWDuF5fq2lFZss3YKy/Vsau0Eeffq7D+tHcFi771WWB9ssnYKy738pDTna9v7vX5Ie4NW7rS93N0fN+i9b2wv96vtDNaOAEAsnwsAAAAAAAAAAACggKMoCgAAAAAAAAAAAKBAoygKAAAAAAAAAAAAoEDjmaIAAAAAAAAAAACwOUYjz2tF7jFTFAAAAAAAAAAAAECBRlEUAAAAAAAAAAAAQIFGURQAAAAAAAAAAABAgUZRFAAAAAAAAAAAAECBRlEUAAAAAAAAAAAAQIHmYO0AAAAAAAAAAAAAgKUyrB0ANoWZogAAAAAAAAAAAAAKNIqiAAAAAAAAAAAAAAo0iqIAAAAAAAAAAAAACjSKogAAAAAAAAAAAAAKNAdrBwAAAAAAAAAAAAAsZTQarB0BNoSZogAAAAAAAAAAAAAKNIqiwAMWGhqqTp06mT42GAwyGAxycnJSpUqV9NZbb+nWrVuSpNjYWNN+g8GgUqVKqUuXLvr5559N4xkMBq1evTrH8wAAAAAAAAAAACB7FEWBh+ypp55SSkqKTpw4oeHDhys8PFzvvvuuWZ+EhAT997//1WeffabDhw+rffv2Sk9Pt1JiAAAAAAAAAACAgoWiKPCQOTs7y8vLS+XKldMrr7yiVq1aac2aNWZ9SpYsqdKlS6tJkyYaN26cjhw5osTERCslBgAAAAAAAAAAKFgcrB0A+LdxcXHR+fPnc9wvSTdv3vynIgEAAAAAAAAAYHOMMlg7AmwIRVHgH2I0GhUTE6ONGzfq1VdfzbJPSkqKpk+frjJlyigwMPBvne/GjRu6ceOGWZuzs7Mkp781LgAAAAAAAAAAgK1h+VzgIVu7dq3c3d1VqFAhtWnTRt26dVN4eLhZn7Jly8rNzU3e3t66cuWKvvjiCzk5/b3i5ZQpU1SkSBGzbcqUKX9rTAAAAAAAAAAAAFvETFHgIWvevLkWLlwoJycneXt7y8Eh85fdjh07VLhwYZUsWVIeHh5m+zw8PHT58uVMx1y6dElFihTJ9ryjRo3SsGHDzNqcnZ21OCaPFwIAAAAAAAAAAGCjmCkKPGRubm6qVKmSfH19syyISlL58uVVsWLFTAVRSQoMDNSBAwfM2tLT0xUfH6+AgIBsz+vs7KzChQubbbeXzwUAAAAAAAAAAPh3YaYokM8NGzZMffr0UeXKldW6dWtduXJF7733ni5evKi+fftaOx4AAAAAAAAAAEC+R1EUyOdCQkJkNBo1c+ZMvfHGG3J1dVXdunW1fft2lSpVytrxAAAAAAAAAACwCqPRYO0IsCEURYEHLDIyMsuPs9KsWTMZjcb7jtm9e3d17979byYDAAAAAAAAAAD4d+KZogAAAAAAAAAAAAAKNIqiAAAAAAAAAAAAAAo0iqIAAAAAAAAAAAAACjSeKQoAAAAAAAAAAACbY5TB2hFgQ5gpCgAAAAAAAAAAAKBAoygKAAAAAAAAAAAAoECjKAoAAAAAAAAAAACgQKMoCgAAAAAAAAAAAKBAc7B2AAAAAAAAAAAAAMBSGUZrJ4AtYaYoAAAAAAAAAAAAgAKNoigAAAAAAAAAAACAAo2iKAAAAAAAAAAAAIACjaIoAAAAAAAAAAAAgALNwdoBAAAAAAAAAAAAAEsZZbB2BNgQZooCAAAAAAAAAAAAKNAoigIAAAAAAAAAAAAo0CiKAgAAAAAAAAAAACjQDEaj0WjtEAAAAAAAAAAAAIAlth2+au0I+UrTqq7WjpCvOVg7AIB/1rQvMqwdwWIjutjpj0O7rR3DYo9Ua6iJn9yydgyLjQ1x0Duf2977ZOSzdjqVeNzaMSzmVylAy761dgrL9W4h7TxyxdoxLPZ4FTftPXbZ2jHypEHlIhoy5y9rx7DYnCEemhSVbu0YFhv9H3ub/MWqaVVXfX3A9r73tK/rYLO5o3bZ3t+Y/qeRQRFbrZ3Cci82l84d2WvtGBbzrNJAn31nez9bPfeYnY4nJVs7hsUCKvrqG8dAa8ewWLu0BCUmnbR2jDypVLG8Tg/oYu0YFvNZ8IXWfZ9m7RgWa1vH0Wb/TbHV3LbKVn93WLPf9n536FDPXtF7be/93bmBnVbvs7373am+vd7faO0UlusfbO0EACSKogAAAAAAAAAAALBBRqPB2hFgQ2z3z50AAAAAAAAAAAAAIBcoigIAAAAAAAAAAAAo0CiKAgAAAAAAAAAAACjQKIoCAAAAAAAAAAAAKNAcrB0AAAAAAAAAAAAAsJTRaO0EsCXMFAUAAAAAAAAAAABQoFEUBQAAAAAAAAAAAFCgURQFAAAAAAAAAAAAUKBRFAUAAAAAAAAAAABQoDlYOwAAAAAAAAAAAABgqQwZrB0BNoSZogAAAAAAAAAAAAAKNIqiAAAAAAAAAAAAAAo0iqIAAAAAAAAAAAAACjSKosg3/Pz8NHv2bNNrg8Gg1atX/60xQ0ND1alTp781xj+pWbNmeu2110yv770nAAAAAAAAAAAAsBxF0b8pNDRUBoNB/fv3z7Rv4MCBMhgMCg0N/eeDFQApKSlq06bNQz1HZGSkihYt+kDGio+PV4cOHVSyZEkVKlRIfn5+6tatm86ePZvrMaKjozVx4sQHkgcAAAAAAAAAAAC3URR9AHx8fBQVFaVr166Z2q5fv66VK1fK19fXisn+5+bNm9aOYDEvLy85OztbO0aunDt3Ti1btlTx4sW1ceNGHT16VBEREfL29taVK1dyPU7x4sXl4eHxEJMCAAAAAAAAAFAwGI0Gtrs25Iyi6ANQp04d+fj4KDo62tQWHR0tX19f1a5d26zvhg0b9Pjjj6to0aIqUaKEnn76aSUlJZn2nzp1SgaDQdHR0WrevLlcXV1Vs2ZN7d6929QnPDxctWrVMht39uzZ8vPzM72+s2zspEmT5O3trcDAQEnS6dOn1bVrVxUtWlTFixdXx44dderUqWyvLT09XX369FH58uXl4uKiwMBAzZkzx6zPnXNNmDBBnp6eKly4sPr3729WiG3WrJkGDRqkQYMGqUiRInrkkUc0duxYGY3GbM997/K598uenp6uYcOGme7tiBEjchw/NjZWL774oi5fviyDwSCDwaDw8HBJ0sWLF9WzZ08VK1ZMrq6uatOmjU6cOJHtWHFxcbp8+bKWLFmi2rVrq3z58mrevLlmzZql8uXLm/pt27ZNDRo0kLOzs0qXLq033nhDt27dMrtPdy+fezej0ajw8HD5+vrK2dlZ3t7eGjx4cLaZAAAAAAAAAAAAcBtF0Qekd+/eioiIML1etmyZXnzxxUz9rly5omHDhmn//v2KiYmRnZ2dnnnmGWVkZJj1Gz16tMLCwnTw4EEFBAQoJCTErHiWGzExMUpISNDmzZu1du1apaWlKTg4WB4eHtqxY4fi4uLk7u6up556KtuZpBkZGSpbtqw+++wzHTlyROPGjdObb76pVatWZTrX0aNHFRsbq08++UTR0dGaMGGCWZ/ly5fLwcFBe/fu1Zw5czRz5kwtWbIkV9eSm+wzZsxQZGSkli1bpp07d+rChQv68ssvsx2zUaNGmj17tgoXLqyUlBSlpKQoLCxM0u1C7/79+7VmzRrt3r1bRqNRbdu2VVpaWpZjeXl56datW/ryyy+zLcT+9ttvatu2rerXr6/4+HgtXLhQS5cu1dtvv52re/DFF19o1qxZ+uCDD3TixAmtXr1a1atXz9WxAAAAAAAAAAAA/2YO1g5QUDz//PMaNWqUfvnlF0m3Zw5GRUUpNjbWrF+XLl3MXi9btkyenp46cuSIqlWrZmoPCwtTu3btJEkTJkxQ1apVlZiYqMqVK+c6k5ubm5YsWSInJydJ0kcffaSMjAwtWbJEBsPtadQREREqWrSoYmNj9eSTT2Yaw9HR0ay4Wb58ee3evVurVq1S165dTe1OTk5atmyZXF1dVbVqVb311lt6/fXXNXHiRNnZ3a69+/j4aNasWTIYDAoMDNRPP/2kWbNmqV+/fve9lk8//fS+2WfPnq1Ro0apc+fOkqT3339fGzduzHZMJycnFSlSRAaDQV5eXqb2EydOaM2aNYqLi1OjRo0kSR9//LF8fHy0evVqPffcc5nGeuyxx/Tmm2+qe/fu6t+/vxo0aKAWLVqoZ8+eKlWqlCRpwYIF8vHx0bx582QwGFS5cmX997//1ciRIzVu3DjTfcpOcnKyvLy81KpVKzk6OsrX11cNGjTItv+NGzd048YNs7bbyxE75ngeAAAAAAAAAACAgoaZog+Ip6en2rVrp8jISEVERKhdu3Z65JFHMvU7ceKEQkJCVKFCBRUuXNi05G1ycrJZvxo1apg+Ll26tCTp7NmzFmWqXr26qSAqSfHx8UpMTJSHh4fc3d3l7u6u4sWL6/r162ZL+N5r/vz5qlu3rjw9PeXu7q5FixZlyluzZk25urqaXjds2FCpqak6ffq0qe2xxx4zFTTv9Dlx4oTS09Pvey33y3758mWlpKTo0UcfNR3j4OCgevXq3Xfsex09elQODg5mY5UoUUKBgYE6evRotsdNmjRJZ86c0fvvv6+qVavq/fffV+XKlfXTTz+Zxm3YsKHZPWjcuLFSU1P166+/3jfXc889p2vXrqlChQrq16+fvvzyyxxnD0+ZMkVFihQx26ZMmZKbWwAAAAAAAAAAAFCgUBR9gHr37q3IyEgtX75cvXv3zrJP+/btdeHCBS1evFh79uzRnj17JCnT8rWOjv+bzXeniHZniV07O7tMS7Rmtayrm5ub2evU1FTVrVtXBw8eNNuOHz+u7t27Z5k3KipKYWFh6tOnjzZt2qSDBw/qxRdfzHa53YclL9mtoUSJEnruuec0ffp0HT16VN7e3po+ffoDGdvHx0cJCQlasGCBXFxcNGDAADVp0iTbJX1HjRqly5cvm22jRo16IFkAAAAAAAAAALA2o5Ht7s1S8+fPl5+fnwoVKqRHH31Ue/fuzbbv4sWL9cQTT6hYsWIqVqyYWrVqlWP//Iii6AN05/mWd55/ea/z588rISFBY8aMUcuWLRUUFKSLFy9afB5PT0+dOXPGrDB68ODB+x5Xp04dnThxQiVLllSlSpXMtiJFimR5zJ0lZAcMGKDatWurUqVKWc4qjY+P17Vr10yvv/vuO7m7u8vHx8fUdqcAfHcff39/2dvb/+3sRYoUUenSpc3OcevWLR04cCDHcZ2cnDLNVA0KCtKtW7fMxrrzuatSpcp9s949dsWKFXXlyhXTuHeeT3pHXFycPDw8VLZs2VyN6eLiovbt22vu3LmKjY3V7t27TTNR7+Xs7KzChQubbbeXzwUAAAAAAAAAAP9mn376qYYNG6bx48fr+++/V82aNRUcHJztqqWxsbEKCQnR1q1btXv3bvn4+OjJJ5/Ub7/99g8nzzuKog+Qvb29jh49qiNHjmRZ6CtWrJhKlCihRYsWKTExUd9++62GDRtm8XmaNWumc+fOadq0aUpKStL8+fO1fv36+x7Xo0cPPfLII+rYsaN27NihkydPKjY2VoMHD852+VZ/f3/t379fGzdu1PHjxzV27Fjt27cvU7+bN2+qT58+OnLkiNatW6fx48dr0KBBZs/JTE5O1rBhw5SQkKBPPvlE7733noYMGZKra85N9iFDhmjq1KlavXq1jh07pgEDBujSpUs5juvn56fU1FTFxMTojz/+0NWrV+Xv76+OHTuqX79+2rlzp+Lj4/X888+rTJky6tixY5bjrF27Vs8//7zWrl2r48ePKyEhQdOnT9e6detMxwwYMECnT5/Wq6++qmPHjumrr77S+PHjNWzYsPs+T1SSIiMjtXTpUh06dEg///yzPvroI7m4uKhcuXK5uocAAAAAAAAAAACSNHPmTPXr108vvviiqlSpovfff1+urq5atmxZlv0//vhjDRgwQLVq1VLlypW1ZMkSZWRkKCYm5h9OnncURR+wOzPysmJnZ6eoqCgdOHBA1apV09ChQ/Xuu+9afI6goCAtWLBA8+fPV82aNbV3716FhYXd9zhXV1dt375dvr6+6ty5s4KCgtSnTx9dv34928wvv/yyOnfurG7duunRRx/V+fPnNWDAgEz9WrZsKX9/fzVp0kTdunVThw4dFB4ebtanZ8+eunbtmho0aKCBAwdqyJAheumll3J1zbnJPnz4cL3wwgvq1auXGjZsKA8PDz3zzDM5jtuoUSP1799f3bp1k6enp6ZNmyZJioiIUN26dfX000+rYcOGMhqNWrdundmyxnerUqWKXF1dNXz4cNWqVUuPPfaYVq1apSVLluiFF16QJJUpU0br1q3T3r17VbNmTfXv3199+vTRmDFjcnUPihYtqsWLF6tx48aqUaOGtmzZoq+//lolSpTI1fEAAAAAAAAAAKDgunHjhv7880+z7caNG5n63bx5UwcOHFCrVq1MbXZ2dmrVqpV2796dq3NdvXpVaWlpKl68+APL/7A5WDuArYuMjMxx/+rVq81et2rVSkeOHDFru3s5VT8/v0zPCy1atGimtv79+6t///5mbW+++eZ9c3l5eWn58uU5Zr6bs7OzIiIiFBERYdY+ZcqUTH0nTJigCRMmZDuWo6OjZs+erYULF2a5/9SpU2av773m+2V3cHDQ7NmzNXv27Gz7ZGXhwoWZMhUrVkwrVqzI9RgVKlTQokWL7tuvadOmOa6xHRsba/b67nvSqVMnderUKdeZAAAAAAAAAADAv8eUKVMy1WnGjx+faRLbH3/8ofT0dJUqVcqsvVSpUjp27FiuzjVy5Eh5e3ubFVbzO4qiAAAAAAAAAAAAsDlGGawdIV8ZNWpUpsc2Ojs7P/DzTJ06VVFRUYqNjVWhQoUe+PgPC0VRAAAAAAAAAAAAwMY5Ozvnqgj6yCOPyN7eXr///rtZ+++//y4vL68cj50+fbqmTp2qLVu2qEaNGn8r7z+Noij+tvstISxlXhYWAAAAAAAAAAAA/zwnJyfVrVtXMTExpsf2ZWRkKCYmRoMGDcr2uGnTpmnSpEnauHGj6tWr9w+lfXAoigIAAAAAAAAAAAD/IsOGDVOvXr1Ur149NWjQQLNnz9aVK1f04osvSpJ69uypMmXKaMqUKZKkd955R+PGjdPKlSvl5+enM2fOSJLc3d3l7u5uteuwBEVRAAAAAAAAAAAA4F+kW7duOnfunMaNG6czZ86oVq1a2rBhg0qVKiVJSk5Olp2dnan/woULdfPmTT377LNm44wfP17h4eH/ZPQ8oygKAAAAAAAAAAAA/MsMGjQo2+Vy730s4qlTpx5+oIeMoigAAAAAAAAAAABsTobR2glgS+zu3wUAAAAAAAAAAAAAbBdFUQAAAAAAAAAAAAAFGkVRAAAAAAAAAAAAAAUaRVEAAAAAAAAAAAAABZqDtQMAAAAAAAAAAAAAljIaDdaOABvCTFEAAAAAAAAAAAAABRpFUQAAAAAAAAAAAAAFGkVRAAAAAAAAAAAAAAUaRVEAAAAAAAAAAAAABZqDtQMAAAAAAAAAAAAAljIarZ0AtsRgNPKWAQAAAAAAAAAAgG1Z932atSPkK23rOFo7Qr7GTFHgX2byp+nWjmCxN7vZa++xy9aOYbEGlYtoenSGtWNYLKyznRZvsXYKy/VrJa3/wfZ+CGpT21Erd9re3yd1f9yg6L229/7u3MBOy761doq86d1CmrfO9t4rg9oabPbflCUx1k5hub4tpWlf2N7X5ogudvpoh+29v59/wqAxkTetHcNib4c6aXP8DWvHsFjrms42m/u191KtHcNis19115d7be93h2ca2Csx6aS1Y1isUsXy+sYx0Nox8qRdWoIOnjhn7RgWq+XvqTX7be893qGevX448Ye1Y1istv8jNvv7mq0aOs/2vvfMGuSunxJ/t3YMi1WvVEqHEs9YO4bFqlXy0nc2+P9tj9nw/7cBsD6+EgEAAAAAAAAAAAAUaBRFAQAAAAAAAAAAABRoFEUBAAAAAAAAAAAAFGg8UxQAAAAAAAAAAAA2J0MGa0eADWGmKAAAAAAAAAAAAIACjaIoAAAAAAAAAAAAgAKNoigAAAAAAAAAAACAAo2iKAAAAAAAAAAAAIACzcHaAQAAAAAAAAAAAABLGY3WTgBbwkxRAAAAAAAAAAAAAAUaRVEAAAAAAAAAAAAABRpFUQAAAAAAAAAAAAAFGkVRAAAAAAAAAAAAAAWag7UDAAAAAAAAAAAAAJYyGg3WjgAbwkxRAAAAAAAAAAAAAAUaRVHkSWxsrAwGgy5dupTrY65evaouXbqocOHCFh8LAAAAAAAAAAAA5BVF0YckNDRUBoNB/fv3z7Rv4MCBMhgMCg0N/eeDWdHy5cu1Y8cO7dq1SykpKbp48aIMBoMOHjxolTzh4eEyGAwyGAxycHCQn5+fhg4dqtTU1L899qlTp6x6bQAAAAAAAAAAAPgfiqIPkY+Pj6KionTt2jVT2/Xr17Vy5Ur5+vpaMdn/3Lx58x87V1JSkoKCglStWjV5eXnJYLD+Wt9Vq1ZVSkqKTp06pXfeeUeLFi3S8OHDrR3LzD/5OQIAAAAAAAAAACiIKIo+RHXq1JGPj4+io6NNbdHR0fL19VXt2rXN+m7YsEGPP/64ihYtqhIlSujpp59WUlKSaf+dmYfR0dFq3ry5XF1dVbNmTe3evdvUJzw8XLVq1TIbd/bs2fLz8zO9Dg0NVadOnTRp0iR5e3srMDBQknT69Gl17dpVRYsWVfHixdWxY0edOnXKouvduXOnnnjiCbm4uMjHx0eDBw/WlStXJEnNmjXTjBkztH37dhkMBjVr1kzly5eXJNWuXdvUlp1t27apQYMGcnZ2VunSpfXGG2/o1q1bpv3NmjXT4MGDNWLECBUvXlxeXl4KDw+/b2YHBwd5eXmpbNmy6tatm3r06KE1a9ZIkj788EPVq1dPHh4e8vLyUvfu3XX27FnTsRcvXlSPHj3k6ekpFxcX+fv7KyIiQpKyvbZmzZrptddeM8vQqVMns1nDfn5+mjhxonr27KnChQvrpZdeuu/9BQAAAAAAAAAAQPYoij5kvXv3NhXKJGnZsmV68cUXM/W7cuWKhg0bpv379ysmJkZ2dnZ65plnlJGRYdZv9OjRCgsL08GDBxUQEKCQkBCz4mBuxMTEKCEhQZs3b9batWuVlpam4OBgeXh4aMeOHYqLi5O7u7ueeuqpXM9STEpK0lNPPaUuXbroxx9/1KeffqqdO3dq0KBBkm4Xg/v166eGDRsqJSVF0dHR2rt3ryRpy5Ytpras/Pbbb2rbtq3q16+v+Ph4LVy4UEuXLtXbb79t1m/58uVyc3PTnj17NG3aNL311lvavHmzRffGxcXFdM1paWmaOHGi4uPjtXr1ap06dcqseDl27FgdOXJE69ev19GjR7Vw4UI98sgjkpTra8vO9OnTVbNmTf3www8aO3bsfe8vAAAAAAAAAAD/NhlGtrs35MzB2gEKuueff16jRo3SL7/8IkmKi4tTVFSUYmNjzfp16dLF7PWyZcvk6empI0eOqFq1aqb2sLAwtWvXTpI0YcIEVa1aVYmJiapcuXKuM7m5uWnJkiVycnKSJH300UfKyMjQkiVLTEvaRkREqGjRooqNjdWTTz553zGnTJmiHj16mGZB+vv7a+7cuWratKkWLlyo4sWLy9XVVU5OTvLy8pIk/fnnn5KkEiVKmNqysmDBAvn4+GjevHkyGAyqXLmy/vvf/2rkyJEaN26c7Oxu1/Zr1Kih8ePHm84/b948xcTEqHXr1rm6LwcOHNDKlSvVokULSbcL2ndUqFBBc+fOVf369ZWamip3d3clJyerdu3aqlevniSZzcj19PTM1bVlp0WLFmbL+Pbt2zfH+1uoUKFMY9y4cUM3btwwa3N2dhZf9gAAAAAAAAAA4N+GmaIPmaenp9q1a6fIyEhFRESoXbt2ptmEdztx4oRCQkJUoUIFFS5c2FRgS05ONutXo0YN08elS5eWJLMlXXOjevXqpoKoJMXHxysxMVEeHh5yd3eXu7u7ihcvruvXr5st4ZuT+Ph4RUZGmo53d3dXcHCwMjIydPLkSYvy3evo0aNq2LCh2TNIGzdurNTUVP3666+mtrvvjXT7/tzv3vz0009yd3eXi4uLGjRooIYNG2revHmSbhdJ27dvL19fX3l4eKhp06aS/vc5eeWVVxQVFaVatWppxIgR2rVr19+6zrvdKbTekZf7O2XKFBUpUsRsmzJlygPLCAAAAAAAAAAAYCuYMvYP6N27t2mZ0/nz52fZp3379ipXrpwWL14sb29vZWRkqFq1apmWr3V0dDR9fKdIeGeJXTs7OxmN5vOj09LSMp3Lzc3N7HVqaqrq1q2rjz/+OFPfOzMe7yc1NVUvv/yyBg8enGmfr69vrsb4u+6+N9Lt+3Pv8sP3CgwM1Jo1a+Tg4CBvb29TsfjKlSsKDg5WcHCwPv74Y3l6eio5OVnBwcGmz0mbNm30yy+/aN26ddq8ebNatmypgQMHavr06dme7+98jiy9v6NGjdKwYcPM2pydnTVjdbbxAAAAAAAAAAAACiSKov+AO8/mNBgMCg4OzrT//PnzSkhI0OLFi/XEE09Iknbu3GnxeTw9PXXmzBkZjUZTwfTgwYP3Pa5OnTr69NNPVbJkSRUuXNji894Z48iRI6pUqVKuj7lTgExPT8+xX1BQkL744guz64qLi5OHh4fKli2bp7x3Z8gq87Fjx3T+/HlNnTpVPj4+kqT9+/dn6ufp6alevXqpV69eeuKJJ/T6669r+vTp2V6bp6enUlJSTK/T09N16NAhNW/ePMecebm/zs7O/79c7r1yvt8AAAAAAAAAAAAFDcvn/gPs7e119OhRHTlyRPb29pn2FytWTCVKlNCiRYuUmJiob7/9NtMMv9xo1qyZzp07p2nTpikpKUnz58/X+vXr73tcjx499Mgjj6hjx47asWOHTp48qdjYWA0ePNhsedqcjBw5Urt27dKgQYN08OBBnThxQl999ZVphmxWSpYsKRcXF23YsEG///67Ll++nGW/AQMG6PTp03r11Vd17NgxffXVVxo/fryGDRtmep7og+br6ysnJye99957+vnnn7VmzRpNnDjRrM+4ceP01VdfKTExUYcPH9batWsVFBSU47W1aNFC33zzjb755hsdO3ZMr7zyii5dunTfPHm5vwAAAAAAAAAAFGRGI9vdG3JGUfQfUrhw4WxnYdrZ2SkqKkoHDhxQtWrVNHToUL377rsWnyMoKEgLFizQ/PnzVbNmTe3du1dhYWH3Pc7V1VXbt2+Xr6+vOnfurKCgIPXp00fXr1/P9czRGjVqaNu2bTp+/LieeOIJ1a5dW+PGjZO3t3e2xzg4OGju3Ln64IMP5O3trY4dO2bZr0yZMlq3bp327t2rmjVrqn///urTp4/GjBmTq2x54enpqcjISH322WeqUqWKpk6dmmlZXCcnJ40aNUo1atRQkyZNZG9vr6ioqByvrXfv3urVq5d69uyppk2bqkKFCvedJSrl7f4CAAAAAAAAAADgNpbPfUgiIyNz3L969Wqz161atdKRI0fM2u5+9qSfn1+mZ1EWLVo0U1v//v3Vv39/s7Y333zzvrm8vLy0fPnyHDPfrVmzZpnOXb9+fW3atCnbY2bPnp2prW/fvurbt+99z9e0aVPt3bs32/2xsbGZ2u69x/cKDw9XeHh4tvtDQkIUEhJi1nb3NY8ZMybHwmxW1+bo6KgFCxZowYIF2R536tSpLNvvd38BAAAAAAAAAACQNWaKAgAAAAAAAAAAACjQKIoCAAAAAAAAAAAAKNBYPhcAAAAAAAAAAAA2xyiDtSPAhjBTFAAAAAAAAAAAAECBRlEUAAAAAAAAAAAAQIFGURQAAAAAAAAAAABAgUZRFAAAAAAAAAAAAECB5mDtAAAAAAAAAAAAAIClMozWTgBbwkxRAAAAAAAAAAAAAAUaRVEAAAAAAAAAAAAABRpFUQAAAAAAAAAAAAAFGkVRAAAAAAAAAAAAAAUaRVEAAAAAAAAAAAAABZqDtQMAAAAAAAAAAAAAljIarZ0AtoSZogAAAAAAAAAAAAAKNIqiAAAAAAAAAAAAAAo0g9HI5GIAAAAAAAAAAADYls++y7B2hHzluceYC5kTnikK/MtMWZVu7QgWG9XVXpe/32LtGBYrUqeV3lx6w9oxLDa5j7PGLb9p7RgWe6uXkw6eOGftGBar5e+plTtt7++Tuj9u0JYfbe/93aqGs/Yeu2ztGHnSoHIR9X/norVjWOz9kcU0Kcr2vveM/o+91v+QZu0YFmtT21Gf77G9XwiffdROa/bb3vukQz17fbjd2iks90ITafYa2/ve81oHg84e2W/tGBYrWaWePomzvfsd0tigk0mJ1o5hsfIVK+n0gC7WjmExnwVf2OTPstLtn2e/cQy0dgyLtUtLUPRe2/ue2bmBnc3+m/LRDtvL/fwTBmtHyLMhc/6ydgSLzRnioahdtvc++U8jg83+TGirv9fPX2/tFJYb2MbaCQBIFEUBAAAAAAAAAABgg1gLFZZgHi0AAAAAAAAAAACAAo2iKAAAAAAAAAAAAIACjaIoAAAAAAAAAAAAgAKNoigAAAAAAAAAAACAAs3B2gEAAAAAAAAAAAAAS2UYDdaOABvCTFEAAAAAAAAAAAAABRpFUQAAAAAAAAAAAAAFGkVRAAAAAAAAAAAAAAUaRVEAAAAAAAAAAAAABRpFUQAAAAAAAAAAAAAFmoO1AwAAAAAAAAAAAACWMhqtnQC2hJmiAAAAAAAAAAAAAAo0iqIAAAAAAAAAAAAACjSKogAAAAAAAAAAAAAKNIqiAAAAAAAAAAAAAAo0iqJWFBoaKoPBoP79+2faN3DgQBkMBoWGhv7zwR6QU6dOyWAwyN7eXr/99pvZvpSUFDk4OMhgMOjUqVPWCWij7tzXgwcPWjsKAAAAAAAAAABWYzSy3b0hZxRFrczHx0dRUVG6du2aqe369etauXKlfH19rZjsf27evPm3ji9TpoxWrFhh1rZ8+XKVKVPmb40LAAAAAAAAAAAA5AZFUSurU6eOfHx8FB0dbWqLjo6Wr6+vateubdZ3w4YNevzxx1W0aFGVKFFCTz/9tJKSkkz778wgjI6OVvPmzeXq6qqaNWtq9+7dpj7h4eGqVauW2bizZ8+Wn5+f6XVoaKg6deqkSZMmydvbW4GBgZKk06dPq2vXripatKiKFy+ujh075mqWZ69evRQREWHWFhERoV69epm1paenq0+fPipfvrxcXFwUGBioOXPmmPW5k2369OkqXbq0SpQooYEDByotLc3U58MPP1S9evXk4eEhLy8vde/eXWfPnjUbZ82aNfL391ehQoXUvHlzLV++XAaDQZcuXTL12blzp5544gm5uLjIx8dHgwcP1pUrV0z7/fz89Pbbb6tnz55yd3dXuXLltGbNGp07d04dO3aUu7u7atSoof3795udOzfjTp48Wb1795aHh4d8fX21aNEi0/7y5ctLkmrXri2DwaBmzZrd93MAAAAAAAAAAADwb0ZRNB/o3bu3WdFw2bJlevHFFzP1u3LlioYNG6b9+/crJiZGdnZ2euaZZ5SRkWHWb/To0QoLC9PBgwcVEBCgkJAQ3bp1y6JMMTExSkhI0ObNm7V27VqlpaUpODhYHh4e2rFjh+Li4uTu7q6nnnrqvjNJO3TooIsXL2rnzp2SbhcFL168qPbt25v1y8jIUNmyZfXZZ5/pyJEjGjdunN58802tWrXKrN/WrVuVlJSkrVu3avny5YqMjFRkZKRpf1pamiZOnKj4+HitXr1ap06dMluG+OTJk3r22WfVqVMnxcfH6+WXX9bo0aPNzpGUlKSnnnpKXbp00Y8//qhPP/1UO3fu1KBBg8z6zZo1S40bN9YPP/ygdu3a6YUXXlDPnj31/PPP6/vvv1fFihXVs2dPGf9/3npux50xY4bq1aunH374QQMGDNArr7yihIQESdLevXslSVu2bFFKSopZQR0AAAAAAAAAAACZOVg7AKTnn39eo0aN0i+//CJJiouLU1RUlGJjY836denSxez1smXL5OnpqSNHjqhatWqm9rCwMLVr106SNGHCBFWtWlWJiYmqXLlyrjO5ublpyZIlcnJykiR99NFHysjI0JIlS2QwGCTdnu1ZtGhRxcbG6sknn8x2LEdHRz3//PNatmyZHn/8cS1btkzPP/+8HB0dM/WbMGGC6XX58uW1e/durVq1Sl27djW1FytWTPPmzZO9vb0qV66sdu3aKSYmRv369ZN0u8h8R4UKFTR37lzVr19fqampcnd31wcffKDAwEC9++67kqTAwEAdOnRIkyZNMh03ZcoU9ejRQ6+99pokyd/fX3PnzlXTpk21cOFCFSpUSJLUtm1bvfzyy5KkcePGaeHChapfv76ee+45SdLIkSPVsGFD/f777/Ly8rJo3AEDBpjGmDVrlrZu3arAwEB5enpKkkqUKCEvL69s7/uNGzd048YNszZnZ2fxZQ8AAAAAAAAAAP5tmCmaD3h6eqpdu3aKjIxURESE2rVrp0ceeSRTvxMnTigkJEQVKlRQ4cKFTUveJicnm/WrUaOG6ePSpUtLUqblY++nevXqpoKoJMXHxysxMVEeHh5yd3eXu7u7ihcvruvXr5st4Zud3r1767PPPtOZM2f02WefmRUu7zZ//nzVrVtXnp6ecnd316JFizJdX9WqVWVvb292jXdf34EDB9S+fXv5+vrKw8NDTZs2lfS/+5SQkKD69eubjdmgQQOz1/Hx8YqMjDRdq7u7u4KDg5WRkaGTJ0+a+t19r0uVKmW6d/e23cmXl3ENBoO8vLws/hxOmTJFRYoUMdumTJli0RgAAAAAAAAAAORXGUa2uzfkjClj+UTv3r1NS6jOnz8/yz7t27dXuXLltHjxYnl7eysjI0PVqlXLtHzt3TMw78zqvLPErp2dnWkp1zvufh7nHW5ubmavU1NTVbduXX388ceZ+t6ZuZiT6tWrq3LlygoJCVFQUJCqVaumgwcPmvWJiopSWFiYZsyYoYYNG8rDw0Pvvvuu9uzZk+313bnGO9d35coVBQcHKzg4WB9//LE8PT2VnJys4ODg+y7ze+/1vvzyyxo8eHCmfb6+vllmuXOvc7r/eRn33mvMrVGjRmnYsGFmbc7Ozpr5lUXDAAAAAAAAAAAA2DyKovnEnWdzGgwGBQcHZ9p//vx5JSQkaPHixXriiSckyfSMTkt4enrqzJkzMhqNpoLdvcXJrNSpU0effvqpSpYsqcKFC1t8Xul24XfAgAFauHBhlvvj4uLUqFEj07KxknI1C/Vux44d0/nz5zV16lT5+PhIkvbv32/WJzAwUOvWrTNr27dvn9nrOnXq6MiRI6pUqZJF57+fBzHunRm86enpOfZzdnb+/+Vy75XzcQAAAAAAAAAAAAUNy+fmE/b29jp69KiOHDlitjTsHcWKFVOJEiW0aNEiJSYm6ttvv800CzA3mjVrpnPnzmnatGlKSkrS/PnztX79+vse16NHDz3yyCPq2LGjduzYoZMnTyo2NlaDBw/Wr7/+mqtz9+vXT+fOnVPfvn2z3O/v76/9+/dr48aNOn78uMaOHZupWHk/vr6+cnJy0nvvvaeff/5Za9as0cSJE836vPzyyzp27JhGjhyp48ePa9WqVYqMjJT0v5mdI0eO1K5duzRo0CAdPHhQJ06c0FdffWWazZtXD2LckiVLysXFRRs2bNDvv/+uy5cv/61MAAAAAAAAAAAABR1F0XykcOHC2c7CtLOzU1RUlA4cOKBq1app6NChevfddy0+R1BQkBYsWKD58+erZs2a2rt3r8LCwu57nKurq7Zv3y5fX1917txZQUFB6tOnj65fv57rmaMODg565JFH5OCQ9QTll19+WZ07d1a3bt306KOP6vz582azRnPD09NTkZGR+uyzz1SlShVNnTpV06dPN+tTvnx5ff7554qOjlaNGjW0cOFCjR49WpJMMytr1Kihbdu26fjx43riiSdUu3ZtjRs3Tt7e3hbludeDGNfBwUFz587VBx98IG9vb3Xs2PFvZQIAAAAAAAAAACjoWD7Xiu7MTszO6tWrzV63atVKR44cMWu7+/mgfn5+mZ4XWrRo0Uxt/fv3V//+/c3a3nzzzfvm8vLy0vLly3PMfLes8tytVq1aZvudnZ0VERGhiIgIs35TpkzJMdvs2bPNXoeEhCgkJMSs7d4cHTp0UIcOHUyvJ02apLJly6pQoUKmtvr162vTpk3Z5j916lSmtnvPk9U9yMu49y5x3Ldv32xn3AIAAAAAAAAAAMAcRVH8Ky1YsED169dXiRIlFBcXp3ffffdvL40LAAAAAAAAAAD+OUajwdoRYEMoiuJf6cSJE3r77bd14cIF+fr6avjw4Ro1apS1YwEAAAAAAAAAAOAhoCiKf6VZs2Zp1qxZ1o4BAAAAAAAAAACAf4CdtQMAAAAAAAAAAAAAwMNEURQAAAAAAAAAAABAgcbyuQAAAAAAAAAAALA5RqO1E8CWMFMUAAAAAAAAAAAAQIFGURQAAAAAAAAAAABAgUZRFAAAAAAAAAAAAECBRlEUAAAAAAAAAAAAQIHmYO0AAAAAAAAAAAAAgKUyjNZOAFvCTFEAAAAAAAAAAAAABRpFUQAAAAAAAAAAAAAFGkVRAAAAAAAAAAAAAAUaRVEAAAAAAAAAAAAABRpFUQAAAAAAAAAAAAAFmoO1AwAAAAAAAAAAAACWMhqtnQC2xGA08pYBAAAAAAAAAACAbYnYau0E+cuLza2dIH9jpijwLzN+RZq1I1hsQk9Hfbjd2iks90ITaVJUurVjWGz0f+w1f721U1huYBtp5KJr1o5hsXdectGEj2zv63L88446cPyCtWNYrG5Acf2clGTtGHlSoWJFvbn0hrVjWGxyH2e983mGtWNYbOSzdoo7kmrtGBZrXMVdCUmnrR3DYoEVfbQp/qa1Y1jsyZpOWrjB2iks98pT0oaDtne/n6rlpK8P3LJ2DIu1r+ug6dG29+9gWGc7bfnR9r7vtKrhrHXf297PVm3rOGrNftv73UGSOtSzV/Re23uPd25gp28cA60dw2Lt0hJs9n4fPHHO2jEsVsvf09oR8mzcctv7Xv9WLyftS7hk7RgWqx9YVNsPX7F2DIs1qeqm2EO29/8ozaq56L1vbG+e16vtDNaOAEA8UxQAAAAAAAAAAABAAUdRFAAAAAAAAAAAAECBxvK5AAAAAAAAAAAAsDlG21tNGVbETFEAAAAAAAAAAAAABRpFUQAAAAAAAAAAAAAFGkVRAAAAAAAAAAAAAAUaRVEAAAAAAAAAAAAABZqDtQMAAAAAAAAAAAAAlsowWjsBbAkzRQEAAAAAAAAAAAAUaBRFAQAAAAAAAAAAABRoFEUBAAAAAAAAAAAAFGgURQEAAAAAAAAAAAAUaA7WDgAAAAAAAAAAAABYymi0dgLYEmaKAgAAAAAAAAAAACjQKIpCkhQXF6fq1avL0dFRnTp1snYcAAAAAAAAAAAA4IGhKGojTp8+rd69e8vb21tOTk4qV66chgwZovPnzz+Q8YcNG6ZatWrp5MmTioyMfCBjAgAAAAAAAAAAAPkBRVEb8PPPP6tevXo6ceKEPvnkEyUmJur9999XTEyMGjZsqAsXLvztcyQlJalFixYqW7asihYtmqcxbt68+bdzWFtBuAYAAAAAAAAAAACYoyhqAwYOHCgnJydt2rRJTZs2la+vr9q0aaMtW7bot99+0+jRo019/fz8NHnyZPXu3VseHh7y9fXVokWLsh371KlTMhgMOn/+vHr37i2DwaDIyEilp6erT58+Kl++vFxcXBQYGKg5c+aYHRsaGqpOnTpp0qRJ8vb2VmBgoGm8VatW6YknnpCLi4vq16+v48ePa9++fapXr57c3d3Vpk0bnTt3LsfrPnTokNq0aSN3d3eVKlVKL7zwgv744w/T/mbNmmnw4MEaMWKEihcvLi8vL4WHh5uNcenSJfXt21eenp4qXLiwWrRoofj4eNP+8PBw1apVS0uWLFH58uVVqFAhSdKxY8f0+OOPq1ChQqpSpYq2bNkig8Gg1atXS5JatGihQYMGmZ3r3LlzcnJyUkxMTJbXc+d+3e21115Ts2bNTK8///xzVa9eXS4uLipRooRatWqlK1eumPYvWbJEQUFBKlSokCpXrqwFCxbkeA8BAAAAAAAAAABAUTTfu3DhgjZu3KgBAwbIxcXFbJ+Xl5d69OihTz/9VEaj0dQ+Y8YM1atXTz/88IMGDBigV155RQkJCVmO7+Pjo5SUFBUuXFizZ89WSkqKunXrpoyMDJUtW1afffaZjhw5onHjxunNN9/UqlWrzI6PiYlRQkKCNm/erLVr15rax48frzFjxuj777+Xg4ODunfvrhEjRmjOnDnasWOHEhMTNW7cuGyv+9KlS2rRooVq166t/fv3a8OGDfr999/VtWtXs37Lly+Xm5ub9uzZo2nTpumtt97S5s2bTfufe+45nT17VuvXr9eBAwdUp04dtWzZ0mx2bWJior744gtFR0fr4MGDSk9PV6dOneTq6qo9e/Zo0aJFZoVnSerbt69WrlypGzdumNo++ugjlSlTRi1atMj2unKSkpKikJAQ9e7dW0ePHlVsbKw6d+5s+tx+/PHHGjdunCZNmqSjR49q8uTJGjt2rJYvX56n8wEAAAAAAAAAYMsyMtju3pAzB2sHQM5OnDgho9GooKCgLPcHBQXp4sWLOnfunEqWLClJatu2rQYMGCBJGjlypGbNmqWtW7cqMDAw0/H29vby8vKSwWBQkSJF5OXlZdo3YcIE08fly5fX7t27tWrVKrPCpJubm5YsWSInJydJt2eeSlJYWJiCg4MlSUOGDFFISIhiYmLUuHFjSVKfPn1yfHbpvHnzVLt2bU2ePNnUtmzZMvn4+Oj48eMKCAiQJNWoUUPjx4+XJPn7+2vevHmKiYlR69attXPnTu3du1dnz56Vs7OzJGn69OlavXq1Pv/8c7300kuSbi+Zu2LFCnl6ekqSNmzYoKSkJMXGxprux6RJk9S6dWtTls6dO2vQoEH66quvTPcjMjJSoaGhMhgM2V5XTlJSUnTr1i117txZ5cqVkyRVr17dtH/8+PGaMWOGOnfuLOn25+TIkSP64IMP1KtXr0zj3bhxw6xoK+n/7wN/CwEAAAAAAAAAAP5dqI7YiLtngt5PjRo1TB8bDAZ5eXnp7NmzkmRajtbd3V1Vq1bNcZz58+erbt268vT0lLu7uxYtWqTk5GSzPtWrVzcVRLPLUKpUKVPfu9vuZMpKfHy8tm7dasrq7u6uypUrS7r9/NOsziNJpUuXNo0bHx+v1NRUlShRwmyckydPmo1Rrlw5U0FUkhISEuTj42NWIG7QoIHZeQoVKqQXXnhBy5YtkyR9//33OnTokEJDQ7O9pvupWbOmWrZsqerVq+u5557T4sWLdfHiRUnSlStXlJSUpD59+phdy9tvv212LXebMmWKihQpYrZNmTIlz/kAAAAAAAAAAABsFTNF87lKlSrJYDDo6NGjeuaZZzLtP3r0qIoVK2ZW1HN0dDTrYzAYlPH/86aXLFmia9euZdnvblFRUQoLC9OMGTPUsGFDeXh46N1339WePXvM+rm5uWV5/N1j35k5eW9bRg5zuVNTU9W+fXu98847mfaVLl06y/PcO25qaqpKly6t2NjYTGMULVr0vtdwP3379lWtWrX066+/KiIiQi1atDDN8MyKnZ1dpuJ2Wlqa6WN7e3tt3rxZu3bt0qZNm/Tee+9p9OjR2rNnj1xdXSVJixcv1qOPPmo2hr29fZbnGzVqlIYNG2bW5uzsrMmfWnSZAAAAAAAAAAAANo+iaD5XokQJtW7dWgsWLNDQoUPNnit65swZffzxx+rZs2eul2wtU6ZMrvrFxcWpUaNGpmV4JWU7I/FhqFOnjr744gv5+fnJwSFvb9M6derozJkzcnBwkJ+fX66PCwwM1OnTp/X777+bZrnu27cvU7/q1aurXr16Wrx4sVauXKl58+blOK6np6cOHTpk1nbw4MFMxeLGjRurcePGGjdunMqVK6cvv/xSw4YNk7e3t37++Wf16NEjV9fh7OxsWjbYXFoWbQAAAAAAAAAAAAUXy+fagHnz5unGjRsKDg7W9u3bdfr0aW3YsEGtW7dWmTJlNGnSpAd+Tn9/f+3fv18bN27U8ePHNXbs2CwLgw/LwIEDdeHCBYWEhGjfvn1KSkrSxo0b9eKLLyo9PT1XY7Rq1UoNGzZUp06dtGnTJp06dUq7du3S6NGjtX///myPa926tSpWrKhevXrpxx9/VFxcnMaMGSNJmYrPffv21dSpU2U0GrOcyXu3Fi1aaP/+/VqxYoVOnDih8ePHmxVJ9+zZo8mTJ2v//v1KTk5WdHS0zp07Z3qe7IQJEzRlyhTNnTtXx48f108//aSIiAjNnDkzV/cDAAAAAAAAAICCxGhku3tDziiK2oA7BcoKFSqoa9euqlixol566SU1b95cu3fvVvHixR/4OV9++WV17txZ3bp106OPPqrz58+bzRp92Ly9vRUXF6f09HQ9+eSTql69ul577TUVLVpUdna5e9saDAatW7dOTZo00YsvvqiAgAD95z//0S+//GKaAZoVe3t7rV69Wqmpqapfv7769u2r0aNHS7r9LNG7hYSEyMHBQSEhIZn23Ss4OFhjx47ViBEjVL9+ff3111/q2bOnaX/hwoW1fft2tW3bVgEBARozZoxmzJihNm3aSLpdgF2yZIkiIiJUvXp1NW3aVJGRkSpfvnyu7gcAAAAAAAAAAMC/Fcvn2ohy5copMjLyvv1OnTqVqe3gwYP3Pe7SpUtmr52dnRUREaGIiAiz9ilTppg+ziqPn59fpudmNmvWLFNbaGioQkNDc8zk7++v6OjobPdn9azQ1atXm7328PDQ3LlzNXfu3CzHCA8PV3h4eKb2ypUra+fOnabXcXFxkm4/4/Vuf/zxh65fv64+ffpkm/NuEyZM0IQJE7LcFxQUpA0bNuR4fPfu3dW9e/dcnQsAAAAAAAAAAAC3URQFsvDll1/K3d1d/v7+SkxM1JAhQ9S4cWNVrFhRkpSWlqbz589rzJgxeuyxx1SnTh0rJwYAAAAAAAAAAEB2KIoCWfjrr780cuRIJScn65FHHlGrVq00Y8YM0/64uDg1b95cAQEB+vzzz62YFAAAAAAAAAAAAPdDURTIQs+ePc2e93mvrJYEBgAAAAAAAAAA/xz+mx6WsLN2AAAAAAAAAAAAAAB4mCiKAgAAAAAAAAAAACjQKIoCAAAAAAAAAAAAKNAoigIAAAAAAAAAAAAo0CiKAgAAAAAAAAAAACjQHKwdAAAAAAAAAAAAALBUhtHaCWBLmCkKAAAAAAAAAAAAoECjKAoAAAAAAAAAAACgQKMoCgAAAAAAAAAAAKBAoygKAAAAAAAAAAAAoEBzsHYAAAAAAAAAAAAAwFJGo9HaEfIZg7UD5GvMFAUAAAAAAAAAAABQoFEUBQAAAAAAAAAAAFCgURQFAAAAAAAAAAAAUKAZjCy4DAAAAAAAAAAAABszbx0lrrsNasszRXPiYO0AAP5Z73yeYe0IFhv5rJ3W7E+3dgyLdahnr/c3WjuF5foHS5Gx1k5hudBm0vof0qwdw2Jtajtq8qe29/5+s5u9zeaesdo2f1ge3smg195LtXYMi81+1V0LN1g7heVeeUp65d1L1o5hsYWvF9X0aNv7Xh/W2U5D59ne+3vWIHeFLbxq7RgWm/6Kq74/ft7aMSxWJ6CE3lx6w9oxLDa5j7NGL7O93JN6O2tJjLVTWK5vS+mz72zv38HnHrPTDyf+sHaMPKnt/4g+ibO9n69CGhsUvdf23iudG9jpG8dAa8ewWLu0BG2Kv2ntGBZ7sqaTtSPk2fgVtvf78YSejrrw4w5rx7BY8RpP6PyhXdaOYbES1Rpp19G/rB3DYo2CPPR/7N15XFRl///x9yCrgqBFoobigoa5b6lULtkNbkma+0YumYa7uVQoioYWmltu3SrqbW65ZGquuSSZioppIprFTd1RlomGJi4zvz/8OV9HFhkzhxlfz8fjPB6cc65znfc5DMPoh+s6MzfZ3++dAS0oVP1TGPYHazB9LgAAAAAAAAAAAACHRlEUAAAAAAAAAAAAgEOjKAoAAAAAAAAAAADAoVEUBQAAAAAAAAAAAODQKIoCAAAAAAAAAAAAcGjOtg4AAAAAAAAAAAAAWMtotHUC2BNGigIAAAAAAAAAAABwaBRFAQAAAAAAAAAAADg0iqIAAAAAAAAAAAAAHBpFUQAAAAAAAAAAAAAOzdnWAQAAAAAAAAAAAABrmUy2TgB7wkhRAAAAAAAAAAAAAA6NoigAAAAAAAAAAAAAh0ZRFAAAAAAAAAAAAIBDoygKAAAAAAAAAAAAwKFRFIXNhYeHKywszNYx8iQuLk4+Pj75ph8AAAAAAAAAAB5VRhPLnQtyR1EUCg8Pl8FgkMFgkIuLi8qUKaMRI0bo6tWrto7mEAICAjRt2jSLbR06dNDp06dtEwgAAAAAAAAAAOAR42zrAMgfQkNDtWjRIl2/fl2HDx9Wjx49ZDAYNHny5Pvu8/r163JxcXmAKR2Hh4eHPDw8bB0DAAAAAAAAAADgkcBIUUiS3Nzc5OfnJ39/f4WFhalp06bavn27eX92ox2rV6+uqKgo87rBYNCcOXP00ksvqVChQpo4caJu3rypXr16qUyZMvLw8FDFihU1ffp0q7Ldnmp2/fr1CgwMlLu7u0JCQvTjjz9atJszZ47KlSsnV1dXVaxYUUuXLrXYfztfs2bN5OHhobJly+qTTz4x79+9e7cMBoPS09PN2xITE2UwGJSSkpJttrNnz6p169YqVqyYPD09VadOHe3YscO8v1GjRvrvf/+rIUOGmEfj3nlN1ub/97//rZdfflkFCxZUYGCgNmzYkNfbCAAAAAAAAAAA8MiiKIosTpw4oa+++kqurq5WHxsVFaWXX35Zx48fV8+ePWU0GvXkk09q9erVOnnypMaMGaO33npLq1atsqrfK1euaOLEiVqyZIni4+OVnp6ujh07mvevW7dOgwYN0rBhw3TixAn17dtXr776qnbt2mXRT2RkpNq2batjx46pS5cu6tixo5KSkqy+ztsyMjLUvHlz7dy5U0ePHlVoaKhatWql1NRUSdLatWv15JNPavz48UpLS1NaWlq2/eQ1/7hx49S+fXt98803at68ubp06aI//vjjvvMDAAAAAAAAAAA8Cpg+F5KkjRs3ytPTUzdu3FBmZqacnJw0a9Ysq/vp3LmzXn31VYtt48aNM39dpkwZ7d+/X6tWrVL79u3z3O/169c1a9YsPfPMM5KkxYsXKygoSAcPHlTdunUVGxur8PBw9e/fX5I0dOhQff3114qNjVXjxo3N/bRr1069e/eWJEVHR2v79u2aOXOmZs+ebfW1SlK1atVUrVo183p0dLTWrVunDRs2KCIiQkWLFlWBAgXk5eUlPz+/HPvJa/7w8HB16tRJkvTuu+9qxowZOnjwoEJDQ7P0mZmZqczMTIttbm5ukpjSGAAAAAAAAAAAPFoYKQpJUuPGjZWYmKgDBw6oR48eevXVV9W2bVur+6ldu3aWbR9++KFq1aolX19feXp6av78+eaRlHnl7OysOnXqmNefeuop+fj4mEd5JiUlKTg42OKY4ODgLKNA69evn2X9744UHT58uIKCguTj4yNPT08lJSVZfX15zV+1alXz14UKFVLhwoV17ty5bPuMiYmRt7e3xRITE2NVLgAAAAAAAAAA8iuTieXOBbmjKApJtwps5cuXV7Vq1bRw4UIdOHBACxYsMO93cnKS6a6fqOvXr2fbz51WrFih4cOHq1evXtq2bZsSExP16quv6tq1a//MhfwNTk63fhzuvM7srvFOw4cP17p16/Tuu+/qyy+/VGJioqpUqfKPXZ+Li+UoT4PBIKPRmG3b0aNH6+LFixbL6NGj/5FcAAAAAAAAAAAA+RlFUWTh5OSkt956S++8847++usvSZKvr6/F8zAvXbqkH3744Z59xcfHq0GDBurfv79q1Kih8uXL6+zZs1ZnunHjhhISEszrycnJSk9PV1BQkCQpKChI8fHxWc5dqVIli21ff/11lvXbffj6+kqSxXUmJibmmis+Pl7h4eF6+eWXVaVKFfn5+SklJcWijaurq27evJlrP3nNbw03NzcVLlzYYrk1fS4AAAAAAAAAAMCjhaIostWuXTsVKFBAH374oSSpSZMmWrp0qb788ksdP35cPXr0UIECBe7ZT2BgoBISErR161adPn1akZGROnTokNV5XFxcNGDAAB04cECHDx9WeHi46tWrp7p160qS3nzzTcXFxWnOnDk6c+aMpk6dqrVr12r48OEW/axevVoLFy7U6dOnNXbsWB08eFARERGSpPLly8vf319RUVE6c+aMNm3apClTptzz+tauXavExEQdO3ZMnTt3zjJyMyAgQHv37tX//vc//f7779n2k9f8AAAAAAAAAAAAsB5FUWTL2dlZEREReu+993T58mWNHj1aDRs2VMuWLdWiRQuFhYWpXLly9+ynb9++atOmjTp06KBnnnlG58+fV//+/a3OU7BgQY0cOVKdO3dWcHCwPD09tXLlSvP+sLAwTZ8+XbGxsXr66ac1b948LVq0SI0aNbLoZ9y4cVqxYoWqVq2qJUuWaPny5ebRmC4uLlq+fLlOnTqlqlWravLkyZowYUKuuaZOnaoiRYqoQYMGatWqlUJCQlSzZk2LNuPHj1dKSorKlStnHo16t7zmBwAAAAAAAAAAgPWcbR0AthcXF5ft9lGjRmnUqFHm9RUrVljs79Gjh8X63c8clW5N4bpo0SItWrTIYntMTMw9z3+3Nm3aqE2bNjnu79evn/r165drHyVKlNC2bdty3B8cHKxvvvnGYtud1xUeHq7w8HDzekBAgL744guL9m+88YbFer169XTs2DGLbXf3k5f82d3f9PT0HNsDAAAAAAAAAODITMas/2/+aDPYOkC+xkhRAAAAAAAAAAAAAA6NoigAAAAAAAAAAAAAh0ZRFPleeHj4A5km1mQyKSws7G/3AwAAAAAAAAAAAPtCURQAAAAAAAAAAACAQ3O2dQAAAAAAAAAAAADAWkaTrRPAnjBSFAAAAAAAAAAAAIBDoygKAAAAAAAAAAAAwKFRFAUAAAAAAAAAAADg0CiKAgAAAAAAAAAAAHBozrYOAAAAAAAAAAAAAFjLZLJ1AtgTRooCAAAAAAAAAAAAcGgURQEAAAAAAAAAAAA4NIqiAAAAAAAAAAAAABwaRVEAAAAAAAAAAAAADo2iKAAAAAAAAAAAAACH5mzrAAAAAAAAAAAAAIC1jEaTrSPAjhhMJhOvGAAAAAAAAAAAANiVmFU3bR0hXxndvoCtI+RrjBQFHjHTP7O/v4MY1MqguVttncJ6r4dIUz+1v/s9tLVBS/bYOoX1uje039d3xNSLto5htVlDvXX0zO+2jmG1GoGPK+1Uoq1j3JfiT1XXe2uMto5htRFtnTTuP9dtHcNqY7u6aPeJv2wdw2qNKnvou7M/2DqG1cqXK6PPj9rf66RZDRe7/YxyZfF4W8ewWsEeY7T2oP29D7ap66TmPY/bOobVNi+sYrefCVd/bX+vk3b1nOzyfVC69V74ny/t73N41+cMSjzzm61jWK16oK+2Hbtm6xhW+1c1V21yqWjrGFZrcT3Z1hHu29gl9veeMq67i/7avdzWMazm0aiT/vpiqa1jWM2jSTd9+12arWNY7enyxTVni61TWK9fqK0TAJB4pigAAAAAAAAAAAAAB0dRFAAAAAAAAAAAAIBDY/pcAAAAAAAAAAAA2B2T/c3iDxtipCgAAAAAAAAAAAAAh0ZRFAAAAAAAAAAAAIBDoygKAAAAAAAAAAAAwKFRFAUAAAAAAAAAAAAeMR9++KECAgLk7u6uZ555RgcPHsy1/erVq/XUU0/J3d1dVapU0ebNmx9S0geDoigAAAAAAAAAAADsjsnEcudijZUrV2ro0KEaO3asjhw5omrVqikkJETnzp3Ltv1XX32lTp06qVevXjp69KjCwsIUFhamEydOPIDv5MNBURQAAAAAAAAAAACwc5mZmbp06ZLFkpmZmW3bqVOnqk+fPnr11VdVqVIlzZ07VwULFtTChQuzbT99+nSFhobqzTffVFBQkKKjo1WzZk3NmjXrn7ykB4qiKAAAAAAAAAAAAGDnYmJi5O3tbbHExMRkaXft2jUdPnxYTZs2NW9zcnJS06ZNtX///mz73r9/v0V7SQoJCcmxfX7kbOsAAAAAAAAAAAAAAP6e0aNHa+jQoRbb3NzcsrT7/fffdfPmTRUrVsxie7FixXTq1Kls+/7ll1+ybf/LL7/8zdQPD0VRAAAAAAAAAAAAwM65ubllWwTFLUyfCwAAAAAAAAAAADwiHn/8cRUoUEC//vqrxfZff/1Vfn5+2R7j5+dnVfv8iKIoAAAAAAAAAAAA7I7RZGK5Y8krV1dX1apVSzt37vy/e2k0aufOnapfv362x9SvX9+ivSRt3749x/b5EdPnAgAAAAAAAAAAAI+QoUOHqkePHqpdu7bq1q2radOm6fLly3r11VclSd27d1fJkiUVExMjSRo0aJAaNmyoKVOmqEWLFlqxYoUSEhI0f/58W16GVRgpijwLCAjQtGnTbB3Dpnbv3i2DwaD09PR80Q8AAAAAAAAAAIC1OnTooNjYWI0ZM0bVq1dXYmKitmzZomLFikmSUlNTlZaWZm7foEEDffzxx5o/f76qVaumTz75ROvXr1flypVtdQlWY6ToI6RRo0aqXr16lsJmXFycBg8eTIHuH5LdfW/QoIHS0tLk7e1tu2AAAAAAAAAAAOCRFRERoYiIiGz37d69O8u2du3aqV27dv9wqn8OI0VxT9euXbN1BIfj6uoqPz8/GQwGW0cBAAAAAAAAAABweBRFkUV4eLjCwsI0ceJElShRQhUrVjTv+/PPP9WpUycVKlRIJUuW1Icffmhx7NSpU1WlShUVKlRI/v7+6t+/vzIyMsz74+Li5OPjo61btyooKEienp4KDQ21GIJ9t9tTzW7atElVq1aVu7u76tWrpxMnTli0W7NmjZ5++mm5ubkpICBAU6ZMsdgfEBCg6OjoHPOnpKTIYDAoMTHRvC09PV0GgyHbv4iQpPPnz6tTp04qWbKkChYsqCpVqmj58uUW93LPnj2aPn26DAaDDAaDUlJSsp0+Ny/53333XfXs2VNeXl4qVaqUXc3VDQAAAAAAAADAg2Qysty5IHcURZGtnTt3Kjk5Wdu3b9fGjRvN299//31Vq1ZNR48e1ahRozRo0CBt377dvN/JyUkzZszQt99+q8WLF+uLL77QiBEjLPq+cuWKYmNjtXTpUu3du1epqakaPnz4PTO9+eabmjJlig4dOiRfX1+1atVK169flyQdPnxY7du3V8eOHXX8+HFFRUUpMjJScXFxFn3cK7+1rl69qlq1amnTpk06ceKEXnvtNXXr1k0HDx6UJE2fPl3169dXnz59lJaWprS0NPn7+2fpJ6/5p0yZotq1a+vo0aPq37+/+vXrp+Tk5PvODwAAAAAAAAAA8CjgmaLIVqFChfTvf/9brq6uFtuDg4M1atQoSVKFChUUHx+vDz74QC+++KIkafDgwea2AQEBmjBhgl5//XXNnj3bvP369euaO3euypUrJ+nWnNXjx4+/Z6axY8eaz7N48WI9+eSTWrdundq3b6+pU6fqhRdeUGRkpDnbyZMn9f777ys8PDzP+a1VsmRJi4LugAEDtHXrVq1atUp169aVt7e3XF1dVbBgQfn5+eXYT17zN2/eXP3795ckjRw5Uh988IF27dplMZr3tszMTGVmZlpsc3Nzk+SapS0AAAAAAAAAAIAjY6QoslWlSpUsBVFJql+/fpb1pKQk8/qOHTv0wgsvqGTJkvLy8lK3bt10/vx5XblyxdymYMGC5oKoJBUvXlznzp27Z6Y7z120aFFVrFjRfO6kpCQFBwdbtA8ODtaZM2d08+bNPOe31s2bNxUdHa0qVaqoaNGi8vT01NatW5WammpVP3nNX7VqVfPXBoNBfn5+Od67mJgYeXt7WywxMTFW5QIAAAAAAAAAAHAEFEUfIYULF9bFixezbE9PT5e3t7fFtkKFClndf0pKilq2bKmqVatqzZo1Onz4sPmZndeuXTO3c3FxsTjOYDDIZDJZfb4Hzcnp1o/DnVluT8+bk/fff1/Tp0/XyJEjtWvXLiUmJiokJMTieh+k7O6d0Zj9ROGjR4/WxYsXLZbRo0f/I7kAAAAAAAAAAADyM6bPfYRUrFhR27Zty7L9yJEjqlChQp76+Prrr7OsBwUFSbr1XEyj0agpU6aYC4yrVq36m6ktz1WqVClJ0oULF3T69GnzuYOCghQfH2/RPj4+XhUqVFCBAgXylN/X11eSlJaWpho1akiSEhMTc80UHx+v1q1bq2vXrpIko9Go06dPq1KlSuY2rq6uFqM9s5PX/NZwc3P7/9Pl3s32BWgAAAAAAAAAAP6u/DDgCvaDougjpF+/fpo1a5YGDhyo3r17y83NTZs2bdLy5cv12Wef5amP+Ph4vffeewoLC9P27du1evVqbdq0SZJUvnx5Xb9+XTNnzlSrVq0UHx+vuXPnPrD848eP12OPPaZixYrp7bff1uOPP66wsDBJ0rBhw1SnTh1FR0erQ4cO2r9/v2bNmmXxLNN75ffw8FC9evU0adIklSlTRufOndM777yTa6bAwEB98skn+uqrr1SkSBFNnTpVv/76q0VRNCAgQAcOHFBKSoo8PT1VtGjRLP3kNT8AAAAAAAAAAACsx/S5j5CyZctq7969OnXqlJo2bapnnnlGq1at0urVqxUaGpqnPoYNG6aEhATVqFFDEyZM0NSpUxUSEiJJqlatmqZOnarJkyercuXKWrZs2QN9huWkSZM0aNAg1apVS7/88os+++wz83NPa9asqVWrVmnFihWqXLmyxowZo/Hjxys8PDzP+SVp4cKFunHjhmrVqqXBgwdrwoQJuWZ65513VLNmTYWEhKhRo0by8/MzF2pvGz58uAoUKKBKlSrJ19c32+eN5jU/AAAAAAAAAAAArMdI0UdMnTp1sp1C905xcXHZbk9JSbln/0OGDNGQIUMstnXr1s38dXh4eJZCX1hYWJ6GuD/77LM6ceJEjvvbtm2rtm3b5tpH4cKFc53SNygoSF999ZXFtjuzNWrUyGK9aNGiWr9+fa7nrFChgvbv32+xLSAgIMs13yt/dvf/XtP7AgAAAAAAAAAAgJGiAAAAAAAAAAAAABwcRVEAAAAAAAAAAAAADo3pc5Hv3T1l7f3Ky/S/AAAAAAAAAADAPhiNtk4Ae8JIUQAAAAAAAAAAAAAOjaIoAAAAAAAAAAAAAIdGURQAAAAAAAAAAACAQ6MoCgAAAAAAAAAAAMChOds6AAAAAAAAAAAAAGAtk8lk6wiwI4wUBQAAAAAAAAAAAODQKIoCAAAAAAAAAAAAcGgURQEAAAAAAAAAAAA4NIqiAAAAAAAAAAAAAByas60DAAAAAAAAAAAAANYymmydAPaEkaIAAAAAAAAAAAAAHBpFUQAAAAAAAAAAAAAOjaIoAAAAAAAAAAAAAIdmMJlMzLgMAAAAAAAAAAAAu/JO3DVbR8hXJoS72jpCvsZIUQAAAAAAAAAAAAAOzdnWAQAAAAAAAAAAAABrmYxMhoq8Y6QoAAAAAAAAAAAAAIdGURQAAAAAAAAAAACAQ6MoCgAAAAAAAAAAAMChURQFAAAAAAAAAAAA4NCcbR0AAAAAAAAAAAAAsJbJZOsEsCeMFAUAAAAAAAAAAADg0CiKAgAAAAAAAAAAAHBoFEUBAAAAAAAAAAAAODSKogAAAAAAAAAAAAAcmrOtAwAAAAAAAAAAAADWMhpNto4AO8JIUQAAAAAAAAAAAAAOjaIoAAAAAAAAAAAAAIdGURQAAAAAAAAAAACAQ6MoCgAAAAAAAAAAAMChURS1U40aNdLgwYMf6jnj4uLk4+PzUM/5sKWkpMhgMCgxMdEm5w8PD1dYWJh53RbfZwAAAAAAAAAA7IHJZGK5Y0HunG0dADkLDw/X4sWLs2w/c+aM1q5dKxcXl4eap0OHDmrevPlDPefD5u/vr7S0ND3++OM2Of/06dN54wIAAAAAAAAAAHjAKIrmc6GhoVq0aJHFNl9fXxUoUCDX465duyZXV9cHmsXDw0MeHh4PtM+8+CeuJScFChSQn5/fQzlXdry9vW12bgAAAAAAAAAAAEfF9Ln5nJubm/z8/CyWAgUKZJlWNSAgQNHR0erevbsKFy6s1157TZK0b98+Pffcc/Lw8JC/v78GDhyoy5cvm4+bPXu2AgMD5e7urmLFiumVV17JMcvd0+dGRUWpevXqWrp0qQICAuTt7a2OHTvqzz//zPWa1qxZo6efflpubm4KCAjQlClTLPbndC0fffSR/P39VbBgQb388suaOnWqRZ6zZ8+qdevWKlasmDw9PVWnTh3t2LEjS9/vvvuuevbsKS8vL5UqVUrz5883789u+txvv/1WLVu2VOHCheXl5aXnnntOZ8+ezfbaLly4oC5dusjX11ceHh4KDAy0KGofP35cTZo0kYeHhx577DG99tprysjIMO+/e/rcu1nz/QIAAAAAAAAAAMAtFEUdSGxsrKpVq6ajR48qMjJSZ8+eVWhoqNq2batvvvlGK1eu1L59+xQRESFJSkhI0MCBAzV+/HglJydry5Ytev75560659mzZ7V+/Xpt3LhRGzdu1J49ezRp0qQc2x8+fFjt27dXx44ddfz4cUVFRSkyMlJxcXG5Xkt8fLxef/11DRo0SImJiXrxxRc1ceJEi2MyMjLUvHlz7dy5U0ePHlVoaKhatWql1NRUi3ZTpkxR7dq1dfToUfXv31/9+vVTcnJytnn/97//6fnnn5ebm5u++OILHT58WD179tSNGzeybR8ZGamTJ0/q888/V1JSkubMmWOeivfy5csKCQlRkSJFdOjQIa1evVo7duwwfz/u5UF8vwAAAAAAAAAAAB5FTJ+bz23cuFGenp7m9WbNmmn16tXZtm3SpImGDRtmXu/du7e6dOliHlEaGBioGTNmqGHDhpozZ45SU1NVqFAhtWzZUl5eXipdurRq1KhhVT6j0ai4uDh5eXlJkrp166adO3dmKVjeNnXqVL3wwguKjIyUJFWoUEEnT57U+++/r/Dw8Byv5e2331azZs00fPhw83FfffWVNm7caG5TrVo1VatWzbweHR2tdevWacOGDRaFx+bNm6t///6SpJEjR+qDDz7Qrl27VLFixSx5P/zwQ3l7e2vFihXmZ7hWqFAhx/uRmpqqGjVqqHbt2pJujUy97eOPP9bVq1e1ZMkSFSpUSJI0a9YstWrVSpMnT1axYsVy7Pd239Z8vzIzM5WZmWmxzc3NTW5ubrmeBwAAAAAAAAAAwNEwUjSfa9y4sRITE83LjBkzcmx7uxB327FjxxQXFydPT0/zEhISIqPRqB9++EEvvviiSpcurbJly6pbt25atmyZrly5YlW+gIAAc0FUkooXL65z587l2D4pKUnBwcEW24KDg3XmzBndvHkzx2tJTk5W3bp1LbbdvZ6RkaHhw4crKChIPj4+8vT0VFJSUpaRolWrVjV/bTAY5Ofnl2PmxMREPffcc+aC6L3069dPK1asUPXq1TVixAh99dVX5n1JSUmqVq2auSB6+9qNRmOOI1XvZO33KyYmRt7e3hZLTExMnq4DAAAAAAAAAID8zmRkuXNB7iiK5nOFChVS+fLlzUvx4sVzbXunjIwM9e3b16KoeuzYMZ05c0blypWTl5eXjhw5ouXLl6t48eIaM2aMqlWrpvT09Dznu7tYaDAYZDT+/Z+8u68lL4YPH65169bp3Xff1ZdffqnExERVqVJF165ds2hnTWYPDw+rMjRr1kz//e9/NWTIEP3888964YUXzKNb/y5rv1+jR4/WxYsXLZbRo0c/kCwAAAAAAAAAAAD2hKKoA6tZs6ZOnjxpUVS9vbi6ukqSnJ2d1bRpU7333nv65ptvlJKSoi+++OIfyxQUFKT4+HiLbfHx8apQoYIKFCiQ43EVK1bUoUOHLLbdvR4fH6/w8HC9/PLLqlKlivz8/JSSkvK38latWlVffvmlrl+/nudjfH191aNHD/3nP//RtGnTNH/+fEm3rv3YsWO6fPmyRWYnJ6dsp+7NjjXfLzc3NxUuXNhiYepcAAAAAAAAAADwKKIo6sBGjhypr776ShEREUpMTNSZM2f06aefmp+vuXHjRs2YMUOJiYn673//qyVLlshoNOa5QHc/hg0bpp07dyo6OlqnT5/W4sWLNWvWrHuOphwwYIA2b96sqVOn6syZM5o3b54+//xzGQwGc5vAwECtXbvWPCK2c+fOf3vUakREhC5duqSOHTsqISFBZ86c0dKlS3Oc7nbMmDH69NNP9d133+nbb7/Vxo0bFRQUJEnq0qWL3N3d1aNHD504cUK7du3SgAED1K1bt3s+T1SyzfcLAAAAAAAAAADAEVAUdWBVq1bVnj17dPr0aT333HOqUaOGxowZoxIlSkiSfHx8tHbtWjVp0kRBQUGaO3euli9frqeffvofy1SzZk2tWrVKK1asUOXKlTVmzBiNHz9e4eHhuR4XHBysuXPnaurUqapWrZq2bNmiIUOGyN3d3dxm6tSpKlKkiBo0aKBWrVopJCRENWvW/Ft5H3vsMX3xxRfKyMhQw4YNVatWLX300Uc5PmPU1dVVo0ePVtWqVfX888+rQIECWrFihSSpYMGC2rp1q/744w/VqVNHr7zyil544QXNmjUrT1ls8f0CAAAAAAAAAABwBAaTyWSydQjgfvTp00enTp3Sl19+aesoAAAAAAAAAADgIRs+54qtI+Qrsf0K2jpCvuZs6wBAXsXGxurFF19UoUKF9Pnnn2vx4sWaPXu2rWMBAAAAAAAAAAAgn6MoCrtx8OBBvffee/rzzz9VtmxZzZgxQ71797Z1LAAAAAAAAAAAAORzFEVhN1atWmXrCAAAAAAAAAAAALBDTrYOAAAAAAAAAAAAAAD/JEaKAgAAAAAAAAAAwO6YTCZbR4AdYaQoAAAAAAAAAAAAAIdGURQAAAAAAAAAAACAQ6MoCgAAAAAAAAAAAMChURQFAAAAAAAAAAAA4NAoigIAAAAAAAAAAABwaM62DgAAAAAAAAAAAABYy2g02ToC7AgjRQEAAAAAAAAAAAA4NIqiAAAAAAAAAAAAABwaRVEAAAAAAAAAAAAADo2iKAAAAAAAAAAAAACH5mzrAAAAAAAAAAAAAIC1TCZbJ4A9YaQoAAAAAAAAAAAAAIdGURQAAAAAAAAAAACAQ2P6XOARM37ZDVtHsNqYLs6KmHrR1jGsNmuot95bY7R1DKuNaOukuVttncJ6r4dIg2dm2DqG1aYN8OT1/RCNaOukMYuv2TrGfRnfw1X/3mnrFNbr/YI06qOrto5htUl93DVy/l+2jmG1ya95aNjsy7aOYbUp/QvZ7etk+Jwrto5htdh+BRW71v7ew4e3cbLb3/X2er8HTLtk6xhWmzm4sAZN/9PWMaw2fZCXhsyyv9e3JH0Q4Wm399wePxeO7+GqsUuu2zqG1cZ1d7Hb3PZqk0tFW0ewWovryZq44qatY1jt7Y4F7Pb/26KX21/uyE7Oenthpq1jWG1iTzdbRwAgRooCAAAAAAAAAAAAcHCMFAUAAAAAAAAAAIDdMRlNto4AO8JIUQAAAAAAAAAAAAAOjaIoAAAAAAAAAAAAAIdGURQAAAAAAAAAAACAQ6MoCgAAAAAAAAAAAMChURQFAAAAAAAAAAAA4NCcbR0AAAAAAAAAAAAAsJbRZLJ1BNgRRooCAAAAAAAAAAAAcGgURQEAAAAAAAAAAAA4NIqiAAAAAAAAAAAAABwaRVEAAAAAAAAAAAAADs3Z1gEAAAAAAAAAAAAAa5mMJltHgB1hpCgAAAAAAAAAAAAAh2aXRdFGjRpp8ODBD/WccXFx8vHxsXkf/+S5o6KiVL169YeSJ68CAgI0bdq0B9ZfXl478+fPl7+/v5ycnB7ouQEAAAAAAAAAAGAb+bYoGh4eLoPBkGX57rvvtHbtWkVHRz/UPB06dNDp06cf6jkfpAeRf/fu3TIYDEpPT38wofLg0KFDeu211x7a+S5duqSIiAiNHDlS//vf/x7que/2oAvCAAAAAAAAAAAAj6p8/UzR0NBQLVq0yGKbr6+vChQokOtx165dk6ur6wPN4uHhIQ8Pjwfa58P0MPM/yPvv6+v7QPrJq9TUVF2/fl0tWrRQ8eLF77uf69evy8XF5QEmAwAAAAAAAAAAwP3KtyNFJcnNzU1+fn4WS4ECBbJMgRoQEKDo6Gh1795dhQsXNo/u27dvn5577jl5eHjI399fAwcO1OXLl83HzZ49W4GBgXJ3d1exYsX0yiuv5Jjl7ulnb081u3TpUgUEBMjb21sdO3bUn3/+ec/r2rp1q4KCguTp6anQ0FClpaWZ92U3vWtYWJjCw8MtrnfChAnq3r27PD09Vbp0aW3YsEG//fabWrduLU9PT1WtWlUJCQk55pekSZMmqVixYvLy8lKvXr109erVHDOnpKSocePGkqQiRYrIYDCYMzVq1EgREREaPHiwHn/8cYWEhEiS9uzZo7p168rNzU3FixfXqFGjdOPGDYtrjYiIUEREhLy9vfX4448rMjJSJtP/PRj57tGS6enp6tu3r4oVKyZ3d3dVrlxZGzdulCSdP39enTp1UsmSJVWwYEFVqVJFy5cvz/kbcZe4uDhVqVJFklS2bFkZDAalpKRIkubMmaNy5crJ1dVVFStW1NKlSy2ONRgMmjNnjl566SUVKlRIEydOlCR9+umnqlmzptzd3VW2bFmNGzfOfA9MJpOioqJUqlQpubm5qUSJEho4cKD53vz3v//VkCFDzKOkJem///2vWrVqpSJFiqhQoUJ6+umntXnz5jxfIwAAAAAAAAAAjsJkNLHcsSB3+booao3Y2FhVq1ZNR48eVWRkpM6ePavQ0FC1bdtW33zzjVauXKl9+/YpIiJCkpSQkKCBAwdq/PjxSk5O1pYtW/T8889bdc6zZ89q/fr12rhxozZu3Kg9e/Zo0qRJuR5z5coVxcbGaunSpdq7d69SU1M1fPhwq6/3gw8+UHBwsI4ePaoWLVqoW7du6t69u7p27aojR46oXLly6t69u0WB8U6rVq1SVFSU3n33XSUkJKh48eKaPXt2jufz9/fXmjVrJEnJyclKS0vT9OnTzfsXL14sV1dXxcfHa+7cufrf//6n5s2bq06dOjp27JjmzJmjBQsWaMKECRb9Ll68WM7Ozjp48KCmT5+uqVOn6t///ne2GYxGo5o1a6b4+Hj95z//0cmTJzVp0iTzyOGrV6+qVq1a2rRpk06cOKHXXntN3bp108GDB/N0Tzt06KAdO3ZIkg4ePKi0tDT5+/tr3bp1GjRokIYNG6YTJ06ob9++evXVV7Vr1y6L46OiovTyyy/r+PHj6tmzp7788kt1795dgwYN0smTJzVv3jzFxcWZC6Zr1qzRBx98oHnz5unMmTNav369uSi7du1aPfnkkxo/frzS0tLMhfM33nhDmZmZ2rt3r44fP67JkyfL09MzT9cHAAAAAAAAAADwqMrX0+du3LjRouDTrFkzrV69Otu2TZo00bBhw8zrvXv3VpcuXcyjLgMDAzVjxgw1bNhQc+bMUWpqqgoVKqSWLVvKy8tLpUuXVo0aNazKZzQaFRcXJy8vL0lSt27dtHPnTnPRKzvXr1/X3LlzVa5cOUlSRESExo8fb9V5Jal58+bq27evJGnMmDGaM2eO6tSpo3bt2kmSRo4cqfr16+vXX3+Vn59fluOnTZumXr16qVevXpKkCRMmaMeOHTmOFi1QoICKFi0qSXriiSeyjDoNDAzUe++9Z15/++235e/vr1mzZslgMOipp57Szz//rJEjR2rMmDFycrpVj/f399cHH3wgg8GgihUr6vjx4/rggw/Up0+fLBl27NihgwcPKikpSRUqVJB0a0TnbSVLlrQoMA8YMEBbt27VqlWrVLdu3dxvqG5NMfzYY49JujVt7+37Fhsbq/DwcPXv31+SNHToUH399deKjY01j56VpM6dO+vVV181r/fs2VOjRo1Sjx49zFmjo6M1YsQIjR07VqmpqfLz81PTpk3l4uKiUqVKmXMWLVpUBQoUkJeXl8X3LzU1VW3btrUY0ZqTzMxMZWZmWmxzc3OTlPv00wAAAAAAAAAAAI4mX48Ubdy4sRITE83LjBkzcmxbu3Zti/Vjx44pLi5Onp6e5iUkJERGo1E//PCDXnzxRZUuXVply5ZVt27dtGzZMl25csWqfAEBAeaCqCQVL15c586dy/WYggULmguieT0mO1WrVjV/XaxYMUkyF8ru3JZT30lJSXrmmWcsttWvX9/qHLfVqlUrS//169c3T/sqScHBwcrIyNBPP/1k3lavXj2LNvXr19eZM2d08+bNLOdITEzUk08+aS6I3u3mzZuKjo5WlSpVVLRoUXl6emrr1q1KTU297+u6fS3BwcEW24KDg5WUlGSxLbvX4Pjx4y1eg3369FFaWpquXLmidu3a6a+//lLZsmXVp08frVu3zmJ64ewMHDhQEyZMUHBwsMaOHatvvvkmx7YxMTHy9va2WGJiYqy8egAAAAAAAAAAAPuXr4uihQoVUvny5c1L8eLFc217p4yMDPXt29eiqHrs2DGdOXNG5cqVk5eXl44cOaLly5erePHiGjNmjKpVq6b09PQ853NxcbFYNxgMMhqNVh9z5xS3Tk5OWaa8vX79eq793C4qZrftXnkelLvv/z/Bw8Mj1/3vv/++pk+frpEjR2rXrl1KTExUSEiIrl279o9nk7J/DY4bN87iNXj8+HGdOXNG7u7u8vf3V3JysmbPni0PDw/1799fzz//fLbf79t69+6t77//Xt26ddPx48dVu3ZtzZw5M9u2o0eP1sWLFy2W0aNHP9BrBgAAAAAAAAAAsAf5uij6d9SsWVMnT560KKreXlxdXSVJzs7Oatq0qd577z198803SklJ0RdffGHT3L6+vubnR0q3Rj+eOHHigZ8nKChIBw4csNj29ddf53rM7fuW3SjO7Prfv3+/RYE3Pj5eXl5eevLJJ83bsssQGBhofk7onapWraqffvpJp0+fzvac8fHxat26tbp27apq1aqpbNmyOba1RlBQkOLj47Ocq1KlSrkeV7NmTSUnJ2f7Grw9fbCHh4datWqlGTNmaPfu3dq/f7+OHz8u6db9zu5e+/v76/XXX9fatWs1bNgwffTRR9me383NTYULF7ZYbk2fCwAAAAAAAAAA8GjJ188U/TtGjhypevXqKSIiQr1791ahQoV08uRJbd++XbNmzdLGjRv1/fff6/nnn1eRIkW0efNmGY1GVaxY0aa5mzRpoqFDh2rTpk0qV66cpk6datXo1bwaNGiQwsPDVbt2bQUHB2vZsmX69ttvc31GZenSpWUwGLRx40Y1b95cHh4eFs98vVP//v01bdo0DRgwQBEREUpOTtbYsWM1dOhQc0FQuvWMzKFDh6pv3746cuSIZs6cqSlTpmTbZ8OGDfX888+rbdu2mjp1qsqXL69Tp07JYDAoNDRUgYGB+uSTT/TVV1+pSJEimjp1qn799dd7Fi/v5c0331T79u1Vo0YNNW3aVJ999pnWrl2rHTt25HrcmDFj1LJlS5UqVUqvvPKKnJycdOzYMZ04cUITJkxQXFycbt68qWeeeUYFCxbUf/7zH3l4eKh06dKSbk3PvHfvXnXs2FFubm56/PHHNXjwYDVr1kwVKlTQhQsXtGvXLgUFBf2t6wMAAAAAAAAAwB4ZTfduA9zmsCNFq1atqj179uj06dN67rnnVKNGDY0ZM0YlSpSQJPn4+Gjt2rVq0qSJgoKCNHfuXC1fvlxPP/20TXP37NlTPXr0UPfu3dWwYUOVLVtWjRs3fuDn6dChgyIjIzVixAjVqlVL//3vf9WvX79cjylZsqTGjRunUaNGqVixYoqIiMi17ebNm3Xw4EFVq1ZNr7/+unr16qV33nnHol337t31119/qW7dunrjjTc0aNAgvfbaazn2u2bNGtWpU0edOnVSpUqVNGLECPNoynfeeUc1a9ZUSEiIGjVqJD8/P4WFheX9puQgLCxM06dPV2xsrJ5++mnNmzdPixYtUqNGjXI9LiQkRBs3btS2bdtUp04d1atXTx988IG56Onj46OPPvpIwcHBqlq1qnbs2KHPPvtMjz32mCRp/PjxSklJUbly5eTr6yvp1ijdN954Q0FBQQoNDVWFChU0e/bsv32NAAAAAAAAAAAAjizfjhSNi4vLcd/u3bst1lNSUrJtV6dOHW3bti3bfc8++2yWfnITHh6u8PBw83pUVJSioqIs2gwePFiDBw/Ocx/SrYLbnVPMuri4aPbs2bkWurK73rufQxoQEGCxLbtzv/XWW3rrrbcstk2ePDnH80pSZGSkIiMjLbbldB8bNmyogwcP5tqfi4uLpk2bpjlz5mS7/+5rLVq0qBYuXJht26JFi2r9+vW5nu9e3/Pq1atnuZeS1K9fv1yLxtkdI90qjIaEhGS7LywsLNeibb169XTs2DGLbTk9PxQAAAAAAAAAAAA5c9iRogAAAAAAAAAAAAAgURQFAAAAAAAAAAAA4ODy7fS5cHzWTF8MAAAAAAAAAABwJ5Mx+0fbAdlhpCgAAAAAAAAAAAAAh0ZRFAAAAAAAAAAAAIBDoygKAAAAAAAAAAAAwKFRFAUAAAAAAAAAAADg0JxtHQAAAAAAAAAAAACwlslksnUE2BFGigIAAAAAAAAAAABwaBRFAQAAAAAAAAAAADg0iqIAAAAAAAAAAAAAHBpFUQAAAAAAAAAAAAAOzdnWAQAAAAAAAAAAAABrGY0mW0eAHWGkKAAAAAAAAAAAAACHRlEUAAAAAAAAAAAAgEOjKAoAAAAAAAAAAADAoVEUBQAAAAAAAAAAAODQDCaTiafQAgAAAAAAAAAAwK70efe8rSPkKx+99ZitI+RrzrYOAODhmrXZ/v4OIqK5Qe+uvGnrGFZ7q0MBzdtm6xTW6/svaf0h+7vfYXUK6KMdtk5hvT5NpUHT/7R1DKtNH+SlHd9k2jqG1ZpWddPps6m2jnFfKpQrpfHLbtg6htXGdHHW5E+Mto5htZGvOGnVfvvL3b6+kw6eumjrGFar+5S34nbbOoX1whtJU9bb32erYWEGXf10lq1jWM29dYTd/lyG9T9t6xhWWz+7gt1+lt2QYH+fZV+qXUDHv/vV1jHuS5XyxbTiK/t7L+zYwKBDyem2jmG1OhV99Mc3X9o6htWKVn1Of+1ebusYVvNo1MnWEe7bxBX29174dscC2uRS0dYxrNbierL2BFW3dQyrNUxK1I9nTto6htX8AytpzhZbp7Bev1BbJ3BcjPuDNZg+FwAAAAAAAAAAAIBDoygKAAAAAAAAAAAAwKFRFAUAAAAAAAAAAADg0CiKAgAAAAAAAAAAAHBozrYOAAAAAAAAAAAAAFjLZDTZOgLsCCNFAQAAAAAAAAAAADg0iqIAAAAAAAAAAAAAHBpFUQAAAAAAAAAAAAAOjaIoAAAAAAAAAAAAAIfmbOsAAAAAAAAAAAAAgLVMRpOtI8COMFIUAAAAAAAAAAAAgEOjKAoAAAAAAAAAAADAoVEUBQAAAAAAAAAAAODQKIoCAAAAAAAAAAAAcGgURQEAAAAAAAAAAAA4NIqiDsRgMGj9+vW2jnFPjRo10uDBg/NNP/lRXFycfHx8bB0DAAAAAAAAAIB8y2gysdyxIHcURf8BBoMh1yUqKirHY1NSUmQwGJSYmPjAc4WHh5szuLq6qnz58ho/frxu3LjxwM/1IO3evVsGg0Hp6ekW29euXavo6GjbhLpLQECADAaDVqxYkWXf008/LYPBoLi4uIcfDAAAAAAAAAAAAHK2dQBHlJaWZv565cqVGjNmjJKTk83bPD09bRFLkhQaGqpFixYpMzNTmzdv1htvvCEXFxeNHj3aZpnuV9GiRW0dwYK/v78WLVqkjh07mrd9/fXX+uWXX1SoUCEbJgMAAAAAAAAAAHi0MVL0H+Dn52devL29ZTAYzOtPPPGEpk6dqieffFJubm6qXr26tmzZYj62TJkykqQaNWrIYDCoUaNGkqRDhw7pxRdf1OOPPy5vb281bNhQR44csTqbm5ub/Pz8VLp0afXr109NmzbVhg0bJEkXLlxQ9+7dVaRIERUsWFDNmjXTmTNnzMfentJ1/fr1CgwMlLu7u0JCQvTjjz+a24SHhyssLMzinIMHDzZfR3aWLl2q2rVry8vLS35+furcubPOnTsn6dbI2caNG0uSihQpIoPBoPDwcElZp8/Na/6tW7cqKChInp6eCg0NtShi/x1dunTRnj17LO7HwoUL1aVLFzk7W/79wdSpU1WlShUVKlRI/v7+6t+/vzIyMnLt/9NPP1XNmjXl7u6usmXLaty4cfl+lC8AAAAAAAAAAEB+QFH0IZs+fbqmTJmi2NhYffPNNwoJCdFLL71kLt4dPHhQkrRjxw6lpaVp7dq1kqQ///xTPXr00L59+/T1118rMDBQzZs3159//vm38nh4eOjatWuSbhU0ExIStGHDBu3fv18mk0nNmzfX9evXze2vXLmiiRMnasmSJYqPj1d6errFyMj7cf36dUVHR+vYsWNav369UlJSzIVPf39/rVmzRpKUnJystLQ0TZ8+Pdt+8po/NjZWS5cu1d69e5Wamqrhw4f/rfy3FStWTCEhIVq8eLH5XCtXrlTPnj2ztHVyctKMGTP07bffavHixfriiy80YsSIHPv+8ssv1b17dw0aNEgnT57UvHnzFBcXp4kTJz6Q7AAAAAAAAAAAAI6M6XMfstjYWI0cOdJcSJw8ebJ27dqladOm6cMPP5Svr68k6bHHHpOfn5/5uCZNmlj0M3/+fPn4+GjPnj1q2bKl1TlMJpN27typrVu3asCAATpz5ow2bNig+Ph4NWjQQJK0bNky+fv7a/369WrXrp2kWwXMWbNm6ZlnnpEkLV68WEFBQTp48KDq1q1r/Q2RLIqGZcuW1YwZM1SnTh1lZGTI09PTPE3uE088IR8fn2z7sCb/3LlzVa5cOUlSRESExo8ff1+5c7qWYcOG6e2339Ynn3yicuXKqXr16lna3TnCNSAgQBMmTNDrr7+u2bNnZ9vvuHHjNGrUKPXo0UPSrfsUHR2tESNGaOzYsdkek5mZqczMTIttbm5uklzv69oAAAAAAAAAAMhPTEaTrSPAjjBS9CG6dOmSfv75ZwUHB1tsDw4OVlJSUq7H/vrrr+rTp48CAwPl7e2twoULKyMjQ6mpqVZl2Lhxozw9PeXu7q5mzZqpQ4cOioqKUlJSkpydnc3FTulWYbZixYoW2ZydnVWnTh3z+lNPPSUfH5975s/N4cOH1apVK5UqVUpeXl5q2LChJFl1bXnNX7BgQXNBVJKKFy9unqo3O08//bQ8PT3l6empZs2a3TNHixYtlJGRob1792rhwoXZjhKVbo0EfuGFF1SyZEl5eXmpW7duOn/+vK5cuZJt+2PHjmn8+PHmLJ6enurTp4/S0tJyPCYmJkbe3t4WS0xMzD2vAQAAAAAAAAAAwNEwUtRO9OjRQ+fPn9f06dNVunRpubm5qX79+uapb/OqcePGmjNnjlxdXVWiRIksz7r8u5ycnGQyWf5lxp3T197t8uXLCgkJUUhIiJYtWyZfX1+lpqYqJCTE6mvLCxcXF4t1g8GQJe+dNm/ebM7v4eFxz/6dnZ3VrVs3jR07VgcOHNC6deuytElJSVHLli3Vr18/TZw4UUWLFtW+ffvUq1cvXbt2TQULFsxyTEZGhsaNG6c2bdpk2efu7p5tltGjR2vo0KEW29zc3PTRznteBgAAAAAAAAAAgEOhKPoQFS5cWCVKlFB8fLx5NKQkxcfHm6eedXW9NbXpzZs3LY6Nj4/X7Nmz1bx5c0nSjz/+qN9//93qDIUKFVL58uWzbA8KCtKNGzd04MAB8/Sz58+fV3JysipVqmRud+PGDSUkJJjzJicnKz09XUFBQZIkX19fnThxwqLvxMTELMXI206dOqXz589r0qRJ8vf3lyQlJCRYtMnpntxPfmuVLl3a6mN69uyp2NhYdejQQUWKFMmy//DhwzIajZoyZYqcnG4N1l61alWufdasWVPJycnZfu9y4ubm9v+ny70b0wkAAAAAAAAAAIBHC9PnPmRvvvmmJk+erJUrVyo5OVmjRo1SYmKiBg0aJOnWczM9PDy0ZcsW/frrr7p48aIkKTAwUEuXLlVSUpIOHDigLl265GnkYl4FBgaqdevW6tOnj/bt26djx46pa9euKlmypFq3bm1u5+LiogEDBujAgQM6fPiwwsPDVa9ePXORtEmTJkpISNCSJUt05swZjR07NkuR9E6lSpWSq6urZs6cqe+//14bNmxQdHS0RZvSpUvLYDBo48aN+u2335SRkXHf+R+GoKAg/f7771q0aFG2+8uXL6/r16+br3np0qWaO3durn2OGTNGS5Ys0bhx4/Ttt98qKSlJK1as0DvvvPNPXAIAAAAAAAAAAIBDoSj6kA0cOFBDhw7VsGHDVKVKFW3ZskUbNmxQYGCgpFvTr86YMUPz5s1TiRIlzAW9BQsW6MKFC6pZs6a6deumgQMH6oknnnig2RYtWqRatWqpZcuWql+/vkwmkzZv3mwxyrNgwYIaOXKkOnfurODgYHl6emrlypXm/SEhIYqMjNSIESNUp04d/fnnn+revXuO5/T19VVcXJxWr16tSpUqadKkSYqNjbVoU7JkSY0bN06jRo1SsWLFFBERcd/5H5bHHnssx6J1tWrVNHXqVE2ePFmVK1fWsmXL7vmsz5CQEG3cuFHbtm1TnTp1VK9ePX3wwQf3NZIVAAAAAAAAAABHYDKZWO5YkDumz/2HhYeHKzw83Lzu5OSksWPHauzYsTke07t3b/Xu3dtiW40aNXTo0CGLba+88orF+r1e8HFxcbnuL1KkiJYsWZJrG0lq06ZNts+2vG3cuHEaN25cjvt3795tsd6pUyd16tTJYtvd1xIZGanIyMhc+7lX/ru/F5IUFhb2QN4oUlJSct2fnp5usT5kyBANGTLEYlu3bt3MX2eX9fazVwEAAAAAAAAAAGAdRooCAAAAAAAAAAAAcGgURQEAAAAAAAAAAAA4NIqiyLPw8PAs08ACAAAAAAAAAAAA+R1FUQAAAAAAAAAAAAAOzdnWAQAAAAAAAAAAAABrGY0mW0eAHWGkKAAAAAAAAAAAAACHRlEUAAAAAAAAAAAAgEOjKAoAAAAAAAAAAADAoVEUBQAAAAAAAAAAAODQnG0dAAAAAAAAAAAAALCWyWiydQTYEUaKAgAAAAAAAAAAAHBoFEUBAAAAAAAAAAAAODSKogAAAAAAAAAAAAAcGkVRAAAAAAAAAAAAAA7N2dYBAAAAAAAAAAAAAGuZTCZbR4AdYaQoAAAAAAAAAAAAAIdmMFFGBwAAAAAAAAAAgJ3pPOonW0fIVz6e9KStI+RrTJ8LPGKmf2Z/fwcxqJVBMatu2jqG1Ua3L6APP7d1Cuu90Uz65IDR1jGs9sozTlr4ha1TWK9nEyli6kVbx7DarKHe2nn8qq1jWO2FKu46+d3Pto5xXyqVL2G374X2mnvVfvt7L2xf30n7Tl62dQyrPVupkJbssXUK63VvKE391P4+Ww1tbdDV1VNsHcNq7u2G2e1nlOY9j9s6htU2L6xit/92WHvQ/l4nbeo66cR3v9g6xn2pXN5PS/faOoX1uj0v7f3W/n5nPv90IZ0/8ZWtY1jtscoN9NcXS20dw2oeTbrZOsJ9G7/shq0jWG1MF2ftCapu6xhWa5iUqE0uFW0dw2otrifr7Pff2zqG1cqVLatZm+3vM0pEc4OtIwAQ0+cCAAAAAAAAAAAAcHAURQEAAAAAAAAAAAA4NKbPBQAAAAAAAAAAgN0xGe3v0QmwHUaKAgAAAAAAAAAAAHBoFEUBAAAAAAAAAAAAODSKogAAAAAAAAAAAAAcGkVRAAAAAAAAAAAAAA7N2dYBAAAAAAAAAAAAAGsZjSZbR4AdYaQoAAAAAAAAAAAAAIdGURQAAAAAAAAAAACAQ6MoCgAAAAAAAAAAAMChURQFAAAAAAAAAAAA4NCcbR0AAAAAAAAAAAAAsJbJZLJ1BNgRRooCAAAAAAAAAAAAcGgURQEAAAAAAAAAAAA4NIqi+YTBYND69ettHeOeGjVqpMGDB+ebfhxVSkqKDAaDEhMTbR0FAAAAAAAAAADA7lEUvYvBYMh1iYqKyvHYf7KQFR4ebs7g6uqq8uXLa/z48bpx48YDP9eDtHv3bhkMBqWnp1tsX7t2raKjo20T6i4BAQFZvs9PPvmkrWMBAAAAAAAAAADgAXG2dYD8Ji0tzfz1ypUrNWbMGCUnJ5u3eXp62iKWJCk0NFSLFi1SZmamNm/erDfeeEMuLi4aPXq0zTLdr6JFi9o6goXx48erT58+5vUCBQrYMA0AAAAAAAAAALgXk9Fk6wiwI4wUvYufn5958fb2lsFgMK8/8cQTmjp1qp588km5ubmpevXq2rJli/nYMmXKSJJq1Kghg8GgRo0aSZIOHTqkF198UY8//ri8vb3VsGFDHTlyxOpsbm5u8vPzU+nSpdWvXz81bdpUGzZskCRduHBB3bt3V5EiRVSwYEE1a9ZMZ86cMR8bFxcnHx8frV+/XoGBgXJ3d1dISIh+/PFHc5vw8HCFhYVZnHPw4MHm68jO0qVLVbt2bXl5ecnPz0+dO3fWuXPnJN0aOdu4cWNJUpEiRWQwGBQeHi4p6/S5ec2/detWBQUFydPTU6GhoRZF7L/jdv7bi6+vryTJaDQqJiZGZcqUkYeHh6pVq6ZPPvnEfNztkbBbt25VjRo15OHhoSZNmujcuXP6/PPPFRQUpMKFC6tz5866cuWK+bgtW7bo2WeflY+Pjx577DG1bNlSZ8+ezTXjiRMn1KxZM3l6eqpYsWLq1q2bfv/99wdy/QAAAAAAAAAAAI6MoqgVpk+frilTpig2NlbffPONQkJC9NJLL5mLdwcPHpQk7dixQ2lpaVq7dq0k6c8//1SPHj20b98+ff311woMDFTz5s31559//q08Hh4eunbtmqRbBc2EhARt2LBB+/fvl8lkUvPmzXX9+nVz+ytXrmjixIlasmSJ4uPjlZ6ero4dO/6tDNevX1d0dLSOHTum9evXKyUlxVz49Pf315o1ayRJycnJSktL0/Tp07PtJ6/5Y2NjtXTpUu3du1epqakaPnz438p/LzExMVqyZInmzp2rb7/9VkOGDFHXrl21Z88ei3ZRUVGaNWuWvvrqK/34449q3769pk2bpo8//libNm3Stm3bNHPmTHP7y5cva+jQoUpISNDOnTvl5OSkl19+WUajMdsc6enpatKkiWrUqKGEhARt2bJFv/76q9q3b/+PXj8AAAAAAAAAAIAjYPpcK8TGxmrkyJHmQuLkyZO1a9cuTZs2TR9++KF5dOFjjz0mPz8/83FNmjSx6Gf+/Pny8fHRnj171LJlS6tzmEwm7dy5U1u3btWAAQN05swZbdiwQfHx8WrQoIEkadmyZfL399f69evVrl07SbcKmLNmzdIzzzwjSVq8eLGCgoJ08OBB1a1b1/obIqlnz57mr8uWLasZM2aoTp06ysjIkKenp3ma3CeeeEI+Pj7Z9mFN/rlz56pcuXKSpIiICI0fP/6+ct9t5MiReuedd8zr7777rvr27at3331XO3bsUP369c3XuG/fPs2bN08NGzY0t58wYYKCg4MlSb169dLo0aN19uxZlS1bVpL0yiuvaNeuXRo5cqQkqW3bthbnX7hwoXx9fXXy5ElVrlw5S75Zs2apRo0aevfddy2O8ff31+nTp1WhQoUsx2RmZiozM9Nim5ubmyRXa24NAAAAAAAAAACA3WOkaB5dunRJP//8s7nwdVtwcLCSkpJyPfbXX39Vnz59FBgYKG9vbxUuXFgZGRlKTU21KsPGjRvl6ekpd3d3NWvWTB06dFBUVJSSkpLk7OxsLnZKtwqzFStWtMjm7OysOnXqmNefeuop+fj43DN/bg4fPqxWrVqpVKlS8vLyMhcKrbm2vOYvWLCguSAqScWLFzdP1Zudp59+Wp6envL09FSzZs1yzfDmm28qMTHRvHTv3l3fffedrly5ohdffNHcj6enp5YsWZJlqtuqVauavy5WrJgKFixoLoje3nZn1jNnzqhTp04qW7asChcurICAAEk537djx45p165dFjmeeuopScpx2t2YmBh5e3tbLDExMbneBwAAAAAAAAAAAEfESNGHoEePHjp//rymT5+u0qVLy83NTfXr1zdPfZtXjRs31pw5c+Tq6qoSJUrI2fnBfvucnJxkMlk+lPjO6WvvdvnyZYWEhCgkJETLli2Tr6+vUlNTFRISYvW15YWLi4vFusFgyJL3Tps3bzbn9/DwyLXvxx9/XOXLl7fYlpycLEnatGmTSpYsabHv1ojL7LMZDIZss945NW6rVq1UunRpffTRRypRooSMRqMqV66c433LyMhQq1atNHny5Cz7ihcvnu0xo0eP1tChQ7Pknrst2+YAAAAAAAAAAAAOi6JoHhUuXFglSpRQfHy8xbSp8fHx5qlnXV1vTUt68+ZNi2Pj4+M1e/ZsNW/eXJL0448/6vfff7c6Q6FChbIU7iQpKChIN27c0IEDB8zTz54/f17JycmqVKmSud2NGzeUkJBgzpucnKz09HQFBQVJknx9fXXixAmLvhMTE7MU+G47deqUzp8/r0mTJsnf31+SlJCQYNEmp3tyP/mtVbp06fs+VpIqVaokNzc3paamWnzP/67b1/bRRx/pueeekyTt27cv12Nq1qypNWvWKCAgIM/FcDc3tyzF21tyLiQDAAAAAAAAAGAvTEb+vxt5x/S5VnjzzTc1efJkrVy5UsnJyRo1apQSExM1aNAgSbeem+nh4aEtW7bo119/1cWLFyVJgYGBWrp0qZKSknTgwAF16dLlniMXrREYGKjWrVurT58+2rdvn44dO6auXbuqZMmSat26tbmdi4uLBgwYoAMHDujw4cMKDw9XvXr1zEXSJk2aKCEhQUuWLNGZM2c0duzYLEXSO5UqVUqurq6aOXOmvv/+e23YsEHR0dEWbUqXLi2DwaCNGzfqt99+U0ZGxn3nf9i8vLw0fPhwDRkyRIsXL9bZs2d15MgRzZw5U4sXL77vfosUKaLHHntM8+fP13fffacvvvgiy4jOu73xxhv6448/1KlTJx06dEhnz57V1q1b9eqrr+ZacAYAAAAAAAAAAABFUasMHDhQQ4cO1bBhw1SlShVt2bJFGzZsUGBgoKRbz+ycMWOG5s2bpxIlSpgLegsWLNCFCxdUs2ZNdevWTQMHDtQTTzzxQLMtWrRItWrVUsuWLVW/fn2ZTCZt3rzZYpRnwYIFNXLkSHXu3FnBwcHy9PTUypUrzftDQkIUGRmpESNGqE6dOvrzzz/VvXv3HM/p6+uruLg4rV69WpUqVdKkSZMUGxtr0aZkyZIaN26cRo0apWLFiikiIuK+89tCdHS0IiMjFRMTo6CgIIWGhmrTpk0qU6bMfffp5OSkFStW6PDhw6pcubKGDBmi999/P9djbo9Svnnzpv71r3+pSpUqGjx4sHx8fOTkxI8xAAAAAAAAAABAbpg+Nxfh4eEKDw83rzs5OWns2LEaO3Zsjsf07t1bvXv3tthWo0YNHTp0yGLbK6+8YrGe27MxJSkuLi7X/UWKFNGSJUtybSNJbdq0UZs2bXLcP27cOI0bNy7H/bt377ZY79Spkzp16mSx7e5riYyMVGRkZK793Cv/3d8LSQoLC7vnfcuLlJSUHPcZDAYNGjTIPBr4bo0aNcqSIbusUVFRioqKMq83bdpUJ0+etGhzZz8BAQFZ+g0MDNTatWtzuRIAAAAAAAAAAABkhyFmAAAAAAAAAAAAABwaI0UBAAAAAAAAAABgd4wmo60jwI4wUvQRER4ervT0dFvHAAAAAAAAAAAAAB46iqIAAAAAAAAAAAAAHBpFUQAAAAAAAAAAAAAOjaIoAAAAAAAAAAAAAIfmbOsAAAAAAAAAAAAAgLVMRpOtI8COMFIUAAAAAAAAAAAAgEOjKAoAAAAAAAAAAAAgW3/88Ye6dOmiwoULy8fHR7169VJGRkau7QcMGKCKFSvKw8NDpUqV0sCBA3Xx4sWHmDoriqIAAAAAAAAAAAAAstWlSxd9++232r59uzZu3Ki9e/fqtddey7H9zz//rJ9//lmxsbE6ceKE4uLitGXLFvXq1eshps6KZ4oCAAAAAAAAAAAAyCIpKUlbtmzRoUOHVLt2bUnSzJkz1bx5c8XGxqpEiRJZjqlcubLWrFljXi9XrpwmTpyorl276saNG3J2tk15kpGiAAAAAAAAAAAAgJ3LzMzUpUuXLJbMzMy/1ef+/fvl4+NjLohKUtOmTeXk5KQDBw7kuZ+LFy+qcOHCNiuIShRFAQAAAAAAAAAAYIdMRhPLHUtMTIy8vb0tlpiYmL91j3/55Rc98cQTFtucnZ1VtGhR/fLLL3nq4/fff1d0dHSuU+4+DBRFAQAAAAAAAAAAADs3evRoXbx40WIZPXp0tm1HjRolg8GQ63Lq1Km/nenSpUtq0aKFKlWqpKioqL/d39/BM0UBAAAAAAAAAAAAO+fm5iY3N7c8tR02bJjCw8NzbVO2bFn5+fnp3LlzFttv3LihP/74Q35+frke/+effyo0NFReXl5at26dXFxc8pTtn0JRFAAAAAAAAAAAAHiE+Pr6ytfX957t6tevr/T0dB0+fFi1atWSJH3xxRcyGo165plncjzu0qVLCgkJkZubmzZs2CB3d/cHlv1+MX0uAAAAAAAAAAAAgCyCgoIUGhqqPn366ODBg4qPj1dERIQ6duyoEiVKSJL+97//6amnntLBgwcl3SqI/utf/9Lly5e1YMECXbp0Sb/88ot++eUX3bx502bXYjCZTCabnR0AAAAAAAAAAAC4D637Jds6Qr7y6ZyK/0i/f/zxhyIiIvTZZ5/JyclJbdu21YwZM+Tp6SlJSklJUZkyZbRr1y41atRIu3fvVuPGjbPt64cfflBAQMA/kvNeKIoCj5h3V9rurzDu11sdCmjqp/b3VjW0tcFucy/ZY+sU1uveUBq/7IatY1htTBdnvb0w09YxrDaxp5t2n/jL1jGs1qiyh74+ddHWMe5Lvae8FbPK/t7DR7cvoGkb7O+9cPBL9vteuO/kZVvHsNqzlQrZ7f2OXWu0dQyrDW/jpG/OnLt3w3ymauATWv21/d3vdvWcNHbJdVvHsNq47i76eJ/9vX93ftag9Yfs7/dlWJ0Cdv0ZZcc39vd5tmlV+/08+1XSn7aOYbUGQV769rs0W8ew2tPli9s6wn2LXm5//z6O7OSsH8+ctHUMq/kHVtLZ77+3dQyrlStbVptc/pniyT+pxfVku/0Mjn8GRVFL/1RR1FHwkwgAAAAAAAAAAADAoVEUBQAAAAAAAAAAAODQKIoCAAAAAAAAAAAAcGjOtg4AAAAAAAAAAAAAWMtotL9nzMJ2GCkKAAAAAAAAAAAAwKFRFAUAAAAAAAAAAADg0CiKAgAAAAAAAAAAAHBoFEUBAAAAAAAAAAAAODSKogAAAAAAAAAAAAAcmrOtAwAAAAAAAAAAAADWMhlNto4AO8JIUQAAAAAAAAAAAAAOjaIoAAAAAAAAAAAAAIdGURQAAAAAAAAAAACAQ6MoCgAAAAAAAAAAAMChOds6AJAX4eHhSk9P1/r1622WoVGjRqpevbqmTZv2t/rJD9cCAAAAAAAAAIC9M5mMto4AO0JRFPftfoqED6qwaAtr166Vi4vL3+5n+vTpMplMDyARAAAAAAAAAAAA8oKiKJBHRYsWfSD9eHt7P5B+AAAAAAAAAAAAkDc8UxT3JTw8XHv27NH06dNlMBhkMBiUkpKiPXv2qG7dunJzc1Px4sU1atQo3bhxI9djbt68qV69eqlMmTLy8PBQxYoVNX369PvOZjQaFRMTY+6vWrVq+uSTT8z7d+/eLYPBoK1bt6pGjRry8PBQkyZNdO7cOX3++ecKCgpS4cKF1blzZ125csV8XKNGjTR48GDz+uzZsxUYGCh3d3cVK1ZMr7zyinnfJ598oipVqsjDw0OPPfaYmjZtqsuXL5vvQ1hYmLltZmamBg4cqCeeeELu7u569tlndejQoSx5d+7cqdq1a6tgwYJq0KCBkpOT7/seAQAAAAAAAAAAPEooiuK+TJ8+XfXr11efPn2UlpamtLQ0ubi4qHnz5qpTp46OHTumOXPmaMGCBZowYUKOx/j7+8toNOrJJ5/U6tWrdfLkSY0ZM0ZvvfWWVq1adV/ZYmJitGTJEs2dO1fffvuthgwZoq5du2rPnj0W7aKiojRr1ix99dVX+vHHH9W+fXtNmzZNH3/8sTZt2qRt27Zp5syZ2Z4jISFBAwcO1Pjx45WcnKwtW7bo+eeflySlpaWpU6dO6tmzp5KSkrR79261adMmxylzR4wYoTVr1mjx4sU6cuSIypcvr5CQEP3xxx8W7d5++21NmTJFCQkJcnZ2Vs+ePe/r/gAAAAAAAAAAADxqmD4X98Xb21uurq4qWLCg/Pz8JN0q2vn7+2vWrFkyGAx66qmn9PPPP2vkyJEaM2ZMtsdIUoECBTRu3DjzepkyZbR//36tWrVK7du3typXZmam3n33Xe3YsUP169eXJJUtW1b79u3TvHnz1LBhQ3PbCRMmKDg4WJLUq1cvjR49WmfPnlXZsmUlSa+88op27dqlkSNHZjlPamqqChUqpJYtW8rLy0ulS5dWjRo1JN0qit64cUNt2rRR6dKlJUlVqlTJNu/ly5c1Z84cxcXFqVmzZpKkjz76SNu3b9eCBQv05ptvmttOnDjRnH/UqFFq0aKFrl69Knd39xzvRWZmpsU2Nzc38WMPAAAAAAAAAHAEJmP2g5GA7DBSFA9MUlKS6tevL4PBYN4WHBysjIwM/fTTT7ke++GHH6pWrVry9fWVp6en5s+fr9TUVKszfPfdd7py5YpefPFFeXp6mpclS5bo7NmzFm2rVq1q/rpYsWIqWLCguSB6e9u5c+eyPc+LL76o0qVLq2zZsurWrZuWLVtmnmq3WrVqeuGFF1SlShW1a9dOH330kS5cuJBtP2fPntX169fNxVlJcnFxUd26dZWUlJRj3uLFi0tSjvmkWyNmvb29LZaYmJgc2wMAAAAAAAAAADgqiqKwuRUrVmj48OHq1auXtm3bpsTERL366qu6du2a1X1lZGRIkjZt2qTExETzcvLkSYvnikq3io+3GQwGi/Xb24xGY7bn8fLy0pEjR7R8+XIVL15cY8aMUbVq1ZSenq4CBQpo+/bt+vzzz1WpUiXNnDlTFStW1A8//GD19eSWV1KO+SRp9OjRunjxosUyevTov5UBAAAAAAAAAADAHlEUxX1zdXXVzZs3zetBQUHav3+/xbMz4+Pj5eXlpSeffDLbY263adCggfr3768aNWqofPnyWUZ15lWlSpXk5uam1NRUlS9f3mLx9/e/rz5z4uzsrKZNm+q9997TN998o5SUFH3xxReSbhUtg4ODNW7cOB09elSurq5at25dlj7KlSsnV1dXxcfHm7ddv35dhw4dUqVKlf5WPjc3NxUuXNhiuTV9LgAAAAAAAAAAwKOFhwvivgUEBOjAgQNKSUmRp6en+vfvr2nTpmnAgAGKiIhQcnKyxo4dq6FDh8rJySnbY4oWLarAwEAtWbJEW7duVZkyZbR06VIdOnRIZcqUsTqTl5eXhg8friFDhshoNOrZZ5/VxYsXFR8fr8KFC6tHjx4P5No3btyo77//Xs8//7yKFCmizZs3y2g0qmLFijpw4IB27typf/3rX3riiSd04MAB/fbbbwoKCsrST6FChdSvXz+9+eabKlq0qEqVKqX33ntPV65cUa9evR5IVgAAAAAAAAAAgEcdRVHct+HDh6tHjx6qVKmS/vrrL/3www/avHmz3nzzTVWrVk1FixZVr1699M477+R6TN++fXX06FF16NBBBoNBnTp1Uv/+/fX555/fV67o6Gj5+voqJiZG33//vXx8fFSzZk299dZbD+rS5ePjo7Vr1yoqKkpXr15VYGCgli9frqefflpJSUnau3evpk2bpkuXLql06dKaMmWKmjVrlm1fkyZNktFoVLdu3fTnn3+qdu3a2rp1q4oUKfLA8gIAAAAAAAAAADzKKIrivlWoUEH79++32BYQEKCDBw9adYwkLVq0SIsWLbLYFhMTY/46Li4uz7kMBoMGDRqkQYMGZbu/UaNGFlP8SlJ4eLjCw8MttkVFRSkqKsq8vnv3bvPXzz77rMX6nYKCgrRly5Yc8919Le7u7poxY4ZmzJiR57zVq1fPsg0AAAAAAAAAgEeJycj/kyPveKYoAAAAAAAAAAAAAIdGURR2JTU1VZ6enjkuqampto4IAAAAAAAAAACAfIbpc2FXSpQoocTExFz3AwAAAAAAAAAAAHeiKAq74uzsrPLly9s6BgAAAAAAAAAAAOwIRVEAAAAAAAAAAADYHaPJaOsIsCM8UxQAAAAAAAAAAACAQ6MoCgAAAAAAAAAAAMChURQFAAAAAAAAAAAA4NAoigIAAAAAAAAAAABwaM62DgAAAAAAAAAAAABYy2Q02ToC7AgjRQEAAAAAAAAAAAA4NIqiAAAAAAAAAAAAABwaRVEAAAAAAAAAAAAADo2iKAAAAAAAAAAAAACH5mzrAAAAAAAAAAAAAIC1TEajrSPAjjBSFAAAAAAAAAAAAIBDoygKAAAAAAAAAAAAwKEZTCaTydYhAAAAAAAAAAAAAGu82OWwrSPkK9uX1bJ1hHyNZ4oCj5grX662dQSrFXyuncYuuW7rGFYb191F762xvzntR7R10pjF12wdw2rje7gqevkNW8ewWmQnZ7t9fX+0w9YprNenqbRqv/39XEpS+/pOmvqp/f0t29DWBo2Y+5etY1jtvdc9NG2D/d3vwS8Z9MkB+3uNv/KMk2Zttr/7HdHcoLlbbZ3Ceq+HyG5f3x9+busU1nujmez2s9XMTfb3OhnQwn5/LmPX2t/7tyQNb+Nktz+b9voat9fcc7bYOoX1+oXaOsH9e3thpq0jWG1iTze7fZ3Y62dZe/zdM7yNkza5VLR1DKu1uJ5s6wgAxPS5AAAAAAAAAAAAABwcI0UBAAAAAAAAAABgd0xG+xupDdthpCgAAAAAAAAAAAAAh0ZRFAAAAAAAAAAAAIBDoygKAAAAAAAAAAAAwKFRFAUAAAAAAAAAAADg0JxtHQAAAAAAAAAAAACwlslktHUE2BFGigIAAAAAAAAAAABwaBRFAQAAAAAAAAAAADg0iqIAAAAAAAAAAAAAHBpFUQAAAAAAAAAAAAAOzdnWAQAAAAAAAAAAAABrGY0mW0eAHWGkKAAAAAAAAAAAAACHRlEUAAAAAAAAAAAAgEOjKAoAAAAAAAAAAADAoVEUBQAAAAAAAAAAAODQKIrm0f79+1WgQAG1aNHC1lH+UXFxcTIYDLkuKSkpto75QO3evVsGg0Hp6ek2y3Dz5k31799fxYsXV/PmzXXu3DmL/ZcuXdLbb7+tp556Su7u7vLz81PTpk21du1amUw8SBoAAAAAAAAAACA3FEXzaMGCBRowYID27t2rn3/++R89l8lk0o0bN/7Rc+SkQ4cOSktLMy/169dXnz59LLb5+/vbJJu1rl279tDPef369fs6bsWKFUpNTdXWrVtVs2ZNvfPOO+Z96enpatCggZYsWaLRo0fryJEj2rt3rzp06KARI0bo4sWLDyo+AAAAAAAAAAB2w2Q0styxIHcURfMgIyNDK1euVL9+/dSiRQvFxcWZ93Xu3FkdOnSwaH/9+nU9/vjjWrJkiSTJaDQqJiZGZcqUkYeHh6pVq6ZPPvnE3P72SMXPP/9ctWrVkpubm/bt26ezZ8+qdevWKlasmDw9PVWnTh3t2LHD4lxpaWlq0aKFPDw8VKZMGX388ccKCAjQtGnTzG3S09PVu3dv+fr6qnDhwmrSpImOHTuW7bV6eHjIz8/PvLi6uqpgwYLmdXd3d/Xt2zfHvqKiolS9enUtXLhQpUqVkqenp/r376+bN2/qvffek5+fn5544glNnDjR4rwGg0Fz5sxRs2bN5OHhobJly1rcI0n68ccf1b59e/n4+Kho0aJq3bq1xajV8PBwhYWFaeLEiSpRooQqVqwoSVq6dKlq164tLy8v+fn5qXPnzuaRmCkpKWrcuLEkqUiRIjIYDAoPD5ekLPdRkqpXr66oqKgsuV966SUVKlTIfF2ffvqpatasKXd3d5UtW1bjxo3LtdB94cIFBQQEqHLlyqpSpYrFqNW33npLKSkpOnDggHr06KFKlSqpQoUK6tOnjxITE+Xp6ZljvwAAAAAAAAAAAKAomierVq3SU089pYoVK6pr165auHChecrSLl266LPPPlNGRoa5/datW3XlyhW9/PLLkqSYmBgtWbJEc+fO1bfffqshQ4aoa9eu2rNnj8V5Ro0apUmTJikpKUlVq1ZVRkaGmjdvrp07d+ro0aMKDQ1Vq1atlJqaaj6me/fu+vnnn7V7926tWbNG8+fPzzL1art27XTu3Dl9/vnnOnz4sGrWrKkXXnhBf/zxh9X3Ii99nT17Vp9//rm2bNmi5cuXa8GCBWrRooV++ukn7dmzR5MnT9Y777yjAwcOWPQdGRmptm3b6tixY+rSpYs6duyopKQkSbcKzSEhIfLy8tKXX36p+Ph4eXp6KjQ01GJE6M6dO5WcnKzt27dr48aN5mOjo6N17NgxrV+/XikpKebCp7+/v9asWSNJSk5OVlpamqZPn27VPYmKitLLL7+s48ePq2fPnvryyy/VvXt3DRo0SCdPntS8efMUFxeXpRB8p65du2r//v1yc3PTsGHDzCNFjUajVqxYoS5duqhEiRJZjvP09JSzs7NVeQEAAAAAAAAAAB41VFPyYMGCBerataskKTQ0VBcvXtSePXvUqFEjhYSEqFChQlq3bp26desmSfr444/10ksvycvLS5mZmXr33Xe1Y8cO1a9fX5JUtmxZ7du3T/PmzVPDhg3N5xk/frxefPFF83rRokVVrVo183p0dLTWrVunDRs2KCIiQqdOndKOHTt06NAh1a5dW5L073//W4GBgeZj9u3bp4MHD+rcuXNyc3OTJMXGxmr9+vX65JNP9Nprr+X5PuS1L6PRqIULF8rLy0uVKlVS48aNlZycrM2bN8vJyUkVK1bU5MmTtWvXLj3zzDPm/tu1a6fevXubr3X79u2aOXOmZs+erZUrV8poNOrf//63DAaDJGnRokXy8fHR7t279a9//UuSVKhQIf373/+Wq6urud+ePXuavy5btqxmzJihOnXqKCMjQ56enipatKgk6YknnpCPj0+e78dtnTt31quvvmpxvlGjRqlHjx7mc0ZHR2vEiBEaO3Zstn34+Pjo8OHD+uWXX+Tr66sCBQpIkn7//XdduHBBTz31lNW5MjMzlZmZabHt9vcNAAAAAAAAAADgUUJR9B6Sk5N18OBBrVu3TpLk7OysDh06aMGCBWrUqJGcnZ3Vvn17LVu2TN26ddPly5f16aefasWKFZKk7777TleuXLEodkq3nndZo0YNi223C5u3ZWRkKCoqSps2bVJaWppu3Lihv/76yzxSNDk5Wc7OzqpZs6b5mPLly6tIkSLm9WPHjikjI0OPPfaYRd9//fWXzp49a9W9yGtfAQEB8vLyMq8XK1ZMBQoUkJOTk8W2u0e03i4a37memJhoPvd3331n0a8kXb161eLcVapUsSiIStLhw4cVFRWlY8eO6cKFCzL+/3m1U1NTValSpbxefo7u/r4dO3ZM8fHxFiNDb968qatXr+rKlSsqWLBgjn35+flZrN8ekXw/YmJiNG7cOIttY8eO1YgXnr7vPgEAAAAAAAAAAOwRRdF7WLBggW7cuGExdanJZJKbm5tmzZolb29vdenSRQ0bNtS5c+e0fft2eXh4KDQ0VJLM0+pu2rRJJUuWtOj77lF7hQoVslgfPny4tm/frtjYWJUvX14eHh565ZVXLKaLvZeMjAwVL15cu3fvzrLP2lGRee3LxcXFYp/BYMh2m9GKh/5mZGSoVq1aWrZsWZZ9vr6+5q/vvoeXL19WSEiIQkJCtGzZMvn6+io1NVUhISH3vI9OTk5ZipLXr1/P0u7uc2ZkZGjcuHFq06ZNlrbu7u65nvNuvr6+8vHx0alTp6w6TpJGjx6toUOHWmxzc3PTzYMbrO4LAAAAAAAAAID8xmS8/4FFePRQFM3FjRs3tGTJEk2ZMsU8PettYWFhWr58uV5//XU1aNBA/v7+WrlypT7//HO1a9fOXASsVKmS3NzclJqaajFVbl7Ex8crPDzc/GzSjIwMpaSkmPdXrFhRN27c0NGjR1WrVi1Jt0amXrhwwdymZs2a+uWXX+Ts7KyAgID7uAv/50H2lZ2vv/5a3bt3t1i/PZq2Zs2aWrlypZ544gkVLlw4z32eOnVK58+f16RJk+Tv7y9JSkhIsGhze2TpzZs3Lbb7+voqLS3NvH7p0iX98MMP9zxnzZo1lZycrPLly+c5Z06cnJzUsWNHLV26VGPHjs3yXNGMjAy5u7tn+1xRNze3bKfLvfK3UwEAAAAAAAAAANgXp3s3eXRt3LhRFy5cUK9evVS5cmWLpW3btlqwYIG5befOnTV37lxt375dXbp0MW/38vLS8OHDNWTIEC1evFhnz57VkSNHNHPmTC1evDjX8wcGBmrt2rVKTEzUsWPH1LlzZ4vRlU899ZSaNm2q1157TQcPHtTRo0f12muvycPDw/zczaZNm6p+/foKCwvTtm3blJKSoq+++kpvv/12luLgvTzIvrKzevVqLVy4UKdPn9bYsWN18OBBRURESJK6dOmixx9/XK1bt9aXX36pH374Qbt379bAgQP1008/5dhnqVKl5OrqqpkzZ+r777/Xhg0bFB0dbdGmdOnSMhgM2rhxo3777Tfz6N4mTZpo6dKl+vLLL3X8+HH16NHD/KzP3IwZM0ZLlizRuHHj9O233yopKUkrVqzQO++8c1/3ZeLEifL399czzzyjJUuW6OTJkzpz5owWLlyoGjVqmPMCAAAAAAAAAAAgexRFc7FgwQI1bdpU3t7eWfa1bdtWCQkJ+uabbyTdKtqdPHlSJUuWVHBwsEXb6OhoRUZGKiYmRkFBQQoNDdWmTZtUpkyZXM8/depUFSlSRA0aNFCrVq0UEhJi8fxQSVqyZImKFSum559/Xi+//LL69OkjLy8v8zStBoNBmzdv1vPPP69XX31VFSpUUMeOHfXf//5XxYoVs+p+PMi+sjNu3DitWLFCVatW1ZIlS7R8+XLzMz8LFiyovXv3qlSpUmrTpo2CgoLUq1cvXb16NdeRo76+voqLi9Pq1atVqVIlTZo0SbGxsRZtSpYsqXHjxmnUqFEqVqyYuRA7evRoNWzYUC1btlSLFi0UFhamcuXK3fM6QkJCtHHjRm3btk116tRRvXr19MEHH6h06dL3dV+KFi2qr7/+Wl27dtWECRNUo0YNPffcc1q+fLnef//9bF+fAAAAAAAAAAAA+D9Mn5uLzz77LMd9devWtXjeZFBQUJbnT95mMBg0aNAgDRo0KNv9jRo1yvbYgIAAffHFFxbb3njjDYv14sWLa/Pmzeb1n376SefOnbOYutXLy0szZszQjBkzcryenNz9/NB79RUVFaWoqCiLbXFxcffsV5JKlCihbdu25ZjFz88v19G12Z1Hkjp16qROnTpZbLv7fkdGRioyMtJiW+HChbVixQqLbT169Mi1n9tuP8f0QfH29lZMTIxiYmIeWJ8AAAAAAAAAAACPCoqidu6LL75QRkaGqlSporS0NI0YMUIBAQF6/vnnbR0NAAAAAAAAAADgH2MyGe/dCPj/KIrauevXr+utt97S999/Ly8vLzVo0EDLli2Ti4uLraMBAAAAAAAAAAAA+QJFUTv3oKdptZWcpqEFAAAAAAAAAAAA/i4nWwcAAAAAAAAAAAAAgH8SRVEAAAAAAAAAAAAADo2iKAAAAAAAAAAAAACHxjNFAQAAAAAAAAAAYHdMRpOtI8COMFIUAAAAAAAAAAAAgEOjKAoAAAAAAAAAAADAoVEUBQAAAAAAAAAAAODQKIoCAAAAAAAAAAAAcGjOtg4AAAAAAAAAAAAAWMtkNNo6AuwII0UBAAAAAAAAAAAAODSKogAAAAAAAAAAAAAcGkVRAAAAAAAAAAAAAA6NoigAAAAAAAAAAAAAx2YCgL/p6tWrprFjx5quXr1q6yhWIffDRe6Hi9wPl73mNpnsNzu5Hy5yP1zkfrjI/XCR++Gy19wmk/1mJ/fDRe6Hi9wPF7kfLnvNDcA6BpPJZLJ1YRaAfbt06ZK8vb118eJFFS5c2NZx8ozcDxe5Hy5yP1z2mluy3+zkfrjI/XCR++Ei98NF7ofLXnNL9pud3A8XuR8ucj9c5H647DU3AOswfS4AAAAAAAAAAAAAh0ZRFAAAAAAAAAAAAIBDoygKAAAAAAAAAAAAwKFRFAXwt7m5uWns2LFyc3OzdRSrkPvhIvfDRe6Hy15zS/abndwPF7kfLnI/XOR+uMj9cNlrbsl+s5P74SL3w0Xuh4vcD5e95gZgHYPJZDLZOgQAAAAAAAAAAAAA/FMYKQoAAAAAAAAAAADAoVEUBQAAAAAAAAAAAODQKIoCAAAAAAAAAAAAcGgURQEAAAAAAAAAAAA4NIqiAAAAwCPor7/+snUEAAAAAACAh4aiKAAAdsZkMtk6wiOF+w1HtHTpUjVp0kS//fabraMgn3vzzTe1f/9+W8cA4ED4bAUAsBV+BwGgKAogR7c/KPzyyy8yGo02TpM3d3+44cPOP+/2Pb5586bFOh6sAwcOmL82GAx2dZ/tKevdTCaTDAaDJNlN8Wjbtm1KSkqydYxHRna/H/Pza95oNMpkMunGjRuSpFdffVW///67jVM9Guzls9SdTpw4oa+//loDBw7U4cOHbR3HKvZ4vyX7zX2n/PweeDdHuN/2xmg0mj9bATmx13/X3/2eYi/vMXfmzMzMtGGSR4+9vLbtXXJysrZv366ff/6Z30EAKIoCyJnBYNDq1asVHh6u77//3tZx7unOf2AnJCTowoULdvNh5/YH4aSkJJ04ccLGafLudsFox44dGjp0qC5dumQX9zy7f3jk53+MfPbZZwoLC1OXLl309ttv66+//rKL+yxZFhUXLVpkV/+pvn79eu3evVuSNHz4cPXt21fXrl2zbahcmEwmnTx5Uq1bt9bMmTN15swZW0eySn7+GcyJ0WiUk9Otj9NnzpzRDz/8ICl//+HC4cOHZTAY1KNHDw0dOlQXL15Ut27d7KYwmtN/LtrDfzrefq0kJyfr6tWrNk6TN5UrV9b48eP15JNPqm/fvkpISLB1pDy7fb937NihkydP2jhN3t3OvW7dOp09e9bGaazzyy+/mP+zMb++B97pzvfwZcuWae3atTZO9PfYw/vgnj17lJ6eLkl6++23NW7cONsGyiN7uLfZsefct//9cPHiRbsppN/5nvLZZ5/p559/Nq/nZ3fmnjdvnv7zn//ol19+sXGqe7PXz4R357OH1/Zt9vC7PTvLli1T165dNWbMGP3nP/+xdRwA+UD+/+0M4KG7/UHn/Pnzmjx5sl566SWVL1/exqlyd+cH+XfeeUdDhgzR5s2bdf369Xz/we120WjdunVq06aNPvvsM/3666+2jpUnBoNBa9asUfv27VWgQAGdPn3avC+/3vfb93vr1q3q1auXevfurW3btuXrf4w0b95cCQkJqlu3rnbt2qVKlSppxYoV+b6Iced/YCQmJmr+/Pnq27evTp06ZeNk93bz5k0tX75coaGhat++vebPn69x48bJ1dXV1tFyZDAYVKlSJS1YsECbNm3SjBkz7OJeS//3cxkfH6/58+dr9uzZto6UJ7d/77z11ltq1KiRXnjhBQUHB+uPP/7Il+8pn376qVq3bq3z58/LyclJbdu2Vb9+/ZSRkWEXhdE7f9d//fXX2rFjh3bt2iXp1vciv/4n2J25PvvsM1WqVEmbNm3K94XR27/HGzdurIEDB+rJJ5/U66+/nu8Lo3fe74SEBLVu3Vrz58/P9wXGO3P/+OOPatu2rSZNmmT+Y4v87uLFi+rdu7f69eunn376SQaDId/+TEq3Xt+3309GjBihyMhI/fDDD3bxGfz2z+aRI0e0ePFizZs3T0lJSfm++JKenq5XXnlF7du3V9++fTVr1iy1a9fO1rHu6c7fPYsXL9bQoUM1dOhQLV682MbJcnfna3z58uV67733tGzZsnz9B36SZe6JEyeqffv2evbZZ7VhwwadP3/exulydmfut956S4MHD9bHH3+sa9eu5dt/F99293uhs7Nzvvwce6c7fy43bdqk2bNn66OPPtJ3332X7z8T3s69YMECDRkyRJ06ddLGjRvNM2/lV3f/ccLtvPn1Xt+2ePFi9e3bV8OGDdOGDRs0YsQIW0cCkB+YACAbW7ZsMQ0YMMDUqVMn07lz52wdJ8/eeust0+OPP27avn276Y8//rDYZzQabZTq3jZu3Gjy8PAwzZo1y3ThwgVbx8mzhIQEU9GiRU3z5s2z2J6RkWGjRHnz+eefmzw8PExhYWGmhg0bmgwGg2n27Nm2jpXFzZs3TSaTyXTjxg2TyXTrNWw0Gk29evUyVaxY0RQZGWn66aefbBkxR3f+vI0fP97Utm1bU40aNUwuLi6munXrmo4dO2bDdLm7fd9NJpMpMDDQ5OzsbProo49smChvbty4Yc6+dOlSU6lSpUxDhgwxnT592sbJ8mb9+vUmNzc3U+3atU0FCxY0NWjQwHTq1Clbx8rWna+RDRs2mEqWLGlav3696T//+Y/pmWeeMZUtW9Z05swZGybM3k8//WT63//+ZzKZTKbU1FSTyXTrdbNs2TLTs88+awoNDTX99ttvtoyYJyNHjjRVqlTJVK5cOVO9evVM9evXN2VmZto6VrbufK0sXLjQtHjxYpPBYDCVLVvWtGbNmnyb+7bbv39MJpNpx44dptatW5tq1aplOnTokA1T5ezO3z0TJkwwRUVFmR577DGTm5ubqV+/fqbvvvvOhulydmfuyMhI09ixY02lSpUyOTs7mzp37mxKSUmxYbq8mzp1qqlRo0amrl27mt9j7vwZyI9iY2NNjz/+uOnAgQO2jmKVTz75xFSiRAlTcHCwKSQkxGQw/D/2/jIuqnX//8cfSwxaGpXukG4QRDoEJBQDxAKU0A0qYYHYjdiKoIItIdgtdovY3dhBSMPrd2P+69qzGNz7nO//c1izz5nnnb1Zs8Z5zzXXuur1Dgq7du1i26y/5evXrxAVFYWYmBjOnDnDtjn/FklJSejVqxcmTpyI6OhoyMjIIDExkW2zOoR7TJk+fTpERETg5OQEiqIwfPhw3L9/n0Xrfg/3eLFq1SpIS0tj4cKF8PDwgLq6OubOnYsPHz6waGHHcLd3eno6ZGVlceXKFVRXV7No1b/HunXr0Lt3b5SXl5NrLS0tfH82kZSUBE1NTTg5OcHf3x/dunXD5cuX2Tbrb0lKSoKysjKio6ORlJQEiqKwePFi1NfXs23a37Js2TKEhYVh6NChuH37Ntvm/CW3b9+Grq4uNm3axLjOz2eDAgQI6BwEoqgAAQI6hD60k5KS+sccqN++fRv6+vq4cOECAODHjx948OABVq1aRRb3/HYw09bWhqqqKnh6emLevHkAOILi8+fPsXr1auTn57Ns4V+Tm5sLFxcXAMD379+xZ88e+Pv7Q0tLC6tXr2YcpvILX79+RXZ2NhFBa2trsXTpUnTp0gWrVq1i2Tom7Rfr3IfnGRkZMDU1xfz581FTU9PZpv3LZGVlQUxMDKdPn8br16+Rk5MDFxcXWFtbo6Kigm3zeOBu8+3bt0NTUxO+vr6QlpbGyZMnWbTs76FtP3ToEDIzM6GqqooePXogOjqaLwU64E+ba2trMXjwYGzduhU1NTV48+YNjI2NYWpqinv37rFs5e/Jy8vD1q1bGU4VlZWVcHZ2hoaGBt8KMA8fPoSoqCgR+1tbW/8xwujKlSsZAsbixYtBURROnDhB7uHHg46ZM2dCRkYG+fn5WLVqFby9vSElJcWXwuhfrZWOHz/O98IoACxatAg9e/bEyZMncfHiRWRlZUFCQgJxcXF4/vw52+b9liVLlkBaWhrnzp3D5cuXUVBQABEREYSGhvK1MMq93lu/fj0cHR0Zwii/PJOLFi1CWVkZ+buqqgoBAQHIysoCADx79gyFhYXw9fXF6NGjiRMJv3H79m3Iy8sTp8Tnz5+DoijMmjWLZcv+mpaWFjx48AA9evSAvLw8vL298fHjR/I6v/STjjhx4gQ0NDSI2LJ7926Iiopi8+bNLFv21zx+/BgeHh5kvL516xYUFBQwePBgvl5f3bt3DzExMThy5Ai5NnPmTBgYGCAjI4NvhNFt27bh9evXADj99/3793ByckJJSQkAzprw4sWLmDBhAnbv3s3jtM0m9PNG/zc2Nhbjxo0DwBkL8/LyYG1tDW9vb2zdupU1O9vDvUbJz8+HoqIirl27BgDYsmULKIrCzp072TLvX+LYsWNQVVUldl+8eBEURWH79u0sW9Yx3G2enp4OeXl5jBo1Co6OjujWrRvp7/zInj17oK+v/9u1H/e8w89zkAABAv7vEYiiAgQI+C0FBQXo2rUrJk+ejKamJrbN+VuePn0KdXV1lJaW4s6dO4iJiYGuri50dHTQpUsX3Lx5k20Tf4unpycmTJiAjx8/YtKkSXB2doampia6d++OmTNnsm0eA+7F4oEDB0BRFBYsWABnZ2f4+fkhKioKqampoCgKDx8+ZNFSXh4+fAiKoqCtrY3du3eT621tbVi2bBkoisKaNWtYtPBPDh06hPj4eAwfPhxz5swh17kPz2fOnAl1dXVcuXIFAP+J/s3NzRg2bBhiYmIY1w8ePAgLCwvY2NjgwYMHLFnHC3ffnj17NiOidfjw4ZCSksKpU6cY7+G3SN1jx46hS5cuWLNmDXbs2IFFixZBVFQUMTExfCuMnjlzBgMGDICfnx+jP1RVVcHExAQmJiZ8GdHw6dMnqKqqgqIoZGRkAPizD3348AEDBgyAtrY2X0a7vnnzBnFxcZCRkSEHXdwRowMHDsSnT59YtpKX1tZWjBs3jojQ+/fvh6SkJPH+/vXrF5vm/ZbKykpoa2tjy5YtjOuhoaGQlpZGUVER30QGtI9sjY6Oxh9//IG8vDxynRZGrayscOPGDTbM/Euam5vh7u6OpKQkxvUtW7agW7duiI2N5VuHv+DgYMTFxTGuXbx4EcLCwhg5ciTfCbrc/YVbGF23bh0cHR0RFhZG5km2DxufPXuGnj17IigoiBFFFBwcDAcHB+zevRseHh5wcXHB2LFjoaqqioCAABYt/j0lJSXEthcvXkBZWRkTJkwgr/NTlp+O1qYNDQ14+/YtlJSU4OHhwZfzTXtycnLg5OQEACgsLISEhAQ2bNgAAKipqeHLqNcFCxbA09MTwcHBjCw+N27cgKKiIoYMGcKXwmhpaSlkZGSgpKTEcHgCOHsfQ0NDzJ07l/U1+N69e6GkpITk5GRiy5cvX9C7d2/MmTMHV69exYgRI2Bubg47OztQFMWzDmAL7jHi4MGDAICYmBg4OjpixowZcHR0RGBgICIjIzFu3DhYWVnh06dPrI7j3AI5Pd+kpaWRaO3CwkKIi4uTNWF1dTXD6YItsrKyeCKGd+7cCT8/PwAc0U5cXBzr168HwHHs59c1SmVlJWbNmoWLFy8C4Di1JiQkoHv37igqKmLZOiZ0X01ISICBgQHPdW6eP3+Ot2/fdpptAgQI4A8EoqgAAQLIwqC+vh4NDQ2M17Zt2wYhISHMmjWLr6L+Otpgf/z4EcHBwdDX14ewsDBiY2NRUFCAqqoqWFhYYMmSJSxY+ve0tLQgIyMDFhYWEBISQlBQELZt24ba2lokJSXB19eXL9qe7idVVVVoamoi0Ynz5s2DgYEBYmNjibdjY2MjX0aRfP/+HVOnTkW3bt1IVAB3X8rMzARFUTzpgDubnJwcSElJISYmBoMGDYKuri7i4+PJ69w2+/v7w8LCgg0z/yWioqLg7u7OEwk1Y8YMUBQFe3t7vosYvX//PoYOHYpjx46Ra62trRgxYgRkZWVx5MgRfPnyBSEhIRgzZgyLlv4J/XyOGTMGwcHBjNfy8/MhLCyM8ePH8+Um+8GDB1BRUUGXLl14BH56/FZVVWXdyaL9JrqtrQ03b96Eg4MDjIyMUFVVxbjvw4cP6Nu3LwYPHtzptv4rvHz5ElOmTIGEhAQRRltbW7Fr1y4YGRlh8ODBrDtadHRw4ezsjLVr1+LIkSMQFxcnAmlLSwtWrFjBEO/4gba2Nrx79w59+vTBgQMHAPzp3NLa2gpTU1Po6Ohg//79rItG3CQnJ6NPnz4YO3YsxowZA2VlZSxYsIC8fvz4cQQFBUFFRYX1Z5Ob1tZWNDY2on///pgyZQoATnvTbRsXFwdJSUlMnTqVrw7AWltb0dTUBEdHR4wdOxYAp+/QfWXWrFmgKArjxo3D169f2TSV8OjRI0ybNo0RsdVRxGhiYiIZH9mC/nw6q0xgYCA51D148CC8vb3Rs2dPpKenE8F0zZo1CAgI4ItIbrr/Xrp0Ca9evcKOHTtgZWWFBw8eQE1NDdHR0WS8Pnr0KMaNG8cXKS+5x7TDhw9jw4YNuHPnDtlDPHjwAEpKSvD29sb79+/R3NyMsLAwLFu2jC2TAXS8zywuLkZYWBgRMGhBFOB8tz/++AOVlZWdaebfcvDgQVAUhV69ehEHLfo3uXnzJvr06QNXV1e8ePGCTTM7JC4uDj169EBaWhp+/vzJeC09PR0yMjLIzc1lybo/WbBgASwtLTF16lQSGb906VLIy8tDVFQUU6ZMIWJeaGgooqOj2TQXAMfx1t/fH0+ePMEff/wBiqJQV1eHx48fY/DgwbC0tMTy5ctJpq3t27djwIABrJbH2bVrV4flbpKSkjBx4kQUFxczhMW2tjZs2bIF6enprDqdPXjwABRFISIigtF+27dvh7W1NbZv3w5JSUnG99q5cyeCgoL4Zq6nKSwsBEVR0NHRYTjENTY2IjExET169EBxcTF7Bv7/aL+W3rx5M8TExMic39H94eHhPI50AgQI+O9HIIoKEPA/Dr1oOHLkCAYOHAgHBwcMGzYMb9++JRvCrVu3QkhICLNnz+YLcY57o3ry5Enk5uZi//79+PTpE6qrq3HkyBGcO3eO3NfQ0ABra2u+8Myk2/vGjRvIzs7G+vXriXB479494qlJM2rUKIwZM4b1dudOy+nj4wN7e3v069ePLC7bp2+dNm0adHV1+cI7sz0/fvxAQkIChISEyMKdO33QmjVrWI1ePHXqFJSVlUkka0NDA7KysuDg4MDYHNF94uXLl3BycsKhQ4dYsZfmd+LJ6tWroauri9LSUsamdMeOHQgKCkJISAhGjx7NN3Voc3JyoK+vj759+5J+QH+3trY2jB49GhRFwcjICAYGBnwTRU/34dGjRxMRrqmpidienp4OSUlJREVF8aUw+vjxY6ipqcHFxYV4r9Pf6efPn3B0dGQ1Qoq7f7e2tqKuro78fffuXejr68PKyopEKtK2f/v2jW/G76dPn+LWrVtEeAY6FkZbWlqwb98+vHz5kg1zCdxtXllZSb7HjBkz4OzszHOI9PHjR/j6+hKHF7b43VhoZ2cHb29v8ndzczOampowZMgQaGhoQE5ODo8fPwbAfkRdbm4uNDU1SV/Zvn07unfvDmFhYaSkpJD7SktLkZKSwmof/117z5gxAxISEiTlbHNzMwBOFoABAwZAWlq6Q+eozuJ3n7lhwwaIiYnh6NGjAP7sC6tWrcKwYcPQo0cPzJgxo9Ps/CsOHz4MiqKQmJjIiPTj7g9z586FtrY26dtsMGbMGGzYsIG0+c2bN6Grq4uAgADcunWL3NdeJHd1dUVkZGSn2vpXHDt2DDIyMjhw4ADKy8vh7OwMKSkpjBo1CsCffWXy5MkICgriEZLYJDk5GT179oSmpibExcWRnp5O5vSHDx9CWVkZmpqaMDc3h56eHqtrK+5ns6SkhIj+t27dgqSkJCiKwtq1a8k9dXV18PLywtixY1kdu383ppw+fRpCQkIYN24c+S60nZcvX4afnx+rDlB/9dnjxo2DlpYWNm3axONYkZ2dzdrcM2HCBMaefd68eTA3N8fUqVPJ3vf58+eMKNzW1lY4Oztj7ty5nW5ve27cuAFVVVXo6elBRkYGd+/eJa/V19cz2rqpqQkDBw7E4MGDWe3f7969Q3p6Onr27Ml4/jZv3gx9fX2Ii4tj9erV5PrPnz/h4+OD6dOns2Eug3PnzkFKSgojR44kZyZPnz7FgAED0K1bNyxcuJDc++vXLwQEBGD06NGsrwXb8+7dO0RGRkJISAiHDx8G8Ofz29jYiClTpoCiKEaKejb4+vUrWfMBnDFQTEwM48ePJ6muufn58ydCQkL44qxQgAABnYtAFBUgQAD2798PCQkJJCYmYt++fdDS0oKbmxsuXrxIFjr5+fmgKArz589n2do/SUpKgqamJqysrODh4QEVFRVSYwzgLOqfPXsGX19fWFpaMhZHbFJQUABZWVn4+PhgwIABUFdXZ6RHBYDXr18jKSkJ0tLSfJPWqLS0FMLCwli0aBEOHz6M0NBQUBTFiPI7fvw4xo4dC1lZWcZBExtwe0IXFhZi8+bNqKysREtLC1pbWzFx4kQICQlh//79jPvZpKmpCXPmzMHw4cNRV1dHbLp37x5kZGQ6jMapr69HSEgIUlNTO9tcAveBxv79+7Fnzx4SEQUAAwcOhLa2Nnbs2IE3b97g58+fCAgIwKJFi7Bs2TIoKiryTcTO+/fv0a9fPwgJCWHDhg3kN+D+jsXFxdi7dy85jOGXsQXgRDuLiIiQVLm0bWvXroWmpiZMTExYdVag2/PVq1e4desW3r59S1JKPXjwAH369IGHhwePMMovB41Lly7F4MGDYWhoiHnz5hHR6N69e9DT04O1tTWPMAqAtYM72obi4mIYGBhAXV0dhoaGGDp0KLnn1atXmDJlCmRkZBiRL2zC3eYZGRnw8vIiEQt3796FqqoqTE1NUVFRgZaWFrx79w4+Pj6ws7PjG4Hu4cOHeP36NXH4OHr0KPT19RnR5a2trRg+fDju3bsHBwcHkkqNTZqbm5GRkYFFixYB4Mz9PXv2xLJly5CRkYEuXbowIkZp2Gj39k5yR48eJWuShoYGuLm5QVlZGQ8fPkRdXR2ampowaNAgnD59Gunp6ZCSkmIlmo7b7uPHj2PXrl149OgR6uvr8fPnT4waNQo6OjrE2amqqgp+fn4oKCjAxo0bISUlhRcvXrA6LtKfXVRUBIqiMHHiRIYwyj0vysrKsuqssHTpUiKy0ePzjRs3iDB66dIlcm91dTVOnjwJDw8PGBsbk+/B9hrx48ePiI2NxfLly8m1KVOmQEFBAUuWLMHnz5/x8uVLpKSkQEZGhvW9A3d7Xb58Gc7Ozrh48SKam5uxbNky6OrqYurUqUQY/fnzJ2bMmIHFixeTNmdjbcVt97Rp06CsrIzVq1cTpz46UiolJQUHDx7E6dOn4e7uDhMTE1b7CveYUl5ejjNnzuDly5dkfXXo0CF06dIF0dHRPMJoR/9GZ8H9mbt27cL06dOxZMkSRrQZPR5u2rSJJwUp0Plzz+PHj5GUlMQj3M+dOxdmZmaYOnUqQ3ipra3FlStXMHDgQEY/YYO2tjbS5rGxsejatSvc3NwYoih3ZqgdO3bA19cXxsbG5PuyORZ++PABaWlpkJCQYJS7CQ4ORs+ePbFv3z68ePECDx48gLe3N1+d/5SVlUFSUhLh4eHEsTIrKwuGhoaIiIjAuXPnUFpaCm9vb9bHE+D348GnT58QGhoKCQkJ4thP29jQ0IBVq1ax2ub5+fmws7PDuHHjSFplgPN8UhSFSZMmkfmxubkZlZWV8PX1hZOTE+tOrAIECOh8BKKoAAH/4zx58gTGxsZYtWoVAM6mVEVFBeLi4tDX18elS5fIAmH37t18U/8vNzcXioqKJMUVnfZ07969ADgbpHXr1sHX1xeOjo5kIc/2Yufu3bvo3bs3iW65fv06REREMHnyZHLP0aNHERERAT09Pdy+fZslS/+kra0NdXV18PPzI6L4mzdvoKmpyUgBVFNTg9WrVyM4OJj1wxiaffv2QUpKCjY2NhAWFoaJiQkWLFiAhoYGtLS0YOLEiRAREcGePXvYNhVtbW1oa2vDsWPHGIJiS0sL3r9/j169ev32+bt48SImTZrEE7HbGXBv1qZOnQpJSUno6+ujW7du+OOPP8hrgwcPhpGREWRkZGBgYAAdHR0AnINJLS0tVlJ3/W7D9/HjR9jb28POzo5E6wAdH9CxLXY9fvwY169fZ7Sft7c3lJSUGLUsU1NTsWnTJlbT6dE2FxYWQlVVFerq6pCSksKQIUNw+vRpAH+m0vPx8WE90rz9QcS0adMgKyuLtLQ0/PHHH9DT04O3tzcRLioqKmBkZARVVVWeVPRscvToUUhISGD9+vX48OEDduzYAYqiEBgYSO559eoVJkyYABUVFfz8+ZN1AYAmJSUFvXv3xo4dO/D+/Xty/dq1a1BSUoKJiQnU1NTg4OAAa2trvpnrU1JSoKurC3FxcURHR+PChQsA/ozANDY2RmRkJKysrKCvr08cdTw9PTvdVu5xkD74r66uxrNnz/D27Vv07duXpLK8fPkyxMXFQVEUWTeyBXcfnTx5Mnr37g1JSUnY2dmRtcrLly/h6+sLERERWFlZQUdHBzo6Omhubsbu3bthYGDQ6XVoue2eMmUKevXqRebFuXPn4tevX3jx4gWioqLQpUsX9O3bFxoaGujbty9aWlpQWFgIPT091sbyN2/eYNeuXVi6dCmePXsGgCOcdySMNjY24vPnz+jfvz8r2Szaz/GbN29GSkoKvnz5AuBPYTQwMJAIo2VlZYiMjERQUBAZT9g+VL927Rqsra1hZGTEWB8CwNixY2FmZoYePXrA1tYWurq6rDslcrNp0yZERUVh3LhxjOsrV66Erq4ukpKSOsxewXabz549G/Ly8rhy5QpPavwdO3ZAV1cXcnJysLW1hb+/P6tzD/eYkpycDC0tLUhKSsLQ0BADBw4kTocHDx5E165dERMTw3otzvYkJSVBQUEBPj4+sLKygqysLKZOnUpeHz16NPT19ZGZmclXtcO3bt2KzZs3k7/nzp1LIkbpdi8tLcWgQYPg7u7Oaj9pPx6WlJRgz5490NPTQ1BQECOLCMARv8aOHYuwsDBWHRXaU1lZSYTRlStXkuseHh4wMjJC9+7dYWdnh/79+/PNmpB+Rs+dOwdJSUkMHz6c2LRixQp4eHiga9eusLe3R2BgIOt2c/eV0tJSbN68GTk5OSTzRlVVFUJCQiApKckjjNKw0VdevnwJU1NT5OTkoKysDKNGjWLsHWbOnAmKoqCrq4sJEyYgJCQEjo6OsLCwYL3NBQgQwA4CUVSAgP9xysvLMX/+fDQ2NuL9+/fQ1NREfHw8qqqqoKGhARcXF5w9e5b1umLtSUxMJHn/6RoSmzZtAsAR56qqqvDs2TPs3r2br6K5Dhw4gH79+gHgLNxUVVUxYcIE8vrTp0/R0NCA0tJSUpeELejFLR3loqGhgatXr+L79+9QUlJiCKI5OTn48uULmpqaOvTi7Sy4F+QVFRVQVFRETk4OampqUF9fj/j4eDg6OmLx4sVobW1FVVUVIiMjIScnx4qg2BHctau4PS81NDRw8+ZNcp07aruuro4hgHUW3O39/v172NjY4M6dO3j9+jX27t0LUVFRRuq5ixcvIi8vD3v27CHPZWxsLGxsbDo9zRv3mHbkyBFs3LgRxcXFuH//Pvk+1tbW6N+/P0MY5RexCOCI/srKypCRkYG9vT1Jv/Tq1Sv4+vpCWFgYnp6ecHZ2hrCwMMMTvDPhbuuLFy9CTEwMq1atwtOnT7F9+3YEBATAzs4OZ86cAcCJsBMVFUVQUBDfzD13796Frq4uEW8BzncJDAyEv78/Xr16hba2Nly/fh1hYWF8s6n+/v07hg8fTmpqV1ZWQk1NDYMGDYKioiIGDhxI7n3z5g1D0GAL+jcvKyuDsrIySdPe3NyMz58/49y5c2hpacHnz59RUlKCZcuW4eDBg6zN9dyRFwBnTaKmpoZDhw5h7dq1cHR0hLe3N+nf9+7dw6hRozBixAjExMSQMX/YsGEYNWoUmpubO22c4bZ78+bN2LBhA8MZ4fjx4zA0NCSRRbdv30Z4eDhKS0tZPazjbp/r16/DxsYG169fR3l5OaZOnQpzc3PMnDmT3LN161YsXboUmZmZpH/ExsbCxcWlU+f+9mOhk5MTrly5gs+fPyMpKQnW1tZISUkh667Tp08jMzMTOTk5xO6EhAQ4Ozuzkhr1zp070NLSgq6uLoSFhSEjI0NSSNIRdLGxsQyRKyMjA3p6eh2mrOtsoqKiYGpqirlz55JyBLQwGhQURMTE58+fk9+KH/YO9fX1cHd3B0VRmDlzJo9Njx49QkFBAW7cuMGo78oPxMXFgaIoWFhY8MwvdJRUdHQ0X4l0X758wYABA7Br1y4AnHnzwoULiIyMRH5+PlpaWvD9+3e8ePEC79+/J+MR231l9erVkJGRwalTp/Ds2TNs2bIFLi4usLCwIMLA0aNHQVEUWROwBfcYfuzYMSgqKhLnoS9fviA7OxsiIiKMVOFBQUEYOnQo36zDP378CG9vb9jb22PHjh3kOi2MJiUl4fPnz6ivr8elS5dYHVO4556srCzMmjWLiP3Xrl2Djo4OgoKCcO3aNXIfPbbT7c0PQi7NmzdvOhRGy8vLcfDgQdy5c4dv2rs9ZWVlkJCQwPDhw8l9ra2tePDgAaqqqvhmPAE4jltycnKwt7eHqKgo7OzsSOriqqoqDBkyBNLS0oxsC2xSU1ODoKAgnD9/HhUVFZCRkcHjx48ZY8a+ffswbtw4GBsbIzQ0FEuWLOEr0V+AAAGdi0AUFSDgf5yWlhaSknP06NEYNmwY8cAMCAgARVGwtbVltUB9RwvLP/74AwsWLEBpaSnExcWxfv16cu/WrVuRmZnJeB/b0VzXrl3D8+fPceTIEfj5+eHevXtQUVHB+PHjiW2XLl3C5MmTiQc7P1BUVITIyEg0NDSQAvQqKiqYMGEC8aj7/v07QkJCkJOTw5qdOTk5PKJgaWkptLS0GAdE1dXViImJgbm5OdkMVlVVsRqR9ujRI5w6dQrr16/HpUuXGB6NdP+pqamBkpISEbV8fX3Rs2dP1vp1+8Or+fPnY8iQIRg3bhxD1C0tLYWoqChDQKe5ePEioqOjISsrS9JissHUqVOhpKQEAwMD6Ovro1evXigtLQXA+Z42NjZwcXFBSUkJazZyQ/eJN2/ewNLSEtnZ2SRS2MLCgpFGef369ZgyZQomT57MSpT/8ePHea7NmTMHPj4+jGvnz5+Hr68vIiIiSITlkydPWKt9GhkZiY0bNzKuPXr0CIqKigxRFAAuXLgAKSkpnnrQQOfOOx3Nk7RokpOTg/v37+Pz588wMTHB+PHj0dzcjBUrVoCiKLi4uHSanX/F/v37iQDa1taG/fv3w8jICPX19bh+/TqmT58OHR0dSEtLIyAgoMMas2yL0adOncLEiRMZ9a7Onz8Pb29veHp6MhwsaGpqapCYmAhZWVnWsnEkJSVBUVER27ZtY4zvly5dgqioKNasWUNSjIWHh7N2SNp+fbRnzx6EhoZi4sSJjHvS0tJgZmbWYVr5169fIyYmBtLS0oz0//9JaGcbmj179iAiIgKxsbGM67NmzYK1tTWSk5MZNcQBjlAXGxuLnj174s6dO/9xm9tTXl4OUVFRTJs2DW/fvsWtW7cQEBAAeXl5ku784MGDkJWVhZeXFwIDAzFq1CgoKiqykvXkd4fSiYmJsLS0REZGBkMYNTAwgKOjI6NMAdtOOeXl5SR6q7GxEX5+fjAwMMDevXv5pp45N79rLzrqctGiRaSv0MyfPx/Dhg3jmxT5ACdFp7y8PBYsWIDz589j+PDhsLa2hrm5OWRkZBi1rH/3b/ynOXfuHOPvpqYmhIWFITk5mXH9zJkzcHBwQGJiIukzV69eZe3wv/0+AeA45BgZGTHmk7q6OixfvhwGBgaM8ZNuZzb6S0flHK5evYrhw4fD0dER27dvJ9fnzZsHS0tLREdHM8ZytseUqVOnonfv3tiwYQNjDXXlyhXo6enB398f2dnZ8PPzg5SUFKvtzd1WJ06cQFFREYqKisi1t2/fYtasWZCQkPht5gq2U0Lv2LEDixYtQnJyMmPsO3v2LCQkJBAWFkacoH73b3Qm3L/znj170KtXL1y/fh2tra34/PkzxowZAycnJ2zduhUAxzHAw8MDHh4erNjLTVtbG6qrqzF37lyEh4dDQkKCUU+2fR9uv35le/8gQIAAdhCIogIE/I9Ap+YEOIvId+/eMUSktrY2uLq6MqLPEhMTcfPmTbx8+bKzze0Qbu/FBQsWoFevXgxBFOAIdJ6enkhPT2fBwo45dOgQhIWFcfr0aVy4cAEKCgoQFRVlRIgCwMSJExEQEMCK9z8Ndz+5f/8+NDU1kZubi5aWFsyZMwfS0tJwc3NjbGhTU1Ohp6dHUqp0Njdu3ICPjw9PPy0pKYGamhpJK0ofBvz8+RNdu3YlqZbZZOvWrTAyMoKmpiZ69eoFISEhuLi4MDZ9dBS3kpISKioqMHjwYOjr67OW5mXMmDEICQkhf7e2tmL58uUQFhaGlZUVz/2lpaXEI5abo0ePwt3dvdMOpTti165dkJWVxeXLl1FfX4979+4hLi4O3bp1w5EjRwBwIgQ0NDQQFxfHmp3tuXnzJuLj4zFu3DjisPL9+3fMnj2beKezzaFDh2BhYYGPHz8yNqLz5s1jOCXQbNq0CVJSUqxHKv78+ZNRf47m3r176N27NzkI4D5QtLCwQEZGRqfa2REvXrwg8+GePXtIbWKarVu3wtnZmThe7NixA/3794epqSlr4zdNdXU1goKCICoqSkSAJ0+egKIoODs7Q1paGmPHjsXOnTtx9OhRyMjI8AjUnQ23eE57+evq6kJMTIxnDUILo76+voy55+nTp0hPT4eRkRFrKS/XrVuH3r1748aNG4zr9FpkypQpEBERgYaGBszNzVmrKxYXF4eoqCgAIJFaw4YNg4KCAry9vRn30sKotbU1YmJiyPWvX79i69atcHd37zRnnISEBDJ/tLa2orm5GYMHD4a4uDjJHMJNWloa7O3tER0dTTJv1NTUICcnB0FBQawIoh8+fCBpN7kpLCyEmJgYLl++TPrD5cuXkZaWhiFDhmD27NmsZLHgPlB+/PgxXr58SVL9Apz9DT1u04LFpUuXMGzYMNZFC5oPHz7AwcEB/v7+ZP/T0NAAT09PWFhYYN++fXxR44+mfRT0mTNnGCmTU1JSoKqqimXLlvE4N/BD7XAAKCgoIFl6VqxYAQkJCUhISCApKYk4eQ0ePJgnFXBns2zZMjg4OPBkKQgODoa/vz/P/ZMmTYKdnR3PuqazhdEnT55g0KBBPHYcPXoUCgoKJA0nzeXLlyEhIcEThca20PXt2zfU1NSQazdu3EBoaCiPMJqcnIzRo0ez3q9ptm7dil69ejHOU1pbW/H9+3cAnEwQAwYMgI2NDdzc3FgdX7g/MzU1lWQoMDIygo+PD3n93bt3SEtLg5SUFBYvXtzpdv4VKSkp6NOnDwYOHAgrKytoamri2LFjxPmzrKwM0tLSGDhwIGOtzgbz5s3jccRasGABHBwc0NLSQvr6+/fvERAQwFhzff/+nW/mTYAj1L569YpEngO8fZj7vItfnk8BAgSwg0AUFSDgf4Bv376R/y8uLoapqSmMjIygqKiI5ORkEhVgZ2cHZ2dnFBcXIyEhAbKysqisrGTLbAZlZWUQFhbG0qVLyTU/Pz9ISkriwoULeP36NZ4/fw4vLy9YWVnxTfqL79+/Y968eYw0RevWrQNFUcjMzMTjx4/x4sULTJ06FdLS0qzV4mzvuX3r1i0sXbqUEcna1taG8PBwGBoaIiIignjiSUlJsV77lN7Q3bx5k3gUf/z4EdLS0uQQlebDhw8wNTVl/UA9Pz8fIiIi2LZtGx49eoTq6mps2rQJxsbG6N27N3bv3k3uraqqgpaWFuTl5aGrq8tqnavv378TUZyuaVZXV4fs7Gx07doVc+bM4XnPnj174OrqyrNp6sg7tjOZM2cO/Pz8GNdoT1gHBwci0H379o1vPEjr6+sRFRUFRUVF2NjYMF779u0bZs+eDRsbGx6ni87m/fv3ZP7gPozOz8+HnJwcjh07xtiI3rhxA3p6eox7O5v2G2O6/hzNlClTICoqirKyMnKtqqoKxsbGyM7O7jQ7O6KpqQmzZs1Cnz59EBkZCYqiiIBLk5qaCm1tbfJ3SkoKpk+fzjf1T+/du4ewsDDIy8vj/PnzADj9Ytq0aSguLibjfENDA6ysrHD48GHWbP3x4weWLFnCc7hbWloKMzMzODg48BzkXrhwAVZWVowa4gDHAYnNbAXR0dFknnz69Cny8vLg4OAABwcHEo1UXl6OI0eOsFqO4OTJk6S9abHwxYsXiI2NhbKyMpYvX864/+vXr0hMTMSYMWMYz/bPnz95nDL+k5w+fZrYTdeYq6+vx8SJE6GlpYXFixfzHIgmJCQgKiqKYXdNTQ1r5QmePn0Ke3t76Orqku8AcKLQuCNXOzp47Gy4P3P69Ono27cvFBUVoaWlhdmzZ5PXEhISYGVlhblz5/KsgfnlgDc/Px8DBgzA0KFDcfXqVQB/CqM2NjbYsWMH30WMpqamQl9fHwYGBtDU1IS7uzvpt6mpqVBXV8fy5ct5xjy2D6bv3LkDY2NjBAQEkAwzDx8+ZEQOt7W1wc3NjXXH2/fv35Ox+PHjxwA4fXb+/PmwsLDA+fPnGWP01q1bYWdnx6rTbXtycnLIuHf//n3Y2NggPj6e4UTx+vVrGBkZ8UTFdjbcfXP+/Pmws7ODqakpXFxciGPnnTt3EBoaCicnJ0YqXX4SXqZMmUIcVO/fv49169bBzMwM6urqxOYvX77g/fv3fJM+fMmSJVBUVCTj3/Lly4mzHL12fffuHRISEuDh4cEX7QwAa9euhZKSEjkfOXHiBCiKgqqqKg4cOEBsP378ODw8PFidc/bu3YuIiAiefe6iRYtgYWFBnlO6L1y6dAkURfE4aPHLvClAgAAB/w4CUVSAgP9yvnz5AiUlJTx8+BCnT5+GqKgoqRm1efNmUBRF0kK+fv0a2tra0NHRga6uLmtRCx3x6tUrTJs2DWpqakQY/fXrFxwdHaGqqgopKSnY2dnBwcGBtQi63NxcRh3Qu3fvokePHtDU1ER+fj7j3jlz5kBGRgYKCgowMzODgYEBa+29dOlSJCQkoLGxES0tLWhpaUH//v1BURTs7OwYi9y2tjYsWLAAwcHBcHBwQFRUFE9auM6E+zf+8uULHBwc4O3tTdLMHj58GGJiYhg7diwqKirw4sULzJw5E3369GG1ZuubN29gYWGBDRs28Lx24sQJ2NjYwMTEhHyPnz9/QlFREWZmZqzWveBu77y8PCgoKBARq7GxEWvWrEGXLl0YEeft4adN0+LFi6GmpkbEFpqdO3eid+/ePH2ETWGUe6P/6tUrxMfHQ0FBgccz+vv370hKSsKAAQNYj7oEOJEBOjo6jPp+wcHBUFBQwOHDh/H582e0tbVh8uTJMDQ0ZDjxdDbcv29bWxtiYmJ4okBHjRoFISEhJCYmYtasWfDw8ICxsTHrB0cAZwyk096Hh4eT67RtN27cgLS0NOzt7TFo0CBISEiw5ojDDXe7P3jwAMOGDYO8vDzx8qbtb2xsxI8fP+Dt7Q1bW1vW0+LT5OTkMKKzi4uLYW1tjbCwMBL1SsNd54rtsZCOMkpMTISTkxOmTZsGR0dHBAYGIjIyEmFhYdDR0eGJ6ursdm/f3nl5eTA3Nyc1Kl+8eIHo6GjY29szaosBYNTnYtvu7du3o1+/fkTwr6urw9ixY2Fra4vly5fzlKmg3892P6F5+/YtHBwcoKqqiqamJnz//h0KCgo86Tr5hUWLFkFGRgZHjx5FaWkpMjMz0aNHD8THx5N7Jk+eDFVVVeTm5gJgV7igP7u9QL579244Ojpi6NChjIhRW1tbODs7syaUd0RmZiZkZWWJnZmZmaAoitRTBjjOOD169MDOnTtZspJDR7/15s2bMWDAAAQHBzPE/5qaGly6dAl+fn5tvfi5AAEAAElEQVSszvfc0U0AJ101RVEoLCwEwNkrmJiYwNHREYcOHcKPHz/w48cPuLm5YciQIazYTMM9jn369Any8vIwNzcn415OTg709fURFhaG/Px8XLp0CR4eHrC2tuabMTAtLQ2ysrLYsGEDsrKy4OHhgZ49e5KSG9evX8fw4cOhr6+PY8eOkffxS6rfrKwsyMvLY9KkSTA1NUVISAhmz56NSZMmQVRUlGfPwEa7czvpvXz5EkOHDsX+/fsBcPq7pKQkUlNToaamBldXV3I/vZcA2Begq6urMXv2bDKvFBUVoWfPntiyZQv8/f2hqqqKgwcP8oz1bPZz+rNLS0tJNpkbN26AoigsXLiQce/FixdhYmLCN5nkBAgQIOD/HwSiqAAB/+W8ePECysrKuHPnDmbMmIFJkyYB4NQm0tHR4Ymia2pqwsuXL3lEgs6i/YaPm7dv32LGjBlQUlJiRAScPHkSRUVFuHTpEmuejd+/f0evXr14FohxcXGgKArz589Ha2sr47tVVFTg1KlTuHbtGmvixbNnz7Bp0ybimUtH7tXW1iIoKAgKCgrIy8vjqf8CcNqYzRRG3DbduHEDzc3N2L59Ozw8PBAcHEzE2uPHj6NXr15QUVGBpqYm1NXVcfPmzU63m5vbt29DTU2NiJ4AczNUUFCA7t27kw1VQ0MDSktLWY3S4e67Z8+exdu3b2FhYQFTU1MijDY1NWHNmjXo2rUrzyaKTX7XT8+cOQMjIyMsW7aMkTbo2rVr6Nu3LyNCgC3odqd/c/q7vH79GhMmTIC9vT1WrFjBeM+PHz/4pjbx27dvkZSUBCMjI0Z0xZAhQ6CgoAAtLS04OTlBRkaGVUec8vJy0tYZGRk4fPgwvn37hilTpsDGxoYRAb1s2TJ4eXlhwIABGD16NGuOOO2pr6/HqFGj4OXlBQMDA0a/aGlpQX19PU6cOIGhQ4dizJgxjPGHDbjrJ/9OGOUWAVauXAl7e3vY2tqy2ubcomZtbS3GjRsHS0tLRh8pKCiAtbU1RowYQSIcOvo3OpP2n8ld83zUqFEwMDDAsmXLiPd/Xl4ePDw8WK0pD/DavXPnTvTr1w8eHh7EceXZs2dEGO2othjbEYuvX79GcXExXF1d4e/vT2rncgujmZmZPIekbB7uvnr1CqtWrcKCBQvIoX9lZSXs7OzQu3dvKCoqIiEhgdzPL8IFwBkv/Pz8sGjRIsb1/fv3o0uXLgyHtFWrVrE+dtNcuHABcXFxePr0KeP6rl27YGpqisGDB5PIo4aGBuIYwC9ERUWResqFhYXo2bMnaWtu8Xbt2rV80+bt9ze5ublwcnJCUFAQiRg9duwYfHx84Onpyercwz0W//z5E9XV1Rg/fjxkZGRIWvbv37/D3t4eRkZGkJeXh6WlJUxMTFhNhcrtYFhYWIjGxkbcvn0bffv2haWlJRG2tm/fjuDgYAgLC8PMzAwDBgzgm/XVx48fYWpqyuPkPHr0aEhJSZH1zKVLlzBr1ixW7eUeiz9//ozq6mr8+vUL379/R3p6OszNzbFq1Sqy979w4QKcnJxYd6QsKirC3LlzGXXNd+7ciY8fP+Lq1atQVVUlJSJmz54NiqLQt29fxp6Y7bme5uLFi6isrMTDhw+hr6+PrKwsAJx9J0VREBYWJusANuHuK1evXoWBgQFGjhxJ+vO6devQtWtXTJs2DVeuXMHjx4/h4+OD/v37882cz7YILkCAgH82AlFUgID/AejDOhcXF6xYsQINDQ1QUlJCdHQ0WUhkZWXh5MmTrNpJL2ppmzZs2IAtW7Yw7nnz5g1mzJgBRUVFrF69usN/p7MXaTExMSgsLCQbt1u3bjHqs8XGxkJYWJgcKvHL4m38+PHQ1tbGr1+/AADnzp3D+PHjSSqg2tpauLm5wdraGsXFxTyiDJu8evUK/fr1Q21tLfbu3QtRUVFyeL59+3bi6U0Lo1++fEFZWRnOnj3LOIhni9OnT0NYWJhHBOLuG/3790dYWBjPe9nYaHPbNWvWLBgZGeHVq1f4/PkzLCwsYGRkxBBG6RTR27Zt63Rb29NebN68eTNyc3MZ6dyMjIwwY8YM3L59G0+ePCGCF9t9nW73kydPIiYmBsHBwVi1ahXpwy9evMD48eNha2vLEyHFFrTNN2/eJKJbZWUlZs2aBT09PUbUZXFxMdatW4c1a9bg+fPnrNgLcMYTiqIwc+ZMxMfHQ0pKikRQfvnyBYmJibC2tmbYXl1dzXgu2Iwcac+HDx8wZcoU6Ojo8AjmtPjPdmTr2bNnMWDAAOzbt49cay+MDhkyBMbGxqQu9JUrV7Bw4UJWo+W5oQ8QP3z4gMmTJ8PW1paRnrOgoAB2dnbw9vZmNaMCwBwH16xZg/Hjx8PNzQ3bt28nqUPpdOgA57cYOHAgBg8ezOqahdtu7hqgRUVFGDBgAFxcXBjC6IQJE6ClpcV6zXBuu2NjY6Gjo4OGhgYUFxfDw8MDvr6+DGE0MjISGhoajLT5bFJeXg4lJSXY2tpCVFQUSkpKpG+/evUKISEh6Nq1K2l7tgWL58+fM0S32tpaqKurY/r06eQa/ZuMGzcOoaGhPAJ0Z36HjtYWra2t2LJlC7S0tJCQkMAzJy5ZsgQSEhLw8fFh1ATkF1paWmBubo41a9bg9OnTEBcXJwJGS0sLZs+ejby8PJ73sMnWrVsRERHBk047NzcXJiYmGDp0KMleceXKFVZTih48eJCs86Kjo2FoaAiAsw6Mi4uDpKQk9uzZA4DT/0+dOoX169dj9+7drDpU0nP9iRMnkJCQAIqiyBr29u3b0NfXZwijv379wuvXr/Hy5Uu+SeEKcNpZVlYWp06dAsAU001NTRnZImjY3q/Nnz8fAwYMgJGRETw9Pcm4Qe/7Ac6ezcfHB76+vqzO9bdv3wZFUZCSksKyZcsYwijAifwPDg5GTU0NAM4Z0ciRIzFq1Ci+EaA7GtcLCwtha2tLzoVOnDiBadOmYdq0aaz3647sXbFiBfr374/Ro0eTFOf5+fmQl5dHnz59oKOjA3t7e3LmxQ8OfjT8cr4mQICAfxYCUVSAgP9i6EVDSEgIMjIysHv3bri5uUFRURGxsbGMTVJYWBiSk5NZq00THx8PTU1Nsin68OEDhg0bBm1tbZ5DolevXsHR0RFiYmKsR6OtXLkSUlJSREisq6uDsLAwBg4cyPDgjoqKgpiYGA4ePMiWqQzOnj0LVVVV3LhxAwBnc7d3715oaWkhPj6eCAI1NTVwcXGBtbU1SkpKWF/A03z+/Bl9+/aFtrZ2h+IbtzDKdjRUR9y8eRMURRHP0fYL/MbGRvTr1w9//PEHC9b9noqKCvj5+TFqKnILo/QhXmNjIwoLC1nvL9wbpClTpkBCQgIWFhYQERGBjY0NSR0+e/Zs2Nvbg6IomJiYwMbGhtUNHzdFRUUQExPDxIkTMWrUKAwYMAD+/v7kMJquqaenp4d169axaivd3kVFRVBQUMDs2bOJ4PL27VsijLJdj6sjjh07hu7du0NCQoKMi/QcSQujdnZ2DGGUhq2NOP25586dw9KlSxEVFYULFy6gpqYGX758wdSpU2FgYEAyK6SlpSE8PJz1yD+AI7o4ODhg4MCBKC4uJte5D7fKyspgbm7OeL2j+zoL7rHg4MGD0NPTw4MHDwBw1iwJCQk8wmh+fj4iIyNZH0dokpKSICsri7i4OAwcOBDq6uoYNmwY6fNVVVUoKSmBl5cXjI2NWY0u4m4z2hnn6NGj5FpBQQGcnZ0ZwuijR4+wePFi1sUWmk+fPmHkyJGMGub79++Hp6cnQxj99esXFixYwBd2V1RUQFRUFDNnzkRVVRUePnyIkSNHQkVFhUQ9P3nyBP3794eamho5vGarj+/Zs4c4rdAH5gDH4cnGxobH+SwxMRFeXl6dbSYPL168IONHQUEBxowZA4ATuWpubo6JEycyamwXFxfD3NwcgwcP5hEMOpvf/daLFy+Gs7MzREREsGnTJnL9y5cv8PX15an7yyZtbW2YOXMmrKysMHHiRB5hNCoqCj169ICrqysjkwhb/TwmJgZ9+vSBm5sb5OTkGHubly9fEmGU29GIG7bGlvv378PNzQ3q6uqQkpLicRCihVFra+sO1yZsiy7cmbOsra0xbNgw8ndzczOam5vh6enJUyucbWbMmAFZWVkUFhbi5MmTsLW1haSkJHHmqq2tRUFBAVxcXGBqasr6nqe5uRkODg5QUFCAgoIC5s6dy6g7PHbsWBgYGADgnLUEBgZiyZIl5HW2584VK1YgMDAQU6dOZaROzszMhLS0NMrLy/Hu3Tv4+flhypQp5HW27Ob+ndevX49du3aRv7OysuDg4IAxY8agsrISAOfs7ebNm6w7h3DbXVxcjCVLliAzMxPXr18HIBBGBQgQ8O8jEEUFCPgv4/nz51izZg0ePnxIDony8/Ph4eGB0tJSmJqawtTUFI8fPwbAES+mT58OVVVVPHnyhDW7r1y5An19fTg4OBBh9NatW5gwYQL09fUZizWAE+VoY2PDehTD6NGjMXz4cAAcofHRo0e4efMmJCUlERoayogYjYqKgpSUFKn9wibXrl2DiIgIbt26hSNHjsDR0REAx/PS3NwcMTExDGHUw8MDOjo6fCPqAsCWLVtAURRUVVXJJo97sUyn0nV3dycpgtji+PHjSEtLw/Dhw8kGaNSoURATEyN189pvwvv3708Olfhhkb927Vo4OzvD0dGRCF20zZ8/f4alpSVjbKFhWxgFOIKcubk5rl+/jvr6enz79g1+fn6wt7cnEfKfPn3CuXPncOPGDdY2fO0PI27evAkdHR1kZ2cD4KQblZWVhYqKCkMIePr0KRITE/mivsuRI0cgJiaGzZs3Mw4SAU4bz5w5E3379kVqaipLFvLS2tqKo0ePgqIoCAkJYdasWWQeon+TL1++YMqUKVBTU+PJYMAmhYWFkJKSwvDhwzFo0CAoKytjwoQJaGxsxIsXLzB9+nRIS0vDwsICEhISfBFhRI9nd+/ehZubG7y8vBjCJ/dzp6uriwULFnS2iTxwP5slJSWIjY2FkJAQnJ2dySEvLYza2dkxUul29G+wweXLl6GhoYHLly+Ta7t374a7uzvGjh2Lb9++4eHDh4iMjMTo0aP5JiJ3+vTp6NWrFw4dOsST3q+kpAT9+/eHu7s7z/jH9iHppk2boKSkhH79+qGyspJhz/79++Hl5QV/f39GvUWAXbsrKyuhrKwMFxcXxvWysjKIiIgwMso8f/4crq6ukJCQYC0Dx+bNmyEhIYHVq1fzpCI8evQo+vfvj1GjRhFhtLq6Gu7u7hg/fjwb5hJaWlrg6+sLeXl5rFixAhRFYevWreT1rKwsmJubIy4ujohfM2bMwIIFC1grb0LTPnr79u3bRFA5d+4cDA0N4eDgQBwt3rx5A19fX9jZ2bH+TLanubkZixYtgp2dHeLi4vDz50/yWlZWFtzc3JCamsr62E1jZ2cHiqKQmprKMy6/fPkS8fHxkJGRwY4dO1iykAndbunp6ejevTvs7Oxw5MgRnvvKy8vRt29fqKurd1iupTPh/q2XL1+O1NRUklJ+06ZNsLa2Zqxf29ra4ODgwFfOfu/evYO9vT1OnDgBADhw4ACkpKSI42RbWxsqKysxZ84cTJgwgfW5nh4/Nm3ahJkzZ2L+/PkQExPDnDlzSArra9euQU5ODpqamjAyMuJJm8smS5Ysgby8PMaNGwdbW1tYWFiQfRsAWFlZQVhYGGpqagwBmh9ITk6GkpIS5s+fz1hfrVy5EnZ2dhg9enSH8zvbY2JSUhLU1NTg5eWF0NBQUBSFQ4cOsWqTAAEC/pkIRFEBAv6LaGpqQmhoKFRVVaGhoQFJSUl4e3tDS0sLysrK+P79O4qKimBmZgZDQ0MMGjQIPj4+kJeXZ7WWG015eTmMjY1hb29PDqRv376NqKgoGBgYMNIChYeHY9euXeRwla0aEvPnz4e9vT3i4+PRtWtXEsVw48YNiIiI8Aijw4YNg5KSEqndyQZtbW34/v074uLi0KdPH3Tt2pW0LcDxGGwvjFZXVyMgIICkMeQHbt68iXXr1sHW1hZ9+/YlNZi4D122b98OHx8fvH37li0zkZubCw0NDaSlpTG85K9cuQIbGxuIiYmhoKCACI20J6mlpSXfpAQCOJF0KioqEBMTw+HDh3nu+/z5M1RUVBAeHt6pdv4dCxYsgI+PD0JCQvDr1y8yVnz9+hVOTk7w8PDo8H2dveFbuHAhYmJiGJvl48ePY8SIEQA4B15aWlqIjIzEtm3b0KtXLwwcOJAIAfyQvrWlpQURERGYOHEiAE7004MHDzB9+nRs2rQJL168wM+fPzF58mTY2NjwiKadSUe/748fP1BSUoKuXbsiOTkZjY2NjO9XU1PDV7XQHj16BE1NTeTk5ADgODl16dIFaWlp5J5v377hxIkTWLBgAauOT+2h27WiogLu7u48wmhbWxs+f/7Mk2KXbSZPngxdXV3i5KKlpQU7OzsiXNCpdLl/F35wagE4dcN69epFMlvQbNu2DXJyckTc/fjxI7GZ7b7+4MED6OnpkbVVVVUVnj9/juzsbFJb8cCBA+jbty8Zd9hq7/Zp9IqKimBtbQ05OTkittBrW4Aj6FpYWGDq1KkA2O8njY2N+PLlC/z8/ODs7MwQ6S5fvgwJCQmcP3+e8Z4nT57A19eXpwZmZ3Dq1Cn07t37Lx0NadG8V69e6NevH8zNzWFkZMRqBDQ3Ojo6EBYWxvz58wEwn7e1a9fCyckJioqKcHJygpiYGFmT8wMpKSmQkZGBsrIy9PX1yfhx6NAhGBsbQ09PD7q6urC2tmZk32B7TKHhdn5bsGAB7O3tMX78eHz48AF1dXUIDQ3FmjVrSB9hUwRobGzEr1+/EBERgREjRkBLSwtZWVk8AvnLly8xbNiw365rOxu67Q4dOoSjR4/Cx8cHHh4eHT6zN27cYDiOsk1SUhLk5OSwa9cusof88eMH5syZQyJb4+PjYW9vD0NDQ1YFOu6+WVtbizdv3kBaWhpfv37F4cOHGams6+rqsHLlSvz48QO1tbWszvXt2+zq1auQk5NDeXk5duzYAXFxcWRkZJD98a1bt5CamopFixaR97KdNQTgZCWgHYbu37+P+Ph46OnpkTYHOOcR+/fvZzWVdXtWrlxJ2puG264NGzagX79+CAwMJGnE+YHdu3ejd+/eJHPF9u3b+aZkjwABAv55CERRAQL+y6DrRDx58gQlJSVYvXo1hgwZAn19fQQFBaG2thZ37tzBggULEBYWhiVLlrB6UMq9sCwtLcXixYtBURQ8PDwYwmhsbCwkJCTg6uoKCwsLmJmZkYUlm4ca9fX1sLe3R9euXTF27FjGa9zCKHcqXToVCdusXLkSFEVBTk6OeHTT0MJofHw88ZBl+/CovfhC8+nTJ1hYWKBv376MGkxHjhxBc3MzqwL0vn37ICoqij179nTYfmVlZfD39wdFUdDU1ISenh5sbGxga2vLNwdIZ86cIQcvly5dgoaGBoKCghh9hn6Of/z4wbq97dt5zZo1EBcXh5aWFjmYptv28uXL6N69OyoqKljv3/n5+aAoCikpKQxh9MmTJ2hra0NQUBBGjhxJrltbW0NMTAwDBw5Ec3Mz6ylcy8vL8evXL7i4uCAsLAyPHj3C+PHj4erqCk1NTRgaGiImJgYAJ3KXPuRgg/aRLqdPn8bPnz/J/Lljxw507doV06dPJ/PQmDFjcPz4cfI+tvs5wJljrK2tAXAEUhUVFURGRpLXHzx4wBcHL7+DWxh1c3ODh4cH8a5/8eIFgoKC+Cq66OrVq1BWVmZE9hUWFsLd3R329vZ4+PAhAE5E98qVK1m1m9thjDvNsoKCAs6dOwcAjHFGWVkZa9eu7fDf6EzaHzZeu3YNioqKqKiowPnz5xEfHw8jIyPIyMjA0tKSpHI/ffo03/QTWiBvaGjA4cOHoaGhAQcHB/I6dyTUuXPnWI+4ADhj8uDBg1FeXo7KykqMGDECdnZ22L9/P759+4bevXsjMTGxw/eyNcYsX74cISEhDKH5woULWLx4MQIDA5GZmYmamhq8efMGO3fuRFJSElatWsV6VBRNQ0MD5OXloaKiAh0dHdJvuPvD+fPnkZWVhVmzZvFk4ehsuMeD8+fPw9DQECdOnMCpU6dI1CsdrXv//n0cPHgQS5cuxYEDB1gVAv7q+eIWRpctWwY7OzuIi4vD1NQU+vr6xF5+GAu5iY2NhYaGBo8w+uPHDzQ3N7M6pnB/dvuIuDt37sDDwwMeHh4MJ6hNmzYx7mV7LN+xYweUlZXJ/hfgOMXRUYvnzp3D0KFDMXz4cPzxxx+sCnTcpKWlYe7cufjw4QMGDRqElJQUSEhIYOPGjeSee/fuISAggJHSnY3+XVBQgOnTpzOcbAFORHxQUBAATkpaCQkJhjDKDdvjyfHjx3HhwgV4eHiQdRXAWY9PnDgR+vr62LBhA8+/wXY/ATjzz9ixYzF37lwAnL3mzp07YW9vj7CwMOIANX/+fEyYMIFvxhSAYxO91yksLIS4uDjJrFVVVcUXWZMECBDwz0EgigoQ8F/G7xa2xcXFsLOzw8CBA/Hly5e/vJcNkpKSSDRdUFAQZGVlYWdnRw6P3r59iz179iAiIoKRNojNRVpLSwvevHkDISEhWFtbw83NjeFZD3AOrSUlJeHj40NSXbJNa2srWlpakJSUhCVLlmD06NFQV1fH2bNnGfdt3LgR6urqmDJlCk/EVGdDf/b58+cxf/58xMfHM1IA0ulbDQ0NcfjwYSQlJUFKSoohRne2vd+/f4eHhwfZcLR/naa+vh6FhYWYP38+0tPTUVxczDeepKdPn4auri6Sk5OJoHjmzBloaGhg+PDhuHnzJrn3d6J1Z8I9Hrx69QoNDQ1obW1FXl4eevToQSJyaM6dOwdNTU1Woly4oduuoKAA3bp1w5QpUxgHvR8/foShoSGJ6K6qqkJ4eDjWrFnDWtpCbg4cOACKovDw4UOUlJRAXFwc0tLSGDx4MEl9npGRAUdHR9b7NDdTp05Fr169IC4uDj09PURFRZFxeufOnejSpQt8fHxgY2MDPT09Vg9gGhoaUF9fz3jO6Ai5yspKaGhoICoqitxfVlaG8ePH88W8036e5v4O9P/fv38fYWFh0NDQgJycHGxtbTFgwAC+cQ4BOPOPuLg4T2aN/Px8SEpKwtHRkURL0d+Z7SiG9p/v4+MDDQ0NRr+gx5eOard2Jtx2c9fLMzc3h5qaGkRERBAfH4/S0lJ8+/YN6urqPEIu2/3k7NmzjFSoTU1NOHz4MPT09ODq6kru4x7fAfZT0T1//hy2trbw9fXFvXv3iDBqaWkJcXFxTJo0idzLtq0048aNg6WlJfl72rRpcHZ2hp6eHvr16wdNTU3Ex8ejrq6O571s9RN6vHv8+DGqq6uJHU5OTtDS0iL9nr6vfT9hi/a/+a1bt7Bw4ULyd319PQIDAyEnJ4dLly51+G+w/WyuX7+eZ3zm/v/W1lZUVFRgzZo1WLt2Ld9Eoh0/fhzbtm3DsWPHGE61cXFx0NbWxtKlS/Ho0SO4uLjAycmpw3+js+D+zDVr1mDMmDEICAjArl27SGaQiooKeHl5wcXFBbNnz4afnx/k5OT4ZlwBOA4X9Hj95MkTZGZmQldXFxoaGjz7CBq2BbqSkhIoKyuTfdm4ceNAURTDmaW2thY+Pj7w9vZmtb1v374NiqIgIiICBQUFjBw5Ert370ZdXR1u3rwJJycnskZZvnw5pKWlkZSUxGp2GYC5dp06dSrExMSgpKSEHj16YPHixYx7Hz9+jD/++ANSUlIoKSnpbFN56Oj3DgwMhI6ODnbt2oX+/fvD09MTMTExMDIygq+vL7mPzWh57jbfv38/KisrsWTJEkRGRqKgoIARBQ1wHBqSk5MZ9cUFCBAg4K8QiKICBPyXw73Z2717N5ydnWFra0uEUX7g1q1bkJeXJ1E4ra2tOHv2LLS0tBg1RgHm4ohfDtefP3+OyspKhISE8KQcAzjRaL1798a7d+9YsrBj6Pa7efMmRowY0aEwmpubyzcpc4uKiiArKwtPT08MGjQI3bp1w/r160lKl58/f6Jfv37Q1taGtrY2Q7DrTOg+WllZCTk5OZSWlnZ4398dtLB9gARw+khSUhIcHByQmppKhNHTp09DU1MT4eHhuHLlCstWcuDerKWnpyMwMBBnz55FW1sbGhoakJ2dja5duyI+Ph7nzp1DRUUFfHx8YGtry/rhEfdvXVhYiG7dumHq1KlEEPrx4wccHBwQHh6O+/fvY/r06TAzM8PHjx873e72fPr0CWvXrsXKlSvJtWfPnpGDUfp7JiQkICgoiERjsgF3mxcVFUFLSwvHjh3Ds2fPsGjRIgwYMAB+fn5EaC4rK8PIkSORmJjIijhH2/vw4UOEh4fDxsYGMTExJDqutbUV1tbWoCgKUVFRjPcmJyfD2dmZr+b63x2W02Pmly9fcP/+feTk5ODs2bN84xzCLWSYmZkhOzubJ6qFrqns7u7Oarp27jXSihUrEBAQgPDwcMybNw8AJ50ynZJz+fLl2LhxI7y9vRnZN9iA+9lMS0tD3759SQRJc3Mz8vLycO7cOUZfcHR0JJHF/OLk19zcjNTUVPTo0QN5eXkAOJGhhw4dgqGhIdzd3Vm28Pc8efIEXl5e8PT0ZAijqqqqjDrK/CJeXLp0CRISErC1tYWBgQHU1NSQlZVF1tqpqanQ0NDgqUPLFnQfLSoqgqGhIVauXElErh8/fsDR0ZERMbp48WJERESgpaWFL5wSAU6a/+HDhxPHOO75vKGhAYGBgejduzeZo/gJNTU1jB49usPXfte+bIyJ3LakpKSgd+/esLa2hry8PEaPHs3IVJCYmAgdHR1oamrCxsaG9XqcNCkpKZCTkyNp5i0tLREfH0+exXv37mHMmDFwcnKCr68vmU/5ZWxZt24djI2NMWzYMBgaGmL48OFIT0/H6tWrIScnx4gg5Qe2b9+OOXPmkHmext3dHVpaWhg9ejSSk5PRv39/GBsb80V7jxs3Dtra2sjIyMCQIUMQEhICIyMjHD58GKqqqozMOHPnzoWHhwffzPMvX76Eubk5bt68ifPnzyMpKQnCwsI8Tlr37t1DZmYm6/t57t958+bN2Lt3LwCO87CrqyvU1NQwd+5cXLt2DQDHKdTZ2Rk/fvwg72M7Wj4jIwMaGhp48OAB9uzZA21tbYiJiWHVqlXknurqavj4+GDKlCmdbqsAAQL+uQhEUQEC/gfgTqO2bds2+Pj4sBZBN2DAAEbKFoATeSYtLc0QDZubm1FaWoouXbrA39+/Q09vtqEXufSi7dGjRxg8eDCcnZ156hqw6e39u4Us92KTFkY1NDQYKWD4BVpY3rx5MwBOTZSuXbtCVFQUCxcuZKSPqqio4Ash4PHjx+jSpQuOHTv223tevnyJ4cOH88VBAHc/4banubkZKSkpsLW1ZQijZ86cgaioKNLT0zvb1L8kJSUFCgoKjDqtAOf7bdy4EaKiosR7OigoiDybbPwG7969I4crBQUFpH/v3buXCKN0atw1a9bA1NQUioqKUFNTY0305+bevXuQlJSElpYWiTJrv/m/c+cOpk2bBklJSZ5ahmyxfft2ZGRk8PTdXbt2wcbGBosXLyb9gVv86kxxjv788vJySEtLIzw8HBMnTkTPnj3h7OyMFy9eoK2tDYWFhTAzM8PAgQPx/v17XLhwAcnJyXzV3gAnawJFUTyON38H21E67QkNDYWBgQFOnDhB7vv06RMGDx6MFStWwNTUlERHdzbcY/i8efMgISGBuLg4DB8+HD179sTAgQPx69cvtLa2Yty4cbC2toaFhQVCQkL4JiI3NTUVioqKOHToUIficnV1Nd6+fQtfX1/Whdz2ayv67+bmZsyYMQNCQkIMYfTw4cOQkZEhtU/5EW5h9O7du/j48SNGjBgBe3t78l34hYaGBpw+fRrx8fGYOnUqPn36xBivd+3aBVtbW1ZTtbfnwIEDEBUVxcqVK3minmpra+Ho6AgJCQl4e3tDWFiYJyq9s+EeC1euXAlJSUnExMSgX79+EBERQWFhIUOIa2xshJOTE/z8/Ngwt0Po75CTk4N+/frxVW3t9nCvMZYtWwZlZWXiTDRv3jz06NEDgYGBpH4hwMlgcOrUKb5xIsrLy4OWlhZZox4+fBhdunSBoaEhoqKiyP6sqqoKVVVVjHGTX6iursa8efMQGhqKzZs3k9IsV65cgY2NDV69esWyhX/S2toKJSUlUBTFEBJpZs+ejZCQEAQFBWHatGmspw/nnrNHjBgBGxsbbNiwAS9fvsS8efMQEBAAKSkpmJmZMfb23GdZbDJ//nyMGDECMTExDCfotLQ0SEhI8AijNGw5WHC3V3JyMtTU1JCRkcE4J+F2HGptbYWnpyfCw8M71da/4uXLl4iIiGCkWh4/fjyEhYWxZcsW3L17F+Xl5fDy8oK5uTmrac8FCBDwz0MgigoQ8D8C92KyurqaNTsWLlzIIxD++PEDKioqWL58OeN6ZWUldHV1QVEUo04aP8IdSTJ48GC4ubkxanh09sKMu04OTWVlJY8XMbddt27dwsiRIyEpKYkLFy50jqH/Am1tbcjLy8PMmTMBcDwbVVVVMXnyZCxYsABdu3ZFVlYW61FzCxYswIEDBwBwNj9v375Fnz59EBMT81tvy+PHj8PPz4/VZ7I9ubm5WLJkCY8YlJKSAj09PaSlpaGqqgoAR0xn+xCdm9OnT0NFRQXXr18HwBG03r17h9OnT5MD9i1btkBMTAzTp08n72PDu766uhqBgYHw8fHBsmXLQFEU8vPzyev79u1Dt27dMHnyZACcZ/rZs2e4cOECX6TMBTgRjGPHjoWwsDBycnIAMDf+9+/fR3BwMIyNjVFeXs6WmQy4D5BCQ0N5Xh85ciTs7OxYsIyXe/fuQVxcHLNnzybX6L5CR4tUV1dj586dMDY2hoSEBAwMDGBjY4Pbt2+zY/RveP/+Pdzc3LBixQoA7Itvv4NbBNixYwemTp2K2bNn49ChQ+S6s7MzDAwMMHHiRKxfvx7Ozs7w8PAAAEbtXLa4fPkyIiMjSfaNtrY23LhxA8rKyggMDCT3ff/+HdXV1XxzKF1RUQE9PT3iOFdTU4NXr14hLy8Pjx49QlNTE7Zv3w5ra2s4OTnxjZC7ePFiIlJwt+X06dMhJCRERPKGhgZcunSJdXv/jo4iRiMiIqCvr8+a4P/vUldXB19fX4SHh/PNwej379/Rv39/zJ8/HwDw69cvvH37Flu2bMG+ffvIfbNnz0Z6ejoePHjAlqk83L17F9HR0QwxbsiQIZCRkUFJSQljDdXU1MSqo9/vfu/Hjx+jd+/evxUt2CQtLY38f0tLC758+YKIiAiyriouLoaUlBQmTpwILS0teHl58TgY0+/tTIKDg7Fo0SLGtby8PPJ9iouLIS0tjTVr1iA9PR09e/ZEbGwsqc1Jww+OoTQd1URta2tDTU0N/P394enpyXf9u7GxEfb29iRK++/sY3sO4v78sLAw6OnpkSxbX79+xfHjx4nDKPd3YXssb25uJucO3HXCgT+FUSkpKSxZsoQlC3/PihUrICcnx3Co5W7bhoYG7NmzBz4+PoxoYrbbPDc3F927d4eenh6PM3BYWBhMTEwgJCQEOzs7uLi48M26UIAAAf8cBKKoAAH/Q7C9sOFm4cKF2L17NwDO4UVMTAxcXFywc+dOcs/Xr18xbNgwXL58mS8WNx3VQevo9cePH8PT0xN+fn4kqo4NXr9+jdjYWACcdF2ampodRl5wf5dr164hKiqK9RqLNG/fvkVzczOePHmC8vJy1NfXw93dHZGRkWhubsbPnz+hqKgIiqKwcuVK1vr4r1+/4O/vz0ghCnC8Mrt27YqcnBye+hb19fUICQlBdHR0Z5rKQ/vN89ChQ2FlZYU1a9YwhFEAcHV1hYqKCmJjYxnfhx+eT4AjilpYWODp06e4c+cOUlJSoKGhAU1NTZiamuLZs2dobW0lqXS5xSY2KC0thbGxMSiKImmvWltbST+mhdGpU6fyRRt39Hy9ePEC4eHh6N69O06cOMG4r7W1Fbdu3WI1dfjvDpAcHBwgLy+PM2fOMPp5dnY2bGxsWB2729raUFtbC21tbejq6jLqP06dOhUURWHHjh0oLy9nOBnduHEDz549Y73u0u8O5DIyMiAnJ8dwEuFXkpOToaysjODgYAwZMgQqKirkgBrg1EH39PSEsbExAgMDSTYLDw8PZGZmsmQ1p+aSqakp1NTUSP08+hk4e/YsZGVlSVT377IDsMWFCxcgKyuLDx8+4Pr160hISICBgQFERUVhZWWFW7du4cOHD8jLy+ObqKiamhoMGTIEXbt2xfnz5wH82a41NTVwc3ODuLg4o+8A/DNn/g5uYfT+/ft49+4doqKi8PLlS7ZNY9A+eqi2thYPHjyAt7c3TE1N+SpipKmpCR4eHpg1axbevXuHKVOmwNnZGX369IGkpCRmzZpF7uWH55GmtLQU0tLSUFJSwqlTpxiv0cJoaWkp39XJLSoqYuwpAY7zYt++ffmmLAjAcUiVlZVl1Byur6/HxYsX8eXLF9y+fRtqampkf5GVlQVJSUm4uLiQdJds0NTUhJkzZ0JISAhr1qwh12tqavDhwwd8/PgRFhYWWLp0KQDOnl5FRQUqKirEMYAt2otBf0VtbS02b94MLy8vmJmZsZp6lvszq6qqUFtbSxwSGhoaYGBgAGNjY1y/fp1vIit/B/ccOHLkSGhrayM3N5fhJMy27R39xr9+/cLq1avRpUsX0rdpPnz4gISEBNZT/SYlJTGc22trazF06FCyNn369Cn27t0LFxcXRERE4Pbt23jw4AEmTpyIIUOGsBpN3FGbe3h4gKIo5Obm8pxLPHnyBGfOnMGjR486DAgQIECAgL9DIIoKECCgU2i/OIyIiICQkBA5nHv8+DGCg4NhZWWFqKgobNmyBc7OzujXrx9Z5LB1iMR92AL8udjqyB763qdPn7JaVwwANm3aBEtLS7i5uaF79+7Yvn37b+/l/n3YTPVL09bWhnv37kFVVZUhCLx8+RJmZmYkJW1lZSViY2OxcOFCcgDMFnv37oWZmRkePnxIrtXV1SEkJAQiIiKYP38+7t+/j9bWVly6dAmenp4wMzNj9dDuypUr5PeeOXMmdu3ahdraWowePRp2dnZYvXo1IwIgMTERJiYmSEhI4MvN6vnz56GiogI3Nzf07NkT48aNQ15eHk6dOgVdXV0S7dXU1IScnBxQFIUFCxZ0tunE9nfv3sHAwAC6uroICQkh0X1tbW3knoKCAlAUxTgwZQP697506RJyc3Mxa9Ys3LlzB42Njfj8+TMiIiIgIyNDhFFucZctuPvI27dvUV1dTcbthoYGGBoawtDQECUlJfj69Su+fPkCJycn+Pv7s2Uyg7y8PKirq2PixIn48eMHli1bBhERETg7O2Py5MkQFxeHk5MTRo8ejYKCAr4TG58+fcqwqaamBra2tli4cCFPWi9+YuPGjVBXVyf1krds2YIuXbpAWFgYWVlZ5L6GhgYSNQ9wxlB5eflOTc/Yfhy8cOECgoKC0K1bN0atJYATrauhocFT95wNfnegbGpqSkSi2NhYFBUVobq6GtLS0iS9OA0ba8Jr164Rh4mFCxeirKwMnz9/xtixYyEiIsJTfiA6OhqGhoZwdHTk2/7+O548eQJfX1/Y2tri4cOHrNdX/Lv2q6+vR0pKCuzt7eHp6cl3ESP19fWIjIyEnZ0dunbtiuDgYOTm5uLjx4+Ijo7uMPUlG3TUzrGxsejRowfS0tJ4HIaGDRsGiqKIUwBbtJ/vHRwcoKioCHd3d2zfvh3fvn3Ds2fPYGlpycjqwjZNTU04cuQIjIyM4OLiQq7Te87FixfD09OT1G9dvXo13NzcMGnSJNaF5/r6eixZsgQURWH16tWM165cuQI1NTWSAvru3bsYOnQoNm/ezKrd3J+9bNkypKenM/aZ7amvr8fcuXMxefJkVsUi7r46b948eHl5QUNDAxMmTEBJSQkAzppEX18fpqamuHHjBt/POe2FUT09PR5hlC24+0l5eTmOHz+Op0+fEodgut/T2U9ovn37xqogff/+fYwZM4anjw4aNAhGRkbYt28fXF1d4erqipiYGKiqqiI4OBhtbW34/PkzsZntsfHIkSO4ceMG+dvJyQnKysp/GwnN9pgoQICAfx4CUVSAAAH/cbgXKNxpHydNmgRhYWEUFBQAAJ4/f45ly5bB2NgYtra28PHxYdUjE/hzQXv06FEEBATAzc0NQ4cOJbUYOrKLnzYh8fHxoCgKjo6OZCH/T1ow6uvrY9y4ceTv69evo3v37ti5cydJVWNjY8MXQu6TJ0/g5uaGDRs2MK5//vwZ0dHR6NatG4SFhdGzZ08YGRnBy8uL1UO7Dx8+QEhICGPHjkVsbCx69uxJahBWV1cjIiIC9vb2WLlyJX79+oW2tjaEh4ejoKCAdQ9k7j58584dXL9+nbTl6dOnkZmZiZKSEiJY1NTUwMzMDAcPHiTva2xsRF5eXqenqKPb7M2bN6ivr8ebN29QUlICV1dXBAQEMIRRmtLSUr5IpVdYWAgpKSmEhobCwsIClpaWSExMRGtrK548eYIxY8ZAQUGBkWqUH5gxYwZMTU2hqqqKzMxM0pYNDQ0wMjICRVEwMjLCkCFD4OTkRBwB2Orf3J+7Y8cOKCsrw87ODtLS0gzRpaKiAsXFxTA2NoalpSVrtcI74syZM+jatSsGDRqEXbt2keeTjo6i4Yf5sn3UyNSpU0lUzoEDByApKYlFixZh4sSJ6NatG4+o+OzZMwwaNAgqKiqdWgOQ2+7Dhw+T+lt3795FSEgIzM3NGXUg6+rqoKenh/Xr13eajR3BbfeJEydQUlJCnLa+ffuGnJwcnDp1ilHv2dHRkSfqq7N5+PAhLCwsEBMTg9jYWFAURZygvn79ilGjRkFUVJQc2rW0tCA0NBRlZWV80c//X3j48CFCQkJYGVvap02ko7G5r3FTU1ODM2fOYM+ePaxHEtO2vX//Hp8+fSLt9+PHD5w5cwbFxcUM+8PCwjB+/HjW1+ftP587KicyMhKamprYtGkTwxkE4DiE8Et0Dp2qv7q6Gs+fP0dQUBD69+8PNTU1lJaWom/fvnB3d2fZSg7ckU2HDx+GgYEBBgwYwLgnLS0N9vb2xPFz0KBBDAcRNvoM956loaEBixYt4hFGr1y5AiMjI6Snp+P27dsYOHAgRowYwcgkwiZJSUno1asX1q5dy5POl6aj1PKdvV9rXy5j5syZkJGRwYYNGzB9+nQEBwdDRUWFUb/a2NgYioqKDCddfoW7PUePHg0pKSnGXo0NuMfm1NRUGBgYQElJCY6Ojhg4cCDev3+PtrY2LF++HEJCQjxZotr/G2yxe/duEnxw48YNuLq6Ql5eHrNnzyZOf1u3bmU4XQDs23737l3Iy8sjOjqaUXrF3t4eGhoaOHfuHOvjhwABAv57EIiiAgQI+I/CvWiZP38+IiMjGSk94uPj0aNHDyKM0vz8+ZNv6lzt378f4uLiSE1NxapVq+Do6Ag9PT2SfonfFmbci9l58+YhKioKzs7OiIiIIJsrtj0A29O+DWlRIjs7G87OzgxBKDExERRFQVdXF7Kysjw1Jthk5syZkJWV7bB+In1Yl52djStXrvBFmpeKigr06NED4uLiuHz5MsOe6upqREVFwcLCArq6urC1tYWBgQHpO/zQ71NSUiAvLw9FRUVoa2vj6tWrjNcbGxvx9etX+Pj4wM7OjvV+Tz+bJSUl0NHRYURv79mzB66urggMDCTC6IIFC7BlyxYWLOWFjtymD+Nev34NISEhRgriV69eISQkBOrq6kRIZ5s9e/ZARUUFu3fvxsSJE2FoaIjo6GgiXjU1NcHBwQHi4uI4dOgQ6f9s1Jnlhrvt9u7dC1lZWQQEBODVq1c897a0tLCeMvfRo0ckgmj27Nn4+vUr9u3bh5SUFAgLC8Pf3x9ZWVl4+vQppKSk+KZfc7cz/dy9f/8eT58+xYsXL6Crq0tSjh05cgRCQkKgKAp79+5l/DvHjh3Ds2fPOstsht3Tp0+HiooK1q9fT/rtzZs3ERoaChUVFSQkJGDp0qUYNGgQdHR0WF9T0SQnJ0NTUxO2trZQUVGBvb097t27R16vq6vD27dvMXDgQJibm7M+fgOc1JWKiooQFRUlDgr0XPj161dER0dDSEgIXl5eMDY2hqmpKV/Nmf8vsDEWto/mCgwMhImJCWbNmsWol/xXcwzb2WVKS0thbm4OQ0NDKCsrMxwUaD5+/Ijk5GTIyMiwnu2Eu803bNiAUaNGITQ0lJFNY+zYsdDR0cGmTZs6jOZiO93iyZMnQVEUtmzZQuxrbW3Fq1evkJKSAmdnZ6irq4OiKBw5cgQAfzg/AZznjBZGuSNGS0tLoa2tDSMjI+jo6MDQ0JBv0kLTDsKNjY08wmhjYyP++OMP6OnpoXfv3rCzs+ObOoUHDx5Enz59/u30w51tt7u7O1atWkX6+KtXr2Bubk6ELoCTaSsxMRE6OjrkfKWxsRHh4eF8MWf+Du7nltvOuXPnsm43/fkrV66EvLw8metpZ366tnJjYyOWL18OiqKwZ88e1uxtT1tbG96/fw8TExN4e3szakFXVlYy7nV3d8fo0aM728S/ZevWrejbty9iYmIYZyoODg7Q1tbGiRMnWB9HBAgQ8N+BQBQVIEBAp5CcnAw5OTkUFBTwLMgmTJgAERERxiKfhu0Fz6NHj2BmZoa1a9cC4ER3qaqqomfPnujduzc5BOWXwy66vcrKynD06FFyfdWqVejXrx8iIiIY7f/kyROe+gydybdv3xh/f/z4kfH3y5cv0adPH8yZM4dx/fDhwzhw4ADf1Lfi/v39/f2hqqraoXjxV+/rLOjPbGtrw/Xr10FRFISFhREVFUUOkegNYV1dHQoKCpCcnIy0tLS/TB3dmbYDnOhtbW1tHDt2DBcuXEBgYCBkZWVx/PhxtLS0oKWlBRkZGXB1dYWNjQ3fpNIrLi6GqKgoMjMzeQ5B9+3bBw8PD/Tt2xehoaGgKIpxAMwmR48ehZWVFQDOuKGmpoaoqCjyOu248OLFC54xvjNp/0zt2bOHUfcnNzcXlpaWiIyMJG3b2NgIfX19GBsb4+bNm50+JtLPVXvbuee/3bt3Q0lJCRMnTmSkZ+UHgevGjRvo1asXsrOzERcXB4qi8OjRI/J6RUUFZs2aBX19fRgYGEBOTg5DhgxBY2Mja3NnfX094+/8/HwYGxszBKDi4mJYWlqSeerixYsIDw/Hzp07WR1HuNssLS0N8vLyuHTpEokUpbl37x6CgoIgIiICV1dXbNy4kW9So61btw7y8vLEOWH79u2gKIrULGxpaUF+fj4cHBzQr18/Vsdv7lTgBw8ehJqaGoyMjBAfH09EAe5nlX4OkpOTWZ8z/+lMmzYNsrKymD59OqZNmwYlJSX4+/sTQYtfOXjwIMTFxZGZmYny8nKkpKSAoihkZWWR57e4uBhDhw6Fjo4O38zzAGe/1qdPHyQnJ2PFihWgKAoxMTHk9XHjxkFfXx+ZmZmM6CI24H7u1q5di9zcXFAUhV69emHLli0kQw7No0ePcPToUaiqqmLUqFGdbG3HLFiwABs3bgTAFEa5MyocOnQIq1atwuLFi/lmTNm8eTOUlJRw9+5dAExhlI6ca2pqwoMHD3D16lXWHEGzs7N51hkbN26Eo6MjGhsbeQRmfij9AHAiFFVVVRnt9fz5c4iLi/M4Zd29exeWlpbIzc3l+XfY7ic0dJv+zvmjfb9gw+6zZ8+S/29sbERoaChxiqPH9E2bNgHgrCHr6urQ1taGXbt2sb4W76jPXrx4ES4uLhg4cCAj+ra6uhoHDhyAp6cnTExM+MZZof14nZ+fD319fUyYMAF37twh13V0dBASEtLZ5gkQIOC/FIEoKkCAgP84+/fvh4qKCmNB8+3bN5K6AwA5SC0rK2PDxN9y/fp1kh7y7du30NbWRmRkJO7fvw9tbW307du3U+uH/RX0YrawsBBycnIYP348nj9/Tl6nhdHw8HA8ffoU6enp0NPT40mD1VmkpaVh5syZZDF+8+ZN2NraYtSoUfjw4QNZHG/cuBEaGhqdmpbw/wXudGkDBgyAkpISzpw5Q74H25sNgHmYfuXKFWLTtWvXIC4ujtGjR/NsStrDDxvszZs3IysrC4sWLWJcHzJkCOTk5EhdywsXLmDhwoWsp9Kj+fLlC6ysrIhI19zcjF+/fqGwsJDUIC4rK8OMGTMwbNgwRtRUZ0P3DTqFZUFBAby8vPDjxw+oqKggKiqK9KfTp08jNTUVnz59Ys1egPmMbd68GdOmTWMcatDQwmh0dDSJFGhsbISZmRmUlZU7dazZuHEjtLW1SWrIvxJGd+zYASUlJSQkJPBFWjTuej9Tp06FjIwMREVFSW251tZWhhNGa2srFi9ejKCgIHTv3p2xBuhMgoODMXfuXMZYl5mZiUGDBhFbAc5BdI8ePVBUVITv37/Dz88PkZGRrGWxWL58OUOE+PjxI/r160cybXz8+BFXr17FxIkTUVxcjPr6ejx8+BBDhw6Fj48Pdu/eTd7L9nyUmJiIuXPnAuAI/j179iRpfeln4cmTJ9iyZQur4zf38/jw4UM8efIEHz58wOrVq2Fvb4+oqCgijP4Otuedfyr37t2DtrY2I8qloqIC/fv3x6BBg3ic6NigI6eO9+/fw8vLC8uWLQPAcabU1NSEtbU1unTpguXLlwPgHABv3779X3Kg6ywuXboELS0tEhl19OhR9OjRA9nZ2Yz7Bg0ahKFDh7I+jtCkpaVBWloae/fuRU5ODsLCwtCjRw/k5uZ2KNyePXsW8vLyjH0pG7S1tZHsN/n5+QB+L4xyww/r8KqqKvTt2xdmZmZkrUoLo126dOGpaQ10vt2HDx+GmZkZz3M6Z84c9OrVi8eulpYWnD17Fu/evetUO9tDR3pGRkYC4DiHXLx4ET9+/ICLiwtmzZrFs3d3dHREfHw8G+b+LfQ4UVRUBFVV1X87Qrcz2LhxIyiKYqz/AwICcOjQIRw+fBji4uJkjdLU1ITs7Gzs37+f8W+wNde3L1NVX19PzlYuXLiA/v37w8/PjzgTXb9+HbGxsQgODma1Ti73/JGVlYUpU6aQvTBNXl4e5OTkEBkZyRiv+WEMFCBAwH8HAlFUgAAB/3F27doFS0tLNDQ04NGjR5g7dy7U1dWhoqICV1dXcl9mZiZfHh49fvwYADBq1CgS3QJwFst0Glc2oy25OX36NMTExBgHidzk5ubC1tYWffr0gbKyMk+60c4kNzeXeBi3tLTg/fv3WLNmDYyMjGBoaIixY8eioqICT58+haurK3JycgD8Mw4Yv3//jhEjRqB3796YNm0aI2U0W7SvkWJhYYG1a9eitrYWACe9r4SEBMaOHUvSYI4aNYqkS+WXwy9avKIoCuPHj+d5fciQIZCXl8eBAwcY1/lhA/Xq1Suoq6ujrKwM1dXVyMjIgJOTE4SEhGBoaMg4/OWHfn7s2DGkpqYCAN6+fQtJSUlQFIUpU6Yw7ktISICXlxdPpFpnwn0oMH36dIiLi8PJyQkiIiLQ19fH9evXGfdv3boVKioqWLRoERm/GxsbYW9vz3Am+U9z48YNaGtrw87O7l8SRnft2gVhYWGkpKSwOu+MHz8eCQkJxIZdu3ZBQkICffr0wcaNG3ki6Lifv+rqagwfPhwjR45EY2Njp48tqamppA4U3Wfnzp2LiIgIxn3v379HZGQkunXrBk1NTRgbG7PmUb9t2zaedHivX7+GtLQ0NmzYgIsXL2LkyJGwsLAg0bh0us4rV64gNDQUzs7OPPVQO4P2bdXa2or+/ftj7ty5uHjxIuOwsbW1FdOmTeNJr8zG+M1t94wZM2BiYkLmldbWVixduhT29vaIiYkh0cTR0dG4ePFip9v6T6etrY3nN3706BGUlJSIkwX9ekVFBYSFhRkiPxvQ4/Tbt2+xbds2bNy4kayplyxZgsrKSnz48AGGhobEmWL8+PHo0aMHIyUtP1FcXAw7OzsAHAFDXFwcGzZsAMApa8KdgYbb4aWz4Y7q+/TpE/r27Yt169Yx7omPj4eIiAi2bt3KcIBpa2vD27dvYWhoyLMu+E/TkYje0tKCtLQ0CAkJYdu2bQD+FEaNjIxgZGTUqTZ2xO/WJNXV1TA1NYWxsTFDGF28eDEoiuIpjcMGtO1lZWVkXX358mXo6+sjIyOD7IEATh93cXFhZZ5sz44dO0BRFPz9/UFRFImwTE9Ph4KCArZt20aE0ZqaGtjZ2RFHDH6ksLCQMZ7wExs2bEDXrl15MpaFh4dDS0sLUlJSJEIU4KSgdXd3x5o1azrZ0r8mLS0N+vr6sLW1RWpqKn78+AGAEzFKC6N0Ng66LirA/n6ztbUVK1asgIKCAjIyMnicElJSUiAjI4OwsDByJgfwx75egAAB/3wEoqgAAQL+T+low7d//34YGBjAy8sLysrKGDVqFFauXImSkhIoKioy0pUA7C3OuCP93r17RyKkAM7Gz97enqTRBTiHwocOHSJ1Otmmra0NaWlpGDt2LADO5q6srAxjxozB+PHjycHSgwcPcPz4cb7xTj958iQSEhIYKTczMzMRHBwMERERZGRkQE9PD1paWjwpDzubfzfV48aNGxEdHQ1ZWVnExcXh+PHj/yHL/nXmzp0LWVlZlJWVkQ0TzdmzZyEuLg4bGxtYWlpCT0+P9c0SN/Qz+v37d/j7+0NJSYnUGuE+mHNzc4O3tzcrNv4d3t7ekJOTQ69evRAYGIjMzEzU1tZCX18fCQkJbJvHYMeOHRASEiKe07t374acnBwSExPx+fNnVFRUIDk5GVJSUsTBgW3u3buHSZMmkcPpoqIiuLq6IiAggKf+8KFDh8immi2Bsa2tDXfv3oWJiQmsra1JVMtfCaP79u1jPUMBd5rhDx8+4NevX/j58yemTJkCdXV1ZGVldVjnlG7vxYsX/zYK5j8FdxsuXLiQEbWVlJSEkSNH8rzn27dvOH/+PAoKCliNWKRTggOc2qb02J2WlgYxMTGIi4tjypQpRLTw8vJCbGwsef+tW7fg4+MDHx+fDmsB/qfg7se3b98m8/zWrVthZmaGbt26EccbgLNu8fHxQVpaWqfZ+HdkZGRAQUEBR48eZUTDt7W1YdmyZbC3t4etrS1cXV2hqKjIV3PmPwXuaNvCwkI8f/4cL168gLS0NOkfTU1N5BmwtbXF/PnzWbEV+LNf37lzBxoaGujbty/ExMQgLS3NSFM4Z84ceHp6EueL9PR0qKqqQkZGhvU60B2tZy9fvgwnJyesWrUKEhISDAHj5MmTCAwMZMw9bKQ/5x7H6TZUVlbGjh07ADBr4Do5OaF3797Iy8tjHKBv3rwZFEXh9evXnWQ1kzdv3gAAQ5SYOXMmhISEiDNLY2MjioqKMGLECL45/N+5cyeJ0OYWRk1MTGBiYkKE0YaGBuTn5/PNWFhRUQGKojBjxgwAHPvi4uLg4OCA+Ph4PHnyBGVlZfD19YWlpSXf2G1hYYEuXbogPT2dcT0uLg59+vRBYGAg4uLi4OzsDCMjI76xuz1tbW0YMWIEcX7iJ7Zs2QIhISEcPnyYcf3Nmzf4+vUrzM3NYWBggJqaGlRXV+Pz58/w8fGBg4MD3zyXAGd/pqysjPz8fERHR8PR0RH+/v5k7qFT6dra2jIc4tlwajl06BBZS6WmpmLatGkAOPXDlZSUkJ6ezogYXbJkCfr164dRo0bxTbkqAQIE/PcgEEUFCBDwfwb3QuX58+e4efMm8WIsLCxEYmIidu3ahQ8fPpB7zM3NGSn42KagoABGRkaQl5dHREQEDh06RF6ja/2VlZVh0qRJUFFRYW1DzQ33gjY2Nha9e/fG7du3ERISAk9PT7i7u8PExAROTk4kEokNuPsH96FFXl4exMXFkZqaynPQn5+fj8GDB6NPnz6gKIpVAZrb/qysrA5TQ9Fwb5Ta2tpQXl6OnTt38ogynU1lZSUcHR3J4REN93d79OgRYmNjMXPmTNZrF7Xf/HBv+KuqquDk5AQtLS1yEMP9LLC9caJtuXfvHsrKyojHfE1NDTZt2oTs7Gz8/PmTfKewsDBkZGTwTURuW1sbPn78CG9vb8ybNw8A8PnzZ2RnZ0NaWhpKSkowMDCAqakp36S2LioqgpKSEkxNTRlOFgUFBXBzc4O/v3+Hz2D757UzoNPJApyD9fz8fFAUBU9Pz38pYpRf2LJlC5ycnBgOHxMnToS6ujrWrl1LIujCw8MZhxwzZ86EtrZ2p6Zvb2trY7ThnDlzQFEU8vLyEBcXh+DgYJSXl+PkyZO4ePEiHjx4gH379jHmK7ZqWtKcP38eenp6mDBhAhE3b926xXBKaGtrg6urKxYsWMD4vuXl5Z2aFpD7s6dNmwYnJyds3boVLS0tKC8vh5eXFywtLYmQ+/z5c/j6+sLa2ppvDncrKythYWGB7du3M65z16Hbs2cPEhISEB0dzfqc+U/k4sWLkJCQwLNnz5CcnAxlZWUiGs2ZMwfdu3dnRCjW1dXByMiItQN27nFbVFQUKSkp+Pz5M06fPo1BgwahT58+pMb2iBEjEBoaSt47efJk7N27t1MdEzqC+9nMyckhzjiPHj2Ck5MTevTogdmzZ5N76uvrMXDgQISFhbE6D3F/dlRUFHR1dQEAfn5+jNrxzc3NaG1txZgxY2BkZARRUVEiBDQ1NeHUqVOslSc4cOAAKIrCmTNnAPz5nZqampCYmIju3buT9SL3OMj2mPLt2zeIiopiwIAB+Pz5M4A/ba+srESvXr3g4eHBsx5kOy0nzZYtW9CjRw9Mnz4dAGccycjIgJWVFSiKgpGREVxcXFitX83N3bt34eLigpiYGHTp0oURqQhwaqXGxsbC19cXkyZN4vu5h+09WUfcunWLZB3i7jMBAQGYMGECmpqacO7cOfTp0wc6OjowMDCAg4MDLCwsWO8n7dtz27ZtJHK1tbUVeXl5sLe3x8CBA4kwevr0acTFxbH6W1RVVcHKygpKSkqIjo6GqKgoY8xYunQplJWVMWvWLNy6dQstLS0ICQnB/v37GRkCBAgQIOD/CoEoKkCAgP8TuBeT06dPh4WFBXr27Al3d3dMnDiRZ2NHR3o5OzvzzeLm3r17UFZWxvLly7Fx40b0798fbm5u5DCsvLwcNjY2UFFRgYGBAetCQEebvk+fPsHOzg5SUlIYNmwYqR9x/vx5GBgYsF4n5eXLl8Szu7i4mHj6b9q0CX369EFSUhJP6sovX77g1q1bePr0aafbC/C2c1JSEpSUlLBw4cJ/qaYVv/RvgBPR1atXL+zcuZPntfr6eiIkcT+v/FAjZe3atRg3bhy8vb1RUlJCNqPV1dVwcnKCtrY2SS31u3+jM+Gu76uurg4zMzNoaWnByMgIly5dYtz748cPzJo1CzIyMnj06BEb5gJgRixwM2vWLPTp04chXn369AnHjh3D7du3Wa0j2j59X2lpKQICAhgHoDSFhYXw8vKCg4MDI/0S2xQUFKBXr16YOHEinJyc0LNnT9ja2v5WGGWb9vYcP34ctra2CAkJYQgXkyZNgpaWFkaOHIkBAwZATk6O9K23b98iPDy8U+fQ9hGLNBkZGaAoCnJycpCRkYG1tTUR/fX09GBlZcVXv0FjYyMyMjLg4OCAuLg4kuocAGpra3H9+nX4+fnB2NiYtDfb9mdkZJBaz9wpts+cOQMfHx/07t0bysrKMDMzg4ODA+uHjdw8evQIUlJSJM0md1vW19d3WK+QXwTdfwoPHjzA8OHDISUlBWlpaYbz28ePHxETEwOKopCQkICZM2fCw8OD9aioyspKyMrKYvDgwYzr27dvh4SEBMlgsWbNGnTt2hVTp04l35HtetDcffjt27cQExODm5sbycRCRxyFhYVhy5Yt2LdvH9zd3flqTHn69Cn8/f1JKsiysjJYWloiMDCQ2Nba2oohQ4bgzp078PPzg6OjI+t2A5z108iRIyEhIUEyJdF2nT9/Hl26dAFFUTyRa51NR3vMhw8fQk1NDe7u7kQYBThrcWdnZ1AU1WHGhc6E+zdu7wi8detWCAkJkci01tZWNDc349KlS3j27Bl5L9v1qwFONCvtPDFnzhx06dKFp7Zv+/fxg900/DB//yuMGDECxsbGJEJ72LBh0NPTw4sXL8g9tbW1WLNmDVauXIk9e/awmjUEYD6b2dnZWLp0KQIDAxnO2s3NzcjPz4eDgwMCAgJ4MhOwORZ+//4dMjIyEBYWJmM4d3a2lStXwsTEBEpKStDX14ehoSHDEU2AAAEC/i8RiKICBAj4P2XRokWQk5PD6dOnUV1djfDwcIiLixMhoL6+HllZWfDy8mJ42rG9UX348CHmzJlD6ucBHJE0KCgIAwYMwN69e8n1+/fvs572il4Unjp1CtHR0Rg8eDCmT59O6ua0j7hMSkpC//79OzUqpz21tbXw8vKCuro6cnJyQFEUI/pi48aNRBjl3ozwwwKY7p8bNmyAnJwcOfDifo0f7Pw7Xr9+DXV1dSxduhQAc9N6+fJlpKWlsVoXsiNSUlLQp08fxMTEIDExEUJCQli+fDk5kKEPY8TFxRn9hm0uXrwIKSkp5ObmAuDUJqYoCuvWrSN95fjx4wgMDIS6ujrrThYA50Bu+vTpPKlwzc3NkZiYCIA/+znt/AFwhBYPDw+YmJjg2rVrjPvy8/Pxxx9/sD7f0Lx//x4qKirkeWxoaMDp06ehq6vLl8Iotx2HDh0ikZ/nzp1Dv379EBgYyBBGFyxYgLFjx2LkyJE8h+kdiUn/Kbj7bFpaGhwcHBg1w7KyskhqvY8fP+LHjx+oqqpCTU0Nq+P7nTt3sHv3bkRERGD27Nkkc0VzczMWLFgAW1tbxMXFkYPTQ4cOwcPDA+7u7nwhLLa1teH169ewtLRk1JbjjpJ+8+YNLl++jM2bN+PMmTOsHzbS0L93TU0N1NXVMWfOHPIabduJEyeQk5PDNzXl/8nMnj0bFEVBVlaWJ/NDbW0tNm3ahH79+sHd3R2jRo1ivX9fuXIFnp6esLGxIaUpAM5YKC0tTTLgNDY2Yt68ebC2toaPjw9j7cgG3ONYeno6QkND0bdvX1AUBTs7O3IwvW3bNoSEhEBSUhLOzs4IDQ1lvc1ptm7dCmtra3h5eZF6kI2Njdi1axfMzMygqqqKYcOGwczMDHp6emhtbcX06dPRv3//Trf1d3N3dXU1Ro4cCREREUYJmXv37iEhIQFbt25ldQzktvvLly+oqakh9jx8+BBKSkpwd3cnTnEtLS0YP348nj59yvqcQ7N8+XIMGTIEoaGhuHTpEllP0elSZ8yY0WEbd/Z66+jRo3/rbNDa2oq5c+eiS5cujHTz3LBZ2xfgOPjl5eWhsLCQXGN7rPgruG0bOXIkDAwMYGlpCUNDQ4bD8+++Az9EiKakpKBnz54wMzODoqIi9PX1GWWGWlpasGPHDmhra2Pq1KkA+GMP9/r1a+jr68PIyAja2trEEYo7K8u5c+ewdetWrF69mu+joAUIEPDPRiCKChAg4P+EtrY2UgsqPz8fAHDs2DGIiYkRz0Z6s52Xl4f09HSyyGH78Ov79+9wcHBAz549MWLECMZrd+/eRWBgINzd3ZGTk8OShR1TXFwMCQkJREdHIysrC+Li4oxNKsDxnp48eTKkpKQY0TGdCS32tLS04M6dO9DW1kb37t1JmhfuBTwtjKampuLZs2es2EuTmpqKRYsWkb+bmpqQkJCAyZMnA+AcDGzevBlmZmbw8PDA7t27+VK8aL8BmjNnDrp164aSkhJyrba2Fr6+vggPD+eLDRNNfn4+1NTUyAHjpUuXQFEUunbtilmzZpE6ZD9//kRMTAxfbZjWrl2L8PBwABwnBQ0NDURHRzPuefPmDdatW8d6X6d/8xkzZqBfv34QExPDrFmzcOLECQAcccvDw4OkQuWnPnL37l1QFMVoW1pstrCwIBFe7eGHZ/Xx48fo06cPQ7xtbm7GiRMnICYmhoEDB3aqePhXcP/mqampUFVVRVZWFjloLCsr61AY5T7kaG5uZrXvzJo1C7Kysjh58iRP1oQFCxaga9euyMrK4kltyUZf2bFjBywtLWFtbQ1TU1MoKSmBoihMnz6dRLfMmzcPdnZ2iI+PR21tLVpbW1FWVsY3wiLAOfzq3bs3w3GBpqGhocNIc7ZTFHNTU1OD2NhY9OvXj0SSAJy29fLywvDhwzvLxP8auMcA+v9v3bqFY8eOITw8HAoKCiTSn7sP/1U6fTa4cOECBg8eDBMTEzx48AD19fVQUFBAUlISz73V1dWMtS7bLFu2DJKSkigrKyPOF5qamrCysiJ7tbq6OlRWVuLXr1+/zSTR2TQ2NmLhwoUwMDCApqYm47Xm5mY8e/YMSUlJiIyMxJQpU8j8ExERgaFDh6KxsbFTU+TTZGdnIykpCdOmTcPZs2fR1taGpqYmIoxu2rQJp0+fRkBAAIYNG8b4Tp0Nt92zZs2Cg4MD1NTUMH78eBK9+uDBAygrK8PIyAixsbFwdnaGubk5eUbZHsOXLFkCCQkJTJ06FXp6eiTdNu04vHXrVnTv3p11J7nMzExoa2tj/fr1pM3+ShidN28eunXrhqysrM40s0O4+8nkyZMhIyMDHR0dKCkpkb0PwN9CFrdt0dHR6NatGxYvXkzGDX7a67Tn27dvGDNmDG7fvo26ujocOXIExsbGDIdKgDOGHDt2jNXfoaM+XVtbi3fv3sHe3h6ampo85ZHaO/Hzcz8SIEDAPxuBKCpAgID/MxoaGtCvXz9cv34dpaWlEBcXJzV/GhsbsXHjRly+fJnxHn7xKC0rK4OjoyMMDAwYB7oAx3PX1dUVAQEBrEZacvP+/XuYmJggMzMTAGfxSKdgpHn16hWmTJkCW1tbVFRUsGInLWLRKV3evXsHDQ0NqKqqwsTEhIha3GlTsrOz0aNHD8yaNYu1A5jKykqEhITAwcEBa9euJdfj4+MhJiaGtWvXwsrKCn5+fpgxYwbc3d1hZWXFuoDBHYEDAJs3b8akSZMQGxuLw4cPk/aMj48naa5GjhyJ/v37w8jIiEQCsLURbD8eZGdnkzGktLQUkpKS2L17N9auXYtu3bph0aJFPCmM2RpT6DajI0ESExMREhKCmpoaqKioIDo6mtyTnZ3NENzZgLu+Ineb1dXVITc3Fw4ODtDX10dMTAwOHjyI7t27Y/Xq1WyZ+1vq6uqwdetWiIuLIyYmhlynhVFra2tcvHiRRQt/T2NjIzQ0NJCWlsa4XlNTQ+pcubi4sGQdh/ZjwZIlSyAnJ4erV6/ix48fjNfoeTQ4OBgHDhz4y3+ns3n+/DksLCxQXFzMuM4d5bdgwQJQFIXdu3d3snVMNm7cCDExMeTm5pLo9/v372PWrFno2rUrpkyZAuDPKDQHBweMHDmScRDGxkEv/Rtz/9ZPnz6FjIwMcY7jntMvXbqEzMxM1usrcrdVXl4eZsyYgUmTJpG6kE+ePEFISAhMTU0xePBgpKSkwMHBgfUUrv9kftc/7927h9DQUCgoKDDqP69fv57hPMQvdS3Pnz+PwYMHw8DAAD179iTPJsAfjjcd0dLSgrCwMCQkJJBrra2tuHz5MpSVldG/f38i4P6Vg11n0FEb/vjxA+vWrYOcnBzCwsLI9Y7s+/HjBxISEiAjI9NhiYX/FNy2zJw5E2JiYhg8eDDU1dVhamqKiRMnku+WnJwMYWFh6OjoMOqiskH7shWysrLIzs7GzJkzERwcDGVlZTI/VlVVYciQIQgMDMSwYcP4JvPTgwcPMGbMGFKzFeCI4ubm5li7di0RRteuXQtHR0dWx5Jv374hLCwM/fr1w7p16/4lYTQlJYV1u7n59OkTXF1dcffuXbx58wYFBQWQlZVFcHAwuYefBS1u20aNGgV9fX1s3ryZ9BN+aWdusrOzIS4ujn79+uHly5cAON/j5MmTMDc3h52dXYdOOGw7K5SXl+Pu3bukhElbWxuePn0Ke3t76Ojo4NWrV2hpaUF4eDgyMjLIPQIECBDwn0QgigoQIOD/icuXLyMnJ4dxaFdTU4P+/fvD3d0dMjIyWLduHbn/xYsX8PT0ZKRLZQt6gUUfxNGLRDoFYFBQEImQonnw4AFJFcgW3AvDDx8+wMTEBI2NjXjz5g369OnDiJSi03lVVlYy6r50Nr9+/SKerbS4+Pr1a9y4cYMcKtL2cQuj+/btY63uH50a+cWLF4iKioKdnR0Rdevq6jBixAgYGhpiyZIluHPnDgDg7NmzsLe3Z7W+IndEFsA5aJGXl0dcXBzc3Nxga2uLuXPnkv6+bds2REREYMiQIUhNTWU9cpu7f//xxx+4dOkSKisr8ebNG7x79w5mZmZYvnw5AM5Bu6SkJCiKwqZNm1ixtyMOHjwIWVlZXL9+HRcuXICdnR169uxJnk16czhp0iSMGDGCpH5jA7q9z5w5gxkzZmDGjBl4/vw5+f1fvnyJo0ePom/fvnB1dQVFUbC3t0ddXR3fbVLr6+uRl5cHYWFhhjB64sQJODk5YcyYMSxax6Gj6Ki2tjYkJyejX79+2LFjB3m9tbUV48aNQ0lJCTnw4AcaGhoQEBBA0v12JKqfP38eurq6jFT0/EB5eTkkJCRw7tw5nte4nVnYTltIOwXt378fALPfVFdXY968eaAoikQtNjU1ITU1FVFRUaweRrevtQn82S+SkpLQo0cPUjsK4PQlLy8vjB07ltXxhNvu5ORkqKioYNCgQQgICICIiAgR99+8eYMNGzbAxcUFgwYNQnx8POtz5j+NlJQU/PHHH+Tv3wlu9+/fx9ChQ9GzZ09s3rwZ7u7ujCg0fqC9MDpkyBDIy8ujrKwMAPvC0N/h7e0NNzc3nuszZ84ERVFwdnYm19j6Ltyfe/HiRRw+fBgXL15Ea2srWlpasHbtWhgbGyMyMpLcx70OfvXqFebNmwcLCwvWMuU8efIErq6uuHDhArFv8eLFsLGxQUpKCulHDx8+xOPHj1mtaclNeXk5IiMjGeuSR48e4Y8//oCOjg7D0Yz7WWDb7vz8fKirq0NfX5+nzAktjK5fv57s/zty5Oks6Pnxx48fGDFiBOzt7f8lYZTboZHttfjKlSvh5OSEESNGEKespqYmHDhwALKysggJCSH38vOY2D6Vrr6+PnJzc1l32Pod5eXlGDBgAMTFxRnlklpaWnDq1ClYWVlBU1OT51ygs2kfda6jowNtbW1ISUlh27Zt5LVnz57ByckJoqKisLKygpaWlqAsgQABAjoNgSgqQICAf5vNmzeTtDmKioqwtLQkHvVXrlyBrKws2Ww3NTXh58+f8PX1hbOzM994Cx44cAD9+/eHt7c3pk2bRsSJU6dOoV+/fhg0aBDjAI9f2L9/PzZs2IAfP35AV1cXubm50NTURHR0NFlAPn78GM7OzqSOK9vU1dWRCBxaKG9tbcW5c+fg4OAAY2NjIkQuW7YMCxcuZM3W2NhYRkTfs2fPEBkZCTs7O5LuFwCj7mZLSwu8vLwQHBzM2gZ12LBhJG01wDlY19DQIGlnCwoKICQkhL59+2LatGnk4IJbiAbY8+Y9cuQInj59CoDzbHbv3h0nT54kr9+4cQN9+/Yl3+fJkyeYPn06CgsLWT+EoX/zt2/fYsyYMaSPv3nzBsOGDYOuri75bT5//owZM2ZAQUGBjJlscuTIEQgJCcHPzw8SEhKwsbFBXl4eYyPd2tqKPXv2IDY2lqfWKFssW7YMM2bMYFyrr6/Htm3b0LVrV5LiGgCuXbvG+mEMdw3opKQkBAUFIT8/H2/evMHnz58REhICOzs7JCUl4fjx45g4cSJUVFR4Urx2Jt7e3jxpIL9+/Qp5eXmSoYCb+vp64hRy69Ytvpnr6ba/d+8eNDU1sW/fPp7XSkpKsHLlSsb72BhXXr9+DVFRUfj6+pJr3AegAGdcsbe3h7e3N3lOW1payD1s9HXuz1yxYgWCg4Ph5eWFyZMn49u3b6ivr8eoUaNAURTi4uIQExMDFxcXVrMTuLq6MlJrb9y4EcrKymSOOXjwICiKgri4+F9GDrM9//xTqK2tRXR0NOzs7JCenk6u/66/Pnv2DLGxsdDT04Ofnx/fRKFx01HEqKmpKRHA2BYsgN+3165du2BsbMyorQxwnOXGjBkDQ0NDhIaGdoaJf0tqairU1NRgaWkJRUVFDBkyhKSMXLVqFczMzHhKE9A8e/aMNcfQJUuWwMLCAk5OToyMJj9//sS0adNgY2PToW1s9/GTJ09CTEwMUlJSjH0FAFRUVMDa2hobN24E0LGzF5v8+vULAwcORPfu3bF27VoeYWXMmDHo06cPioqKyDU27f5/FUYB9tu7sbERq1atgrKyMkxNTRmvNTU14eDBg1BQUMCAAQPYMfDfhHvNOnr0aEhJSeHgwYMsWsThd33g4cOHMDU1hZGREX7+/Emut7S04NChQxg9ejTfrMMzMjKgqKiIkydP4vv37xg1ahS6dOlCHJ2BP/vTypUrBTVEBQgQ0KkIRFEBAgT8W2zcuBHdu3fH7t27UV1djY0bN6Jr167IyMhAa2srWltbkZeXhy5dusDR0RFOTk5wcnKCqakp2Zywvci5du0aunfvjtTUVAwbNgy2trZwd3cnqVJOnToFZ2dnuLi44OzZs6zays2tW7cgJyeHjRs3oq6uDuPHj4ekpCT8/PwY902bNg3W1tY89Rk6G+6FfGNjI+bPnw+Kooi4SAujjo6OkJGRQXh4OCiKItGXbHD8+HHST2kP0cePHyMyMhK2traMOi5VVVXIz8+Hp6cnTExMWDvcjYiIgLa2Nvm7paUFK1euxJw5cwAARUVFkJKSwrJlyzB+/HgoKCggPT2db7wwN2zYAIqi8OTJExQUFGDGjBmMlMUAJ4q7S5cuyM7OxtWrVzFw4EBGv2f7YPrq1asYMmQIbGxsGCn/7ty5g4CAAGhoaEBNTQ329vZQU1MjdXbZgO6fnz59QmRkJIm0ra+vR0BAAOzs7LBt2zae/sHmQR33M9XQ0IC0tDSIiIjwpCCuq6tDREQEKIrC6NGjGa+xfdBYVFQEYWFhDB06FL6+vlBSUoK/vz9u3bqFL1++YPbs2dDV1YWWlhYMDAxY7yOXLl3icZpobW3FkCFDMGTIEDK/0L/NhQsXEBMTw+Mw0tn81e/s6ekJHR0dhrhfX18Pf39/hjMMW/z69QubNm2CsLAwQ/Rvb9eUKVOgra2N+vp61tNbcpOamgpZWVnMmTMHERERsLa2hqamJjn437BhA7y9vTFo0CD88ccfrEVajhw5Enp6eowUoenp6cjNzQXASdUuISGBDRs2ICYmBhISEigpKWF9DPmnQvfLnz9/Ijk5Gc7Ozpg5cyZ5/a/a9dOnT3xTzxLgfcbaC6PDhg2DqqoqT6kQNuBu12fPnuHVq1ekLvirV68QGhoKDw8PUqLg8+fP8Pf3x5w5c7BhwwZoa2sTZzW2WLt2LXr16kWcPNPT0yEiIkKcVqurq7FmzRr06tWL9ZIE7bl16xZ69uwJiqJw+vRpxmvPnz8HRVE4dOgQS9b9NbNnz0a3bt0QHh7Os5d0cXHB2LFjWbLsT343btTX18PT0xPm5uYoKiriGTfmzZvHd/UVAY6z7fDhw3mEUbbndZqO7P7y5Quys7MhIiKC2NhYxmtNTU3Yt28ffHx8+Hru5LaNu19wZ1ZiC27b9u/fjxUrVmDDhg24du0aAM75hImJCYyNjRnlnX73nToL7s+vqKiAm5sbqSu/f/9+SEtLIyQkBF26dEFmZmaHEa1st70AAQL+dxCIogIECPiXOXLkCE+6yu/fv0NERAQjR44E8OfivaKiAjNnzkRSUhI2bNjAN2nG7t69i23btmHJkiXEnqKiIlhbW8PFxYUIo0f/P/beOq6qrH3c/hw7UBFRkVREUEqQFJRQUUFBCbswELsVsTvG7taxA7vF7hxbcexODFQMEK73j/Oe9ZwNOPF8f8M+zLOvf2ZYex/PfdZee8Wde/dSt25d2VPmarh9+zbDhg0jJiZGtJ04cQIvLy9q1KjB4sWL2bp1K926daNo0aKStEFycuLECVHH5/v37yJiVNsw+vvvv9O/f38iIyO5fv26LHJmPHQuX74cV1dXoQzQGEa1I0afPn3K4MGDadmypWzj++PHjwQHBwtvy8WLF3Pv3j3evn0rUs/a29szefJkQJ3+qmTJkpiZmUkiX+Vi8eLF5MuXj82bN/PkyROcnZ0pWLCgMD5r9+fQoUNRqVRYWlri6uqqM0ZdgEOHDuHg4EDevHkzRV48efKEU6dOMX78eHbs2MGjR49kkvI/nDp1ipo1a+Lp6SmJKE9KSqJhw4Z4eHiwYsUKnehj7cP1vXv3SElJISkpiV9++YVixYoxbtw4yf2jR48mMDCQOnXq6Iwi5unTpzg6Okreufj4eIKDg2nQoAHPnz8H1EqAp0+fSry+5WbatGnUrl1b/D19+nQsLS0ZN26ckPvDhw+EhITI3ufa3x0XF8fw4cOZPXu2SJmbnJyMm5sb5ubm9O3bl5EjR+Lr64udnZ2Ya+RWQKamprJ48WLy5MkjMRxpR4K2adOGJk2ayCVilty8eRNra2uh+AJ1GlQ/Pz9sbW3FmM5oaM/uNTMpKQknJycR0T937lyeP3/OtWvXePjwIbdv38bGxkakzD948CAqlQqVSqWT2UNyAtrv5eHDh2nWrBnlypWTzN1/Nm/INa9o3ruMa+HPIuQOHTpEmzZtuHfvXvYI+BO0ZRo5ciR2dnZUqFABCwsLEcl6+/ZtIiMjKVeuHIaGhlhbW2Nrawuo16dy5crJvl9p164dQ4cOBdQZT4oVKyaMuMnJyaSkpPDx40fi4uJ00tB18+ZNihYtSp06dUhISBDtjx49wtraOpOxNLv5o/dq0KBBGBsbM3bsWF68eAGoy+S4uLiIZyIX2nKfP3+ePXv2cP/+fWEYSk5OpmbNmri6umZpGAX5jUUnT54kLi6Oq1eviiwbb9++1UnDqLbcd+7c4fr168JxOCUlhQULFmBgYED37t0ln9PuY13Zj2v68mc1hjOOFV0wzvXv3x8TExMaNmyIn58f1tbWLF68GFD/DicnJ5ycnHj//r28giIdq7dv3+bHjx/Mnj2blJQUjhw5grGxsTgLhYeHky9fPkaPHq0z40NBQeF/D8UoqqCg8JeZNWsWDg4OdOzYUUSDhIWFoVKpqFevHiEhIbRv356dO3dmqdSVe2P5+PFj3N3dKVasmDASgXpDv2XLFtzc3AgICBAbfe06Y3Ly7NkzXF1dMTQ0pGvXrpJr+/fvp3379pQoUQInJydq1aola6SlNj9+/MDOzg5LS0uRKjQrw6gGXTDAaFixYgVeXl7UqVMnk2G0atWqzJ8/H0BSX1Gu8d2sWTPMzc1FpK22IX/fvn1UqFBB1P09deoU4eHhzJ07V/YDyOrVq1GpVIwdOxZQP/+VK1dSuXJlbG1tefPmjWjXcOnSJS5duqQzdZe0OXnyJJ6envj7+2eqSaxrvHjxAmdnZ1QqlVAwavj06RMRERHY2Niwdu1amSRUoz1Ghw0bRlBQkDBMvH79mokTJ0oMo58+faJJkyYSw7Tc4xzUtZ3Nzc0lKdtA/X6WLl2aLVu2yCNYFmj317Vr19i1axfFihWTGOGGDBmCvb099vb21KlThypVquDg4CBrikttRcyAAQMwNjYmMDAQPz8/3N3dWbNmjbjerVs3cS06OlrnUnWlpKRkaRgF9X4gICAgyxTG2UnGTBA3btygYMGCkijctLQ0zpw5g729vUhbrD1nZ7eiNz09nZSUFDp37oy7uzuNGjXC0NBQrI8Au3fvxs3NTRiDTp8+Ta9evZg7d65OrTc5kd69e+Pr6ysi5U1NTf9SKl250IzP+Ph42rZtS3R0NAcOHBBRLT+L0tbU1tMFhg0bRunSpdm6dSv37t2jRo0alCxZko0bNwJqx9bff/+dGTNmEBcXJ8Z4jx498PX1lU3J/uPHD1GaYsuWLZw7dw49PT2xX0lNTWXatGmi9rL257Ib7XFw9uxZduzYwfXr14Uh8dKlS+jp6eHt7c2cOXPYvXs39evXx87OTmcMub/++is9e/YkNjaWZcuWifZ+/fpRsmRJqlatSrdu3WjYsKEk7bkcaL9rsbGxWFhYYGFhgbm5OYMHDxbG5+TkZGrVqoWHhwerV6+WfX3XljsmJoayZctiYWEh6uJqnILfvn1L8+bNqVatGpMmTZJ9XtSWe9CgQVhZWWFkZIShoSHjx4/n6dOnpKWlsWDBAkqWLCmpG61raH7L5s2bMTc3FxGXusz69esxMTER2Qfmz59P/vz5JWn9ExISMDIyEgEKcqE9Vvr27UvZsmVJTk4WAQcdO3akXbt2Yv7o1q0b7u7uVKtWTXbDv4KCwv8uilFUQUHhbzFnzhyqVatGhw4dqFu3Ls7Ozhw6dIhXr14xZ84cunXrhr6+PiVKlBCpjHRlo/P582emT5+OjY0N/v7+kmupqals27aNChUqEBwcnKmOlxxof/+qVauoVKkS9vb2kjpYoD7Yvnnzhs+fP4vaqLrChw8fcHZ2xtHRMVPEaL58+STGabnI6sCZnp5OXFwc1atXp2bNmqK23+3bt+nYsSOWlpZCqaS5P7vR/k5DQ0MKFSrEqlWrJPfs378fGxsbZs+ezaNHj6hfvz6dOnWS3ZCrSZlbsWJFQkNDOXr0qJBn/fr1uLm5UbduXVFrNisFjByya88Lv//+OydOnOD06dNCSXrkyBG8vLxo2LChJKpI7rkkK169eoWnpydVq1Zl7969kmsfP36kZcuWPHjwQB7hMjBw4EBKlSrF5s2bhbEc1PPL5MmTyZMnDzY2NtjY2ODo6KgTUX+a705PT+fevXuUL19epOfUHs/e3t5ERUXJImNGMhoWGzZsyKNHj4iPj8fAwIDw8HBxfdeuXUyZMoVOnToxZcoUnckGMXPmTMqWLSsioGfPnk2+fPmwtLSUZLn49u2bJGpRbrkzom0Y1U6lGxQURPXq1WVX8GoYMmQIgwcP5sWLFzg6OmZS4n7+/Jly5coxadIkGaWUcvPmTSpUqECePHlYtGgR8J+xv2bNGlQqFWfPnuXRo0cEBwfTunVr8VldGyc5hY0bN1K8eHHOnTvH9+/f+fTpE9HR0bi4uIhU/6A7jgkaDh48SO7cuYmMjKR8+fJ4eHgwZswYSeplDbq2zp87dw5vb2/hpLVt2zb09fXx9vYmf/78mZx0QJ3ytVevXtmeceZnhp+hQ4dSrFgx8uXLx+rVq0X7+/fvqVGjhk6lzO3fvz8WFhaUKlWK8uXL4+PjI9LgX758meLFi6NSqWjXrh2dOnUSv1nuMd+/f39KlixJ06ZNqVatGqVLl6ZFixbi+rBhw1CpVAQGBkqcWeV2ZB03bhzGxsYi2jYqKooSJUrQqVMncd5MTk6mcuXKtG/fXk5RJUycOBFjY2Nx7unZsyfFihUjNDRUODW/ffuWunXrEh0drRP7WIDJkydjaGjIzp07uXLlCqNGjaJixYr06tWLN2/ekJyczKJFi1CpVLI7bf0RmzZtQk9PTzg36zojR46kWbNmgHod1aT2B7UjqMbp/MGDB7LPJRouXbpEaGgoJ0+eFG3fvn3D09OTHj16AOr5o2HDhpJoeV1bQxUUFP43UIyiCgoKfwntA+usWbNwcnKiaNGiWdbNuXLlCmvXrtVJ5dHnz5+ZP38+tra2tGrVSvK7UlNT2blzpyRqQA60lenarF27lsqVK9OmTRuJskJXNsEZ04xp15FycHDIZBgdMmQIxYsXlzXdi/bzP336NMePH+f48eOibfPmzVSrVo2aNWuKiNGbN28yYcIEnfDw1kTilC5dGicnJ8qXL8/Zs2fFfYmJibRs2ZKyZctSpkwZSdpZuQ4fM2bMIG/evOzbt4/Dhw9Tu3Zt6tatK/r9x48frF69Gm9vb4KCgoRhVG5vafhPn23cuBELCwtMTU2xsLDAxsaGW7duAer0ed7e3kREREhSScqFRuabN2+ya9cuTpw4IVL7PXv2DDc3N3x8fDIZRnXlcHrs2DHMzc3FuP769SuPHj1iz549PHz4EIDffvuNoUOHMm3aNNmj/n42f3ft2pWiRYty6dIl0ZaWlkatWrUypQCWmytXruDm5iZJrbxv375MhtGMyNHnnz594sOHD6Snp/Pjxw+6dOki0uNv27aNYsWKMXToUJo0aYKpqakkYlSDroz1jGgMo3nz5mXYsGGEh4djY2Mja332jDWuLC0tOX/+PN++fSMyMpLq1auzadMmcc+nT59wd3cXxke50JZ7y5YtGBoaUqNGDapXr57JgSUiIkKkateuF67w3zNjxgxsbW2FMRHUjjmNGjWiZMmSjB8/XkbpsubJkyfExMQIQ9D379/p2bMnnp6ejBw5MkvDqC6RkJAgjBMHDx6kdOnSzJ49mx8/flC1alWMjIwyzYdLliyhQYMGXL16Ndvk1O6/U6dOceTIERFl+fz5c4KDgylbtiyPHz/mx48fPH/+nLp16+Lu7q4z5x9N+tAjR47w6tUrNm/eTIMGDbC2thaGrlu3bqGvr0+LFi3EOVPutefo0aMYGxuLFPOfPn1i06ZNGBgYSAyJQ4YMoUKFCkyePFlEfcnJgwcPqFu3LuvXrwdg586dFCtWjEaNGmFiYkLHjh2FsShj7W05efz4MYGBgeK927VrF0WLFiUyMhI7OztCQ0NFxGhSUpKQO7vHifbeD9RzX506dSSR/QDz5s3D2NhYOCwkJiaybds2nXkvM5Kenk7z5s0zZcjRRTTPfMyYMQwePJj4+HhJtHx6ejpr1qxhwoQJksxmcvf9unXr8PHxoUaNGiQnJ0vkmThxIrly5aJVq1bCYV4XnFgVFBT+t1GMogoKCn8Z7UPFvHnzqFq1Km3bthXGotTU1EybGrkMo9q1TdetW8f27du5c+cOoI6CmjNnDs7OzrRq1UqnNmIaWQ4dOkT37t3p0qULY8aMEddXrVqFi4sLkZGRsqfJzarfDh06RK1atUR9FG3DqK2tLa6uruLA9/37d2Hwkpv+/fsLA1f+/Plp1qwZv//+O6D2KvX19aV27do8fvxY8jm5Dx/37t0jPT1dRAhXr14dS0tLzp07J2R7+/Yt586dY9++faJNrvfy5cuXuLq6StKybt++nTp16mRpGPXx8cHd3V3UCcpuNHOe9oHz1KlT6OnpsWjRIhISEjh16hS1a9fGyMhIzDGHDh3Czs6Oli1b6kQa7o0bN2JkZISVlRXm5uZYWlqyY8cOQF3v0s3NjRo1arB9+3aZJc3MiRMncHZ25tq1a1y6dIl+/fphaWlJuXLlqFSpksTIqEHudedn83d4eDh6enrMnDmTZcuW0b9/f4oVKyYM6rrAuHHjaNy4Mc2aNRMR0KD+bfv27aNEiRI0bdpURgn/w4YNGwgODqZ8+fJER0dz6dIlPnz4wIMHD/j9998pX768MArExcWRL18+9PT0MqVczG6yUtD+TGmbkpLCkiVLUKlUWFlZCQOd3E5nW7duFXVZNSQmJlKnTh3c3d1p2bIlM2fOxM/PD3t7e9nl1XDnzh3S0tL4+PEjJ0+epGHDhnh5eWWq7bdr1y727Nkj+5qZ09H035o1a7C1tRVrpGa8ayLozM3NdSpy5/Lly9SoUQNbW1t27dol2pOTk+nVqxceHh6MHj1aZ1Ll/mz+eP36NQCNGzemW7duwnmkcePGWFhY4Ofnl+kzcu23+vbti6mpKfnz58fX15clS5YA6jq0/v7+FCxYEHt7e6pUqYK7u7usziHapKWl0bFjRzp16iRpP3v2LLVr16ZDhw5inFy5cgU9PT3Cw8O5ffu2HOJKWLduHeXKlZPsU79//86yZcuwsbGRZCaKjY3F0tKSkSNHZvvZLeP4TkpKYvfu3Xz48IEzZ85I6hRGRUVRsmRJmjVrxt27d8Vn5HYi0rB//35evnzJuXPnMDExYc6cOYA6YlRPTw8fHx/JnjC7Dbpdu3YVc4WGL1++4O3tLWrJamfZaN26NW5ubpl0AnK/lz9DVwzkf5W4uDhUKhW5c+eWlAb59OkTAQEB9OnTR0bpMjN+/HhsbW0pXbq0WH80+6fv378zdepUwsLC6Ny5s87M4QoKCv/bKEZRBQWFv0XGiFFvb2/atGnD8+fPM12XC83GfNOmTZiZmWFvb4+HhwdOTk4i2igpKYk5c+bg5uZGw4YNdcowunnzZgoUKEDz5s2pU6cOJiYmVKlSRRgaf/31Vzw8PAgPD5fU78pONM/51atXnDx5kiNHjgBw48YNihUrRlBQkNgMa+49fPgwKpUKR0dHnTICzJkzB0NDQ06fPs2dO3c4efIkZmZm1KtXTxj8N2zYgK2trUj7ogvjZe/evahUKmHcAvXBQ9swmtX7KOfh48ePH7x9+zaTHDt27MjSMLpo0SJJmrHsRPOdFy5coHz58iIqcf78+dSsWVMi/8ePH6lZsyaVK1cWh7yTJ0/qRPrZCxcuULRoUebPn8/r1685ffo0nTp1Ik+ePOzcuRNQR2NYW1tTr149WVNwZ/WcL1y4QNmyZfH19UVPT4+oqCjWrFnDyZMnqVSpkk7V44TM87exsTFubm68fPkSUNfVc3R0xMbGBm9v7yyNunKiSW1tYWGRKWtCeno68fHxqFQqhg0bJpOEaubPn0/hwoXp3r07HTt2RE9PDz8/PxEFvXz5cjw8PISCf8+ePYSFhbFw4UKdiPIHdTr2u3fviv3Tz/j69Svx8fGyGug0Ebk/fvzg8+fPWFpaolKpaNmypeS+d+/eMXbsWGrUqIGPjw8tWrTQGcXXpk2bsLe3Z8WKFaJt//79hIaGZmkY1SC33DmJjHO4pu8ePXqEoaEh7du3lxjdTp8+TUhICLNmzdKJ84OGN2/eEBYWRuHChRkwYIDk2pcvX+jXrx82NjY6kb5Vu98OHz7MgQMHRJQcqN9JBwcHUa4iJSWF8PBwfvvtN8leVo4avxoOHjyIk5MTx48f5/z58zRt2hRPT09h6Pr27RurVq1iwYIFbN26VeecFTp06ICfn1+muWL48OHY2NiQnJwsfu+1a9dQqVS0atVKdgeuc+fOYWRkJFIsa7hx4wZFihTJlO2kR48eODg4iH18dsoKSDKaaOaRPn360Lx5c7HOxMbG4urqSufOnWWdU7S/e/fu3Zw6dYq0tDTRPmjQIBo3biycz3755Rd8fX0ZPHiwrHJfv35d9KW2Ubljx46YmZkJA7/mnpEjRxIUFJT9gmbgZ332b1i/R4wYQZ48eYiLi+PGjRtcu3aN2rVr4+zsLOsc+LM+X7x4MVZWVjRq1EjoUbTfY22HS12ZwxUUFP53UYyiCgoKfxvtTdDs2bPx8fEhJCREZ6L+QB2pY2BgINKM7Ny5kzx58lCqVClRx+Pjx49MmTIFX19fsWnLTrLaTL58+RJbW1tRf+vHjx/8/vvvODs74+LiIu5bvHgxfn5+ssp948YNPD09qV+/Pg0bNhQHpISEBExNTaldu7YwjII6TVOjRo2oWrWqUFzrAh06dKBt27bAf37brVu3MDAwoHfv3uK+Q4cO6dTh6uvXr0RHR6OnpyeMW6A+YPj4+FChQgVJPQ+5+CNFm/Y7oDGMBgYGcuLEiUzXs1NJoB3FUqRIEXr16iWujRgxglKlSom/NQe6ffv2Ua5cOREJrSusWLGCatWqSQ6eb968ISoqCjs7OxH9/OrVK1mNuNrP98KFC5w6dYqPHz8CcObMGebNm8fOnTuF0fbr1684OzvLZhT9O/O3k5MT7u7u4r4XL17w/v17Pnz4kG3yZsXhw4eFsXbYsGEsW7YMUGckUKlUxMTE8O7dO8ln0tPTOXv2rKyKjOXLl5MrVy6Jwnb37t2oVCqRlm7NmjUYGRmxe/duvnz5Qv369enXr5+s9ZS158Jhw4Zhb29PxYoVKV26NPPmzcvU11khR79njMi9ffs2iYmJVKtWDWtra0kknTba0Ue6oPi6du0aDRo0oGbNmixfvly079+/n7CwMKpXr54pjbjCX0d7Tpw7dy6dO3emZs2aIrXiyZMnyZ8/Py1atGDTpk1cvHiRunXr0r59e9nrnGfF27dvad68Oa6urixYsEDy+758+cKgQYNkd3zSnlP69OmDsbExRYoUwdvbW6QRB4iMjERfX59BgwYJJ1FNX8ttjN62bRsdO3YUUWigjnBt3749np6eTJ8+PcvP6UrkH6idK21sbNi9e7ckim7Lli24urqKs5BG5hs3bpCQkPDPC/z/8zO5nzx5QvXq1WnVqhW//fabaH/58iWOjo5iPtSev7XPdf802nLfuHEDlUrFoEGDJPd06NCB4OBgIVd4eDibN28W74Yc4ztjffayZcuydOlS3rx5I9p79epF1apVhVNUWFgYCxYskFVu7XdqxYoVeHl5icwar1+/pnLlyjg7O5OYmMiXL19ITU3Fz8+PNm3aZLus2mj398aNG1mxYoUkjb8urSsZ+SuyvXv3jt69e1OkSBFKlSqFi4sL/v7+OlNKYf/+/WzdupV169aJtgULFuDl5SUJnMgopy44mCsoKCgoRlEFBQUJf7QJ/5mBYsKECbJFc2UkLS2Nz58/07VrV4YMGQKo6+aZm5vTpEkTQkJCMDQ05Ny5c4DaMPpXFJH/hJygroU3atQosTG8f/8+ZmZmmep53Lx5E2NjY2bMmCHa5EhxpZHz+vXrQsHy9OnTTHX0bt68iampKbVq1eLGjRt8/PiRESNG0Lt3b1kPJ1mld65bty7NmjUT1zUKjblz51KuXDlhNNAgtzId/jN+vn37RpcuXShQoEAmw2ilSpWIiIjIVjkzovEG/aO5Qfu37dixg6CgINzc3GRLD62R9cqVKxQqVCiTAub06dO4u7szceJESa25CxcuYGFhIXta64wsXryYokWLihpdmv4+cOAAxsbGkvrEukBMTAwGBgaUKVMGY2NjSb0/UI/5N2/eEBgYKFtNsf/r/K0La+Xjx4+pWrUqfn5+dOzYkdy5c0vGwqJFi1CpVIwYMeKndZ+z29CVnp7Os2fPKFSoEDVr1hRjOi0tjW/fvmFtbS0ii65fv05ERATFixfH0tISe3t72espaxg7diwlS5Zk//79fP36lSZNmlC0aFFJdJeukFVEro+PD+/fv+fRo0c4OTkREBAgibLUBcXXz96xhIQEwsLC8PPzk6SiO3DgAL6+vkRHR2eXiP9aBgwYgLGxMf369WPYsGGoVCr69u0LqNPPOzk5YW5ujoWFhSQNqlzvpeZ7L126xMqVK4mLixM1Nd+8eUOTJk3w8vJi/vz5OjF3a9Dur3PnzuHq6sq5c+c4d+4cvXr1okqVKgwePBhQr5tRUVHUrFlTElUnt7Hg/fv3eHt7U6BAARo1aiS59vr1azp06EC1atUkabrlQvvZHzhwgL1790r2J3Xr1sXW1pa1a9fy9OlT3rx5Q61atQgODpY8q+zuc+3vnj17Nj169KBFixaijuixY8ewtbUlJCSE6dOnEx8fT0BAAFWqVJHImt1jX1vu6dOnEx0dTYkSJVCpVPTv319cmzx5MlZWVvj6+lK5cmUqVqwo9iZyv6/Tp0+nVKlSnDx5UmIsB7Vzl6urK46OjpnklnuPkpiYyPXr1/H29iY4OJjdu3cD6nOOq6srBgYGuLu74+zsjJ2dnaxzeEbHEAMDAypUqICJiYkkk4Xcc11Gli5dKpw8/+o4vXTpEidOnODSpUviM3I7nA0YMABzc3O8vb0xNDTE19dX6NhmzpxJtWrVaNu2LU+ePJFVTgUFBYWfoRhFFRQUBNoby19//ZWhQ4fyyy+/SBS8PzsgyenZqP39ms3hqVOnOH78OElJSbi4uNCxY0dA7bWrUqnIlSuXSNOZ3WgbXXLlyiWURaCOfjIzM2P06NGSz3z9+hUPDw+h4JCTd+/e4efnR7du3STtGQ9Dd+/excrKilKlSlGxYkUMDAxkTRWpPTYvXrwojMq//vorBQsWlBgVARYuXIi7uztfv37NVjn/iClTpghvbk1/axtGtaNcfvz4IeshsHv37lhYWIhUS3/VMBoXF0fv3r1lVWY8fvwYQ0NDGjduLGmfOXMmUVFRdOjQAX9/f8aPHw+oU0sOHjyYSpUqiTTXcqDpxxs3bnDx4kXS0tK4du0azs7OjB8/XhLN//DhQ6ysrGSbBzVoP/tDhw5hbW3NwYMHOX/+PK1atRI1IFNTU0lLS2PUqFH4+fnh6ekpi2I3p8/f2uzZs4fSpUtToEABkT5PW3G3cOFCVCoVI0eOzNZ0eX/GqlWrKFu2LF27dhXRNhs2bCB37tySNebmzZvs2rWLZcuW6Uy6xS9fvhAUFMTKlSsBdbrl4sWLM3fuXOA/Y1lupSj8cUSuRv779+/j5ORE7dq1OXz4sEyS/pwNGzZIUsyDelyEh4fj6ekpiWw4f/687Er0nM7hw4cpW7asqEV48eJFVCoVq1atEve8f/+e+/fvizUK5H8v4+LiKFGiBA4ODlhZWZE/f34WLVoEqA2jjRs3xtfXl+nTp+vcGFm/fj1NmzaVZLR4+fIlgwYNwtnZmREjRoh2bWdKOfo8q767d+8eoaGh2NjYSFJbg9owGh4eTnR0tE7MiaBOgV+8eHHKli1Lvnz5aNiwoUg1Hxoaip2dHUWKFMHZ2RknJydZDUba/R0TE4O+vj6NGjXC09MTQ0NDBg4cyNevXzl16hStW7emRIkSVKlShdq1a+uM4XzYsGEYGBiwadMmNm7cSPfu3dHX1xflTEBtfIyJiaFPnz5iXGe33NqpZjW1e0NCQjKVGtCWa/369YwYMYLY2FjZ5Ab1/Kc5P/bt25cmTZoA6jXR19eXwMBA9u3bB6jH1MyZM5k4cSLTp08Xcss9h7969YoaNWpw7do1Hj9+zMaNGylRogRhYWHiHrnHsoYNGzZgaWlJ7969RUaNv3pG1kbutWj+/PmULl2aixcvAmpDr0qlkqTjnj17NtbW1owZM0YuMRUUFBT+EMUoqqCgAEg3XIMGDaJQoULUq1ePMmXKUKVKFQYOHJjlvXLWo8nI6dOnqVy5ssSItX//fqpWrSpSXJ05c4Z69erRo0cPWepaaqflLFiwYKYoNFAfSKpXr8769esl7UFBQQwfPhyQt6/v3r1L+fLl2b9/f5Ybcm3Zvnz5wsKFC1m6dCl37tzJTjElaMs5ZMgQfH19WbNmDampqTx9+pQOHTpgZWXFli1bSElJ4e3btwQGBhIaGir7uNbw6dMn/P39KVKkiIhi0Mj27t07PD09KVmypEh1pEGuQ+C5c+ewtbXFw8PjbxtGNch14Hvw4AFubm6EhISIVL7jxo2jcOHCXLp0iffv39O1a1cqVqxI0aJFhYJJczCUg4y1lCdNmiQ8c/v27UvlypUZNWoUDx484MOHD8TExFCuXDkRbSc38+bNY/LkyZkMiu3ataNIkSJs27YNUCvZJ0+eLIuR698wf2u/U2fPnsXBwUEYtTSplL9//y5k1ESMLl68WBZ5tdHut9WrV2NiYsKgQYOYNWsWenp6IvLvZ2NCFxRir169wsjIiOvXr3PkyBH09PREmn9dSsn5VyJyNWPpwYMHuLi44OzsLEnBKDdPnz7FwcGBoKAg4uPjJdfu3LmDqakp7u7uov81yK1ozCnExMTw9OlTSdvOnTupWbMmAOvWrUNPT08Y/JOSkrIcH3L399WrVzEwMGDhwoV8/vyZR48eMWrUKPLkycPSpUsBtXEuMDCQunXr/jRyXg7evXtHREQEJUuWJDg4WHJNYxh1dXWlZ8+ekmtyG+g09ZQ14+fhw4fUq1ePGjVqiBToGt6/fy8+K3ckWkJCAtbW1pw7d47Hjx+Lmuc1a9YU6VvPnDnDmjVr2L59u8444yQmJtKiRQvOnDkj2iZNmoSdnR2jRo0C1A5Rb9++5fnz55kcjbMT7f7+8OEDVatWFXMIqJ0Upk+fnmW9Xw3ZLXdoaKjITqXh8+fPVKxYkalTpwLS/ceXL1+yLLUhxx5FE0WuUqmIiIgQ5xwN2obRjM7DGuTeW02fPp3q1avTvHlzSc3THTt2UKJECcLDw8W9cq83oHaUHDVqFFWrVqVnz55/yTAK8uvZMtKrVy9iY2MBWLt2LcWKFRPv6qdPn8R9cXFxso8RBQUFhZ+hGEUVFBQkJCQkUL16dVGL8P3794wYMQJXV1dxcNJVzpw5g729Pdu3bxdt69evJ1euXNy4cQNQG3ybNWsm2axlN3fu3KFAgQLiAKXZ5C5fvpzLly9z9+5dGjZsiJeXF7GxsezatYvu3btTrFgxfv/9d9nk1rB582ZUKtUfbuKTk5MzKSF1gdjYWAwNDYmPj5dEzd29e5dOnTqRO3duypcvj42NjU55eGt49uwZoaGhFC9eXJKmNT09nVatWmFhYYGvr282SvnHXL16FScnJzw9Pf9P3rBycPv2berWrUtISAhRUVGUKlVKeEqD+sB3584dZs6cyYYNG0SkgJwcPHiQwoULZ1mfsH///ri6upI3b15cXV0pVaqUrEZcbTR1cFUqVZa1idq3b0+xYsVYu3atpF2OQ3ZOnr+1371z585x7do13r17x65du/D19aVGjRpZprjas2ePbErdjHOC9t+rVq3CyMiIXLlySfYnujKPJCQkiDVkxowZogZ427ZtCQgIoFChQsLoAvD8+XOqV68uSesqJ38UkatJtax5B+/cuUObNm1kVThm9d1Hjx7Fz8+P4OBgyfwNEBISgqWlJX369NGZMZNTuHfvHlWrVs00L8TFxVGxYsVMClJQO+w0atRIZxxxNOzZswcnJ6dMxs7hw4dTpEgRMfbfvXuXyQic3WQ1Tu/cuUOHDh0wMTFh1qxZkmsvX76ka9eutG3bVtYxrv3dw4cPl9RTnjNnDqCOOtcYRjOu9SC/MWPy5Mm0bt2aDh06AP/5Tffu3aNUqVI/Tb0ttzFg0aJFFC5cGAcHh0wp2kePHo2BgUGmMiEgfy3OS5cukZqaiqWlJTExMZL7EhMTqVOnjqh9rkGuMXLq1ClRLkQ7W0xISAguLi5CLs1/b968SZ8+fWR1Fs6IlZUVuXPnFk5CKSkp4nmcP39erKNxcXFyipmJ79+/M3PmTExNTalcubLkWkpKCjt37qRUqVL4+fnJI2AGtMvfjBw5Eg8Pj79kGNV+N+Rw6tcmLS2NtLQ0atWqxeTJk7lw4YLEwe/Hjx+MGTNGUrtd066goKCgayhGUQUFBcH48ePx8fEhICBAolB//fo1PXv2xMfHR5Y6ln+Vz58/U7NmTUldGo33sb6+Pr6+vhQuXFhE2clBWloasbGxlCxZkmnTpon20aNHY2hoyOnTpwH1hnfw4MGUL1+eSpUq4eHhIWvqWW1+++03ChYsyPLly3+6eV+yZAl+fn46lXr2/Pnz2NjYiD5OSkri1q1bLFy4UBi0Tpw4wZIlSyRejXKnGLt165bEo/jNmzeEhIRgYGAgFNNpaWk0adKE06dPy67c1ZZ969at/PLLL6hUKmrVqvWXIkZ1id9//52AgAAKFizI5MmTRbuuHew0zzwqKorIyEjJNY2iBtTzYVxcHDt37uTRo0fZKqM2WY3RT58+0bRpU0qUKCHeUW3CwsJEBJJc5OT5W7vPBw4cSMWKFVm3bp0w2m3atAk/Pz8CAgKE4r9Vq1aS9KLZPRf+rCax9m/ZvHkzRkZG9OrVi9u3b2erfH/EuXPnqFy5MvPmzaN79+6oVCqhyFq4cCGWlpbUq1dP/LakpCQCAwPx8/OTfX75qxG5mvsyyivH/K79nXfv3uX58+di/3HkyBGqV69OSEiISBH49etX2rVrx8aNG2WNQsuJaJwKNf22fv168e69f/+egIAAVCqVSC8P6v4ODg6mRYsWOtfPO3bsIFeuXGIfqG24MDMzk6QClBPtMa7ZS2nevdu3b9OuXTu8vLwkhmhQG3M1fS53348ZM0bUU/7y5QuNGjWiaNGiYo977949goODcXR01Jl+B/X8rClTUaNGDUDdl5o5ZtmyZRgbG/P8+XOd299evnyZGjVqkC9fPs6ePQv8Z239+vUrhoaGWRqhsxvtsRkbG4uXlxePHj2id+/eBAUFZdpDDRw4kPr162NpacnMmTOzWdqsmTlzJqGhoSIi/ujRo1SqVImwsDB+/PhBWloanz59IjAwkJo1a+rMWPn06ROhoaGEhoaSL18+UUNUuwzL+fPnsbOzk5SMkIOs+uzNmzcsWrSIggUL0qVLF8m1lJQU4uLiCAwM1Jn+1vTpt2/fGDFixJ8aRrXfjVmzZlG4cGEePnyYbfL+rN+WLl2KiYkJuXPnlhhAP378SO3atTOljlZQUFDQRRSjqIKCguDAgQPkzp2bAgUKZFJKX7lyBZVKxZEjR2SSTsrPlHEXL15EX1+fjRs3irZLly4xZcoUBg0aJLt3Haij/Xr27ImHhwfz5s1j4sSJlCxZUhxCtDe/qampvH79mo8fP8olbibevn1LuXLl8PPzk0Q+acvdv39/evfuLbtyV5sbN25gYWHBwYMHuXbtGt26daNChQpYWFhQoEABEU2sjdzyDxgwACsrKwoUKECTJk04evQooPaSDg8Pp0CBAoSFheHk5ISTk5OQVxcOfv3796dcuXIMHz6c8PBwDA0NcXd3z3GG0bt371K7dm0CAwMl9TflVi5mRc2aNUWdJe2xm56ezp07d3Siz7Vl+PjxoyRiOzU1ldq1a2NiYiJq0v3ss3KR0+fvcePGUapUKQ4dOsSHDx8k1zZt2oS/vz8mJib4+PhgamoqW4Ton9Ukzmi4MzU1pWfPnlnO43Lw/ft3OnbsSJkyZdDT0+PcuXOS6wMHDqRy5co4ODgQGhqKh4eHJDtBdq89OTkiV5vBgwdjbm5OpUqVCAwMFLVwjxw5Qq1atXBzcyM8PBw/Pz+cnZ0zRfAo/DFdu3Zl+vTpYk579eoVKpWK+vXrCyXtmjVrcHNzo1atWhw4cIA1a9ZQt25dHBwcxHyiS/398uVLqlevTlRUlEghDup9VsWKFTPVpJUD7f6aPn064eHhBAQEMGHCBLGGJiQk0LZtW7y8vJg/f36mf0Pu9/XLly8EBgaKesRbtmyR1FPWGOpu3rxJv379ZNt//6yf7t+/z8CBA1GpVCxbtkxybfXq1dja2mbK0KErXL9+HVdXVypVqiSJ1H78+DHm5uY/TYsqBxcuXMDPz49Tp04Bat2Era0t0dHRYl+oMeLNmTOH9u3bU79+fT5//iyn2IA6fbixsTGRkZHcvHmT9PR01qxZg4ODAyYmJlSrVg1nZ2cqV64s1nq5nYi0SU5OJjo6WmIY1fDx40eePHki67lYW+47d+5w/fp1sRalpKSwYMECDAwM6N69u+Rz2jLLtfb87Hu/fv3K8OHDf2oY1Z6P5s+fj4GBgcRZ8Z9GW+6LFy9y+PBhEhMT+fr1Ky9evCAsLIxKlSpx6NAhQD1PBgYG4ubmJnvacAUFBYW/gmIUVVD4H+Vnm7NTp06RL18+GjduLEkHeffuXaytrUVaXV1g3759NG7cWLI5TE5OplmzZnTt2lUcODTIrRDQ5sWLF3Tr1g0bGxvy5MnDwYMHAd3YuP8RGpkOHDiAnp4eDRo0kKTg/PjxIwMHDsTMzEwnDNDa3L9/n5CQEGxtbSlUqBCdOnVi/fr1vH37FltbW6ZPny63iJJnvnHjRqysrNi6dSubN2/G0dGRgIAAdu3aJe6ZMGEC7du3p0ePHuLwIbchF9SOCNrpZtPT0zl27BgVKlTA09MzxxlGNal069SpI2qM6iItW7bE0dFR/K0ZCy9evGDUqFFZ1jDKTrTn4FGjRuHn50eJEiVo27YtK1asANRjok6dOpiYmHDhwoVM/4YujJmcOH+np6fz4cMHvL29M0USaSsuzp8/z+jRo+nXr5+sc8pfqUmsPZ7WrFlD7ty5JRG8cpCeni7kXLRoEcWKFcPOzo45c+YIZZeG3bt3M3DgQHr16sWMGTNEfysRuX8dbZm3b99O6dKl2bx5M1OnTsXb2xsLCwthNLp48SJjx44lJCSEjh07yqqUzqk0aNAAGxsbFi9eLJwqrl69SvHixQkODhYpoteuXUu9evUoXLgwVatWpXHjxrIZ/LX52Tlg+vTpeHt7C2PG48ePGTRoEKamplmmFJeLgQMHYmhoyC+//EKfPn1wcXEhPDxc1LNMSEigQ4cOWFlZsWXLFnmF1SI9PV3UU7558+ZP6ynfu3dP8rnsHisaw9rP5oQnT57Qs2dPcufOzfz583n8+DHPnj2jTp061KxZU6fOmRm5ceMGTk5OVKhQgblz57J+/Xrq1atH5cqVdeLcADBnzhwiIiIICQkR6z6o158qVapQuXJlqlevjpOTE3Z2doD6HOTg4CC5Pzv42RjZu3cvFhYWtGzZUjgOP3v2jDFjxjBy5EhmzZol21oPUrmPHDlCfHy8yKAA6mj/Tp06UaBAAbZu3crHjx8JCwuTpIeWY7xov1uDBg3CysoKIyMjDA0NGT9+PE+fPiUtLY0FCxZQsmTJTHWU5US7z3fv3s2sWbPYvHmzSM3+5csXYRjt1auX2Ctqj4/58+dTtGhRidN/dtKvXz9Kly5NkSJFKF++PO3bt+fVq1dcvnyZ0NBQChcuTLly5XB0dMTLy0sn1nsFBQWFv4JiFFVQ+B8ko9fXgQMHuHv3rqinc+DAAfLmzUtgYCC//vorhw8fpl69ejg4OOjU5ubs2bNUq1YNFxcXXF1d2bt3Lx8/fmT//v3ky5ePa9euAVl72+kCL1++pEePHjg6Oup0as6sSEtLY82aNRQuXBgLCwvCw8OJjIwkMDAQIyMjnalVmJFr166xfft2jhw5IjbsX758wc3NjdWrV8ss3X+Ij49nwIABzJ49W7Tdvn2batWqUatWLYlXt/b7rCtemUePHkVfX1+iTExNTWXnzp3kzp2bevXq6YRX99/h9u3b1K9fH09PzyzTu8qJZgycOnWKihUr0qRJE8n12NhYbGxsdKaW27BhwzAwMGD+/PlMnz6d+vXrU6VKFaZMmQKoPb7r169Prly5hNJA18iJ8/fz588pVaqUJDWahq9fv2ap/Jfz9/yVmsTa63p8fLzORDG8e/eOly9fcuvWLTp16oS7uztTp079U8Vtdsuf0yNyNaxYsYIFCxawcOFC0XblyhU8PT0xNzcXEaMZneV0Zc3UdbTHRbt27bC2tmbhwoWiX69du0aRIkWoX78+z58/F/feu3ePL1++iHGUnf2tLbPm+zNGx2uP75kzZ+Ln54dKpcLBwQEzMzORBlMXWLt2LTY2NiJabseOHeTPn58KFSoQGBjImzdvAPWzGDdunE6uRZGRkdSuXfun9ZQ1KRjlOK8NHDiQxo0bi2jPPzOM5sqVi+LFi9OtWzf8/f359u3bH35OF7h+/Tre3t6oVCo6d+7MuHHjRApgXRgvM2bMoGDBgpQpU4YrV65Irl28eJGVK1cSFRXF2LFjhTNPu3btaNy4cbaWa9F+xgcOHGDTpk2cOHFCpBbftWuXMIz+rGSPLhgWy5YtS6VKldDX16dLly7iXPb+/Xt69OiBSqXC0dERGxubTGtndqIt9+TJkzE0NGTnzp1cuXKFUaNGUbFiRXr16sWbN29ITk5m0aJFqFQq2Z3kQCr7gAEDMDc3x8XFBS8vL/z9/UUGoi9fvjBixAi8vLyIjIwU8wmoDaIZs6D902iP8W3btmFlZcX+/ft59OgRU6dOxd/fn3r16pGYmEhycjInTpzg119/5eDBg7KWH1JQUFD4uyhGUQWF/zEybs4sLS0pXrw4NjY21KlTR3jpHj58mPz586NSqWjXrh3t27cXmxxdODhpSEpK4tKlS0RERGBvb4+npyc7duzA19eXZs2aZbvn6N9FE3Hk4eHBhAkTRLsuH6q1SUhIoE2bNlSrVo0aNWowbNgw7ty5I5s8P1OkZNX+7ds37t+/T7169XB1ddWJcZ2ens6zZ88wMDBApVLRv39/yXWNYbRu3bps2LBBJimlZNW3Hz58wNzcnF9++UXS/uLFCypWrIhKpaJt27bZJeL/MxISEoiIiJC1Hqf2OM144Pz69StLly7F3t4eGxsbWrRoQf369SlevLjsNS1BPVYePXqEi4sLmzZtEu337t1jwIABuLq6cvjwYUAd9S9nCr2/gi7P3z+bCytVqkT79u3F35r+PX36NJMmTZI9/d9/U5M442+VY8xoyzRmzBhq1qwpIrO/fPlC+/btcXd3Z8aMGUKZ269fP9kdFXJqRK42Dx48oEKFCqhUKmbMmCG5dvXqVby8vChXrpwwGmnQNUc5XUf7vYqMjPypYTQkJCRTxB/I09+3bt1iz549AMTFxeHr65tpjsuY0v3w4cOcPn1aRL3KxYMHDyR/x8XF0bt3b0CtpDYwMGDWrFksXLgQfX19wsLCMs0nurJ+ap79/PnzKVeuHPXr1xfXdKGecnp6OkOHDsXLy4tOnTr9qWH08ePHxMbGUqxYMWbNmiXatWu4Zxc/k/Fn7VevXqV69eo4OjoKJwFtA0x28TP5li9fjqGhIV27ds1yHtFw+/ZtYmJi0NfXF07Q2YH2PNa7d29KlSpFyZIlsbGxoUqVKsIpZNeuXZQtW5bIyEhRy1VOtOUeN24cpUuXFg6e48aNQ6VS0bp1a0m5h3379rF69WrZjFyaFMoavn//Tp06dRg+fLikfd68eRgbGwvn5sTERLZt26Yz8x/AtGnTMDMzExnXxo0bR758+XBwcODAgQOAeq/Yp08foqKixPuxd+9eVCqVbBGiy5cvZ8SIEQwZMkTSHhcXh7u7O+PGjcvyc7rU9woKCgp/hGIUVVD4H2X27NkYGBhw6NAhHj16xMqVKwkICMDR0VEcxM+ePUv+/Pnp0qWLiCCRS4mk+d4LFy6waNEiFi9ezM2bNyX3HDx4kAEDBlCkSBFUKhVOTk46VcvtZ2gU697e3jpflF77EKtrEbjast2+fTtTRIA2KSkpzJs3j8DAQJ1M83Lp0iVsbW3x9vbOlLL67t272NjY0KtXL5mk+w8ZlRqafkxNTaVbt274+vqyatUqcT0xMZEmTZpw+vRpnenrv0t2K700ffzhwwfhha6JitdG8x5+//6dGzdu0L17d1q2bEmfPn1kTWX9/v173r9/LzzQX79+jYmJCUuWLJHc9+DBA2xsbLI0tujyWNHF+Vv7vXz69ClPnz7l5cuXgDpNpJ2dHaNHjxb3pKSkULduXRo2bKgz83lOrUncv39/ypQpw5o1a7h7965o//LlC1FRUbi6utKyZUvq1KlDiRIldMKTPqdF5GYkJSWFPXv24Obmhr29faY5+tq1a1hZWREWFiaThDmbn71rrVu3ztIwqq+vT/Xq1SURo9lNv379OHjwIP369UOlUhEbG4tKpRJp2jOiK/OehqVLl6JSqTLVBn3+/Dnv37/Hw8OD8ePHA+qodGtra0qUKCFSRura79GQnp7OgAEDqFy5Mo6OjoSFhelMPeW0tDQmTZpE1apViY6O/lPD6IMHD+jbty9FihTJ1hp/2mRMy7l7926OHj2a5XVtrl+/TuXKlXF2dpbFEUpbrsuXL3P69GnJmX7OnDkYGxvTv39/iXOA5lmlpKQwYMAAnJ2duXz5crbJrf1eHTp0CGdnZ06fPs3Tp0+Jj4/Hx8cHExMTXr16BaiNivnz55fst7KblStXSrKA3Lt3j8aNG7N161ZA7Xymr69P3759KVq0KG3atMlyTGT3e9m1a1e6desm6fMvX77g7e3N0KFDAakxv3Xr1ri5uemEk1zG73379i0REREik8WOHTsoWrQoffv2pVatWtjZ2XHs2DFAfYbT/g3v37+XNTuRpaUlKpWK0NDQTNfat29PlSpVdHa9UVBQUPgrKEZRBYX/ETIejFq1aiU8jjUcO3YMHx8funfvLpRKR44cIW/evLRr146HDx9mm7zaaDZbmzZtwtjYGBcXF3x8fDA0NMyyxunVq1cZPXq0ztW0/CNevHhBZGQktWrVEvWv5ELT37/99htLly5l8eLFkkN2xs2v9t9ybYy1x/eQIUPw8fFh9+7df5hO6fz586xatUrWNC9/pNg/d+4cVlZWhIeHc+bMGcm1p0+fyq6U1pZ96tSptGjRAhcXF6ZPn869e/d4/fo1ERERuLi40K5dO5YsWYKPjw9eXl7is3L/hpzC8+fPqVq1KnFxcaxcuRKVSiUUGrrMpk2baNq0KUFBQZw4cYLU1FTevHmDh4cH/fv359u3b5I5o0GDBpIoxpyCLs7fAMOHD6datWoYGRkREhLCokWLSE1NZcCAAdjY2FC9enVatWqFh4cH9vb2Qiktt4Ijp9Ykjo+Px9zcXMzX6enpJCUlCYVWSkoKI0eOpGnTpjRp0kRWZ5x/Q0SuNt+/fyc+Ph57e3uqVq2ayTB67949Zb35L9Du71u3bvHw4UOePn0q2lq1akWFChVYuHChUKRfvHiRgIAA2d7PyZMnkzt3bpF+MyAggNy5c2c68+gy7dq1Q6VSkTdv3kzRz5cvX8bY2FjMM3fv3qVx48Zs2rRJ1jkxq3VDu03bkXLXrl3ExMTQs2dPpk+fLmuNRW3Z0tLS+OWXX/6yYfTx48f0798flUpFXFxctskL0r7t27cvBgYGmJubY2pqKomk+5nsN2/exMLCAm9v72xd87W/KyYmBmtra4oWLYq9vT3BwcHi2uzZszE1NSUmJibLDERfv34VxsfsZuPGjbRq1YrIyEhJ+61bt/Dy8iI8PFwY7M6dOyfb2rNhwwZMTEwYOHCgcFL5/Pkzy5cv58OHD5w6dQpzc3NRqkXjPNKgQQPZS5xcv35d7JG0Hcw6duyImZmZ2Kdo7hk5ciRBQUHZL2gWaNeP12QWunLlCvfu3ePq1atYWFiICPPp06ejUqkoVaqUxPgpxz78Z3O4v78/xYsXJz4+XpJG+ddff8XV1VWU31JQUFDIiShGUQWF/wG0NzkHDx4kKSmJFi1aEBgYmOnevn37UqVKFYmn2rFjx1CpVHTp0kW2jf2xY8cwNDQUXnbnz59HpVJRsGBBkRorLS1NcrDNabx8+VJE88jNxo0bMTQ0pE6dOvj6+mJpacnYsWPlFutPGTZsGKVKlWL79u2ZUuX9EXIrdxctWkS/fv1o164dp06dElGAZ86cwcrKioiICM6dO5fp39AFJW9MTAwlSpQgJiaGdu3aUb58eerXr8/FixdJTExk+vTpODs74+npSb169cSBKie+o3LSqFEjLCwsyJ07t5gHf9aHuuCosGTJEgwNDZk7dy67du2SXFu2bBkqlYpZs2aJ6NfPnz/j5uYmq0f9/wW55++Mz3n48OEYGBiwZ88ezp8/T1hYGLly5eLFixckJiayd+9emjRpQmRkJIMGDZJdKa1NTq1JvHz5cipVqgSoFWAjRoygQoUK5M6dW9T5TUtL+8MU2NlNTorI1ZZl1apVDBw4kMGDB4sUexrDaOXKlfHy8soyql8X1sycgvac0r9/fypUqEDx4sXx8vJizJgx4lqrVq2wsbFh8eLFmfZd2T1+vn//Tq1atYiJiQHU9f4MDAyoXr06hQsXZvv27dkqz3/Lnj17qF+/Pv369SN37tySutX37t3D2dmZDh06cOrUKerUqUODBg0kEY/ZjfZ3vnnzRuKQqP3O/ZFsctdY1JCWlsaECRP+smH04cOHDB48WDZH3EePHlGlShUuX77MlStXmD17Nnnz5mXAgAHinp/JfuvWrT9MUftPMm3aNAwMDDh8+DC//fYba9aswdraGnd3d3HPggULyJ07tzDaaZBzXfr69StBQUHo6enh4eGR6fovv/yCo6NjpmhLudae0aNH4+LiQkxMjHBo0ayNmnVfc+b85ZdfaNSoEUFBQbL2sXZfrVixAi8vL+EI+vr1axHlnJiYyJcvX0hNTcXPz482bdrIJPF/2Ldvn3j3unTpgr29vcRIOmPGDGrXri32WGvXrqVBgwZMmTJF1v2J9vN+9OgRHz58EPKkp6fj7OyMlZUVGzdu5NWrV7x+/RofHx+CgoJkd6RUUFBQ+L+gGEUVFP7laG9UBg8ejL29Pbdu3WLSpElUrlyZw4cPS7y+Vq9ejbu7e6ZD4MmTJzOlq/0nyMqo+eXLF4YPHy5SEz59+hRzc3Patm1L69atyZ8/v4hk1CUFXk7l6tWrGBkZMXfuXECdRrlAgQL07dtXZsmkZDw83Lt3Dzs7OzZv3ixp1/XNekxMDCVLlqRz5874+PhQpUoVSW2/M2fOYGNjg7+/Pzdu3JBZWimXLl3CyspKpP0B2L9/P/Xq1SMsLEyk1AN1rS7Ns5DbEJCT0Izz48ePkzdvXsqUKcOGDRuEMVEXx/fevXsxMDAQ9X00aL+zU6ZMIXfu3DRo0IAWLVrg5+eHnZ2dMjb+D2j699WrV/j5+bF7925A/TyKFCkijOl/9vnsJKfWJM5K7mvXrlG8eHG8vb0xNjYmMjKSZcuWCceyI0eO/Om/kZ3k1IjcAQMGYG5uTv369WncuDGFChUSYz0lJYX4+HiqVKlChQoVlPnkv0T7mW/YsAFjY2N27drF+vXrGT58OAUKFKBfv37inrZt21KsWDFhdJRzbA8YMABHR0eGDBlCmTJlhONkx44dszSM6oIzYsb+SkpKws7OjlGjRrFmzRpy5crF1KlTAfUYnzRpEg4ODpiamlKtWjWdcTYbPnw4dnZ2+Pv7S2rQ6aIzgnZfvXz5knfv3pGUlCSu/R3DqFzzzOTJk2nSpAmdO3cWsiUnJ7Nw4ULy5s0rnANA/rGhTWpqKi1btpSMkbS0NM6ePUuFChXo3r27aN++fbus4yeruezdu3e0a9cOIyMjJk2aJEnjumPHDipUqCAiBOVCe0yOGDECZ2dnYmJiRK3k1NRUwsLCqFmzJqDWtYSEhEhSjMs9ZhITE7l+/Tre3t4EBweLdf7ChQu4urpiYGCAu7s7zs7O2NnZ6US2k8GDB+Pg4EDVqlUpUaJEJmeJKVOmYGpqytWrV0lLS6NBgwaMGDFCyCz3XDlo0CAcHBwwNjZm4sSJXL16FVD3qYuLCyqViooVK9K4cWN8fX2FgV3u/ayCgoLCf4tiFFVQ+B/h/v37NGjQQBRz//btG+7u7ri7u7Nt2zYSExN59+4dNWvWJCwsLMuUR/80mu958OABCxYs4Pz58+Lab7/9JiLoPDw86NixIwAnTpxApVKhUqnYv39/tsj5b2fz5s34+PgA6mdhbm5Op06dxHVdMMzVq1ePEydOSNquXbtGqVKluHbtGiDdoKekpPytyNF/Co1Mmv8uWrSIsmXLcvHiRUDtYapSqXBwcGDcuHGiLuqxY8do3Lix7AfUjFy5coXSpUtnSmO9d+9e9PX1JWmXNSgHp7+Opq8+f/7M06dPOXjwIK1ataJSpUosW7YsS8OonEaAtLQ00tPT6d69Ox06dPjD9NUAu3btokePHkRERNCvXz+dilbMKfTq1YsWLVpI2l6+fImFhQUJCQns2LEDPT095s2bB6jX/tmzZ4s5R05yak1ibblTUlLEOE9PT+fIkSNER0ezfv16kdrv3bt3eHp6cvbsWVnk/Rk5MSJ34cKFmJmZicwJa9euRaVSkStXLlHXLyUlhR07dtCmTRvZFYw5nYMHD9KhQwcmTJgg2pKTk1m6dClFihRh8eLFon3s2LE60d/379/H09OTXLlySVLmpqenEx0djZ6eHtu3b+f79++MHz+eWrVq8fXrV1n3Jtp1EzVo9uJ3794VKRY1EaMpKSk8f/6cK1euiPlI7nVz+fLlmJiYMGfOHDp37oy1tbWIkAf5lf3aaM/ho0ePxsfHB1NTUzp06CCcRDSGUS8vLzp37ix7avyMfP78mdjYWIoWLSoMWxqSk5NZtGgRBQoUkJzfdAk/Pz8aNmyYqV1TZzHj/lHujD5Pnjzh3bt3Yl1/+/YtzZo1w93dnaFDh/LmzRtu375NrVq18Pf3l3U+yeq7hw0blskwGh8fT548eXBzc8PW1hYHBwdZ55G4uDj27t0LqMeBZv44f/48vr6+BAYGSt7PmTNnMnHiRJ1Iwa1NQEAAKpWKDh06ZKrTfuLECQICAihZsiSVKlWiUqVKQma5z8dxcXFYWFgQFxdH3759sbW1pV27dkIfp0mlW7BgQXbu3Cn27NrBFQoKCgo5DcUoqqDwP8C0adOwsLDAw8OD+/fvi/bk5GT8/f2xt7fHwMCAKlWqULlyZVk87TSbxatXr2JtbU1oaGimlIugjlp0dXUlISEBUNecaNy4Mf3798+WSNb/BbZu3UpwcDA3btzAzMyM6OhocRg9efIk/fv3F7VJ5KJbt26ZvBMfPnxIoUKFWLp0qbhPM66OHDnCunXrskynl51o17/5/v07s2bNEkquTZs2oa+vz+zZs4mMjKRkyZJMmDAhkyJGLsNoRoMuqGuHlS5dmk2bNgHSg5Gtra1Ekarw99D08549e2jSpInESaRZs2ZUrFiRFStWCKPF3LlzhZFUbhwcHOjVq1eW1zTj9/nz51mOZV1QaOQUPn/+zMiRI3FwcKBbt26i/fXr1wQEBNC9e3f09fWFQRQgISGBBg0aCI97ucipNYm1v3PSpEk0atQIW1tb5s+fnykNYUpKCu/fv6devXpUrVpV5+r95YSI3MTERCF7UlISsbGxLFq0CFBH5BQtWpRp06bRuXNn8uTJw44dOwDpPKJLxpicxPXr17GyskJPT49BgwZJrn38+JHGjRsTFRWVac6Wu7+vXr1KkSJFcHV1pVq1asTHx0uud+3aFZVKRfXq1SlUqBC//fabTJKq+fXXX1GpVLRr145x48aJ8f748WM8PDzYuXMn8J9aqZqIUW3kTpkL6t+xfPlyQL02rVu3DnNzcxo1aiTu0bX1fciQIZQoUYJ169axbt06atasSaVKldi2bRug/o0TJ07Eysoq0zyZ3WS1B3/y5Aljx46VRBJrSE5OZvr06fj4+MhubMmKadOm4enpmen9nD17Nu7u7iKlq1xkrM9epUoVypUrh5OTk3DAefv2LS1atKBgwYKYmpoSGhpKWFiYMOjK7ci6ZMkS5syZI/4ePnx4JsPo4cOH6datGyNHjhTvpxxz+Ldv34iKikKlUhEREUHhwoW5dOmSuK5tGNXMiRmRe+35/v07nz59om/fvnTu3BlXV1cGDhyYKRvByZMnWbx4MVOnTpW1zzOOz02bNknO7StXrsTFxYW2bdtKDKOOjo5UrFiRc+fOKQZRBQWFHI9iFFVQ+Bdy+fJltm7dKiLpXrx4Qfny5VGpVEIRqtnsf//+nePHj7No0SLi4uLEpkyOg2tCQgLFixdn4MCBYrOeke3bt6NSqUQ04JAhQwgKCpLUa1D462jGwfXr17l//z7p6emcPXuWUqVKoaenl8nDuFu3bjRs2FBEMGY3GTfwU6ZMYdu2bXz79o309HQ6duyIq6urUGiA+qBRq1YtoqKisltcCStWrKBIkSISY8T9+/d5+fIlDx8+xMHBQSg17t+/T/HixSlbtizLli0D5PUgzRgZpU2HDh0oXry4RLH49u1b7O3tJWmYFP4+GzdupFChQowdO5YLFy5IrjVp0gQ7OztiY2Pp3bs3KpVKJ6K4v3//LjHSZTVuP378SPPmzTP9Jl1U3Ok6Hz58YOrUqdjb29O1a1fRPnbsWFQqFe3btxdtSUlJBAUFUbNmTdmVRxpyak3i2NhYSpYsycSJExk+fDiWlpa0a9dOROB++/aN5cuXU716ddzc3GSVO6dG5K5evZratWtz+PBhyV7l7t273LlzB2tra2bOnAnA7t27RdaQjEp2hb9GVkaXjRs3iggiTe1WDd27d6dGjRo6N29//vyZK1eucPr0acLCwqhatWqmTDJr1qxh9uzZ3L59WyYp1aSnp9OrVy9UKhUBAQH4+Phgb2/P9OnTef78OTNnzsTFxUU4P82YMQOVSsX69etll1vD8uXLmTdvHr6+vsyaNUu0f/nyhfXr12NhYSGJGNUV9u7dS6VKlThz5gygrj9boEABPD09qVixonDM/fHjBytXrtSZ7ASfPn2SRFE+e/aMESNGUKRIEaZPny75nOZsBLq3v7p9+zaenp6EhoayZcsWQH12qFWrFs2aNZNXOC1GjRqFgYEBcXFxLF68mB49epArVy6x9rx9+5Y2bdrg4ODAxIkTxfqqnVJXDl6/fk3jxo1xdHSUOAtrIka1dS3a40tuxwUrKyty584tnPlSUlLE2D1//jx+fn4EBwcTFxcnp5iCP9rTDRo0SPS1tmH07t27kvvkLl2xcOFC+vfvT0REBJMmTZLct2rVKlxdXWnfvr3YA6Snp+Pu7k7p0qUlDrsKCgoKORHFKKqg8C9j1apVODk5ERISQmxsrNhovXnzBnNzczw8PLh+/fof/htybM6+fv1Ko0aNJEpdUG+Gnzx5IqnJUK9ePVQqFe7u7ujp6XH58uXsFvdfgWZDvHnzZkxMTBg3bpxIMatRvMyaNYvbt2/z8OFD+vXrh4GBwZ+On+ykevXqFC9eXKTbOXfuHE2aNMHS0pI+ffowbNgw/Pz8sLe3l/Wg9+nTJ/z9/VGpVJQrV05EVmqewf79+6lYsaIY5ydPnqRFixZMnDhRduOF9oFvxowZhIWFERoaKtLSpaSkEBERQcGCBRkyZAjjx4+nTp06ODo6yn64zsncuHEDU1PTTHUgtSPiu3TpQq1atXBxcdGJeVAzVvr06UOpUqU4dOiQuKY9jm/fvk3t2rUlXuAKf48lS5aIqJz3798zZcoU7O3t6dy5s7inV69e5MuXj2bNmtGsWTN8fX1xcHDQGcNiTqpJfPLkSWHwjIuLo3z58kIZdObMGVQqFeXLl6dFixZcv36d9PR0tm3bxpgxY2RN65YTI3LT0tJ4/fo1RYsWRaVS0ahRI44dOyZR4m3fvh13d3eRSeHUqVNER0ezdOlSZd35L9AeJ8nJyZK+3rBhA87OzjRt2lSkyv/w4QPVqlUjMjIy22XNiEbWu3fvcuHCBUma6sOHD//UMKorRqKUlBS6d+9OkSJFOHLkCL/88gvt2rWjWLFitGnTBgMDAw4fPizuX79+vaxjXLvfYmNjKVSoEE5OTpQsWTJT2tAvX74QFxdH/vz5JfUj5UB7jL99+5anT5/Sv39/QO1UYWhoyKJFizh//jwWFhZUqFBBRARqkDuaa+rUqSI9q7bD07Nnzxg5ciTFihUTxjptdGWsa9DIc/XqVfz9/alYsSLGxsY4Ozvj6Ogoa21IbSOyZp7TzrYBaodclUolShK9e/eOJk2a4OXlxcKFC2XJSpRVX129epWoqCiqVKnCkiVLRPvw4cNxdXWlU6dOOlFaRsOnT58IDQ0lNDSUfPnyCSfiHz9+iHfv/Pnz2NnZ0bdvXzlFBaTv5pIlS+jUqRM9e/ZkwYIFon3o0KG4urrSu3dvrl69Ss2aNfH19QXkey+15R48eDB6enr4+/tTuHBhKlSokMkBavXq1ZiZmTF27FjJu+nr65vJwKugoKCQ01CMogoK/yKWL19OwYIFWbt2Le/fvxftmsPzq1evMDExoXr16pKIIl04LKWmplK9enWJl/HevXvp1asXRYsWpVy5cqJmypcvX1iwYAHTpk2T3cs7p3PgwAEKFy7MokWLMqXEHTp0KAYGBpQqVQpnZ2cqVqwoax26nynwg4ODMTQ0FIbR33//ncmTJ2Nra0vdunXp0KGD7LVG0tLSGDp0KPb29vTr1w8LCws2b94srm/ZsgVra2uWL1/OnTt3CA4OpkuXLuK63IZRgIEDB2JoaMjAgQNp3749ZmZmuLq6ipTAQ4YMwc/PDy8vL1q0aCEOTroge05kz549VKxYEVA7jSxatIgaNWpQrFgxmjdvLu57+/YtSUlJssj4s7Vj//79WFhYUKNGDYnBC9TGrdDQUIKDg2U3yuVUFi5ciEqlEqlCQW0YnTx5Mvb29pII//nz59O5c2dat27NhAkTZJ8LtckJNYnT0tJ49uwZxYoVE0r9PXv2iFSK27dvR19fn19//ZU1a9aQL18+WrdunWmtlHsezIkRuRMmTMDR0RETExN8fHwk42T9+vWoVCpOnz7Nq1evCA4OlhjodGF85xS036kJEybg7+9PUFCQxElx3bp1ODg4UKJECQICAggLC8PV1VVEQ8l1jtB27rO1tcXGxoaKFSvi6+vL69evAXX5hPDwcKpXry572vCfkZaWRosWLShdurRwJtq9ezdNmzalUqVKEsdQDXKP8efPnxMcHMyVK1d48+YN8fHxGBkZERwcLLkvOTmZgwcPyj4HaoiNjaVLly6kpqby6dMnUlNTCQoKYtiwYeKe2rVrU7FiRVq1agXoxjl54MCBGBkZMXnyZBYvXoyRkRF16tQRUaPPnj1j9OjRqFQqNmzYIKusP1s3tPtRu5TC6dOnmTx5MmvWrNEZJ6L79+/z48cPDAwMRMr29PR00tLS+PbtG/Xq1aNr165irXz37h2tWrXC1tZWEpmZ3WRM43/t2jXat29PlSpVROYhgN69exMZGakzWYi0SU5OJjo6WmIY1fDx40eePHmiM/MJQP/+/SlZsiTNmjUjKCiIvHnz0rp1a3F95MiRuLi4YGZmhqenp+ylfDRcu3aNXr16iWj57du3U6tWLerVqyfaNOzbt0/0uZIyV0FB4d+EYhRVUPiXcP36dezs7MTGXUPGyIqXL19iamqKn5+fTkQWaUhKSqJixYpERUVx69Ytxo0bh42NDeHh4cyYMYMlS5ZgaWlJv3795BY1x5JVKp9OnTpl8vTXPohevXqV+Ph4zpw5k6kmRnaifXBKSEjg4cOHknozgYGBEsMokOnQkd0H7IxRNs+fP8fc3JzY2Fh69OiBmZkZW7duBdRGr5CQECwsLDA2NsbFxUVWT+mM33vjxg3KlSsn6d979+5RuXJlPD09RdunT58kqY7kVtrlZK5fv465uTkNGzbE2dmZkJAQevbsKdJEyq300jje/EypsWjRIoyMjLC2tmbatGkcO3aMpUuX4uvrK4kEUAyjf4/58+eTO3duMXdo8+bNmywjRjMqMORM1ZVTaxKPHj2aAgUKiEwJL168IDExES8vL2EgTU1NxcrKilKlSjF27Fg5xZWQkyJy4T/j8+jRo7Ru3Zrjx4/j7OxM1apVOXnyJOnp6Xz9+pWmTZuiUqmoUKGCJAJaFwwYOQXtvpo8eTJFihRh2LBhdO7cmXLlyuHg4CAc5jZu3IiNjQ1eXl7MnTtXfE5uBe/hw4eFc9/Hjx+Jj49HpVJJDBOHDx8mICCA2rVr62y5jfT0dFq1akXRokXFXuvTp09iryv3Wqn9/fPmzROOTy9evBDXjxw5gpGRESEhIVn+G3KniTx8+DAVKlTg3Llzoi0xMRELCwvhlPv27VuaNGlCXFyczswl27dvx87OTkRwbd++HT09PYoUKYK7uztfvnwB1HVo5Y6W1x4np0+f5urVqxJDnXaf/qx/5R4nAwYMwMfHh2/fvtGyZUtq167N48ePJfc1adJEOChqfnNiYiIdOnTgwYMH2Sv8/09cXBzOzs4i9bOGK1euEBISgo2NjST6Wc7Uytrj5MiRI8THx0vOmO/fv6dTp04UKFCArVu38vHjR8LCwoiOjhb3yGUY1Zb9xIkTGBkZCSe+1NRU4uPj0dfXp2PHjuK+a9euceLECVnLVGmzZcsWjI2NcXBw4OnTp6J969atBAQEUK9ePUnWBQ26ZIxWUFBQ+H+BYhRVUPiXsG/fPsqVK8fvv/+e5eZWu+358+fkypVLEommCxw8eJA8efJgYWFBkSJFmD9/Pnfu3AHUytLatWvTpk0beYXMocTGxtKqVSvJOEhJScHT05MePXoAmQ9Fz58/1xmFgIaYmBisra3R09MjOjqaffv2iWuBgYGUKlWKvXv3ZjIAy/E7sjIijxw5ktjYWK5fv07btm0xNTUVBoGvX79y5MgRDhw4IPuhadasWQwfPlz8ferUKQwMDHj06BHwn/68fPkyxsbGrF69GpAeFHVt7Ogymr56+fIlL168EHV+4uLiCA8PZ+DAgSQkJAgvdV9fX4nyILsZNGgQISEhQlmu/dy1/3/jxo2EhoZSuHBhChYsiKurK23atNGpaMWcxKJFi8ifP38mg2jr1q3FWqlJpevo6JgpHb1c5OSaxBrZ37x5Q82aNQkMDBRGxLt371K+fHm2b98OwJMnT2jXrh0rV66U3YChTU6IyAW1c1xGhZuXlxd9+vTh69evODg4UK1aNWEY+P79O7t372br1q2yr5k5nePHj9OpUycxlgEePHiAi4sLVapUEW3r16/H09OT1q1bc+3atWyXMytnnPHjx9O9e3dALXPZsmUlTiEajh07xpMnT7JFzv+W9PR02rRpQ5EiRXSqNq72fLBlyxZ+//137OzsKFq0aKbMQ0ePHsXExAQvLy85RP0ps2bNYuDAgSLtZnp6Ounp6Xz8+JFmzZrh4+Mj0tNqpw/Xhbl8y5YtjBkzBoBdu3ZRokQJ5syZw/HjxylQoACBgYGZjP1yz4X9+vWjTJkylCpVimrVqrF27VpxTdfOB9rynDp1Ch8fHxEpt3LlSqpWrUrv3r3Fue7r16/4+fmJ9MvwH2ORnOMlPj6eevXqUatWrUwRlhs3bqRgwYIYGxtL9pBypigG9XmibNmyVKpUCX19fbp06SJqKL9//54ePXqgUqlwdHTExsZG9ihFbdlTU1PZsWMH5cqVEzJr2LhxI8WLF89yf6ULhsV9+/YRGhpKwYIFOX78uOTatm3bCAwMxMPDQzK/KygoKPwbUYyiCgr/EsaNG4ehoaH4O6tN7s2bN0Vaprdv3+rEpiwjjx8/5sKFC5lqXKSlpdGoUSOGDBkiDrIKf53z589z5coVQLoZ79q1K66ursIIoznMPXjwgGHDhgnPWLnQPlxu2bIFCwsLdu3axZw5c6hevTpBQUGSw139+vVRqVSZ0r5kN6tXr6ZQoUKMHj1aUldx165dlC5dmrt37/L8+XPat2+Pubm5JJWuBrneT01qzri4ONH27t07jI2NmTZtmuTexMREypcvn6nejsJfRzOXbd26FW9vb8qXL4+XlxdDhw7N8v5hw4ZhZmYmDNRyMG7cOKpVq0bbtm0zzR0Z///Tp088fPiQCxcu8Pr1a9mj0HIqN27cQKVS0adPH0l748aNMTExkczV79+/Z+rUqZQsWZIpU6Zkt6gScmpN4m3btnH48GFJFOW8efOwtrYWyt3Lly9jZ2fHgAED2LJlC/Xq1aNOnTpijCsRuX+dFStWUL16dWJjYyVj+cKFC3h7e/PkyRNevnxJxYoVqVatGqdPn860D9TFPW1OYNeuXTg4OFCmTBlOnz4N/Oe9vX79OiYmJixevFjcv27dOjw8PAgNDRX7yuxg7dq15M2bV5TN0MgYERFBly5deP/+PaampnTs2FGMjaVLlzJnzpxsk/H/Benp6URGRlK8eHFJinQ55dEwduxYChYsyO3bt7l16xbm5ubUrFlTpCrW3B8fHy97ivyM80Pt2rVRqVTUrFkzkwFxz549NG3aFHt7e4KDg2XNZPGz8+3Dhw/59OkTXl5ejBw5ElA70tnZ2aFSqWSt75uWliaR+/z581hZWXH69Gk2b95M165dMTU1laRv1cVz/KpVq2jSpAlNmjSRPPtJkybh6emJpaUljRo1ws3NDTs7O52JyNXmyJEjhISE4O/vL4kYPXToEOHh4cyaNUvWtVL7uY8bN47SpUuLdWfcuHGoVCpat24tyQa1b98+Vq9eLbvz06FDh1i1ahUA0dHR9O7dm0uXLlG4cGGJkzbA7du3MTIyyhS1Kwc/Gytnz56lTp062NnZceLECcm1devW0atXL51wClFQUFD4J1GMogoK/xI2bNhAwYIFM23KtBk4cCBRUVEShVhOUCJ9//6dIUOGYGxsrNQQ/T+yf/9+wsPDhbd9XFwcTk5O9O3bV1JTdOjQoVSoUCFTnVG5OHjwIN27d5cot44fP07dunWpW7euxDDar18/Wcd1YmIigYGBqFQqHBwcaNOmDR4eHpw9e5avX78SGxsrUupcv36d6Oho8ubNm8lTUw7mz59Pnjx5sjTSdurUiRo1akhSL3358gUXFxeJwlTh77Nnzx4KFCjA7NmzuXTpEpMmTUKlUkkO07t37yYyMpJSpUrJVttXW5kxZ84cAgICaN26tfCezypS+M8yFyj8NdLT0+natSvFihUT4yI8PBx7e3sePnwo7tGQlJTEunXrdGaNz0k1ie/du0fu3LkxMjIiJiZGGBMBgoKCsLe3F3//8ssv2NraUr58eapXry5rCtecGJGbnp7Omzdv0NfXF2umiYkJw4cPZ/v27Xz79g1fX1/hePPy5Uvs7e2pWLEiV69elU3ufxO3b9+mXbt2FChQQBL5BGoHC1tbWyZPnixpX758Of7+/sIpJjt48OABNWvWxNTUVETGg9pYqskUotlbpaen8+PHDzp37kyPHj1E3UW5+LuK5fT0dEJCQggICPiHJPr7nD17lk6dOnHw4EHRdvPmTUxNTaldu3Ymw6gGuZXq2tHB7dq1I2/evKxbty5T2udv377x4cMHWR23tPvq+fPnvHnzRpL5JiEhgbJly4r0v69evaJly5acP39eZ9b6pUuX0qlTJ1GDG+DOnTv07t0bExMTfv31V9Eu914w4/f36tULfX19bGxs+PTpk+Ta0aNHGTduHO3bt2fEiBGyZjzRlnvVqlVMmTKFMWPGiL34mTNnCAkJoXr16ixevJhHjx5Rv359YmJiZHPaWrlypeRdvHfvHo0bNxbn961bt6Kvr0/fvn0pWrQobdq04d27d5n+HbmczT5+/EhAQAC+vr4EBwdTtGhRLl++TFJSEiEhIYSFhUmycSQmJmJvb8+2bduyXV5ttMfK2rVrmTp1KjExMdy5c4f09HQuXLhAWFgYTk5OmbKJaJB7DldQUFD4J1GMogoK/xLu3btHsWLFCA8Pl0QQaTZDSUlJhIeHM3PmTLlE/K9YuXIlPXr0oHTp0rIZAnIiPztonjlzhjx58tCkSROhJBo/fjyenp7Y2dnRsmVLgoKCKFasGJcuXcpGiX9OQkIC1tbWFC5cWJLSFf5jGK1Xr54kNRPIa/A/evQoTZs2pUyZMhw9epQBAwbg5eWFr68vderUoXr16uLAffnyZSZMmCC7QmPLli2oVCpJ+jxQGzNu3brFrVu3CA0NxcXFhQ4dOjBv3jz8/f1xcHCQXfacTHp6OlFRUWJsP3v2jLJly2ZKb75q1Sq6du3KzZs3ZZBSjfbB+Pjx47Rp04bSpUvToUMHYdxSDs//LN26daNQoUK4urri5OQk1nvtfl+zZo3Ey17u+lw5rSZxeno6zZs3x8DAgLlz5+Lg4EDfvn1JS0vj0aNHlCtXTlIr6t69ezx48EA8A7mV6TkpIldDfHw8lpaW9OnTh0GDBjFo0CCMjIzo378/gYGBGBkZibp0L168oHnz5sq681/ws/n54cOHREVF4eDgIDGApqamYm9vL+rmave59hyTXTx+/JjatWtjZGQkDKMXL17E3d0da2trjhw5ImQbPHgwZcqU4datW9kupzbafb5p0yYWLlzIuHHjeP369Z++e7qynm7ZsoXKlStToUIF7t69C/xnLNy8eRMzMzPq1q2bZdkIOVm4cCHBwcESp8Pw8HAMDAzYvn27xHlETkPumjVruH//vvg7NjYWFxcXDA0Nad68OStXrgQgOTkZMzMzgoODOXjwIDVr1sTf31/Im91zYkhICIMHDwbU/ffkyRPCwsIoVqwYnTp1ktx79+5devfujbm5uU5Eb2vSsIO6ZrgmAnDEiBGYmZkxYMAAEhMT//DfkNsg2rt3b/T19fHw8MDCwgIjIyPWrFkDwLlz54iKiiJfvnxYWVnh7Owsm9PWhg0bMDExYeDAgcLZ+vPnzyxfvpwPHz5w6tQpzM3NmT17NqAe/yqVigYNGmRKSysnb9++xcbGBpVKJcmwsW3bNvz9/fH19WXGjBls27aNgIAAqlSpIus+RbuGaf/+/SlTpgytWrXCzc0NKysr4Wx29OhRIiIicHFx4fDhw7LJq6CgoCAHilFUQeFfxNq1a8mfPz/NmzeXGBCfPXtGYGAg3t7eOqH8+qvcunULPz8/QkNDZTUE5DQ0h+PExERu3LiRKZri7NmzGBgYEBoaKg5Ie/fuZejQoYSEhNC/f38SEhKyXe4/YufOnTg5OeHl5SU5yIJ60+/q6popraQcaB80T548SY0aNXBwcCA5OZmnT5+ycOFCjI2NMTAwEApebeQ6PH379o1OnTpRvnx5ZsyYIdobNGiAo6OjiAa5c+cOkyZNwtHRET8/P5o0aSJrRFdORTNONJEVVatWZd68ebx58wYTExNJ+r9ly5aJmjRyR7to6NmzJ87OzrRq1QoPDw9KlixJZGQkL168AHRHkftvZeDAgahUKubPn5/pmr+/P46OjrI+g39DTeK3b9/i7OzM+PHjuX79OpUqVaJVq1ZMnTqVMWPGEBAQkGVaNLnHfk6KyAXpc96+fTsWFhZ069aNq1ev8vDhQzp16oSvry8GBgY8f/48U/8q685fR7vvTp48yZYtWzh37hwfPnwA1Ot7hw4dMDU1pVGjRgwePJjQ0FCsrKwkZwe5383Hjx9Tp04dSpcuLQyeR44cwcHBgcqVK+Po6Ejt2rUpU6aMTjlT9u/fH1NTU+rXr4+9vT2WlpbExcX96Zwh95wC6nqsISEh5M+fnyVLloh2zfuXkJBAnjx56NWrl1wiZsn27duxsbGhVatWkvSQYWFhlChRgh07dmSKGM1uduzYQe7cuRkyZAhv3rxh2bJllCpVilWrVjF9+nTatGmDqakp06dPB9RZQ6ysrKhYsSK+vr6ypfr9+vUru3btytR/J0+epHnz5hQrVixT+ue7d+/Srl07GjRoIOs88uzZMwoWLEiTJk3o3bs3enp6krNy//79cXFxYeTIkSJaUdfWmpcvXxIYGMilS5fE2aBNmzaYmJiIfk9MTOTatWscPHhQ9tSzo0ePxsXFhZiYGJ4+fQogxs7w4cMJDw8Xjja//PILjRo1IigoSCfmPw3v378nKCgIHx8fAgICJFk29uzZQ7du3ShWrBhubm7UrVtX1v3VvHnzUKlUJCQksGHDBkxNTbl8+TKgnkNUKpUkK9TJkyfx8/OjTZs22S6rgoKCgpwoRlEFhX8RP378YNGiReTNmxdTU1Pq1q1L7dq18fDwwM3NTXbl13/Dq1evhMJG4c/RHB6uXbuGm5sbZcuWxcLCgqioKMl9Z86cwcDAgLCwML58+SLa5VZ2/dHhZ+vWrbi5udGiRYtMNUOvXLmiUwcnDadPn6ZatWpUqlRJGBbv37+vk8aj58+f07NnTzw9PZk+fToRERE4OTmJqICMY0PbQJeTnC10hc2bN9OwYUMePXrEoEGDiI6OxszMTBKB9vHjR9q3b88vv/wi+7ytef779++nZMmSnD17VlwbP3487u7utGvXThh6dWls/xvp2bMnBQsWzJTatVKlSrKmcM2pNYkPHDjAiRMnhJIuNTWVhQsX0qxZM96/f8+bN28YO3YszZo1w8jICCMjIzp37pwpTW12k5MjcrNix44dmJmZ0bp1a6E4/fz5s4iiknuPklPR7reYmBgqVKiAsbEx3t7eNG/eXET43b17l6ioKIoVK4aPj48k1aXca5A2GsNoqVKlhGH0ypUrbNiwgV69erF8+fIsHc/kYuXKlZQpU0YYXuLj4zOlyNcVfrZ2X7hwgQYNGuDm5sbGjRsz3f/w4UNZx8jP5I6Pj8fOzo7mzZtLDKMRERGoVKpMtfTkYPr06ZiZmTF27Fi6du0qMTw/evSIESNGUK5cOQ4dOgSoI0Y16S9B/jl8+vTphISEiL/Pnj1LixYtsLe3zzTGnz59Kp6VnPP5uXPnyJ8/P3p6esLxWjtVcb9+/XB1dWXUqFF/GjGa3cyZMwcbGxt8fX15/fq1ZOw3atSIChUqZNm3cryf2mNzxIgRODs7ExMTI87EqamphIWFUbNmTUBdliUkJERicNS188SLFy8ICgrC398/U/mB58+f8/79e1nfzUWLFpE/f34xT0+bNo3GjRsD6qj0okWLMnfuXEB9ztQ4LF6+fFnn+lpBQUHhn0Yxiioo/Au5dOkS3bt3p3bt2rRv357Zs2fL7iGo8M+j2chevnyZwoUL07dvXw4fPkzXrl3Jly+f2ABr7tMYRps2bZpl3Y7sRnsjvnz5cvr378/AgQOFEgBg48aNuLm50bx5c4lRJqt/Q060D6NnzpzB19eXChUqCCVvWlqaTip3X7x4Qbdu3ShXrhwGBgZCXu2DdEa5dfF36Cqavnr06BH29vYsXLgQUKfU06RE1fR5amoqgwYNomzZssIwnd306NGD9evXS9q2bNmCkZFRpjTtgwYNomDBgnTs2FH8BoV/lu7du1OoUCG2bNlCcHAw1tbWwkgnx1qfU2sSf/nyBXNzc6ytrYmOjhYK0Nu3b+Pr6ytShyYnJ/PgwQN69OiBSqXCy8tL1vnv3xCRq0Fbjl27dmFmZkZkZKQkekdX1veczMSJEylTpgzHjh0DoE+fPhQoUIA6deoIJfW9e/fo0KEDAQEBzJo1S3xW1/o/K8OorpCxr0aNGkV0dDQAq1evliilP3/+rDPOn9pyX7p0iWPHjvH777+LtpMnTxIeHo6Pj49kntf+nNzG8/j4+EzZbvbu3YudnR2NGjWSOFUOGjRIVnm1oywXLlxI6dKlKVy4cKZSN/fv38fb25tx48Zl+jfkfi9TU1NZvHgxpUqVonXr1qL91KlTtGzZEnt7e/bs2ZPpc3LLffLkSfLnz0+RIkVo0aKFaNd+JgMGDMDExISlS5fKIWKWpKamsnz5cuzs7ChTpgzJyckA4r8JCQkYGBhw+vRpOcUEst5fDBs2LJNhND4+njx58uDm5oatrS0ODg46r6+6f/8+9erVIyAggCVLlvDjxw98fHyIjY0V98gxxtesWYNKpZKkqO7bty9t2rThwoULFClSRKw9AAsWLGDkyJESBz+5300FBQWF7EQxiioo/A8h90FV4Z/nzp07FChQgCFDhoi2+/fvky9fPvr27Zvp/rNnz6JSqYiMjNQZ5eiAAQMoWbIkbdu2xcvLC29vbyZNmiSub9y4EU9PT+rWrcuNGzdklDTzge9nyuYzZ87g7+9PpUqVePLkSbbJ99/w8uVLevTogYuLi6TflUPS/xv279/PmDFjaNOmDUlJSaJ9wYIFFCpUiJCQECIiImjSpAkGBgaypf+7d+8eISEh2NvbS+rMHjx4ECsrKxFdoRkX79+/x9zcHHNzc0aNGiWLzP8GspqH/2hu7tWrFyqVChsbG1kNojm9JnFSUhIjR46kSpUqGBsbs3HjRtLT0zl69CgFCxYURiQN+/btE3IrEbl/nT/qq4yGUQsLCzp06KBTKVBzMg8ePMDPz08Ys/bu3Yuenh7t27fH0dGRoKAgETF6+/ZtOnTogLe3NxMnTpRT7D9EYxg1NTXVmbIP2uNY41TUoUMHoqKiOHv2bCal9OTJk5kwYYLse3DtdSM2NhZbW1v09fWpUaMGvXv3FvKdOHGCiIgI/P39haOFrnDp0iUKFChAt27dRM1ZDXv37iVfvny0bNmSAwcOSK7JbYCZOHEib9++Zfny5RQsWJDg4OBMznARERFERETIJOEf8/nzZ9asWYOxsbHEwHjq1CnatGlDyZIldcJIl5E3b95w4sQJDAwMaNKkSZb3LF68WOcioJOSkoiLi8PQ0JD69etLrl28eBFTU1MuXLiQXSL+KUuWLJEY6YYPH57JMHr48GG6devGyJEjxfuoC3vDP+L+/fuEhYVRqVIlLC0tsbe3lzUd9/z581GpVBgZGTFgwABu374NwPnz59HX10elUonauaB2CAwMDKRbt25yiaygoKAgO4pRVEHhX4rch2uF7CctLY3Y2FhKliwpUYqOGzcOlUpFSEgI06ZNY8WKFXz9+lUcNs6dO6czXvbz58+nbNmynD9/HlB7PObOnRtHR0dGjx4t7lu5ciUdOnSQ1VCn/d0/67+MhlF7e3uaNm36j8v2f0UTMerh4cGECRNEuzKv/N8ZPHgwKpUKExMTHj58KLm2ZcsWBg0aRHBwMCNHjpT9vfztt9+IjIzE1taWbdu2Aepx7+zsTNWqVSXy3759m7CwMBYtWqQY0P9LtPvtzZs3khTVf6QcWrp0qVAiyaHczek1iTXf/ePHDxISEoiMjKRYsWI0atSII0eOMH36dBo3bizSnmf12ewkp0bkao/v58+fZ5l6WHuN2b17N/ny5csyOkrhv2PHjh08efKEM2fOYGxsLOoSd+7cGZVKhbOzs6g/+/DhQ5o2bUpAQIBOZBP5GU+ePMHT01PiGCIX2uN33LhxFCxYkMePH3PkyBHKlSuHSqWSRJ19/vyZoKAgevfuLYe4gDoVp3ba0LFjx1K6dGkOHTpEUlISHTp0oEiRIkRGRop3+OTJk9SoUYMuXbrIJTagLhVy5MgRjhw5ItoWL16MhYUFPXr0yGQYrVy5Mnp6epLzhBxoj5OlS5dSsGBBTp06Baifh5GREf379xdGjY8fP+Lm5kafPn1kkfevkJyczKpVqzIZRo8cOcKoUaNkW+OvXbv2h9fT0tLYt28fBgYGNG/eXLRHRUWxYcMG8bcc8muvmdeuXeP8+fPCsTY9PV0YRuvUqcORI0c4duwYQUFBuLm56YxB8fXr1zRu3BhHR0fJ3KeJGB04cKDYI2r/XrkdFf4qz58/Z8eOHSxevFjWffisWbPImzcv8fHxLF68GCcnJ4lzyJgxYzAxMWHcuHG8fPmSM2fOEBgYSOXKlYW8yhlfQUHhfxHFKKqgoKDwL+LZs2f07NkTDw8P5s6dy8SJEylevDhDhgxh48aNhIaG4urqipmZGTVq1GDHjh1yiyxITU1l9OjRQgG6efNm9PX1GT9+PC1atMDExESkMdRGDgOM9neOHDmSGjVqsHv37izvzVjzTVcOqn/Gixcv6N69O15eXgwePFhucf5VTJo0CZVKxfjx4/n48aPc4mRCe8z+9ttvtGnTBltbW1G/8tWrV5QrVw4XFxdmzpzJtm3bqFWrFg0bNhSfVQyj/z3Dhw/Hzs4Of39/SdT/n80dciqRcnpN4ozyLV++nJCQEPT19fH29qZq1arCMUBOcmpEbsY1MyIiggsXLvypTKdOncoxa6Yuk3F8Dx48mJYtW4qolqlTp1K3bl1iY2Ml/f3o0SOeP38ui6yXL19m7969LFu2jOTk5D9cU54+fSpJ6S43Z8+epVOnThw8eBBQZ+Do3r07FStWZNasWSQnJ3Pp0iUCAwNxdnaWbQ709fWlTp06YhwkJCTg5ubGvn37AHVay8KFC9O0aVOsrKyIiooSz+fq1auyrvPLli3D2tqaMmXKYGpqKkndumLFCkxMTOjRo4cwLL5//55u3bqxefNm2eaUjO/hgQMH6NmzJ2vWrJG0T58+nZIlS2Jvb0/r1q0JDQ3FyclJVqP/XzGYaAyjJiYmkuehIbv7fcqUKZQuXZrDhw//4X3p6ens27ePEiVK4OTkRNWqVSlfvrysexPt/h44cCAWFhYYGxtTqFAh+vXrJ9Jax8XFYWJigkqlonPnzvTo0UOk0pVjnGc1Tq5evUpUVBRVqlSR1MsdPnw4rq6udOrUiTdv3mSnmP8YcvT5rVu3KF++vMQZbsaMGcIw+uzZM96+fcuYMWPQ19fH0NAQR0dHateurROOiQoKCgpyohhFFRQUFP5laKL8bGxsyJMnj1DKwH+Uz7NmzaJt27aypp/N6uD06tUrnj17xoMHD6hUqRJTpkwB4MKFCxQvXhxzc3NRh1EXPBoHDBiAoaEhu3fv/sO0uBllzSmHjxcvXtCqVSuJIkzhr6Pps/fv3/Py5UuJIWjQoEHkzp2buXPn8vnz50yfkQvN92uP0bNnz9K6dWtsbW1FdNqHDx9o0KABTk5OWFlZUaNGDXG4Vgyi/z3Lly/HxMSEOXPm0LlzZ6ytrSVp3XR57vg31CTWHrsPHjxg2bJllCpVCpVKRVRUlIyS5fyIXICYmBiMjIxYs2aNiEjMipy6ZuYUoqOjcXZ25suXLwCEhYVJMoykpqbK8m5qvnPjxo0YGxvj5eVFuXLlsLW1Zd26dTrhQPFnbNmyhcqVK1OhQgVJCtQbN27Qo0cPSpYsSfHixXFwcMDf31+2d/PgwYOYmpry4MEDACHr0qVLef36NceOHcPIyIhFixYB0LBhQ/LmzUtISIhkbMix3s+fP598+fKxcuVKLl++TNeuXcmbN6/EuLhixQosLS1p2LAhgwcPpk6dOnh7e2e5x8kutLMNHDp0CAcHBwwNDYWDqnbqTU1JBVdXV3799VchrxzvgPYz/rOa8cnJyaxevZpcuXIxcuTIf1q0P+TQoUM0bdqUypUrS87CP+P333+nc+fOxMbG6kwK1xkzZmBoaMj+/fu5c+cOixcvxtbWlnbt2vHo0SNSUlJYt24ddnZ2NGjQQHxOM7fLxb179yR/X7t2jfbt21OlShWWLVsm2nv37q1TJXxyIh8+fBBOQdrzg7ZhVPPevnr1iqNHj3Lr1i3xXueEdVVBQUHhn0IxiiooKCj8C9HUhXR0dGTy5MmiXfvArSsesBMnThT12jSHz61bt2JrayupNRIaGsqsWbN0xuBy/PhxrKysOHfuHKCOfHr+/DmbNm3i06dPgO4p/P8b3r59K/r83/B7sgtNX23dupVq1aphbGxMYGAgsbGx4p6BAweSO3du5s+fL8aMnGi/W0lJSbx//178ffnyZVq1akWlSpVExGh6ejpv3rzh8ePH4vcqh+u/R8b57Ndff2X58uWAOrXiunXrMDc3p1GjRuIeXe5jXa9JnJUcf2aoffDgASNGjNCJfs/JEbkHDhygTJkyYs388eMHr1+/5uzZszx+/FhW2f7XWL9+Pe7u7tja2uLq6krFihV1JoXe2bNnMTQ05NdffwXUGVBUKhWzZs2SVa6fkXFOOXjwICEhIeTPn18SFQXw6dMnnj59yq5duySRlnK8m4cOHcLS0pK9e/cSFRVFSEiIJI1ut27d6Ny5szg3DBo0iBo1atCtWzdZ5/OsouXPnTuHSqWSnHcAtm3bRpMmTXB3dycsLEwYoOUY4+fPnydfvnzCAJqUlMTgwYMpVaoUYWFhou+1z2kTJkwgIiJCVkOu9rMeM2YMfn5+XL58+Q8/8+nTJ0ndbTk5f/68qJt88uTJv/VZudfMHz9+EBYWlim9tsZpROMc9fHjR9avX4+5uTnNmjWTQ1QJcXFxODs7s2vXLkn7lStXCAkJwcbGRhLVqBnfcq89/xa031mNYbR79+4iuvhn9yooKCj8L6IYRRUUFBT+pfysLqTchzztDfi9e/fw9PREX1+fCxcuiPYdO3ZgbW3N0qVLefXqFfXr16dnz56yKgYysn//fsqUKcPbt2+5efMmMTExWFlZUaxYMRwdHWX30v1/jXJw+nMypo7du3evqIn366+/0rNnTypWrCipKzt06FBUKhVLliyRVSGg/d1jx46latWqVKpUiTp16oh38/r167Rq1Qo7Ozu2bt2a6d9QxsjfQ7vPly9fzrx58/D19ZUo/798+cL69euxsLCQRIzqMrpak1h7fM6bN48FCxb86WcyrjVyr5+QcyJytfv78+fP7NixA09PTxITE7l06RKDBw/G0tISCwsLateuLdJcKvx3/J35NyUlhQ0bNhAbG8vAgQN1JioK1GlRg4ODAXU613LlytGhQwdxXRcciLJi/fr14hmcP3+eBg0a4ObmxsaNG8U9Wc0fcq6bLVq0oHTp0hQoUIDTp09LroWEhFC3bl1ALWNERIRkzpRD7p9Fy0dERKBSqWjatCkDBgxgwoQJvH37Vlz/8uWL7I5bd+7coVWrVpQsWVIYRj9//szw4cNxcnKiX79+wiCqnSZXVwxG/fv3x8jIiPXr10sioP8MuQ25W7ZsoUePHhQoUABbW1vhhJsVcvfxb7/9xtq1a9m4cSMPHz4EoGbNmnTv3h2QGsz79etHhQoVhOPTly9fiIuLQ09Pj8jIyOwXXov4+Hjq1atHrVq1MpWW2bhxIwULFsTY2FhyjpC77/9taL8DM2fOxNXVlVatWglncwUFBQUFNYpRVEFBQeFfjEZ56u3tzbBhw+QWR0JsbCw+Pj4EBARQuHBhihYtyqlTpwB4/Pgx4eHhmJmZYWxsjLOzs6we3lkpfx48eIC7uztWVlaUKFGCqKgofv31V168eEHhwoVZvXp1tsupIA+a8aEdWfn9+3fatm1Ljx49RNvnz59ZvXo1FStWZNSoUaJ97Nix3Lx5M9vk/SOGDRtGiRIlmDVrFosXL6Zq1apYWlqK6NDffvuNdu3aUaJECY4fPy6ztDkX7XksNjaWQoUK4eTkRMmSJfH395dc1yi78ufPL6kxqsvock3i/v37Y25uzpgxYyT1EnOSUk7XI3K16dGjB8OGDSM+Pp5cuXJRt25dihcvTmRkJMuXL2fTpk1YWFhw9OhRuUXNsWg/902bNrFw4ULGjRvH69evMxmBfjZG5K6zqIkgHjVqFCEhIXz//h0zMzM6duwoZF67di1jx47VuXF+8+ZNzMzMqFu3rpDt5MmThIeH4+PjI9LOg27MM5pnPWDAAFQqFebm5uzdu1c48/348YPZs2fj7OyMv78/Xl5e2Nrais/J+Ru0o+WnTZtGREQEDg4OLF++nBMnThAdHU3VqlUpU6YM1tbWHDhwQHxW7r6/d+8eUVFR6OvrC8Pox48fGTx4MB4eHvTv318YvrTfW7nlPnjwIGXLluXMmTOAeny8f/+ekydP6pQDaMZ5oW/fvlhYWDB69Gg6d+6Mra0tDg4OHDp0SCYJf86SJUswMzPDzMwMPT09vLy8ePbsGdOmTUNPT0+UaNG8g1OnTqVGjRqSeTs5OZktW7Zkq4PRz+biI0eOEBISgr+/vyRi9NChQ4SHhzNr1iydcML5N6P9bMaNG0dkZKTOrZ0KCgoKcqMYRRUUFBT+5bx48YLIyEhq1apFYmKi3OIAsHjxYgoXLszp06dJTEzk/PnzhIWFUbhwYZHe6MmTJxw/fpytW7fqTC2dM2fOsH//fuFp/PvvvzN58mR27tzJx48fAXj37h0eHh7Ex8dnu6wK2Y9mfFy6dInixYtL0orVqlWLxo0bS+5PTk6mQ4cOhIWF6ZxC4Pnz59jb20vqcoG63ly5cuVERNrJkycZM2aMzsmfE3n+/DnBwcFcuXKFN2/eEB8fj5GRkYiU0pCcnMzBgwdzVJ/rYk3i2bNnY2hoyG+//Sa3KP9ndDUiV/v7r169ipmZmXCgOHz4MCNGjGDTpk0ikuvTp084OTmxb98+WeT9N9G/f39MTU2pX78+9vb2WFpaEhcX95fSRsvJnj17UKlUnD59mitXrmBtbU3BggXp3Lkz8B9Ze/ToQUREhNhvyUVWaarXrFlDlSpVqF+/vujvEydOEBERgb+/v046ym3fvp2EhATCwsKwtLRky5YtIvLs1atXzJ49mzZt2tClSxediibWzH1ly5aVRMvDf/ZkK1euZOTIkToR3a/dZ3fv3iUqKopixYpJDKNDhgzBy8uLjh076oTM2qxZswYrKytAPacPGzYMKysrcufOTVhYGMnJyTJLmJnr16+L9NAaDhw4QGhoKPb29pw4cQLQjXlwwYIF5M+fnxUrVvDkyRMWLlyItbU1LVq04OnTp9SoUYOyZcty69YtPn78yNevX6lZs6bs2UO0+27VqlVMmTKFMWPG8PLlS0B9Zg4JCaF69eosXryYR48eUb9+fWJiYnQq81NOIqvx+kdjWHvtz5jNSEFBQUFBMYoqKCgo/E/w8uVLcUiRg4wb8AEDBtCwYUNJ2+PHj6lTpw76+vqcP38+078h98EpJiYGW1tbLC0tcXNzw9fXV5Li6vv37zx9+pTg4GDc3d1ll1fhn0czri9fvkzhwoUZOHAg8J+D59ChQ6lZsyYJCQmSz82YMYNKlSqRlJSUvQL/CU+ePMHExEQY9LXrEVpZWdGvX79Mn1HG+d8jYwpXCwsLatSowYsXL8T1I0eOYGRkREhISJb/Rk7qc12qSZySkkLbtm0ZMWIEALdu3WLFihVUrVqVwMDAHBn5rMsRuRMnTiQmJoa+ffsCmRVy379/JykpicDAQKpWrZqjxrUusnLlSsqUKcPVq1cBdQpDlUqVqa6brvHo0SMGDBjAnDlzAEhMTKRPnz6UL1+emTNnAuq1adCgQRgaGnLjxg05xf0p3759Y+3atTg6OkoMoydPnqRGjRp06dJFZgmlpKenS9ajoKAgLC0t2bx5szByZZyzdclY97Noee0UoxrkmFsOHz7MihUrspRBEzFqbGzMwYMHAXUmkZ49e8ruRJSVweT27dsYGhri6uqKkZER7dq1Y/ny5fz222+oVCpJNK4c1K1bl6lTp0rarl+/TuHChTM52+zevRsDAwMcHBx0whFH4xCycOFCSXvr1q1xdHQkJSWFGzduUL9+fQoVKoSDgwMODg7Y29vLmkFJ+zt79+6Nvr4+Hh4eWFhYYGRkJJwrz507R1RUFPny5cPKykr2zE85Ge1388mTJyQkJJCWlvanKba125U+V1BQUJCiGEUVFBQUFP5RtDfg8+bN48mTJ4wZMwYTE5NMB6MVK1agUqkoVqyYiLiTw6Mx43dOnz6dEiVKiNRREyZMQKVSsX//fkCthFm6dCk1atTAw8ND/C5FyfvvRTNGrl69SsGCBRk6dKjkempqKtevX6d06dJERUVJFLmdO3cmKChI1rRjPzsY29jYSOoRaRSM9evXp0+fPtki278V7T7fsmULv//+O3Z2dhQtWlQyPtLT0zl69CgmJiZ4eXnJIer/c+SYx7Ma41FRUZQpU4bFixfj7e1N3bp1GTBgAFWqVMHT0zNHetDrYkTu169fadOmDSqVisDAQEBaGy8lJYWRI0dSrVo13NzclDXzvyDjWB01ahTR0dEArF69mqJFizJ37lxAbXD58OFDtsv4Z1y+fJlatWpRqVIlDh8+LNpv3rxJp06dKFmyJCYmJjg7O1O+fHkuXrwon7AZWLRoES1btpS0aQyjFSpUICIiQrJP0KW5JT09XbyP9+7dE+3BwcFYWVmxZcuWTPsTXZlbtPlZtLyc80h6ejrJycnUqlULT09P1q5dm6Vc169fJzw8nNDQUOEg9/XrV1lriGqP0YsXL3Lx4kXhpHr69Gl69erFxo0befPmDQAfPnzA09NTZPiRg0+fPrFu3bpMxvCnT5/i7e3NxIkTM0Wy+vr6Ur58eVq3bp2dombJrFmzcHBwoFOnTjx+/Fi0x8bGUqVKFUkN5bVr1zJ37lwWLVokawYlbV6+fElgYCCXLl0SjpRt2rTBxMREREInJiZy7do1SbYTueXOaWjPB8OGDaNy5cqUKVMGd3d3pkyZojOZwBQUFBRyGopRVEFBQUHhH0N7Ez9z5kxKlSrF+fPnOX36NFWqVGHIkCGSOoxHjhwhOjqa5s2bY2trKw7e2YkmYktzcEtLS6Ndu3bMmzcPgK1bt1K0aFHh1atRHB09epS5c+cqB77/IR4+fEjhwoVp2rSppH3KlCnCSHro0CHKlCmDr68vtWvXpmnTphQpUkSSZje70VbM3b9/n7dv3wplxtq1a7GwsBBRrxrc3d0ZPnx4dor5r0J7Lhw7diwFCxbk9u3b3Lp1C3Nzc2rWrMnr168l98fHxxMcHKxTyvScgnafaSv3b9++TaNGjTA1NWXcuHEije7OnTvx9/fXScPRX0HuiNysxuibN2/o06cPefLkYevWrYBUtuPHjzNs2DCxVipr5l9Hux/Xr18PQIcOHYiKiuLs2bMUKVJEGEQBJk+ezIQJE3TOsHX06FHq1q1LgQIFmD17tuTa27dvuXHjBrNnz+bAgQOipp4u8O3bN8aOHUulSpXo2rWr5Fp6ejodO3ZEpVLh4+Mj6XNdmcs1Mm3evBkjIyOuX78urjVs2JDChQvnmBq/uhotf/fuXRo0aJApdbL2/mvu3LkYGRlJ1n6QP/Jv0KBB2NnZUaFCBUxMTOjRo4dE7pSUFN6+fUv9+vXx9PTUGWeWyZMni5TboE63bWJiwoYNG4Rh9O3bt4SHh7N27VqdmQ/nzJmDt7c3rVq1AtQ1XPPkycPOnTuBn48Huft9zpw52NjY4Ovry+vXryXzW6NGjahQoUKWssstd05m7NixlC5dmp07d5KSkoK/vz+WlpZcuXJFbtEUFBQUciSKUVRBQUFB4R/n3LlztG/fnk2bNgFqxdDAgQPx9vame/fu3Lt3j3v37lG/fn06derEvn37MDIyyvZ0hqNHjyZ//vzcuXNHyJmeno6vry9z585lz5496OnpCWXjjx8/mDx5MuvWrZP8O8qB73+DBw8eYGpqSmhoqKgzO2nSJAoUKCBJJ3bp0iUmT55M48aN6dOnj2zp/+bPny9SK4LaE93e3p7SpUsTGxvL9evXxZguXbo0fn5+REdHU61aNSpVqqQYLf4fcPbsWTp16iRS5oE6KsrU1JTatWtnMoxq0BVlek5j0qRJ1KlTh44dO0pqi2Xs59q1a8ten+v/BXJnVrh37x4XLlwgMTGR9PR0fvz4Qfv27cmXL59Iy62d7k2Dsmb+dbT7bty4cRQsWJDHjx9z5MgRypUrh0qlYunSpeKez58/ExQURO/eveUQN0t+++03MW7Onz9PgwYNcHR0JC4uTtyjS3NeVrIkJiYyffp07O3t6dSpk+TajBkzqF+/Pl27dpX1d/zRd2/evJnChQszf/58QOqUMGDAgBz1TupitDyonc7q1auHv7+/pFa7Jqpx3759VK9eXaeivCZOnEiJEiU4deoUX79+ZdCgQahUKhEx+u3bN5YvX65zUf7fvn1j0qRJFClSRFLqoVmzZpibm9OyZUuGDx9OtWrV8PLyEu+Grryfs2bNonr16vj6+lKwYEFWrVqV6R5dIjU1leXLl2NnZ0eZMmWE0Vnz34SEBAwMDDh9+rScYv5rSE9P5/379/j6+rJy5UpAnSK/SJEiLFiwAFA/E+WcpqCgoPD3UIyiCgoKCgr/KNu2bcPW1hZTU1OJkTM1NZVRo0ZRtWpVVCoVVlZW2NvbA+oIvPLly4t0tdnF6dOnCQwMpFy5cty+fRtQH/QHDRqEr6+vJB0dqNMGBQUFMX369GyVU0F+NIqKW7duYWdnR1hYGNHR0RgYGHDo0CFxX0YFnVwKjn379mFiYkLnzp158OABW7ZsoUyZMmzcuJHBgwfj5uZGeHi48DY+fvw4oaGhtGjRgh49eoiDttyKr5zMli1bqFy5MhUqVODu3bvAf/rz5s2bmJmZUbduXVnrP/+bmDFjBoaGhgwYMIDKlStTrVo1Se25pKQkNm/eTEBAgKjdBbqZJlJXyRhdVKVKFYoVK0adOnWIjo4mNTWVT58+ER0dTYECBUTKeaWP/+9kdLB4+fIl3bt3p2LFisyaNYvk5GQuXbpEYGAgzs7OOqMsffHiBfb29vj7+4v18NSpU4SHh+Pj4yOc50A3xon2mn3o0CF27dol6oQnJSUxbdo0HB0d6dixIz9+/CApKYmmTZsyY8aMLP+N7EK777Zv387s2bM5d+4cSUlJpKamUrduXaFM15BxjOSk9V7uaPmfoW0Y1XZW+Pr1K0FBQTRq1EhWeTN+d+PGjVm2bBmgNpzr6+sLw7nGmLtnzx4mTpwoa5T/z7ITzJ07FwMDA4kTyOTJk2nZsiVeXl40b95crPW6YHDUlmHOnDnY29vj4eEhMiXpgoyQtRxJSUnExcVhaGhI/fr1JdcuXryIqakpFy5cyC4R/3VkfDffvXuHs7Mzb968Yd++fejp6YksVl++fGHRokX8/vvvcoiqoKCgkGNRjKIKCgoKCv8oHz9+pG3bthQuXJiePXtK6r6kp6fz6dMn9u7dy5kzZ8Shq0+fPlSuXJlXr15lu7xXrlwhPDycsmXL8uDBA0B9uDMzM8PJyYlr167x48cPnj59SmBgoE6ljlLIXjTjNSEhAUdHR1QqFVOmTBHXtQ+0uqCkW7BgAVWqVKFv37707t1bKL5Arfzy8fEhLCyMc+fOZfl5XVGq51SOHTtGSEgI+fPnZ8mSJaJdM38kJCSQJ08eevXqJZeIOZqMSrvBgwezbds2AJ4/f07nzp3x8PAQhtGEhAT69u1L06ZNlRSu/0cmTJiAoaEhhw4d4uPHj7Rs2ZIiRYoIx6b3798THR2NSqX66fyi8NfJysEC4MaNG/To0YOSJUtSvHhxHBwc8Pf315loLlBHdK1YsQIXFxfq168v3tsTJ04QHh5OjRo1JHUYdYWYmBiKFi1K2bJlyZ8/vyih8PHjR+bOnUv58uUpXrw49vb22NrairlE7rV/wIABFC1aFBsbGwoUKEBMTAyJiYmZajD+W9AVI5I29+/fJyIigipVqtC8eXMmT55M7dq1cXFxkXWcaPeVJoNJ2bJl2bhxI4cPH5YYXVJSUhg8eHCmtMpyzCkZa5/+9ttvfPv2DVAbjmbPnp3JMPrjxw9RJgKyf62fNGmSZK7WJqNh1NvbmzZt2vD8+XNA/jlEW75r165x/vx5kc48PT1dGEbr1KnDkSNHOHbsGEFBQbi5uenEmpMT0X7mmprDAB4eHvj5+VG0aFEWL14s2h8+fIivr68k24KCgoKCwp+jGEUVFBQUFP6f8TNlxKdPn2jbti3Ozs7MnDnzpxE5x48fp0uXLujr63Pp0qV/WlyBttzr1q1j6NChqFQqrK2tRcToiRMnKFOmDE5OTpQtWxYvLy+dSh2lIA+asXP37l3s7e2pX7++SKUL8iszQDq+586di4uLCwYGBsyaNUty35YtW/D19aVRo0aSaFeFv8/P5sILFy7QoEED3Nzc2LhxY6b7Hz58qMwl/wXa79nOnTvZt28fTZo0kWQnePr0KZ07d8bT01NEcb179058Vun3v48mpVtgYKBI6bZv3z4KFy7MokWLAHV0UXp6OklJSZLoIoW/Tsb55ODBg1k6WIB6v/X06VN27drF1atXxWfl6ves1sBv376xdu1aHB0dJYbRkydP8v+1d+dxOWb//8Bfd4tSxGQpIilrlqxZslWGZIls2U12kSwjkSVkLczIkn1fU7Lv22Qbkm2YsWQZlJ0iSvX6/dGv63PfMvPFzLiL9/Px+Dw+uq7rvud0da7lnPc579OkSRM2b96ciYmJX7qoGtTLHR0dzcqVK/PkyZO8efMmp0yZQpVKxaCgIJIZAaObN29yxowZXLhwYbbJrHD69Gk6OTnxxIkTJDNS6JcuXZqDBw/WmFGUHd5Tvnb379/nnDlzWLduXbZq1YqDBg3S6mAc9b/5qFGj2LhxYz5//px+fn50cXGhkZGRcg8nM2aiu7i4KEHS7MDX15empqYsXrw4y5Qpw0uXLpEkX7x4wZCQEBYoUIA//vhjls996fp+69YtqlQqtm/fnrdv3/7gMer3+JCQEDZo0ICtWrXSemrl9+tJiRIlWLRoURoZGXHEiBHKfWTz5s20sLCgSqXigAED6O3traTS1fZ9MKd5P0g+dOhQJaC+bds2lixZks7OzsoxmSnyHR0d5VwLIcQnkqCoEEKIf8X7gcUJEyZw5syZPHLkCMmMjrru3buzdu3anDt37gcDo0eOHGGfPn20tubi8OHDaWVlxcmTJ/OHH35gmTJlWKJECf7+++8kM1KlRkREMCgoiDt27FAaH9LJ+21IS0v74DpE6jNGK1SoQFdX1y++Hu5fyby+1Ovo0qVLWaJECbq4uPDKlSsax2/dupUVKlTg6NGjv2g5vybqdSMmJobHjh3T6IA+fvy4kioyPDz8g5+Tjo2Pp/4MGTp0KPPly8cCBQpQT0+PAwYM0Dj23r17HDRoEEuWLKkxG02CAh/v/QBdSkoK69atyzNnznDbtm0as4uSk5O5aNGiLLOL5Jn5eTZu3JhlLc73B1h86Nxqe/bc8ePH2a9fP41tb9++5YYNG1iuXDm6u7srZTx16pQyCyk7mDlzJkeNGsVhw4ZpbA8KCqJKpeKsWbM+OOtS2/fwhQsX8ocffmCPHj007m+LFi1i2bJlOWTIEGXQn9AebdQT9f/mqVOnWLduXZ4+fZpkxuA4S0tLNmnShLGxsST/t1RI3bp1tVqv1evx8ePHaWtrywMHDvDw4cNs2bIlCxYsqLx7v3jxgvPmzaNKpeK8efO0VWTlvhYTE8O8efOyXbt2HxUYnTZtGvv376/1e3emzOUI9u/fz+vXr3PJkiW0tbWlp6cn79y5w5SUFG7YsIEVKlSgm5ub8rmkpCTtFToHUv97//7773Rzc2OhQoU4ZswYPnz4kElJSZw6dSoLFSpEBwcHuru7s169ehpLQGj72SOEEDmJBEWFEEL8q0aMGEFzc3M2bNiQ9vb2GqPpX758yW7dutHBwYFTp079YOedenqjL+m3335jiRIluHv3bmXb0aNH6ezsTCsrK2WU5vud59L4+HplNk7V62RmgPyvjr169Srt7Ozo4OCgzM7QFvXG9evXr/nixQvl52XLltHOzo4DBgzI8jsdO3ZM6vVnUr+n+fn50dbWlvnz56eTkxOHDh2q3D+ioqLYrl07Ojo6cu3atdoq7lflwYMHdHR05Llz53jx4kX6+/uzdOnSWQL8d+7cYVBQkNTxz6B+Tzlw4ABjY2P55s0bNmjQgI0bN6apqanGutuxsbFs0qSJ1PF/gfq6w+ozKz80wCI7BflTU1MZHBzMkiVLctCgQRr73r17R19fX6pUKn7//ffZJgCgLjPtc9OmTbMEP4ODg6mvr89JkyYp6Tu14UOp+keMGEGVSsWKFSvy3r17GscvXryYtra27NGjB+/evftFy/ote/+6/NLX6fuD9RYuXMju3bvTw8ND43kYGhrKsmXLskKFCqxduzbt7e1ZvXp1rQZd3r83xMTEcOrUqcrPycnJbNu2LQsWLMioqCiSGZkgtmzZovVnfeZ/PyYmhsbGxh8dGM2sH9q+L6amptLd3V0jHTFJhoWFsWjRokrmjYSEBG7cuJGWlpbs1KmTNor61fDx8WHlypXZo0cPNmjQgDo6OvT19eXTp0+ZnJzMEydOsHv37hwyZAhnzpwpS0AIIcRnkqCoEEKIf83OnTtZqFAhZR2xly9f8qeffqKurq7SUZqQkMCWLVuyb9++Wuu4c3Bw4Jo1azS2nTlzhgYGBhrrnaWlpXHXrl00MTFhhQoVNGZ7iW/DzZs32a9fP967d4+bN2+mSqXi5cuXP3hsZsfF5cuXWadOHa12Nqp3osyYMYONGzdmtWrV2KZNG6UzZtGiRaxateoHA6OkBPw/xbx58zQ6xQMDA2lmZsZDhw7x5cuX7N27N/PmzcuePXtqBDScnJw4cOBAbRX7qzFnzhw6ODiwS5cuyiCG+Ph4Tpo0ieXLl+eYMWM++Dmp4x9P/Z4yatQojRk4J0+eZIECBZSUbikpKXzx4gVdXV3ZsGFDOc+f4f33ozdv3nDdunWsVq1alrU4s/sAiydPnvCnn35ixYoV2b9/f41969atY61atdi0aVPeuXNHSyXM8KHgYnp6OseNG0c9PT2uW7cuy2cCAgJYr149rQai4+PjeffuXV64cEFZh5DMmOVaqFAhBgQEMC4uTuMzs2fPZqdOnbQecBFfxuDBgzlgwACNv3dm4NzGxiZLkO6XX37hsmXL6O/vz7Vr12o1M476tTVlyhR27NiRJUuWZMeOHfnq1StlX3JyMtu1a0czMzMePHhQ4zu0HSxSD4waGRn9bWD0Q/ehLyk6Oprr169nWFiYUkZnZ2cOHjyYJDUGh4wYMYKlS5dW3ruSkpK4efNm5smThz179vziZf8a7Ny5k9999x2jo6OV63XGjBnMly8fR44cqXGPVyfvWUII8ekkKCqEEOJfs2TJEtasWZPp6ekaDblJkyaxcOHCSlAxKSlJedH/0g2+5ORkrly5Msuo/hcvXrBWrVqcOHGixr63b9+ydu3azJcvH9u0afNFyyq07+jRo/zuu+/YqFEjGhgYcOXKlST/ut5mNkozR9Rr25gxY2hmZsb58+fz5MmTzJs3Lxs1asRnz56RzJgRUKNGDXp4eGi9QzqnatiwocYsoqtXr7JmzZrcu3cvSXLfvn00Njamh4cHS5UqxT59+ij1R33NP/F53r59y59//pnFihWjnZ2dxr74+HhOnjyZFStWzDJLTXw89c62IUOG0NTUlN9//70ycyQ9PZ2rV6+mrq4u69evr/zPzs5OUrr9i/5uLc7sMsAi89527do1njt3TulUf/HiBWfPns3KlStrpNIdO3Ys/fz8tL6GqPp9OCUlJUt5fHx8aGBgwE2bNmX5rHoA9Utbu3Yt69evzyJFilClUtHa2lojbfj48eNZvHhxBgYGZgmMZpeZaOK/d+XKFeVerD4ILigoiKamphwzZsxfBlsyaXuG6E8//UQTExMOHDiQDRo0oKGhITdt2qTRZktJSaGjoyNdXV2/eFnV/d01FR0d/X8GRrVl6dKlLF68OIsXL848efKwbt26vH//PmfPns08efIoqc0z68KsWbPo5OSkUTdev37NiIgISc/9mSIiImhjY8N79+5p1KPAwEDq6Ohw7NixvHXrlrI9O2WGEEKInEaCokIIIf41mzZtopGRkbIOTebL/IkTJ2hmZsbo6GiN47XdETNp0iROmTJFKYuXlxft7e25evVqpZHx9OlTtmnThrt379Z6ecWXlVkHpk2bRpVKxTp16vD69etZ9v/dZ7Xp+vXrrFy5shKcO3DgAPPkycPQ0FCN42bMmMEffvhB6vdnOHjwIIsVK6Z0UGSm2V62bBkfPXrEY8eO0dzcnIsXLyZJtm7dmvr6+mzVqpVGHZFz//E+dK6ePXvGxYsX09DQMEtg6OHDhxw5ciQ7d+6cLa7LnOT92TVeXl40NTXl5cuXOWHCBDZq1Ehj/+XLlzl69Gj6+vpy4cKFktLtH1q8eDG7du2qsS0zMFq6dGm2a9dOuR6y0wCLLVu20NTUlNbW1jQ2Nuby5ctJZmQKmTt3LkuVKsWiRYuySZMmNDY2zrK29Zemft6CgoLo6urKKlWq0N/fn8+fP1f2DRkyhIaGhhpruGbSxr1l2bJlNDQ05Lx583jw4EEeO3aMPXv2pIGBAZs2baocN3bsWFpaWnLq1Km8f/++xnfIPfHr99NPP3HChAkkydWrV7NOnToadXjChAksVqzYBwPn2cWlS5fYr18/7t+/X9nWqVMn5s+fn+Hh4RqzF9+9e6fVe6H6f3vFihWcMGECBw8ezOvXryszWzMDo+3b939HZgAAV+pJREFUt882gdHQ0FAaGBhw1apV/PPPP7lo0SKWKVOGXbp04b179+jk5EQrKyv+/vvvTEhI4Js3b+js7MyOHTtqu+hflYiICObNm1dpb2auyxofH88CBQqwePHinDp1KpOTk+X+LYQQ/5AERYUQQnyyvxotfOPGDdavX599+vThzZs3le03b95kuXLllHVetOX9RvKECROoUqk4e/Zskhmdje7u7qxWrRrbt2/P4OBg1qtXjw4ODspns0uno/jvZXbk//TTTxw3bhytra3ZpUsXnjt3TjkmOwe2zp49SxsbG5Lk9u3bmSdPHi5YsIBkRmrrZcuWKcfKjJHPc+jQIVpbW3PPnj3s06cPW7VqpTFrYdCgQRwwYIDSYTd69Gg6OTlx0KBBcq4/g/o5O336NHfu3MmLFy8qs7pCQ0NZoEABJc1bpmfPnml1NldO1LhxYx44cED5OTw8nMWLF1cGN4WGhipB0b+bQSQzRD/P27dvGRgYyPLly9PLy0tjX3p6Ovv27UuVSsUGDRpki+dQZhnu3r3LsmXLMjQ0lKdPn+b48eM11pZ/+/YtL168SB8fH44ZM0brAVF1fn5+LFKkCCdOnMg1a9ZQX1+fffv21ZjxNHToUKpUKh46dEiLJSXPnTtHGxsbbty4UWP7kydPOH/+fBoZGdHDw0PZPnHiROrr6yvZLsS3YdGiRVSpVNy8eTPJjKVCGjRoQFdXV27ZskU5bty4cX8ZONe2bdu2MX/+/CxatCj37dunsa9Tp0787rvvuHXr1iwZgLT9juXr68vChQvTw8OD1atXZ/ny5blq1SploEV0dDRNTEzo5OSk9WD07t27qVKpuGjRIo3t3bt3Z+XKlZmSksLffvuNLVq0oJGREStVqsRKlSqxYsWKygxkebf6NH9XP52cnFimTBmNjAW3b9/mwIEDOXr0aBoaGvLixYtfophCCPFVk6CoEEKIjxYcHKw0Ov+qo3PevHl0cHBgmzZtuGfPHh4/fpwuLi6sXbt2thm5+8cffygjL4ODg6lSqThz5kySGR12wcHBdHNzY506ddi+fXulwaftBrb4MjIb9pmN0cy6vm/fPlpZWbFz5848f/68cvyJEye+fCHf837qPzIjXWGNGjU4bNgw5s2bV2OG6Pnz51m3bl2NgQrSofF5unTpQjMzMxoaGvLkyZMa+1q1akUXFxeSGX+jdu3aafwd5J7y8dTr56hRo2htbc3y5cuzfPnybNOmDS9evMg3b95w0aJFLFy4MIcMGfK33yH+3qhRozQ6me/evavRWb59+3ba2NhodNotWbJEmTUt5/rTfOhe8OTJE86ZM+eDa3H+9NNPbNGiBb28vLLNfeTAgQOcP39+llTVQUFBVKlUDA4O1kgtnx3KnVlPIyMjWbp0aeV5HhUVRX19ferr69PNzU0jS8ScOXO0Pvs5MjKSdnZ2jIuLU95RMn+X58+f09/fn/ny5dNYW3HZsmUySOEbsnDhQurp6TE8PFxj+/Xr1+nk5EQXFxeNwOiECROyReD8Q8+OQYMG0cDAIMvsbTLjHUylUvHYsWNfqIT/twULFtDS0pIxMTEkySNHjlClUrFcuXJctmwZX758SZI8deoUnZyctH4vnDt3LitVqsT+/fvz7t27ynY/Pz9Wq1ZN4zm/fv16zp8/n4sXL9bqWrM5mfrfe9u2bVywYAHXrl2rpCe+fPkyq1evTktLS27evJnh4eFs2rQpW7ZsSZIsVqwYJ0+erJWyCyHE10SCokIIIT7KgQMHaGlpSQ8PD2XWk3rninojdvny5WzdujVVKhXt7OzYsGFDrQYW1f+b/v7+bNasGTdt2sS0tDQmJSUpHXaZMxkyJSQkKP+WBt+3IbMe7969m23atKGjoyObNm3Kq1evksyYGViyZEl27dqVO3bs4MSJE6lSqfjw4UOtBQHU6/fSpUu5du1axsfH882bN+zfvz9NTEw01hh78+YNW7RowVatWmm9IyYny7z/jRw5kiqVipaWltyzZ48y4CI1NZUhISGsWrUqHR0dWbduXdra2mbpwBafJiQkhObm5koH6PDhw5k3b14lrV5CQgIXL16skQVAfDz1LA8kOX36dK5du1Z5BmbW2z179rBQoULKPcTJyYm2trZyT/kM6ufs0KFD3Llzp/LMefnypbIWZ9++fZmamsqXL1/Sw8ODP/300we/Q1u8vb2pUqlYpUoVvnjxQmNfUFAQDQwMGBgYyDdv3miphP9z4cIFPnnyhGTG+92OHTs4b948kuSuXbuYP39+rl27lmfPnqWBgQF79eqVZVarNt8LJ0yYQDMzM+Xn958nf/zxB/X09Lh69eosn5XA6NcvIiKCKpWK27Zt09ju6+vL2NhYXrx4UQmMqgdNlyxZkm3qx4YNGzTS/Pbr14/W1tZcuHBhlvvL+PHjtXo9qt9/U1NTGRgYyPnz55PMSCeeL18+Llq0iG3atKGZmRmXLVum3H8+9B3akDmouVu3biQzlofQ09Pjjh07SP71O2t2qS85hfp59PX1pZmZGR0dHWlubk53d3dlNvTdu3fZsWNHFitWjDY2NmzYsCHfvn3L1NRUVqpUiWvXrtXWryCEEF8NCYoKIYT4KK9fv+aSJUtYo0YNtmvX7oOB0fcbdL///jtv376tbP/SDdb3G3D+/v4sUKAAd+/ezUePHinb3759y6CgIOrq6nLOnDn/5/eIr1tkZCRz587NgIAAbtiwgY6OjsyTJ48yU+TIkSOsUqUKK1euTCsrK549e1ZrZVWvmyNHjmThwoW5YsUKxsfHk8yYEerk5MTq1atzyJAhDAwMpKOjo0bKK213xOR027Zt49WrV+nu7k5ra2tGREQonf4PHz5kSEgIe/TowYEDByr3QOlE+nRpaWlMS0tj165dGRAQQJLcunUrTUxMuHDhQpIZay8lJiby1atXjIyMlPP8ifr27Us3NzeNtGwtW7Zk7ty5s6zbdunSJZYsWZIPHjxgs2bNWL58eUmj9w/5+vrSxMSEVlZWNDAwUFIZJiQkcP78+bSxseF3333HihUr0tbWNkugWtvS09MZEBBAHR0drlmzJsv+yZMn09TUlE+fPtVC6f4nIiKCuXPnppeXl/Iu+PTpU969e5fPnj1j3bp1OXXqVJLko0ePaGNjQ5VKRV9fX20WW8PGjRtpZGSkrBn+vnfv3rFYsWJKynzx7Xj79i379+9PGxsbjYETbm5urFy5sjLj//z583R2dmbz5s2zBFi0/ey8e/cua9Wqxe+//14JypFkr169WKpUKS5cuFCZbalOG4HRzIFwJLlz506SGc/H+Ph4Xrt2jba2tsoArcuXL9PQ0JBFixbl9u3bSWr//q3eBpg7dy7r16/Phg0bMnfu3Mp9XNoJ/75Zs2axePHiPH36NMmMc6+rq8vGjRsr9YjMGKj26NEjpZ6MGTOGJUuWVLJyCCGE+HwSFBVCCPF/Uk93tmjRItaoUYM9e/ZUtv/VjFF12m5QXblyhZUqVeKuXbs0tmeWNzMwqlKpuGnTJm0UUWjB+/U1MTGRzs7OnDZtGknyzz//ZMmSJdm3b1+N42/evMkLFy7wwYMHX7bAf+Hnn3+mubm5xnqnmdflrVu3GBAQwAoVKtDNzY1eXl5Kx5HMgP5n0tPTNe5trq6utLa2Znh4OF+/fq0co07O+afJPH+ZgWZ3d3fu3r2bR44cYZ48eZSAaEpKChcuXMiIiAiNz8v5/njh4eG0srLiDz/8oKT9I8lu3brRxMSEYWFhSmD0wYMHNDMzo7m5OUuVKqW8D8j5/njq94bo6GhWrlyZJ0+e5M2bNzllyhSNDBYpKSm8efMmZ8yYwYULF2p9gIX6Gr3vv9/5+PjQwMDgg+9S2g6Ivn37lr169aJKpWKzZs3o7e2tDCIiydjYWJYvX5579uwhmZHCeNiwYTx37ly2qts3b95kvnz52LZtW965c0fZnlkfbt68ySpVqmikzxXfjgcPHnDIkCGsXbs258yZw3bt2rFKlSq8ceMGyf9dv+fPn2flypU5bNgwbRb3g23HI0eOsFmzZmzWrJkSQCTJ3r17s2zZsgwODuarV6++ZDGz2LZtG52cnEhm3PesrKz4+PFjZf/27dtpZ2enDKo8fPgw+/Xrx7Fjx2o98KxO/R4+b948VqxYkbVq1VJ+F2234b8G6ufwxYsX9PLyUgatbNmyhfnz5+eoUaNYsWJF1q5dm5GRkRqfv3DhAvv168cCBQpotPWEEEJ8PgmKCiGE+FvqDdW5c+eyW7duLFGiBFUqFbt27frBGaPaNmjQII1RliR58eJFmpmZZVnzjySTk5OVkb7qaQLF1yuzXmd2qGQ2Vh8/fsySJUvy2rVrfPz4MS0sLJSAKEmuXLnyg6PTta1Xr17KOm43b97k+vXr6eDgwNatWytpRd+v19npms2J0tPTNYLkmVq2bMlSpUoxIiJCYwZB5mfExzly5Ijy78DAQC5ZsoQk6eXlxXz58tHY2FgjNeSTJ0/o6OiYJQ26+L9t2LBBWT907969tLS0ZM+ePRkdHa0c07lzZyUwmpSUxMePH7N8+fJs0KCBBET/oZkzZ3LUqFFZAhOZA7VmzZqlMUs3k7YDovv376enpydbtGjBqVOnKgNBSHLIkCE0MDDQSH+ZXZw6dYoFCxZkixYt6OzsTB8fH6Xz//bt2zQxMeHAgQMZERFBFxcX1q1bV/mds1MdX7duHQ0MDNi5c2eNa/X169ds3rw5GzRoIMGMb1hcXBwHDRrEkiVL0tTUlPfu3SPJLCn8r1+/nm3qyfsDDY8ePcomTZqwWbNmGu06d3d3dujQQevvVFeuXGGBAgVYtmxZmpiYKFkWMs/nihUraGFhwb179/LWrVts2bIlhw4dqnz+S9/DZ86cqQTG3/d+YNTBwYE9evRQ/ibaPtdfi61bt/L+/fuMjo7mo0ePeOnSJVpbWyuZqtatW8c8efKwVq1aGu/BsbGxXLlyJa9du6atogshxFdHgqJCCCE+SmBgIE1MTBgeHs4jR45wyJAhrFixIjt27JitAqNxcXEcPHiwxuxWkjx+/Djz5s3Lw4cPk6RGB+Phw4e5fPlyjc6u7NTxJf4bDx8+ZMGCBblx40aS/2vwt2rVigEBAbS0tGT//v2VuvTo0SO2adOGGzZs0FqZyawdEykpKezevTu///57Tpo0iY6OjmzZsiW7dOnCDh060MHBgU+ePNHo8JDOjX8u8xyGh4fT3Nycly9fVva1bt2axsbGPHr0qLaKl6Pdu3ePJUqUYOPGjTl06FAaGBgonY1Pnjxhs2bNWKRIESYkJDAhIYHx8fF0cXFh7dq1s8VzKCcJDAxkly5dNJ55O3fu/MvAaL58+bhlyxaS5Llz55TzLc/Mz9evXz+qVCo2bdo0S/AzODiY+vr6nDRpkhK4zg4iIiKYL18+du/enZMnT6ahoSH79eun0WE7bNgwqlQqbt26VYsl/Z+0tDSmpqYyPT2dw4YNY2BgICdNmsRq1arRx8dHmTG6bds25suXj7a2tqxXr162TQv97t07Ll68mLly5aKFhQVdXV3ZuXNn1qtXj3Z2dh/M5iK+LfHx8fT29mb16tU5c+ZMZfuHgqDarifLli1jy5YtlXSimQ4fPswqVaqwUaNGGumiM38HbV+XnTp1okqlYr169T44eKVevXosWLAgixUrxqpVq2Zpn34pt27dokqlYvv27Xn79u0PHqNeL0JCQtigQQO2atUqy/qn4uOpn9Px48fTyMiIsbGxyvN83rx5rF+/vjLgdsWKFXR1deWwYcOyXKfZZfCCEEJ8LSQoKoQQ4v/08uVLNm7cmDNmzFC2JSUlMSQkREm1lx3WJ3y/Ybxy5UpldhFJtm3blubm5hqpxt68ecOmTZtyyJAhX6qYIpt4/PgxPT09mStXLqXTNiUlhUOHDqWJiQldXFw0jh81ahQrVKjAu3fvaqO4WcycOVNJ8Xf69Gm6urqyXLlynD59uhLIWLBgAZs0aaK1Tpivwd/d08LDw2lsbKykcFUPDI0cOVLrnYw51bt373j06FHmzZuXxsbGSkA0JSWFaWlpPHz4MKtVq0ZTU1Pa2tqyZs2arFmzpgQBPsObN2+Uenvy5ElldvNfBUa7detGlUqlDDAi5Xx/CvX3FPUUtOPGjaOenh7XrVuX5TMBAQGsV6+eVjr/P1Teixcv0traWkn9l5SUxAIFClBHR4dubm5KqkiS9PPz49WrV79sod9z5coVZZZcplmzZrF69epMTk7mrFmzWLNmTY3A6IMHD3j37l3l/p+dg/4xMTEcOHAgHR0d2aNHD06bNk1S5AtF5ozRWrVqKUtDkNoPJr5v7dq1rFq1Krt3785ff/1VY9+iRYuYN29e1qpVi8eOHVO2a6PN+f5527p1Kzdv3kwLCws2bdpUmXWu/t594MABbtu2TWuDiDLPU0xMDPPmzct27dp9VGB02rRp7N+/vwTj/gW3bt3ipEmTlGV8MuvRzJkzWa1aNZ4+fZrJycls1aqVxlrAcu6FEOK/I0FRIYQQH6V+/frs1auXxrb09HS2bNmSOjo6dHFx0XrgRb1j9s2bN2zYsCHr1avHNWvWkCSvXbtGR0dH5s2bl9OmTWNAQAAbN27MihUrSsfRN+BDHUAPHz6kt7c3VSoVw8PDSZLPnj1j06ZNWa1aNXp7ezMkJIQ//PAD8+XLp7HOnja9e/eO7u7uzJUrFw8cOECSTEhI4LNnz5RjUlNT6erqyk6dOmW7zq+cQv28bdu2jSEhIfz111/58uVLvnv3ji4uLgwNDdX4jKQp/nzqnT8nT55kkSJFWKxYMTZr1izLscnJyVy6dClDQ0MZHh4uMxY/g/qsll27dtHGxoZBQUHK+q1/FRidMGGCnOfPoF6/U1JSmJiYqLH/79biVA+gfinqaeWfP39OMuN+dujQIY4fP55kxrrbVlZWHDp0KE+fPk1DQ0P26tWLV65c+WLl/DthYWHU19enlZUV161bxzNnzij7HB0dlSDRxIkTWatWLQ4bNixLCs+c2iktzx6RKTOLTt26dTlmzBitliUtLe0vr6lNmzaxZs2a7NKli8aM0fXr17NZs2YcPXq0Vq9H9WsqOTlZo9174cIFmpubs2nTphrv4uvXr//L7/iSMv+7MTExNDY2/ujAaOYzJ6feB7ODHTt2UKVS0czMTGNAGZkxqLV8+fIsU6YMraysWLFixWybnUAIIb42EhQVQgih4UONnnfv3nHkyJGsX78+Y2JiNI4JCAigk5MThwwZotUGk/rMhJ9//pmXLl3inTt36ObmxoYNGyopTxMTEzlixAja29uzYcOG9PT0lPXQvgGZdfPVq1dZ1gR98OABBw0aRJVKpax/9uTJE44YMYINGzZkjRo12LlzZ166dOmLlzvTh66tV69e0dPTk8bGxjx48KCy/cWLFwwLC6Orq6s0rv8lI0eOpImJCcuWLUtDQ0P6+vryyZMnH0yVJj6Peh2/evUqHzx4wCdPnvDgwYMsU6YMmzRp8refISUI8LkuXbrElJQU9ujRgw4ODpw1a5bGjNESJUrQ09OTp06d0vicPDM/nnpdDQoKoqurK6tUqUJ/f38l4EhmrMVpaGj4wbU4tXEPv379OkuWLMl+/frx0aNHJMmnT5/y4sWLTE1Npbu7O3v06ME3b94wLS2NNWrUoEqlYpcuXbQ+UC45OZkDBgyghYUFbWxs2KBBA7Zo0YLdunXjnTt3GBgYyH79+inHT548mdbW1hqzdHIKeb6L/0tcXBy7devGPn36ZJv6snbtWoaEhGhk9dmwYQNr1qzJTp06MTIyki9evKCbmxtnz56t1QBdQkKC8u+goCB6eHiwWrVqnDlzpjKz9dKlSyxatCgdHR25Z88euri4sEaNGtkmoKgeGDUyMvrbwOiHsgSIzxMfH08fHx/q6Ohw+fLlJKmkcifJM2fOcPny5Zw3b57M8hdCiC9IgqJCCCEU6o22qKgo7ty5k7/88gvJjBd6a2trtmjRglFRUXz37h1fv35Nd3d3rTdUL1++TJVKxTVr1vDHH3+kqakpf//9d5Lk7du32aJFCzZs2JBr165VPvP8+XONRp40Pr5+165dY5UqVVivXj2uXLlSY22it2/f0svLiyqVSpml8+7dO6alpfHt27fZpn5kdp5n1t1Xr16xZ8+ezJMnjzL6ODY2lh06dGDnzp2lcf0vOH36NJ2cnHjixAmS5MKFC1m6dGkOHjyYf/zxh3KcdBp9PvXnhr+/P+vUqaPMgH779i23b9/OMmXKaKS07t+/v5IFQM79p9m8eTN9fHxIZsxOrFu3Lkny9evX/OGHH1irVi2NwOiuXbtoYGDAyZMna63MXws/Pz8WKVKEEydO5Jo1a6ivr8++fftqrMU5dOhQqlQqHjp0SIslzbgux40bR5VKRWdnZ3p7eyvpZcmMQWa1a9fm0qVLleN9fHy4Z88e5R1M2+Li4ujt7c3WrVtzwIABPHPmDBs0aEB3d3dWqVKFKpVKWSOXJJcvXy6DK8RX6+nTp1pbi7Nv375s3Lix8rOPjw8LFCjAihUrskSJEnR2dlb2hYWFsXnz5sybNy9tbGxYuXJl5T1WG8/7VatWMSAggCTp6+tLU1NTTpgwgd26daO9vT3r1aunDE68ceMGS5cuzcqVK9PBwUGrAxP/rk0eHR39fwZGxaf7q3OemJjIXr160cDAQHm/VQ+MqpNnkBBCfBkSFBVCCJHFqFGjWKJECdaoUYNmZmZs06YNb9y4wdjYWNra2rJatWosX748q1SpwnLlymm1oUpmpMqdNWsW9fX1mS9fPqVxl9kQvXXrFlu0aEFHR0euXr06y+elQ/3rl5aWxtGjR1OlUjF37tysWLEira2tWaNGDQ4cOJBnz57l2bNnlQ7gzLU6s1PdWL9+PfX19ZXO88yyJSYmskOHDixQoIAyiOHhw4fKfmlcf76FCxfyhx9+YI8ePTTqwqJFi1i2bFkOGTJEI5gh/pnRo0fT3NyckZGRyrpcZEZQPzO9q42NDRs1akRLS0sJ9n+G1NRUrlq1iiqVirVr12bevHmVNVtJzcDo7NmzlVS6J06ckHvJZ8q8d0RGRrJ06dLKAIuoqCjq6+tTX18/y1qcc+bMyRb1OyYmhvnz52fjxo3ZtGlT+vj4KNdmfHw8zczM6OXlxV9//ZV+fn4sXry4xszX7OD+/fv08vJi7dq1lfWfjx8/Tj8/P1paWvK3337L8hmp6+Jr9qUHsKakpHDFihW0srJix44d+fLlS7Zq1YqXLl3i06dPuX//flpbW7NWrVrKZ37//XceOXKEmzdvVq5HbVyXCxcupEql4u7du3nt2jWWLVtWY8DKoUOH6OHhwcaNGyv38JSUFP7+++9aXZNY/W+8YsUKTpgwgYMHD+b169f56tUrkv8LjLZv314Co/8C9XO+dOlSjhgxgn369OGmTZuYmprKlJQUenp60tDQUAmiZ5dZxEII8S2SoKgQQggN8+bNo7m5OU+ePEkyIz2uoaEh9+3bRzKjEywsLIxjx45lUFCQ0tDTRkNVPUixZs0aqlQqqlQqrlq1StmfWb5bt27Rzc2NFSpU0JghKL4dcXFx9PHxYcuWLTl06FDeuHFDWVe2cOHCLFeuHF1dXWlmZkaVSsWjR49qu8gabt26RWdnZ1pYWCiBuMzG9M6dO5X6r75mmjS2P96HUoWNGDGCKpWKFStW5L179zSOX7x4MW1tbdmjRw/evXv3i5b1axQdHU1ra2tlBH1iYiJjY2O5fv16njt3jmRGVgAfHx/++OOPWn325FTq94Pvv/+eKpWKPXr0ULZlDiTKDIzWrVuXEydO1EgTLef74124cIFPnjwhmdEpvmPHDs6bN49kxuzb/Pnzc+3atTx79iwNDAw+uBbnl+xMf/8emPm3Hjt2LIcPH86xY8eyevXq9PHxUWaMbtu2jfr6+rS2tqaFhYVyrWY3mWnyq1evzlmzZinbnz59SlKelUL815KSkrhp0yaWKFGCdevWZatWrfjixQuSGdffsWPHaG1tzdq1a3/w89p49qxatYr6+vrcuXMnSfLcuXPMnz8/jx07pnHc7t27aWVl9cF2g7bvLb6+vixcuDA9PDxYvXp1li9fnqtWrVIGr0RHR9PExIROTk6Mi4vTalm/Fj/++CMLFy5MX19fdurUidbW1vTy8iKZsTxL7969aWxszF27dmm5pEII8W2ToKgQQggNvXv3pr+/P8mMFHv58uXj/PnzSWak6sycNaJOGw1V9UZmXFwcX7x4wdu3bzMoKIgqlYqhoaFZynb//n36+vpKp+43LHPGSM2aNZV6TZKnTp1ieHg4XVxcWKlSJapUqg/OHvlS/qoT5cGDB2zcuDHNzc01ZiiePHmSPj4+GgMVxKeJj4/n3bt3eeHCBT548EDZPnPmTBYqVIgBAQFZOoxmz57NTp06ab3TKyd6fxb2+fPnWa5cOZ47d47Hjx+nt7c3y5cvzyJFirBatWpKsFSd1PXPs3TpUrZo0YKTJ0+mgYEBhw8frux7+/YtyYzAaLt27ejp6ZmtZsznFBEREcydOze9vLw01uK8e/cunz17xrp163Lq1KkkyUePHtHGxoYqlYq+vr5aKW/mPezp06d8+PAhyf9do0uWLGGtWrWYmJjIOXPmsEaNGhqB0djYWJ4/fz7bd6jHxcVx0KBBtLe355QpU5Tt8k4oxJeRlJTEjRs3slKlSrS0tNTYl5aWxl9++YWlS5dmqVKltFTC/1m+fDlVKhW///57ZdulS5dYpkwZJeuQ+rOxTJkynDRp0hcv599ZsGABLS0tGRMTQ5I8cuQIVSoVy5Urx2XLlvHly5ckM9pATk5O8i77L9i3bx+tra15+vRpkuSWLVtoaGjIlStXKse8evWK7u7ubNSokbaKKYQQghIUFUII8f+lpqYyLS2NLi4uDAsL46+//so8efJwwYIFJDM6n2fPns3IyEitd5CqN9oCAgLYrVs3ZWZrYmIiJ0+eTJVKpaxzRWaMlL106ZLys3SCfbsyZ4zUrFmTgYGBGvtSUlL49u1bpVNYG9Tr95YtWzhr1iwuWLBA6dR4/PgxGzduTDMzM27fvp1nz55l69at2atXL+VzEiz6NGvXrmX9+vVZpEgRqlQqWltbc8CAAcr+8ePHs3jx4gwMDMzS8a/N9ZS/BsuWLePGjRuZkJDAYsWK0c7Ojrly5eKAAQMYERHBK1euaHRCik+nXjeDg4NpZmamDPpYtWoVDQwMOGzYMI3PxMTEMC0tTWvrz+Vkb9++Za9evahSqdisWbMsa3HGxsayfPnySpr2J0+ecNiwYTx37pxW793Xrl2jjY0NK1SowMjISI11QR0dHTly5EiS5KRJk2hvb8/hw4drDCDJCeLi4jh48GDWrVtXGQAohPhyXr9+zY0bN7JQoUJs06aNxr60tDQeOHCA7du312o7bdGiRdTR0WHv3r1ZtGhRDh48WNnXtWtXFi5cmMePH1e2PXv2jFWqVOGKFSu0UVyF+rM+NTWVgYGBygDQLVu2MF++fFy0aBHbtGlDMzMzLlu2TMlm8KHvEP+399+NVq5cqazTvnnzZubNm1fpS0lMTOSRI0eUf8u5FkII7ZKgqBBCfKP+6kV8woQJNDExYa5cubh27Vpl+4sXL+jk5KTMbMgOMlMCbdy4UaPDMSUlhRMnTqRKpWKfPn1Yv359jbVPhcicMVKrVi2NOp2d6siIESNYsGBBOjo6smDBgqxWrZoyCj0hIYGdO3dmrly5WLJkSVarVk1JfSk+zbJly2hoaMh58+bx4MGDPHbsGHv27EkDAwM2bdpUOW7s2LG0tLTk1KlTef/+fY3vkIDR53n+/Dlr1aqlBKAfPXrEFStW8NChQxr1uVatWly+fLmWSvn1+O233zhs2DBu2rRJ2fbu3TuuWbOGhoaGHDRoEGNjY+nq6soWLVpIwP8fOHXqFAsWLMgWLVrQ2dlZYy3O27dv08TEhAMHDmRERARdXFxYt25d5Xxra/250aNH09jYmObm5qxatSrbt2/PAQMGMCEhgUuXLuUPP/ygpFKePHkyy5Qpw9GjR+e4+hEXF8du3bqxT58+cu8WQgvevHnDTZs20dLSku3bt9fYp35NaiMwOnv2bKpUKiW16cKFC1mwYEEl/SlJNm/enAUKFODQoUM5ZcoUfv/996xUqZJW2xBJSUnKvzPT/V66dInx8fG8du0abW1tOXv2bJIZSxEYGhqyaNGi3L59O0l5j/2nMp/va9euZYcOHbhjxw6NweUkuXXrVg4bNkxj4G1Oe34KIcTXRIKiQgjxDVJ/AT9+/DgPHTqkjPaPi4ujm5sbS5QowVu3bvHdu3e8f/8+XVxcaG9vn22CRrt27aKFhYUyey4tLY0PHz7k6dOnlTVqli9fzsaNG9PT01PpYJcZoiJTZmDUwcGB48aN02pZ3u+M2Lp1K4sUKcJTp06RzEjtOnr0aFavXp1BQUHKcadPn+a5c+eUep1drs+c4ty5c7SxseHGjRs1tj958oTz58+nkZERPTw8lO0TJ06kvr6+Rhos8c9s2rSJefLkUVKNZXr9+jXj4+Pp4uLCatWqyb37H0hPT+ehQ4eoUqmYJ08ebt68WWP/u3fvGBYWRmNjY5YrV45Vq1aVQRafKS0tjampqUxPT+ewYcMYGBjISZMmsVq1alnW4syXLx9tbW1Zr1495Xxrs2P6wYMHHDJkCFu3bk1PT0/u37+fNWrUYKtWrejs7EyVSsVly5Ypx8+cOZO3bt3SWnn/iadPn8osaCG0KDOVbokSJdixY0dtF0dx5MgRrl+/Xvn5xYsXDA0NzRIYHTVqFJs3b866deuye/fuWm1nbtu2jU5OTiRJHx8fWllZKUE6kty+fTvt7Ox4/fp1kuThw4fZr18/jh07Vt6t/gWzZ8+mj48PSfL69es0MjLK8rxMSkqii4sLe/bsKc8cIYTIJvQghBDim6OjowMAGDFiBDZu3IgnT56gZs2a6N69O3r37o1hw4Zh4sSJKF++PGxsbJArVy7kypULUVFR0NPTQ1paGnR1dbX6O6SmpqJYsWIoWrQorly5gg0bNmD16tXQ09ODubk5wsLC0LNnT3To0AFGRkbKZ/T05NEnMpibm2PMmDHw8/PDiRMn8PTpUxQoUEArZUlNTYW+vr5SR2/evImiRYuievXqAAAzMzMMGjQIT58+xe7du9G/f38YGxvD3t5e+Y60tDSp35/ozz//RJ48edCgQQPlvkYSBQoUQKdOnfDgwQPMnTsXhw4dgpOTE8aOHYtixYqhS5cu2i56jpOenq48e9R/btSoERwcHLB//37Y29sjNTUVurq6WLBgATZs2AADAwOcOnUKurq62eLZk1OQhEqlAgCoVCo4Ojpi0qRJGDt2LE6dOoXGjRsjf/78AAA9PT20bdsWderUwbVr19CgQQPo6OjIM/MTXL16FSYmJrCwsFC2FStWDGvXrsWJEydgbGyM9evXY9q0aRg1ahRatmyJq1evIjU1FRYWFtnifBcpUgQjR47ElClTEBMTgxs3buDMmTPYtWsXDh06hEOHDiFv3rzK8SNGjNBaWf8pU1NTAFnvS0KIf+avrin1ZxIA5M6dGy1btoSOjg66du2KsWPHYtKkSV+yqB/UsGFDAP8rb758+eDh4QEAGDNmDAAgJCQEU6dORVJSEnR0dGBoaAhAe+3MUqVK4cKFCyhXrhzi4uIQFRWFggULKn+Lp0+f4smTJ4iNjYWenh5mzZqFUqVKYeLEiQAg71b/kIGBARYsWIA+ffrA1tYW69evR5cuXRATE4PixYuDJGbOnImHDx9i+/btUKlUWa4HIYQQX56KJLVdCCGEEP89ZmQHUBqqhw8fxvDhwzF37lzkzp0bwcHBiI2NRefOnTF48GCkpKQgPDwcr169gpmZGVxdXaGrq6uVBt+HGti7d+9Gr169ULVqVZw5cwbNmzdH3bp1UbBgQfz4449YsmQJGjVqpBwvjQ/xVx4+fAggI/CoDYcOHUJgYCA2btyIggULAgCWL1+O2bNnY+fOnUqDWqVS4eTJk3BwcMCZM2eUgKn4fAEBAViwYAHi4+MBZL1PXLt2DRUqVMDy5cvRtWtXjc9KJ9LnCQkJQYkSJeDg4KAEJvz9/bFq1Sr88ccfyJ07N4CM6zIiIgJ9+vTR2rMnp1J/ZqampkKlUil1dcyYMZg2bRrmzZuH7t27K4OG3n/OSv3+eFu2bEGnTp1gYWGBKVOmoHTp0qhRowYAwMnJCU2bNoWvry8mTZqEnTt3wsHBASNGjECRIkWU78hOwbm4uDhMmTIFJ0+eRNeuXeHj4wMAiI2NhbW1tXYLJ4TIttTvY6dOnYKxsTGMjY2V+8aH2mJJSUk4deoUGjZsmK2fOQkJCdiwYQP8/f3RqVMn/PTTTxr7td3O7Ny5MzZs2AAHBwccPHgQuXLl0thfv359/P777zA0NEShQoVw+vRp6Ovra6m0OZf63znz30+fPkX37t1Ro0YNjBs3Dqmpqdi9ezeGDh2K1NRUmJubw8LCAps3b4a+vr68XwkhRDYhPQtCCPENePToEQoXLqy8xEdGRmLnzp1wdXWFg4MDAODnn3+Gn58f1q5di9TUVPj4+CgjYzNpYyaaegP7jz/+wLNnz1CuXDk0a9YMK1euxC+//IKePXvC0dERBQsWxOPHj5EnT54snYsSEBV/RVvB0EwPHjzAixcv4OnpieXLl6NAgQKws7NDbGwsQkND4e/vr4xCNzY2RqVKlZRAhvhnypcvj8TEROzbtw9NmjTJcp+wtraGubk5Xr16leWz0qHxcc6ePYu4uDg0bdoUCQkJOHHiBEaMGAEXFxdUrVoV48ePx8iRI3HixAlMnz4dEyZMQHp6OszMzNC/f38AMgv6U6g/MxcsWICoqCikpKTAxsYG06ZNQ2BgIEhi8ODBUKlU6NatG4yMjLI8M6V+f5yUlBQcPHgQhQsXhq6uLhYuXAgTExN89913mDx5Mho3boxbt24BAMaOHQsdHR0sW7YMJUqUgLe3t/I92SUgCmTMGB0zZgwCAwOxfv16JCUlYfTo0bC2tpbOXCHEX8q8j/34449Yu3Yt0tLSUKZMGXh5ecHDw+ODM+SMjIzg5OQEIHsPxjExMVF+h379+sHa2hpDhgxR9n/pdub757Fjx45wd3eHj48PWrVqhTVr1qBgwYJ49+4d9PX18csvv+DgwYNISkrS6kDnnC7znL958wa5c+dWssvY2dlh3bp1GD16NAwMDNC6dWs0bNgQz58/h4GBAYoWLQqVSiXnXAghshGZKSqEEF+5AQMGwNTUFIGBgUhLS0NCQgJatWqF6OhouLq6IiwsTDn26dOnGD16NK5cuQJnZ2dMmDBBewWHZoNvzJgxiIiIwPPnz2FhYQF7e3tMmDABhQsXBpAxG+bVq1fo0qULXr58iaNHj2bbhrUQ6tLT07FhwwaEhobCyMgIq1evRsGCBbF69Wr06NED3t7eaNq0KYoXL44RI0YgISEBUVFR2aoTPaeKjY1FtWrV0LhxY8yaNQuWlpYA/tcxFxsbi7Zt2yI4OFjptBMfb82aNQgMDETjxo3Ru3dv2NnZAQB+/fVXHDx4EHPnzkXJkiVRvXp1xMfHw9DQECtXrpTUYv8CX19frFy5EoMGDULu3Lnh7++PJk2aIDIyEkDG7NygoCBMmTIFAwcOVAZeiE8XHx+PqVOn4u7duyhSpAg8PT0xfPhwFCxYELGxsbhw4QLCwsLg7u4OAFixYgW6deuW7d9R4uPjERgYiJiYGDg7OyMgIEDbRRJCZDPp6elQqVTK8/rs2bPo1KkTVq9ejbi4OBw8eBCRkZGYNGkSevbsCUD7syr/iRcvXuDo0aNo0aKF1u7h6sHjlJQUqFQqZdbnxYsX0bRpU9jZ2WH9+vX47rvvAAAbNmzQGOycnQPQ2d2KFSsQERGBiRMnokKFCkqQs2zZsmjevDlmzZr1wc9lp4wQQgghALkjCyHEV87JyUkJbr569QrfffcdVq9eDVdXV1y+fBkrV65Uji1QoACmTJmCIkWKID4+HtoeN5PZYA4ODsaSJUsQEhKCuLg4lC9fHps2bcKNGzcAZDQIp06divbt2+PRo0c4fPiwsv6cENlZWloadHR00LlzZwwbNgzR0dHo1asXHj9+jG7dumHjxo3Ys2cPPD090b59eyQlJeHo0aPQ0dFBenq6touf41lbW2PBggXYsWMH/Pz8cO7cOQAZs+SSkpLg7e0NExMTjVTc4uOsWLEC/fv3x/DhwzFy5EglIAoA9vb28PPzwx9//AEXFxc8ffoUYWFhWLNmDdavXw9AZvd/KvXn9dmzZxEZGYmwsDD4+/ujVKlS0NPTg4uLi3LM5MmT4enpia1bt8LAwEAbRf5qmJubw9fXFxYWFoiJiUF0dDSOHj2K4cOHo1mzZihevDjKlSunHN+zZ88c8Y6Sue526dKllXW3hRBCnY6OjvK8Xr58OZYuXQoPDw/Url0bbdq0gY+PD9q3bw9/f3+lzZk58Cknyp8/P9zc3JSZll9aYmKiEswMDg5Gjx49ULt2bQQFBeHMmTOoXLky9u/fj0uXLqFt27bYu3cvmjVrhuDgYI12gwREP17mect8Zj958gQqlQp16tTBoEGDsHbtWgCAp6cnYmNjce/evQ9+jwREhRAie5GZokII8ZV6fxTuypUrsWXLFvz0008oWbIkbt26BW9vb7x+/Rq9evVCly5dlGMTEhKUFLTaHs2bmJiIzp07w9XVFQMGDMDu3bvRsWNHBAUFoW/fvkhOToaBgQF27dqFX3/9Ff7+/tDT05P0NCLbiomJgZGREcqWLasxarht27b49ddfYW5ujoIFC2LVqlUoVKgQ/vzzT7x58wavX7+GnZ0ddHR0pH7/i1JTU7FixQp4eXmhUKFCsLOzQ/78+XH37l0kJibizJkzsgbQJ7p8+TLatWuH8ePHo1OnThr7Hj9+DBMTEyUQl/mMiYyMxOLFi2FiYoLly5cjV65cEhj9SCEhIXjy5IkyAGrHjh3w9fXFb7/9hq1bt6Jbt24ICgpCv379kJiYiD179qB9+/YA/nf+tf2s/xqor8XZpUsXDB06FADw7NkzmJqa5thZItped1sIkf24ubmhUqVKmDx5Mkji/v37GDJkCA4ePIhOnTphwYIFyrE3b97EvHnzsGXLFvj6+mLgwIFaLHnOtXr1aty6dQvjxo3DqFGjsHjxYnh7e+PmzZv4448/kCtXLgQEBMDJyQk3b95Es2bNkDt3buTNmxeHDx+Gvr6+POs/0YYNG7Bv3z6MGjUKRYsWRZ48eZR9mzZtws6dO7Fjxw60atUK1tbWmDp1KkJCQuDp6anFUgshhPgYOa9VJoQQ4qO83+B59uwZHj9+jAkTJuD27dsoWbIk5syZA2NjYyxduhTr1q1TjjUxMVFmon3phtO1a9dw+vRpREdHAwDy5s2LhIQEODg4YN++fejQoQNmzpyJvn37IiUlBStXrkRUVBRcXV0xYcIE6OnpyfpzIlsiibt37yqpWn///XeNgOiNGzdw9OhR+Pr6IjExEd27d8eTJ09QvHhxlClTBlWrVlWuS6nf/x49PT307t0bp0+fhpubG968eQN9fX20aNECZ8+ehb6+PlJTUyUg+gni4uIAAHXr1lW2hYeHo2/fvqhevTrq1KmDqKgoAP8bee/m5gZPT0/s3LkTf/75p3TafaTMTtGKFSsq24oXL44SJUogJCREIyAKAOfPn8fWrVtx9epV5XjpJP13ZK7FWadOHWzYsAFTp04FAJiamipZAXIiMzMzCYgKIRRv375Fv379MG7cOAAZbc5ixYph+PDhaN68OdavX48dO3Yox9vY2MDLywuNGzfGvn37cuwsUW0KDQ1Fjx49YG9vj+vXr2Pr1q0ICwvD+PHjsWrVKkybNg3FihXD1KlTcePGDdjY2OC3337Dpk2bcOzYMeVdVp71Hy8hIQH+/v7YsWMH2rVrBx8fHyxfvlzZ36FDB8yZMwcHDhzAvXv3cObMGbx9+1ZZpkDquRBCZHMUQgjx1UlPT//g9vnz57NevXrs0qULb926RZK8efMmW7VqxYoVK3Lv3r1fsJRZrVixguXLl6eJiQmLFSvGvn37kiTbtm3LcuXKMV++fFy6dKly/L179+jo6MglS5Zoq8hCfLKVK1eyRIkSHDZsGB88eMAOHTqwYsWKvHHjBkkyLS2N69evZ4MGDWhvb8+XL19qucTfttTUVG0XIcfZsWMHbW1tGRkZyeTkZPbv35+1atViixYtOH36dLZo0YJmZmZ89OgRyYw6n6lixYrcvn27toqeoyxcuJB6enoMDw/X2P7kyRNWrlyZKpWKU6ZMUbYnJSWxWbNm9PDw+Mv3BPHPxcXFcfDgwaxbty79/f21XRwhhPjPzJkzh61atVJ+Pn36NLt06cKKFSty586dGsfeu3dPed7LM+jjrVq1ivr6+sr5PHfuHPPnz89jx45pHLd7925aWVnx6NGjWb5D/T1LfJzU1FT6+flx4cKFjI6O5syZM5k/f3527tyZkydPZkpKinLsq1eveO7cOU6fPp3v3r3TYqmFEEJ8rJw5XFUIIcRfUp/dee/ePcTHx+P58+cAgAEDBsDDwwN37tyBv78/bt++DWtra8ycORPNmjWDs7Oz1sodGhqKfv36YciQIdiyZQvc3Nywbds2/PTTT5g0aRL09PRQsmRJeHp6Ijk5GS9evECfPn2QmpqKnj17aq3cQnws/v8Rw927d0dgYCA2btwIBwcHXLhwAfv374eNjQ1SU1Oho6ODDh06oEePHqhWrZpGqibx3+IHRnXLDNFPV6dOHRQqVAg+Pj4oUqQI9u3bhyFDhmDZsmUYOXIk5syZg6SkJGW2aOYMulmzZuGPP/5A5cqVtVn8HGHr1q0YMGAAwsPD0aZNG2W7n58fXr16hcWLFyN37tw4f/48QkJCsGnTJrRs2RL37t3D6tWroVKpZF3i/4i5uTlGjx4NGxsbPHz4UGaLCCG+SqmpqciTJw9OnTqFHj16AMhYM9zLywtVqlSBr68v9uzZoxxvYWGhtUxEOdWKFSvQo0cPNGrUCK6urgAAfX19FC5cGHfu3AHwv3dXFxcX5MqVC8eOHcvyPTk1U4E26erqon79+vjxxx+hp6eHESNGIC4uDjY2Nhg7dixq1aqFGTNm4Ny5czA2NkbVqlUxcuRIZRkfIYQQ2ZusKSqEEF8R9fWqAgICsHfvXty4cQNNmjSBm5ubsobYvHnzsHHjRlhZWWHcuHEoVaqU8h3aWDdv69atcHd3R2RkJFq2bAkgI2VNw4YNYW1tjbCwMGzatAmDBg1CoUKF8N133wEA3rx5g9OnT8t6fyLb4ntpKdV/3rJlC/r374/mzZtjwoQJsLKyAvC/a1D92Jy6Fp34Nnyorj558gRnzpzBy5cv0aZNG2UNUQCIjo5Gr169sHjxYtSsWVPZfvToUXz33XcSFP0/JCcnw8fHB/v374e3tze8vb0BAK1bt8atW7ewa9cuWFhY4MiRIwgODsaFCxdgbW0NCwsLrFixQp6ZX8izZ8+QP3/+bLE+uxBC/Bdev36Nbdu2YcSIEXB0dMSaNWsAACdPnkRoaCh27dqFbdu2oXbt2louac6zePFi9O/fH56enti1axfatm2Ln3/+GQDQrVs37Nu3DxEREcpSBc+fP4eTkxN8fHyUILX457y8vABk9J8AQIUKFVCmTBmUKlUKFy9exP79+7F06VL88MMP2iymEEKITyQLUgkhxFckM2gybtw4zJ8/H0uWLIGRkRHmzJkDX19fvH79Gj179oSXlxd0dHTw888/Y+3atRg/frzSYfelO0mTk5Oxd+9eWFtbKyNegYx1TStWrIjExESoVCq0bdsW9erVw6JFi5ArVy6Ym5ujZ8+e0NXVRWpqqqyxKLKdlJQU5MqVSyOgqVKplGutbdu2SElJwY8//ggTExMMHjwYpUuXhq6ubpYgqARERXb022+/oUKFChr1OnMWSMGCBdGsWbMsn3n9+jUCAgJQtGhRVK9eXWNfw4YNv1TRczQDAwOMGzcOBgYGWL9+PUgiKioKd+7cQXh4OCwsLJCeno5GjRqhVq1aePPmDQwMDGBsbAwA8sz8QkxNTQHIoBYhxNfL2NgYbm5uSE9Px8iRI9G1a1esWbMGderUQUpKCmxsbDQGP4mPM2fOHAwbNgw7d+5Es2bNEBoaCn9/f6SnpyMkJASrV69GixYt0KpVK3Tv3h2FChXC4cOHkZaWhi5dumi7+F+VatWqYfny5Xj+/DmcnZ3x3XffYeXKlTAxMcH9+/cRFRWFtm3baruYQgghPpHMFBVCiK+A+gyEI0eOwMvLC0uWLEGdOnVw6NAhtGjRAvb29rh37x4mTJiArl27AgDCw8Ph5uam9dkicXFxmD59Ok6ePInWrVvDz88Pu3fvRvPmzbF//344Ozv/5SwLme0isiNvb29s27YNV69eRe7cubN0iqvX53Xr1sHX1xdt27ZFv379UL58eW0VW4iPNnr0aJw8eRITJkxQgpl/Nxvu5cuX+PXXXxEcHIwHDx4gOjoa+vr6EjD6B+Lj4xEYGIidO3fi5cuXuHjxIiwsLP72uSgzFoUQQnyKj3luJCUlISIiAr6+vnB2dsbKlSs19kt77dMcPXoUcXFx8PDwAJDxDrVx40aMGTMGHTt2REhICICMlPmXLl3C8+fPUapUKSxZskSyQfwH7O3tcfbsWTRo0ADh4eHKoCd1MuBMCCFyFrljCyFEDqfeoRwXFwc7Ozu0adMGNWvWxN69e9GtWzfMnTsX9erVg5ubG/z8/PDixQsMGjQI7u7uALTfUC1SpAhGjRqldO5evnwZ27dvx/Lly+Hs7PzBTnNtzWwV4mN069YNBw8ehKOjIw4fPpwlMKo+s65z585QqVTo1q0brKysJCgqcoR69erh2LFjmDt3LtLT0+Ho6KhRr9WRxOTJk3H+/HkULFgQO3bsUNZckg6kz2dubg5/f3/o6Ojg+PHjWL9+PUaMGPHB2eaZJCAqhBDiY6k/S+7fvw8LC4sPHmdkZIQ2bdoo77M2NjYYN26csl/aa5/m/cFm+fLlUwKkY8aMAQCEhIRg6tSpSEpKgo6ODgwNDQFIcO7flHn+vb29MX36dAQHB8PU1PSD77pyzoUQImeRmaJCCPGVGDVqFOLi4hAaGgqSMDAwQLt27WBra4uJEydCR0cH7u7uuHnzJuzs7JQRvNmpgzQuLg5Tp07Fpk2bULt2bWzduhWA9oO2QnyOS5cuoXv37jA0NMTBgwdhZGT0tzNG9+/fDycnJ6nrItvLvCf/8ssvGDt2LMzMzDBw4MC/nTH68uVLXLt2DdWrV4eOjo7c1/9FmTNGz5w5gzZt2sDX1xeAzAoVQgjx+dTfWQMDA3HgwAHMmTMHdnZ2f/mZV69e4cSJE3B2dpZn/H8gISEBGzZsgL+/Pzp16oSffvpJY7889/8b9+/fR82aNeHt7Y1Ro0ZpuzhCCCH+BZKrSgghcij1MS0nT57E9u3b4eXlBUNDQ+TOnRtJSUn47bffYGBgAB0dHSQkJCBXrlwYM2YMVq5cmS0bTEWKFMGYMWPQoUMHPHz4ENOnTweQMbpYxvCInCA9PV35d2xsLDp37ozTp0/Dzc0Nb968UdZbzJQ5sw4Avv/+e+jq6iItLe2Ll1uIj5Wenq50dBoYGKBs2bI4fPgwpk2bhuPHjwPQrNeZn8mXLx9q1qypXAPSWfrvMTc3x5gxY2Bvb49t27bB398fQPYa9CSEECJnyQyIjhw5EiEhIRgwYADy5Mnzt5/JkycPmjRpIu+z/xETExN4eHggMDAQc+fOzRIUlef+f8PCwgJ+fn4ICgrClStXtF0cIYQQ/wKZKSqEEDnc7NmzcffuXaSkpGDevHkAMgKmb968gY+PDy5evIgmTZrg+PHjePXqFU6ePKl0SmfXddzi4+MxZcoUREdHw9HREZMnT9Z2kYT4JCNHjkRYWBi6d++Oy5cv4+jRo7C2tsaRI0c+uMaoEDnN8OHDERYWho4dO+L58+fYvHkzGjZsiGHDhn3UGqPi3xcfH4+RI0fC0NAQoaGhcu6FEEL8I4cOHUKvXr2wYcMG1KpVC2lpaUhMTMSVK1dQtWpV5M6dW9tF/Ca9ePECR48eRYsWLWSQ2Rdy8+ZNTJw4EcuXL5c2nBBCfAUkKCqEEDmIeiAls7O5e/fuWLNmDezt7bFnzx7kz59fOT4qKgqrVq1CTEwMLC0tsWHDBujr6+eIgIx07oqc6vz582jatClWr16NJk2agCSioqLQq1cvFChQAIcOHZLAqMjRzp49i1atWmHDhg1o0KABAGDv3r3w8/NTZvzXrVtXy6X8Nj179gz58+eHjo6OBKWFEEL8I+vXr8e4ceNw/fp1XLp0CWFhYVi3bh1u3boFNzc3rF69GkZGRtou5jdN1hD9cjLfq2QJCCGEyPnkySmEEDlIWloakpOT8ezZMxQuXBj6+vpYtWoVzM3NERQUhE2bNqFbt27KqN169eopo3oNDAygUqlyTMPJ3Nwcc+bMQf78+ZVUjNK5K3KChIQEpKSkwNbWFkBGKqs6depg9uzZcHNzQ/v27bFx40YYGxtruaRCfB5DQ0OQ1AjqN23aFCTRsmVL5MqVC/369YOLi4sWS/ltMjU1BQAZdCGEEOKTfOi5UaNGDbx48QI1a9bEvXv34OrqirFjx6JixYqoUaMGTp48CWdnZy2VWADIEe36r0VmX4QERIUQIueTlrIQQuQQ+/btw5AhQ1C2bFlUrFgRbdq0QWhoKABgxowZ6Nu3L4YMGYItW7bg7du3yud0dXVhaGioBBZzUsPJ1NRUSfUrAVGRHX0o4YadnR1MTEywfv16ZZuenh6qV6+O0qVLY9euXRg8ePCXLKYQny2zjr9f11UqFWJjYwFkzFIAABcXF9ja2uLEiRM4ceLEly2o0CABUSGEEB9LPSAaExODmJgYnD17FqVLl8b27dtRr149hISEYPr06ejevTtsbGxQq1YtSZ8rhBBCiBwp5/SMCyHEN2zZsmUYN24cOnbsiEGDBiF//vyYO3cuAgICcPPmTcyYMQMLFy4EAPTr1w8qlQru7u7InTu3RsdoTg0sSueuyI7eH1H/7t076Ovrw9jYGK1atcLOnTtRtGhRdOnSBQCgr68POzs7LF++HDVr1tRWsYX4aOp1PDk5GYaGhgCAihUromvXrujfvz8sLS3RqFEjABlrXFWpUgVNmzaFh4eHtoothBBCiI+knvlhzJgxiIyMREpKCpKSktC2bVvMmjULtWvXBpDxrvvs2TP06NEDAFCrVi2tlVsIIYQQ4nPJmqJCCJHNhYaGwtvbGytXrkTbtm2hr68PALh+/ToCAwOxZ88eDBs2DCNHjgQADB48GPPmzcPu3bvRtGlTbRZdiK+WerBo9uzZiI6Oxu+//45u3bqhZcuWyJs3LwYOHIhbt27Bzs4ODg4OWLlyJVJTU/HLL79AR0dH1qMR2dr7dfzgwYNITU1FsWLFEBISAkNDQ/Tu3RsrVqzAsGHDkC9fPhw6dAivX7/GyZMnZc0lIYQQIgeZMWMGZsyYge3bt6Nq1aqYNGkSpk6dil9//RU1atRAcnIyNm7ciMWLFyM5ORnHjx+Hvr6+POuFEEIIkeNIUFQIIbKxrVu3wt3dHZGRkWjZsqWyHmhm4/PmzZvo3bs3Xr9+jc2bN6NEiRIAgODgYAwZMiRHpcoVIicaNWoUlixZgt69e+Px48c4evQoypcvj4kTJ8LS0hJr1qzBypUrYWBggAIFCiAiIgL6+vqy3p/IMUaPHo1FixZhyJAhePToEQ4cOACS2L17N0qWLImgoCDs3r0bSUlJKFq0KDZs2CB1XAghhMjmSGpkEerYsSOaNWuGnj17IiIiAp6enpg2bRr69euHlJQU5MqVC3v27MHFixcxbNgw6OnpKW1TIYQQQoicRIKiQgiRTSUnJ8PHxwf79++Hj48PBg0aBABKQDSzIbtv3z40a9YMR48eRb169TS+QxqqQvx3zp8/j/bt22PZsmWoX78+AODAgQOYM2cODAwMsHjxYpiamgIAEhMTkSdPHqhUKrkuRY5x/fp1NG/eHLNmzUKLFi0AAHFxcejYsSOePHmCK1euAABev36NXLlyQU9PT+q4EEIIkc2pD1y6cuUKbG1tlYFOBQoUQMuWLTFz5kz0798f7969Q0BAAJo0aYIGDRoo3yEzRIUQQgiRU8nwbSGEyKYMDAwwbtw4tGjRAmvWrMH06dMBALq6ukhPT1eOs7KyQq5cufD69ess3yGd0kL8d3R0dJCYmKjRIdS4cWMMHjwYhw4dwuXLl5XtefPmhUqlAkm5LkWOkZCQgEePHqF06dIAMmaVFClSBEuXLsWbN2+wZMkSAIChoSH09fWljgshhBDZnPoaon5+fhgyZAhevHiBTp06YcmSJWjevDlmz56N/v37AwCePXuG6OhoZSBUJgmICiGEECKnkqCoEEJkY0WKFMGoUaNQs2ZNREREKIHRzPUIAeDSpUuoXr06bG1ttVlUIb5qmYk11BNsZF6D8fHxAIB3794BAJo2bYqiRYvi5MmTWb5HPU2ZENnJh5LH2NraomDBgti4cSOA/9VfMzMz5M6dGwkJCQA0O0aljgshhBDZU1pamvKcPn36NI4dO4bAwEDkz58f9vb2uHLlCurVqwdnZ2cAwMOHD+Hp6YmEhAT06dNHm0UXQgghhPjXyDBuIYTI5szNzTFmzBgEBgYiIiICAODr6ws9PT0kJiZi2bJlKFeuHIoVK6blkgrxdVJPMZaamgp9fX0AQNWqVdGyZUv07t0bVlZWqFatGoCMEfU6OjooWrSo1sosxKdQr+MkkZKSAgMDA+TKlQtubm7Yv38/ihcvjh9++AFARiaDPHnywNDQUJvFFkIIIcRHiIqKQr169ZRBTKGhoThx4gQsLS1RvXp1AEDr1q3x6NEjzJo1Cy1btkTevHmRnp6OtLQ0nDx5Erq6upIyVwghhBBfBVlTVAghcoj4+HgEBgbizJkzaNeuHUaMGIHWrVvj9u3bOHv2LPT09JR1RoUQ/w71YNHPP/+Mo0ePgiSsrKwwa9YsvHv3Dp07d8bOnTsxfPhwGBsb48iRI4iLi0N0dLSkERXZnnodnzVrFn799VdcvXoVXbp0gZubGwoXLoxBgwbht99+Q9myZVG7dm1ERkbi6dOniImJkTouhBBCZGPe3t5ITU1FSEiI8rz/8ccfERwcDGtraxw8eBAlSpRQjo+KisL169cRGxuL8uXLo2PHjtDV1ZX1woUQQgjx1ZCgqBBC5CDx8fGYMmUKoqOjcePGDeTPnx+XL1+Gvr6+jNwV4j/k5+eHJUuWoHfv3nj8+DH27dsHMzMz7Ny5E4ULF8bYsWMRFRWFlJQUlCxZEsuXL5frUmRr79dNPz8/LF68GP3798ezZ89w4MABlCpVChMmTEDZsmWxbt06rF27FkZGRjA3N8fSpUuljgshhBDZ3NWrV1GqVCno6+vjjz/+QNmyZQEAwcHBmDJlCgYMGAAvLy8UKVLkL79DnvVCCCGE+JpIUFQIIXKY+Ph4+Pr64vHjx4iMjIS+vr6M3BXiX6Y+6/rKlSto0aIFFixYgKZNmwIAYmNj4e7ujty5cytrh7569QoGBgbQ09ODSqWS61JkWw0bNsSwYcPg5uYGALhw4QLat2+PxYsXo2HDhgCAo0ePYtasWQCAJUuWoFChQgCAlJQU5MqVCwCkjgshhBDZ2M8//4znz59j/PjxWLNmDebPn4/hw4ejbdu2AICAgAAsWbIEAwYMgKenJ8zNzbVcYiGEEEKI/56OtgsghBDi05ibm2POnDnYsWOHBESF+A+EhIQgICBA+fnly5d4+fIlypcvDyAjYGptbY2VK1fi7t27WLduHQDAyMgI+vr6UKlUICnXpciWBg4ciIcPH8LFxUXZpqOjg4SEBI306w0bNoSPjw+OHj2K8+fPK9szA6JSx4UQQojsa/HixfDx8UGFChUAAOXKlYO+vj6WLVuG8PBwAMD48ePh6emJ0NBQrFixAg8ePNBmkYUQQgghvggJigohRA703XffQUdHB+np6dIpLcS/aPHixfD29kbFihWVbeXKlYOhoaHSgZQZOCpWrBhy586NhIQEAFDWaVI/Rojs5N27d7hy5Qratm0LAwMDTJo0CRcvXkSuXLmgUqlw//59ABkzQAHA0dERJUqUwK+//prlu6SOCyGEENlTaGgoBg4ciC1btqBdu3YAgBo1amDp0qV4+/YtFi9erLzXBgQEwNPTE+PGjcOBAwe0WWwhhBBCiC9CgqJCCJGDqQdhhBD/zIc6kICMQQitWrXC9u3bsXHjRmW7kZER8ufPD319fW0UV4hPpq+vD1dXVyxZsgStW7fGtGnTYGBggLJly8LDwwP9+vXDqVOnlME2L168AEkULVpUyyUXQgghxMfYunUrBgwYgPDwcLRp00bZPmrUKOjq6mLOnDlISUnB4sWLERERASBjxuiCBQvQpUsXbRVbCCGEEOKLkTVFhRBCCPHN27p1K9zd3REZGYmWLVsq2/38/NCzZ0/l33fv3kXVqlVRvXp1bNq0CU+ePEFMTAx0dXW1VHIh/m+bN29G+/btAQCJiYlwcHDAb7/9hqlTp2LkyJEAMtbEHTBgADZt2gQfHx8YGxvj+PHjiIuLw7lz5yQrgRBCCJHNJScnw8fHB/v374e3tze8vb0BAK1bt8atW7ewe/duFC1aFBcuXMDw4cNhaGiIzp07o3Pnzsp3pKWlyXutEEIIIb5q0rshhBBCiG9acnIy9u7dC2tra9y6dUvZntmBNHjwYBQtWhQzZszA1q1bsXr1aty4cQNmZmbYu3cvdHV1pQNJZFszZszApUuX4O7uDl1dXZw/fx7v3r1D+/btERISguLFi6NTp07IkycPVq9ejUqVKmHfvn1ISUmBlZUVduzYAT09PanjQgghRDZnYGCAcePGwcDAAOvXrwdJREVF4c6dOwgPD0fRokVBEnZ2dggODkb37t0RHR2tERSVZ70QQgghvnYyU1QIIYQQ37y4uDhMnz4dp0+fhoeHB6KionDjxg2EhYXBxsYGJDXWUHz79i0MDQ0BZKy/KLPoRHYVFxeHQoUKQU9PD+fPn0eVKlWQnJyMuLg4zJw5E5GRkQgKCoKHh4fymaSkJBgYGCgdo1LHhRBCiJwjPj4egYGB2LlzJ16+fImLFy/CwsJCGeCU+V5748YNWFtby5IsQgghhPimSFBUCCGEEAL/dwcSgCzB0fd/FiI7UQ9m7tq1C97e3hg0aBB8fHwAAFeuXMH8+fOxdetWBAcHo2PHjgDwt3VeCCGEENnfw4cPMWXKFBw/fhweHh4YMWIEACA9PT1LEFSyQQghhBDiWyLDwYQQQgghAJibm8Pf3x8tW7ZEyZIlsX79egAZacTS09MBIEtwSIJFIjvLDIgePHgQpUuXRqNGjRAWFoY5c+YAAGxtbTFw4EC0bt0avr6+WLFiBQDN1HlSx4UQQoicx8zMDH5+fqhTpw7CwsIwffp0AICOjg7enxshAVEhhBBCfEskKCqEEEII8f99SgeSENlVZhAfAMaPH4/vv/8epqamGDNmDCpUqICNGzdqBEa9vLxQr149REZGaqnEQgghhPi3mZubY8yYMbC3t8e2bdvg7+8PQAY8CSGEEOLbJulzhRBCCCHeEx8fjylTpiA6OhqOjo6YPHmytoskxCf7448/EBYWBnt7e3z//fcAgDt37mDKlCm4ePEiOnbsqKTSvX37NiwtLWVdMSGEEOIrEx8fj5EjR8LQ0BChoaESFBVCCCHEN02CokIIIYQQHyAdSCIn27lzJ1q2bAlzc3Ns3boV9vb2ypphd+/exZQpU3Dp0iW4uLhg7Nixyuc+tNaYEEIIIXK2Z8+eIX/+/Er2E3mvFUIIIcS3Sno8hBBCCCE+wNzcHHPmzMHChQuhUqkkfa7I1tRT5gKApaUl+vXrh6dPn+LOnTsax1laWmL06NEoVqwY/vzzT426LQFRIYQQ4utjamoKHR0dpKenS0BUCCGEEN80mSkqhBBCCPF/kNlzIjtTn/GxdetWtG7dGkBG+tzAwEBs3rwZO3bsgLOzsxI81dHRwcOHD1GoUCGZNSKEEEIIIYQQQohvgvTuCSGEEEL8HyQgKrIr9Rkft2/fhru7O7y8vAAAZcuWhb+/Pzp27IgOHTrg4MGDSgA0PT0dZmZmMmtECCGEEEIIIYQQ3ww9bRdACCGEEEII8elIKgH7KVOm4M8//4SZmRkWLFiAN2/eYNmyZShTpgxGjRoFHR0deHh4YOXKlXB1ddX4Hgn6CyGEEEIIIYQQ4lsg6XOFEEIIIYTIwSZPnoxZs2Zh/fr10NXVxfnz5zFhwgS4u7tj1apVADJS6Y4aNQpv377F7t27tVxiIYQQQgghhBBCiC9PgqJCCCGEEELkUG/evEHbtm1Rt25d+Pv7AwCSk5OxY8cOdO3aFd27d0doaCiAjPS6lpaWMjNUCCGEEEIIIYQQ3yRJnyuEEEIIIUQOpaOjgzt37qBYsWLKNgMDAzRv3hweHh5YvHgxACA0NBRWVlYAMtYhlcCoEEIIIYQQQgghvjXSGyKEEEIIIUQOkJ6ervH/aWlpMDAwwA8//IDo6GgcOHBAOdbQ0BDly5dHu3btsHnzZowfP17ZJwFRIYQQQgghhBBCfIukR0QIIYQQQohsbsOGDejduzeuXbuGN2/eAAB0dXUBAPXr10fBggWxcOFC7N27FwDw8uVLHD9+HI0aNYK3tzd27tyJ+Ph4rZVfCCGEEEIIIYQQQttkTVEhhBBCCCGysYSEBFSrVg0JCQkwNzeHvb096tevjx49eijH7N27FyEhIYiJiUGBAgXw7t076Orq4tKlS1i6dCmCgoJw6tQp5MuXT4u/iRBCCCGEEEIIIYT2yJqiQgghhBBCZGPGxsbo0KEDSpQogZo1a+LQoUPw8fHBvn37YGtri5EjR6Jp06aoWrUqzp8/j0OHDqF48eLo27cvACA6Oho2NjbKzFIhhBBCCCGEEEKIb5HMFBVCCCGEECKb2717Nzp27IioqChUrlwZb9++xZQpUzB58mTY2dmhU6dOcHFxQeXKlZXPXL9+HaGhoViyZAl++eUXVKpUSYu/gRBCCCGEEEIIIYR2yZqiQgghhBBCZHPNmjVDt27dEBoaCgAwNDTEli1b4ObmhsaNG+PgwYOoUqUKli1bBgBISUlBWFgYzp07h6NHj0pAVAghhBBCCCGEEN88mSkqhBBCCCFEDrB06VIsX74c27dvh7OzM4yMjLBr1y6YmJjg/v37iIqKQtu2baGnl7FCxtu3b5GUlARTU1Mtl1wIIYQQQgghhBBC+yQoKoQQQgghRA5hb2+Ps2fPokGDBggPD/9gwDM1NRW6urpQqVRaKKEQQgghhBBCCCFE9iTpc4UQQgghhMjmMscxent7o0KFCggODoapqSk+NL5RT09PAqJCCCGEEEIIIYQQ75GgqBBCCCGEENlcZpDT0dERT58+xf79+zW2CyGEEEIIIYQQQoi/J0FRIYQQQgghcggLCwv4+fkhKCgIV65c0XZxhBBCCCGEEEIIIXIMPW0XQAghhBBCCPHxXF1dcfbsWZQrV07bRRFCCCGEEEIIIYTIMVT80EJEQgghhBBCiGyLJFQqFdLS0qCrq6vt4gghhBBCCCGEEEJkexIUFUIIIYQQQgghhBBCCCGEEEJ81WRNUSGEEEIIIYQQQgghhBBCCCHEV02CokIIIYQQQgghhBBCCCGEEEKIr5oERYUQQgghhBBCCCGEEEIIIYQQXzUJigohhBBCCCGEEEIIIYQQQgghvmoSFBVCCCGEEEIIIYQQQgghhBBCfNUkKCqEEEIIIYQQQgghhBBCCCGE+KpJUFQIIYQQQgghhBBCCCGEEEII8VWToKgQQgghhBBCCCGEEEIIIYQQ4qsmQVEhhBBCCCGEEEIIIYQQQgghxFft/wHAbcpMKj+uQAAAAABJRU5ErkJggg==\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "# Save to CSV in your Google Drive\n", "df_encoded.to_csv('/content/drive/My Drive/AuraClima/cleaned_agriculture_data.csv', index=False)" ], "metadata": { "id": "-_ZnLKHvyXn1" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "### CO2 Dataset" ], "metadata": { "id": "S14Wi3U8zj7h" } }, { "cell_type": "markdown", "source": [ "**Stage 1: Filling missing values**" ], "metadata": { "id": "7eF8X6q81vb4" } }, { "cell_type": "code", "source": [ "df_co2.columns" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "9IeoKQ6xyvcy", "outputId": "175e8f86-3534-4d5c-aae3-07edb81ff832" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Index(['Country Name', '1960', '1961', '1962', '1963', '1964', '1965', '1966',\n", " '1967', '1968', '1969', '1970', '1971', '1972', '1973', '1974', '1975',\n", " '1976', '1977', '1978', '1979', '1980', '1981', '1982', '1983', '1984',\n", " '1985', '1986', '1987', '1988', '1989', '1990', '1991', '1992', '1993',\n", " '1994', '1995', '1996', '1997', '1998', '1999', '2000', '2001', '2002',\n", " '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010', '2011',\n", " '2012', '2013', '2014', '2015', '2016', '2017', '2018'],\n", " dtype='object')" ] }, "metadata": {}, "execution_count": 40 } ] }, { "cell_type": "code", "source": [ "# Replace empty strings with NaN\n", "df_co2.replace(\"\", np.nan, inplace=True)\n", "\n", "# Count missing values per column\n", "missing_summary = df_co2.isna().sum()\n", "missing_summary = missing_summary[missing_summary > 0].sort_values(ascending=False)\n", "print(\"📉 Missing Values per Column:\\n\")\n", "print(missing_summary)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "k8QOQVd_z5PY", "outputId": "a85e4127-7b08-4ac4-f344-c7b7d85b482c" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "📉 Missing Values per Column:\n", "\n", "1960 63\n", "1961 62\n", "1962 60\n", "1963 59\n", "1964 53\n", "1965 53\n", "1966 53\n", "1967 53\n", "1968 53\n", "1969 53\n", "1970 52\n", "1971 51\n", "1972 50\n", "1973 50\n", "1974 50\n", "1975 50\n", "1976 50\n", "1977 50\n", "1978 50\n", "1979 50\n", "1980 50\n", "1981 50\n", "1982 50\n", "1983 50\n", "1984 50\n", "1985 50\n", "1986 50\n", "1987 50\n", "1988 50\n", "1989 50\n", "1990 28\n", "1992 28\n", "1993 28\n", "1994 28\n", "1991 27\n", "1995 27\n", "1996 27\n", "1997 27\n", "1998 27\n", "1999 27\n", "2000 27\n", "2001 27\n", "2002 27\n", "2003 27\n", "2004 27\n", "2005 27\n", "2006 27\n", "2007 27\n", "2008 27\n", "2009 27\n", "2010 27\n", "2011 27\n", "2012 27\n", "2013 27\n", "2014 27\n", "2015 27\n", "2016 27\n", "2017 27\n", "2018 27\n", "dtype: int64\n" ] } ] }, { "cell_type": "code", "source": [ "# Convert year columns to numeric (they're likely strings due to NaNs)\n", "year_cols = [col for col in df_co2.columns if col != 'Country Name']\n", "df_co2[year_cols] = df_co2[year_cols].apply(pd.to_numeric, errors='coerce')" ], "metadata": { "id": "nlBJodWa0pwv" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Fill missing values per country with that country’s mean across years\n", "df_co2[year_cols] = df_co2.groupby('Country Name')[year_cols].transform(\n", " lambda x: x.fillna(x.mean())\n", ")" ], "metadata": { "id": "jmQDyxWv065l" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "print(\"Remaining missing values:\\n\", df_co2.isna().sum().sum())" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "rGwy2MCY09Pf", "outputId": "9d677aab-1a63-4931-a17d-954fb541a786" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Remaining missing values:\n", " 2352\n" ] } ] }, { "cell_type": "markdown", "source": [ "**Stage 2: Using a regressor to fill in the missing values**" ], "metadata": { "id": "IKOVYSQR11w2" } }, { "cell_type": "code", "source": [ "df_long = df_co2.melt(id_vars='Country Name', var_name='Year', value_name='CO2')\n", "df_long['Year'] = df_long['Year'].astype(int)" ], "metadata": { "id": "vjEEXvFA1Dom" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Known and unknown CO2 values\n", "train_df = df_long[df_long['CO2'].notna()]\n", "missing_df = df_long[df_long['CO2'].isna()]" ], "metadata": { "id": "w5rv9RG918xS" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "from sklearn.preprocessing import OneHotEncoder\n", "\n", "# One-hot encode country names\n", "encoder = OneHotEncoder(sparse_output=False, handle_unknown='ignore')\n", "country_encoded = encoder.fit_transform(train_df[['Country Name']])\n", "country_encoded_missing = encoder.transform(missing_df[['Country Name']])" ], "metadata": { "id": "9sWUM42X1_g9" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Input features: country + year\n", "X_train = np.hstack([country_encoded, train_df[['Year']].values])\n", "y_train = train_df['CO2'].values" ], "metadata": { "id": "I2rDC8os2CFw" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "X_pred = np.hstack([country_encoded_missing, missing_df[['Year']].values])" ], "metadata": { "id": "4tDzUJr92Wvt" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "from sklearn.ensemble import RandomForestRegressor\n", "\n", "model = RandomForestRegressor(n_estimators=100, random_state=42)\n", "model.fit(X_train, y_train)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 80 }, "id": "IuTj_4aL2lrK", "outputId": "2706aff9-533f-4587-fd18-f4921af9621c" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "RandomForestRegressor(random_state=42)" ], "text/html": [ "
RandomForestRegressor(random_state=42)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ] }, "metadata": {}, "execution_count": 52 } ] }, { "cell_type": "code", "source": [ "# Predict missing CO2 values\n", "y_pred = model.predict(X_pred)" ], "metadata": { "id": "4wCV5RI12oST" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Insert predictions into missing_df\n", "missing_df['CO2'] = y_pred" ], "metadata": { "id": "7k8PL9ig3Kt-" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Combine back with original\n", "df_filled = pd.concat([train_df, missing_df], ignore_index=True)" ], "metadata": { "id": "-31GhfPF3NTq" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Pivot back to wide format\n", "df_co2_filled = df_filled.pivot(index='Country Name', columns='Year', values='CO2').reset_index()" ], "metadata": { "id": "voGX68SA3QkI" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Count of missing values in the entire DataFrame\n", "total_missing = df_co2_filled.isna().sum().sum()\n", "print(f\"🔍 Total remaining missing values: {total_missing}\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "z6bwLvGP3S3U", "outputId": "2e71908c-58be-483c-d646-50e8f2fa96c2" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "🔍 Total remaining missing values: 0\n" ] } ] }, { "cell_type": "code", "source": [ "df_co2_filled.head()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 359 }, "id": "kAwKunsn3f48", "outputId": "48af5c2d-553e-4764-d24e-8eecfbe6d7f1" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Year Country Name 1960 1961 1962 1963 \\\n", "0 Afghanistan 0.046057 0.053589 0.073721 0.074161 \n", "1 Africa Eastern and Southern 0.906060 0.922474 0.930816 0.940570 \n", "2 Africa Western and Central 0.090880 0.095283 0.096612 0.112376 \n", "3 Albania 1.258195 1.374186 1.439956 1.181681 \n", "4 Algeria 0.557120 0.535025 0.487889 0.455574 \n", "\n", "Year 1964 1965 1966 1967 1968 ... 2009 \\\n", "0 0.086174 0.101285 0.107399 0.123409 0.115142 ... 0.211306 \n", "1 0.996033 1.047280 1.033908 1.052204 1.079727 ... 1.021954 \n", "2 0.133258 0.184803 0.193676 0.189305 0.143989 ... 0.426770 \n", "3 1.111742 1.166099 1.333055 1.363746 1.519551 ... 1.475652 \n", "4 0.462363 0.525615 0.653389 0.635889 0.663161 ... 3.191554 \n", "\n", "Year 2010 2011 2012 2013 2014 2015 2016 \\\n", "0 0.297065 0.407074 0.335351 0.263716 0.234037 0.232176 0.208857 \n", "1 1.048876 1.005338 1.021646 1.031833 1.041145 0.987393 0.971016 \n", "2 0.472819 0.497023 0.490867 0.504655 0.507671 0.480743 0.472959 \n", "3 1.572251 1.734823 1.579092 1.654524 1.806789 1.759987 1.714126 \n", "4 3.144748 3.222460 3.387555 3.406123 3.566209 3.674233 3.535020 \n", "\n", "Year 2017 2018 \n", "0 0.203328 0.200151 \n", "1 0.959978 0.933541 \n", "2 0.476438 0.515544 \n", "3 1.948872 1.939732 \n", "4 3.505748 3.591657 \n", "\n", "[5 rows x 60 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
YearCountry Name196019611962196319641965196619671968...2009201020112012201320142015201620172018
0Afghanistan0.0460570.0535890.0737210.0741610.0861740.1012850.1073990.1234090.115142...0.2113060.2970650.4070740.3353510.2637160.2340370.2321760.2088570.2033280.200151
1Africa Eastern and Southern0.9060600.9224740.9308160.9405700.9960331.0472801.0339081.0522041.079727...1.0219541.0488761.0053381.0216461.0318331.0411450.9873930.9710160.9599780.933541
2Africa Western and Central0.0908800.0952830.0966120.1123760.1332580.1848030.1936760.1893050.143989...0.4267700.4728190.4970230.4908670.5046550.5076710.4807430.4729590.4764380.515544
3Albania1.2581951.3741861.4399561.1816811.1117421.1660991.3330551.3637461.519551...1.4756521.5722511.7348231.5790921.6545241.8067891.7599871.7141261.9488721.939732
4Algeria0.5571200.5350250.4878890.4555740.4623630.5256150.6533890.6358890.663161...3.1915543.1447483.2224603.3875553.4061233.5662093.6742333.5350203.5057483.591657
\n", "

5 rows × 60 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "df_co2_filled" } }, "metadata": {}, "execution_count": 60 } ] }, { "cell_type": "markdown", "source": [ "**Stage 3: Analyzing the column extereme values:**" ], "metadata": { "id": "TcLqhTjV6IzL" } }, { "cell_type": "code", "source": [ "year_columns = df_co2_filled.columns[df_co2_filled.columns != 'Country Name']" ], "metadata": { "id": "b2lk_zTf3jLB" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "for col in year_columns:\n", " Q1 = df_co2_filled[col].quantile(0.25)\n", " Q3 = df_co2_filled[col].quantile(0.75)\n", " IQR = Q3 - Q1\n", "\n", " lower_bound = Q1 - 1.5 * IQR\n", " upper_bound = Q3 + 1.5 * IQR\n", "\n", " # Replace outliers with median\n", " median = df_co2_filled[col].median()\n", " df_co2_filled[col] = df_co2_filled[col].apply(\n", " lambda x: median if x < lower_bound or x > upper_bound else x\n", " )" ], "metadata": { "id": "tD_aKCZ76N80" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "print(\"✅ Outlier cleaning complete.\")\n", "print(\"Remaining missing values (should be 0):\", df_co2_filled.isna().sum().sum())" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "D7rQ6wIZ6QYL", "outputId": "3c678a77-f6f3-4bf8-a3bf-d64bd286577b" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "✅ Outlier cleaning complete.\n", "Remaining missing values (should be 0): 0\n" ] } ] }, { "cell_type": "code", "source": [ "outlier_summary = {}\n", "\n", "for col in year_columns:\n", " Q1 = df_co2_filled[col].quantile(0.25)\n", " Q3 = df_co2_filled[col].quantile(0.75)\n", " IQR = Q3 - Q1\n", " lower_bound = Q1 - 1.5 * IQR\n", " upper_bound = Q3 + 1.5 * IQR\n", "\n", " # Count how many were outside the bounds\n", " outliers = df_co2_filled[(df_co2_filled[col] < lower_bound) | (df_co2_filled[col] > upper_bound)]\n", " outlier_summary[col] = {\n", " \"count\": outliers.shape[0],\n", " \"min_outlier\": outliers[col].min() if not outliers.empty else None,\n", " \"max_outlier\": outliers[col].max() if not outliers.empty else None\n", " }" ], "metadata": { "id": "pfxnSzGM6S1C" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "outlier_df = pd.DataFrame(outlier_summary).T\n", "outlier_df_sorted = outlier_df.sort_values(by=\"count\", ascending=False)\n", "\n", "print(outlier_df_sorted.head(10)) # Top 10 years with most replaced values" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Dpn0oEvm6cNx", "outputId": "56086e4b-e25f-45b9-ac9c-36892790d5d9" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " count min_outlier max_outlier\n", "1970 32.0 3.301400 8.066821\n", "1971 31.0 4.231154 8.560478\n", "1965 29.0 1.827946 4.772848\n", "1962 29.0 1.567864 3.868626\n", "1969 28.0 3.076165 6.665435\n", "1967 28.0 2.644873 5.758242\n", "1966 28.0 2.053282 5.172018\n", "1973 28.0 6.957304 12.172175\n", "1974 28.0 7.071735 11.864913\n", "1972 27.0 5.103338 8.874687\n" ] } ] }, { "cell_type": "code", "source": [ "import matplotlib.pyplot as plt\n", "\n", "outlier_df_sorted['count'].plot(kind='bar', figsize=(14,5), title=\"Outlier Replacements per Year\")\n", "plt.ylabel(\"Number of Outliers Replaced\")\n", "plt.xlabel(\"Year\")\n", "plt.tight_layout()\n", "plt.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 527 }, "id": "19zhPb8z6eH9", "outputId": "59544dc7-1136-4cb8-ec00-e4301b9804ce" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABW4AAAHqCAYAAACUWtfDAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAdGBJREFUeJzt3Xd4U3X7x/FP0tKWtkDZZZddpiIqS4EHZYkDHCCiDFFQQVEUBBURHCwHDkBcgIpbcAsyVUTkAdmyKbKRvSottPfvD3/NQyhgE3LahL5f15VLc87JJzffnJyc3j39xmVmJgAAAAAAAABA0HDndAEAAAAAAAAAAG80bgEAAAAAAAAgyNC4BQAAAAAAAIAgQ+MWAAAAAAAAAIIMjVsAAAAAAAAACDI0bgEAAAAAAAAgyNC4BQAAAAAAAIAgQ+MWAAAAAAAAAIIMjVsAAAAAAAAACDI0bgEAAELIxIkT5XK5tHnzZs+ypk2bqmnTpjlWU3bZvHmzXC6XJk6cmNOlAAAAAI6jcQsAAHAeVq1apdtvv12lSpVSZGSkSpYsqU6dOmnVqlXnlfvcc8/piy++CEyRAdS0aVO5XC7PLW/evKpdu7ZGjx6t9PT0nC4v10pOTtZTTz2luXPn5nQpAXHw4EGVKFFCjRo1kpllWr9gwQK53W7169cvB6oDAADIHjRuAQAA/DRlyhRdcsklmjVrlrp166axY8eqe/fumjNnji655BJNnTrV72xfGrc//PCDfvjhB7+fy1elS5fWe++9p/fee0/Dhg1TVFSUHnroIQ0aNCjbaoC35ORkDRky5IJp3MbFxWn06NGaP3++3nzzTa91J0+e1D333KNy5cppyJAhOVQhAACA88JzugAAAIBQtHHjRt1xxx2qUKGCfvrpJxUtWtSzrk+fPrryyit1xx13aPny5apQoYKjtURERAQsKz09XampqYqKijrrNgUKFNDtt9/uuX/PPfcoMTFRr776qoYOHaqwsLCA1YMLm5np+PHjyps3b6Z1HTp00KRJkzRgwADdcMMNKl68uCTp5Zdf1rJly/Tdd98pOjra8RqPHTummJgYx58HAADgdFxxCwAA4IdRo0YpOTlZb7zxhlfTVpKKFCmi8ePH69ixYxo5cqRnedeuXZWQkJAp66mnnpLL5fLcd7lcOnbsmCZNmuSZkqBr165nreVMc9ympKRo8ODBqlSpkiIjI1WmTBn1799fKSkpXtu5XC717t1bkydPVo0aNRQZGalp06ZlfSAkRUVF6bLLLtORI0f0119/ea17//33VbduXeXNm1eFChXSrbfeqq1bt2aqv2bNmlq8eLEaNmyovHnzqnz58nr99df/9bmXL1+url27qkKFCoqKilJ8fLzuvPNO7du3L9O227dvV/fu3VWyZElFRkaqfPnyuvfee5WamurZ5uDBg3rwwQdVpkwZRUZGqlKlShoxYoTXNBAZc+0+//zzGjNmjCpUqKDo6Gi1aNFCW7dulZnp6aefVunSpZU3b17dcMMN2r9/f6Z6vv/+e1155ZWKiYlRvnz51KZNm0xTbHTt2lWxsbHavn272rZtq9jYWBUtWlSPPPKI0tLSPPVk7INDhgzx7DNPPfWUJGnXrl3q1q2bSpcurcjISJUoUUI33HCD1zzJZ5Lx3Js2bVLLli0VExOjkiVLaujQoZmmL0hPT9fo0aNVo0YNRUVFqXjx4urZs6cOHDjgtV1CQoKuvfZaTZ8+XZdeeqny5s2r8ePHn7WGsWPHKiUlRX379pUkbd26VU899ZQ6dOig1q1bZ3kcs7qfZLwX//jjD912220qWLCgrrjiinOOEwAAgFO44hYAAMAPX3/9tRISEnTllVeecX3jxo2VkJCgb7/91ufs9957T3fddZcuv/xy9ejRQ5JUsWLFLD8+PT1d119/vebNm6cePXqoWrVqWrFihV566SWtW7cu0xQMs2fP1ieffKLevXurSJEiZ2wu/5uMZmZcXJxn2bPPPqtBgwapffv2uuuuu7Rnzx69+uqraty4sZYsWeK17YEDB3TNNdeoffv26tixoz755BPde++9ioiI0J133nnW550xY4Y2bdqkbt26KT4+XqtWrdIbb7yhVatWacGCBZ6G+I4dO3T55Zfr4MGD6tGjhxITE7V9+3Z99tlnSk5OVkREhJKTk9WkSRNt375dPXv2VNmyZTV//nwNHDhQO3fu1OjRo72ee/LkyUpNTdX999+v/fv3a+TIkWrfvr2aNWumuXPn6tFHH9WGDRv06quv6pFHHtE777zjeex7772nLl26qGXLlhoxYoSSk5M1btw4XXHFFVqyZInXa5CWlqaWLVuqXr16ev755zVz5ky98MILqlixou69914VLVpU48aN07333qt27drpxhtvlCTVrl1bknTTTTdp1apVuv/++5WQkKC//vpLM2bM0JYtW/71tU5LS1OrVq1Uv359jRw5UtOmTdPgwYN18uRJDR061LNdz549NXHiRHXr1k0PPPCAkpKS9Nprr2nJkiX65ZdflCdPHs+2a9euVceOHdWzZ0/dfffdqlq16lmfPyEhQUOGDFG/fv3UtWtXjR07VuHh4Z7XIqvjmNX9JMMtt9yiypUr67nnnjvjHLsAAADZwgAAAOCTgwcPmiS74YYbzrnd9ddfb5Ls8OHDZmbWpUsXK1euXKbtBg8ebKeflsXExFiXLl0ybTthwgSTZElJSZ5lTZo0sSZNmnjuv/fee+Z2u+3nn3/2euzrr79ukuyXX37xLJNkbrfbVq1adc5/y6nPlZiYaHv27LE9e/bYmjVrrF+/fibJ2rRp49lu8+bNFhYWZs8++6zX41esWGHh4eFey5s0aWKS7IUXXvAsS0lJsYsvvtiKFStmqampZmaWlJRkkmzChAme7ZKTkzPV+OGHH5ok++mnnzzLOnfubG632/773/9m2j49Pd3MzJ5++mmLiYmxdevWea0fMGCAhYWF2ZYtW7zqKFq0qB08eNCz3cCBA02SXXTRRXbixAnP8o4dO1pERIQdP37czMyOHDlicXFxdvfdd3s9z65du6xAgQJey7t06WKSbOjQoV7b1qlTx+rWreu5v2fPHpNkgwcP9truwIEDJslGjRqV6d/9bzKe+/777/csS09PtzZt2lhERITt2bPHzMx+/vlnk2STJ0/2evy0adMyLS9XrpxJsmnTpmW5jhMnTtjFF19shQoVMkk2fvx4M/NtHLO6n2S8Fzt27Jjl+gAAAJzCVAkAAAA+OnLkiCQpX75859wuY/3hw4cdr+lUn376qapVq6bExETt3bvXc2vWrJkkac6cOV7bN2nSRNWrV89y/po1a1S0aFEVLVpUiYmJGjVqlK6//npNnDjRs82UKVOUnp6u9u3be9UQHx+vypUrZ6ohPDxcPXv29NyPiIhQz5499ddff2nx4sVnreXUuVGPHz+uvXv3qn79+pKk33//XdI/VyB/8cUXuu6663TppZdmysi42vLTTz/VlVdeqYIFC3rVfPXVVystLU0//fST1+NuueUWFShQwHO/Xr16kqTbb79d4eHhXstTU1O1fft2Sf9c/Xnw4EF17NjR63nCwsJUr169TGMj/TOP8KmuvPJKbdq06azjcur4REREaO7cuZmmLciq3r17e/4/Y2qN1NRUzZw5U9I/41agQAE1b97c699Tt25dxcbGZvr3lC9fXi1btszy84eHh+uNN97Q/v37Vb9+fd19992SfBvHrOwnpzp9vAEAAHICUyUAAAD4KKMhm9HAPZusNngDbf369Vq9enWmuXcznD4Pbfny5X3KT0hI0Jtvvqn09HRt3LhRzz77rPbs2eP1hWbr16+Xmaly5cpnzDj1T+clqWTJkpm+AKpKlSqS/pmGIaPJdrr9+/dryJAh+uijjzL9uw4dOiRJ2rNnjw4fPqyaNWue89+1fv16LV++PMvjVrZsWa/7GU3cMmXKnHF5RuN0/fr1kuRppJ8uf/78XvejoqIy1VSwYMEsNWIjIyM1YsQIPfzwwypevLjq16+va6+9Vp07d1Z8fPy/Pt7tdmf6cr1TX5eMf8+hQ4dUrFixM2ac7/4mSZdddpkkqW7dup5Guy/jmJX95HxrBAAACDQatwAAAD4qUKCASpQooeXLl59zu+XLl6tUqVKeBtLp82hmyPiSqUBJT09XrVq19OKLL55x/emNxVOvRsyKmJgYXX311Z77jRo10iWXXKLHHntMr7zyiqcGl8ul77//XmFhYZkyYmNjfXrOs2nfvr3mz5+vfv366eKLL1ZsbKzS09PVqlUrry8Uy4r09HQ1b95c/fv3P+P6jIZlhjP9u8613P5/rtSMut57770zNk9PvVr3XHlZ9eCDD+q6667TF198oenTp2vQoEEaNmyYZs+erTp16pxXtvTPv6dYsWKaPHnyGdef3nT2dX871/NKWRtHX/eTQNUIAABwPmjcAgAA+OHaa6/Vm2++qXnz5p3xW+d//vlnbd682evP/wsWLKiDBw9m2vbPP//MtOxsTd6sqFixopYtW6arrrrqvHKyqnbt2rr99ts1fvx4PfLIIypbtqwqVqwoM1P58uUzNTzPZMeOHTp27JjXVbfr1q2TpLN+gdaBAwc0a9YsDRkyRE8++aRnecaVmBmKFi2q/Pnza+XKleesoWLFijp69KhXU9oJGV80V6xYsYA917+9zhUrVtTDDz+shx9+WOvXr9fFF1+sF154Qe+///45H5eenq5NmzZ5vYanvy4VK1bUzJkz1ahRo2xteGZ1HLO6nwAAAAQb5rgFAADwQ79+/ZQ3b1717NlT+/bt81q3f/9+3XPPPYqOjla/fv08yytWrKhDhw55Xam7c+dOTZ06NVN+TEzMGZu8WdG+fXtt375db775ZqZ1f//9t44dO+ZX7rn0799fJ06c8Fzle+ONNyosLExDhgzxXGmawcwyjdnJkyc1fvx4z/3U1FSNHz9eRYsWVd26dc/4nBlXop6eP3r0aK/7brdbbdu21ddff61FixZlysl4fPv27fXrr79q+vTpmbY5ePCgTp48ecY6fNWyZUvlz59fzz33nE6cOJFp/Z49e3zOjI6OlqRM+0xycrKOHz/utaxixYrKly+fUlJSspT92muvef7fzPTaa68pT548uuqqqyT9M25paWl6+umnMz325MmTfu/H/yar45jV/QQAACDYcMUtAACAHypXrqxJkyapU6dOqlWrlrp3767y5ctr8+bNevvtt7V37159+OGHnqsCJenWW2/Vo48+qnbt2umBBx5QcnKyxo0bpypVqmT6gqS6detq5syZevHFF1WyZEmVL1/e8+VX/+aOO+7QJ598onvuuUdz5sxRo0aNlJaWpjVr1uiTTz7R9OnTz/glXeejevXquuaaa/TWW29p0KBBqlixop555hkNHDhQmzdvVtu2bZUvXz4lJSVp6tSp6tGjhx555BHP40uWLKkRI0Zo8+bNqlKlij7++GMtXbpUb7zxRqb5cDPkz59fjRs31siRI3XixAmVKlVKP/zwg5KSkjJt+9xzz+mHH35QkyZN1KNHD1WrVk07d+7Up59+qnnz5ikuLk79+vXTV199pWuvvVZdu3ZV3bp1dezYMa1YsUKfffaZNm/erCJFipz3WOXPn1/jxo3THXfcoUsuuUS33nqrihYtqi1btujbb79Vo0aNvJqlWZE3b15Vr15dH3/8sapUqaJChQqpZs2aOnnypK666iq1b99e1atXV3h4uKZOnardu3fr1ltv/dfcqKgoTZs2TV26dFG9evX0/fff69tvv9Vjjz3mmQKhSZMm6tmzp4YNG6alS5eqRYsWypMnj9avX69PP/1UL7/8sm6++Wa/xupcsjqOvuwnAAAAQcUAAADgt+XLl1vHjh2tRIkSlidPHouPj7eOHTvaihUrzrj9Dz/8YDVr1rSIiAirWrWqvf/++zZ48GA7/bRszZo11rhxY8ubN69Jsi5dupiZ2YQJE0ySJSUlebZt0qSJNWnSxOvxqampNmLECKtRo4ZFRkZawYIFrW7dujZkyBA7dOiQZztJ1qtXryz/e5s0aWI1atQ447q5c+eaJBs8eLBn2eeff25XXHGFxcTEWExMjCUmJlqvXr1s7dq1mTIXLVpkDRo0sKioKCtXrpy99tprXvlJSUkmySZMmOBZtm3bNmvXrp3FxcVZgQIF7JZbbrEdO3ZkqsPM7M8//7TOnTtb0aJFLTIy0ipUqGC9evWylJQUzzZHjhyxgQMHWqVKlSwiIsKKFCliDRs2tOeff95SU1O96hg1apRX/pw5c0ySffrpp17LM16z//73v5m2b9mypRUoUMCioqKsYsWK1rVrV1u0aJFnmy5dulhMTEymsT7TPjN//nyrW7euRUREeP79e/futV69elliYqLFxMRYgQIFrF69evbJJ59kyjxdxnNv3LjRWrRoYdHR0Va8eHEbPHiwpaWlZdr+jTfesLp161revHktX758VqtWLevfv7/t2LHDs025cuWsTZs2//rcZ3K2fTUr45jV/SRjXPfs2eNXjQAAAIHkMjvtb4YAAACAbNS0aVPt3bv3X+egRfbq2rWrPvvsMx09ejSnSwEAAMiVmOMWAAAAAAAAAIIMjVsAAAAAAAAACDI0bgEAAAAAAAAgyDDHLQAAAAAAAAAEGa64BQAAAAAAAIAgQ+MWAAAAAAAAAIJMeE4X4LT09HTt2LFD+fLlk8vlyulyAAAAAAAAAORSZqYjR46oZMmScrvPfU3tBd+43bFjh8qUKZPTZQAAAAAAAACAJGnr1q0qXbr0Obe54Bu3+fLlk/TPYOTPnz+HqwEAAAAAAACQWx0+fFhlypTx9CzP5YJv3GZMj5A/f34atwAAAAAAAAByXFamdOXLyQAAAAAAAAAgyNC4BQAAAAAAAIAgQ+MWAAAAAAAAAIIMjVsAAAAAAAAACDI0bgEAAAAAAAAgyNC4BQAAAAAAAIAgQ+MWAAAAAAAAAIIMjVsAAAAAAAAACDI0bgEAAAAAAAAgyNC4BQAAAAAAAIAgQ+MWAAAAAAAAAIIMjVsAAAAAAAAACDI0bgEAAAAAAAAgyNC4BQAAAAAAAIAgQ+MWAAAAAAAAAIIMjVsAAAAAAAAACDLhOV1ATkoY8G2Wt908vI2DlQAAAAAAAADA/3DFLQAAAAAAAAAEGRq3AAAAAAAAABBkaNwCAAAAAAAAQJChcQsAAAAAAAAAQYbGLQAAAAAAAAAEGRq3AAAAAAAAABBkaNwCAAAAAAAAQJChcQsAAAAAAAAAQYbGLQAAAAAAAAAEGRq3AAAAAAAAABBkwnO6gAtRwoBvs7zt5uFtHKwEAAAAAAAAQCjiilsAAAAAAAAACDI0bgEAAAAAAAAgyNC4BQAAAAAAAIAgQ+MWAAAAAAAAAIIMjVsAAAAAAAAACDI0bgEAAAAAAAAgyORo43bcuHGqXbu28ufPr/z586tBgwb6/vvvPeuPHz+uXr16qXDhwoqNjdVNN92k3bt352DFAAAAAAAAAOC8HG3cli5dWsOHD9fixYu1aNEiNWvWTDfccINWrVolSXrooYf09ddf69NPP9WPP/6oHTt26MYbb8zJkgEAAAAAAADAceE5+eTXXXed1/1nn31W48aN04IFC1S6dGm9/fbb+uCDD9SsWTNJ0oQJE1StWjUtWLBA9evXz4mSAQAAAAAAAMBxQTPHbVpamj766CMdO3ZMDRo00OLFi3XixAldffXVnm0SExNVtmxZ/frrr2fNSUlJ0eHDh71uAAAAAAAAABBKcrxxu2LFCsXGxioyMlL33HOPpk6dqurVq2vXrl2KiIhQXFyc1/bFixfXrl27zpo3bNgwFShQwHMrU6aMw/8CAAAAAAAAAAisHG/cVq1aVUuXLtVvv/2me++9V126dNEff/zhd97AgQN16NAhz23r1q0BrBYAAAAAAAAAnJejc9xKUkREhCpVqiRJqlu3rv773//q5ZdfVocOHZSamqqDBw96XXW7e/duxcfHnzUvMjJSkZGRTpcNAAAAAAAAAI7J8StuT5eenq6UlBTVrVtXefLk0axZszzr1q5dqy1btqhBgwY5WCEAAAAAAAAAOCtHr7gdOHCgWrdurbJly+rIkSP64IMPNHfuXE2fPl0FChRQ9+7d1bdvXxUqVEj58+fX/fffrwYNGqh+/fo5WTYAAAAAAAAAOCpHG7d//fWXOnfurJ07d6pAgQKqXbu2pk+frubNm0uSXnrpJbndbt10001KSUlRy5YtNXbs2JwsGQAAAAAAAAAcl6ON27fffvuc66OiojRmzBiNGTMmmyoCAAAAAAAAgJwXdHPcAgAAAAAAAEBuR+MWAAAAAAAAAIIMjVsAAAAAAAAACDI0bgEAAAAAAAAgyNC4BQAAAAAAAIAgE57TBSDrEgZ869P2m4e3cSTbl1wAAAAAAAAAvuOKWwAAAAAAAAAIMjRuAQAAAAAAACDI0LgFAAAAAAAAgCBD4xYAAAAAAAAAggyNWwAAAAAAAAAIMjRuAQAAAAAAACDI0LgFAAAAAAAAgCBD4xYAAAAAAAAAggyNWwAAAAAAAAAIMjRuAQAAAAAAACDIhOd0AbiwJQz4Nsvbbh7eJiiygyHXyWxfxxkAAAAAAADZjytuAQAAAAAAACDI0LgFAAAAAAAAgCBD4xYAAAAAAAAAggyNWwAAAAAAAAAIMjRuAQAAAAAAACDI0LgFAAAAAAAAgCBD4xYAAAAAAAAAggyNWwAAAAAAAAAIMjRuAQAAAAAAACDI0LgFAAAAAAAAgCBD4xYAAAAAAAAAgkx4ThcAIHglDPjWp+03D2/jUCUAAAAAAAC5C1fcAgAAAAAAAECQoXELAAAAAAAAAEGGxi0AAAAAAAAABBkatwAAAAAAAAAQZGjcAgAAAAAAAECQoXELAAAAAAAAAEGGxi0AAAAAAAAABBkatwAAAAAAAAAQZGjcAgAAAAAAAECQoXELAAAAAAAAAEEmPKcLAJA7JQz4Nsvbbh7exsFKAAAAAAAAgg9X3AIAAAAAAABAkKFxCwAAAAAAAABBhsYtAAAAAAAAAAQZGrcAAAAAAAAAEGRo3AIAAAAAAABAkAnPykbLly/PcmDt2rX9LgYAAAAAAAAAkMXG7cUXXyyXyyUzk8vlOue2aWlpWX7yYcOGacqUKVqzZo3y5s2rhg0basSIEapatapnm6ZNm+rHH3/0elzPnj31+uuvZ/l5AAAAAAAAACCUZGmqhKSkJG3atElJSUn6/PPPVb58eY0dO1ZLlizRkiVLNHbsWFWsWFGff/65T0/+448/qlevXlqwYIFmzJihEydOqEWLFjp27JjXdnfffbd27tzpuY0cOdKn5wEAAAAAAACAUJKlK27LlSvn+f9bbrlFr7zyiq655hrPstq1a6tMmTIaNGiQ2rZtm+UnnzZtmtf9iRMnqlixYlq8eLEaN27sWR4dHa34+Pgs5wIAAAAAAABAKPP5y8lWrFih8uXLZ1pevnx5/fHHH+dVzKFDhyRJhQoV8lo+efJkFSlSRDVr1tTAgQOVnJx81oyUlBQdPnzY6wYAAAAAAAAAoSRLV9yeqlq1aho2bJjeeustRURESJJSU1M1bNgwVatWze9C0tPT9eCDD6pRo0aqWbOmZ/ltt92mcuXKqWTJklq+fLkeffRRrV27VlOmTDljzrBhwzRkyBC/6wAQ2hIGfJvlbTcPbxM02QAAAAAAAKfyuXH7+uuv67rrrlPp0qVVu3ZtSdLy5cvlcrn09ddf+11Ir169tHLlSs2bN89reY8ePTz/X6tWLZUoUUJXXXWVNm7cqIoVK2bKGThwoPr27eu5f/jwYZUpU8bvugAAAAAAAAAgu/ncuL388su1adMmTZ48WWvWrJEkdejQQbfddptiYmL8KqJ379765ptv9NNPP6l06dLn3LZevXqSpA0bNpyxcRsZGanIyEi/6gAAAAAAAACAYOBz41aSYmJivK6E9ZeZ6f7779fUqVM1d+7cM86de7qlS5dKkkqUKHHezw8AAAAAAAAAwcjnLyeTpPfee09XXHGFSpYsqT///FOS9NJLL+nLL7/0KadXr156//339cEHHyhfvnzatWuXdu3apb///luStHHjRj399NNavHixNm/erK+++kqdO3dW48aNPdM0AAAAAAAAAMCFxufG7bhx49S3b1+1bt1aBw4cUFpamiSpYMGCGj16tM9Zhw4dUtOmTVWiRAnP7eOPP5YkRUREaObMmWrRooUSExP18MMP66abbjqvuXQBAAAAAAAAINj5PFXCq6++qjfffFNt27bV8OHDPcsvvfRSPfLIIz5lmdk515cpU0Y//vijryUCAAAAAAAAQEjz+YrbpKQk1alTJ9PyyMhIHTt2LCBFAQAAAAAAAEBu5nPjtnz58p4vCDvVtGnTVK1atUDUBAAAAAAAAAC5ms9TJfTt21e9evXS8ePHZWZauHChPvzwQw0bNkxvvfWWEzUCAAAAAAAAQK7ic+P2rrvuUt68efXEE08oOTlZt912m0qWLKmXX35Zt956qxM1AgAAAAAAAECu4nPjVpI6deqkTp06KTk5WUePHlWxYsUCXRcAAAAAAAAA5Fo+N26TkpJ08uRJVa5cWdHR0YqOjpYkrV+/Xnny5FFCQkKgawSAC1rCgG+zvO3m4W0crAQAAAAAAAQLn7+crGvXrpo/f36m5b/99pu6du0aiJoAAAAAAAAAIFfzuXG7ZMkSNWrUKNPy+vXra+nSpYGoCQAAAAAAAAByNZ8bty6XS0eOHMm0/NChQ0pLSwtIUQAAAAAAAACQm/ncuG3cuLGGDRvm1aRNS0vTsGHDdMUVVwS0OAAAAAAAAADIjXz+crIRI0aocePGqlq1qq688kpJ0s8//6zDhw9r9uzZAS8QAAAAAAAAAHIbn6+4rV69upYvX6727dvrr7/+0pEjR9S5c2etWbNGNWvWdKJGAAAAAAAAAMhVfL7iVpJKliyp5557LtC1AAAAAAAAAADkZ+NWkpKTk7VlyxalpqZ6La9du/Z5FwUAAAAAAAAAuZnPjds9e/aoW7du+v7778+4/tQvLQMAAAAAAAAA+M7nOW4ffPBBHTx4UL/99pvy5s2radOmadKkSapcubK++uorJ2oEAAAAAAAAgFzF5ytuZ8+erS+//FKXXnqp3G63ypUrp+bNmyt//vwaNmyY2rRp40SdAAAAAAAAAJBr+HzF7bFjx1SsWDFJUsGCBbVnzx5JUq1atfT7778HtjoAAAAAAAAAyIV8btxWrVpVa9eulSRddNFFGj9+vLZv367XX39dJUqUCHiBAAAAAAAAAJDb+DxVQp8+fbRz505J0uDBg9WqVStNnjxZERERmjhxYqDrAwAAAAAAAIBcx+fG7e233+75/7p16+rPP//UmjVrVLZsWRUpUiSgxQEAAAAAAABAbuRz4/Z00dHRuuSSSwJRCwAAAAAAAABAWWzc9u3bN8uBL774ot/FAAAAAAAAAACy2LhdsmRJlsJcLtd5FQMAAAAAAAAAyGLjds6cOU7XAQAAAAAAAAD4f+7zefDWrVu1devWQNUCAAAAAAAAAJAfjduTJ09q0KBBKlCggBISEpSQkKACBQroiSee0IkTJ5yoEQAAAAAAAABylSxNlXCq+++/X1OmTNHIkSPVoEEDSdKvv/6qp556Svv27dO4ceMCXiQAAAAAAAAA5CY+N24/+OADffTRR2rdurVnWe3atVWmTBl17NiRxi0ABImEAd/6tP3m4W0cqgQAAAAAAPjK56kSIiMjlZCQkGl5+fLlFREREYiaAAAAAAAAACBX87lx27t3bz399NNKSUnxLEtJSdGzzz6r3r17B7Q4AAAAAAAAAMiNfJ4qYcmSJZo1a5ZKly6tiy66SJK0bNkypaam6qqrrtKNN97o2XbKlCmBqxQAAAAAAAAAcgmfG7dxcXG66aabvJaVKVMmYAUBAAAAAAAAQG7nc+N2woQJTtQBAAAAAAAAAPh/Ps9xK0knT57UzJkzNX78eB05ckSStGPHDh09ejSgxQEAAAAAAABAbuTzFbd//vmnWrVqpS1btiglJUXNmzdXvnz5NGLECKWkpOj11193ok4AAAAAAAAAyDV8vuK2T58+uvTSS3XgwAHlzZvXs7xdu3aaNWtWQIsDAAAAAAAAgNzI5ytuf/75Z82fP18RERFeyxMSErR9+/aAFQYAAAAAAAAAuZXPV9ymp6crLS0t0/Jt27YpX758ASkKAAAAAAAAAHIznxu3LVq00OjRoz33XS6Xjh49qsGDB+uaa64JZG0AAAAAAAAAkCv5PFXCCy+8oJYtW6p69eo6fvy4brvtNq1fv15FihTRhx9+6ESNAAAAAAAAAJCr+Ny4LV26tJYtW6aPP/5Yy5Yt09GjR9W9e3d16tTJ68vKAAAAAAAAAAD+8blxK0nh4eHq1KmTOnXq5Fm2c+dO9evXT6+99lrAigMAAAAAAACA3Minxu2qVas0Z84cRUREqH379oqLi9PevXv17LPP6vXXX1eFChWcqhMAAAAAAAAAco0sfznZV199pTp16uiBBx7QPffco0svvVRz5sxRtWrVtHr1ak2dOlWrVq1yslYAAAAAAAAAyBWy3Lh95pln1KtXLx0+fFgvvviiNm3apAceeEDfffedpk2bplatWjlZJwAAAAAAAADkGllu3K5du1a9evVSbGys7r//frndbr300ku67LLL/H7yYcOG6bLLLlO+fPlUrFgxtW3bVmvXrvXa5vjx4+rVq5cKFy6s2NhY3XTTTdq9e7ffzwkAAAAAAAAAwS7LjdsjR44of/78kqSwsDDlzZv3vOe0/fHHH9WrVy8tWLBAM2bM0IkTJ9SiRQsdO3bMs81DDz2kr7/+Wp9++ql+/PFH7dixQzfeeON5PS8AAAAAAAAABDOfvpxs+vTpKlCggCQpPT1ds2bN0sqVK722uf7667OcN23aNK/7EydOVLFixbR48WI1btxYhw4d0ttvv60PPvhAzZo1kyRNmDBB1apV04IFC1S/fn1fygcAAAAAAACAkOBT47ZLly5e93v27Ol13+VyKS0tze9iDh06JEkqVKiQJGnx4sU6ceKErr76as82iYmJKlu2rH799dczNm5TUlKUkpLiuX/48GG/6wEAAAAAAACAnJDlxm16erqTdSg9PV0PPvigGjVqpJo1a0qSdu3apYiICMXFxXltW7x4ce3ateuMOcOGDdOQIUMcrRUAcruEAd9medvNw9s4kutrNgAAAAAAoSTLc9w6rVevXlq5cqU++uij88oZOHCgDh065Llt3bo1QBUCAAAAAAAAQPbwaaoEp/Tu3VvffPONfvrpJ5UuXdqzPD4+XqmpqTp48KDXVbe7d+9WfHz8GbMiIyMVGRnpdMkAAAAAAAAA4JgcveLWzNS7d29NnTpVs2fPVvny5b3W161bV3ny5NGsWbM8y9auXastW7aoQYMG2V0uAAAAAAAAAGSLHL3itlevXvrggw/05ZdfKl++fJ55awsUKKC8efOqQIEC6t69u/r27atChQopf/78uv/++9WgQYMzfjEZAAAAAAAAAFwIcrRxO27cOElS06ZNvZZPmDBBXbt2lSS99NJLcrvduummm5SSkqKWLVtq7Nix2VwpAAAAAAAAAGQfnxu3W7dulcvl8sxFu3DhQn3wwQeqXr26evTo4VOWmf3rNlFRURozZozGjBnja6kAAAAAAAAAEJJ8nuP2tttu05w5cyRJu3btUvPmzbVw4UI9/vjjGjp0aMALBAAAAAAAAIDcxufG7cqVK3X55ZdLkj755BPVrFlT8+fP1+TJkzVx4sRA1wcAAAAAAAAAuY7PjdsTJ04oMjJSkjRz5kxdf/31kqTExETt3LkzsNUBAAAAAAAAQC7kc+O2Ro0aev311/Xzzz9rxowZatWqlSRpx44dKly4cMALBAAAAAAAAIDcxufG7YgRIzR+/Hg1bdpUHTt21EUXXSRJ+uqrrzxTKAAAAAAAAAAA/Bfuy8ZmpgoVKmjLli06efKkChYs6FnXo0cPRUdHB7xAAAAAAAAAAMhtfLri1sxUqVIl7dq1y6tpK0kJCQkqVqxYQIsDAAAAAAAAgNzIp8at2+1W5cqVtW/fPqfqAQAAAAAAAIBcz+c5bocPH65+/fpp5cqVTtQDAAAAAAAAALmeT3PcSlLnzp2VnJysiy66SBEREcqbN6/X+v379wesOAAAAAAAAADIjXxu3I4ePdqBMgAAAAAAAAAAGXxu3Hbp0sWJOgAAAAAAAAAA/8/nOW4laePGjXriiSfUsWNH/fXXX5Kk77//XqtWrQpocQAAAAAAAACQG/ncuP3xxx9Vq1Yt/fbbb5oyZYqOHj0qSVq2bJkGDx4c8AIBAAAAAAAAILfxuXE7YMAAPfPMM5oxY4YiIiI8y5s1a6YFCxYEtDgAAAAAAAAAyI18btyuWLFC7dq1y7S8WLFi2rt3b0CKAgAAAAAAAIDczOfGbVxcnHbu3Jlp+ZIlS1SqVKmAFAUAAAAAAAAAuZnPjdtbb71Vjz76qHbt2iWXy6X09HT98ssveuSRR9S5c2cnagQAAAAAAACAXMXnxu1zzz2nxMRElSlTRkePHlX16tXVuHFjNWzYUE888YQTNQIAAAAAAABArhLu6wMiIiL05ptvatCgQVq5cqWOHj2qOnXqqHLlyk7UBwAAAAAAAAC5js+N2wxly5ZV2bJlA1kLAAAAAAAAAEBZbNz27dtXTz/9tGJiYtS3b99zbvviiy8GpDAAAAAAAAAAyK2y1LhdsmSJTpw44fn/s3G5XIGpCgAAAAAAAABysSw1bufMmXPG/wcAAAAAAAAABJ47pwsAAAAAAAAAAHjL0hW3N954Y5YDp0yZ4ncxAAAAAAAAAIAsNm4LFCjgdB0AAAAAAAAAgP+XpcbthAkTnK4DAABHJQz4Nsvbbh7exsFKAAAAAAD4dz7PcdusWTMdPHgw0/LDhw+rWbNmgagJAAAAAAAAAHI1nxu3c+fOVWpqaqblx48f188//xyQogAAAAAAAAAgN8vSVAmStHz5cs////HHH9q1a5fnflpamqZNm6ZSpUoFtjoAAAAAAAAAyIWy3Li9+OKL5XK55HK5zjglQt68efXqq68GtDgAAAAAAAAAyI2y3LhNSkqSmalChQpauHChihYt6lkXERGhYsWKKSwszJEiAQAAAAAAACA3yXLjtly5cpKk9PR0x4oBAAAAAAAAAPjQuM3w7rvvnnN9586d/S4GAAAAAAAAAOBH47ZPnz5e90+cOKHk5GRFREQoOjqaxi0AAAAAAAAAnCe3rw84cOCA1+3o0aNau3atrrjiCn344YdO1AgAAAAAAAAAuYrPjdszqVy5soYPH57palwAAAAAAAAAgO8C0riVpPDwcO3YsSNQcQAAAAAAAACQa/k8x+1XX33ldd/MtHPnTr322mtq1KhRwAoDAAAAAAAAgNzK58Zt27Ztve67XC4VLVpUzZo10wsvvBCougAAAAAAAAAg1/K5cZuenu5EHQAAAAAAAACA/+f3HLd79+7V3r17A1kLAAAAAAAAAEA+Nm4PHjyoXr16qUiRIipevLiKFy+uIkWKqHfv3jp48KBDJQIAAAAAAABA7pLlqRL279+vBg0aaPv27erUqZOqVasmSfrjjz80ceJEzZo1S/Pnz1fBggUdKxYAAAAAAAAAcoMsN26HDh2qiIgIbdy4UcWLF8+0rkWLFho6dKheeumlgBcJAAAAAAAAALlJlqdK+OKLL/T8889natpKUnx8vEaOHKmpU6f69OQ//fSTrrvuOpUsWVIul0tffPGF1/quXbvK5XJ53Vq1auXTcwAAAAAAAABAqMly43bnzp2qUaPGWdfXrFlTu3bt8unJjx07posuukhjxow56zatWrXSzp07PbcPP/zQp+cAAAAAAAAAgFCT5akSihQpos2bN6t06dJnXJ+UlKRChQr59OStW7dW69atz7lNZGSk4uPjfcoFAAAAAAAAgFCW5StuW7Zsqccff1ypqamZ1qWkpGjQoEGOTGMwd+5cFStWTFWrVtW9996rffv2nXP7lJQUHT582OsGAAAAAAAAAKHEpy8nu/TSS1W5cmX16tVLiYmJMjOtXr1aY8eOVUpKit57772AFteqVSvdeOONKl++vDZu3KjHHntMrVu31q+//qqwsLAzPmbYsGEaMmRIQOsAAOBsEgZ8m+VtNw9v42AlAAAAAIALSZYbt6VLl9avv/6q++67TwMHDpSZSZJcLpeaN2+u1157TWXKlAlocbfeeqvn/2vVqqXatWurYsWKmjt3rq666qozPmbgwIHq27ev5/7hw4cDXhcAAAAAAAAAOCnLjVtJKl++vL7//nsdOHBA69evlyRVqlTJ57lt/VWhQgUVKVJEGzZsOGvjNjIyUpGRkdlSDwAAAAAAAAA4wafGbYaCBQvq8ssvD3Qt/2rbtm3at2+fSpQoke3PDQAAAAAAAADZxa/GbaAcPXpUGzZs8NxPSkrS0qVLVahQIRUqVEhDhgzRTTfdpPj4eG3cuFH9+/dXpUqV1LJlyxysGgAAAAAAAACclaON20WLFuk///mP537G3LRdunTRuHHjtHz5ck2aNEkHDx5UyZIl1aJFCz399NNMhQAAAAAAAADggpajjdumTZt6vuTsTKZPn56N1QAAAAAAAABAcHBnZaNLLrlEBw4ckCQNHTpUycnJjhYFAAAAAAAAALlZlhq3q1ev1rFjxyRJQ4YM0dGjRx0tCgAAAAAAAABysyxNlXDxxRerW7duuuKKK2Rmev755xUbG3vGbZ988smAFggAAAAAAAAAuU2WGrcTJ07U4MGD9c0338jlcun7779XeHjmh7pcLhq3AAAAAAAAAHCestS4rVq1qj766CNJktvt1qxZs1SsWDFHCwMAAAAAAACA3CpLjdtTpaenO1EHAAA4TcKAb7O87ebhbXI8FwAAAAAQOD43biVp48aNGj16tFavXi1Jql69uvr06aOKFSsGtDgAAAAAAAAAyI3cvj5g+vTpql69uhYuXKjatWurdu3a+u2331SjRg3NmDHDiRoBAAAAAAAAIFfx+YrbAQMG6KGHHtLw4cMzLX/00UfVvHnzgBUHAAAAAAAAALmRz1fcrl69Wt27d8+0/M4779Qff/wRkKIAAAAAAAAAIDfzuXFbtGhRLV26NNPypUuXqlixYoGoCQAAAAAAAAByNZ+nSrj77rvVo0cPbdq0SQ0bNpQk/fLLLxoxYoT69u0b8AIBAAAAAAAAILfxuXE7aNAg5cuXTy+88IIGDhwoSSpZsqSeeuopPfDAAwEvEAAAAAAAAAByG58bty6XSw899JAeeughHTlyRJKUL1++gBcGAAAAAAAAALmVz43bU9GwBQAAAAAAAIDA8/nLyQAAAAAAAAAAzjqvK24BAAAyJAz41qftNw9v41AlAAAAABD6uOIWAAAAAAAAAIKMT43bEydO6KqrrtL69eudqgcAAAAAAAAAcj2fGrd58uTR8uXLnaoFAAAAAAAAACA/pkq4/fbb9fbbbztRCwAAAAAAAABAfnw52cmTJ/XOO+9o5syZqlu3rmJiYrzWv/jiiwErDgAAAAAAAAByI58btytXrtQll1wiSVq3bp3XOpfLFZiqAAAAAAAAACAX87lxO2fOHCfqAAAAAAAAAAD8P5/nuM2wYcMGTZ8+XX///bckycwCVhQAAAAAAAAA5GY+N2737dunq666SlWqVNE111yjnTt3SpK6d++uhx9+OOAFAgAAAAAAAEBu43Pj9qGHHlKePHm0ZcsWRUdHe5Z36NBB06ZNC2hxAAAAAAAAAJAb+TzH7Q8//KDp06erdOnSXssrV66sP//8M2CFAQAAZEgY8G2Wt908vI0jub5mAwAAAMD58PmK22PHjnldaZth//79ioyMDEhRAAAAAAAAAJCb+dy4vfLKK/Xuu+967rtcLqWnp2vkyJH6z3/+E9DiAAAAAAAAACA38nmqhJEjR+qqq67SokWLlJqaqv79+2vVqlXav3+/fvnlFydqBAAAAAAAAIBcxecrbmvWrKl169bpiiuu0A033KBjx47pxhtv1JIlS1SxYkUnagQAAAAAAACAXMXnK24lqUCBAnr88ccDXQsAAAAAAAAAQH42bg8cOKC3335bq1evliRVr15d3bp1U6FChQJaHAAAAAAAAADkRj5PlfDTTz8pISFBr7zyig4cOKADBw7olVdeUfny5fXTTz85USMAAAAAAAAA5Co+X3Hbq1cvdejQQePGjVNYWJgkKS0tTffdd5969eqlFStWBLxIAAAAAAAAAMhNfL7idsOGDXr44Yc9TVtJCgsLU9++fbVhw4aAFgcAAAAAAAAAuZHPjdtLLrnEM7ftqVavXq2LLrooIEUBAAAAAAAAQG6WpakSli9f7vn/Bx54QH369NGGDRtUv359SdKCBQs0ZswYDR8+3JkqAQAAAAAAACAXyVLj9uKLL5bL5ZKZeZb1798/03a33XabOnToELjqAAAAQlTCgG+zvO3m4W1yPNfpbAAAAAC+yVLjNikpyek6AAAAAAAAAAD/L0uN23LlyjldBwAAAAAAAADg/2WpcXu6HTt2aN68efrrr7+Unp7ute6BBx4ISGEAAAAAAAAAkFv53LidOHGievbsqYiICBUuXFgul8uzzuVy0bgFAAAAAAAAgPPkc+N20KBBevLJJzVw4EC53W4nagIAAAAAAACAXM3nzmtycrJuvfVWmrYAAAAAAAAA4BCfu6/du3fXp59+GpAn/+mnn3TdddepZMmScrlc+uKLL7zWm5mefPJJlShRQnnz5tXVV1+t9evXB+S5AQAAAAAAACBY+TxVwrBhw3Tttddq2rRpqlWrlvLkyeO1/sUXX8xy1rFjx3TRRRfpzjvv1I033php/ciRI/XKK69o0qRJKl++vAYNGqSWLVvqjz/+UFRUlK+lAwAAAAAAAEBI8KtxO336dFWtWlWSMn05mS9at26t1q1bn3GdmWn06NF64okndMMNN0iS3n33XRUvXlxffPGFbr31Vl9LBwAAAAAAAICQ4HPj9oUXXtA777yjrl27OlDO/yQlJWnXrl26+uqrPcsKFCigevXq6ddffz1r4zYlJUUpKSme+4cPH3a0TgAAAAAAAAAINJ8bt5GRkWrUqJETtXjZtWuXJKl48eJey4sXL+5ZdybDhg3TkCFDHK0NAAAAWZcw4Nssb7t5eBtHcp3M9iUXAAAAyCqfv5ysT58+evXVV52oJSAGDhyoQ4cOeW5bt27N6ZIAAAAAAAAAwCc+X3G7cOFCzZ49W998841q1KiR6cvJpkyZEpDC4uPjJUm7d+9WiRIlPMt3796tiy+++KyPi4yMVGRkZEBqAAAAAAAAAICc4HPjNi4uTjfeeKMTtXgpX7684uPjNWvWLE+j9vDhw/rtt9907733Ov78AAAAAAAAAJBTfG7cTpgwIWBPfvToUW3YsMFzPykpSUuXLlWhQoVUtmxZPfjgg3rmmWdUuXJllS9fXoMGDVLJkiXVtm3bgNUAAAAAAAAAAMHG58ZtIC1atEj/+c9/PPf79u0rSerSpYsmTpyo/v3769ixY+rRo4cOHjyoK664QtOmTVNUVFROlQwAAAAAAAAAjvO5cVu+fHm5XK6zrt+0aVOWs5o2bSozO+t6l8uloUOHaujQoT7VCAAAAAAAAAChzOfG7YMPPuh1/8SJE1qyZImmTZumfv36BaouAAAAAAAAAMi1fG7c9unT54zLx4wZo0WLFp13QQAAAAAAAACQ27kDFdS6dWt9/vnngYoDAAAAAAAAgFwrYI3bzz77TIUKFQpUHAAAAAAAAADkWj5PlVCnTh2vLyczM+3atUt79uzR2LFjA1ocAAAAAAAAAORGPjdu27Zt63Xf7XaraNGiatq0qRITEwNVFwAAAHDBSRjwbZa33Ty8TdBkAwAAIPv53LgdPHiwE3UAAAAAAAAAAP5fwOa4BQAAAAAAAAAERpavuHW73V5z256Jy+XSyZMnz7soAAAAAAAAAMjNsty4nTp16lnX/frrr3rllVeUnp4ekKIAAAAAAAAAIDfLcuP2hhtuyLRs7dq1GjBggL7++mt16tRJQ4cODWhxAAAAAAAAAJAb+TXH7Y4dO3T33XerVq1aOnnypJYuXapJkyapXLlyga4PAAAAAAAAAHIdnxq3hw4d0qOPPqpKlSpp1apVmjVrlr7++mvVrFnTqfoAAAAAAAAAINfJ8lQJI0eO1IgRIxQfH68PP/zwjFMnAAAAAAAAAADOX5YbtwMGDFDevHlVqVIlTZo0SZMmTTrjdlOmTAlYcQAAAAAAAACQG2W5cdu5c2e5XC4nawEAAAAAAAAAyIfG7cSJEx0sAwAAAEAwShjwbZa33Ty8jYOVAAAA5C4+fTkZAAAAAAAAAMB5NG4BAAAAAAAAIMjQuAUAAAAAAACAIEPjFgAAAAAAAACCDI1bAAAAAAAAAAgyNG4BAAAAAAAAIMjQuAUAAAAAAACAIEPjFgAAAAAAAACCDI1bAAAAAAAAAAgyNG4BAAAAAAAAIMjQuAUAAAAAAACAIEPjFgAAAAAAAACCDI1bAAAAAAAAAAgyNG4BAAAAAAAAIMjQuAUAAAAAAACAIEPjFgAAAAAAAACCDI1bAAAAAAAAAAgyNG4BAAAAAAAAIMjQuAUAAAAAAACAIEPjFgAAAAAAAACCDI1bAAAAAAAAAAgyNG4BAAAAAAAAIMiE53QBAAAAAHKnhAHfZnnbzcPbhFSur9kAAACn44pbAAAAAAAAAAgyNG4BAAAAAAAAIMjQuAUAAAAAAACAIEPjFgAAAAAAAACCDI1bAAAAAAAAAAgyNG4BAAAAAAAAIMgEdeP2qaeeksvl8rolJibmdFkAAAAAAAAA4KjwnC7g39SoUUMzZ8703A8PD/qSAQAAAAAAAOC8BH0XNDw8XPHx8TldBgAAAAAAAABkm6CeKkGS1q9fr5IlS6pChQrq1KmTtmzZcs7tU1JSdPjwYa8bAAAAAAAAAISSoL7itl69epo4caKqVq2qnTt3asiQIbryyiu1cuVK5cuX74yPGTZsmIYMGZLNlQIAAACA/xIGfJvlbTcPb5PjuU5mU7N/ub5mAwCCX1Bfcdu6dWvdcsstql27tlq2bKnvvvtOBw8e1CeffHLWxwwcOFCHDh3y3LZu3ZqNFQMAAAAAAADA+QvqK25PFxcXpypVqmjDhg1n3SYyMlKRkZHZWBUAAAAAAAAABFZQX3F7uqNHj2rjxo0qUaJETpcCAAAAAAAAAI4J6sbtI488oh9//FGbN2/W/Pnz1a5dO4WFhaljx445XRoAAAAAAAAAOCaop0rYtm2bOnbsqH379qlo0aK64oortGDBAhUtWjSnSwMAAAAAAAAAxwR14/ajjz7K6RIAAAAAAAAAINsF9VQJAAAAAAAAAJAb0bgFAAAAAAAAgCBD4xYAAAAAAAAAggyNWwAAAAAAAAAIMjRuAQAAAAAAACDIhOd0AQAAAAAAIHslDPg2y9tuHt4mx3OdzHayZgA4H1xxCwAAAAAAAABBhsYtAAAAAAAAAAQZGrcAAAAAAAAAEGRo3AIAAAAAAABAkKFxCwAAAAAAAABBhsYtAAAAAAAAAAQZGrcAAAAAAAAAEGRo3AIAAAAAAABAkKFxCwAAAAAAAABBhsYtAAAAAAAAAASZ8JwuAAAAAAAA4EKUMODbLG+7eXibkMr1NRuA77jiFgAAAAAAAACCDI1bAAAAAAAAAAgyNG4BAAAAAAAAIMjQuAUAAAAAAACAIEPjFgAAAAAAAACCDI1bAAAAAAAAAAgyNG4BAAAAAAAAIMjQuAUAAAAAAACAIEPjFgAAAAAAAACCDI1bAAAAAAAAAAgy4TldAAAAAAAAAC5sCQO+zfK2m4e3yfFcJ7ODIdfJ7GCp+ULAFbcAAAAAAAAAEGRo3AIAAAAAAABAkKFxCwAAAAAAAABBhsYtAAAAAAAAAAQZGrcAAAAAAAAAEGRo3AIAAAAAAABAkKFxCwAAAAAAAABBhsYtAAAAAAAAAAQZGrcAAAAAAAAAEGRo3AIAAAAAAABAkKFxCwAAAAAAAABBJjynCwAAAAAAAACAQEoY8G2Wt908vE2O554JV9wCAAAAAAAAQJChcQsAAAAAAAAAQYbGLQAAAAAAAAAEGRq3AAAAAAAAABBkaNwCAAAAAAAAQJChcQsAAAAAAAAAQSYkGrdjxoxRQkKCoqKiVK9ePS1cuDCnSwIAAAAAAAAAxwR94/bjjz9W3759NXjwYP3++++66KKL1LJlS/311185XRoAAAAAAAAAOCLoG7cvvvii7r77bnXr1k3Vq1fX66+/rujoaL3zzjs5XRoAAAAAAAAAOCI8pws4l9TUVC1evFgDBw70LHO73br66qv166+/nvExKSkpSklJ8dw/dOiQJOnw4cOZtk1PSc5yLWd6/NkEQ66T2cGQ62R2MOQ6mU3N/uU6mR0MuU5mU7N/uU5mB0Ouk9nU7F+uk9nBkOtkdjDkOplNzf7lOpkdDLlOZlOzf7lOZgdDrpPZ1OxfrpPZwZDrZHYw5DqZTc3nzs1YZmb/+niXZWWrHLJjxw6VKlVK8+fPV4MGDTzL+/fvrx9//FG//fZbpsc89dRTGjJkSHaWCQAAAAAAAABZtnXrVpUuXfqc2wT1Fbf+GDhwoPr27eu5n56erv3796tw4cJyuVznfOzhw4dVpkwZbd26Vfnz5w9oXU5lh1quk9nUnD3ZoZbrZDY1O5/rZDY1Z092qOU6mU3N2ZMdarlOZlNz9mSHWq6T2dScPdmhlutkNjVnT3ao5TqZTc3Zkx1qub5mm5mOHDmikiVL/mtuUDduixQporCwMO3evdtr+e7duxUfH3/Gx0RGRioyMtJrWVxcnE/Pmz9//oC/gE5nh1quk9nUnD3ZoZbrZDY1O5/rZDY1Z092qOU6mU3N2ZMdarlOZlNz9mSHWq6T2dScPdmhlutkNjVnT3ao5TqZTc3Zkx1qub5kFyhQIEt5Qf3lZBEREapbt65mzZrlWZaenq5Zs2Z5TZ0AAAAAAAAAABeSoL7iVpL69u2rLl266NJLL9Xll1+u0aNH69ixY+rWrVtOlwYAAAAAAAAAjgj6xm2HDh20Z88ePfnkk9q1a5cuvvhiTZs2TcWLFw/4c0VGRmrw4MGZploI5uxQy3Uym5qzJzvUcp3Mpmbnc53MpubsyQ61XCezqTl7skMt18lsas6e7FDLdTKbmrMnO9Ryncym5uzJDrVcJ7OpOXuyQy3XyWyXmVlAEwEAAAAAAAAA5yWo57gFAAAAAAAAgNyIxi0AAAAAAAAABBkatwAAAAAAAAAQZGjcAgAAAAAAAECQoXELAAAAAAAAAEGGxi0AAAAABJGUlBSlpKTkdBkXrLS0NK/7Cxcu1IIFCwI+5uvXr9esWbO0YcOGgOSlpaVp9+7d2rNnT0DyzmT37t3atWtXwHNTUlK0ceNG9uv/Z2aZ9sNgN3HiRB06dCiny8gxhw4d0tq1a7V27VpHx2Hu3Ln6+++/HctH6KFxK+nkyZNatmyZpk+frunTp2vZsmU6ceKEo8+3ZcuWgOWdOHFC69evD+qD6KZNm/Tuu+9qxIgRGjVqlD7//HMdPnz4vDIXL14coOrO7eDBg3rzzTc1aNAgvfXWW46M8+7duwO6T2QYMmSI9u7dG/DcQPnrr780e/Zsz5ju3r1bI0eO1PDhw7VixQpHnvPYsWP66aefzivj9JOs3377TT/99FPAjxvdunXTjh07ApK1a9cuffnllxo/frzGjx+vL7/80pGT8kCNQXbUe/LkSc2YMUNvv/22Zs6c6ffJs9PvsbS0NG3atEnp6emS/vnB55NPPtFHH32k3bt3B/S5ArnPnU0g3oOnClTN2fW+duIz24nPqYzX6eOPP9ann36qxYsXy8wCUO3/OHX+EsjxyInPqfPh1LmR0+dcTo6zk58ngT6/nTFjhq655hoVLFhQ0dHRio6OVsGCBXXNNddo5syZAanZKYEei3z58ql79+6aP39+AKuU/vzzT1166aWKjIxU69atdfjwYTVv3lz169dXw4YNVb16da1bt86v7GHDhmnWrFmSpAMHDujqq69W1apV1bx5c1WtWlWtW7fWwYMH/cr+9ttv1bhxY8XExKhkyZKKj49XXFyc7rjjDr9/hti/f79uvvlmlS1bVvfee6/S0tJ01113qUSJEipVqpQaNmyonTt3+pU9ceJE/frrr5Kk48ePq3v37oqJiVGVKlUUGxure+65x7EG7vmeZwT6fODkyZN64okn1KRJEw0ePFiSNGrUKMXGxio6OlpdunRRamqqX9m1atXS008/ra1bt/r1eF/16NHD0fPE1atXq0KFCn4/ftmyZXrmmWc0duzYTOfnhw8f1p133ulX7ltvvaXq1aurUKFCql69utf/v/32237XezYtWrTQ5s2bzyvjrbfeUpcuXTRhwgRJ0scff6xq1aqpQoUKnv3QHwsXLvR6j3zzzTdq0qSJSpUqpUsvvVTvvvvuedV9NsuWLVNYWJjPj/vrr7+87i9dulRdunRRo0aNdPPNN2vu3LnnVdd3332nu+66S/3799eaNWu81h04cEDNmjU7r3wPy8XS0tLs8ccft7i4OHO5XF63uLg4e+KJJywtLS3gz7t06VJzu91+PXbEiBGWnJxsZmYnT560hx9+2CIiIsztdlt4eLh169bNUlNTfc5NTU21fv36WcWKFe2yyy6zt99+22v9rl27/Kr56NGjdvPNN3vG1e12W3x8vIWFhVlsbKy99tprPmdmcLlcVrFiRXv22Wdt+/btfuecrl27dvbpp5+amdnKlSutSJEiVrRoUatXr54VL17c4uPj7Y8//vAr+/Dhw9apUycrW7asde7c2VJSUuy+++7zjE3jxo3t0KFDPuceOnQo0+3gwYOWJ08e++233zzL/DVmzBi76qqr7JZbbrGZM2d6rduzZ4+VL1/e58w5c+ZYTEyMuVwui4+Pt6VLl1rp0qWtcuXKVrVqVYuMjLTp06f7XfPZnM/7b8eOHdaoUSMLCwuzxo0b2/79+61Nmzae/btKlSq2Y8cOn3OXLVt2xluePHls6tSpnvv+OHr0qHXq1MnCwsIsPDzcihUrZsWKFbPw8HALCwuz22+/3Y4dO+Zz7scff2wpKSme+6+++qqVLVvW3G63FS5c2IYMGRJU9ZqZ9e7d277++mszM9u6daslJiZaWFiYFS9e3MLCwqxWrVq2bds2n3Pdbrc1a9bMJk+ebMePH/ertrNZtmyZlShRwtxut9WsWdO2bNliNWvWtJiYGIuNjbWCBQvawoUL/cp1ap/7N/6+B52q2an3tZlzn9lOfk6lpaVZv379LDo62txut7ndbs9YlCtXzr766iu/cp0aCzPnxsOpzymnzrnMnDs3cirXzLlxdvLzxInz24kTJ1p4eLjdeuutNmHCBPvuu+/su+++swkTJljHjh0tT5489u677/pVr5P7nFPn+i6Xy2rUqGEul8sSExPt+eeft7/++suvrFPddNNN1qRJE/v666+tffv21qhRI2vatKlt27bNduzYYS1btrS2bdv6lV26dGn7/fffzczsrrvusjp16tjvv/9uf//9ty1dutTq169v3bt39zn33XfftXz58tnDDz9sjz/+uMXHx9uAAQNs3Lhx1qRJEytSpIitW7fO59w777zTatasaa+++qo1adLEbrjhBqtdu7bNmzfP5s+fb5dddpl17tzZ51wzs/Lly9uCBQvMzOyRRx6xhIQEmzJliq1evdq++OILq1KlivXr18+v7H/j73mGU+cDTzzxhBUvXtz69u1r1atXt3vuucfKlClj77//vk2aNMlKlSplI0aM8DnX7J/3SeHChS0sLMxatmxpn332mZ04ccKvrFMVLFjwjDeXy2UFChTw3A+08/k5bfr06RYREWE1atSwsmXLWuHChW327Nme9f4e50aOHGnR0dE2YMAAmzNnjv3xxx/2xx9/2Jw5c2zgwIEWExNjo0aN8qvmOnXqnPHmcrmsWrVqnvu+eumllywmJsZuvPFGK1GihD3zzDNWuHBhe+aZZ2zIkCGWP39+Gz9+vF81u91u2717t5mZffXVV+Z2u61z5842ZswYu+uuuyw8PNymTJniV/a5LF261Fwul8+PO7XeX375xfLkyWNNmjSxfv36WfPmzS08PNx+/PFHv2qaPHmyhYWFWZs2beyKK66wqKgoe//99z3rz+ez9XS5unHbr18/K1q0qL3++uuWlJRkycnJlpycbElJSTZ+/HgrVqyY9e/fP+DPez4HpFN3vFGjRlnBggXtnXfesVWrVtn7779vxYoV8+vAP3jwYCtevLiNGjXKHn/8cStQoID16NHDs37Xrl1+vVF69OhhjRo1shUrVtj69evt5ptvtv79+9uxY8fs7bfftujoaJs8ebLPuWb/fFDdfffdnpPwNm3a2NSpU+3kyZN+5WUoWLCgrV692szMWrdubbfddpunQZWammrdu3e3Fi1a+JXdu3dvS0xMtFdeecWaNm1qN9xwg9WsWdPmzZtnP/74o1WvXt0ee+wxn3Mzfrg+/ZZxAp3xX3+8/PLLFh0dbb169bLbb7/dIiIi7LnnnvOs9/eAdMUVV1ivXr3syJEjNmrUKCtVqpT16tXLs/6RRx6xhg0b+lXzuZzP+++OO+6whg0b2ldffWUdOnSwhg0b2pVXXmnbtm2zP//80xo1auT1b8iqU1+n02/n+/p1797dKleubNOmTfN6b5w8edKmT59uVapUsbvuusvn3FOPRe+8845FRUXZk08+ad9++60988wzFhMTY2+++WbQ1GtmVrx4cVuxYoWZmbVv396uvvpq27Nnj5mZ7du3z6699lq7+eabfc51uVzWqlUri4iIsIIFC1rv3r1tyZIlftV4upYtW9rNN99sK1assD59+li1atXslltusdTUVDtx4oTdfvvtdvXVV/tVs1P73L/x9z3oVM1Ova/NnPvMdvJz6tFHH7Vq1arZ119/bTNmzLDGjRvbiBEjbPXq1TZo0CC/m2hOjYWZc+Ph1OeUU+dcZs6dGzmVa+bcODv5eeLE+W3lypXP2eQcM2aMVapUya96ndznnDrXd7lctnv3blu6dKn17t3bChUqZBEREXbjjTfad999Z+np6X7VW7RoUc9n9MGDB83lctnPP//sWb948WIrXry4X9mRkZG2efNmMzNLSEjI1AxYtGiRlShRwufcxMRE++ijjzz3//vf/1rp0qU9Y9ChQwdr166dz7klSpSwX375xcz+tw/88MMPnvXz5s2zUqVK+Zxr9s9Y/Pnnn2ZmVqVKFfv++++91v/4449WtmxZv7L/jb/nGU6dD1SoUMFz4cD69evN7XZ7vZ4ff/yx1axZ0+dcs3/eJ9u3b7epU6faddddZ+Hh4Va0aFF7+OGH/f4FrplZbGystWnTxiZOnOi5TZgwwcLCwuzZZ5/1LPPVQw89dM7b7bff7vf5Z4MGDTw/R6enp9uIESMsNjbWs+/5+zNr2bJl7eOPPz7r+o8++sjKlCnjV83h4eHWqlUre+qppzy3wYMHm9vttvvuu8+zzFeJiYme4+7vv/9u4eHh9tZbb3nWv/XWW1a3bl2/as44Npv98/k9YMAAr/XPPvus1a9f3+fcdu3anfPWrFkzv39+yKi3efPmduedd3qt79OnjzVr1sznXDOziy++2F5++WXP/Y8//thiYmI8Y03jNkCKFy9u06ZNO+v6adOmWbFixXzOPdtvTjJuiYmJ53UlRcaOV6dOnUy/KXn//fetRo0aPudWqlTJ84Fi9s+HSqVKlaxr166Wnp7u905XpEgRW7Rokef+/v37LSoqynOFw2uvvWYXX3yxz7lm/xuLEydO2GeffWbXXHON5+q5/v3729q1a/3KzZs3r23YsMHM/jmhyfjNeYa1a9dagQIF/MouU6aM5zd/27dvN5fL5TXu33zzjVWtWtXn3FKlSlmbNm1s9uzZNnfuXJs7d67NmTPHwsLCbMKECZ5l/qhevbrXCfcvv/xiRYsWtUGDBpmZ/wek/Pnze8b5xIkTFh4e7tXsWrdunV/jfLbfEGfc8ufP7/f7r0SJEvbrr7+a2T+NPpfL5XUF8qxZs6xChQo+51500UXWpk0bW716tW3evNk2b95sSUlJFh4ebjNmzPAs80dcXJznpPxM5s2bZ3FxcT7nnnosuvzyy23kyJFe68eOHevXb4idqtfMLCoqyjZt2mRm/1wV89tvv3mtX7FihRUpUsTn3Iyx2LNnjz3//PNWvXp1c7vddskll9jYsWPP62r3ggULek68k5OTLSwszKvulStXWuHChX3OdXKfc+o96FTNTr2vzZz7zHbyc6pEiRL2008/ee5v27bNYmNjPVeTDx061Bo0aOBzrlNjYebceDj1OeXUOZeZc+dGTuWaOTfOTn6eOHF+GxkZaWvWrDnr+jVr1lhUVJRf9Tq5zzl1rn/qMcPM7Pjx4/bBBx/YVVddZW6320qXLu05F/VFvnz5POcCaWlpFh4ebkuXLvWsX79+veXLl8/nXLN/GpTffPONmf1zxenp+9+SJUssf/78PufmzZvXkpKSvJaFh4d7rn7/7bff/NqXo6OjvT438+TJ4/kFt5nZpk2bLCYmxudcM7Ny5cp5fuYpVaqU/fe///Va/8cff/id7dR5hlPnA1FRUbZlyxav+xm/bDT7Z5z93edOf5/s2LHDnnvuOatcubK53W5r0KBBpivss2L9+vWeK66PHDniWR4eHm6rVq3yq1Yz85wfN23a9Iy3Sy+91O9j0amfJRkmT55sMTEx9vXXX/t9nIuKijpnE3zVqlWWN29en3PN/vkcqlixoj355JNef+l9vuOcN29ezy9OzP75fFm5cqXn/vr16/3+/Dt1nytWrJjX8d/sn88qf7LDw8OtdevW1rVr1zPerr/++vNu3J76Hs+Q8Zda/oiJifF8nmSYPXu2xcbG2rhx42jcBkp0dLQtX778rOuXLVvm1wdKZGSkdenSxes3J6feevbseV4n5Bl/JlS4cGGvD1ezfw780dHRPuee6YRg27ZtVqVKFevUqZNt377dr5rj4uK8/nQnNTXVwsPDPf+GdevW+X0SevoHVUbNQ4cOtQoVKpjb7bYrr7zS59x69erZG2+8YWb//HA5depUr/U//PCDxcfH+1VzZGSk1wd3dHS01w87mzdv9uv127dvn7Vt29b+85//eP2p9/ke9M3OvG+sWLHCihcvbgMGDDivpn7GB8ixY8fM7XZ7HUiXLVvm10E0OjraHn74Ya/fEJ96GzJkiN/vv9NPvGJiYmz9+vWe+3/++adfH9wpKSnWp08fq169ulfDIRCvX/78+TOdLJ9q4cKFfv0QceqxqEiRIl4/9JiZbdiwwa+TUKfqNTOrXbu25wqHatWq2YwZM7zWz58/3woVKuRz7pmORfPnz7c777zT8uXLZ9HR0XbHHXf4VfOpx9DU1FQLCwuzxYsXe9avXr3arz9Vc3Kfc+o96FTNTr2vzZz7zHbycypfvny2ceNGz/2MxsbOnTvN7J8fUPyp2amxMHNuPJz6nHLqnMvMuXMjp3LNnBtnJz9PnDi/veSSS875p+P9+/e3Sy65xK96ndznnDrXP/Uq/dMlJSXZE0884ddVbvXr17cnnnjCzP75i6GM89kMQ4cO9ftKtFGjRlm1atVs/fr19sILL1iDBg08jaRNmzZZ06ZN/frLnmrVqnmmgzH756rgiIgIz5Xk69ev9+tn1osuushzlfd3331n+fLlsxdeeMGzfty4cX5fCfrYY49ZgwYN7MCBAzZgwAC77rrrPA3AY8eOWfv27f3+yxCnzjOcOh8oXry4V8+hYcOGXj+vrV692u9j0bneJ3PmzLHbb7/d7wb5iRMnrH///laxYkWbN2+emZ3/OVeVKlXsvffeO+v6JUuW+H0sKlq0aKYmopnZhx9+aNHR0TZu3Di/sq+88krr3LnzGaegOHnypHXu3NkaN27sV81m/1z5f+utt1q9evU8x4vzHefChQt7NZtLly7t9Uua9evXW2xsrF/ZLpfL5syZY8uWLbNy5cplmrJtzZo1fmXXqlXL66rg0/m7b7hcLtuwYYMdOnTIypcvn+mX+xs2bPD7/PNMjWAzs7lz51psbKw9/vjjNG4D4ZprrrEWLVp4/lT2VHv27LFWrVpZmzZtfM6tW7eujR079qzrz+eA5HK57Nlnn7WXX37ZSpQokelPcJYtW+bXD/Hly5fPNHep2T9XhVapUsWaN2/uV83Nmzf3+pOSUaNGef2J0O+//+73bzjO9UFlZjZz5ky77bbbfM795ptvrFChQjZhwgSbMGGCJSQk2FtvvWW//PKLvfPOO1amTBm/52QqWbKkV9OlY8eOXv+GlStXntd8QWPHjrWSJUvaBx98YGaBacKUKVPG6+qrDKtWrbLixYtb586d/do3brjhBrv22mtt3rx51qNHD7v00kutTZs2dvToUTt27JjdfPPN1qpVK59zGzZsaKNHjz7r+vOZKqFs2bJeVzs++uijtm/fPq9sf/dns39OmkuXLm3PPfecp1lyvq/fbbfd5plj7XS///671a1b1zp16uRzrsvlsnfffde+/PJLK126tM2fP99r/cqVK/06CXWqXjOzCRMmWOnSpW3OnDn27rvvWrVq1WzmzJm2fft2mz17ttWqVeu8p4043dGjR+2tt97ye9qPq666yrp3727btm2zIUOGWKVKlaxbt26e9ffdd5/fzRIzZ/Y5J9+DZoGv2cn3tVOf2U5+TjVs2NCeeeYZz/0PP/zQ68qJFStW+FWzU2Nh5tx4OPU55dQ5l5lz50ZO5Zo5N85Ofp44cX6bMddvrVq17KGHHrLhw4fb8OHD7aGHHrLatWtbbGys3/PwObnPOXWuf6ZfFpzOn+kSpk2bZlFRURYREWFRUVH2448/WpUqVezyyy+3+vXrW1hY2Dn/LPrf3H///ZYnTx5LTEy0qKgoc7vdnvm8L730Us8vwXzx2muvWYECBax///725JNPWsmSJb3myn3//ff9+iun999/38LCwqxSpUoWGRlpn376qZUsWdLat29vt956q0VERPg9R3FKSopdf/31VrBgQWvevLlFRUVZdHS0Va5c2WJiYqxs2bJ+X6nv1HmGU+cD//nPf845rcAnn3wSkD9bP5vz+csvs3+uNC5btqwNHDjQ8uTJc17nXLfddps9+OCDZ13v7zymZv8ci8421+wHH3xgefLk8fs7FuLj461w4cLWrl07u+eee+yee+6xdu3aWeHCha1EiRKZfhntj3feecfi4+Nt/Pjx5z3OjRo18pqO43Rff/31eU3PcerUZS+99JLX+g8//NCqV6/uc27Xrl3tvvvuO+v6P/74wxISEnzOzag3o+aMX/Rn+PLLL/2ehuiGG26wJ5988ozrMj7TadwGQMaXvISHh1udOnWsVatW1qpVK6tTp46Fh4db7dq1vX7rllUPPPCA9enT56zrN2zYYE2bNvWr5nLlyllCQoLndvobZfTo0X7NKdK9e/dM831k2LZtm1WqVMmvnW7x4sVWqFAhi4+Pt7Jly1pERIR9+OGHnvWvvfaa35PeZ+WDyl+fffaZlS5dOtN8ilFRUfbggw/6Padbq1at7PXXXz/r+gkTJpz3vK6rVq2yiy66yDp27BiQJkzHjh3P+gG7cuVKK1q0qF/7xrp166xy5cqeyde3bdtm119/vYWHh3vmZzq1yZ1Vzz777DnnAtqyZYt17drV51wzs+uvv/6cJ4qvvfaa33PkZNi1a5e1bt3arrzyyoC8fvv377dWrVqZy+WyQoUKWWJioiUmJlqhQoXM7XZb69at7cCBAz7nnj7H6KmNHrN/5k7y54cIp+rN8MILL1h0dLTlzZvX84NUxq1t27Zefw6WVU4eixYuXGiFCxc2t9ttRYsWtZUrV1q9evUsPj7eSpYsaXnz5j3jD+O+CPQ+5+R7MEMga3byfe3UZ7aZc59TM2fOtMjISLv88sutcePGFh4e7lX3qFGj/BoPJ8fCzJnxcOpzyqlzLjPnjkdOHuecGmcnP0+cOr9NSkqy/v37W+PGja1KlSpWpUoVa9y4sT366KOZrpj1hZP7nFNj8dRTT/n95XH/JikpyT777DPPmO7atcsGDRpkDz/8sNeXGfnrjz/+sJEjR9o999xjPXr0sMGDB9sPP/zg97y8Zv9cnNGwYUOrW7euPfbYY/b333971q1bt87rT+99MW/ePHv++ec90zqsWrXK7rjjDrvpppv8msP0dN9//73dd9991qpVK2vRooV16dLF3njjDTt69KjfmU6dZzh1PrB27dpMf059qsmTJ/v9y4KuXbva4cOH/XqsL/bu3Wvt2rWzuLi4c07p8m927tzp91Rc/2bKlCnnbApPnjzZ7x7M4cOHbezYsda5c2dr0aKFtWjRwjp37mzjxo0778b4qdatW2eXXXaZuVyu8zq3nTdv3jm/b2PMmDH26quv+pWdMTVZxm3v3r1e6ydNmmSTJk3yOff48eOOHPMzpozMuJ3+C6PRo0dnmvLPl+xTv/vndLNnzz7vn3kyuMzMlIulp6dr+vTpWrBggXbt2iVJio+PV4MGDdSiRQu53e4crtA3CxYsUGRkpOrUqePT4/7880+tWbNGLVu2POP6HTt2aMaMGerSpYvPNe3cuVPffPONUlJS1KxZM1WvXt3njDP58ccf1ahRI4WHhwck73RpaWn6/ffftWnTJqWnp6tEiRKqW7eu8uXL53fm/v375Xa7FRcXd8b133//vfLmzaumTZv6/RySlJqaqgEDBmjOnDmaMmWKypcv73fW8uXLtXjxYnXr1u2M61euXKnPP/9cgwcP9it/3759Kly4sOf+rFmz9Pfff6tBgwZey0PBwoULFR0drZo1a5531iuvvKI5c+bo1VdfVenSpc87b82aNfr1118zHecSExPPO/tMvvnmG+XJk+esx5R/s3r16jMelwNR78GDBzVjxgyv93ajRo1UuXJlv/ImTZqkW2+9VZGRkedd25kcO3ZMa9asUdWqVRUbG6vjx49r8uTJ+vvvv9W8eXNVrVo1IM8T6H0uO2RHzYF8X5/O38/sDGlpaVq8eLGSkpIC9jklScuWLdMnn3yilJQUtWzZUs2bNz+vvKw437GQnPnclgL/OeXkOZdT50ZOn3NJzp0POPV54tT5rROc3Oek0BoLwF9Ong8AGdLT03XkyBHlz59fLpcrp8tBkMj1jVsAAAAACAYnT57UqlWrPI3mEiVKqFq1asqTJ08OVxZcTp48qR07dqhs2bIhkStJJ06c0M6dO/3OPn3fiI+PV/Xq1c9733Aq1+nsC0Ug9rnsHufzrflC2ufO930theZ7+1zPGYzH5lAfC+d+bR4CPv/8c7Vu3VrR0dEhkStJKSkpcrvdnh1s48aNeuedd7RlyxaVK1dO3bt39+vqylDLDdWaQ3Gfcyo7FF8/av4fJ/e5ZcuWafHixWratKkqVKigVatWacyYMUpPT1e7du38voqX919ms2fP1rx587Rz50653W5VrFhR1113nd9XH2dw6jUMtVyns09//SpUqKDrr7/+vF6/7N7nAlGzFHr7Bvtc9mWHSs3p6el68sknNWbMGB06dMhrXYECBdS7d28NGTLkvP4a0On333/+8x+VL18+oPvc2axatUqXXHKJ0tLSQiJXkv744w+/sp3aN5zc50J5f3bymHEm57PPZcc4n4m/NYf6Pncm/r6vpdB8b/+bYDs2XzBjEZAJF0KUy+Wy/Pnz2913320LFiwI+lwzsyZNmni+VXTevHkWGRlptWvXtg4dOlidOnUsOjo605cEXYi5oVpzKO5zTmWH4utHzf/j1H7x+eefW1hYmBUuXNhiY2NtxowZFhcXZ1dffbW1bNnSwsLCbPLkyX5l8/77n927d9vll19ubrfbwsPDze12W926dS0+Pt7CwsL8/mIrM+dew1DLdTLbydePfS50c53MdvL1cyo71Gru16+fFS1a1F5//XVLSkqy5ORkS05OtqSkJBs/frwVK1bM+vfvHzT1ZnByfz6X8/2iy+zOPZ9sp/YNJ/e5UNyfnXyfnMv57HNOjvO5BNu+7HT2uQTj65dTY2EWfMfmC2Uscn3jdujQoVanTh1zuVxWo0YNe+mllzJNsBwsuWZm+fPnt3Xr1pnZPw2Zhx56yGv9E088YY0aNbrgc0O15lDc55zKDsXXj5r/x6n94pJLLvF80VnGt9kPHTrUs/7555+3iy++2K9s3n//06FDB2vbtq0dOnTIjh8/br179/Z8ecysWbOscOHC5/yCjnNx6jUMtVwns518/djnQjfXyWwnXz+nskOt5uLFi9u0adPOun7atGlWrFixoKk3g1P7XJ06dc55S0xM9OsHYqdyncx2at9wcp8Lxf3ZqVwn9zmnxjnU9mUns0Px9XNynEPt2ByKY3Emub5xm/ENuYsWLbJ7773X4uLiLDIy0m655Rb74YcfgirXzCwmJsbzraHFixe3pUuXeq3fsGGDxcbGXvC5oVpzKO5zTmWH4utHzf/j5H6R8S3P6enplidPHlu+fLln/caNG3n/BSA7f/78tnLlSs/9o0ePWp48eTzfjPvee+9Z1apV/cp26jUMtVwns518/djnQjfXyWwnXz+nskOt5ujoaK/X6nTLli2zmJiYoKk3g1P7XGRkpHXp0sWeeuqpM9569uzp1w/ETuU6me3UvuHkPheK+7NTuU7uc06Nc6jty05mh+Lr5+Q4h9qxORTH4kxo3P7/DycZ/v77b3v33XetadOm5na7LSEhIWhyzcyaNWtmI0eONDOzhg0b2qRJk7zWf/bZZ1a2bNkLPjdUaw7Ffc6p7FB8/aj5f5zaL+Lj423RokVmZrZ//35zuVw2Z84cz/qFCxdafHy8z7lO1hyK77+iRYvaqlWrPPeTk5PN7Xbbvn37zOyfH7QjIyP9qtmp1zDUcp3MdvL1Y58L3Vwns518/ZzKDrWar7nmGmvRooXt2bMn07o9e/ZYq1atrE2bNkFTbwan9rm6deva2LFjz7p+yZIlfv1A7FSuk9lO7RtO7nOhuD87levkPufUOIfavuxkdii+fk6Oc6gdm0NxLM4kVzdu3W53ph9OTrV+/Xp77LHHgibXzGz+/PlWoEABGzx4sL366qtWpEgRe+KJJ2zy5Mn25JNPWlxcnI0YMeKCzw3VmkNxn3MqOxRfP2r+H6f2i9tvv93q1atn77//vl133XXWsmVLq1+/vq1evdrWrFljTZo0sZtvvtnnXCdrDsX3X7t27eymm26yo0ePWmpqqj344INWqVIlz/oFCxb43Thy6jUMtVwns518/djnQjfXyWwnXz+nskOt5i1btljNmjUtPDzc6tSpY61atbJWrVpZnTp1LDw83GrXrm1btmwJmnozOLXPPfDAA9anT5+zrt+wYYM1bdo0aHKdzHZq33BynwvF/dmpXCf3OafGOdT2ZSezQ/H1c3KcQ+3YHIpjcSa5unF7pqtKgjk3w/z5861+/frmcrm8bqVKlfJ7fqpQzA3FmkNxn3MyO9ReP2r+H6f2i127dlnz5s0tNjbWWrZsaQcPHrTevXuby+Uyt9ttlStXtg0bNviVzfvvfzZu3GgVK1a08PBwy5Mnj8XFxdmMGTM86ydMmGADBgzwK9up1zDUcp3MdvL1Y58L3Vwns518/ZzKDsWa09LS7LvvvrMnn3zSevToYT169LAnn3zSvv/+e0tLS/OrVifrNXN2f8b/OLVvOJXrZHYoHjOc5ORr6IRQ3OecFIrv7VBzIYyFy8xMudSff/6psmXLyuVyhUTu6fbs2aNNmzYpPT1dJUqUUEJCQq7MdTI70LmhuM9lx/4cKq9fdmSHSs3ZdZzLsGnTJiUnJysxMVHh4eF+ZfD+85acnKx58+YpNTVV9evXV5EiRQL+HKcKxGt4IeQGKtup14997sLLDVS2k6+fU9mhWLNTLpT3HyCF5jEDAPyVqxu3AAAAABAsFi5cqF9//VW7du2SJMXHx6thw4a67LLLcriynHGm8WjQoIEuv/zyoMzN7poDsW84uc+xP/9Pdu9zTu0bwbwvO5l9obx+To5zMB+bQ3EsTpXrG7d///23PvzwQ82bN087d+6U2+1WhQoV1LZtW1111VVBlxuKNTMW1Hyh5FJzaOdSMzVndy41U3N251Jz6Nb8119/6aabbtIvv/yismXLqnjx4pKk3bt3a8uWLWrUqJE+//xzFStWLCjqdTrbqfFwcpxDreZQHIsMoXTMCMVxDrVcaqbm7M51OjuTnJynIaetX7/eypUrZ8WKFbMyZcqYy+WyNm3aWL169SwsLMxuueUWO3HiRNDkhmLNjAU1Xyi51BzaudRMzdmdS83UnN251BzaNd90003WoEEDW7NmTaZ1a9assYYNG/r9pXWhNhZmzo2Hk+McajWH4liYhd4xIxTHOdRyqZmaszvX6ezT5erGbevWra1nz56Wnp5uZmbDhw+31q1bm5nZunXrLCEhwQYPHhw0uaFYM2NBzRdKLjWHdi41U3N251IzNWd3LjWHds2xsbH2+++/n3X9okWLLDY2NmjqdTrbqfFwcpxDreZQHAuz0DtmhOI4h1quk9nUnD3ZoZbrdPbpcnXjNjo62tatW+e5n5KSYnny5LG9e/eamdkXX3xhCQkJQZMbijUzFtR8oeRSc2jnUjM1Z3cuNVNzdudSc2jXXLhwYZs7d+5Z18+ZM8cKFy4cNPU6ne3UeDg5zqFWcyiOhVnoHTNCcZxDLdfJbGrOnuxQy3U6+3Tu859sIXTFxcXpyJEjnvvJyck6efKkIiIiJEm1a9fWzp07gyY3FGtmLKj5Qsml5tDOpWZqzu5caqbm7M6l5tCuuUOHDurSpYumTp2qw4cPe5YfPnxYU6dOVbdu3dSxY8egqdfpbKfGw8lxDrWaQ3EspNA7ZoTiOIdaLjVTc3bnOp2dSUDavyGqS5cu1qRJE1u9erVt2rTJOnToYHXq1PGsnzt3rpUpUyZockOxZsaCmi+UXGoO7VxqpubszqVmas7uXGoO7ZqPHz9u99xzj0VERJjb7baoqCiLiooyt9ttERERdu+999rx48eDpl6ns50aDyfHOdRqDsWxMAu9Y0YojnOo5VIzNWd3rtPZp8vVjdvdu3db/fr1zeVymdvttnLlynnNUfHpp5/aK6+8EjS5oVgzY0HNF0ouNYd2LjVTc3bnUjM1Z3cuNYd+zWZmhw4dstmzZ9sHH3xgH3zwgc2ePdsOHTrkV1Z21Otktpkz4+FkrpPZoZbrVHYoHjPMQm+cQzHXyWxqzp7sUMt1OjuDy8wsMNfuhq7169crJSVFiYmJCg8PD/pcJ7NDLdfJbGrOnuxQy3Uym5qdz3Uym5qzJzvUcp3MpubsyQ61XCezqTn7sp3AWOBCEorHDADwS0DbwBeYLVu2WLdu3UIm18nsUMt1Mpuasyc71HKdzKZm53OdzKbm7MkOtVwns6k5e7JDLdfJbGoOTHZycrL9/PPPtmrVqkzr/v77b5s0aVIgysskGMfCzLnxcHKcQ63mUByLfxOMx4xQHOdQy3Uym5qzJzvUcp3OPhWN23NYunSpud3ukMl1MjvUcp3MpubsyQ61XCezqdn5XCezqTl7skMt18lsas6e7FDLdTKbms8/e+3atVauXDnPn2k3btzYtm/f7lm/a9euoKrX6WynxsPJcQ61mkNxLLIi2I4ZoTjOoZZLzdSc3blOZ58uV1/7/9VXX51z/aZNm4Iq18nsUMt1Mpuasyc71HKdzKZm53OdzKbm7MkOtVwns6k5e7JDLdfJbGp2PvvRRx9VzZo1tWjRIh08eFAPPvigrrjiCs2dO1dly5b1t1RJoTcWknPj4eQ4h1rNoTgWUugdM0JxnEMtl5qpObtznc7OJCDt3xCV0Rl3uVxnvfnTIXcqNxRrZiyo+ULJpebQzqVmas7uXGqm5uzOpebQrrlYsWK2fPlyz/309HS75557rGzZsrZx48bzunIn1MbCzLnxcHKcQ63mUBwLs9A7ZoTiOIdaLjVTc3bnOp19Ondg28ChpUSJEpoyZYrS09PPePv999+DKjcUa2YsqPlCyaXm0M6lZmrO7lxqpubszqXm0K7577//9voiJJfLpXHjxum6665TkyZNtG7duqCq1+lsp8bDyXEOtZpDcSyk0DtmhOI4h1ouNVNzduc6nX26XN24rVu3rhYvXnzW9S6XS2YWNLlOZodarpPZ1Jw92aGW62Q2NTuf62Q2NWdPdqjlOplNzdmTHWq5TmZTs/PZiYmJWrRoUablr732mm644QZdf/31PteZIdTGQnJuPJwc51CrORTHQgq9Y0YojnOo5TqZTc3Zkx1quU5nZxKQ63ZD1E8//WTff//9WdcfPXrU5s6dGzS5TmaHWq6T2dScPdmhlutkNjU7n+tkNjVnT3ao5TqZTc3Zkx1quU5mU7Pz2c8995y1bt36rOvvvfdec7lcPmVmCLWxMHNuPJwc51CrORTHwiz0jhmhOM6hlutkNjVnT3ao5TqdfTqXmZ+/XgUAAAAAAAAAOCJXT5UAAAAAAAAAAMGIxi0AAAAAAAAABBkatwAAAAAAAAAQZGjcAgAAAAAAAECQoXELAAAAAAAAAEGGxi0AAAByFTPT1VdfrZYtW2ZaN3bsWMXFxWnbtm05UBkAAADwPzRuAQAAkKu4XC5NmDBBv/32m8aPH+9ZnpSUpP79++vVV19V6dKlA/qcJ06cCGgeAAAALnw0bgEAAJDrlClTRi+//LIeeeQRJSUlyczUvXt3tWjRQnXq1FHr1q0VGxur4sWL64477tDevXs9j502bZquuOIKxcXFqXDhwrr22mu1ceNGz/rNmzfL5XLp448/VpMmTRQVFaXJkyfnxD8TAAAAIcxlZpbTRQAAAAA5oW3btjp06JBuvPFGPf3001q1apVq1Kihu+66S507d9bff/+tRx99VCdPntTs2bMlSZ9//rlcLpdq166to0eP6sknn9TmzZu1dOlSud1ubd68WeXLl1dCQoJeeOEF1alTR1FRUSpRokQO/2sBAAAQSmjcAgAAINf666+/VKNGDe3fv1+ff/65Vq5cqZ9//lnTp0/3bLNt2zaVKVNGa9euVZUqVTJl7N27V0WLFtWKFStUs2ZNT+N29OjR6tOnT3b+cwAAAHABYaoEAAAA5FrFihVTz549Va1aNbVt21bLli3TnDlzFBsb67klJiZKkmc6hPXr16tjx46qUKGC8ufPr4SEBEnSli1bvLIvvfTSbP23AAAA4MISntMFAAAAADkpPDxc4eH/nBYfPXpU1113nUaMGJFpu4ypDq677jqVK1dOb775pkqWLKn09HTVrFlTqampXtvHxMQ4XzwAAAAuWDRuAQAAgP93ySWX6PPPP1dCQoKnmXuqffv2ae3atXrzzTd15ZVXSpLmzZuX3WUCAAAgF2CqBAAAAOD/9erVS/v371fHjh313//+Vxs3btT06dPVrVs3paWlqWDBgipcuLDeeOMNbdiwQbNnz1bfvn1zumwAAABcgGjcAgAAAP+vZMmS+uWXX5SWlqYWLVqoVq1aevDBBxUXFye32y23262PPvpIixcvVs2aNfXQQw9p1KhROV02AAAALkAuM7OcLgIAAAAAAAAA8D9ccQsAAAAAAAAAQYbGLQAAAAAAAAAEGRq3AAAAAAAAABBkaNwCAAAAAAAAQJChcQsAAAAAAAAAQYbGLQAAAAAAAAAEGRq3AAAAAAAAABBkaNwCAAAAAAAAQJChcQsAAAAAAAAAQYbGLQAAAAAAAAAEGRq3AAAAAAAAABBkaNwCAAAAAAAAQJD5PyXjCf0MPaWHAAAAAElFTkSuQmCC\n" }, "metadata": {} } ] }, { "cell_type": "markdown", "source": [ "**Stage 4: Graph Analysis**" ], "metadata": { "id": "JLyxOucT6qpc" } }, { "cell_type": "code", "source": [ "import matplotlib.pyplot as plt\n", "\n", "# Drop Country Name for aggregation\n", "co2_means = df_co2_filled[year_columns].mean()\n", "\n", "plt.figure(figsize=(14, 6))\n", "plt.plot(co2_means.index.astype(int), co2_means.values, marker='o')\n", "plt.title(\"📈 Global Mean CO₂ Emissions Over Time\")\n", "plt.xlabel(\"Year\")\n", "plt.ylabel(\"Mean Emissions\")\n", "plt.grid(True)\n", "plt.tight_layout()\n", "plt.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 509 }, "id": "B2xqqnRI6i29", "outputId": "20810509-6a17-4a9e-a7c9-fbff754c0458" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABWsAAAJOCAYAAADBFlXiAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAApFNJREFUeJzs3Xd8U/X+x/F3km46oEBp2XuUshEEBFxsGXqdyHArjuu46r3qz4u4UK/jqijOCyoiKiiKCogyVGSXXTZldwDdLV3J+f1RWiltadImTdq+no9HH21OTk4+J81Jm3e+5/M1GYZhCAAAAAAAAADgVmZ3FwAAAAAAAAAAIKwFAAAAAAAAAI9AWAsAAAAAAAAAHoCwFgAAAAAAAAA8AGEtAAAAAAAAAHgAwloAAAAAAAAA8ACEtQAAAAAAAADgAQhrAQAAAAAAAMADENYCAAAAAAAAgAcgrAUAAJC0cuVKmUwmrVy50uHb3nLLLQoMDHRqPS1bttQtt9zi1G3CM82ePVsmk0mHDh1y6nYr85xG5ZhMJj3zzDPuLgMAAFRDhLUAAKDGSktL0wsvvKDevXsrJCREvr6+atGihW644Qb9+OOP7i7PKUwmk0wmk+64445Sr3/qqaeK1jl16lQVV+e4LVu2aMKECWrWrJl8fX0VGhqqK6+8UrNmzZLVai22bmZmpp577jl17dpVAQEBCgkJ0cCBA/Xpp5/KMIxK11L4uJX2dc8991R6+3D979BZCgP18r5atmzp7lIBAEA15+XuAgAAAM63c+dO9ejRQz4+PqVen5ubq127dqlNmzZlbmP//v0aNmyYDh8+rKuvvlqTJk1SYGCgjh49qp9++klXXXWVPv30U02cONFVu1Fl/Pz8tGDBAr377rslHrMvvvhCfn5+ys7OdlN19vvoo490zz33qFGjRpo4caLatWun9PR0/frrr7r99tsVFxenJ598UpKUkJCgK664Qrt27dKNN96o+++/X9nZ2VqwYIEmT56sn376SZ9//rksFkulahoyZIgmTZpUYnn79u0rtd1zTZw4UTfeeKN8fX2dtk1JGjRokM6cOVPmceRuVfU7dIZBgwbps88+K7bsjjvuUJ8+fXTXXXcVLSscYX/mzBl5efFWCwAAOI7/IAAAgMcxDEN9+vTRH3/8Uer1F1988QVH3eXn5+vqq69WQkKCVq1apQEDBhS7furUqfr5559LjNSsroYPH67vv/9eixcv1tixY4uW//nnn4qNjdXf/vY3LViwwI0Vlm/t2rW655571K9fP/30008KCgoquu6hhx7Sxo0btWPHjqJlkydP1q5du/Ttt99qzJgxRcv//ve/67HHHtOrr76qHj166J///Gel6mrfvr0mTJhQqW2Ux2KxuCSQNJvN8vPzc/p2naWqfoeOsNlsys3NLfG4tW7dWq1bty627J577lHr1q1LfX548uMOAAA8G20QAABAjfP1119rx44devrpp0sEtYWGDh2qESNG2LWtXr16yd/fXw0aNNCECRN0/PjxUtc9ePCghg0bpjp16qhx48Z69tlnS4TKr776qvr376/69evL399fvXr10vz58x3fyXM0adJEgwYN0ty5c4st//zzz9WlSxdFRUWVert169Zp+PDhCgkJUUBAgAYPHqzVq1cXW+fw4cO699571aFDB/n7+6t+/fq67rrrSvRXLTxNfPXq1XrkkUfUsGFD1alTR1dffbVOnjxZ7j5MmzZNJpNJn3/+ebGgtlDv3r2LeviuXbtWS5cu1S233FIs5Cs0ffp0tWvXTi+//LLOnDlT7n1X1qWXXqqoqCht27ZNgwcPVkBAgNq2bVv0e121apX69u0rf39/dejQQb/88kux25fWs3bjxo0aNmyYGjRoIH9/f7Vq1Uq33XZbsdvNmzdPvXr1UlBQkIKDg9WlSxe9+eabRdeX1bPWnud0YR/m48ePa9y4cQoMDFTDhg316KOPlviQo7w6SuPo7zAvL0+hoaG69dZbS6yblpYmPz8/Pfroo0XLcnJyNHXqVLVt21a+vr5q1qyZHn/8ceXk5BS7rclk0v3336/PP/9cnTt3lq+vr5YsWXLB2u1xfs/aZ555RiaTSXv37tWECRMUEhKihg0b6umnn5ZhGDp69KjGjh2r4OBghYeH67XXXiuxTXv3CQAAVG+EtQAAoMZZtGiRJFV6ROTs2bN1/fXXy2KxaPr06brzzjv1zTff6JJLLlFKSkqxda1Wq4YPH65GjRrplVdeUa9evTR16lRNnTq12HpvvvmmevTooWeffVYvvviivLy8dN1111W6h+748eO1aNEiZWRkSCoYXfz1119r/Pjxpa6/fPlyDRo0SGlpaZo6dapefPFFpaSk6PLLL9f69euL1tuwYYP+/PNP3XjjjXrrrbd0zz336Ndff9Wll16qrKysEtt94IEHtHXrVk2dOlVTpkzRokWLdP/991+w9qysLP36668aNGiQmjdvXu6+Fv5+S2tPIEleXl4aP368kpOTS4TPjsrOztapU6dKfOXm5hZbLzk5WVdddZX69u2rV155Rb6+vrrxxhv15Zdf6sYbb9TIkSP10ksvKTMzU9dee63S09PLvM/ExEQNHTpUhw4d0r/+9S+9/fbbuvnmm7V27dqidZYtW6abbrpJ9erV08svv6yXXnpJl156abn76+hzetiwYapfv75effVVDR48WK+99po++OCDStfh6O/Q29tbV199tRYuXFjisV+4cKFycnJ04403SioYHTtmzBi9+uqrGj16tN5++22NGzdOb7zxhm644YYS97V8+XI9/PDDuuGGG/Tmm2+6tO/sDTfcIJvNppdeekl9+/bV888/r//+978aMmSImjRpopdffllt27bVo48+qt9++63odo7uEwAAqMYMAAAAD7N9+3ZjwIABZV7ft29fY9++fWVe36NHD6Nu3bollmdkZBgnT54s+kpNTS26bsWKFYYkY8WKFYZhGEZubq4RFhZmREVFGWfOnCla74cffjAkGf/+97+Llk2ePNmQZDzwwANFy2w2mzFq1CjDx8fHOHnyZNHyrKysYjXl5uYaUVFRxuWXX15seYsWLYzJkyeXuY+FJBn33XefkZSUZPj4+BifffaZYRiG8eOPPxomk8k4dOiQMXXqVENSUR02m81o166dMWzYMMNmsxWrrVWrVsaQIUPKrNcwDGPNmjWGJOPTTz8tWjZr1ixDknHllVcW2+bDDz9sWCwWIyUlpcx92Lp1qyHJePDBB8vdX8MwjHHjxhmSjOTk5DLX+eabbwxJxltvvWXXNksjqcyvL774omi9wYMHG5KMuXPnFi3bvXu3Ickwm83G2rVri5YvXbrUkGTMmjWraFnhYxcbG2sYhmF8++23hiRjw4YNZdb24IMPGsHBwUZ+fn6Z6zjjOf3ss88W22aPHj2MXr16OVRHaSryOyx87BYtWlRsvZEjRxqtW7cuuvzZZ58ZZrPZ+P3334ut99577xmSjNWrVxctK/wd7dy506H6DcMw6tSpU+YxKsmYOnVq0eXCY/Cuu+4qWpafn280bdrUMJlMxksvvVS0PDk52fD39y+2bUf2CQAAVG+MrAUAADVOWlpa0UQ/53rqqafUsGHDoq+yRp1KBaehJyYm6t577y3Wf3LUqFHq2LFjqSNhzx1BWnh6dW5ubrHT3v39/Yt+Tk5OVmpqqgYOHKjo6GiH9/Nc9erV0/Dhw/XFF19IkubOnav+/furRYsWJdbdsmWL9u3bp/Hjx+v06dNFo0UzMzN1xRVX6LfffpPNZitRb15enk6fPq22bduqbt26pdZ81113yWQyFV0eOHCgrFarDh8+XGbtaWlpklRq+4PSFI5KvdD6hdcVbvvRRx9V//79NWDAAPXp06fYKNULGTt2rJYtW1bi67LLLiu2XmBgYNHITknq0KGD6tatq06dOqlv375Fywt/PnjwYJn3WbduXUnSDz/8oLy8vDLXyczM1LJly+zaD6liz+l77rmn2OWBAwcWq70idUgV+x1efvnlatCggb788suidZKTk7Vs2bJio0u//vprderUSR07diw2Gvryyy+XJK1YsaLY/QwePFiRkZEO1V9Rd9xxR9HPFotFvXv3lmEYuv3224uW161bVx06dCj2ODu6TwAAoPpigjEAAFDjBAUF6fTp0yWW33vvvbrqqqskld8ioTBc7NChQ4nrOnbsWGLyM7PZXGICovbt20tSsV6kP/zwg55//nlt2bKlWK/JcwPOiho/frwmTpyoI0eOaOHChXrllVdKXW/fvn2SCiZ4Kktqaqrq1aunM2fOaPr06Zo1a5aOHz9erAdvampqidud38agXr16kgpCtbIEBwdL0gVbA5yrMMRLT08vCjbPd34YeOedd+rVV1+VJP33v//V+PHjLxiYFmratKmuvPJKu9Y7/3cYEhKiZs2alVgmXfjxGDx4sP72t79p2rRpeuONN3TppZdq3LhxGj9+vHx9fSUVPJe/+uorjRgxQk2aNNHQoUN1/fXXa/jw4WVu19HntJ+fnxo2bFhsWb169YrVXpE6pIr9Dr28vPS3v/1Nc+fOVU5Ojnx9ffXNN98oLy+vWFi7b98+7dq1q0TthRITE4tdbtWq1QVrdabzj4+QkBD5+fmpQYMGJZaf+xrm6D4BAIDqi7AWAADUOB07dtSWLVt0/PhxNWnSpGh5+/btiwJUd8zW/vvvv2vMmDEaNGiQ3n33XUVERMjb21uzZs0qMTlYRYwZM0a+vr6aPHmycnJydP3115e6XuGo2f/85z/q3r17qesUjkx+4IEHNGvWLD300EPq16+fQkJCZDKZdOONNxZt51wWi6XU7RnnTbR2rrZt28rLy0vbt2+/0O4V6dSpkxYuXKht27Zp0KBBpa6zbds2SSoaMXl+QGk2O/cEs7L2uyKPh8lk0vz587V27VotWrRIS5cu1W233abXXntNa9euVWBgoMLCwrRlyxYtXbpUixcv1uLFizVr1ixNmjRJn3zyiUv36VwVraMiv0NJuvHGG/X+++9r8eLFGjdunL766it17NhR3bp1K1rHZrOpS5cuev3110vd7vkB+rmjx12ttMfUnueIo/sEAACqL8JaAABQ41x11VWaN2+ePv/8cz3++OMV2kZh+4A9e/YUnWpcaM+ePSXaC9hsNh08eLAoDJakvXv3SlLRhEULFiyQn5+fli5dWjRCUpJmzZpVoRrP5+/vr3HjxmnOnDkaMWJEidF6hdq0aSOpYERreaNG58+fr8mTJxebnT47O7vEZFSVERAQoMsvv1zLly/X0aNHyw2errrqKk2fPl2ffvppqUGf1WrV3LlzVa9ePQ0YMKDYdTt37tTUqVP16aefOq1+V7n44ot18cUX64UXXtDcuXN18803a968eUWn0vv4+Gj06NEaPXq0bDab7r33Xr3//vt6+umn1bZt2xLbc/Q5bS9H65Aq/jscNGiQIiIi9OWXX+qSSy7R8uXL9dRTTxW7bZs2bbR161ZdccUVThmx7glq4j4BAIDS0bMWAADUONdff70iIyP13HPPldmb9EIjGyWpd+/eCgsL03vvvVesXcHixYu1a9cujRo1qsRtZsyYUWz7M2bMkLe3t6644gpJBSPoTCaTrFZr0XqHDh3SwoULHdm9C3r00Uc1depUPf3002Wu06tXL7Vp00avvvqqMjIySlx/8uTJop8tFkuJx+rtt98utg/OMHXqVBmGoYkTJ5Za06ZNm4pGavbv319XXnmlZs2apR9++KHEuk899ZT27t2rxx9/vNioydjYWI0YMUJTp07V2LFjnVq/MyUnJ5d4zAtHQBc+F89v82E2m9W1a9di65yvIs/p8lSkDqniv0Oz2axrr71WixYt0meffab8/PxiLRCkguP/+PHj+vDDD0ts98yZM8rMzHRoHz1BTdwnAABQOkbWAgCAGsfb21vffvuthg0bpksuuUTXXHONBg4cqDp16uj48eP6/vvvdeTIkQuGU97e3nr55Zd16623avDgwbrpppuUkJCgN998Uy1bttTDDz9cbH0/Pz8tWbJEkydPVt++fbV48WL9+OOPevLJJ4v6TI4aNUqvv/66hg8frvHjxysxMVHvvPOO2rZtW3TKd2V169at2CnhpTGbzfroo480YsQIde7cWbfeequaNGmi48ePa8WKFQoODtaiRYskFYyA/OyzzxQSEqLIyEitWbNGv/zyi+rXr++Uegv1799f77zzju6991517NhREydOVLt27ZSenq6VK1fq+++/1/PPP1+0/qeffqorrrhCY8eO1fjx4zVw4EDl5OTom2++0cqVK3XDDTfoscceK1r/wIEDuvLKK/XYY4/pgQcesLuuvXv3as6cOSWWN2rUSEOGDKncTpfhk08+0bvvvqurr75abdq0UXp6uj788EMFBwdr5MiRkgomqkpKStLll1+upk2b6vDhw3r77bfVvXt3derUqdTtOvqctkdF6ijk6O+w0A033KC3335bU6dOVZcuXUrcz8SJE/XVV1/pnnvu0YoVKzRgwABZrVbt3r1bX331lZYuXarevXs7vK/uVBP3CQAAlI6wFgAA1Ejt27fXli1b9NZbb+nbb7/V4sWLlZubq0aNGqlv376aOnVq0WRjZbnlllsUEBCgl156Sf/85z9Vp04dXX311Xr55ZdLTIpksVi0ZMkSTZkyRY899piCgoI0depU/fvf/y5a5/LLL9fHH3+sl156SQ899JBatWqll19+WYcOHXJaWGuvSy+9VGvWrNFzzz2nGTNmKCMjQ+Hh4erbt6/uvvvuovXefPNNWSwWff7558rOztaAAQP0yy+/aNiwYU6v6e6779ZFF12k1157TZ9++qlOnjypwMBA9ezZU7NmzSo2KVxERITWr1+v1157TV9//bUWLFggLy8vde3aVbNnz9akSZOKnS4+fvx4paamasGCBVqwYIGkghGl5fUrXbZsmZYtW1Zi+eDBg10W1g4ePFjr16/XvHnzlJCQoJCQEPXp00eff/550WRYEyZM0AcffKB3331XKSkpCg8P1w033KBnnnnmgv14HXlO26OidUiO/w4L9e/fX82aNdPRo0dLjKqVCj6MWLhwod544w19+umn+vbbbxUQEKDWrVvrwQcfLNaqpLqoifsEAABKZzLKOwcQAACgiu3YsUP33HNPidnpC1188cWaM2dOmf0wAQAAAKA6omctAAAAAAAAAHgA2iAAAACPtHbt2jJPyy5tAioAAAAAqO5ogwAAAAAAAAAAHoA2CAAAAAAAAADgAQhrAQAAAAAAAMADENYCAAAAAAAAgAeodROM2Ww2nThxQkFBQTKZTO4uBwAAAAAAAEANZxiG0tPT1bhxY5nNZY+frXVh7YkTJ9SsWTN3lwEAAAAAAACgljl69KiaNm1a5vW1LqwNCgqSVPDABAcHu7ka18vLy9PPP/+soUOHytvb293lANUCxw1QMRw7gOM4boCK4dgBHMdxAzjOmcdNWlqamjVrVpRNlqXWhbWFrQ+Cg4NrTVgbEBCg4OBgXowBO3HcABXDsQM4juMGqBiOHcBxHDeA41xx3JTXlpUJxgAAAAAAAADAAxDWAgAAAAAAAIAHIKwFAAAAAAAAAA9AWAsAAAAAAAAAHsCtYe3MmTPVtWvXosm++vXrp8WLF5e5/uzZs2UymYp9+fn5VWHFAAAAAAAAAOAaXu6886ZNm+qll15Su3btZBiGPvnkE40dO1abN29W586dS71NcHCw9uzZU3S5vBnUAAAAAAAAAKA6cGtYO3r06GKXX3jhBc2cOVNr164tM6w1mUwKDw+vivIAAAAAAAAAoMq4Naw9l9Vq1ddff63MzEz169evzPUyMjLUokUL2Ww29ezZUy+++GKZwa4k5eTkKCcnp+hyWlqaJCkvL095eXnO2wEPVbiPtWFfAWfhuAEqhmMHcBzHDVAxHDuA4zhuAMc587ixdxsmwzCMSt9bJWzfvl39+vVTdna2AgMDNXfuXI0cObLUddesWaN9+/apa9euSk1N1auvvqrffvtNO3fuVNOmTUu9zTPPPKNp06aVWD537lwFBAQ4dV8AAAAAAAAA4HxZWVkaP368UlNTFRwcXOZ6bg9rc3NzdeTIEaWmpmr+/Pn66KOPtGrVKkVGRpZ727y8PHXq1Ek33XSTnnvuuVLXKW1kbbNmzXTq1KkLPjA1RV5enpYtW6YhQ4bI29vb3eUA1QLHDVAxHDuA4zhugIrh2AEcx3EDOM6Zx01aWpoaNGhQbljr9jYIPj4+atu2rSSpV69e2rBhg9588029//775d7W29tbPXr00P79+8tcx9fXV76+vqXetja9ONW2/QWcgeMGqBiOHcBxHDdAxXDsAI7juAEc54zjxt7bmyt1Ly5gs9mKjYS9EKvVqu3btysiIsLFVQEAAAAAAACAa7l1ZO0TTzyhESNGqHnz5kpPT9fcuXO1cuVKLV26VJI0adIkNWnSRNOnT5ckPfvss7r44ovVtm1bpaSk6D//+Y8OHz6sO+64w527AQAAAAAAAACV5tawNjExUZMmTVJcXJxCQkLUtWtXLV26VEOGDJEkHTlyRGbzX4N/k5OTdeeddyo+Pl716tVTr1699Oeff9rV3xYAAAAAAAAAPJlbw9qPP/74gtevXLmy2OU33nhDb7zxhgsrAgAAAAAAAAD3cPsEYwAAAAAAAChgtRlaH5ukxPRshQX5qU+rUFnMJneXBaCKENYCAAAAbmC1GVoXm6RNp0yqH5ukfm3DeDMOALXckh1xmrYoRnGp2UXLIkL8NHV0pIZHMbk6UBsQ1gIAAABVrPibcYs+3beRN+MAUMst2RGnKXOiZZy3PD41W1PmRGvmhJ78jQBqAXP5qwAAAABwlsI34+eOmpL+ejO+ZEecmyoDALiL1WZo2qKYEkGtpKJl0xbFyGorbQ0ANQlhLQAAAFBFeDMOACjN+tikEh/incuQFJearfWxSVVXFAC3oA0CAAAAYAdnTPjy+76Tdr8Z79emfiUrBoCqxcRYFXc8Ocuu9RLTy/4bAqBmIKwFAAAAyuHohC9Zufnan5ihfQkZ2puYrn0JGdqXmK6jSWfsuj/ejAOobpgYq2JiTqTpi/VHNH/TUbvWDwvyc3FFANyNsBYAAAC4gPImfPnniI5qEOirfWdD2b0J6TqWbF8oWxbejAOoTpgYyzGZOflatPWEvthwVFuPphQtt5hMshplt8GJCCkYrQygZiOsBQAAAMpgT4/ZlxbvLvW29ev4qF2jQLVvFKR2YYFq1yhIrRvU0dh3Vis+NbvUbUqSl9mk+oE+zigfAFyuvNdJkwp6cQ+JDPeIlgiuaNVg7za3H0vVFxuO6LvNx5WZa5UkeVtMGto5XOP7NFdqVp7umxstSaU+nk+PivSIxxCAaxHWAgAAAOfJt9oUE5emrzYevWCP2UKdIoJ0UctQtSsMZsMCVT/Qt9R1p46O1JQ50TKp9Dfj+TZD495ZrefHRemank0rtyMA4GJLdsRXm17crmjVUN4207Pz9P3WE/pi/RHtOJ5WtE6rBnV0U59muqZnUzU45+/FTHPPEtsr/HtxKCmzQjUCqF4IawEAAFDjODpyKjMnX1uOpmh9bJI2Hk7S5iMpyjo76ske9wxuo7Hdm9i17vCoCM2cUPLNeESInx66op0WbjmhNQdP65GvturPA6f17NjOCvDh33YAniP1TJ6W7IjTws0Fr1f2eHDeZo3t3lhXdGqkXi3qydtidnGVxbmiVcOFtnnPnGgNaFNfm4/+9ffEx2LW8Khw3dSnuS5uHSqTqeTfpeFRERoSGV7sb9iRpEz9c8F2vbFsrwa1a6ioJiEO1QmgeuG/PgAAahlmakZNZ8/IqZPpOdp0OEnrY5O18XCSdp5Ik9VW/O12sJ+X2jYMVPQ5/QTL4miP2cI342v2J+rn39dp6MC+6tc2TBazSdf2bqYZy/frzV/3av6mY9p8JFnv3NxTHcODHboPAHCm7DyrVuxO1MItx7Vi90nlWm0O3T4xPUcf/h6rD3+PVbCflwZ3CNMVHcM0uH1D1atTeusXZ/3PYrUZeub7C7e0efKb7Qry9Vagn5cCfCzy97EowKfgZ18vc4lg1Z42OasPFATZbRrW0U19muuank0VWsa+nstiNhUbhXxx61At352opTsT9PCXW7TogUvk520pf8cBVEuEtQAA1CLM1IyarqxRTnFnRzn1a11f8WnZij1V8lTSJnX9dVHLeurdMrSgpUFYoAxJl7y8vMwesyZJ4RWc8MViNqlvq1Cd3mWo7zkBhMVs0oNXtlPf1qF6cN5mHTiZqbEzVuuZMZ1140XNSh2JBQCOsicItdoMrTt4Wgu3HNfiHfFKz84vuq59o0CN7d5Eo7pE6KYP117wdbJRsK+eGhmpFXsTtXLPSSVl5mrR1hNatPWEzCapd4tQXd6pILxtGxYok8lU4f9ZkjNzdfBUhg6czFTsqUwdPJmhnSdSFZ924ZY2SVl5uvnjdaVeZzZJAT5e8vexqI6PRf4+XrLabHa1yXlmdKQm929Zqdduk8mk6dd01abDv2lfYoZeWbJH/x4dWeHtAfBshLUAANQSzNSMmu5Co5wKFZ6uazJJHRoV9JntfTagbVLXv9TblNVj1nTO9a4YnX5x6/r66e8D9Y+vt2rlnpN64pvtWr3/lKZf00VBft5Ovz8AtceFgtBhncO180SaFm4+rkXbTighLafYOmO6N9a47k3UMTyoKIAs73XymTGdNTwqQqO7N5bVZmjL0RT9uitBy3cnand8utYfStL6Q0l6afFuNQv1V9uGgVqx52SJugv/Z3nzxu7qEB6sgyczdPBUpg6ezFTsqYKfU7LyKvy4NAr2lZfZrMzcfGXlWpWbXzB62GZIGTn5ysjJV8mqLqxeHR+nfMgWWsdH/7m2q26dvUH/Wx2ryzuG6ZJ2DSq9XQCeh7AWAIBaoLrN1AxUxPrYJLtGOf1zWAeN79tCIQH2BZ5l9ZgNr4JR6fUDffW/yRfpw98P6j9L9+iHbXHafjxVM27qqS5N6VkIwHHlnYHQKNi3WEAb7OelUV0jNLZ7E/VpGSpzKf8nOPI6aTGb1KtFPfVqUU+PD++oY8lZWrE7Ub/uTtSfB07raNIZHU06U2rthTX/fd6WC+5j4xA/tWpYR60bBKp1wzrKzrPq5SV7LngbSfrvDT2KtR/It9p0Js+qM7lWZeZalZWbrzO5VmXlWrX5SIre+GVvudt0tE3OhVzWMUw3922uz9cd0aNfb9XShwbZ/bcMQPVBWAsAQC1QXojlSTM1AxWVmF5+UCtJjev5O/zmtrQJX6qq37PZbNLdg9voolahemDuZh0+naVrZq7WkyM76ZZKnloLoHax5wyEhLQc+VhMGhIZrrHdG2twh4by9Sq/P2pFXyeb1gvQxH4tNbFfS2Xm5Ot/f8TqtWXlh6D+3ma1bxSk1g0D1apBHbU+G862bBBQYlJGq83Qp2sOO9zSxstiVpDFXOrZDAPaNtC8DUdc0ibnQp4a1Ul/Hjit2FOZevq7HXrrph5O3T4A9yOsBQCgFrA3xLJ3PcAT2Tt6qaKjnM6f8KWq9WxeTz/9faAeX7BVS3cmaNqiGP154LT+c21X1Q0of8IaAFh38LRdZyC8N6GXLu/UyOHtV/Z1so6vl5rXD7Br3Zeu6aqxPZrYXZezW9q4Ypv2CPDx0uvXd9O1763R91tP6IpOYRrb3b7HAUD1YHZ3AQAAwPVcHWIBnuB0Rs4FrzepoN+is0c5VaWQAG+9N6GXpo3pLB+LWctiEjTyzd+16XCSpILRY2sOnNZ3W45rzYHTstouNH4OQG2QmpWn77ee0CNfbtFdn2206zbpOfnlr+Qidv/PEuzY/yyFrRrCQ4rfLjzEr8J9+12xTXv0aF5P91/WVpL09MIdOpFSetsIANUTI2sBAKgF+rQKVViQrxLTyw6zGgT6VOsQC7Xbyj2JevirLUWXq3oysKpkMpk0uX9L9WpRT/fPjdah01m6/v21Gt21sdYePF1sxnN7Zk4H4PmsNsPu9gKGYWhXXLpW7EnUyj2J2nQ4WY5+buPOD2/7tApVRIifS9oLuKKljbva5Nx/eVut3HtSW4+m6LH5W/XZbX1L7ScMoPohrAUAoBbIt9lUx9cipZe9TkZ2vqKPJOuilgS2qF7WxybpnjmblGc1dFXXCI2MitBzP1b9ZGBVLapJiH74+0A9+c12fb/1hBZuOV5incKZ0105wguAay3ZEVdi4q7zP4jJyMnX6v2ntHJPolbsPlnsQxtJat8oUJd1CNPg9g31yFdblZBWtX1WHeHq9gKuaGnjjjY53haz3ri+m0a+9btW7z+tWX8e0u2XtKrSGpzNkQ8lgJqMsBYAgBrOMAz937c7FHsqS/7eZgX6euvkOaeLhwf7KtDPW/sTMzTx43V6f2JvDW7f0I0VA/bbcTxVt8/eoOw8my7r0FCvX99dPl5mDYtyz2RgVS3Qt6B34aq9J5V6Jq/E9YYKwo1pi2I0JDK8Rj4GQE22ZEecpsyJLhGsxqdm65450bq2ZxPFp+VoXexp5Vn/Wsvf26IBbevr0g5hurRDQzWt91cf2GfGVH2fVUcVthc4P6SuiR+8VUbrhoF6alSknl64Qy8v2a2B7RqofaMgd5dVIfZ8KAHUFoS1AADUcLP/PKSvNx2T2SS9P7G3BrRtUCLEys23acrnm7Ryz0nd8ckGvXVjD43owj/G8Gz7E9M16X/rlZ6Tr76tQjVzQi/5eBVMyeDuycCq0oZDyaUGtYUMSXGp2Vofm1RrHhOgJrDaDE1bFFPqCNjCZfOj/xpR36J+gC7rEKbLOoapb6tQ+XlbSt1udQlC3dVeoLqZ0Le5ft2VoJV7TuqheVu08L4BRX8Lq4sLfSjB2SGojQhrAQCowVbvP6Xnf9wlSXpyZCcNOjti9vzAxt/Hog8m9tbDX27Rj9vjdN/caL1ybTdd26tpldcM2ONoUpZu/midkjJz1a1piD6a3LvMYKKmS0wvf2Z3R9YD4BnWxyYVC1PLMvHiFrp1QEu1alBHJpN9QWZ1CUJr0wdvFWUymfTK37pq2H9/U0xcmt74Za/+Obyju8uyW3kfSnB2CGqj6vVxCwAAsNuR01m6b260rDZD1/RoUm4fMx8vs966qYdu6N1MNkN69Outmr06toqqBeyXkJatmz9ap4S0HLULC9TsW/soyM/b3WW5jb0TAdXxYZwGUJ3Y+wFL75b11LphoN1BbaHCIHRs9ybq16Y+QVg1Fhbsp+nXdJEkvbfqgDYcSnJzRfYr70OJc88OAWoLwloAAGqgzJx83fnpRqVk5alb0xC9eE0Xu97EWcwmvfS3LkXB7jOLYvT2r/tkGA5OIw24SHJmriZ+vE5HkrLUPDRAc+7oq3p1fNxdllsVzpxe3hH+xDfb9EtMQpXUBKBydsenafbqQ3ata+8HNqjZhkdF6NpeTWUY0sNfblF6dtntcTxJXOoZu9bj7BDUJoS1AADUMDaboUe+2qI9CelqGOSr9yc6dnq4yWTS/43qpIeubCdJem3ZXk1fvJvAFm6Xnp2nybPWa29ChhoF++rzO/qqUTAhReHM6ZJKBLaFlxsF+epkRq7u+HSjHpy3WcmZuVVaIwD7HE85o398tVUj3vxdm4+mXHBdkwomYOrTKrRKaoPnmzo6Uk3q+utY8hk9uyjG3eVcUL7VpgWbjunlJbvtWp8PJVCbENYCAFDDvL18v5buTJCPxaz3JvRSeIjj/9yaTCY9dGV7PX1VQQD0wW8H9eS3O2S1EdjCPbLzrLrjk43adixV9QK8Nef2vmoWGlD+DWuJwgmDzj/ew0P89N6Enlr1+GW6e3BrmU3Sd1tOaMgbq/TT9jg3VQvgfMmZuXrhxxhd9upKLYg+JsOQRnWJ0DNjImVS2R/ETB0dSfsCFAny89YbN3SXySR9vemYluyId3dJJVhthr7bclxD3/hN//h6qxLSclTeUzg0wJsPJVCr0LgKAIAaZOnOeL3xy15J0vNXR6lXi3qV2t7tl7RSkK+X/vXNNn2x/ogycvL1+vXd5G3h815Undx8m+79PFrrYpMU5OulT2/rq3aNgtxdlscpb8KgJ0Z00oioCD0+f6v2JmTo3s+jNbJLuKaNiVLDIF83Vw/UTmdyrZr1Z6xmrjyg9Ox8SdLFrUP1rxGd1L1ZXUlSeLCfpi2KKdbXMzzET1NHR2p4VIQ7yoYH69MqVHcPaqP3Vh3Qk99uV88WdT1iVKrNZmjxjnj995e92peYIUmqF+Ctuwe3UUSInx6at0WSSp1oLDU7T7/sStCwzuFVVzDgRoS1AADUEHvi0/XIl1skSbf0b6nrezdzynavv6iZ6vh66aEvN2vR1hPKzMnXuzf3dKi1AlBR1rNtPZbvTpSft1kf33KRujQNcXdZHqu8mdO7N6urRQ9cohnL9+vdlQf00/Z4rTlwWs+M6awx3Ro7PEERgIrJt9o0f9MxvfHLXiWk5UiSOkUE65/DO2hw+4bFjsXyPogBzvfwkHZatfekdsWl6Z/zt+l/t1zkttd3wzC0dGeC/vvLXu2OT5ckhfh7665BrTW5f0sF+hbEUr5e5hIfSkSE+Cmirp+iD6fovs+j9dZNPTSyCx9QoOYjrAUAoAZIzszVHZ9uUGauVf3b1NdTozo5dfujukYowNeiez7bpOW7E3XLrPX6aPJFRf9gA65gGIae+na7ftgWJ2+LSe9N6MVpkE7g62XRP4Z20LDO4Xp8/jbFxKXpwXlbtGjrCb1wdRf6AANOYLUZpYarhmHo55gEvbJktw6czJQkNa3nr0eHdtCYbo1lLiOALe+DGOBcvl4W/feG7ho94w+t2HNSc9cf0c19Wzj9fsp6nksFf8N/3ZWoN37Zq50n0iRJQb5eun1gK912SSsF+3kX21ZZH0oYhqF/fL1V3205oQe+2Kx8m6Ex3Ro7fV8AT8I7LAAAqrl8q033fxGto0ln1CzUX++M7+mSNgWXdQjTp7f10e2fbNTag0m6+cO1mn1rH9Wr4+P0+wIMw9CLP+3SvA1HZTZJ/72hhy7tEObusmqUqCYh+u7+AXpv5QG9tXyfftmVqHWxq/T0VZG6rldTmUymC74RB2oKZz/Pl+yIK3WE4Pg+zbViT6Kij6RIKjgF/IHL2+nmi5vL14uzVeBcHcKD9PiwDnr+x116/odd6tMyVAmpWdp0yqT6sUnq1zbMJc/zf18VKT8fi95YtlfbjqVKkur4WHTbJa10xyWtFRLgXdYmy/hQwqTXr+8uL7NZC6KP6aF5m2W12XR1j6YVrh3wdIS1AABUcy/+tFur959WgI9FH07q7dLwtG/r+pp7Z19N/t96bT2Wqhs/WKvPbu+j+oG+Wheb5LQ3AKhdSgtK3lmxXx/+HitJeumarhrVldMeXcHbYtYDV7TT0M7henz+Vm09lqrH52/TD9viNKxzI81Yvr/EG3H6ZKImKStwqujzfMmOOE2ZE12i72ZcarZeW1bQU97f26I7BrbSnYNalxhdCDjTbQNaafnuRP154LRGvvW78qyGJIs+3bfRZc/zKZ9HF13297bolgEtdefA1gqtxP+nFrNJ/7m2q7wtJs3bcFSPfLVVeVbDaS2/AE9DWAsAQDX29caj+t/qgkDr9eu7qWN4sMvvs2vTuvrq7n66+aN12pOQrlFv/S6ZTDqZniNnvAFA7VJaUBLs56W0sxPtPH1VpK6/iDdjrtYhPEgLpvTXR3/E6vVle/Xb3pP6be/JEuvFp2ZrypxozZzQk+Mb1V5ZgVNFn+dWm6Fpi2JKnSCpUICPRb8+MlgRdf0rVDPgCLPZpKu6RujPA6fPBrV/ceXzXJLuGNhK9wxuowaBzpnA0mw26cWru8jLYtKctUf0+PxtyrcaGt+3uVO2D3gSwloAAKqpzUeS9dS3OyRJD17RrkqDk3aNgjT/nv66euZqnczILXE9gQ7sUVZQUhjUXtU1Qrdf0qrqC6ulvCxm3TO4jS7vGKZRRSOwijMkmSRNWxSjIZHhFRpBT2sFeIILBU6Fyx6fv037EjOUk2dTVq5VZ/KsOpObrzN5VmXlWpWdZ/3r51yrUrPzlJljveD9ZuVadeh0FmEtqoTVZujt5ftLva7wef7ktzvkZTbJakh5VtvZL6Pge75N+TZDuVab8vILlh1Oyiz2AWtZrujYyGlBbSGz2aTnxkbJy2zW7D8P6clvtyvfZtOkfi2dej+AuxHWAgBQDSWkZevuzzYp12rT0MhGevCKdlVeQ5N6/rKUMbOwMwId1Gz2jMzZdDhZVpvB86eKnc7ILTWoLWSo4FTXd1fs1xWdGqlJPX+F+Nt3KrezTzkHKmp9bFK5gVNadr5e+3mv0+87Mb38oAtwBnue50mZubrj001Ov29XPc9NJpOmjo6Ut8WkD3+P1b+/26k8q8GHu6hRCGsBAHCiqhgxlp1n1d2fbVJieo7aNwrU6zd0L3P2aFcq2M+cMq8vDHTWxyYxgzVKsOcNJM8f97D3DfZry/YW9eAM8vNSk7r+alovQE3r+atpPX81qeuvJvUKltUL8NbSnfFOPeUcqKjUM3n6etNRu9a9uFWoOkYEy9/HIn9viwJ8LPI7+93f2yI/H4sCvC3y97Fob0K6Hv16W7nbDAvyq+wuAHax9/W8WT1/NQzylbfFLB8vs7zMJnlbzPL2Msv7nJ99LGYlpmXrpx3x5W7Tlc9zk8mkJ0d2kpfFrJkrD+i5H2KUb7Xp7sFtXHafQFUirAUAwEmqYsSYYRh66tsd2nI0RSH+3vpwUm8F+rrnz7m9bwBq8gii6nA6tytqrMw2E9KyFX04WV9ttC8oqcnPH09l7xvs1g3qKPVMnk5n5io9O1+749O1Oz691HX9vMzKtxllnnLOSHzPUB1e0ypj27EUzVl7WN9vPaHsPJtdt3nwyvZ2f2DUuXGIXvt5r+JTs0t9rpskhYcUPK5AVbD39fyVa7vZ/Ty32gxtfnm525/nJpNJjw/rIG+LWW/9uk/TF+9Wvs3QfZe1den9AlWBsBYAACdw9iQl5zr3zfPGQ8laEH1MZpP0zviealG/TuWLryB73wB4yggiZ4cQ1eF0blfU6Mg2c/KtijmRpugjKYo+kqzNh5N1wo4+d+fylOdPbdKnVagiQvzKfSO+7JHBsphNysrN14mUMzqafEbHk8/oWPIZHU85o2PJWTqefEaJ6TnKzr9wMMZIfPerDq9pFXEm16pFW09ozrrD2nYstWh5+7BAxadlKz0732mBk8VccHr2lDnRMknFtlv412bq6MgaFYDDs9n7el5dn+cmk0mPDGkvL7NJry/bq/8s3aM8q00PXtFOpjJadQHVAWEtAACVVN4kJZUZMVbam2dJuqZnU13SrkGFa3aG8t4ASAVv9D1hBJGzQwhXhvPO4ooay9vmi9dEKcTfR9GHkxV9JFk7TqQp97yQzmySOoQHq3uzEP20PV6pZ/JKvS9GoLmPo2/EA3y81DYsSG3DgkrdXnaeVXPWHtbzP+4q974ZSe0e1eE17VxWm6F1sUnadMqk+rFJ6tc2rMTf1/2JGfp83WEt2HSsaNJCH4tZI7uEa8LFLdSrRb2i1hzODJyGR0Vo5oSeJf7mhNeA4BvVj6uCVU97nv/9inbyspj0ypI9+u8v+5RvNfSPoe0JbFFtEdYCAFBJ5fXeLBwxNmt1rPq2qq9APy8F+nopyM9Lvl7mMv+RLOvNsyQt2HRMV3YKc+ubvgu9ASh0aYeGbh9B5OwQwpXhvLO4okZ7Zk5/4psdJa6rF+Ctns3rqWeLeurRrK66Nqtb1LpjcPuGmjInutg2JEageQJnvhH387aoc+MQ+9b1MjtcKyqnOrymnav4h28WfbpvY9GHb5d3bKSfY+I1Z+1hrT2YVHSb5qEBGt+3ua7r1VT1z5md3lWB0/CoCA2JDK/RLSVQfdSW5/m9l7aVj8Ws53/cpRkr9ivPZtO/hneUzZDH1AjYi7AWAIBKsnckWGmjyrwtJgX6ep0NcL0VVPSzRb/sSixzxKrkGW+ey3oDEOTnpfTsfH218ZhGdWnstlHA9gSMTy/cqdA6PjqTZ1NGdr4yc/KVkXP2e27B98wca9GyhNRsu8L59bGn1a+NY/vtrFYNaw+etqvGS/+zQv4+FllthmxGwf0XfRmGbDZD+baC77lWm3LKOZVdklqEBmhg+wbq2byeejSvp5b1A8r8QMLTRuagOGe+EbdnJL4kPfHNdlkNaWQXfvdVxd4PHD2hRUVZH77FpWbrnjnRRX97pIJR/Fd0aqSb+zbXoHYNy5yI01WBk8VscvvjBRQqfJ6v2Z+on39fp6ED+5Y6It1RnvY8v2Nga3mZTXpmUYzeX3VQ+xIyFBOXpvga1t6lpqjpfdIrg7AWAIBKsrenZpO6frIZUkZ2QQhoGFKe1VByVp6Ss/IknbH7Pj3pzXNpbwAubtNQj8/fpm82H9eUzzfp23sHqG1YYJXXVl4IIUknM3J0/ftrnX7ft87eoG5N66pz4xBFNg5WZESw2oYFyqeMkYMVadVgGIZOZuRoT3y69pyd3Knge5pdNR5Ntv85Z69HhrbX2O5N7F7f00bmoDhnvREv71RcQ1LjED+dSM3WvZ9Ha1SXCE0b21kNzhkFCdew9wPHn7afUIv6AWpc19/FFZXuQh++FUrPzleDQB+N79NcN/ZpbnetnhY4Aa5gMZvUt1WoTu8y1LcG/529ZUAreVnM+r+FO7R8d2KJ6yvb3qW2Boy1ce4HdyKsBQCgkuydvOG3xy8v+qfGZjOUmVswgjMjO1/phd+z85WRk6c1B05r4ZYT5d63p/R3PP8NgJfFrOl/66IjSVnaeDhZt3+yQQvvHaB6dXyqtC57H5/6dXzUKNhPgb5equNrUR1fr7M/e539+a9lx5Kz9J+le8vdZnaeTetik7Qu9q9Tcb0tJrULC1Jk42B1PhvgdmocrD/3nyq3VcPAdg21JyFde88JZfckpCspM9eRh6SYJ0Z0VJcmITKbTbKYTTKbTPI652eL2SSLWbKYzdp2NEUPfrml3G1WZEIwgpLaobyR1Jd3bKQZy/fpnZUH9OP2OK05eFrPju2sUV0i6DvoAlm5+Vq09YQ+WHXQrvU/W3tEn609omah/urbqr76tgrVxa3rq1lowAVv54w3+Nl5Vn235Xi5H75J0n9v6K5L2jV0aPsAapab+jTXf5buKbUvfmXau9TWgLE2zv3gboS1AABUUuGIsXvO9t48V1m9N81mk4L8vBXk5y2V0sqxeWgdu8LaigRjVcXXy6L3J/bS2HdW6/DpLN0zZ5M+u71vmSNLXcHex2fG+J52h4VWm6E5a4+UG85/MLG39iSkK+ZEmmLiUhVzIk1p2fmKiUtTTFya5m/66zYWU+k9fwuX3fd5tKxlDCczmaSW9euoQ6MgdQgPUsfwILUNC9TEj9crIe3CNd4xsLXdb1KahwbopSW7nTqjNGqf8kZSPzK0g4Z2DtejX2/V7vh03T93s36MitOzY6PUMIhRts4QcyJNc9cf1sLNJ5SRk2/Xber4WtSmQR3tjEvX0aQzOpp0TPM3HZMkNanrr76tQtW3daj6tqqvFue0PnH0DX5KVq4OnMzQ/sSCrwMnM7U/MUNHk7NkXGhI7TlOV+IDLAA1w/rYpDInMJX+OkPttZ/3qF+b+moY5KuwID/V9fcus2VKdQsYnTUStjbO/eAJCGsBAHCC4VERimocrB0nip9+XtHem/aO1vX0YKx+oK/+d8tFuubdP7UuNklPL9yhl/7WpcpGyWXnWcuc/Eyq2ONo78zKXZqGqEvTEKlXwTLDMHQs+UxBWHsirej78ZQzZQaxhQqvbxjkq47hQecEswWtFfx9LCVu88wY587+7KoZpVH7lDeSOqpJiL6//xK9s2K/3lmxX4t3xGvtwdOaNjZKo7syyrYisnLz9cPWOM1df0RbjqYULW9ZP0A39Wmu0Do+enz+NkmlH9uvXddNw6MilJGTr42HCs4YWHfwtLYdS9XxlDP6ZvNxfbP5uCSpUbBvwWSavhbNXX+0RC3xZ/vLPnB5W9UN8CkKZw+ezNCpjLKD1gBvs7Lyyu+b7ckfYgKoGvaeWfXuygN6d+WBosteZpMaBPqeDW8LvjcM8lWDQB+98cu+ahMwOmskrD3B6tTvd6pjeLDO5FmLzhBMP3u2YOHlwrMH03PydSw5q9r0SXcnwloAAJwgMS1bMXEFQe3r13eTxWyq1KfYNSkYa98oSG+P76HbZ2/QlxuPqm1YoO4c1Nrl9/vlhiN68tsdRY+dMx/HikyMZTKZ1Cw0QM1CAzSsc3jR8i/WH9YT3+wo9z5fvDpK4/u2cGmN7tgmUBofL7MeHtJeQzs30qNfb9OuuDT9/YvN+nHbCT03LopA7qzyRk7tjk/T3HVH9G30caWfHUXrbTFpaOdw3dynuS5uXb9oFFmQn1e5x3agr5cu7RCmSzuESSoIgTcdTta6g0laF3taW46mKCEtR99vLfvMkMLX4beX7y/1+ogQP7UNC1SbhoFqExaotg0D1SasjkIDfDTwlRXV/kNMAK5n79+IqMbByrMW9P9PysxVvs1QfFq24tMcazPmSQFjRUbCGoah9Jx8JWfmKumcry1Hk8sNVhPScnTpqyudvh+e0urNXQhrAQBwgm83H5fNkHq3qKdrejZ1yjZrUjB2WYcwPX1VpKYtitGLi3epZYM6GhLZyCX3ZRiG3vhln976dZ8k6ZoeTXRZxzC9+NMupz6OzpoYq2V9+yZea9XA8QnaXDF5FxOCoSp1bhyi7+8foHdXHNDby/dp6c4ErYtN0rQxnTWmW+OiUbbVYcKXqpqc5V8jOio336Yv1h9R9JGUouuahxaMor2ud9NSJ26ryLEd4OOlge0aauDZHrHZeVZFH0nWgk3HtCD6eLn7cFHLeurTKlRtGgaqbVigWjcMVKBv2W9Ra8qHmABcy94z1L67/5Ki14w8q02nMnJ0Mv2vr8Sz37ceS9G2Y6nl3u+9n29S/zYN1KN5XXVvVldRTULk513y7KfzOevvQ3kjYSXpka+26rstxwsmOM7MU1JWrpLPBtUV5WU2qW6Aj4L8vBTkVzDHQ8F376JlhZfjU8/orTI+rDtXbf9QlrAWAIBKMgxDX5/t3XdtL+cEtYVqUjB2S/+W2p+Yoc/XHdGD8zZr/j39Fdk42Kn3kZtv0xPfbNeC6ILfx/2XtdU/hraXyWTSyC4RTn8cnTExlqtbXrhi8i4mBENV8raY9eCV7TQkspEem79VO0+k6cF5W/TDtji9MC5K0UeSPX7Cl6qanCUuNVsPzttSdNnLbNLQzo00vk8L9W9Tv8xejIUqe2z7eVvUv00DnUzPsSusnXBxC43t3sTu7dekDzEBuE5FzlDztpgVEeKviBD/Ettbc+C0bvpwbbn3m5yVpx+3x+nH7XGSCl6DO0YEqXuzuurerJ66N6ur1g3qFHstrujfh9x8m46nnNHRpCwdScrS0eQsbTly4ZGwkpSVa9XiHQmlXlfHx6J6dXwUWsdH9QJ8ZLUZ+mP/qXL3+7Pb+zo098PXm45xlkQ5CGsBAKikrcdStT8xQ37eZo3s6vw3ijUlGDOZTHpmTGcdOp2p1ftP645PNmjh/QOc9sl5enaepsyJ1h/7T8liNum5sVEa37d50fWe+jjWpJYXgCtFNg7WwvsG6L2VB/TW8n1aFpOg1ftPKSvXWmJdT5rwxVmTs1hthjJy8pV2Jk//t3BHmb24pYJJCx8a0l43XNTMLaOT7L3PitRW+CHmmv2J+vn3dRo6sK/6tQ3jNRJAMc78cMeeD9YbBfvq1Wu7aevxVG05mqItR1N0Mj1HO46nacfxNM1Ze0RSQcuZgvC2rqw2o1jP3EKFfx9euqaL2oQF6mhylo6cPlPwPSlLx5KyFJeWbffEi+e7tmdTDerQUKEBPqpXx7sonD1/FLDVZuiSl5c7NVjl/177ENYCAFBJ8zcVTKAyvHO4gv283VyNZ/O2mPXu+F66+t3VOngqU3d9uknz7rrYrlPELiQ+NVu3zFqv3fHpCvCx6J3xPXVZxzAnVe16jBYD7ONtMeuBK9ppSOdG+sdXW7TzRHqp63nKhC/2nJL62Pxt2nw0RVk5VmXmFEzAkpGdr8zcgu/pOfnKzMkvNZQu834NqXeLULedRloVZwz0bRWq07sM9a2mZ5sAcD1nnaFmT8D4zJjOuqR9Q13SvqAtjGEYOpGarS1HUrTlaLK2HE3R9uOpSs/O1+/7Tun3fWWPWC3c/j+/2X7Buvy9LWoeGqBmof5qFhogq9XQp2sPl7s/f+vV1K4BDK4KVvm/t3yEtQAAVEJ2nlXfbymYSOW63s3cXE31EBLgrY9vuUjj3lmtLUdT9Nj8bXrrxu4VnuF9d3yabp21QXGp2WoQ6KtZt1ykLk1DnFy169WklheAq3UMD9YTIzppwsfry1zHEyZ8WR97utxTUtOz8/X+qoN2b9NiKghjy+POyVkYOQXAUzjrzCpHA0aTyaQmdf3VpK6/Rp098y7PatOe+HRtOZqin2Pi9dve8lsMNKjjo3aNgtQs1P9sMHv2q16AGgT6FPv/2WoztGxXglM/KHNVsMr/vRdGWAsAQCUsi0lQWna+Gof4qV9rzzvF3lO1alBH703opYkfr9OirSfUpmEdPXRle4e38+f+U7r7s01Kz8lXm4Z1NPvWPmoWGuCCiquGp7ZqADzR6cxcu9Y7mpylfqq648owDG07lqolO+O14Gw/8/IMbt9A3ZrWVaCfl+r4Fp+cpY6vRUG+3mevsyj6cIpdvRPdPTkLI6cA1DSVDRi9LWZFNQlRVJMQBfl52RXWPj060u7e3q4cCeuKYJX/e8tGWAsAQCXMP/tG/G+9mpY7cQuK69emvl64Okr/XLBd//1ln9o0DNTobo3tvv030cf0zwXblGc11KdlqD6Y1Et1A3xcWDEAT2JvGPnEN9v03ZbjuqxDmC7vGKbWDQPLvY2jM3NbbYY2HErSkh3x+nlnvE6UM5r2fPcMbmv3G1ZXtxhwJkZOAahpnBUwuqq3t6s+KCNYrVqEtQAAVFB8arZ+33dSknRtr6ZurqZ6uuGi5tqfmKEPf4/Vo19vVbPQAHVvVveCtzEMQ++s2K9Xf94rSbqqa4Reva5bpfveAqheygstpYI3l1abodX7T2v1/tN6/sddalk/QJd1LAhu+7QKla9X8dcOe2fmzsm36s8Dp7V0R7yWxSQUG+kb4GPRZR3DNKRTI01fvEuJaTm1dnIW3uADQEmu/OCND8qqP8JaAAAq6NvNx2UzpD4tQ9Wifh13l1Nt/WtEJx08malfdyfqjk826rv7B6hJXf9S18232vT0dzv0xfqCSd3uHtRa/xzekVHNQC1kT2j5zvge6hAerOW7E7Vid6LWxZ7WodNZmrX6kGatPqQ6PhZd0q6BLu8Ypss6hCn6SLKmzIku8ca5cGbu/97YXT4Ws5bsjNfyXYlKz8kvWqdugLeu7NRIwzuH65J2DYo+QPLzNjM5CwCgGFd/8MYHZdUbYS0AABVgGIa+3lQQGDKqtnIsZpPevKmHrp35p3bHp+uOTzbqy7su1s4TacVGA2TnWXX/3Git2HNSZlPBrLuT+rV0d/kA3Mje0PL2S1rp9ktaKSMnX3/sO6XluxO0Ys9JnUzP0dKdCVq6M0GS5GU2lTrCqXDZg/O2FFseFuSrYZ3DNTwqXH1ahcrbYq5wjRXZd0ZOAUD1xQdvKAthLQAAFbD5aIoOnsyUv7dFI7vyj1RlBfp66eNbLtLYGau1Ky5NF73wi3LybUXXhwX5ytfbrKNJZ+TnbdZbN/bQ0M7hbqwYgKdwJLQM9PXS8KiCcNVmM7TzRJqW707U8j2J2no0Rfm2shoq/CUsyFdX92iiYVHh6t60rl0j+5mcBQBQGj54Q2kIawEAqIDCicVGdAlXoC9/Tp2hSV1/3TagpV5ZuqdYUCtJiek5kgqCls9u76Mezeu5o0QAHqoioaXZbFKXpiHq0jRED17ZTnPWHtb/LdxR7u2eGtlJY3vYNzN3ZWsEANR8/H3A+UqepwMAAC4oO8+qRVtPSKIFgjNZbYY+W3v4gusE+FjUtWndqikIQK3SpmGgXeuFBTs2MzcAAIAjCGsBAHDQ0p3xSs/OV5O6/rq4FZ+CO8v62KRi/bpKk5ieo/WxSVVUEYDapHBm7rJOPDVJiqjgzNwAAAD2IqwFAMBBhS0Q/tarqV29CmGfxPQLB7WOrgcAjiicmVtSicDWGTNzAwAA2IOwFgAAB8SlntEf+09Jkq7tSQsEZwoLsu/UYnvXAwBHFc7MHR5S/HUmPMRPMyf0ZGZuAADgcsyIAgCAA76JPi7DkPq2ClXz+gHuLqdGKTwFOT41W6XNx25SQWDCKcgAXImZuQEAgDsR1gIAYCfDMIpaIDCxmPMVnoI8ZU60TFKxwJZTkAFUJWbmBgAA7kIbBAAA7BR9JFmxpzIV4GPRyC6cCusKnIIMAAAAoDZjZC0AAHYqHFU7skuE6vjyJ9RVOAUZAAAAQG3FO00AAOxwJteqRVvjJNECoSpwCjIAAACA2og2CAAA2GHpznhl5OSrWai/+rRkgisAAAAAgPMR1gIAYIfCFgh/69lUZk7HBwAAAAC4AGEtAADlOJ5yRqsPnJJUENYCAAAAAOAKbg1rZ86cqa5duyo4OFjBwcHq16+fFi9efMHbfP311+rYsaP8/PzUpUsX/fTTT1VULQCgtvpm0zEZhtSvdX01Cw1wdzkAAAAAgBrKrWFt06ZN9dJLL2nTpk3auHGjLr/8co0dO1Y7d+4sdf0///xTN910k26//XZt3rxZ48aN07hx47Rjx44qrhwAUFsYhqH50QUtEJhYDAAAAADgSm4Na0ePHq2RI0eqXbt2at++vV544QUFBgZq7dq1pa7/5ptvavjw4XrsscfUqVMnPffcc+rZs6dmzJhRxZUDAGqLjYeTdfh0lur4WDSiS7i7ywEAAAAA1GBe7i6gkNVq1ddff63MzEz169ev1HXWrFmjRx55pNiyYcOGaeHChWVuNycnRzk5OUWX09LSJEl5eXnKy8urfOEernAfa8O+As7CcYNzfbXhiCRpRFS4vE0Gz4sL4NgBHMdxA1QMxw7gOI4bwHHOPG7s3Ybbw9rt27erX79+ys7OVmBgoL799ltFRkaWum58fLwaNWpUbFmjRo0UHx9f5vanT5+uadOmlVj+888/KyCg9vQdXLZsmbtLAKodjhvkWKXvN1skmdQ457B++umwu0uqFjh2AMdx3AAVw7EDOI7jBnCcM46brKwsu9Zze1jboUMHbdmyRampqZo/f74mT56sVatWlRnYOuqJJ54oNho3LS1NzZo109ChQxUcHOyU+/BkeXl5WrZsmYYMGSJvb293lwNUCxw3KLRwywnlrN+h5qH+uv+GS2Qymdxdkkfj2AEcx3EDVAzHDuA4jhvAcc48bgrP9i+P28NaHx8ftW3bVpLUq1cvbdiwQW+++abef//9EuuGh4crISGh2LKEhASFh5fdQ9DX11e+vr4llnt7e9eqF6fatr+AM3Dc4NstcZKk63o1k4+Pj5urqT44dgDHcdwAFcOxAziO4wZwnDOOG3tv79YJxkpjs9mK9Zg9V79+/fTrr78WW7Zs2bIye9wCAFBRx5Kz9OeB0zKZpGt6NXV3OQAAAACAWsCtI2ufeOIJjRgxQs2bN1d6errmzp2rlStXaunSpZKkSZMmqUmTJpo+fbok6cEHH9TgwYP12muvadSoUZo3b542btyoDz74wJ27AQCogRZsOi5J6t+mvprU9XdzNQAAAACA2sCtYW1iYqImTZqkuLg4hYSEqGvXrlq6dKmGDBkiSTpy5IjM5r8G//bv319z587V//3f/+nJJ59Uu3bttHDhQkVFRblrFwAANZDNZmh+9FFJ0rWMqgUAAAAAVBG3hrUff/zxBa9fuXJliWXXXXedrrvuOhdVBACAtOFQko4mnVGgr5eGd45wdzkAAAAAgFrC43rWAgDgbl9vOiZJuqprhPx9LG6uBgAAAABQWxDWAgBwjsycfP20PU4SLRAAAAAAAFWLsBYAgHMs3hGvrFyrWjWoo14t6rm7HAAAAABALUJYCwDAOeZv+mtiMZPJ5OZqAAAAAAC1CWEtAABnHTmdpbUHk2QySVf3aOLucgAAAAAAtQxhLQAAZy2ILphY7JK2DdS4rr+bqwEAAAAA1DaEtQAASLLZjKKwlonFAAAAAADuQFgLAICkdbFJOpZ8RkG+XhrWOdzd5QAAAAAAaiHCWgAAJH19dmKxq7o1lp+3xc3VAAAAAABqIy93FwAAgLtYbYbWxybpaHKWftgaJ4kWCAAAAAAA9yGsBQDUSkt2xGnaohjFpWYXLbOYTUpMy77ArQAAAAAAcB3aIAAAap0lO+I0ZU50saBWKhhpe+/n0VqyI85NlQEAAAAAajPCWgBArWK1GZq2KEbGBdaZtihGVtuF1gAAAAAAwPkIawEAtcr62KQSI2rPZUiKS83W+tikqisKAAAAAAAR1gIAapnEdPt60tq7HgAAAAAAzkJYCwCoVcKC/Jy6HgAAAAAAzkJYCwCoVfq0ClVESNlBrElSRIif+rQKrbqiAAAAAAAQYS0AoJaxmE36v1GdSr3OdPb71NGRsphNpa4DAAAAAICrENYCAGqd+LQcSZLpvDw2PMRPMyf01PCoCDdUBQAAAACo7bzcXQAAAFUpIS1bbyzbK0l6flyUWjcIVGJ6tsKCClofMKIWAAAAAOAuhLUAgFrlhR93KSMnX92b1dVNFzWXmXAWAAAAAOAhaIMAAKg1/jxwSt9vPSGTqWBULUEtAAAAAMCTENYCAGqF3Hyb/v3dTknShL4tFNUkxM0VAQAAAABQHGEtAKBW+N/qWO1PzFD9Oj56dGgHd5cDAAAAAEAJhLUAgBrvRMoZvfnLPknSEyM7KSTA280VAQAAAABQEmEtAKDGe/7HGJ3Js6p3i3q6pkcTd5cDAAAAAECpCGsBADXab3tP6qft8bKYTXqOScUAAAAAAB6MsBYAUGPl5Fs19fuCScUm92upThHBbq4IAAAAAICyEdYCAGqsD1YdVOypTDUM8tXDQ9q5uxwAAAAAAC6IsBYAUCMdTcrSjBX7JUn/N6qTgvyYVAwAAAAA4NkIawEANdK0RTHKybepX+v6GtOtsbvLAQAAAACgXIS1AIAa59ddCfplV4K8zCY9O7azTCYmFQMAAAAAeD7CWgBAjZKdZ9UziwomFbv9klZq1yjIzRUBAAAAAGAfwloAQI3y7soDOpp0RhEhfvr7FUwqBgAAAACoPghrAQA1xqFTmXpv1QFJ0tNXRaqOr5ebKwIAAAAAwH6EtQCAGsEwDE39fqdy820a2K6BRkSFu7skAAAAAAAcQlgLAKgRlu5M0Kq9J+VjMWvaGCYVAwAAAABUP4S1AIBqLys3X8+enVTsrkGt1bphoJsrAgAAAADAcYS1AIBq7+3l+3UiNVtN6vrrvsvaurscAAAAAAAqhLAWAFCt7U/M0Ee/H5QkPTOms/x9LG6uCAAAAACAiiGsBQBUWwWTiu1QntXQ5R3DdGWnMHeXBAAAAABAhRHWAgCqrR+2xWn1/tPy9TLrmdFMKgYAAAAAqN4IawEA1VJGTr6e/zFGknTvpW3VvH6AmysCAAAAAKByCGsBANXSf5ftVUJajlrUD9Ddg1u7uxwAAAAAACrNy90FAABgL6vN0PrYJG09mqL/rY6VVDCpmJ83k4oBAAAAAKo/wloAQLWwZEecpi2KUVxqdtEyXy+zcvKsbqwKAAAAAADnoQ0CAMDjLdkRpylzoosFtZKUk2/TlDnRWrIjzk2VAQAAAADgPIS1AACPZrUZmrYoRsYF1pm2KEZW24XWAAAAAADA8xHWAgA82vrYpBIjas9lSIpLzdb62KSqKwoAAAAAABcgrAUAeLTE9LKD2oqsBwAAAACApyKsBQB4tLAgP6euBwAAAACApyKsBQB4tD6tQhUeXHYQa5IUEeKnPq1Cq64oAAAAAABcgLAWAODRLGaThnVuVOp1prPfp46OlMVsKnUdAAAAAACqC8JaAIBHs9kM/XngtCQpyNer2HXhIX6aOaGnhkdFuKM0AAAAAACcyqv8VQAAcJ9fdydqX2KGgny99Ns/L9PuuHQlpmcrLKig9QEjagEAAAAANQVhLQDAYxmGoZkr90uSxl/cXPUCfNSvTX03VwUAAAAAgGvQBgEA4LE2HEpW9JEU+VjMun1AK3eXAwAAAACASxHWAgA81nurDkiS/taricKC/dxcDQAAAAAArkVYCwDwSLvj07R8d6JMJunOga3dXQ4AAAAAAC5HWAsA8EjvrzooSRoRFa7WDQPdXA0AAAAAAK5HWAsA8DjHkrP0/dYTkqR7BrdxczUAAAAAAFQNwloAgMf56PdYWW2GBrStr65N67q7HAAAAAAAqgRhLQDAoyRl5mrehiOSGFULAAAAAKhdCGsBAB7lkz8PKTvPps6Ng3VJ2wbuLgcAAAAAgCpDWAsA8BhZufn6ZM0hSdKUS9vIZDK5tyAAAAAAAKoQYS0AwGPMW39UKVl5alE/QCOiItxdDgAAAAAAVYqwFgDgEfKsNn30+0FJ0p0DW8tiZlQtAAAAAKB2IawFAHiE77ec0InUbDUI9NW1vZq6uxwAAAAAAKocYS0AwO1sNkPv/3ZAknTrgJby87a4uSIAAAAAAKoeYS0AwO1W7EnU3oQMBfp6acLFLdxdDgAAAAAAbuHWsHb69Om66KKLFBQUpLCwMI0bN0579uy54G1mz54tk8lU7MvPz6+KKgYAuMLMlQWjam/u21wh/t5urgYAAAAAAPdwa1i7atUq3XfffVq7dq2WLVumvLw8DR06VJmZmRe8XXBwsOLi4oq+Dh8+XEUVAwCcbcOhJG08nCwfi1m3XdLK3eUAAAAAAOA2Xu688yVLlhS7PHv2bIWFhWnTpk0aNGhQmbczmUwKDw93dXkAgCrw3tlRtdf0bKJGwZwpAQAAAACovdwa1p4vNTVVkhQaGnrB9TIyMtSiRQvZbDb17NlTL774ojp37lzqujk5OcrJySm6nJaWJknKy8tTXl6ekyr3XIX7WBv2FXAWjpuqszchXb/uTpTJJN3WvzmPeTXHsQM4juMGqBiOHcBxHDeA45x53Ni7DZNhGEal780JbDabxowZo5SUFP3xxx9lrrdmzRrt27dPXbt2VWpqql599VX99ttv2rlzp5o2bVpi/WeeeUbTpk0rsXzu3LkKCAhw6j4AABwzZ79ZG06a1S3Upts62NxdDgAAAAAALpGVlaXx48crNTVVwcHBZa7nMWHtlClTtHjxYv3xxx+lhq5lycvLU6dOnXTTTTfpueeeK3F9aSNrmzVrplOnTl3wgakp8vLytGzZMg0ZMkTe3kzaA9iD46ZqnEg5oyve+EP5NkML7u6rrk1D3F0SKoljB3Acxw1QMRw7gOM4bgDHOfO4SUtLU4MGDcoNaz2iDcL999+vH374Qb/99ptDQa0keXt7q0ePHtq/f3+p1/v6+srX17fU29WmF6fatr+AM3DcuNbstXuVbzPUr3V99WrVwN3lwIk4dgDHcdwAFcOxAziO4wZwnDOOG3tvb67UvVSSYRi6//779e2332r58uVq1crxWcCtVqu2b9+uiIgIF1QIAHCF5MxczVt/VJI05dI2bq4GAAAAAADP4NaRtffdd5/mzp2r7777TkFBQYqPj5ckhYSEyN/fX5I0adIkNWnSRNOnT5ckPfvss7r44ovVtm1bpaSk6D//+Y8OHz6sO+64w237AQBwzCdrDulMnlWdGwdrYDtG1QIAAAAAILk5rJ05c6Yk6dJLLy22fNasWbrlllskSUeOHJHZ/NcA4OTkZN15552Kj49XvXr11KtXL/3555+KjIysqrIBAJWQlZuvT/48JEm6Z3AbmUwm9xYEAAAAAICHcGtYa8/cZitXrix2+Y033tAbb7zhoooAAK725YajSs7KU/PQAI2ICnd3OQAAAAAAeAy39qwFANQueVabPvo9VpJ056DW8rLwZwgAAAAAgEK8SwYAVJkftp3Q8ZQzahDoo+t6NXV3OQAAAAAAeBTCWgBAlTAMQ++tPChJunVAK/l5W9xcEQAAAAAAnoWwFgBQJVbsSdSehHQF+nppwsUt3F0OAAAAAAAeh7AWAFAlZq48IEka37e5Qvy93VwNAAAAAACeh7AWAOBymw4nacOhZHlbTLptQCt3lwMAAAAAgEcirAUAuNzMs71qr+nRVOEhfm6uBgAAAAAAz+Tl7gIAADWT1WZofWySth1L0S+7EiRJdw1u7eaqAAAAAADwXIS1AACnW7IjTtMWxSguNbtoma+XWfsS0tWmYaAbKwMAAAAAwHPRBgEA4FRLdsRpypzoYkGtJOXk2zRlTrSW7IhzU2UAAAAAAHg2wloAgNNYbYamLYqRcYF1pi2KkdV2oTUAAAAAAKidCGsBAE6zPjapxIjacxmS4lKztT42qeqKAgAAAACgmiCsBQA4hWEY+m3vSbvWTUwvO9AFAAAAAKC2YoIxAEClWG2GluyI18xV+7XjeJpdtwkL8nNxVQAAAAAAVD+EtQCACsnNt+nbzcf0/qqDOngqU5Lk52WW2WxSVq611NuYJIWH+KlPq9AqrBQAAAAAgOqBsBYA4JDMnHx9sf6IPvo9VvFpBe0MQvy9Nbl/S93Sv6XWx57WlDnRklRsojHT2e9TR0fKYjYJAAAAAAAUR1gLAJDVZmh9bJIS07MVFlQw8vX8QDUlK1ez/zyk2X8eUkpWniSpUbCv7riktW7q21yBvgV/UoZHRWjmhJ6atiim2GRj4SF+mjo6UsOjIqpuxwAAAAAAqEYIawGglluyI65EsBpxTrAan5qtj34/qLnrjxS1N2hZP0B3D26ja3o2ka+XpcQ2h0dFaEhkeLkBMAAAAAAA+Eulw1qr1art27erRYsWqlevnjNqAgBUkSU74jRlTnSxdgWSFJ+arXvmRGtAm/pafyhJedaCNSIjgnXvZW00Iiqi3ODVYjapX5v6LqocAAAAAICax+zoDR566CF9/PHHkgqC2sGDB6tnz55q1qyZVq5c6ez6AAAuYrUZmrYopkRQK/3Va3b1gdPKsxrq0ypUs2+9SD/+/RJd1bUxI2QBAAAAAHABh8Pa+fPnq1u3bpKkRYsWKTY2Vrt379bDDz+sp556yukFAgBcY31sUrHWB2WZNiZSX93dT5d2CJPJREgLAAAAAICrOBzWnjp1SuHh4ZKkn376Sdddd53at2+v2267Tdu3b3d6gQAA10hMLz+olaS6AT4urgQAAAAAAEgVCGsbNWqkmJgYWa1WLVmyREOGDJEkZWVlyWIpOckMAMAzhQX5OXU9AAAAAABQOQ5PMHbrrbfq+uuvV0REhEwmk6688kpJ0rp169SxY0enFwgAcI0+rUIVEeKn+NTsUvvWmiSFh/ipT6vQqi4NAAAAAIBayeGw9plnnlFUVJSOHj2q6667Tr6+vpIki8Wif/3rX04vEADgGhazSVNHR2rKnOgS1xV2pp06OpLJxAAAAAAAqCIOh7WSdO2115ZYNnny5EoXAwCoWsOjIjRzQk89Nn+b0rPzi5aHh/hp6uhIDY+KcGN1AAAAAADULhUKa3/99Vf9+uuvSkxMlM1mK3bd//73P6cUBgCoGsOjIrR4e5y+2xqnkVHhmtivpfq0CmVELQAAAAAAVczhsHbatGl69tln1bt376K+tQCA6m1XfLok6dreTdWvTX03VwMAAAAAQO3kcFj73nvvafbs2Zo4caIr6gEAVLHsPKsOnMyUJHVuHOLmagAAAAAAqL3Mjt4gNzdX/fv3d0UtAAA32B2fLqvNUINAH4UF+bq7HAAAAAAAai2Hw9o77rhDc+fOdUUtAAA32HkiVZIU2TiE1jYAAAAAALiRw20QsrOz9cEHH+iXX35R165d5e3tXez6119/3WnFAQBcb+eJNElSZESwmysBAAAAAKB2czis3bZtm7p37y5J2rFjR7HrGJEFANVPzNmwtnNjwloAAAAAANzJ4bB2xYoVrqgDAOAGVpuh3fGEtQAAAAAAeAKHe9ae69ixYzp27JizagEAVLGDJzOUnWdTgI9FLevXcXc5AAAAAADUag6HtTabTc8++6xCQkLUokULtWjRQnXr1tVzzz0nm83mihoBAC5S2K+2U0SwzGZa2QAAAAAA4E4Ot0F46qmn9PHHH+ull17SgAEDJEl//PGHnnnmGWVnZ+uFF15wepEAANfYeSJVEi0QAAAAAADwBA6HtZ988ok++ugjjRkzpmhZ165d1aRJE917772EtQBQjcTE0a8WAAAAAABP4XAbhKSkJHXs2LHE8o4dOyopKckpRQEAXM8wjKI2CJ0bh7i5GgAAAAAA4HBY261bN82YMaPE8hkzZqhbt25OKQoA4HonUrOVkpUnL7NJ7RoFurscAAAAAABqPYfbILzyyisaNWqUfvnlF/Xr10+StGbNGh09elQ//fST0wsEALjGzuMF/WrbhgXK18vi5moAAAAAAIDDI2sHDx6svXv36uqrr1ZKSopSUlJ0zTXXaM+ePRo4cKAragQAuMBf/WppgQAAAAAAgCdweGStJDVu3JiJxACgmvurXy2TiwEAAAAA4AnsCmu3bdumqKgomc1mbdu27YLrdu3a1SmFAQBcK4awFgAAAAAAj2JXWNu9e3fFx8crLCxM3bt3l8lkkmEYJdYzmUyyWq1OLxIA4FzJmbk6nnJGktSJsBYAAAAAAI9gV1gbGxurhg0bFv0MAKjeCvvVNg8NULCft5urAQAAAAAAkp1hbYsWLUr9GQBQPdECAQAAAAAAz2N29AaffPKJfvzxx6LLjz/+uOrWrav+/fvr8OHDTi0OAOAaO0+kSiKsBQAAAADAkzgc1r744ovy9/eXJK1Zs0YzZszQK6+8ogYNGujhhx92eoEAAOfbWTSyNsTNlQAAAAAAgEJ2tUE419GjR9W2bVtJ0sKFC3Xttdfqrrvu0oABA3TppZc6uz4AgJOdybXqwMkMSVIkI2sBAAAAAPAYDo+sDQwM1OnTpyVJP//8s4YMGSJJ8vPz05kzZ5xbHQDA6XbHp8lmSA0CfRQW5OvucgAAAAAAwFkOj6wdMmSI7rjjDvXo0UN79+7VyJEjJUk7d+5Uy5YtnV0fAMDJYuIKWiBENg6RyWRyczUAAAAAAKCQwyNr33nnHfXr108nT57UggULVL9+fUnSpk2bdNNNNzm9QACAc/3Vr5YWCAAAAAAAeBKHR9bWrVtXM2bMKLF82rRpTikIAOBahLUAAAAAAHgmh0fWLlmyRH/88UfR5XfeeUfdu3fX+PHjlZyc7NTiAADOlW+1aXdhG4QIwloAAAAAADyJw2HtY489prS0gjf627dv1z/+8Q+NHDlSsbGxeuSRR5xeIADAeQ6eylROvk11fCxqWb+Ou8sBAAAAAADncLgNQmxsrCIjIyVJCxYs0FVXXaUXX3xR0dHRRZONAQA8U8zZFgidIoJlNjO5GAAAAAAAnsThkbU+Pj7KysqSJP3yyy8aOnSoJCk0NLRoxC0AwDPtPJEqiX61AAAAAAB4IodH1l5yySV65JFHNGDAAK1fv15ffvmlJGnv3r1q2rSp0wsEADjPX5OLhbi5EgAAAAAAcD6HR9bOmDFDXl5emj9/vmbOnKkmTZpIkhYvXqzhw4c7vUAAgHMYhlEU1kYyshYAAAAAAI/j8Mja5s2b64cffiix/I033nBKQQAA1zieckapZ/LkZTapXaNAd5cDAAAAAADOY1dYm5aWpuDg4KKfL6RwPQCAZymcXKxdoyD5elncXA0AAAAAADifXWFtvXr1FBcXp7CwMNWtW1cmU8kZxA3DkMlkktVqdXqRAIDK+6tfLR+qAQAAAADgiewKa5cvX67Q0FBJ0ooVK1xaEADANYr61UYQ1gIAAAAA4InsCmsHDx5c6s8AgOoj5kSqJEbWAgAAAADgqRyeYEySsrOztW3bNiUmJspmsxW7bsyYMU4pDADgPMmZuTqRmi1JiiSsBQAAAADAIzkc1i5ZskSTJk3SqVOnSlxHz1oA8EwxcQUtEFrUD1CQn7ebqwEAAAAAAKUxO3qDBx54QNddd53i4uJks9mKfRHUAoBn2kkLBAAAAAAAPJ7DYW1CQoIeeeQRNWrUyBX1AABcgMnFAAAAAADwfA6Htddee61WrlzplDufPn26LrroIgUFBSksLEzjxo3Tnj17yr3d119/rY4dO8rPz09dunTRTz/95JR6AKCmKgxrOzcOcXMlAAAAAACgLA73rJ0xY4auu+46/f777+rSpYu8vYv3Pvz73/9u97ZWrVql++67TxdddJHy8/P15JNPaujQoYqJiVGdOnVKvc2ff/6pm266SdOnT9dVV12luXPnaty4cYqOjlZUVJSjuwMANd6ZXKsOnsyQRBsEAAAAAAA8mcNh7RdffKGff/5Zfn5+WrlypUwmU9F1JpPJobB2yZIlxS7Pnj1bYWFh2rRpkwYNGlTqbd58800NHz5cjz32mCTpueee07JlyzRjxgy99957ju4OANR4u+PTZDOkBoG+Cgv2c3c5AAAAAACgDA63QXjqqac0bdo0paam6tChQ4qNjS36OnjwYKWKSU0tmAAnNDS0zHXWrFmjK6+8stiyYcOGac2aNZW6bwCoqf5qgcCoWgAAAAAAPJnDI2tzc3N1ww03yGx2OOe9IJvNpoceekgDBgy4YDuD+Pj4EpObNWrUSPHx8aWun5OTo5ycnKLLaWkFoUVeXp7y8vKcULlnK9zH2rCvgLPUtONm+7EUSVLHRoE1Zp/gmWrasQNUBY4boGI4dgDHcdwAjnPmcWPvNhwOaydPnqwvv/xSTz75pMNFXch9992nHTt26I8//nDqdqdPn65p06aVWP7zzz8rICDAqfflyZYtW+buEoBqp6YcN2t2WSSZlBO/Xz/9tM/d5aAWqCnHDlCVOG6AiuHYARzHcQM4zhnHTVZWll3rORzWWq1WvfLKK1q6dKm6du1aYoKx119/3dFN6v7779cPP/yg3377TU2bNr3guuHh4UpISCi2LCEhQeHh4aWu/8QTT+iRRx4pupyWlqZmzZpp6NChCg6u+acE5+XladmyZRoyZEiJ3xWA0tWk4ybfatPjG5ZLsunmUYPUsn7pkzcCzlCTjh2gqnDcABXDsQM4juMGcJwzj5vCs/3L43BYu337dvXo0UOStGPHjmLXnTvZmD0Mw9ADDzygb7/9VitXrlSrVq3KvU2/fv3066+/6qGHHipatmzZMvXr16/U9X19feXr61tiube3d616capt+ws4Q004bmKT0pWTb1MdH4vahIXIbHbsdRqoiJpw7ABVjeMGqBiOHcBxHDeA45xx3Nh7e4fD2hUrVjhcTFnuu+8+zZ07V999952CgoKK+s6GhITI399fkjRp0iQ1adJE06dPlyQ9+OCDGjx4sF577TWNGjVK8+bN08aNG/XBBx84rS4AqCl2niiYuLFTRDBBLQAAAAAAHs6ps4QlJiY6tP7MmTOVmpqqSy+9VBEREUVfX375ZdE6R44cUVxcXNHl/v37a+7cufrggw/UrVs3zZ8/XwsXLrzgpGQAUFvtPF5wmkXnxjW/7QsAAAAAANWd3SNrAwICdPjwYTVs2FCSNGrUKH300UeKiIiQVNA3tnHjxrJarXbfuWEY5a6zcuXKEsuuu+46XXfddXbfDwDUVjtPFIa1IW6uBAAAAAAAlMfukbXZ2dnFwtXffvtNZ86cKbaOPeErAKBqGIahmLiCsDaSkbUAAAAAAHg8p7ZBcHSCMQCA6xxPOaPUM3nytpjUvlGQu8sBAAAAAADlcGpYCwDwHIUtENqGBcnHi5d7AAAAAAA8nd3v3k0mU7GRs+dfBgB4lr/61dICAQAAAACA6sDuCcYMw1D79u2LAtqMjAz16NFDZrO56HoAgOeIOZEqibAWAAAAAIDqwu6wdtasWa6sAwDgZDFFI2tD3FwJAAAAAACwh91h7eTJk11ZBwDAiZIzc3UiNVuS1CmCycUAAAAAAKgOmHEGAGqgwn61LeoHKMjP283VAAAAAAAAexDWAkANtJN+tQAAAAAAVDuEtQBQA+2kXy0AAAAAANUOYS0A1EAxcQVhbSQjawEAAAAAqDYIawGghjmTa9XBkxmSaIMAAAAAAEB14uXoDaxWq2bPnq1ff/1ViYmJstlsxa5fvny504oDADhuV3yabIbUINBXYUF+7i4HAAAAAADYyeGw9sEHH9Ts2bM1atQoRUVFyWQyuaIuAEAF/dWvllG1AAAAAABUJw6HtfPmzdNXX32lkSNHuqIeAEAlxZxIlURYCwAAAABAdeNwz1ofHx+1bdvWFbUAAJwgpmhkbYibKwEAAAAAAI5wOKz9xz/+oTfffFOGYbiiHgBAJeRbbdodny5JimRkLQAAAAAA1YrDbRD++OMPrVixQosXL1bnzp3l7e1d7PpvvvnGacUBABxz4GSmcvJtCvT1UovQAHeXAwAAAAAAHOBwWFu3bl1dffXVrqgFAFBJO8/2q+0UESSzmQkgAQAAAACoThwOa2fNmuWKOgAATrCTfrUAAAAAAFRbDvesBQB4rsLJxehXCwAAAABA9ePwyFpJmj9/vr766isdOXJEubm5xa6Ljo52SmEAAMcYhlHUBiEygrAWAAAAAIDqxuGRtW+99ZZuvfVWNWrUSJs3b1afPn1Uv359HTx4UCNGjHBFjQAAOxxLPqO07Hx5W0xq3yjI3eUAAAAAAAAHORzWvvvuu/rggw/09ttvy8fHR48//riWLVumv//970pNTXVFjQAAOxT2q20XFiQfL7rcAAAAAABQ3Tj8bv7IkSPq37+/JMnf31/p6emSpIkTJ+qLL75wbnUAALvFxBVOLkYLBAAAAAAAqiOHw9rw8HAlJSVJkpo3b661a9dKkmJjY2UYhnOrAwDYLeZsv1rCWgAAAAAAqieHw9rLL79c33//vSTp1ltv1cMPP6whQ4bohhtu0NVXX+30AgEA9ilsgxDZOMTNlQAAAAAAgIrwcvQGH3zwgWw2myTpvvvuU/369fXnn39qzJgxuvvuu51eIACgfEmZuYpLzZYkdYpgcjEAAAAAAKojh8Nas9kss/mvAbk33nijbrzxRqcWBQBwzM6zLRBa1g9QkJ+3m6sBAAAAAAAVUaHpwn///XdNmDBB/fr10/HjxyVJn332mf744w+nFgcAsE/MicLJxWiBAAAAAABAdeVwWLtgwQINGzZM/v7+2rx5s3JyciRJqampevHFF51eIACgfH/1q2VyMQAAAAAAqiuHw9rnn39e7733nj788EN5e/91qu2AAQMUHR3t1OIAAPYpbINAWAsAAAAAQPXlcFi7Z88eDRo0qMTykJAQpaSkOKMmAIADsnLzdfBUpiSpM2EtAAAAAADVlsNhbXh4uPbv319i+R9//KHWrVs7pSgAgP12xaXLMKSGQb4KC/JzdzkAAAAAAKCCHA5r77zzTj344INat26dTCaTTpw4oc8//1yPPvqopkyZ4ooaAQAXEBNXOLkYo2oBAAAAAKjOvBy9wb/+9S/ZbDZdccUVysrK0qBBg+Tr66tHH31UDzzwgCtqBABcQExhv9oIwloAAAAAAKozh8Nak8mkp556So899pj279+vjIwMRUZGKjAw0BX1AQDKsfNE4cjaEDdXAgAAAAAAKsPhsLaQj4+PIiMjnVkLAMBBeVabdsenS6INAgAAAAAA1Z3dYe1tt91m13r/+9//KlwMAMAxB05mKDffpkBfLzUPDXB3OQAAAAAAoBLsDmtnz56tFi1aqEePHjIMw5U1AQDsFHO2BUJkRLDMZpObqwEAAAAAAJVhd1g7ZcoUffHFF4qNjdWtt96qCRMmKDQ01JW1AQDKUdivNpIWCAAAAAAAVHtme1d85513FBcXp8cff1yLFi1Ss2bNdP3112vp0qWMtAUAN9l5IlUSYS0AAAAAADWB3WGtJPn6+uqmm27SsmXLFBMTo86dO+vee+9Vy5YtlZGR4aoaAQClMAyjqA0Ck4sBAAAAAFD9ORTWFruh2SyTySTDMGS1Wp1ZEwDADseSzygtO1/eFpPahQW5uxwAAAAAAFBJDoW1OTk5+uKLLzRkyBC1b99e27dv14wZM3TkyBEFBga6qkYAQCkK+9W2CwuSj1eFP3sDAAAAAAAewu4Jxu69917NmzdPzZo102233aYvvvhCDRo0cGVtAIAyWG2Gft4ZJ0lqGOQjq82QxWxyc1UAAAAAAKAy7A5r33vvPTVv3lytW7fWqlWrtGrVqlLX++abb5xWHACgpCU74jRtUYziUrMlSav2ntIlLy/X1NGRGh4V4ebqAAAAAABARdkd1k6aNEkmE6O2AMCdluyI05Q50TLOWx6fmq0pc6I1c0JPAlsAAAAAAKopu8Pa2bNnu7AMAEB5rDZD0xbFlAhqJcmQZJI0bVGMhkSG0xIBAAAAAIBqiBlpAKCaWB+bVNT6oDSGpLjUbK2PTaq6ogAAAAAAgNMQ1gJANZGYXnZQW5H1AAAAAACAZyGsBYBqIizIz6nrAQAAAAAAz2J3z1oAgHvFnsq44PUmSeEhfurTKrRqCgIAAAAAAE7FyFoAqAbmbzqmpxbuKLp8/vRhhZenjo5kcjEAAAAAAKopwloA8HDfbTmux+ZvlWFIk/q10Mybeyo8pHirg/AQP82c0FPDoyLcVCUAAAAAAKgs2iAAgAf7cVucHv5yiwxDuqlPcz0zurPMZpOGdg7X+tgkJaZnKyyooPUBI2oBAAAAAKjeCGsBwEMt2RGvv8/bLJshXdurqV4YFyXz2UDWYjapX5v6bq4QAAAAAAA4E20QAMAD/borQQ98ES2rzdDVPZro5b91LQpqAQAAAABAzURYCwAeZtXek5oyJ1p5VkNXdY3Qf67tSosDAAAAAABqAcJaAPAgq/ef0l2fblSu1abhncP1xg3d5WXhpRoAAAAAgNqABAAAPMTag6d1+ycblJNv05WdwvTWTT3kTVALAAAAAECtQQoAAB5g46Ek3TZ7g7LzbBrcvqHeubmnfLx4iQYAAAAAoDYhCQAAN9tyNEW3zNqgrFyrLmnbQO9P7CVfL4u7ywIAAAAAAFWMsBYA3GjH8VRN/HidMnLydXHrUH04qbf8vAlqAQAAAACojQhrAcBNYk6kacLH65Sena+LWtbTx5Mvkr8PQS0AAAAAALUVYS0AuMHehHRN+HidUrLy1KN5Xc26tY/q+Hq5uywAAAAAAOBGJAMA4GJWm6H1sUlKTM9WWJCfQuv46OaP1ikpM1ddm4Zo9q19FEhQCwAAAABArUc6AAAutGRHnKYtilFcanbRMrNJshlSZESwPr2tj0L8vd1YIQAAAAAA8BSEtQDgIkt2xGnKnGgZ5y23nV1w64CWqhvgU+V1AQAAAAAAz0TPWgBwAavN0LRFMSWC2nO9vmyvrLYLrQEAAAAAAGoTt4a1v/32m0aPHq3GjRvLZDJp4cKFF1x/5cqVMplMJb7i4+OrpmAAsNP62KRirQ9KE5earfWxSVVUEQAAAAAA8HRuDWszMzPVrVs3vfPOOw7dbs+ePYqLiyv6CgsLc1GFAFAxiekXDmodXQ8AAAAAANR8bu1ZO2LECI0YMcLh24WFhalu3brOLwgAnCQsyM+p6wEAAAAAgJqvWvas7d69uyIiIjRkyBCtXr3a3eUAQAl9WoUqIqTsINYkKSLET31ahVZdUQAAAAAAwKO5dWStoyIiIvTee++pd+/eysnJ0UcffaRLL71U69atU8+ePUu9TU5OjnJycooup6WlSZLy8vKUl5dXJXW7U+E+1oZ9BZzFWcfNXQNbatoPu0ssN539/tSIDrJZ82WzVupuAI/B3xzAcRw3QMVw7ACO47gBHOfM48bebZgMw/CIqchNJpO+/fZbjRs3zqHbDR48WM2bN9dnn31W6vXPPPOMpk2bVmL53LlzFRAQUJFSAcAus/aYtSXJLC+ToXzDVLS8ro+ha1ra1K2+R7z8AgAAAAAAF8vKytL48eOVmpqq4ODgMterViNrS9OnTx/98ccfZV7/xBNP6JFHHim6nJaWpmbNmmno0KEXfGBqiry8PC1btkxDhgyRt7e3u8sBqgVnHDebDidry5oNMpukBff0U3pOvhLTcxQW5KveLerJYjaVvxGgmuFvDuA4jhugYjh2AMdx3ACOc+ZxU3i2f3mqfVi7ZcsWRURElHm9r6+vfH19Syz39vauVS9OtW1/AWeo6HFjGIZeWrpPknR972bq1qK+s0sDPBp/cwDHcdwAFcOxAziO4wZwnDOOG3tv79awNiMjQ/v37y+6HBsbqy1btig0NFTNmzfXE088oePHj+vTTz+VJP33v/9Vq1at1LlzZ2VnZ+ujjz7S8uXL9fPPP7trFwCghEXb4rTlaIoCfCx6ZGh7d5cDAAAAAACqCbeGtRs3btRll11WdLmwXcHkyZM1e/ZsxcXF6ciRI0XX5+bm6h//+IeOHz+ugIAAde3aVb/88kuxbQCAO2XnWfXy4oJJxaYMbqOwID83VwQAAAAAAKoLt4a1l156qS40v9ns2bOLXX788cf1+OOPu7gqAKi4WasP6XjKGYUH++mOga3dXQ4AAAAAAKhGzO4uAABqitMZOXp3RUFrl8eGdZC/j8XNFQEAAAAAgOqEsBYAnOS/v+xTek6+opoE6+oeTdxdDgAAAAAAqGYIawHACfYnpmvu+oIe20+NjJTZbHJzRQAAAAAAoLohrAUAJ5j+025ZbYaGRDZSvzb13V0OAAAAAACohghrAaCSVu8/pV93J8rLbNITIzq6uxwAAAAAAFBNEdYCQCVYbYae/3GXJGnCxS3UumGgmysCAAAAAADVFWEtAFTCguhj2hWXpiA/L/39inbuLgcAAAAAAFRjhLUAUEFZufl6dekeSdLfL2+n0Do+bq4IAAAAAABUZ4S1AFBBH/x2UInpOWoeGqBJ/Vu4uxwAAAAAAFDNEdYCQAUkpGXr/VUHJUn/HN5Rvl4WN1cEAAAAAACqO8JaAKiAV5fu0Zk8q3q1qKeRXcLdXQ4AAAAAAKgBCGsBwEE7T6RqfvQxSdJTozrJZDK5uSIAAAAAAFATENYCgAMMw9CLP+2SYUhXdY1Qz+b13F0SAAAAAACoIQhrAcABK/YkavX+0/LxMuufwzu6uxwAAAAAAFCDENYCgJ3yrDa98OMuSdKtA1qqWWiAmysCAAAAAAA1CWEtANhp3vojOnAyU6F1fHTfZW3dXQ4AAAAAAKhhCGsBwA5p2Xl645d9kqSHrmynYD9vN1cEAAAAAABqGsJaALDDuysOKCkzV60b1tFNfZq7uxwAAAAAAFADEdYCQDmOJmXpf6tjJUlPjewkbwsvnQAAAAAAwPlIHACgHP9Zuke5+Tb1b1Nfl3cMc3c5AAAAAACghiKsBYAL2HwkWd9vPSGTSXpqVCeZTCZ3lwQAAAAAAGoowloAKINhGHr+x12SpL/1bKrOjUPcXBEAAAAAAKjJvNxdAAB4EqvN0LrYJG06ZdL+FQe06XCy/L0tenRoB3eXBgAAAAAAajjCWgA4a8mOOE1bFKO41GxJFmnfQUnS5R3DFB7i597iAAAAAABAjUcbBABQQVA7ZU702aC2uJ+2x2nJjjg3VAUAAAAAAGoTwloAtZ7VZmjaohgZF1hn2qIYWW0XWgMAAAAAAKByCGsB1HrrY5NKHVFbyJAUl5qt9bFJVVcUAAAAAACodQhrAdR6iellB7UVWQ8AAAAAAKAiCGsB1HphQfZNHmbvegAAAAAAABVBWAug1uvcOFg+FlOZ15skRYT4qU+r0KorCgAAAAAA1DqEtQBqtfTsPN02e4NyraVPHlYY4U4dHSmLuexAFwAAAAAAoLIIawHUWqln8jTx4/XaeDhZwX5e+tfwjooIKd7qIDzETzMn9NTwqAg3VQkAAAAAAGoLL3cXAADukJKVq4kfr9f246mqG+CtObf3VVSTEN05qLXW7E/Uz7+v09CBfdWvbRgjagEAAAAAQJUgrAVQ6yRl5mrCR+sUE5em0Do++vyOvuoUESxJsphN6tsqVKd3GerbKpSgFgAAAAAAVBnCWgC1yqmMHN384TrtSUhXg0Bfzb2zr9o3CnJ3WQAAAAAAAIS1AGqPxLRsjf9onfYnZigsyFdz77xYbcMC3V0WAAAAAACAJMJaALVEfGq2xn+4VgdPZSoixE9z77xYrRrUcXdZAAAAAAAARQhrAdR4x1POaPyHa3X4dJaa1PXXvLsuVrPQAHeXBQAAAAAAUAxhLYAa7WhSlm76cK2OJZ9R89AAzb2zr5rWI6gFAAAAAACeh7AWQI116FSmxn+4VidSs9WqQR3NvbOvIkL83V0WAAAAAABAqQhrAdRIB05maPyHa5WQlqM2Deto7p0Xq1Gwn7vLAgAAAAAAKBNhLYAaZ19CusZ/tE4n03PUvlGgPr/jYjUM8nV3WQAAAAAAABdEWAugWrPaDK2PTVJierbCgvwU7O+lSR+v1+nMXHUMD9Lnd/RV/UCCWgAAAAAA4PkIawFUW0t2xGnaohjFpWYXLTOZJMOQopoE67Pb+qpeHR83VggAAAAAAGA/wloA1dKSHXGaMidaxnnLjbMLbu3fiqAWAAAAAABUK2Z3FwAAjrLaDE1bFFMiqC1kkvTqz3tktZW1BgAAAAAAgOchrAVQ7ayPTSrW+uB8hqS41Gytj02quqIAAAAAAAAqibAWQLWTmF52UFuR9QAAAAAAADwBYS2AasfHy76XrrAgPxdXAgAAAAAA4DxMMAagWtl4KEn/XrjjguuYJIWH+KlPq9CqKQoAAAAAAMAJGFkLoFowDEMf/xGrGz9Yq5MZuYoILhg1azpvvcLLU0dHymI+/1oAAAAAAADPRVgLwONl5OTr/i8267kfYpRvMzS6W2P98o/Bem9CT4WHFG91EB7ip5kTemp4VISbqgUAAAAAAKgY2iAA8Gj7E/+/vTuPj6q+9z/+nknChJBMQiDJJBACyCJJZAlWDFWRigGu4kL70B8V5eKGC/cWqcLlXhWpt6XWBbkV94Va6kNFrrZUDeUKgkhKZFMSNGwBCmQRAlnJQub7+wMyZUwCkzCZSSav58N55DHnfOfM5+sjn5zJm5PvKdd9y7ZqT3GFgq0WPXrdEE0b3VcWi0UTUuN1bbJD2fklKi6vVmzE6aUPuKIWAAAAAAB0RIS1ANqtv35zRHM/+EaVtfWKs9v04m1pGpnkvg5tkNWi9It6+KlCAAAAAAAA7yGsBdDu1NU7tfCT7/Tml/mSpPT+PfT7n49Qz3CbnysDAAAAAABoO4S1ANqVorJqPfinrdp84Lgk6b4xF+nhjEEKDmKJbQAAAAAAENgIawG0G3/fd0wz39mmoxU1irAF65lbhml8isPfZQEAAAAAAPgEYS0AvzPG6LUv9umpzDzVO40udkTopakj1a9nN3+XBgAAAAAA4DOEtQB8pt5plJ1fouLyasVGhOqyftGqqj2lR5Z/o8zcQknS5BG99OubL1HXLkF+rhYAAAAAAMC3CGsB+ERmToEWrNypgtJq17ae4V1ktVhUXF6jkCCLHp+Uoqmj+shisfixUgAAAAAAAP8grAXQ5jJzCnT/sq0yP9h+tKJWktQ9LERvTb9MwxOjfF4bAAAAAABAe8Ht1QG0qXqn0YKVOxsFtWfrEmzVJb0ifVYTAAAAAABAe0RYC6BNZeeXuC190JSishpl55f4qCIAAAAAAID2ibAWQJsqLj93UNvScQAAAAAAAIGKsBZAm4qNCPXqOAAAAAAAgEBFWAugTQUHWWSxNL/fIik+MlSX9Yv2WU0AAAAAAADtEWEtgDaz9rti3f7GJpkzdxf7YWbb8Hz+pGQFWc+R6AIAAAAAAHQChLUA2sSKLYd099ubVV3n1JhBMVr8/4bLEem+1IEjMlQvTU3ThNR4P1UJAAAAAADQfgT7uwAAgcUYo1fX79PCT7+TJN08opd+97OhCgmy6vqhCcrOL1FxebViI04vfcAVtQAAAAAAAKcR1gLwGqfT6DeffKvXN+RLku69qr/+Y8LFsp4JZIOsFqVf1MOfJQIAAAAAALRbfl0GYf369Zo0aZISEhJksVj00Ucfnfc1n3/+udLS0mSz2TRgwAAtXbq0zesEcH61p5ya/f52V1D7n/9ysf7zX4a4gloAAAAAAACcm1/D2srKSg0bNkxLlizxaHx+fr6uu+46jR07Vtu3b9esWbN09913a9WqVW1cKYBzqaw5pbv+8JU+2n5EwVaLnrtlmO696iJ/lwUAAAAAANCh+HUZhIkTJ2rixIkej3/55ZfVr18/Pfvss5KkIUOGaMOGDVq0aJHGjx/fVmUCOIdjFTW6c+lX+vpQqbqGBOmlqWm6enCsv8sCAAAAAADocPx6ZW1LZWVlady4cW7bxo8fr6ysLD9VBHRu/yip0s9eztLXh0rVPSxE79wziqAWAAAAAACglTrUDcYKCwsVFxfnti0uLk5lZWU6efKkunbt2ug1NTU1qqmpcT0vKyuTJNXV1amurq5tC24HGubYGeYK3/qusFx3vb1VxeU1SogM1VvTRqp/TLeA+F6jb4DWoXeAlqNvgNahd4CWo2+AlvNm33h6jA4V1rbGwoULtWDBgkbb//a3vyksLMwPFfnH6tWr/V0CAsieUum1vCBV11sU39VoxkUV+u6rdfrO34V5GX0DtA69A7QcfQO0Dr0DtBx9A7ScN/qmqqrKo3EdKqx1OBwqKipy21ZUVCS73d7kVbWSNG/ePM2ePdv1vKysTImJicrIyJDdbm/TetuDuro6rV69Wtdee61CQkL8XQ4CwKrcIr3ywQ7V1jt1aVKUXrlthOxdA+t7i74BWofeAVqOvgFah94BWo6+AVrOm33T8Nf+59Ohwtr09HR98sknbttWr16t9PT0Zl9js9lks9kabQ8JCelUP5w623zhHfVOo+z8EhWXVys2IlS7i8s1/y+5MkbKSI7T/0wZodCQIH+X2WboG6B16B2g5egboHXoHaDl6Bug5bzRN56+3q9hbUVFhfbs2eN6np+fr+3btys6Olp9+vTRvHnzdPjwYb399tuSpPvuu08vvPCC5syZozvvvFNr1qzR+++/r48//thfUwACVmZOgRas3KmC0upG+6Zc1kdP3pii4KAOdY9CAAAAAACAds2vYe3mzZs1duxY1/OG5QqmTZumpUuXqqCgQAcPHnTt79evnz7++GM99NBDWrx4sXr37q3XX39d48eP93ntQCDLzCnQ/cu2yjSz/6qBPQlqAQAAAAAAvMyvYe3VV18tY5qLg6SlS5c2+Zpt27a1YVVA51bvNFqwcmezQa1F0q/+ulMZKQ4FWS2+LA0AAAAAACCgcWkcADfZ+SVNLn3QwEgqKK1Wdn6J74oCAAAAAADoBAhrAbgpLm8+qG3NOAAAAAAAAHiGsBaAm9iIUK+OAwAAAAAAgGcIawG4uaxftLrZgprdb5EUHxmqy/pF+64oAAAAAACAToCwFoCbbwvKdLK2vsl9DbcTmz8pmZuLAQAAAAAAeBlhLQCXunqn5nzwjZxGSusTpfhI96UOHJGhemlqmiakxvupQgAAAAAAgMAV7O8CALQfr67fp50FZYrsGqJXbr9U0d26KDu/RMXl1YqNOL30AVfUAgAAAAAAtA3CWgCSpD3FFVr82W5J0uPXJysmwiZJSr+ohz/LAgAAAAAA6DRYBgGAnE6j/1jxjWpPOTVmUIwmp/Xyd0kAAAAAAACdDmEtAP3x7we0+cBxdesSpF/fnCqLhaUOAAAAAAAAfI2wFujkDh2v0lOZ30mS5k68WL27h/m5IgAAAAAAgM6JsBboxIwx+s8Pc1RVW69Lk7pr6qgkf5cEAAAAAADQaRHWAp3Yiq2HtX7X9+oSbNVTPxsqq5XlDwAAAAAAAPyFsBbopIrLq/XkX3dKkmaNG6iLYsL9XBEAAAAAAEDnRlgLdFJP/CVXpSfrlJJg1z1X9vd3OQAAAAAAAJ0eYS3QCWXmFOiTHYUKslr01E+HKiSIHwUAAAAAAAD+RkIDdDKlVXV67M+5kqT7xvRXaq9IP1cEAAAAAAAAibAW6HT+++Od+r68Rv1juunffjLQ3+UAAAAAAADgDMJaoBP5Yvf3Wr7lkCwW6Xc/HarQkCB/lwQAAAAAAIAzCGuBTqKy5pT+Y8UOSdIdlyfp0r7Rfq4IAAAAAAAAZyOsBTqJp1fl6fCJk+oV1VVzJlzs73IAAAAAAADwA4S1QCew5UCJ/pC1X5L0m8mXqJst2L8FAQAAAAAAoBHCWiDAVdfVa84H38gY6adpvTVmUIy/SwIAAAAAAEATCGuBAPfCmj3a+32leobb9Nj1Q/xdDgAAAAAAAJpBWAsEsNwjpXp53V5J0pM3pigqrIufKwIAAAAAAEBzCGuBAHWq3qm5K77RKafRhBSHJl4S7++SAAAAAAAAcA6EtUCAen1DvnIOl8keGqxf3Zji73IAAAAAAABwHtwSHggQ9U6j7PwSFZdXq95p9Nzf8iRJj12frFh7qJ+rAwAAAAAAwPkQ1gIBIDOnQAtW7lRBabXb9iHxEfrZyN5+qgoAAAAAAAAtwTIIQAeXmVOg+5dtbRTUStK3BeValVvoh6oAAAAAAADQUoS1QAdW7zRasHKnTDP7LZIWrNypemdzIwAAAAAAANBeENYCHVh2fkmTV9Q2MJIKSquVnV/iu6IAAAAAAADQKoS1QAdWXN58UNuacQAAAAAAAPAfwlqggzpeWau13xV7NDY2IrSNqwEAAAAAAMCFCvZ3AQBa5kRVrV7/Il9LN+5XRc2pc461SHJEhuqyftG+KQ4AAAAAAACtRlgLdBBNhbRD4u26alBPvbpunyS53WjMcubr/EnJCrJaBAAAAAAAgPaNsBZo505U1eqNDfl668t/hrQXOyI0a9wgZSTHyWq1aERilBas3Ol2szFHZKjmT0rWhNR4f5UOAAAAAACAFiCsBdopT0LaBhNS43VtskPZ+SUqLq9WbMTppQ+4ohYAAAAAAKDjIKwF/KDeaZoNVkur6vTGhn1668v9KncLaQcqI9nhFtKeLchqUfpFPXw2BwAAAAAAAHgXYS3gY5k5BY2WLIiPDNXDGYN14Fhlo5D2F9cM1PiU5kNaAAAAAAAABAbCWsCHMnMKdP+yrW43ApOkgtJq/XL5167ng+NOX0lLSAsAAAAAANB5ENYCPlLvNFqwcmejoPZswVaLnr91uP7lknhCWgAAAAAAgE6GsBbwwLnWmD2funqn9hRX6M/bDrstfdCUU06jHuE2gloAAAAAAIBOiLAWOI/m1pidPylZE1Lj3caerK3Xt4Vlyj1SptzDpco9Uqa8onLVnnJ6/H7F5ecOdAEAAAAAABCYCGuBc2hujdnC0mrdv2yrfnHNQHWzBSv3SKlyjpRp3/cVcjaxzkGELVi9unfVd4Xl533P2IhQ7xQPAAAAAACADoWwFmjGudaYbdj2/Ge7G+3rGW5TSoJdKQl2pfaKVEqCXYndw2QkXfHUGhWWVjd5TIskR+TpJRYAAAAAAADQ+RDWAs3Izi857xqzkvSjvt111cAYpfSyKzUhUrH25q+MnT8pWfcv2yqL5BbYWs7a7+lauAAAAAAAAAgsVn8XALRHxypqtHTjfo/GTr08Sf92zUD95OK4cwa1kjQhNV4vTU2TI9J9nCMyVC9NTWu0Bi4AAAAAAAA6D66sBc6y/2ilXt+wT8s3H1KNhzcFa+kasxNS43VtskPZ+SUqLq9WbMTppQ+4ohYAAAAAAKBzI6wFJG3/xwm9un6vPs0plDmzPsHQXnYdPH5SpVV1Xl9jNshqUfpFPS6oZgAAAAAAAAQWwlp0Wk6n0dq8Yr2yfp+y80tc28cOjtG9V12ky/tHa1VuIWvMAgAAAAAAwCcIa+FX9U7j9eUAznfMmlP1+vP2I3pt/T7tLq6QJIUEWXTj8F6696r+GhQX4RrbsMbsgpU73W425ogM1fxJyawxCwAAAAAAAK8hrA1g9U6jTfkl2nLUoh75JUofENuurgLNzCloFILGX2AIeq5jjh7QU+9sOqg3N+SruLxGkhRhC9bPR/XR9B/3a3TTrwasMQsAAAAAAABfIKwNUO6hZZDe3r35goNQb9d3/7KtjdaCLSyt1v3LtuqlqWktrrO5YxaUVuu+ZVsVGmxV9ZmbhsXZbbrzx/00ZVQf2UNDznts1pgFAAAAAABAWyOsDUBtEYR6U73TaMHKnU3etMvo9HqwC1bu1LXJDo+vXj3XMRtUn3JqYGw3zRgzQDcMS1CXYGsrqgcAAAAAAADaBmFtgGmLIPSHx7/Q5QCy84+5LVPQVJ0FpdXKWLRO4bZgGUnGSEbm9FejM9uMa3tlzalzHrPBr25MVfpFPVtULwAAAAAAAOALhLUBJju/xKMgdFVuoSakOGRtQdDa0jVmjTH6vrxGu4oqlFdUrl2F5dpVXK6dR8o8er+931d6XJunGtaqBQAAAAAAANobwtoAU1x+/qtLJemBP21VlyCr4qNC1Suqq3pFdVVCVFf16t5Vvc98jY/s6loq4HxLKzz9s6HqHR2m3UXlp4PZogrtKirXiaq6Vs/l4YxBGhJvl8UiWWTRmf9ksVjOfD293WKRvj1Spv/+5NvzHjM2oumbiAEAAAAAAAD+RlgbYDwNI60WqbbeqQPHqnTgWFWTYywWKTbCpoTIUH1bWN7s0gqS9PAH3zT7Pkk9umlQXLgGx0VoYFyEBsSGa/pbX6morLrJY1okOSJDdf/VAzxeYuHy/j30xpf5Kiw99zEv6xft0fEAAAAAAAAAXyOsDTCX9YtWfGToeUPLzx++Wkcra3X4+EkdPlF15utJHTrz9fDxk6o55VRRWY2KyjxbOqBneBcN7R2lQXERGhQXrkFngtnQkKBGY5+4IVn3L9sqi+RWZ0M0O39ScovWwg2yWjR/knePCQAAAAAAAPgSYW2A8TS0tIUEuZY/kBpfbWqM0bEzYe5H2w/rrS/3n/e9H7s+WTcO7+VRnRNS4/XS1LRGa+A6zrEGrj+OCQAAAAAAAPgKYW0A8kZoabFY1DPcpp7hNlXV1nsU1rZ0PdgJqfG6Ntmh7PwSFZdXKzbi9DIFF3L1a1scEwAAAAAAAPAFwtoA1RBaZu0p1t++2KSMK0cpfUBsq0JLT5dWaM16sEFWi9Iv6tHi1/n6mAAAAAAAAEBbs/q7ALSdIKtFo/pFa2RPo1EXcHVpw9IK0j+XUmjAerAAAAAAAACAdxDWwiMNSys4It2XOnBEhuqlqWmsBwsAAAAAAABcIJZBgMdYDxYAAAAAAABoO4S1aBHWgwUAAAAAAADaBssgAAAAAAAAAEA7QFgLAAAAAAAAAO0AYS0AAAAAAAAAtAPtIqxdsmSJ+vbtq9DQUI0aNUrZ2dnNjl26dKksFovbIzQ01IfVAgAAAAAAAID3+T2sfe+99zR79mzNnz9fW7du1bBhwzR+/HgVFxc3+xq73a6CggLX48CBAz6sGAAAAAAAAAC8z+9h7XPPPad77rlH06dPV3Jysl5++WWFhYXpzTffbPY1FotFDofD9YiLi/NhxQAAAAAAAADgfcH+fPPa2lpt2bJF8+bNc22zWq0aN26csrKymn1dRUWFkpKS5HQ6lZaWpt/85jdKSUlpcmxNTY1qampcz8vKyiRJdXV1qqur89JM2q+GOXaGuQLeQt8ArUPvAC1H3wCtQ+8ALUffAC3nzb7x9BgWY4y54HdrpSNHjqhXr17auHGj0tPTXdvnzJmjdevWadOmTY1ek5WVpd27d2vo0KEqLS3VM888o/Xr1ys3N1e9e/duNP6JJ57QggULGm1/5513FBYW5t0JAQAAAAAAAMAPVFVV6ec//7lKS0tlt9ubHefXK2tbIz093S3YHT16tIYMGaJXXnlFTz75ZKPx8+bN0+zZs13Py8rKlJiYqIyMjHP+jwkUdXV1Wr16ta699lqFhIT4uxygQ6BvgNahd4CWo2+A1qF3gJajb4CW82bfNPy1//n4Nazt2bOngoKCVFRU5La9qKhIDofDo2OEhIRoxIgR2rNnT5P7bTabbDZbk6/rTD+cOtt8AW+gb4DWoXeAlqNvgNahd4CWo2+AlvNG33j6er/eYKxLly4aOXKkPvvsM9c2p9Opzz77zO3q2XOpr6/Xjh07FB8f31ZlAgAAAAAAAECb8/syCLNnz9a0adN06aWX6rLLLtPzzz+vyspKTZ8+XZJ0xx13qFevXlq4cKEk6Ve/+pUuv/xyDRgwQCdOnNDTTz+tAwcO6O677/bnNAAAAAAAAADggvg9rL311lv1/fff6/HHH1dhYaGGDx+uzMxMxcXFSZIOHjwoq/WfFwAfP35c99xzjwoLC9W9e3eNHDlSGzduVHJysr+mAAAAAAAAAAAXzO9hrSTNnDlTM2fObHLf559/7vZ80aJFWrRokQ+qAgAAAAAAAADf8euatQAAAAAAAACA09rFlbW+ZIyRJJWVlfm5Et+oq6tTVVWVysrKuNsj4CH6BmgdegdoOfoGaB16B2g5+gZoOW/2TUMW2ZBNNqfThbXl5eWSpMTERD9XAgAAAAAAAKAzKS8vV2RkZLP7LeZ8cW6AcTqdOnLkiCIiImSxWPxdTpsrKytTYmKi/vGPf8hut/u7HKBDoG+A1qF3gJajb4DWoXeAlqNvgJbzZt8YY1ReXq6EhARZrc2vTNvprqy1Wq3q3bu3v8vwObvdzg9joIXoG6B16B2g5egboHXoHaDl6Bug5bzVN+e6orYBNxgDAAAAAAAAgHaAsBYAAAAAAAAA2gHC2gBns9k0f/582Ww2f5cCdBj0DdA69A7QcvQN0Dr0DtBy9A3Qcv7om053gzEAAAAAAAAAaI+4shYAAAAAAAAA2gHCWgAAAAAAAABoBwhrAQAAAAAAAKAdIKztANavX69JkyYpISFBFotFH330kdv+oqIi/eu//qsSEhIUFhamCRMmaPfu3Y2Ok5WVpZ/85Cfq1q2b7Ha7rrrqKp08edK1v6SkRLfddpvsdruioqJ01113qaKioq2nB7SJC+2b/fv3y2KxNPlYvny5a9zBgwd13XXXKSwsTLGxsXrkkUd06tQpX00T8DpvnHMKCwt1++23y+FwqFu3bkpLS9OKFSvcxnDOQSDxRt/s3btXN998s2JiYmS323XLLbeoqKjIbQx9g0CycOFC/ehHP1JERIRiY2N10003KS8vz21MdXW1HnzwQfXo0UPh4eH66U9/2qgvPPks9vnnnystLU02m00DBgzQ0qVL23p6QJvwVt/8+7//u0aOHCmbzabhw4c3+V7ffPONrrzySoWGhioxMVG/+93v2mpaQJvzRu98/fXXmjJlihITE9W1a1cNGTJEixcvbvRe3jjnENZ2AJWVlRo2bJiWLFnSaJ8xRjfddJP27dunP//5z9q2bZuSkpI0btw4VVZWusZlZWVpwoQJysjIUHZ2tr766ivNnDlTVus/vwVuu+025ebmavXq1frrX/+q9evX69577/XJHAFvu9C+SUxMVEFBgdtjwYIFCg8P18SJEyVJ9fX1uu6661RbW6uNGzfqD3/4g5YuXarHH3/cp3MFvMkb55w77rhDeXl5+stf/qIdO3Zo8uTJuuWWW7Rt2zbXGM45CCQX2jeVlZXKyMiQxWLRmjVr9OWXX6q2tlaTJk2S0+l0HYu+QSBZt26dHnzwQf3973/X6tWrVVdXp4yMDLfzyUMPPaSVK1dq+fLlWrdunY4cOaLJkye79nvyWSw/P1/XXXedxo4dq+3bt2vWrFm6++67tWrVKp/OF/AGb/RNgzvvvFO33nprk+9TVlamjIwMJSUlacuWLXr66af1xBNP6NVXX22zuQFtyRu9s2XLFsXGxmrZsmXKzc3Vf/3Xf2nevHl64YUXXGO8ds4x6FAkmQ8//ND1PC8vz0gyOTk5rm319fUmJibGvPbaa65to0aNMo8++mizx925c6eRZL766ivXtk8//dRYLBZz+PBh704C8LHW9s0PDR8+3Nx5552u55988omxWq2msLDQte2ll14ydrvd1NTUeHcSgB+0tne6detm3n77bbdjRUdHu8ZwzkEga03frFq1ylitVlNaWuoac+LECWOxWMzq1auNMfQNAl9xcbGRZNatW2eMOd0DISEhZvny5a4x3377rZFksrKyjDGefRabM2eOSUlJcXuvW2+91YwfP76tpwS0udb0zdnmz59vhg0b1mj7iy++aLp37+72O83cuXPN4MGDvT8JwA8utHcaPPDAA2bs2LGu594653BlbQdXU1MjSQoNDXVts1qtstls2rBhgySpuLhYmzZtUmxsrEaPHq24uDiNGTPGtV86feVtVFSULr30Ute2cePGyWq1atOmTT6aDeAbnvTND23ZskXbt2/XXXfd5dqWlZWlSy65RHFxca5t48ePV1lZmXJzc9uoesB/PO2d0aNH67333lNJSYmcTqfeffddVVdX6+qrr5bEOQediyd9U1NTI4vFIpvN5hoTGhoqq9XqGkPfINCVlpZKkqKjoyWd/uxVV1encePGucZcfPHF6tOnj7KysiR59lksKyvL7RgNYxqOAXRkrekbT2RlZemqq65Sly5dXNvGjx+vvLw8HT9+3EvVA/7jrd4pLS11HUPy3jmHsLaDa/jmmTdvno4fP67a2lo99dRTOnTokAoKCiRJ+/btkyQ98cQTuueee5SZmam0tDRdc801rvXSCgsLFRsb63bs4OBgRUdHq7Cw0LeTAtqYJ33zQ2+88YaGDBmi0aNHu7YVFha6/XIgyfWcvkEg8rR33n//fdXV1alHjx6y2WyaMWOGPvzwQw0YMEAS5xx0Lp70zeWXX65u3bpp7ty5qqqqUmVlpR5++GHV19e7xtA3CGROp1OzZs3Sj3/8Y6Wmpko6/T3fpUsXRUVFuY2Ni4tzfc978lmsuTFlZWVu9+8AOprW9o0n+D0HgcxbvbNx40a99957bktSeeucQ1jbwYWEhOh///d/tWvXLkVHRyssLExr167VxIkTXevRNqx1NmPGDE2fPl0jRozQokWLNHjwYL355pv+LB/wC0/65mwnT57UO++843ZVLdAZedo7jz32mE6cOKH/+7//0+bNmzV79mzdcsst2rFjhx+rB/zDk76JiYnR8uXLtXLlSoWHhysyMlInTpxQWlpak+clINA8+OCDysnJ0bvvvuvvUoAOg74BWscbvZOTk6Mbb7xR8+fPV0ZGhherOy3Y60eEz40cOVLbt29XaWmpamtrFRMTo1GjRrn+TC4+Pl6SlJyc7Pa6IUOG6ODBg5Ikh8Oh4uJit/2nTp1SSUmJHA6HD2YB+Nb5+uZsH3zwgaqqqnTHHXe4bXc4HMrOznbb1nC3SPoGgep8vbN371698MILysnJUUpKiiRp2LBh+uKLL7RkyRK9/PLLnHPQ6XhyzsnIyNDevXt19OhRBQcHKyoqSg6HQ/3795fEZzUErpkzZ7pumNe7d2/XdofDodraWp04ccLtSqeioiLX97wnn8UcDofb3bwbxtjtdnXt2rUtpgS0uQvpG0801zcN+4COyhu9s3PnTl1zzTW699579eijj7rt89Y5h3+qDyCRkZGKiYnR7t27tXnzZt14442SpL59+yohIUF5eXlu43ft2qWkpCRJUnp6uk6cOKEtW7a49q9Zs0ZOp1OjRo3y3SQAH2uub872xhtv6IYbblBMTIzb9vT0dO3YscPtl+fVq1fLbrc3+scRINA01ztVVVWS1OhqwKCgINdfenDOQWflyTmnZ8+eioqK0po1a1RcXKwbbrhBEn2DwGOM0cyZM/Xhhx9qzZo16tevn9v+kSNHKiQkRJ999plrW15eng4ePKj09HRJnn0WS09PdztGw5iGYwAdiTf6xhPp6elav3696urqXNtWr16twYMHq3v37hc+EcDHvNU7ubm5Gjt2rKZNm6Zf//rXjd7Ha+ecFt2ODH5RXl5utm3bZrZt22Ykmeeee85s27bNHDhwwBhjzPvvv2/Wrl1r9u7daz766COTlJRkJk+e7HaMRYsWGbvdbpYvX252795tHn30URMaGmr27NnjGjNhwgQzYsQIs2nTJrNhwwYzcOBAM2XKFJ/OFfAWb/SNMcbs3r3bWCwW8+mnnzbad+rUKZOammoyMjLM9u3bTWZmpomJiTHz5s1r8/kBbeVCe6e2ttYMGDDAXHnllWbTpk1mz5495plnnjEWi8V8/PHHrnGccxBIvHHOefPNN01WVpbZs2eP+eMf/2iio6PN7Nmz3cbQNwgk999/v4mMjDSff/65KSgocD2qqqpcY+677z7Tp08fs2bNGrN582aTnp5u0tPTXfs9+Sy2b98+ExYWZh555BHz7bffmiVLlpigoCCTmZnp0/kC3uCNvjHm9O8427ZtMzNmzDCDBg1yncNqamqMMcacOHHCxMXFmdtvv93k5OSYd99914SFhZlXXnnFp/MFvMUbvbNjxw4TExNjpk6d6naM4uJi1xhvnXMIazuAtWvXGkmNHtOmTTPGGLN48WLTu3dvExISYvr06WMeffRR1w/Zsy1cuND07t3bhIWFmfT0dPPFF1+47T927JiZMmWKCQ8PN3a73UyfPt2Ul5f7YoqA13mrb+bNm2cSExNNfX19k++zf/9+M3HiRNO1a1fTs2dP88tf/tLU1dW15dSANuWN3tm1a5eZPHmyiY2NNWFhYWbo0KHm7bffdhvDOQeBxBt9M3fuXBMXF2dCQkLMwIEDzbPPPmucTqfbGPoGgaSpnpFk3nrrLdeYkydPmgceeMB0797dhIWFmZtvvtkUFBS4HceTz2Jr1641w4cPN126dDH9+/d3ew+gI/FW34wZM6bJ4+Tn57vGfP311+aKK64wNpvN9OrVy/z2t7/10SwB7/NG78yfP7/JYyQlJbm9lzfOOZYzRQMAAAAAAAAA/Ig1awEAAAAAAACgHSCsBQAAAAAAAIB2gLAWAAAAAAAAANoBwloAAAAAAAAAaAcIawEAAAAAAACgHSCsBQAAAAAAAIB2gLAWAAAAAAAAANoBwloAAAAAAAAAaAcIawEAAAAAAACgHSCsBQAAQKdjjNG4ceM0fvz4RvtefPFFRUVF6dChQ36oDAAAAJ0ZYS0AAAA6HYvForfeekubNm3SK6+84tqen5+vOXPm6Pe//7169+7t1fesq6vz6vEAAAAQeAhrAQAA0CklJiZq8eLFevjhh5Wfny9jjO666y5lZGRoxIgRmjhxosLDwxUXF6fbb79dR48edb02MzNTV1xxhaKiotSjRw9df/312rt3r2v//v37ZbFY9N5772nMmDEKDQ3Vn/70J39MEwAAAB2IxRhj/F0EAAAA4C833XSTSktLNXnyZD355JPKzc1VSkqK7r77bt1xxx06efKk5s6dq1OnTmnNmjWSpBUrVshisWjo0KGqqKjQ448/rv3792v79u2yWq3av3+/+vXrp759++rZZ5/ViBEjFBoaqvj4eD/PFgAAAO0ZYS0AAAA6teLiYqWkpKikpEQrVqxQTk6OvvjiC61atco15tChQ0pMTFReXp4GDRrU6BhHjx5VTEyMduzYodTUVFdY+/zzz+sXv/iFL6cDAACADoxlEAAAANCpxcbGasaMGRoyZIhuuukmff3111q7dq3Cw8Ndj4svvliSXEsd7N69W1OmTFH//v1lt9vVt29fSdLBgwfdjn3ppZf6dC4AAADo2IL9XQAAAADgb8HBwQoOPv3RuKKiQpMmTdJTTz3VaFzDMgaTJk1SUlKSXnvtNSUkJMjpdCo1NVW1tbVu47t169b2xQMAACBgENYCAAAAZ0lLS9OKFSvUt29fV4B7tmPHjikvL0+vvfaarrzySknShg0bfF0mAAAAAhDLIAAAAABnefDBB1VSUqIpU6boq6++0t69e7Vq1SpNnz5d9fX16t69u3r06KFXX31Ve/bs0Zo1azR79mx/lw0AAIAAQFgLAAAAnCUhIUFffvml6uvrlZGRoUsuuUSzZs1SVFSUrFarrFar3n33XW3ZskWpqal66KGH9PTTT/u7bAAAAAQAizHG+LsIAAAAAAAAAOjsuLIWAAAAAAAAANoBwloAAAAAAAAAaAcIawEAAAAAAACgHSCsBQAAAAAAAIB2gLAWAAAAAAAAANoBwloAAAAAAAAAaAcIawEAAAAAAACgHSCsBQAAAAAAAIB2gLAWAAAAAAAAANoBwloAAAAAAAAAaAcIawEAAAAAAACgHSCsBQAAAAAAAIB24P8DNFKPOX+mFwMAAAAASUVORK5CYII=\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "import seaborn as sns\n", "\n", "# Compute correlations\n", "correlation_matrix = df_co2_filled[year_columns].astype(float).corr()\n", "\n", "plt.figure(figsize=(18, 12))\n", "sns.heatmap(correlation_matrix, cmap='coolwarm', annot=False)\n", "plt.title(\"🔗 Correlation Heatmap of CO₂ Emissions by Year\")\n", "plt.tight_layout()\n", "plt.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 866 }, "id": "S2VjWiFb6xYV", "outputId": "57471725-0094-42d2-b20d-7d27855b6c34" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABlQAAASmCAYAAABYy0aDAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xt8FNXh///37ibZ3EggEEgiJAhaAlTDxXpBP1zTkKhIahVvlYCAaKWB5CM1acWAfgUpVmstolYQapUqiNAqTaWKH0oNlyhpQQUSA1J0CRISYkKyuc3vD3/ZuiYx3A6bwOv5eMzjkZ0z+55zZmdmd3N25tgsy7IEAAAAAAAAAACAVtl9XQEAAAAAAAAAAID2jg4VAAAAAAAAAACANtChAgAAAAAAAAAA0AY6VAAAAAAAAAAAANpAhwoAAAAAAAAAAEAb6FABAAAAAAAAAABoAx0qAAAAAAAAAAAAbaBDBQAAAAAAAAAAoA10qAAAAAAAAAAAALSBDhUAAIB2av/+/bLZbFq+fPkZze3du7cmTZp0RjPRPi1atEh9+vSRw+HQoEGDfF2ddmnu3Lmy2WxnPHf58uWy2Wzav3//Gc8+Xe+9955sNptWr17t66oAAAAAHQodKgAA4LxSUVGhefPmKSEhQaGhoQoKCtL3v/99PfDAA/riiy98Xb0z5v3339fcuXNVXl7u66p4NP2DOT8/v8XykSNH6vvf/77ROqxfv15z5841uo724u2339bPf/5zXX311XrxxRc1f/78Np/z3nvv6cYbb1RUVJQCAgLUvXt3jRs3TmvWrGm2bGlpqWbPnq1+/fopMDBQERERGjt2rN58883TrntTZ2Jr02OPPXba64A5dXV1uuSSS9S3b19VV1c3K9+/f7+Cg4N18803+6B2AAAAwKnz83UFAAAATsRHH32kwYMHKyAgoMXy2tpaffLJJ+rbt2+rGcXFxUpMTNSBAwd088036+6771ZAQID+/e9/a+nSpXrjjTe0d+9eU004q95//33NmzdPkyZNUufOnb3K9uzZI7v9/Pxdzfr167V48eLzolPl3Xffld1u19KlS1s9br4pJydHDz/8sC6++GJNnz5dcXFxKi0t1fr16/XjH/9YL7/8sm6//XZJX+9DY8aM0ZdffqnJkyfrsssuU3l5uV5++WWNGzdO999/vxYtWnTabbjtttt07bXXNps/ePDg085u8uCDDyorK+uM5TW58847deutt8rpdJ7x7PbO399fzz//vK6++mo98sgjzTrzZsyYoYCAAP32t7/1UQ0BAACAU0OHCgAA6BAsy9Lll1+uzZs3t1h+5ZVXyrKsVp9fX1+vG2+8USUlJXrvvfd0zTXXeJU/+uijWrhw4Rmpa1VVlUJCQprNb2xsVG1trQIDA8/Iek7V+fgP3vPR4cOHFRQUdEKdKatXr9bDDz+sm266Sa+88or8/f09ZbNnz9bf/vY31dXVSfr66oObbrpJZWVl2rRpk6644grPshkZGbrjjjv0+OOP67LLLtMtt9xyWm0YMmSIfvKTn5xWRlv8/Pzk53fmvxY5HA45HI4znttRXHXVVbrnnnv0+OOP64477tDAgQMlSa+//rreeustPfPMM4qOjjZej9bOxwAAAMCpOD9/mggAAM47r7/+uv71r3/pl7/8ZbPOFEkKCwvTo48+6jVv1apVGjp0qIKCgtStWzf95Cc/0eeff+61zKRJkxQaGqpPP/1U1157rTp16qQ77rhDkmSz2TRjxgy9/PLLGjhwoJxOp3JzcyVJn3/+ue666y716NFDTqdTAwcO1LJly9psx7///W9NmjRJffr0UWBgoKKionTXXXeptLTUs8zcuXM1e/ZsSdKFF17ouU1S01gOLY2hUlxcrJtvvlkREREKDg7WlVdeqbfeestrmaZxF1577TU9+uij6tmzpwIDAzVmzBgVFRW1WfdT9cc//tHzOkREROjWW2/Vf/7zH69l/vGPf+jmm29WbGysnE6nevXqpYyMDK/bDU2aNEmLFy+WJK/bR0n/vcXU448/rsWLF6tPnz4KDg5WUlKS/vOf/8iyLD3yyCPq2bOngoKCNH78eB09etSrDuvWrdN1112nmJgYOZ1O9e3bV4888ogaGhq8lmu6tdkHH3ygYcOGKSgoSBdeeKGeffbZE9oe9fX1euSRR9S3b185nU717t1bv/jFL+R2uz3L2Gw2vfjii6qqqvK087vG4pkzZ44iIiK0bNkyr86UJmPHjtX1118v6etjadeuXcrKyvLqTJG+7kR47rnn1Llz57N2FVDv3r11/fXX67333tNll12moKAgXXLJJXrvvfckSWvWrNEll1yiwMBADR06VDt27PB6fktjqGzYsEHXXHONOnfurNDQUPXr10+/+MUvvJZ5+umnNXDgQAUHB6tLly667LLL9Morr3jKWxtD5ZlnnvGcD2JiYnTfffc1uzVf0z7y8ccfa9SoUQoODtYFF1ygX/3qV83a31Y9vktDQ4N+8YtfKCoqSiEhIbrhhhu8jq2cnBz5+/vryy+/bPbcu+++W507d1ZNTU2r+QsWLFC3bt10zz33yLIsVVZWatasWZ7OFknaunWrkpOTFR4eruDgYI0YMUL//Oc/vXI+++wz/fSnP1W/fv0UFBSkrl276uabb262bZu2+f/93//ppz/9qbp3766ePXue0LYAAAAATgRXqAAAgPPCn//8Z0lf34bnRCxfvlyTJ0/WD37wAy1YsEAlJSV66qmn9M9//lM7duzwuo1WfX29xo4dq2uuuUaPP/64goODPWXvvvuuXnvtNc2YMUPdunVT7969VVJSoiuvvNLT4RIZGam//vWvmjJliioqKjRr1qxW67VhwwYVFxdr8uTJioqK0kcffaTnn39eH330kbZs2SKbzaYbb7xRe/fu1cqVK/Xkk0+qW7dukqTIyMgWM0tKSjRs2DAdP35c6enp6tq1q1asWKEbbrhBq1ev1o9+9COv5R977DHZ7Xbdf//9OnbsmH71q1/pjjvu0NatW09o2x47dkxHjhxpNr/pCohvevTRRzVnzhxNmDBBU6dO1Zdffqmnn35aw4cP93odVq1apePHj+vee+9V165dtW3bNj399NM6ePCgVq1aJUmaPn26vvjiC23YsEEvvfRSi3V7+eWXVVtbq5/97Gc6evSofvWrX2nChAkaPXq03nvvPT3wwAMqKirS008/rfvvv9+rE2z58uUKDQ1VZmamQkND9e677+qhhx5SRUVFs9tflZWV6dprr9WECRN022236bXXXtO9996rgIAA3XXXXd+5/aZOnaoVK1bopptu0v/+7/9q69atWrBggT755BO98cYbkqSXXnpJzz//vLZt26YXXnhBkjRs2LAW8woLC7V7927ddddd6tSp03euW5L+8pe/SJImTpzYYnl4eLjGjx+vFStWqKioSBdddFGbma05fvx4i/tK586dva4qKSoq0u23367p06frJz/5iR5//HGNGzdOzz77rH7xi1/opz/9qaSv/8E/YcKE77zt3UcffaTrr79el156qR5++GE5nU4VFRV5/ZP/97//vdLT03XTTTdp5syZqqmp0b///W9t3brVc1u0lsydO1fz5s1TYmKi7r33Xu3Zs0dLlizR9u3b9c9//tOrM6usrEzJycm68cYbNWHCBK1evVoPPPCALrnkEqWkpJxWPZo8+uijstlseuCBB3T48GH95je/UWJiogoKChQUFKQ777xTDz/8sF599VXNmDHD87za2lqtXr1aP/7xj7/zirvw8HD99re/1c0336wXXnhBH3/8sUpKSvTXv/5VNptN7777rlJSUjR06FDl5OTIbrfrxRdf1OjRo/WPf/xDl19+uSRp+/btev/993XrrbeqZ8+e2r9/v5YsWaKRI0fq448/9jrnStJPf/pTRUZG6qGHHlJVVVWb2wEAAAA4YRYAAEAHsHPnTuvqq69utfyKK66wCgsLWy0fPHiwFR4efkLrqq2ttbp37259//vft6qrqz3z33zzTUuS9dBDD3nmpaWlWZKsrKysZjmSLLvdbn300Ude86dMmWJFR0dbR44c8Zp/6623WuHh4dbx48cty7Ksffv2WZKsF1980bNMU9k3rVy50pJkbdq0yTNv0aJFliRr3759zZaPi4uz0tLSPI9nzZplSbL+8Y9/eOZ99dVX1oUXXmj17t3bamhosCzLsjZu3GhJsvr372+53W7Psk899ZQlydq5c2ezdX3Tiy++aEn6zmngwIGe5ffv3285HA7r0Ucf9crZuXOn5efn5zW/pe2yYMECy2azWZ999pln3n333We19BG4aVtHRkZa5eXlnvnZ2dmWJCshIcGqq6vzzL/tttusgIAAq6am5jvrMH36dCs4ONhruREjRliSrF//+teeeW632xo0aJDVvXt3q7a2tvnG+/8VFBRYkqypU6d6zb///vstSda7777rmZeWlmaFhIS0mtVk3bp1liTrySefbHNZy7KsQYMGtXksPfHEE5Yk689//vMJZX5b0+vR2pSXl+dZNi4uzpJkvf/++555f/vb3yxJVlBQkNfr/9xzz1mSrI0bN3rm5eTkeO0TTz75pCXJ+vLLL1ut3/jx47321ZY07e9Nx+Dhw4etgIAAKykpyXNMWZZl/e53v7MkWcuWLfPMa9pH/vCHP3jmud1uKyoqyvrxj398UvVoSdOxfMEFF1gVFRWe+a+99polyXrqqac886666irriiuu8Hr+mjVrmm3H73L99ddb4eHhlsPhsLKzsy3LsqzGxkbr4osvtsaOHWs1NjZ6lj1+/Lh14YUXWj/84Q+95n1bXl5es23UtM2vueYaq76+/oTqBgAAAJwMbvkFAADOCxUVFSf063tJys/P1+HDh/XTn/7U69fX1113neLj45vdCkuS7r333hazRowYoQEDBngeW5al119/XePGjZNlWTpy5IhnGjt2rI4dO6YPP/yw1boFBQV5/q6pqdGRI0d05ZVXStJ3Pu+7rF+/XpdffrnXrdBCQ0N19913a//+/fr444+9lp88ebLXuBz/8z//I+nr24adiMWLF2vDhg3NpksvvdRruTVr1qixsVETJkzw2k5RUVG6+OKLtXHjRs+y39wuVVVVOnLkiIYNGybLsprd4um73HzzzQoPD/c8brql1U9+8hOvKyKuuOIK1dbWet0C7pt1+Oqrr3TkyBH9z//8j44fP67du3d7rcfPz0/Tp0/3PA4ICND06dN1+PBhffDBB63Wb/369ZKkzMxMr/n/+7//K0kt7pttqaiokKQTPj6++uqrNpdtKm/Kvv3223XNNdfoiiuu0MiRI7Vnz54TWtfdd9/d4r7yzWNKkgYMGKCrrrrK87jpdRs9erRiY2Obzf+ufbXpqqd169apsbGx1WUOHjyo7du3n1A7JOnvf/+7amtrNWvWLK+rY6ZNm6awsLBmr11oaKjX+DEBAQG6/PLLvep+KvX4pokTJ3q9ljfddJOio6M9+1nTMlu3btWnn37qmffyyy+rV69eGjFixAmtZ/HixaqtrVWvXr00Z84cSVJBQYEKCwt1++23q7S01HN8V1VVacyYMdq0aZNn+3/z2Kqrq1Npaakuuugide7cucXz3rRp087r8WsAAABgDh0qAADgvBAWFqavvvrqhJb97LPPJEn9+vVrVhYfH+8pb+Ln59fqffovvPBCr8dffvmlysvL9fzzzysyMtJrmjx5sqSvBxNvzdGjRzVz5kz16NFDQUFBioyM9Kzj2LFjJ9S+b/vss89abGv//v095d/0zX9QS1KXLl0kfX2LohNx+eWXKzExsdnUlNOksLBQlmXp4osvbratPvnkE6/tdODAAU2aNEkREREKDQ1VZGSk55+9J7Ndvt22ps6VXr16tTj/m23+6KOP9KMf/Ujh4eEKCwtTZGSk5x/i365DTExMs4Gyv/e970lSs3Ehvumzzz6T3W5vdhutqKgode7cudlrdSLCwsIk6YSPj06dOrW5bFN50z/rc3JytHnzZm3dulWDBg1qtQPy2y6++OIW95WmOjc5ndft22655RZdffXVmjp1qnr06KFbb71Vr732mlfnygMPPKDQ0FBdfvnluvjii3Xfffc1G/fj21o7rwQEBKhPnz7NXruePXs2G9ulS5cuXnU/lXp808UXX+z12Gaz6aKLLvLaB2+55RY5nU69/PLLkr7el998803dcccdzerXmtjYWHXv3l0DBw70dI4UFhZKktLS0pod3y+88ILcbrfnuKmurtZDDz2kXr16yel0qlu3boqMjFR5eXmLx/e3z7sAAADAmcIYKgAA4LwQHx+vHTt26D//+U+zf7KeLqfT2ep4DN/8ZbUkzz9lf/KTnygtLa3F53z7So1vmjBhgt5//33Nnj1bgwYNUmhoqBobG5WcnNzqr+nPtNZ++W1Z1hldT2Njo2w2m/7617+2uM7Q0FBJXw+s/cMf/lBHjx7VAw88oPj4eIWEhOjzzz/XpEmTTmq7tNa2ttpcXl6uESNGKCwsTA8//LD69u2rwMBAffjhh3rggQfO+Gtzov/IPhHx8fGSpJ07d57Q8v3791dBQYEOHDjQrCOjyb///W9J8lxJ8u1OhNaOl1N1qq9bS4KCgrRp0yZt3LhRb731lnJzc/Xqq69q9OjRevvtt+VwONS/f3/t2bNHb775pnJzc/X666/rmWee0UMPPaR58+YZbdM363426tGlSxddf/31evnll/XQQw9p9erVcrvdXlfPnIqmY2LRokUaNGhQi8s0HeM/+9nP9OKLL3oGtA8PD5fNZtOtt97a4rH17fMuAAAAcKbQoQIAAM4L48aN08qVK/XHP/5R2dnZ37lsXFycJGnPnj0aPXq0V9mePXs85aciMjJSnTp1UkNDgxITE0/quWVlZXrnnXc0b948PfTQQ575Tb/0/qaT+Yd7XFxci7dgarpN1em093T07dtXlmXpwgsv9Fy90ZKdO3dq7969WrFihddA6Rs2bGi27JnsiPim9957T6WlpVqzZo2GDx/umb9v374Wl//iiy9UVVXldZXK3r17JUm9e/dudT1xcXFqbGxUYWGh5woiSSopKVF5efkpvVbf+9731K9fP61bt05PPfWU55/Yrbn++uu1cuVK/eEPf9CDDz7YrLyiokLr1q1TfHx8sytp3n33Xb3wwgtet2trj+x2u8aMGaMxY8boiSee0Pz58/XLX/5SGzdu9By3ISEhuuWWW3TLLbeotrZWN954ox599FFlZ2e3OFD7N88rffr08cyvra3Vvn37Tvp80ORk6/FN3z53WJaloqKiZp26EydO1Pjx47V9+3a9/PLLGjx4sAYOHHhK9W3St29fSV9fIdVW21evXq20tDT9+te/9syrqalReXn5adUBAAAAOFnc8gsAAJwXbrrpJl1yySV69NFHlZeX16z8q6++0i9/+UtJ0mWXXabu3bvr2Wefldvt9izz17/+VZ988omuu+66U66Hw+HQj3/8Y73++uvatWtXs/Ivv/zyO58rNf91/W9+85tmyzb9o/5E/uF47bXXatu2bV7bpaqqSs8//7x69+7dbLyKs+XGG2+Uw+HQvHnzmrXZsiyVlpZKanm7WJalp556qlnmyWyXk9FSHWpra/XMM8+0uHx9fb2ee+45r2Wfe+45RUZGaujQoa2u59prr5XU/DV/4oknJOmU98158+aptLRUU6dOVX19fbPyt99+W2+++aakr4+lAQMG6LHHHlN+fr7Xco2Njbr33ntVVlamnJwcr7L8/HxNmDBBy5Yt0w9+8INTqufZcPTo0Wbzmq6gaDofNO17TQICAjRgwABZlqW6uroWcxMTExUQEKDf/va3XvvJ0qVLdezYsVN67U6lHt/0hz/8wev2batXr5bL5VJKSorXcikpKerWrZsWLlyo//u//zvtq1MkaejQoerbt68ef/xxVVZWNiv/5rnQ4XA0Owc8/fTTamhoOO16AAAAACeDK1QAAMB5wd/fX2vWrFFiYqKGDx+uCRMm6Oqrr5a/v78++ugjvfLKK+rSpYseffRR+fv7a+HChZo8ebJGjBih2267TSUlJXrqqafUu3dvZWRknFZdHnvsMW3cuFFXXHGFpk2bpgEDBujo0aP68MMP9fe//73Ff+hKX/+Se/jw4frVr36luro6XXDBBXr77bdbvAqi6Z/yv/zlL3XrrbfK399f48aNazZuhyRlZWVp5cqVSklJUXp6uiIiIrRixQrt27dPr7/++hm/PdOJ6tu3r/7f//t/ys7O1v79+5WamqpOnTpp3759euONN3T33Xfr/vvvV3x8vPr27av7779fn3/+ucLCwvT666+3OE5G03ZJT0/X2LFj5XA4dOutt552XYcNG6YuXbooLS1N6enpstlseumll1q9tVRMTIwWLlyo/fv363vf+55effVVFRQU6Pnnn5e/v3+r60lISFBaWpqef/55z23Gtm3bphUrVig1NVWjRo06pfrfcsst2rlzpx599FHt2LFDt912m+Li4lRaWqrc3Fy98847euWVVyR9/U/71atXa8yYMbrmmms0efJkXXbZZSovL9crr7yiDz/8UP/7v//rtV23b9+ucePG6fnnn9eNN954wvX68MMP9cc//rHZ/L59+3oNQn8mPfzww9q0aZOuu+46xcXF6fDhw3rmmWfUs2dPXXPNNZKkpKQkRUVF6eqrr1aPHj30ySef6He/+52uu+46r0HevykyMlLZ2dmaN2+ekpOTdcMNN2jPnj165pln9IMf/OCUOilOpR7fFBER4XkNS0pK9Jvf/EYXXXSRpk2b5rWcv7+/br31Vv3ud7+Tw+HQbbfddtJ1/Ta73a4XXnhBKSkpGjhwoCZPnqwLLrhAn3/+uTZu3KiwsDD95S9/kfT1VVEvvfSSwsPDNWDAAOXl5envf/+7unbtetr1AAAAAE6KBQAA0AHs3LnTuvrqq1stv+KKK6zCwsI2c8rKyqyHHnrIuuSSS6zg4GArMDDQ+v73v29lZ2dbLpfLa9lXX33VGjx4sOV0Oq2IiAjrjjvusA4ePOi1TFpamhUSEtLiuiRZ9913X4tlJSUl1n333Wf16tXL8vf3t6KioqwxY8ZYzz//vGeZffv2WZKsF1980TPv4MGD1o9+9COrc+fOVnh4uHXzzTdbX3zxhSXJysnJ8VrHI488Yl1wwQWW3W63JFn79u2zLMuy4uLirLS0NK9lP/30U+umm26yOnfubAUGBlqXX3659eabb3ots3HjRkuStWrVKq/5LdWzJS+++KIlydq+fXuL5SNGjLAGDhzYbP7rr79uXXPNNVZISIgVEhJixcfHW/fdd5+1Z88ezzIff/yxlZiYaIWGhlrdunWzpk2bZv3rX/9qVq/6+nrrZz/7mRUZGWnZbDar6eNwUxsWLVp0Qm1uqS3//Oc/rSuvvNIKCgqyYmJirJ///OfW3/72N0uStXHjxmbtzM/Pt6666iorMDDQiouLs373u9995/ZrUldXZ82bN8+68MILLX9/f6tXr15Wdna2VVNT47Xcd+2brXnnnXes8ePHW927d7f8/PysyMhIa9y4cda6deuaLXv48GErMzPTuuiiiyyn02l17tzZSkxMtP785z83W7Z79+5WdHS0NWLECGvEiBHWDTfc8J31aHo9Wpu+uf/GxcVZ1113XbOMlo6/ll7nnJwc65tfi5q2QUxMjBUQEGDFxMRYt912m7V3717PMs8995w1fPhwq2vXrpbT6bT69u1rzZ492zp27JhnmaZ9pOm4a/K73/3Oio+Pt/z9/a0ePXpY9957r1VWVua1TGvHQlpamhUXF3dS9WhJ0369cuVKKzs72+revbsVFBRkXXfdddZnn33W4nO2bdtmSbKSkpK+M7s1rb1OO3bssG688UZPG+Li4qwJEyZY77zzjmeZsrIya/LkyVa3bt2s0NBQa+zYsdbu3bubncvaOscAAAAAp8tmWWd49FAAAAADdu3apXvuuUebN29usfzKK6/UH//4x2ZjNgDtzciRI3XkyJEWb/kGtFf/+te/NGjQIP3hD3/QnXfe6evqAAAAAD7BGCoAAAAAgO/0+9//XqGhoSd1yzYAAADgXMMYKgAAoMPYsmWLOnfu3GJZS4MaAwBOz1/+8hd9/PHHev755zVjxowWx2ECAAAAzhfc8gsAAAA4i7jlFzqS3r17q6SkRGPHjtVLL710QoPdAwAAAOcqbvkFAAAAnEXvvfcenSnoMPbv36/q6mqtXbuWzhQAAAC0G5s2bdK4ceMUExMjm82mtWvXtvmc9957T0OGDJHT6dRFF12k5cuXn/R66VABAAAAAAAAAAAdRlVVlRISErR48eITWn7fvn267rrrNGrUKBUUFGjWrFmaOnWq/va3v53UernlFwAAAAAAAAAA6JBsNpveeOMNpaamtrrMAw88oLfeesvrbgG33nqrysvLlZube8Lr4goVAAAAAAAAAADgM263WxUVFV6T2+0+Y/l5eXlKTEz0mjd27Fjl5eWdVI7fGavReeAt/37Gsq9ZkGwsu6Gmxlh28OVXGstWrbl6V/VOMJYtScGHPzWWfbTnIGPZ1Y5QY9luK9BYtut4hLFsP3ujsewGy2Ys++08cxcfHj9eZyxbkkr+c9RY9tEvjhjLtixz+0pAoLnjp77O3OvpDA4ylh0QFGAs+6vSY8ayJalT13Bj2X7+5j7alR8uM5bdPbaHsWxnoL+x7LraemPZncLNHT+73v/YWLYk2ezm3t+6x0Uby7bZzNU7NDzYWHZgkLl9vKHB3OcJh8Pc9q6vN/eeLJndV+rrG4xlm6y3yRtfWI3mshsazO0rJut9/KtqY9l2h9nf3dbVmvvsaXKbd43uYizbz89hLtu/Y/6O2uT7j8n9RJICg829L9fXmXuPMLldFt/f2Vj2+crk/6h9afsvb9O8efO85uXk5Gju3LlnJP/QoUPq0cP7u2ePHj1UUVGh6upqBQWd2HcwOlQAAAAAAAAAAIDPZGdnKzMz02ue0+n0UW1aR4cKAAAAAAAAAADwGafTabQDJSoqSiUlJV7zSkpKFBYWdsJXp0iMoQIAAAAAAAAAAM5hV111ld555x2veRs2bNBVV111Ujk+7VDZtGmTxo0bp5iYGNlsNq1du9arvKSkRJMmTVJMTIyCg4OVnJyswsLCZjl5eXkaPXq0QkJCFBYWpuHDh6u6+r/3FD169KjuuOMOhYWFqXPnzpoyZYoqKytNNw8AAAAAAAAAAJxhlZWVKigoUEFBgSRp3759Kigo0IEDByR9fQuxiRMnepa/5557VFxcrJ///OfavXu3nnnmGb322mvKyMg4qfX6tEOlqqpKCQkJWrx4cbMyy7KUmpqq4uJirVu3Tjt27FBcXJwSExNVVVXlWS4vL0/JyclKSkrStm3btH37ds2YMUN2+3+bdscdd+ijjz7Shg0b9Oabb2rTpk26++67z0obAQAAAAAAAAA4E2z+tnNyOln5+fkaPHiwBg8eLEnKzMzU4MGD9dBDD0mSXC6Xp3NFki688EK99dZb2rBhgxISEvTrX/9aL7zwgsaOHXtS6/XpGCopKSlKSUlpsaywsFBbtmzRrl27NHDgQEnSkiVLFBUVpZUrV2rq1KmSpIyMDKWnpysrK8vz3H79+nn+/uSTT5Sbm6vt27frsssukyQ9/fTTuvbaa/X4448rJibGVPMAAAAAAAAAAMAZNnLkSFmW1Wr58uXLW3zOjh07Tmu97XYMFbfbLUkKDAz0zLPb7XI6ndq8ebMk6fDhw9q6dau6d++uYcOGqUePHhoxYoSnXPr6CpbOnTt7OlMkKTExUXa7XVu3bj1LrQEAAAAAAAAAAB1Zu+1QiY+PV2xsrLKzs1VWVqba2lotXLhQBw8elMvlkiQVFxdLkubOnatp06YpNzdXQ4YM0ZgxYzxjrRw6dEjdu3f3yvbz81NERIQOHTp0dhsFAAAAAAAAAAA6JJ/e8uu7+Pv7a82aNZoyZYoiIiLkcDiUmJiolJQUz6U8jY2NkqTp06dr8uTJkqTBgwfrnXfe0bJly7RgwYJTXr/b7fZcJdOkzmqUv63d9kEBAAAAAAAAAM5hdr+TH28EZ0677h0YOnSoCgoKVF5eLpfLpdzcXJWWlqpPnz6SpOjoaEnSgAEDvJ7Xv39/z4AzUVFROnz4sFd5fX29jh49qqioqFbXvWDBAoWHh3tNrzUePZPNAwAAAAAAAAAAHUS77lBpEh4ersjISBUWFio/P1/jx4+XJPXu3VsxMTHas2eP1/J79+5VXFycJOmqq65SeXm5PvjgA0/5u+++q8bGRl1xxRWtrjM7O1vHjh3zmibYIwy0DgAAAAAAAAAAtHc+veVXZWWlioqKPI/37dungoICRUREKDY2VqtWrVJkZKRiY2O1c+dOzZw5U6mpqUpKSpIk2Ww2zZ49Wzk5OUpISNCgQYO0YsUK7d69W6tXr5b09dUqycnJmjZtmp599lnV1dVpxowZuvXWWxUTE9Nq3ZxOp5xOp9c8bvcFAAAAAAAAAMD5yacdKvn5+Ro1apTncWZmpiQpLS1Ny5cvl8vlUmZmpkpKShQdHa2JEydqzpw5XhmzZs1STU2NMjIydPToUSUkJGjDhg3q27evZ5mXX35ZM2bM0JgxY2S32/XjH/9Yv/3tb89OIwEAAAAAAAAAOANs/vzo35d82qEycuRIzwDzLUlPT1d6enqbOVlZWcrKymq1PCIiQq+88sop1REAAAAAAAAAAIDuLAAAAAAAAAAAgDbQoQIAAAAAAAAAANAGn97yCwAAAAAAAAAAnBi7n83XVTivcYUKAAAAAAAAAABAG7hC5SRcsyDZWPbm7Fxj2d+f3N9Yts2x3Vi2MybKWHZIw4fGsiVJgUHGoi2Z64W22Sxj2f6qM5YdG1JiLLuivpOxbHeDv7FsPz9z2Q6H2b74gMAAY9mduoYbyz7yn0PGsv2c5rZJY0ODsezaGrex7OCwYGPZ4d26GMuWJJvd3Hm8vq7eWHb0hdHGsk2eVwKDzJ0Pj5aUG8t2V9cayw6LNLuPmzyv2Gzmjh9/p7l9JSDQXHbZkUpj2VZjo7Fsu8NhLLtz1xBj2abZ7Oa+oluN5j7rW5bB7xFB5vaVulpz56s6t7n3ZJOfJewGsyXJbjP3nl9x7Jix7IgenY1l19eb/Dxu7nu4yf2wI6uuMvcdqKHB3PuyyfcIqbPBbODs4woVAAAAAAAAAACANnCFCgAAAAAAAAAAHYDNnyvEfMmnV6hs2rRJ48aNU0xMjGw2m9auXetVXlJSokmTJikmJkbBwcFKTk5WYWFhs5y8vDyNHj1aISEhCgsL0/Dhw1VdXe0pf/TRRzVs2DAFBwerc+fOhlsFAAAAAAAAAADONT7tUKmqqlJCQoIWL17crMyyLKWmpqq4uFjr1q3Tjh07FBcXp8TERFVVVXmWy8vLU3JyspKSkrRt2zZt375dM2bMkN3+36bV1tbq5ptv1r333ntW2gUAAAAAAAAAAM4tPr3lV0pKilJSUlosKyws1JYtW7Rr1y4NHDhQkrRkyRJFRUVp5cqVmjp1qiQpIyND6enpysrK8jy3X79+Xlnz5s2TJC1fvtxAKwAAAAAAAAAAwLmu3Q5K73a7JUmBgYGeeXa7XU6nU5s3b5YkHT58WFu3blX37t01bNgw9ejRQyNGjPCUAwAAAAAAAAAAnAnttkMlPj5esbGxys7OVllZmWpra7Vw4UIdPHhQLpdLklRcXCxJmjt3rqZNm6bc3FwNGTJEY8aMaXGsFQAAAAAAAAAAOiq7n+2cnDqKdtuh4u/vrzVr1mjv3r2KiIhQcHCwNm7cqJSUFM/4KI2NjZKk6dOna/LkyRo8eLCefPJJ9evXT8uWLTut9bvdblVUVHhN7vr6024XAAAAAAAAAADoeNpth4okDR06VAUFBSovL5fL5VJubq5KS0vVp08fSVJ0dLQkacCAAV7P69+/vw4cOHBa616wYIHCw8O9pifezT+tTAAAAAAAAAAA0DG16w6VJuHh4YqMjFRhYaHy8/M1fvx4SVLv3r0VExOjPXv2eC2/d+9excXFndY6s7OzdezYMa8pc/Rlp5UJAAAAAAAAAAA6Jj9frryyslJFRUWex/v27VNBQYEiIiIUGxurVatWKTIyUrGxsdq5c6dmzpyp1NRUJSUlSZJsNptmz56tnJwcJSQkaNCgQVqxYoV2796t1atXe3IPHDigo0eP6sCBA2poaFBBQYEk6aKLLlJoaGiLdXM6nXI6nV7zLD+fbi4AAAAAAAAAwHnM5t9xxhs5F/m0hyA/P1+jRo3yPM7MzJQkpaWlafny5XK5XMrMzFRJSYmio6M1ceJEzZkzxytj1qxZqqmpUUZGho4ePaqEhARt2LBBffv29Szz0EMPacWKFZ7HgwcPliRt3LhRI0eONNhCAAAAAAAAAABwLvBph8rIkSNlWVar5enp6UpPT28zJysrS1lZWa2WL1++XMuXLz+VKgIAAAAAAAAAAHSMMVQAAAAAAAAAAAB8iUFBAAAAAAAAAADoAOx+jKHiS1yhAgAAAAAAAAAA0AY6VAAAAAAAAAAAANrALb9OQkNNjbHs70/ubyx714ufGMu+ck53Y9n1pUeNZZve8e2RUcayKx2djWXXNgSYy270N5bd3X7IWPZxe5Cx7HrLXJ92aKi5evv5me2Lt9nCjGUHBJg7+mtr3MayQ8JDjWXXueuMZTc2NBrLrq+rN5ZtNVrGsiWpvsZc3f38ze3jdbXm6i2Dx2Z9vbn9MKJHZ2PZoWGBxrJ3f1hmLFuSHA6HsWyT55UGg+eV+roGY9ldo8y9b5o8Hzoc5j5P1FSbe2+TJJvN3G02Ggzu4yZZlrl9pbHGXHaDwWPTXWNuP+wSae64txs8NiXDnycM6tTZ3Pcrh8PcOaXR4Hnc4GFvlMntLUn1dSa/A5k7ZwE4cXSoAAAAAAAAAADQAdgMdwziu3HLLwAAAAAAAAAAgDb4tENl06ZNGjdunGJiYmSz2bR27Vqv8pKSEk2aNEkxMTEKDg5WcnKyCgsLm+Xk5eVp9OjRCgkJUVhYmIYPH67q6mpJ0v79+zVlyhRdeOGFCgoKUt++fZWTk6Pa2tqz0UQAAAAAAAAAAHAO8GmHSlVVlRISErR48eJmZZZlKTU1VcXFxVq3bp127NihuLg4JSYmqqqqyrNcXl6ekpOTlZSUpG3btmn79u2aMWOG7Pavm7Z79241Njbqueee00cffaQnn3xSzz77rH7xi1+ctXYCAAAAAAAAAICOzadjqKSkpCglJaXFssLCQm3ZskW7du3SwIEDJUlLlixRVFSUVq5cqalTp0qSMjIylJ6erqysLM9z+/Xr5/k7OTlZycnJnsd9+vTRnj17tGTJEj3++OMmmgUAAAAAAAAAAM4x7XYMFbfbLUkKDAz0zLPb7XI6ndq8ebMk6fDhw9q6dau6d++uYcOGqUePHhoxYoSnvDXHjh1TRESEucoDAAAAAAAAAHCG2R22c3LqKNpth0p8fLxiY2OVnZ2tsrIy1dbWauHChTp48KBcLpckqbi4WJI0d+5cTZs2Tbm5uRoyZIjGjBnT4lgrklRUVKSnn35a06dPP2ttAQAAAAAAAAAAHVu77VDx9/fXmjVrtHfvXkVERCg4OFgbN25USkqKZ3yUxsZGSdL06dM1efJkDR48WE8++aT69eunZcuWNcv8/PPPlZycrJtvvlnTpk37zvW73W5VVFR4Te76hjPfUAAAAAAAAAAA0O612w4VSRo6dKgKCgpUXl4ul8ul3NxclZaWqk+fPpKk6OhoSdKAAQO8nte/f38dOHDAa94XX3yhUaNGadiwYXr++efbXPeCBQsUHh7uNf1m044z1DIAAAAAAAAAANCRtOsOlSbh4eGKjIxUYWGh8vPzNX78eElS7969FRMToz179ngtv3fvXsXFxXkef/755xo5cqSGDh2qF1980XOFy3fJzs7WsWPHvKZZwwef2YYBAAAAAAAAAHCCbHbbOTl1FH6+XHllZaWKioo8j/ft26eCggJFREQoNjZWq1atUmRkpGJjY7Vz507NnDlTqampSkpKkiTZbDbNnj1bOTk5SkhI0KBBg7RixQrt3r1bq1evlvTfzpS4uDg9/vjj+vLLLz3ri4qKarVuTqdTTqfTa169n+NMNh8AAAAAAAAAAHQQPu1Qyc/P16hRozyPMzMzJUlpaWlavny5XC6XMjMzVVJSoujoaE2cOFFz5szxypg1a5ZqamqUkZGho0ePKiEhQRs2bFDfvn0lSRs2bFBRUZGKiorUs2dPr+dalmW4hQAAAAAAAAAA4Fzg0w6VkSNHfmenRnp6utLT09vMycrKUlZWVotlkyZN0qRJk061igAAAAAAAAAAAL7tUAEAAAAAAAAAACfG5ugQw6Kfs9j6AAAAAAAAAAAAbaBDBQAAAAAAAAAAoA10qAAAAAAAAAAAALSBMVROQvDlVxrLtjm2G8u+ck53Y9lbHvk/Y9md+gUby+51eS9j2ZLkF+hvLLtX527GsusDw4xlN/gHGssuC4kxlh3QWGcsu95m7hR87Ji5ervd9cayJamywm0su7y0wlh2ndvgNj9ubps01DcYy66rrTWWHRgcZCw7IDDAWLYkhUV0Mpbd0NBoLNth8D69wZ3MvUd06uQ0ll3yxTFj2fV15o7NrtHmPktIktVobj8Miwg1lh0QaO59OSzM3H5YfrTaWHZ9vbnX0vKzjGVHRpnbTyTJYbcZzTelrs7c69nYaO71tBvc3rW15s61Jn3x2VFj2X7+DmPZktl9xWZwX6n6ytzncZOfsUxuE5NMVrvBz+xvy/0M5vvJ3PHZaJk7NnHm2R0d89g+V3CFCgAAAAAAAAAAQBvoUAEAAAAAAAAAAGgDHSoAAAAAAAAAAABt8GmHyqZNmzRu3DjFxMTIZrNp7dq1XuUlJSWaNGmSYmJiFBwcrOTkZBUWFjbLycvL0+jRoxUSEqKwsDANHz5c1dX/vZfwDTfcoNjYWAUGBio6Olp33nmnvvjiC9PNAwAAAAAAAAAA5wifdqhUVVUpISFBixcvblZmWZZSU1NVXFysdevWaceOHYqLi1NiYqKqqqo8y+Xl5Sk5OVlJSUnatm2btm/frhkzZshu/2/TRo0apddee0179uzR66+/rk8//VQ33XTTWWkjAAAAAAAAAABngs1uOyenjsLPlytPSUlRSkpKi2WFhYXasmWLdu3apYEDB0qSlixZoqioKK1cuVJTp06VJGVkZCg9PV1ZWVme5/br188rKyMjw/N3XFycsrKylJqaqrq6Ovn7+5/pZgEAAAAAAAAAgHNMux1Dxe12S5ICAwM98+x2u5xOpzZv3ixJOnz4sLZu3aru3btr2LBh6tGjh0aMGOEpb8nRo0f18ssva9iwYXSmAAAAAAAAAACAE9JuO1Ti4+MVGxur7OxslZWVqba2VgsXLtTBgwflcrkkScXFxZKkuXPnatq0acrNzdWQIUM0ZsyYZmOtPPDAAwoJCVHXrl114MABrVu37qy3CQAAAAAAAAAAdEzttkPF399fa9as0d69exUREaHg4GBt3LhRKSkpnvFRGhsbJUnTp0/X5MmTNXjwYD355JPq16+fli1b5pU3e/Zs7dixQ2+//bYcDocmTpwoy7JaXb/b7VZFRYXX5K6tM9dgAAAAAAAAAAC+g91hOyenjqLddqhI0tChQ1VQUKDy8nK5XC7l5uaqtLRUffr0kSRFR0dLkgYMGOD1vP79++vAgQNe87p166bvfe97+uEPf6g//elPWr9+vbZs2dLquhcsWKDw8HCvadGrb53hFgIAAAAAAAAAgI6gXXeoNAkPD1dkZKQKCwuVn5+v8ePHS5J69+6tmJgY7dmzx2v5vXv3Ki4urtW8pitbmsZpaUl2draOHTvmNc2+5boz0BoAAAAAAAAAANDR+Ply5ZWVlSoqKvI83rdvnwoKChQREaHY2FitWrVKkZGRio2N1c6dOzVz5kylpqYqKSlJkmSz2TR79mzl5OQoISFBgwYN0ooVK7R7926tXr1akrR161Zt375d11xzjbp06aJPP/1Uc+bMUd++fXXVVVe1Wjen0ymn0+k1ryaAQewBAAAAAAAAADgf+bRDJT8/X6NGjfI8zszMlCSlpaVp+fLlcrlcyszMVElJiaKjozVx4kTNmTPHK2PWrFmqqalRRkaGjh49qoSEBG3YsEF9+/aVJAUHB2vNmjXKyclRVVWVoqOjlZycrAcffLBZhwkAAAAAAAAAAO2VrQONN3Iu8mmHysiRI79zYPj09HSlp6e3mZOVlaWsrKwWyy655BK9++67p1xHAAAAAAAAAACADjGGCgAAAAAAAAAAgC/RoQIAAAAAAAAAANAGn97yCwAAAAAAAAAAnBibnWskfImtDwAAAAAAAAAA0AauUDkZtTXGop0xUcay60uPGsvu1C/YWPZXe44byw4cG2osW5KqSyuMZdtr3eayA+qNZTcYS5bqrABj2SH6yli2HOaiQ0I7GcsOCDDbF19Xa25vqa2uNZYd3CnEWHZQaKCx7IaGRmPZ9XXmjs3KMnPHZp3b3H4iSWER5t6D/PzNnVjKvjxmLDsswtznCT9/c+csf6e5j9Ims03rqL+Ys9tsvq7CKTG5r9js5t6TTZ6vHHazr6XDYS7fsixj2X5+5urdaBncJo3mtonJ19LPz9y50ORn2vo6s+fwxnpznz1Du5j7PO42uM3tDnPbvKO+t9kNHj+2WrPbpEeMue/i9XXmjh+T7z/AuaZjftsBAAAAAAAAAAA4izruT98AAAAAAAAAADiP2AxfjYvv5tMrVDZt2qRx48YpJiZGNptNa9eu9SovKSnRpEmTFBMTo+DgYCUnJ6uwsLBZTl5enkaPHq2QkBCFhYVp+PDhqq6ubrac2+3WoEGDZLPZVFBQYKhVAAAAAAAAAADgXOPTDpWqqiolJCRo8eLFzcosy1JqaqqKi4u1bt067dixQ3FxcUpMTFRVVZVnuby8PCUnJyspKUnbtm3T9u3bNWPGDNlbuHfzz3/+c8XExBhtEwAAAAAAAAAAOPf49JZfKSkpSklJabGssLBQW7Zs0a5duzRw4EBJ0pIlSxQVFaWVK1dq6tSpkqSMjAylp6crKyvL89x+/fo1y/vrX/+qt99+W6+//rr++te/GmgNAAAAAAAAAAA4V7XbQendbrckKTAw0DPPbrfL6XRq8+bNkqTDhw9r69at6t69u4YNG6YePXpoxIgRnvImJSUlmjZtml566SUFBwefvUYAAAAAAAAAAIBzQrvtUImPj1dsbKyys7NVVlam2tpaLVy4UAcPHpTL5ZIkFRcXS5Lmzp2radOmKTc3V0OGDNGYMWM8Y61YlqVJkybpnnvu0WWXXeaz9gAAAAAAAAAAcDrsDts5OXUU7bZDxd/fX2vWrNHevXsVERGh4OBgbdy4USkpKZ7xURobGyVJ06dP1+TJkzV48GA9+eST6tevn5YtWyZJevrpp/XVV18pOzv7pNbvdrtVUVHhNbnr6s5sIwEAAAAAAAAAQIfQbjtUJGno0KEqKChQeXm5XC6XcnNzVVpaqj59+kiSoqOjJUkDBgzwel7//v114MABSdK7776rvLw8OZ1O+fn56aKLLpIkXXbZZUpLS2t13QsWLFB4eLjXtGjV30w0EwAAAAAAAAAAtHPtukOlSXh4uCIjI1VYWKj8/HyNHz9ektS7d2/FxMRoz549Xsvv3btXcXFxkqTf/va3+te//qWCggIVFBRo/fr1kqRXX31Vjz76aKvrzM7O1rFjx7ym2TePNdRCAAAAAAAAAADQnvn5cuWVlZUqKiryPN63b58KCgoUERGh2NhYrVq1SpGRkYqNjdXOnTs1c+ZMpaamKikpSZJks9k0e/Zs5eTkKCEhQYMGDdKKFSu0e/durV69WpIUGxvrtc7Q0FBJUt++fdWzZ89W6+Z0OuV0Or3m1fj7n5F2AwAAAAAAAABwsmz2jjPeyLnIpx0q+fn5GjVqlOdxZmamJCktLU3Lly+Xy+VSZmamSkpKFB0drYkTJ2rOnDleGbNmzVJNTY0yMjJ09OhRJSQkaMOGDerbt+9ZbQsAAAAAAAAAADh3+bRDZeTIkbIsq9Xy9PR0paent5mTlZWlrKysE1pn7969v3OdAAAAAAAAAAAA39YhxlABAAAAAAAAAADwJZ9eoQIAAAAAAAAAAE6Mzc41Er7E1gcAAAAAAAAAAGgDHSoAAAAAAAAAAABt4JZfJ6Gqd4Kx7JCGD41lm3yRe13ey1h24NhQY9kf/vYDY9mSNOq5W41lNwSZ2y6NdnN7i2Uz13/bpbbEWHZVQGdj2ZZlM5ZdfbzBWLbbXW8sW5Kqq2qNZfs7/Y1ll35ubj8MDA0xlt1Yb25fsaxGY9nB4Z2MZVuNlrFsSTr0mbl9xWbwXBscFmws+/DBMmPZ1V3MHT/HjnxlLLvO4Lm2orTCWLYk2ezm3t9sNnPZNcfNvf/U15k711ZVuo1lNzaYO4/7Bxj83Gn4PG53mNsPLYNVbzD4etbXmcs2yeSxaVJAUICxbJPnWUlqdJjb5iX7zX3GuuDiGGPZJre5w9Exf0ftMHieNfk5RZJKvzxuLLujnrOkIF9XADij6FABAAAAAAAAAKADMN0xiO/WMbuqAQAAAAAAAAAAziKfdqhs2rRJ48aNU0xMjGw2m9auXetVXlJSokmTJikmJkbBwcFKTk5WYWFhs5y8vDyNHj1aISEhCgsL0/Dhw1VdXe0p7927t2w2m9f02GOPmW4eAAAAAAAAAAA4R/i0Q6WqqkoJCQlavHhxszLLspSamqri4mKtW7dOO3bsUFxcnBITE1VVVeVZLi8vT8nJyUpKStK2bdu0fft2zZgxQ3a7d9MefvhhuVwuz/Szn/3MePsAAAAAAAAAAMC5wadjqKSkpCglJaXFssLCQm3ZskW7du3SwIEDJUlLlixRVFSUVq5cqalTp0qSMjIylJ6erqysLM9z+/Xr1yyvU6dOioqKMtAKAAAAAAAAAABwrmu3Y6i43W5JUmBgoGee3W6X0+nU5s2bJUmHDx/W1q1b1b17dw0bNkw9evTQiBEjPOXf9Nhjj6lr164aPHiwFi1apPr6+rPTEAAAAAAAAAAAzgC7w3ZOTh1Fu+1QiY+PV2xsrLKzs1VWVqba2lotXLhQBw8elMvlkiQVFxdLkubOnatp06YpNzdXQ4YM0ZgxY7zGWklPT9ef/vQnbdy4UdOnT9f8+fP185//3CftAgAAAAAAAAAAHY9Pb/n1Xfz9/bVmzRpNmTJFERERcjgcSkxMVEpKiizLkiQ1NjZKkqZPn67JkydLkgYPHqx33nlHy5Yt04IFCyRJmZmZntxLL71UAQEBmj59uhYsWCCn09ni+t1ut+cqGc+82lo5AwLOeFsBAAAAAAAAAED71m6vUJGkoUOHqqCgQOXl5XK5XMrNzVVpaan69OkjSYqOjpYkDRgwwOt5/fv314EDB1rNveKKK1RfX6/9+/e3usyCBQsUHh7uNf3mhZdOv1EAAAAAAAAAAKDDabdXqHxTeHi4pK8Hqs/Pz9cjjzwiSerdu7diYmK0Z88er+X37t3b6mD3klRQUCC73a7u3bu3ukx2drbXlS2SVFn04ak2AQAAAAAAAACA02Kzd5zxRs5FPu1QqaysVFFRkefxvn37VFBQoIiICMXGxmrVqlWKjIxUbGysdu7cqZkzZyo1NVVJSUmSJJvNptmzZysnJ0cJCQkaNGiQVqxYod27d2v16tWSpLy8PG3dulWjRo1Sp06dlJeXp4yMDP3kJz9Rly5dWq2b0+lsdjuwOm73BQAAAAAAAADAecmnHSr5+fkaNWqU53HTFSFpaWlavny5XC6XMjMzVVJSoujoaE2cOFFz5szxypg1a5ZqamqUkZGho0ePKiEhQRs2bFDfvn0lfd0x8qc//Ulz586V2+3WhRdeqIyMjGZXnwAAAAAAAAAAALTGpx0qI0eO9Aww35L09HSlp6e3mZOVlaWsrKwWy4YMGaItW7acch0BAAAAAAAAAAA6xBgqAAAAAAAAAACc72x2u6+rcF5j6wMAAAAAAAAAALSBDhUAAAAAAAAAAIA20KECAAAAAAAAAADQBsZQOQnBhz81Fx4YZCzaHhllLNsv0N9YdnVphbHsUc/daixbkjZO/5Ox7NEb4o1lN/oFGMu2N9QZy95jSzCWHVBXbyzbZI92VWWtsWx3jbltIknHjnxlLPvLz74wlu3wN3c+tBobjWWbZLOZ28vLvjhsLNu0qD69jGU3Wub2lbJDpcayu10QaSzbP8Dcx916g+8RtTXmzuOBwYHGsiWz+6HDz9x5xd9pbl8JDDb3HlFTbe4zltVoGcs2yT/A4esqnDK7zWYsu8FhLtvP4LHZ2GBuP7Sb2yTy8ze3H372yQFj2Q6H2ePH5HtEp85hxrJLXWXGsk1uc4fB/dBu8ACyG94PTeoWZW4/dBg8jzcYPNfizLOZfANDm7hCBQAAAAAAAAAAoA10qAAAAAAAAAAAALSBDhUAAAAAAAAAAIA2+LRDZdOmTRo3bpxiYmJks9m0du1ar/KSkhJNmjRJMTExCg4OVnJysgoLC5vl5OXlafTo0QoJCVFYWJiGDx+u6upqr2XeeustXXHFFQoKClKXLl2UmppqsGUAAAAAAAAAAOBc4tMOlaqqKiUkJGjx4sXNyizLUmpqqoqLi7Vu3Trt2LFDcXFxSkxMVFVVlWe5vLw8JScnKykpSdu2bdP27ds1Y8YM2e3/bdrrr7+uO++8U5MnT9a//vUv/fOf/9Ttt99+VtoIAAAAAAAAAMCZYLPbzsmpo/Dz5cpTUlKUkpLSYllhYaG2bNmiXbt2aeDAgZKkJUuWKCoqSitXrtTUqVMlSRkZGUpPT1dWVpbnuf369fP8XV9fr5kzZ2rRokWaMmWKZ/6AAQNMNAkAAAAAAAAAAJyD2u0YKm63W5IUGBjomWe32+V0OrV582ZJ0uHDh7V161Z1795dw4YNU48ePTRixAhPuSR9+OGH+vzzz2W32zV48GBFR0crJSVFu3btOrsNAgAAAAAAAAAAHVa77VCJj49XbGyssrOzVVZWptraWi1cuFAHDx6Uy+WSJBUXF0uS5s6dq2nTpik3N1dDhgzRmDFjPGOtfHOZBx98UG+++aa6dOmikSNH6ujRo75pHAAAAAAAAAAA6FDabYeKv7+/1qxZo7179yoiIkLBwcHauHGjUlJSPOOjNDY2SpKmT5+uyZMna/DgwXryySfVr18/LVu2zGuZX/7yl/rxj3+soUOH6sUXX5TNZtOqVataXb/b7VZFRYXX5K6tM9xqAAAAAAAAAABa5uuxTs73MVTabYeKJA0dOlQFBQUqLy+Xy+VSbm6uSktL1adPH0lSdHS0pObjofTv318HDhxodRmn06k+ffp4lmnJggULFB4e7jUtWvmXM9o+AAAAAAAAAADQMbTrDpUm4eHhioyMVGFhofLz8zV+/HhJUu/evRUTE6M9e/Z4Lb93717FxcVJ+rpTxul0ei1TV1en/fv3e5ZpSXZ2to4dO+Y1zb5tnIHWAQAAAAAAAACA9s7PlyuvrKxUUVGR5/G+fftUUFCgiIgIxcbGatWqVYqMjFRsbKx27typmTNnKjU1VUlJSZIkm82m2bNnKycnRwkJCRo0aJBWrFih3bt3a/Xq1ZKksLAw3XPPPcrJyVGvXr0UFxenRYsWSZJuvvnmVuvmdDrldDq95lUH+J/pTQAAAAAAAAAAADoAn3ao5Ofna9SoUZ7HmZmZkqS0tDQtX75cLpdLmZmZKikpUXR0tCZOnKg5c+Z4ZcyaNUs1NTXKyMjQ0aNHlZCQoA0bNqhv376eZRYtWiQ/Pz/deeedqq6u1hVXXKF3331XXbp0OTsNBQAAAAAAAADgNNnsHeKmU+csn3aojBw5UpZltVqenp6u9PT0NnOysrKUlZXVarm/v78ef/xxPf7446dUTwAAAAAAAAAAcH6jOwsAAAAAAAAAAKANdKgAAAAAAAAAAAC0wae3/AIAAAAAAAAAACfG7rD5ugrnNa5QAQAAAAAAAAAAaANXqJyEoz0HGcu2ZK5nsdLR2Vh2r87djGXba93GshuCQo1lS9LoDfHGst/94Vxj2QPu7GcsO6hrmLHsyxOLjGU3dOpiLLvRP9BY9qBLrzWWfbzGWLQkqeJCc/vKoT6RxrJraxuMZQeH+BvLbmiwjGVXHD1uLLu2tt5Ydkgnc8emJHXrHmIs22Y3+Hniq1pj2dHRwcayg4PMbZOukebqHRToMJZ96FCVsWxJcjrNfcWoqjS3H/bs1clYdmiIud+x9egRZCy7rs7ce4TN4A8rO4Wa/d2g3eC5trHR3DY3qbHR1zU4NQ0G6x1g7uObgoL7mws3zM+/Y/6ut/p4na+r0O6UfH7MWHa3KHPfCR2Gf9nftau57xINBt8j6mo76Ikc8IGO+U4GAAAAAAAAAABwFnGFCgAAAAAAAAAAHYDJOxOgbT69QmXTpk0aN26cYmJiZLPZtHbtWq/ykpISTZo0STExMQoODlZycrIKCwub5eTl5Wn06NEKCQlRWFiYhg8frurqaknSe++9J5vN1uK0ffv2s9FMAAAAAAAAAADQwfm0Q6WqqkoJCQlavHhxszLLspSamqri4mKtW7dOO3bsUFxcnBITE1VV9d/7Pufl5Sk5OVlJSUnatm2btm/frhkzZshu/7ppw4YNk8vl8pqmTp2qCy+8UJdddtlZaysAAAAAAAAAAOi4fHrLr5SUFKWkpLRYVlhYqC1btmjXrl0aOHCgJGnJkiWKiorSypUrNXXqVElSRkaG0tPTlZWV5Xluv37/HVg7ICBAUVFRnsd1dXVat26dfvazn8lmciREAAAAAAAAAABwzmi3g9K73W5JUmBgoGee3W6X0+nU5s2bJUmHDx/W1q1b1b17dw0bNkw9evTQiBEjPOUt+fOf/6zS0lJNnjzZbAMAAAAAAAAAAMA5o912qMTHxys2NlbZ2dkqKytTbW2tFi5cqIMHD8rlckmSiouLJUlz587VtGnTlJubqyFDhmjMmDEtjrUiSUuXLtXYsWPVs2fPs9YWAAAAAAAAAABOl81uPyenjqLd1tTf319r1qzR3r17FRERoeDgYG3cuFEpKSme8VEaGxslSdOnT9fkyZM1ePBgPfnkk+rXr5+WLVvWLPPgwYP629/+pilTprS5frfbrYqKCq/JXVt7ZhsJAAAAAAAAAAA6hHbboSJJQ4cOVUFBgcrLy+VyuZSbm6vS0lL16dNHkhQdHS1JGjBggNfz+vfvrwMHDjTLe/HFF9W1a1fdcMMNba57wYIFCg8P95p+99wLZ6BVAAAAAAAAAACgo2nXHSpNwsPDFRkZqcLCQuXn52v8+PGSpN69eysmJkZ79uzxWn7v3r2Ki4vzmmdZll588UVNnDhR/v7+ba4zOztbx44d85pmTJ965hoFAAAAAAAAAAA6DD9frryyslJFRUWex/v27VNBQYEiIiIUGxurVatWKTIyUrGxsdq5c6dmzpyp1NRUJSUlSZJsNptmz56tnJwcJSQkaNCgQVqxYoV2796t1atXe63r3Xff1b59+zR16ol1ijidTjmdTq95XwUEnGaLAQAAAAAAAAA4NTa7zddVOK/5tEMlPz9fo0aN8jzOzMyUJKWlpWn58uVyuVzKzMxUSUmJoqOjNXHiRM2ZM8crY9asWaqpqVFGRoaOHj2qhIQEbdiwQX379vVabunSpRo2bJji4+PNNwwAAAAAAAAAAJxTfNqhMnLkSFmW1Wp5enq60tPT28zJyspSVlbWdy7zyiuvnHT9AAAAAAAAAAAApA4yhgoAAAAAAAAAAECTxYsXq3fv3goMDNQVV1yhbdu2tbpsXV2dHn74YfXt21eBgYFKSEhQbm7uSa+TDhUAAAAAAAAAADoAm912Tk4n69VXX1VmZqZycnL04YcfKiEhQWPHjtXhw4dbXP7BBx/Uc889p6effloff/yx7rnnHv3oRz/Sjh07Tmq9dKgAAAAAAAAAAIAO44knntC0adM0efJkDRgwQM8++6yCg4O1bNmyFpd/6aWX9Itf/ELXXnut+vTpo3vvvVfXXnutfv3rX5/UeulQAQAAAAAAAAAAPuN2u1VRUeE1ud3uFpetra3VBx98oMTERM88u92uxMRE5eXltZofGBjoNS8oKEibN28+qXr6dFD6jqbaEWos22azjGXXNgQYy64PDDOWbQ+oN5bdaDe76zf6mdvmA+7sZyz745f2GMvu/H1zx8/3e3Q1lh0Q1cNYtiMs3Fh2dGytsezqWoexbEkKcprMDzaWXFlp7pwVGmrunFXfYO79x2nwtbTZTv5y4BMVHGz2PSI8zNx2cRg8fNyd/Y1ld+1s7vV0+pvbx202c9sk0Glumxw/7jSWLZk99gMCzGWHh5n7rVlosLnXs77BYLa5tzaj56tAcx/FJZn97tbYaO717KgaGs1lW+ZeSvkZ3Me7dTW8kxvkNPj+Vl1j7gXtZPDzuEkGPzIb/TweGRnY9kLtVFiouc8TtXXm9vH6BrPf84ETsWDBAs2bN89rXk5OjubOndts2SNHjqihoUE9enj/365Hjx7avXt3i/ljx47VE088oeHDh6tv37565513tGbNGjU0NJxUPTvmOwIAAAAAAAAAAOcZm/3cvOlUdna2MjMzveY5nWfux2BPPfWUpk2bpvj4eNlsNvXt21eTJ09u9RZhrTk3tz4AAAAAAAAAAOgQnE6nwsLCvKbWOlS6desmh8OhkpISr/klJSWKiopq8TmRkZFau3atqqqq9Nlnn2n37t0KDQ1Vnz59TqqePu1Q2bRpk8aNG6eYmBjZbDatXbvWq7ykpESTJk1STEyMgoODlZycrMLCwmY5eXl5Gj16tEJCQhQWFqbhw4erurraU753716NHz9e3bp1U1hYmK655hpt3LjRdPMAAAAAAAAAAMAZFBAQoKFDh+qdd97xzGtsbNQ777yjq6666jufGxgYqAsuuED19fV6/fXXNX78+JNat087VKqqqpSQkKDFixc3K7MsS6mpqSouLta6deu0Y8cOxcXFKTExUVVVVZ7l8vLylJycrKSkJG3btk3bt2/XjBkzZP/GpU/XX3+96uvr9e677+qDDz5QQkKCrr/+eh06dOistBMAAAAAAAAAAJwZmZmZ+v3vf68VK1bok08+0b333quqqipNnjxZkjRx4kRlZ2d7lt+6davWrFmj4uJi/eMf/1BycrIaGxv185///KTW69MxVFJSUpSSktJiWWFhobZs2aJdu3Zp4MCBkqQlS5YoKipKK1eu1NSpUyVJGRkZSk9PV1ZWlue5/fr9d9DuI0eOqLCwUEuXLtWll14qSXrsscf0zDPPaNeuXa1eAgQAAAAAAAAAANqfW265RV9++aUeeughHTp0SIMGDVJubq5noPoDBw54XXRRU1OjBx98UMXFxQoNDdW1116rl156SZ07dz6p9bbbQendbrekry/BaWK32+V0OrV582ZNnTpVhw8f1tatW3XHHXdo2LBh+vTTTxUfH69HH31U11xzjSSpa9eu6tevn/7whz9oyJAhcjqdeu6559S9e3cNHTrUJ20DAAAAAAAAAOBk2ew2X1eh3ZgxY4ZmzJjRYtl7773n9XjEiBH6+OOPT3ud7XZQ+vj4eMXGxio7O1tlZWWqra3VwoULdfDgQblcLklScXGxJGnu3LmaNm2acnNzNWTIEI0ZM8Yz1orNZtPf//537dixQ506dVJgYKCeeOIJ5ebmqkuXLj5rHwAAAAAAAAAA6DjabYeKv7+/1qxZo7179yoiIkLBwcHauHGjUlJSPJfqNDY2SpKmT5+uyZMna/DgwXryySfVr18/LVu2TNLXY7Hcd9996t69u/7xj39o27ZtSk1N1bhx4zwdMy1xu92qqKjwmpqumgEAAAAAAAAAAOeXdtuhIklDhw5VQUGBysvL5XK5lJubq9LSUvXp00eSFB0dLUkaMGCA1/P69++vAwcOSJLeffddvfnmm/rTn/6kq6++WkOGDNEzzzyjoKAgrVixotV1L1iwQOHh4V7Tc88uMdRSAAAAAAAAAADQnrXbMVS+KTw8XNLXA9Xn5+frkUcekST17t1bMTEx2rNnj9fye/fu9Qx2f/z4cUnyGoCm6XHTFS4tyc7OVmZmpte8/xz84vQaAgAAAAAAAADAKbLZ2/U1Euc8n3aoVFZWqqioyPN43759KigoUEREhGJjY7Vq1SpFRkYqNjZWO3fu1MyZM5WamqqkpCRJX4+PMnv2bOXk5CghIUGDBg3SihUrtHv3bq1evVqSdNVVV6lLly5KS0vTQw89pKCgIP3+97/Xvn37dN1117VaN6fTKafT+a15pQa2AgAAAAAAAAAAaO982qGSn5+vUaNGeR43XRGSlpam5cuXy+VyKTMzUyUlJYqOjtbEiRM1Z84cr4xZs2appqZGGRkZOnr0qBISErRhwwb17dtXktStWzfl5ubql7/8pUaPHq26ujoNHDhQ69atU0JCwtlrLAAAAAAAAAAA6LB82qEycuRIWZbVanl6errS09PbzMnKylJWVlar5Zdddpn+9re/nVIdAQAAAAAAAAAAOsQYKgAAAAAAAAAAnPdsNl/X4LzGCDYAAAAAAAAAAABtoEMFAAAAAAAAAACgDXSoAAAAAAAAAAAAtIExVAAAAAAAAAAA6ABsdsZQ8SU6VE6C2wo0lu2vOmPZtY3+xrIb/M1tkwZjyZJlM3txlr3B3OsZ1DXMWHbn74cayy7fVWksu76yyli2X/VxY9mOgABj2f6ORmPZ9X5mjx9/g+9MQYHm6l5X5zCWbbLe9fWWuew6cy+mw2HuA2RIiLnXUpICnebqHmDuLV9+BjdLaJC5c5bTz1x2Ta25fdzpb+7YDA01+xUgIMDcOcvPz+CxH2QwO9Dg+3KDuXo3mKu2TP4fIDDA3PEjSTaZy2+wzG0Yy+xmMaah0dw2aTS4j/s5zG3woKCOe7MRk58nGgz+E6Gxgx4/JgUGmfs84e9v7rg3/X9oP6Mfs0xWnp0cOFEd910YAAAAAAAAAADgLKFDBQAAAAAAAAAAoA0+7VDZtGmTxo0bp5iYGNlsNq1du9arvKSkRJMmTVJMTIyCg4OVnJyswsLCZjl5eXkaPXq0QkJCFBYWpuHDh6u6utpT/uGHH+qHP/yhOnfurK5du+ruu+9WZaW52w8BAAAAAAAAAIBzi087VKqqqpSQkKDFixc3K7MsS6mpqSouLta6deu0Y8cOxcXFKTExUVVV/x0vIS8vT8nJyUpKStK2bdu0fft2zZgxQ3b710374osvlJiYqIsuukhbt25Vbm6uPvroI02aNOlsNRMAAAAAAAAAgNNms9vPyamj8Omg9CkpKUpJSWmxrLCwUFu2bNGuXbs0cOBASdKSJUsUFRWllStXaurUqZKkjIwMpaenKysry/Pcfv36ef5+88035e/vr8WLF3s6WZ599lldeumlKioq0kUXXWSqeQAAAAAAAAAA4BzRbrt+3G63JCkwMNAzz263y+l0avPmzZKkw4cPa+vWrerevbuGDRumHj16aMSIEZ7yppyAgABPZ4okBQUFSZLXcgAAAAAAAAAAAK1ptx0q8fHxio2NVXZ2tsrKylRbW6uFCxfq4MGDcrlckqTi4mJJ0ty5czVt2jTl5uZqyJAhGjNmjGesldGjR+vQoUNatGiRamtrVVZW5rmapSkHAAAAAAAAAADgu7TbDhV/f3+tWbNGe/fuVUREhIKDg7Vx40alpKR4rjZpbGyUJE2fPl2TJ0/W4MGD9eSTT6pfv35atmyZJGngwIFasWKFfv3rXys4OFhRUVG68MIL1aNHD6+rVr7N7XaroqLCa6r9/6+aAQAAAAAAAADgbLPZbefk1FG02w4VSRo6dKgKCgpUXl4ul8ul3NxclZaWqk+fPpKk6OhoSdKAAQO8nte/f38dOHDA8/j222/XoUOH9Pnnn6u0tFRz587Vl19+6clpyYIFCxQeHu41/f65pw20EgAAAAAAAAAAtHftukOlSXh4uCIjI1VYWKj8/HyNHz9ektS7d2/FxMRoz549Xsvv3btXcXFxzXJ69Oih0NBQvfrqqwoMDNQPf/jDVteZnZ2tY8eOeU3Tpv/szDYMAAAAAAAAAAB0CH6+XHllZaWKioo8j/ft26eCggJFREQoNjZWq1atUmRkpGJjY7Vz507NnDlTqampSkpKkiTZbDbNnj1bOTk5SkhI0KBBg7RixQrt3r1bq1ev9uT+7ne/07BhwxQaGqoNGzZo9uzZeuyxx9S5c+dW6+Z0OuV0Or3mBTirzuwGAAAAAAAAAAAAHYJPO1Ty8/M1atQoz+PMzExJUlpampYvXy6Xy6XMzEyVlJQoOjpaEydO1Jw5c7wyZs2apZqaGmVkZOjo0aNKSEjQhg0b1LdvX88y27ZtU05OjiorKxUfH6/nnntOd95559lpJAAAAAAAAAAAZ4DtO8YFh3k+7VAZOXKkLMtqtTw9PV3p6elt5mRlZSkrK6vV8j/84Q+nVD8AAAAAAAAAAACpg4yhAgAAAAAAAAAA4Et0qAAAAAAAAAAAALTBp7f8AgAAAAAAAAAAJ8Zmt/m6Cuc1rlABAAAAAAAAAABoA1eonATX8Qhj2bEhJcayu9sPGcsuC4kxll1nBRjL7lJrbntL0h5bgrHsyxOLjGV/v0dXY9n1lVXGsrc8+g9j2T+4/wpj2Q6nuWOz06VuY9lOR4OxbNP5Dru584q71txvFAKd5n59UmMsWaqrazSW7XSa+whjcntL0rGvzG2X4CBzdTe5Xard5o6f2jpz9bYsY9FqNJh97FiduXBJTqfDWHZ9vbnj5+gxc/uhyfeIkCBj0Wowt7ll8oeV5ZUd91ebdfW+rsGpsRv8qWajwf3Q5HncZjO3H5o87k3/6NnPYW6jHzlqbmeJ6Gzuvc3grmI0u6bG3DZxBpiruMPwT8vdteb28QaDX8Xr6gyeENVx35eBlnCFCgAAAAAAAAAAQBu4QgUAAAAAAAAAgA6AMVR8y6dXqGzatEnjxo1TTEyMbDab1q5d61VeUlKiSZMmKSYmRsHBwUpOTlZhYaGnfP/+/bLZbC1Oq1at8ix34MABXXfddQoODlb37t01e/Zs1dd30GupAQAAAAAAAADAWefTDpWqqiolJCRo8eLFzcosy1JqaqqKi4u1bt067dixQ3FxcUpMTFRV1ddjMfTq1Usul8trmjdvnkJDQ5WSkiJJamho0HXXXafa2lq9//77WrFihZYvX66HHnrorLYVAAAAAAAAAAB0XD695VdKSoqn4+PbCgsLtWXLFu3atUsDBw6UJC1ZskRRUVFauXKlpk6dKofDoaioKK/nvfHGG5owYYJCQ0MlSW+//bY+/vhj/f3vf1ePHj00aNAgPfLII3rggQc0d+5cBQSYG6AYAAAAAAAAAACcG9rtoPRut1uSFBgY6Jlnt9vldDq1efPmFp/zwQcfqKCgQFOmTPHMy8vL0yWXXKIePXp45o0dO1YVFRX66KOPDNUeAAAAAAAAAACcS9pth0p8fLxiY2OVnZ2tsrIy1dbWauHChTp48KBcLleLz1m6dKn69++vYcOGeeYdOnTIqzNFkufxoUOHzDUAAAAAAAAAAIAzyW4/N6cOot3W1N/fX2vWrNHevXsVERGh4OBgbdy4USkpKbK3sIGrq6v1yiuveF2dcjrcbrcqKiq8ptpa9xnJBgAAAAAAAAAAHUu77VCRpKFDh6qgoEDl5eVyuVzKzc1VaWmp+vTp02zZ1atX6/jx45o4caLX/KioKJWUlHjNa3r87fFXvmnBggUKDw/3mv609FdnoFUAAAAAAAAAAKCjadcdKk3Cw8MVGRmpwsJC5efna/z48c2WWbp0qW644QZFRkZ6zb/qqqu0c+dOHT582DNvw4YNCgsL04ABA1pdZ3Z2to4dO+Y13Trl52euUQAAAAAAAAAAoMPw8+XKKysrVVRU5Hm8b98+FRQUKCIiQrGxsVq1apUiIyMVGxurnTt3aubMmUpNTVVSUpJXTlFRkTZt2qT169c3W0dSUpIGDBigO++8U7/61a906NAhPfjgg7rvvvvkdDpbrZvT6WxWHhDALb8AAAAAAAAAAL5hs9l8XYXzmk87VPLz8zVq1CjP48zMTElSWlqali9fLpfLpczMTJWUlCg6OloTJ07UnDlzmuUsW7ZMPXv2bNbRIkkOh0Nvvvmm7r33Xl111VUKCQlRWlqaHn74YXMNAwAAAAAAAAAA5xSfdqiMHDlSlmW1Wp6enq709PQ2c+bPn6/58+e3Wh4XF9fi1SsAAAAAAAAAAAAnokOMoQIAAAAAAAAAAOBLPr1CBQAAAAAAAAAAnBibnWskfImtDwAAAAAAAAAA0AY6VAAAAAAAAAAAANrALb9Ogp+90Vh2RX0nY9nH7UHGsgMa64xlh+grY9lVAZ2NZUtSQF29seyGTl2MZQdE9TCW7Vd93Fj2D+6/wlj29se3GsuOuqabsez+1+cZy260m33rOBre21h2kH+0sezuYea2S5fAKmPZNfUBxrJtF1vGsivcNmPZ1bXGoiVJXXqZW0GIv9tYdllNsLHs6JAyY9l+NnPvyccbzH3GCrSbey0d9ihj2V/nmzv2q2r8jWV3CzO3rwT5N5jL9jP3ebzeMvf7Oz+bue9WNQ0d92uuZZl7f7PZzB2bJtU1dMzfgfoZPBeWV5s7F3ZksTEOY9mhgebO4w6Du3ijwcPe38/c9u4cau49wm74XBgZUm0su8Hge0Rdo7nXUwo0mA2cfR33kyYAAAAAAAAAAOcRm91c5xra1jF/6gEAAAAAAAAAAHAW+bRDZdOmTRo3bpxiYmJks9m0du1ar/KSkhJNmjRJMTExCg4OVnJysgoLCz3l+/fvl81ma3FatWqVZ7n09HQNHTpUTqdTgwYNOkutAwAAAAAAAAAA5wqfdqhUVVUpISFBixcvblZmWZZSU1NVXFysdevWaceOHYqLi1NiYqKqqr6+l3yvXr3kcrm8pnnz5ik0NFQpKSleeXfddZduueWWs9IuAAAAAAAAAABwbvHpGCopKSnNOj6aFBYWasuWLdq1a5cGDhwoSVqyZImioqK0cuVKTZ06VQ6HQ1FR3oNqvvHGG5owYYJCQ0M98377299Kkr788kv9+9//NtQaAAAAAAAAAABwrmq3Y6i43W5JUmBgoGee3W6X0+nU5s2bW3zOBx98oIKCAk2ZMuWs1BEAAAAAAAAAgLPGbj83pw6i3dY0Pj5esbGxys7OVllZmWpra7Vw4UIdPHhQLperxecsXbpU/fv317Bhw85ybQEAAAAAAAAAwLms3Xao+Pv7a82aNdq7d68iIiIUHBysjRs3KiUlRfYWeqyqq6v1yiuvnLGrU9xutyoqKrym2lr3GckGAAAAAAAAAAAdS7vtUJGkoUOHqqCgQOXl5XK5XMrNzVVpaan69OnTbNnVq1fr+PHjmjhx4hlZ94IFCxQeHu41vfLCojOSDQAAAAAAAAAAOhafDkp/osLDwyV9PVB9fn6+HnnkkWbLLF26VDfccIMiIyPPyDqzs7OVmZnpNW9LUeMZyQYAAAAAAAAA4GTZ7DZfV+G85tMOlcrKShUVFXke79u3TwUFBYqIiFBsbKxWrVqlyMhIxcbGaufOnZo5c6ZSU1OVlJTklVNUVKRNmzZp/fr1La6nqKhIlZWVOnTokKqrq1VQUCBJGjBggAICAlp8jtPplNPp9JoXEFB9Gq0FAAAAAAAAAAAdlU87VPLz8zVq1CjP46YrQtLS0rR8+XK5XC5lZmaqpKRE0dHRmjhxoubMmdMsZ9myZerZs2ezjpYmU6dO1f/93/95Hg8ePFjS1x04vXv3PoMtAgAAAAAAAAAA5yKfdqiMHDlSlmW1Wp6enq709PQ2c+bPn6/58+e3Wv7ee++dSvUAAAAAAAAAAAAkdZAxVAAAAAAAAAAAON/ZbHZfV+G8xtYHAAAAAAAAAABoAx0qAAAAAAAAAAAAbaBDBQAAAAAAAAAAoA2MoQIAAAAAAAAAQEdgt/m6Buc1OlROQoNlbmd1N/gby663zF2IVG8zuAs5zEVbBl9LyeylX43+gcayHWHh5rIDAsxlOw8Zy466ppux7EObjxjLjq89bixbBvdBSQpoqDaWHeJvLjvQYe6kFeb4ylh2gN3c6+lvqzOWHepn7pxyPNBpLFuSQv3M7YdBdnPHvp+93lh2l8YvjWX7NZrbD53+Ycay/RvdxrJ7dTFXb0myyTKWXeY0d87qElhjLNvpMLcfBjnM1bvBMvfe5rA1GMuutcx9t5LMfpdoNPjdzWYzd2yaPO5NbhNL5l5Lk++bAY4gY9mmOQzuh1WB5j4fhjnNfX4zetwbPDadfub2w3CD78l2W6OxbEnq7G/uu5vJc1a9ZfJfxGb/hwCcbdzyCwAAAAAAAAAAoA10qAAAAAAAAAAAALTBpx0qmzZt0rhx4xQTEyObzaa1a9d6lZeUlGjSpEmKiYlRcHCwkpOTVVhY6Cnfv3+/bDZbi9OqVaskSf/617902223qVevXgoKClL//v311FNPnc1mAgAAAAAAAACADs6nY6hUVVUpISFBd911l2688UavMsuylJqaKn9/f61bt05hYWF64oknlJiYqI8//lghISHq1auXXC6X1/Oef/55LVq0SCkpKZKkDz74QN27d9cf//hH9erVS++//77uvvtuORwOzZgx46y1FQAAAAAAAACA02Gzc9MpX/Jph0pKSoqn4+PbCgsLtWXLFu3atUsDBw6UJC1ZskRRUVFauXKlpk6dKofDoaioKK/nvfHGG5owYYJCQ0MlSXfddZdXeZ8+fZSXl6c1a9bQoQIAAAAAAAAAAE5Iu+3OcrvdkqTAwEDPPLvdLqfTqc2bN7f4nA8++EAFBQWaMmXKd2YfO3ZMERERZ66yAAAAAAAAAADgnNZuO1Ti4+MVGxur7OxslZWVqba2VgsXLtTBgweb3earydKlS9W/f38NGzas1dz3339fr776qu6++25TVQcAAAAAAAAAAOcYn97y67v4+/trzZo1mjJliiIiIuRwOJSYmKiUlBRZltVs+erqar3yyiuaM2dOq5m7du3S+PHjlZOTo6SkpO9cv9vt9lwl06S21lJAgPPUGgQAAAAAAAAAwGmw2W2+rsJ5rd1eoSJJQ4cOVUFBgcrLy+VyuZSbm6vS0lL16dOn2bKrV6/W8ePHNXHixBazPv74Y40ZM0Z33323HnzwwTbXvWDBAoWHh3tNK19YdNptAgAAAAAAAAAAHU+77lBpEh4ersjISBUWFio/P1/jx49vtszSpUt1ww03KDIyslnZRx99pFGjRiktLU2PPvroCa0zOztbx44d85pumzr7tNsCAAAAAAAAAAA6Hp/e8quyslJFRUWex/v27VNBQYEiIiIUGxurVatWKTIyUrGxsdq5c6dmzpyp1NTUZrfrKioq0qZNm7R+/fpm69i1a5dGjx6tsWPHKjMzU4cOHZIkORyOFjtfmjidTjmd3rf3CgioOZ3mAgAAAAAAAACADsqnHSr5+fkaNWqU53FmZqYkKS0tTcuXL5fL5VJmZqZKSkoUHR2tiRMntjhGyrJly9SzZ88Wx0VZvXq1vvzyS/3xj3/UH//4R8/8uLg47d+//8w3CgAAAAAAAAAAE2wd4qZT5yyfdqiMHDmyxQHmm6Snpys9Pb3NnPnz52v+/Pktls2dO1dz58491SoCAAAAAAAAAAB0jDFUAAAAAAAAAAAAfIkOFQAAAAAAAAAAgDb49JZfAAAAAAAAAADgxNjsNl9X4bzGFSoAAAAAAAAAAABt4AqVk/B2nmUs28/P31h2aGiQsexjx+qMZYeEdjKWXX28wVi2JFVV1hrLHnTptcayo2PN1dvf0Wgsu9OlbmPZ/a/PM5YdX3vcWPZ7I7KNZV9804XGsiUpetglxrI7BwQYy7aHhBjLri8rM5btCDb3HtFYU2Ms2++ifsay1WD2PUL15t47G8tKjWVfEBRsLFvB5o4fk69n5+BQY9lqNFfv8G7/MZYtSY7aamPZNZ26G8sOqCo3lu2oqTKWbTe4vdVo7vOb5XAYy24IDjeWLUmWw9zX6EaHuc8qlq1j/p6y0WHuu3KDwe3daDe3n9T5O81lOwKNZUtSg8wd++WOzsayo2yfG8uut5vbD+ts5vaVTv7mvs8G2Mz9b8Imc//bk6Sw2iPGshttBt87DZ6zpB4Gs4Gzr2N+ogIAAAAAAAAAADiLuEIFAAAAAAAAAICOwM41Er7k062/adMmjRs3TjExMbLZbFq7dq1XeUlJiSZNmqSYmBgFBwcrOTlZhYWFnvL9+/fLZrO1OK1atUqSVFpaquTkZMXExMjpdKpXr16aMWOGKioqzmZTAQAAAAAAAABAB+bTDpWqqiolJCRo8eLFzcosy1JqaqqKi4u1bt067dixQ3FxcUpMTFRV1df3IO7Vq5dcLpfXNG/ePIWGhiolJUWSZLfbNX78eP35z3/W3r17tXz5cv3973/XPffcc1bbCgAAAAAAAAAAOi6f3vIrJSXF0/HxbYWFhdqyZYt27dqlgQMHSpKWLFmiqKgorVy5UlOnTpXD4VBUVJTX89544w1NmDBBoaFfDxLapUsX3XvvvZ7yuLg4/fSnP9WiRYsMtQoAAAAAAAAAAJxr2u0N19xutyQpMDDQM89ut8vpdGrz5s0tPueDDz5QQUGBpkyZ0mruF198oTVr1mjEiBFntsIAAAAAAAAAAOCc1W47VOLj4xUbG6vs7GyVlZWptrZWCxcu1MGDB+VyuVp8ztKlS9W/f38NGzasWdltt92m4OBgXXDBBQoLC9MLL7xgugkAAAAAAAAAAJwxrY0p3tGnjqLddqj4+/trzZo12rt3ryIiIhQcHKyNGzcqJSVFdnvzaldXV+uVV15p9eqUJ598Uh9++KHWrVunTz/9VJmZmd+5frfbrYqKCq+pvs59RtoGAAAAAAAAAAA6lnbboSJJQ4cOVUFBgcrLy+VyuZSbm6vS0lL16dOn2bKrV6/W8ePHNXHixBazoqKiFB8frxtuuEHPPfeclixZ0uqVLpK0YMEChYeHe01bchl3BQAAAAAAAACA81G77lBpEh4ersjISBUWFio/P1/jx49vtszSpUt1ww03KDIyss28xsZGSf8dp6Ul2dnZOnbsmNd0ZfLsU28EAAAAAAAAAADosPx8ufLKykoVFRV5Hu/bt08FBQWKiIhQbGysVq1apcjISMXGxmrnzp2aOXOmUlNTlZSU5JVTVFSkTZs2af369c3WsX79epWUlOgHP/iBQkND9dFHH2n27Nm6+uqr1bt371br5nQ65XQ6veb5+VefXoMBAAAAAAAAADhVLQyHgbPHpx0q+fn5GjVqlOdx07gmaWlpWr58uVwulzIzM1VSUqLo6GhNnDhRc+bMaZazbNky9ezZs1lHiyQFBQXp97//vTIyMuR2u9WrVy/deOONysrKMtcwAAAAAAAAAABwTvFph8rIkSNlWVar5enp6UpPT28zZ/78+Zo/f36LZaNGjdL7779/ynUEAAAAAAAAAADg+iAAAAAAAAAAAIA2+PQKFQAAAAAAAAAAcGJsdpuvq3Be4woVAAAAAAAAAACANtChAgAAAAAAAAAA0AZu+XUSjh+vM5btcJjr2/LzM5ftdtcbyw4I6Jj1liR3jbn84zXGolVd6zCWXW9wP3Q6GoxlN9oNnib9A41FX3zThcayC1fvM5YtSQEhTmPZXeJ7G8v2M3jJbX1llbFsq87ce5vVaBnL1r4iY9F+PWONZUuS6s29R1i1teayHebOhw1fHjaW3Vhnbnv7hXUylm0ZrLejUxdj2ZJkd1cby/YP+MpYtuN4hbFse42587iqKs1lW43Gom0Oc587/QyeZyVJBuve6BdgLLvDshvc3v7mPneafN9sdJjbTyyT338kNRrcLvZgc+es8LKDxrIbDL6eDQa/c9YEmPscFFBv7rOErdHc/w8kKbDqiLFsk+8RjXZ/Y9nAuYYOFQAAAAAAAAAAOgIbN53yJbY+AAAAAAAAAABAG3zaobJp0yaNGzdOMTExstlsWrt2rVd5SUmJJk2apJiYGAUHBys5OVmFhYWe8v3798tms7U4rVq1qtn6SktL1bNnT9lsNpWXlxtuHQAAAAAAAAAAOFf4tEOlqqpKCQkJWrx4cbMyy7KUmpqq4uJirVu3Tjt27FBcXJwSExNVVfX1PYh79eoll8vlNc2bN0+hoaFKSUlpljllyhRdeumlxtsFAAAAAAAAAADOLT4dQyUlJaXFjg9JKiws1JYtW7Rr1y4NHDhQkrRkyRJFRUVp5cqVmjp1qhwOh6Kiorye98Ybb2jChAkKDQ31mr9kyRKVl5froYce0l//+lczDQIAAAAAAAAAAOekdjuGitvtliQFBgZ65tntdjmdTm3evLnF53zwwQcqKCjQlClTvOZ//PHHevjhh/WHP/xBdnu7bTIAAAAAAAAAAK2z287NqYNot70L8fHxio2NVXZ2tsrKylRbW6uFCxfq4MGDcrlcLT5n6dKl6t+/v4YNG+aZ53a7ddttt2nRokWKjY09W9UHAAAAAAAAAADnkHbboeLv7681a9Zo7969ioiIUHBwsDZu3KiUlJQWrzKprq7WK6+80uzqlOzsbPXv318/+clPTmr9brdbFRUVXlNDvfu02gQAAAAAAAAAADqmdtuhIklDhw5VQUGBysvL5XK5lJubq9LSUvXp06fZsqtXr9bx48c1ceJEr/nvvvuuVq1aJT8/P/n5+WnMmDGSpG7duiknJ6fVdS9YsEDh4eFeU/7fnzizDQQAAAAAAAAAAB2CTwelP1Hh4eGSvh6oPj8/X4888kizZZYuXaobbrhBkZGRXvNff/11VVdXex5v375dd911l/7xj3+ob9++ra4zOztbmZmZXvOynucKFQAAAAAAAACAb9hs7foaiXOeTztUKisrVVRU5Hm8b98+FRQUKCIiQrGxsVq1apUiIyMVGxurnTt3aubMmUpNTVVSUpJXTlFRkTZt2qT169c3W8e3O02OHDkiSerfv786d+7cat2cTqecTqfXPIdfxck2EQAAAAAAAAAAnAN82qGSn5+vUaNGeR43XRGSlpam5cuXy+VyKTMzUyUlJYqOjtbEiRM1Z86cZjnLli1Tz549m3W0AAAAAAAAAAAAnAk+7VAZOXKkLMtqtTw9PV3p6elt5syfP1/z588/I+sEAAAAAAAAAAD4tg4xhgoAAAAAAAAAAOc9u83XNTivMYINAAAAAAAAAABAG+hQAQAAAAAAAAAAaAMdKgAAAAAAAAAAAG1gDBUAAAAAAAAAADoAm51rJHyJDpWTUPKfo8ayAwIDjGXbbGHGsisr3May62objGVXV9Uay5akY0e+MpZdcaG51zPI6TCW7W/wbON0mNtXjob3NpYd0FBtLDt62CXGsgNCnMayJemjFbuNZff64TFj2V16dzWWXba/1Fi2s5O517NTTISxbEeAuZOK32Fz21uSbAYHEDxeUmYs2+Q2P/6luWOzU69IY9l1+z43lt3grjOWHdkp1Fi2JDWUm3s9A7p1M5atwCBz2VWVxqIbKs197lSjZSza5mfuc6fdXWMs++sVGKy7v7+xbJOvp9HBcW3m/mlk9zf3PVx+Bl9Lq9Fctsl6S7Js5vYVqzv/YETbbDJ4LpRkGXyPsGzmsk2ea4FzDUcLAAAAAAAAAABAG+hQAQAAAAAAAAAAaINPO1Q2bdqkcePGKSYmRjabTWvXrvUqLykp0aRJkxQTE6Pg4GAlJyersLDQU75//37ZbLYWp1WrVnmWa6n8T3/609lqJgAAAAAAAAAA6OB82qFSVVWlhIQELV68uFmZZVlKTU1VcXGx1q1bpx07diguLk6JiYmqqqqSJPXq1Usul8trmjdvnkJDQ5WSkuKV9+KLL3otl5qaejaaCAAAAAAAAADAmWGznZtTB+HTQelTUlKadXw0KSws1JYtW7Rr1y4NHDhQkrRkyRJFRUVp5cqVmjp1qhwOh6Kiorye98Ybb2jChAkKDfUebLNz587NlgUAAAAAAAAAADgR7XYMFbfbLUkKDAz0zLPb7XI6ndq8eXOLz/nggw9UUFCgKVOmNCu777771K1bN11++eVatmyZLMsyU3EAAAAAAAAAAHDOabcdKvHx8YqNjVV2drbKyspUW1urhQsX6uDBg3K5XC0+Z+nSperfv7+GDRvmNf/hhx/Wa6+9pg0bNujHP/6xfvrTn+rpp58+G80AAAAAAAAAAADnAJ/e8uu7+Pv7a82aNZoyZYoiIiLkcDiUmJiolJSUFq8uqa6u1iuvvKI5c+Y0K/vmvMGDB6uqqkqLFi1Senp6q+t3u92eq2SaNNS75fBznkarAAAAAAAAAAA4RfZ2e43EeaFdb/2hQ4eqoKBA5eXlcrlcys3NVWlpqfr06dNs2dWrV+v48eOaOHFim7lXXHGFDh482KzD5JsWLFig8PBwr2n3tiWn1R4AAAAAAAAAANAxtesOlSbh4eGKjIxUYWGh8vPzNX78+GbLLF26VDfccIMiIyPbzCsoKFCXLl3kdLZ+tUl2draOHTvmNcVffu9ptQMAAAAAAAAAAHRMPr3lV2VlpYqKijyP9+3bp4KCAkVERCg2NlarVq1SZGSkYmNjtXPnTs2cOVOpqalKSkryyikqKtKmTZu0fv36Zuv4y1/+opKSEl155ZUKDAzUhg0bNH/+fN1///3fWTen09msw8Xhd/Q0WgsAAAAAAAAAADoqn3ao5Ofna9SoUZ7HmZmZkqS0tDQtX75cLpdLmZmZKikpUXR0tCZOnNjiGCnLli1Tz549m3W0SF+PxbJ48WJlZGTIsixddNFFeuKJJzRt2jRzDQMAAAAAAAAA4Eyz2Xxdg/OaTztURo4c2eIA803S09O/c+D4JvPnz9f8+fNbLEtOTlZycvIp1xEAAAAAAAAAAKBDjKECAAAAAAAAAADQZPHixerdu7cCAwN1xRVXaNu2bd+5/G9+8xv169dPQUFB6tWrlzIyMlRTU3NS66RDBQAAAAAAAAAAdBivvvqqMjMzlZOTow8//FAJCQkaO3asDh8+3OLyr7zyirKyspSTk6NPPvlES5cu1auvvqpf/OIXJ7Ven97yCwAAAAAAAAAAnBibnWskJHnGSZ88ebIk6dlnn9Vbb72lZcuWKSsrq9ny77//vq6++mrdfvvtkqTevXvrtttu09atW09qvWx9AAAAAAAAAADgM263WxUVFV6T2+1ucdna2lp98MEHSkxM9Myz2+1KTExUXl5ei88ZNmyYPvjgA89twYqLi7V+/Xpde+21J1VPrlA5CUe/OGIsu1PXcGPZAQHmXuby0gpj2bXVtcay/Z3+xrIl6cvPvjCWfahPpLFsKdhYclCguf5bhz3AWHaQf7Sx7BD/amPZnQPMbZMu8b2NZUtSrx8eM5b9nw0uY9kht4UYyz5eetxYtkn2w+Zey6Au5rZ3+f6WLw8+U0zWvbqsymC2uf2wS++uxrJtNpuxbL9Ac+daq6HRXPZJ3iP4ZDUazG8oKzOWbQ82WO8qc8dmQ6W5Y9NmN3f82PwNfh73M/s112TdbY0NxrJld5jLtgz+VtNgtWVye8vgPl5p7nu4/Mx+V7Y5zL2gjXZzx77Dbe48bvOrM5dtmfs8EWgsWfKrNffeZm+sN5YtSbVBnY1lN9rMHT+WwWzgRC1YsEDz5s3zmpeTk6O5c+c2W/bIkSNqaGhQjx49vOb36NFDu3fvbjH/9ttv15EjR3TNNdfIsizV19frnnvuOelbfnGFCgAAAAAAAAAA8Jns7GwdO3bMa8rOzj5j+e+9957mz5+vZ555Rh9++KHWrFmjt956S4888shJ5XCFCgAAAAAAAAAAHYHt3LxGwul0yul0ntCy3bp1k8PhUElJidf8kpISRUVFtficOXPm6P9j7//jojoPvP//fWYYBgYEBccAm4zGkkRrE6q4MbHdz2JDCOMuStIt7Xdb0Xw1td2k8JXtNrKR2uTeRt3YZj9NvEnb20Tbu/EH1WCSWltT7G38lRYLvTHb6uCPupoRowiGQWeAme8f2Uwz9QeaeDlAXs/H4/wx51zzPtd15sw5Z7g455o1a5bmzZsnSbr99tsVCAT05S9/WY899phsVzg2TVy3/vbt21VSUqKcnBxZlqX6+vqY5W1tbZozZ45ycnLkcrlUXFwsn88XXX7kyBFZlnXRqa6uLiZr1apVuuOOO5SUlKRRo0bp4Ycfvh5NBAAAAAAAAAAA10hiYqLy8/P1q1/9KjovHA7rV7/6le6+++6Lvqe7u/uCThP7fz+KMhKJXPG649qhEggElJeXpxUrVlywLBKJqLS0VIcOHdKmTZvU1NSk0aNHq7CwUIH/fgbxTTfdJL/fHzM9/vjjSk1NldfrjWZ997vf1WOPPaaFCxfqzTff1Guvvab77rvvurUTAAAAAAAAAABcG1VVVfrhD3+o1atX6w9/+IO++tWvKhAI6MEHH5QklZeXxzwyrKSkRLW1tVq7dq0OHz6srVu3qqamRiUlJdGOlSsR10d+eb3emI6P9/P5fNqzZ4/27dunCRMmSJJqa2uVlZWlNWvWaN68ebLb7RfcwvPSSy+prKxMqampkqQzZ85o0aJFeuWVV3TPPfdEy91xxx2GWgUAAAAAAAAAAEz5/Oc/r7ffflvf/OY3deLECX3yk5/Uli1bogPVHz16NOaOlEWLFsmyLC1atEjHjx+X2+1WSUmJvv3tb1/VegfsGCrBYFCSlJSUFJ1ns9nkdDq1Y8eO6LPO3m/v3r1qbm6OueNl69atCofDOn78uMaPH6933nlHU6dO1Xe+8x3ddNNN5hsCAAAAAAAAAACuqUceeUSPPPLIRZf9+te/jnmdkJCgxYsXa/HixR9qnQN2BJtx48bJ4/GourpaZ86cUSgU0rJly3Ts2DH5/f6LvmflypUaP368pk6dGp136NAhhcNhPfnkk/qP//gP/fSnP1V7e7vuvfdehUKh69UcAAAAAAAAAAA+HJs1NKdBYsB2qDgcDm3cuFEHDhxQRkaGXC6Xtm3bJq/Xe8HgMZJ07tw5vfjii5o7d27M/HA4rJ6eHn3ve9/Tfffdp7vuuktr1qyRz+fTtm3bLrn+YDCos2fPxkzhPjpgAAAAAAAAAAD4KBqwHSqSlJ+fr+bmZnV0dMjv92vLli06ffq0xo4de0HZn/70p+ru7lZ5eXnM/OzsbEnSxz/+8eg8t9utkSNH6ujRo5dc95IlS5Senh4zHfnPVdemYQAAAAAAAAAAYFAZ0B0q70lPT5fb7ZbP51NjY6Nmzpx5QZmVK1dqxowZcrvdMfM/9alPSZL2798fndfe3q5Tp05p9OjRl1xndXW1Ojs7Y6YxH59zbRoEAAAAAAAAAAAGlbgOSt/V1aXW1tbo68OHD6u5uVkZGRnyeDyqq6uT2+2Wx+NRS0uLKisrVVpaqqKiopic1tZWbd++XZs3b75gHbfeeqtmzpypyspK/eAHP1BaWpqqq6s1btw4TZs27ZJ1czqdcjqdMfNs9sQP2WIAAAAAAAAAAD4YyxoU90gMWXHtUGlsbIzp1KiqqpIkzZ49W6tWrZLf71dVVZXa2tqUnZ2t8vJy1dTUXJDz/PPP68Ybb7ygo+U9P/rRj7RgwQL93d/9nWw2m/72b/9WW7ZskcPhMNMwAAAAAAAAAAAwpMS1Q6WgoECRSOSSyysqKlRRUdFvzpNPPqknn3zyksvT0tK0cuVKrVy58gPVEwAAAAAAAAAAfLRxfxAAAAAAAAAAAEA/4nqHCgAAAAAAAAAAuEI2K941+EjjDhUAAAAAAAAAAIB+0KECAAAAAAAAAADQDx75dRUikbCx7FP/dcJYduh80Fh2T7DHWLZrWIqx7NPH24xlS5Ld4TCWHQr1Gcvu6uo1lt3TYzeWHQyZ6xselWbuMJlkN7dNbCnmvj8Jhm8tHTEm01h2yv/H3Hb545pWY9kj8tKMZfvfeNtY9g35Gcayh998g7Hszv86bSxbks4cOWUs25Zg7rgyLMvcfhjuNXeNFYlEjGWfPvCWsewU9zBj2T3tHcayJcnuSjaWbfJ6PNJn7hpLYXP7odF6y9wxRSbr3WvumlYye1xRgrnfEbKZ3FfMsRyJ5sINfjcVCpnLTjV3Tja6D0qK2MwdV5znO41l9yUaPLfZzW3zPkeSseywzdxv5YjBbHNXEu9KPNdhLNvkvhK2DJ7zgSGGDhUAAAAAAAAAAAYDi4dOxRNbHwAAAAAAAAAAoB90qAAAAAAAAAAAAPQjrh0q27dvV0lJiXJycmRZlurr62OWt7W1ac6cOcrJyZHL5VJxcbF8Pl90+ZEjR2RZ1kWnuro6SdKqVasuWebkyZPXs7kAAAAAAAAAAGCQimuHSiAQUF5enlasWHHBskgkotLSUh06dEibNm1SU1OTRo8ercLCQgUCAUnSTTfdJL/fHzM9/vjjSk1NldfrlSR9/vOfv6DMfffdp7/927/VqFGjrmt7AQAAAAAAAADA4BTXQem9Xm+04+Mv+Xw+7dmzR/v27dOECRMkSbW1tcrKytKaNWs0b9482e12ZWVlxbzvpZdeUllZmVJTUyVJycnJSk5Oji5/++231dDQoJUrVxpqFQAAAAAAAAAABlhWvGvwkTZgx1AJBoOSpKSkpOg8m80mp9OpHTt2XPQ9e/fuVXNzs+bOnXvJ3B/96EdyuVz6h3/4h2tbYQAAAAAAAAAAMGQN2A6VcePGyePxqLq6WmfOnFEoFNKyZct07Ngx+f3+i75n5cqVGj9+vKZOnXrJ3JUrV+of//EfY+5aAQAAAAAAAAAAuJwB26HicDi0ceNGHThwQBkZGXK5XNq2bZu8Xq9stgurfe7cOb344ouXvTtl9+7d+sMf/nDZMu8JBoM6e/ZszBTuC32oNgEAAAAAAAAAgMFpwHaoSFJ+fr6am5vV0dEhv9+vLVu26PTp0xo7duwFZX/605+qu7tb5eXll8z7X//rf+mTn/yk8vPz+133kiVLlJ6eHjMd+cPqD9UeAAAAAAAAAAA+MJttaE6DxKCoaXp6utxut3w+nxobGzVz5swLyqxcuVIzZsyQ2+2+aEZXV5fWr19/RXenSFJ1dbU6OztjpjHjZ3+odgAAAAAAAAAAgMEpIZ4r7+rqUmtra/T14cOH1dzcrIyMDHk8HtXV1cntdsvj8ailpUWVlZUqLS1VUVFRTE5ra6u2b9+uzZs3X3Jd69atU29vr770pS9dUd2cTqecTmfMPJs98SpaBwAAAAAAAAAAhoq4dqg0NjZq2rRp0ddVVVWSpNmzZ2vVqlXy+/2qqqpSW1ubsrOzVV5erpqamgtynn/+ed14440XdLS838qVK/XAAw9o+PDh17wdAAAAAAAAAABgaItrh0pBQYEikcgll1dUVKiioqLfnCeffFJPPvnkZcvs2rXrqusHAAAAAAAAAMCAYQ2KUTyGLLY+AAAAAAAAAABAP+hQAQAAAAAAAAAA6AcdKgAAAAAAAAAAAP2I6xgqAAAAAAAAAADgCtmseNfgI40OlauQmJRkLDvBmWgsOyU91Vh2sDtoLDs51dz2TkpNMZYtSZFw2Fi2K8VhLDs11dwhITnJ3A1xSU5zJ5IRSQFj2Wn2d4xl9545Yy67y9w2kaQzR04by+4+3W0se0RemrHsM78/ayzbNcbcsbarzdy+cu5Up7HshCRzx1nTOo+bO670hXqNZVsGfxDYEgyef9KTjWV3nzb3/RkeMXedIknn3mozlu3MSDeWbVJf9zlz2efOG8u2Euzmsu3msm0Osz9zrQSD5wmDvyNkM/iACsvccdwyOfBuJGIu2+A2UW+PuWzDLJvBfdzg+c3WY+5YGwn3Gcu2y9x+GDH43bSFze3jVp/Z74/9XJfBcHPnzrB98P4GAq43HvkFAAAAAAAAAADQDzpUAAAAAAAAAAAA+hHXDpXt27erpKREOTk5sixL9fX1Mcvb2to0Z84c5eTkyOVyqbi4WD6fL7r8yJEjsizrolNdXV203G9/+1vdc889Gj58uEaMGKH77rtPv//9769XMwEAAAAAAAAAwCAX1w6VQCCgvLw8rVix4oJlkUhEpaWlOnTokDZt2qSmpiaNHj1ahYWFCgTefab0TTfdJL/fHzM9/vjjSk1NldfrlSR1dXWpuLhYHo9Hb7zxhnbs2KFhw4bpvvvuU0/P4H3uKAAAAAAAAADgI8ayDc1pkIjroPRerzfa8fGXfD6f9uzZo3379mnChAmSpNraWmVlZWnNmjWaN2+e7Ha7srKyYt730ksvqaysTKmp7w7E/sc//lHt7e164okndNNNN0mSFi9erDvuuEN/+tOflJuba7CFAAAAAAAAAABgKBiwXT/BYFCSlJSUFJ1ns9nkdDq1Y8eOi75n7969am5u1ty5c6PzbrvtNmVmZmrlypUKhUI6d+6cVq5cqfHjx2vMmDFG2wAAAAAAAAAAAIaGAduhMm7cOHk8HlVXV+vMmTMKhUJatmyZjh07Jr/ff9H3vNdRMnXq1Oi8YcOG6de//rX+9//+30pOTlZqaqq2bNmin//850pIiOsNOgAAAAAAAAAAYJAYsB0qDodDGzdu1IEDB5SRkSGXy6Vt27bJ6/XKZruw2ufOndOLL74Yc3fKe/Pnzp2rT33qU9qzZ4927typT3ziE/q7v/s7nTt37pLrDwaDOnv2bMwU7gtd83YCAAAAAAAAAHBFLGtoToPEgO1QkaT8/Hw1Nzero6NDfr9fW7Zs0enTpzV27NgLyv70pz9Vd3e3ysvLY+a/+OKLOnLkiF544QX99V//te666y69+OKLOnz4sDZt2nTJdS9ZskTp6ekx08GWlde8jQAAAAAAAAAAYOAb0B0q70lPT5fb7ZbP51NjY6Nmzpx5QZmVK1dqxowZcrvdMfO7u7tls9lkva+X673X4XD4kuusrq5WZ2dnzPSx2+desjwAAAAAAAAAABi64jqISFdXl1pbW6OvDx8+rObmZmVkZMjj8aiurk5ut1sej0ctLS2qrKxUaWmpioqKYnJaW1u1fft2bd68+YJ13HvvvfqXf/kXPfzww/ra176mcDispUuXKiEhQdOmTbtk3ZxOp5xOZ8w8mz3xQ7YYAAAAAAAAAAAMRnHtUGlsbIzp1KiqqpIkzZ49W6tWrZLf71dVVZXa2tqUnZ2t8vJy1dTUXJDz/PPP68Ybb7ygo0V6d3D7V155RY8//rjuvvtu2Ww2TZw4UVu2bFF2dra5xgEAAAAAAAAAcC1dZHxxXD9x7VApKChQJBK55PKKigpVVFT0m/Pkk0/qySefvOTye++9V/fee+8HqiMAAAAAAAAAAADdWQAAAAAAAAAAAP2gQwUAAAAAAAAAAKAfcX3kFwAAAAAAAAAAuEKWFe8afKRxhwoAAAAAAAAAAEA/uEPlKvT29BjLDvf1GcvuCZqrd1+vuXr39YWNZYcN1tu0vr6Isexek9m95rLPG0uWzvcmGstOtCUZy7a7ko1lRwweCyXJOcxpNN8U/xtvG8t2jTG3r3QfMfcNumFqhrHshGRz+8n5I6eMZUtSqCtkLDsxxdylnXOYuf3QJLvT3HG842i7sezkES5j2T3vdBvLlqSEZHP7iuVwmMu2281lJwzSbIPbxGaw3rLM/t+gyW0um8G6G/xvVstkvW0G/wvX5H/4Gv0sTW5vg/u3ZHa7mGRwm0cMbvOIzdy1YUTmvj8msy3D5wiTxxWT+wp3PABXbpCeyQAAAAAAAAAAAK4f7lABAAAAAAAAAGAwMH2nFS4rrlt/+/btKikpUU5OjizLUn19fczytrY2zZkzRzk5OXK5XCouLpbP54suP3LkiCzLuuhUV1cXLferX/1KU6dO1bBhw5SVlaVHH31Uvb2916uZAAAAAAAAAABgkItrh0ogEFBeXp5WrFhxwbJIJKLS0lIdOnRImzZtUlNTk0aPHq3CwkIFAgFJ0k033SS/3x8zPf7440pNTZXX65Uk/f73v9f06dNVXFyspqYmrVu3Ti+//LIWLlx4XdsKAAAAAAAAAAAGr7g+8svr9UY7Pv6Sz+fTnj17tG/fPk2YMEGSVFtbq6ysLK1Zs0bz5s2T3W5XVlZWzPteeukllZWVKTU1VZK0bt063XHHHfrmN78pScrNzdW///u/q6ysTIsXL9awYcMMthAAAAAAAAAAAAwFA/aBa8FgUJKUlJQUnWez2eR0OrVjx46Lvmfv3r1qbm7W3LlzY3LenyFJycnJOn/+vPbu3Wug5gAAAAAAAAAAYKgZsB0q48aNk8fjUXV1tc6cOaNQKKRly5bp2LFj8vv9F33PypUrNX78eE2dOjU677777tOuXbu0Zs0a9fX16fjx43riiSck6ZI5AAAAAAAAAAAMODbb0JwGiQFbU4fDoY0bN+rAgQPKyMiQy+XStm3b5PV6ZbvIBj537pxefPHFmLtTJKmoqEhPPfWUvvKVr8jpdOrWW2/V9OnTJemiOe8JBoM6e/ZszBTuC13bRgIAAAAAAAAAgEFhwHaoSFJ+fr6am5vV0dEhv9+vLVu26PTp0xo7duwFZX/605+qu7tb5eXlFyyrqqpSR0eHjh49qlOnTmnmzJmSdNGc9yxZskTp6ekx0+E3X7h2jQMAAAAAAAAAAIPGgO5QeU96errcbrd8Pp8aGxujHSLvt3LlSs2YMUNut/uiGZZlKScnR8nJyVqzZo1uuukmTZo06ZLrrK6uVmdnZ8x084QHr1mbAAAAAAAAAADA4JEQz5V3dXWptbU1+vrw4cNqbm5WRkaGPB6P6urq5Ha75fF41NLSosrKSpWWlqqoqCgmp7W1Vdu3b9fmzZsvup6nnnpKxcXFstls2rhxo5YuXar169fLbrdfsm5Op1NOpzNmns2e+CFaCwAAAAAAAADAh2BZ8a7BR1pcO1QaGxs1bdq06OuqqipJ0uzZs7Vq1Sr5/X5VVVWpra1N2dnZKi8vV01NzQU5zz//vG688cYLOlre8/Of/1zf/va3FQwGlZeXp02bNsnr9ZppFAAAAAAAAAAAGHLi2qFSUFCgSCRyyeUVFRWqqKjoN+fJJ5/Uk08+ecnlDQ0NH6h+AAAAAAAAAAAA0iAZQwUAAAAAAAAAACCe4nqHCgAAAAAAAAAAuEIW90jEE1sfAAAAAAAAAACgH3SoAAAAAAAAAAAA9INHfl0FpyvZWHbofNBYdrgvbCy7JxQylt3bk2gsOxIxt00kyTJ4693Z9m5j2U6n3Vh2b4+5w01Pj7nP07olYizbYfUYyw6fP28sOxI2t00kaVhOhrFs28lOY9k35Jurd1dbwFj2DVPN1bttV7ux7NRRw4xlp984wli2JAXfMff97DjaYSw7EjZ3rLUnmjtH2BLMndtGjBlpLPt8p7nzfWJGurFsSeo7Z24fl8H90CTLbm4/NJlt8vtj8lEVlsPwz1yTn2eCw1i2bJaxaJP7oRxOc9kJg/NPIpHkFHPZCeZ+h7+bb24f73Gauz5M7Ggzlm0Z3OZWUp+xbFufub9j2YPmfv9Yvb3GsiXJ1mPwt3ivub/BRewGzz/AEDM4rx4AAAAAAAAAAPioscz9kwT6xyO/AAAAAAAAAAAA+kGHCgAAAAAAAAAAQD/i2qGyfft2lZSUKCcnR5Zlqb6+PmZ5W1ub5syZo5ycHLlcLhUXF8vn88WUOXHihGbNmqWsrCylpKRo0qRJ2rBhQ0yZ9vZ2ffGLX1RaWpqGDx+uuXPnqqury3TzAAAAAAAAAADAEBHXDpVAIKC8vDytWLHigmWRSESlpaU6dOiQNm3apKamJo0ePVqFhYUKBP48OFV5ebn279+vl19+WS0tLXrggQdUVlampqamaJkvfvGLevPNN7V161a9+uqr2r59u7785S9flzYCAAAAAAAAAIDBL66D0nu9Xnm93osu8/l82rNnj/bt26cJEyZIkmpra5WVlaU1a9Zo3rx5kqRdu3aptrZWd955pyRp0aJFevrpp7V3715NnDhRf/jDH7Rlyxb99re/1eTJkyVJzzzzjKZPn67ly5crJyfnOrQUAAAAAAAAAIAPycYoHvE0YLd+MBiUJCUlJUXn2Ww2OZ1O7dixIzpv6tSpWrdundrb2xUOh7V27VqdP39eBQUFkqTdu3dr+PDh0c4USSosLJTNZtMbb7xxfRoDAAAAAAAAAAAGtQHboTJu3Dh5PB5VV1frzJkzCoVCWrZsmY4dOya/3x8tt379evX09CgzM1NOp1Pz58/XSy+9pNzcXEnvjrEyatSomOyEhARlZGToxIkT17VNAAAAAAAAAABgcBqwHSoOh0MbN27UgQMHlJGRIZfLpW3btsnr9cr2vtuaampq1NHRoddee02NjY2qqqpSWVmZWlpaPtT6g8Ggzp49GzP19YU+bLMAAAAAAAAAAMAgFNcxVPqTn5+v5uZmdXZ2KhQKye12a8qUKdHHdx08eFDPPvtszDgreXl5ev3117VixQo999xzysrK0smTJ2Nye3t71d7erqysrEuue8mSJXr88cdj5t0y8Z90a/7D17iVAAAAAAAAAAD0L2JZ8a7CR9qAvUPl/dLT0+V2u+Xz+dTY2KiZM2dKkrq7uyUp5o4VSbLb7QqHw5Kku+++Wx0dHdq7d290eUNDg8LhsKZMmXLJdVZXV6uzszNm+tgnH7rWTQMAAAAAAAAAAINAXO9Q6erqUmtra/T14cOH1dzcrIyMDHk8HtXV1cntdsvj8ailpUWVlZUqLS1VUVGRpHfHWcnNzdX8+fO1fPlyZWZmqr6+Xlu3btWrr74qSRo/fryKi4v10EMP6bnnnlNPT48eeeQRfeELX1BOTs4l6+Z0OuV0OmPm2e2JBrYCAAAAAAAAAAAY6OLaodLY2Khp06ZFX1dVVUmSZs+erVWrVsnv96uqqkptbW3Kzs5WeXm5ampqouUdDoc2b96shQsXqqSkRF1dXcrNzdXq1as1ffr0aLmf/OQneuSRR3TPPffIZrPps5/9rL73ve9dv4YCAAAAAAAAAIBBLa4dKgUFBYpEIpdcXlFRoYqKistm3HLLLdqwYcNly2RkZOjFF1/8QHUEAAAAAAAAAGBAsAbFKB5DFlsfAAAAAAAAAACgH3SoAAAAAAAAAAAA9IMOFQAAAAAAAAAAgH7EdQwVAAAAAAAAAABwhRhDJa7oULkKicmJxrJdaS5j2b09vcayk1zJxrK7zrxjLNuVPsxYtiSdeeuksexQyNznaVmWsWy73Vy202nuUHY2aK7eqQnmjikJubcZy9bhVnPZkuyJ5j7P5BEpxrKH33yDsexzpzqNZSckO41lp44yd6w9WP8nY9ljZ3iMZUuSK9PcfpiWEzaWHXznvLFsRzhiLLv3XNBYdri3z1h27/keY9m2RHPnH0lS2Nx+aJJlt5vLdpg7tzlGpBvLtjkcxrJlcHubZiWY2y6Wye+nwWt92QbpH3ZM1jsxyVi0dS5gLjshZCxbktHvfpd7vLHslECTsWybwW1iO29uXwm70oxl20LnjGWrz9z1myT1DB9lLDti8G8IYcvcfmjuL55AfAzSqx4AAAAAAAAAAIDrhw4VAAAAAAAAAACAfsS1Q2X79u0qKSlRTk6OLMtSfX19zPK2tjbNmTNHOTk5crlcKi4uls/niylz4sQJzZo1S1lZWUpJSdGkSZO0YcOGmDLf/va3NXXqVLlcLg0fPtxwqwAAAAAAAAAAuPYiljUkp8Eirh0qgUBAeXl5WrFixQXLIpGISktLdejQIW3atElNTU0aPXq0CgsLFQj8+RmQ5eXl2r9/v15++WW1tLTogQceUFlZmZqa/vx8y1AopM997nP66le/el3aBQAAAAAAAAAAhpa4Dkrv9Xrl9Xovuszn82nPnj3at2+fJkyYIEmqra1VVlaW1qxZo3nz5kmSdu3apdraWt15552SpEWLFunpp5/W3r17NXHiREnS448/LklatWqV4RYBAAAAAAAAAIChaMCOoRIMBiVJSUlJ0Xk2m01Op1M7duyIzps6darWrVun9vZ2hcNhrV27VufPn1dBQcH1rjIAAAAAAAAAABiiBmyHyrhx4+TxeFRdXa0zZ84oFApp2bJlOnbsmPx+f7Tc+vXr1dPTo8zMTDmdTs2fP18vvfSScnNz41h7AAAAAAAAAAAwlMT1kV+X43A4tHHjRs2dO1cZGRmy2+0qLCyU1+tVJBKJlqupqVFHR4dee+01jRw5UvX19SorK9Prr7+u22+//QOvPxgMRu+SeU9fX1B2u/MDZwIAAAAAAAAA8IFZA/YeiY+EAb318/Pz1dzcrI6ODvn9fm3ZskWnT5/W2LFjJUkHDx7Us88+q+eff1733HOP8vLytHjxYk2ePPmiA91fjSVLlig9PT1mOtD4/WvRLAAAAAAAAAAAMMgM6A6V96Snp8vtdsvn86mxsVEzZ86UJHV3d0t6d2yV97Pb7QqHwx9qndXV1ers7IyZbp08/0NlAgAAAAAAAACAwSmuj/zq6upSa2tr9PXhw4fV3NysjIwMeTwe1dXVye12y+PxqKWlRZWVlSotLVVRUZGkd8dZyc3N1fz587V8+XJlZmaqvr5eW7du1auvvhrNPXr0qNrb23X06FH19fWpublZkpSbm6vU1NSL1s3pdMrpjH28F4/7AgAAAAAAAADgoymuHSqNjY2aNm1a9HVVVZUkafbs2Vq1apX8fr+qqqrU1tam7OxslZeXq6amJlre4XBo8+bNWrhwoUpKStTV1aXc3FytXr1a06dPj5b75je/qdWrV0dfT5w4UZK0bds2FRQUGG4lAAAAAAAAAADXgGXFuwYfaXHtUCkoKIgZYP4vVVRUqKKi4rIZt9xyizZs2HDZMqtWrdKqVas+SBUBAAAAAAAAAAAGxxgqAAAAAAAAAAAA8USHCgAAAAAAAAAAQD/i+sgvAAAAAAAAAABwhWzcIxFPbH0AAAAAAAAAAIB+cIfKVXjndKex7PSRI4xlR8IRY9mJSYnGsnuCIWPZJreJaSnDkoxlu1zmDgkpKXZj2UlOy1j2OXO7obqTnObC+/qMRSfc6DGWLUkJJ08by+44ctJYdud/mat3QpLDWPb5I6eMZaffaO7cNnaGuf3w0MtHjWVL0rDbXMayU9zmsgNvdxvLvmHCKGPZCcnmjrVnj5n73qe4hxnL7jp8zFi2JCWmpxjLtuzmricsh7ljbfj8eWPZJusdscz9/51lmbt+C4cMXsBJspm7HDfK5PdHNnOfp2wG691nMLu3x1y2yf9MNrmfGGaLmPsNFM7MMpYdMbiPh+3mzhF9iebO9/ZQwFi2FQkby5akkMvcb6CwZW5fiRjMBoYa7lABAAAAAAAAAADoB3eoAAAAAAAAAAAwCEQM3umL/sX1DpXt27erpKREOTk5sixL9fX1Mcvb2to0Z84c5eTkyOVyqbi4WD6fL6bMiRMnNGvWLGVlZSklJUWTJk3Shg0bosuPHDmiuXPn6uabb1ZycrI+9rGPafHixQoZvg0cAAAAAAAAAAAMHXHtUAkEAsrLy9OKFSsuWBaJRFRaWqpDhw5p06ZNampq0ujRo1VYWKhA4M/PUiwvL9f+/fv18ssvq6WlRQ888IDKysrU1NQkSfrjH/+ocDis73//+3rzzTf19NNP67nnntO//uu/Xrd2AgAAAAAAAACAwS2uj/zyer3yer0XXebz+bRnzx7t27dPEyZMkCTV1tYqKytLa9as0bx58yRJu3btUm1tre68805J0qJFi/T0009r7969mjhxooqLi1VcXBzNHTt2rPbv36/a2lotX77ccAsBAAAAAAAAAMBQMGAHpQ8Gg5KkpKSk6DybzSan06kdO3ZE502dOlXr1q1Te3u7wuGw1q5dq/Pnz6ugoOCS2Z2dncrIyDBWdwAAAAAAAAAAMLQM2A6VcePGyePxqLq6WmfOnFEoFNKyZct07Ngx+f3+aLn169erp6dHmZmZcjqdmj9/vl566SXl5uZeNLe1tVXPPPOM5s+ff72aAgAAAAAAAADAh2fZhuY0SAzYmjocDm3cuFEHDhxQRkaGXC6Xtm3bJq/XK5vtz9WuqalRR0eHXnvtNTU2NqqqqkplZWVqaWm5IPP48eMqLi7W5z73OT300EOXXX8wGNTZs2djpnAfA9kDAAAAAAAAAPBRNGA7VCQpPz9fzc3N6ujokN/v15YtW3T69GmNHTtWknTw4EE9++yzev7553XPPfcoLy9Pixcv1uTJky8Y6P6tt97StGnTNHXqVP3gBz/od91LlixRenp6zHT4zReMtBMAAAAAAAAAAAxsA7pD5T3p6elyu93y+XxqbGzUzJkzJUnd3d2SFHPHiiTZ7XaFw+Ho6+PHj6ugoED5+fl64YUXLih/MdXV1ers7IyZbp7w4DVsFQAAAAAAAAAAGCwS4rnyrq4utba2Rl8fPnxYzc3NysjIkMfjUV1dndxutzwej1paWlRZWanS0lIVFRVJenecldzcXM2fP1/Lly9XZmam6uvrtXXrVr366quS/tyZMnr0aC1fvlxvv/12dH1ZWVmXrJvT6ZTT6YyZZ7MnXsvmAwAAAAAAAABwxSKDaLyRoSiuHSqNjY2aNm1a9HVVVZUkafbs2Vq1apX8fr+qqqrU1tam7OxslZeXq6amJlre4XBo8+bNWrhwoUpKStTV1aXc3FytXr1a06dPlyRt3bpVra2tam1t1Y033hiz/kgkch1aCQAAAAAAAAAABru4dqgUFBRctlOjoqJCFRUVl8245ZZbtGHDhksunzNnjubMmfNBqwgAAAAAAAAAADA4xlABAAAAAAAAAACIp7jeoQIAAAAAAAAAAK6QZcW7Bh9p3KECAAAAAAAAAADQDzpUAAAAAAAAAAAA+sEjv67CsMx0Y9mWzdytWr3ne41lp2UMM5idaiz7xJ/ajGVLUtbYm4xljxyVYiw7Pc1uLDvJaW4f73wnbCx7xE0hY9mpCeeMZau3x2C2uWOKZPZ4mDzC3PfnzJFTxrJNCnWZ28eD75w3lu3KNPdZDrvNZSxbkt7Z320sO9IXMZbtykwylh04FTCWbfKYEgqY+/7YE81dpttMnn8k2QzW3e4wl93XbW679BrMTnAlG8s2+f2J9PUZyzb5WUpSpMfctZBlN3c9bjJbBvcVo9sk0Wks2+Q2UbbHWHQkIdFYtmmuYIex7D6nuWvPiM3cPt5nN/d59jjMbROTe6EVNvt7NvFch7Fsk/tKxDJ4jgCGGDpUAAAAAAAAAAAYBCIWD52KJ7Y+AAAAAAAAAABAP+hQAQAAAAAAAAAA6EdcO1S2b9+ukpIS5eTkyLIs1dfXxyxva2vTnDlzlJOTI5fLpeLiYvl8vpgyJ06c0KxZs5SVlaWUlBRNmjRJGzZsiCkzY8YMeTweJSUlKTs7W7NmzdJbb71lunkAAAAAAAAAAGCIiGuHSiAQUF5enlasWHHBskgkotLSUh06dEibNm1SU1OTRo8ercLCQgUCfx64tLy8XPv379fLL7+slpYWPfDAAyorK1NTU1O0zLRp07R+/Xrt379fGzZs0MGDB/UP//AP16WNAAAAAAAAAABg8IvroPRer1der/eiy3w+n/bs2aN9+/ZpwoQJkqTa2lplZWVpzZo1mjdvniRp165dqq2t1Z133ilJWrRokZ5++mnt3btXEydOlCQtWLAgmjt69GgtXLhQpaWl6unpkcPhMNlEAAAAAAAAAACuDcuKdw0+0gbsGCrBYFCSlJSUFJ1ns9nkdDq1Y8eO6LypU6dq3bp1am9vVzgc1tq1a3X+/HkVFBRcNLe9vV0/+clPNHXqVDpTAAAAAAAAAADAFRmwHSrjxo2Tx+NRdXW1zpw5o1AopGXLlunYsWPy+/3RcuvXr1dPT48yMzPldDo1f/58vfTSS8rNzY3Je/TRR5WSkqLMzEwdPXpUmzZtut5NAgAAAAAAAAAAg9SA7VBxOBzauHGjDhw4oIyMDLlcLm3btk1er1c225+rXVNTo46ODr322mtqbGxUVVWVysrK1NLSEpP3L//yL2pqatIvf/lL2e12lZeXKxKJXHL9wWBQZ8+ejZn6+oLG2gsAAAAAAAAAAAauuI6h0p/8/Hw1Nzers7NToVBIbrdbU6ZM0eTJkyVJBw8e1LPPPhszzkpeXp5ef/11rVixQs8991w0a+TIkRo5cqRuvfVWjR8/XjfddJP27Nmju++++6LrXrJkiR5//PGYeePu/JrGT6kw1FoAAAAAAAAAAC7DGrD3SHwkDIqtn56eLrfbLZ/Pp8bGRs2cOVOS1N3dLUkxd6xIkt1uVzgcvmTee8veG6flYqqrq9XZ2Rkz3Tp5/odtCgAAAAAAAAAAGITieodKV1eXWltbo68PHz6s5uZmZWRkyOPxqK6uTm63Wx6PRy0tLaqsrFRpaamKiookvTvOSm5urubPn6/ly5crMzNT9fX12rp1q1599VVJ0htvvKHf/va3+vSnP60RI0bo4MGDqqmp0cc+9rFL3p0iSU6nU06nM2ae3e68RGkAAAAAAAAAADCUxbVDpbGxUdOmTYu+rqqqkiTNnj1bq1atkt/vV1VVldra2pSdna3y8nLV1NREyzscDm3evFkLFy5USUmJurq6lJubq9WrV2v69OmSJJfLpY0bN2rx4sUKBALKzs5WcXGxFi1adEGHCQAAAAAAAAAAwMXEtUOloKDgsgPDV1RUqKLi8mOW3HLLLdqwYcMll99+++1qaGj4wHUEAAAAAAAAAGAgiFhWvKswYKxYsUJPPfWUTpw4oby8PD3zzDO68847L1q2oKBA/+f//J8L5k+fPl0/+9nPrnidg2IMFQAAAAAAAAAAAElat26dqqqqtHjxYv3ud79TXl6e7rvvPp08efKi5Tdu3Ci/3x+d9u3bJ7vdrs997nNXtV46VAAAAAAAAAAAwKDx3e9+Vw899JAefPBBffzjH9dzzz0nl8ul559//qLlMzIylJWVFZ22bt0ql8tFhwoAAAAAAAAAABiaQqGQ9u7dq8LCwug8m82mwsJC7d69+4oyVq5cqS984QtKSUm5qnXHdQwVAAAAAAAAAABwhayheY9EMBhUMBiMmed0OuV0Oi8oe+rUKfX19emGG26ImX/DDTfoj3/8Y7/r+s1vfqN9+/Zp5cqVV11POlSuQoLD3Obq7ek1lm2y3n19YWPZCQ67sWzL8IEnHDG3XSybuYGn7OY2uRId5rJdyea2SYoj2H+hDyjZ1m0sO3zmtLHsSChkLFuSutvOGMs+dyZgLNuWYO4L1Hn8HWPZiSnmzhEdRzuMZaflmDvOprhdxrIlKdIXMZbd1XrOWLZlN3j+cfQYy05Ku/Di+1pxJJs7ub1z4qyx7LQbM41lS1LorLnzm8Nl7vO0Ocx9nn1Bc+fOcMjc98d+PtFYtmXwwjPS12cs+90VGLzWN7gfWiYHsLWZ+31lGfw9a4uYOyfL4Pa2nTN3TWslmL3WNykx2dy5095tLtvkD3FbgsHjeNjcsTYhZHAfN1hvSbIFzV2PR2wGz50J/IkY8bdkyRI9/vjjMfMWL16sb33rW9d8XStXrtTtt99+yQHsL4dvCwAAAAAAAAAAiJvq6mpVVVXFzLvY3SmSNHLkSNntdrW1tcXMb2trU1ZW1mXXEwgEtHbtWj3xxBMfqJ5D8/4gAAAAAAAAAAAwKDidTqWlpcVMl+pQSUxMVH5+vn71q19F54XDYf3qV7/S3Xfffdn11NXVKRgM6ktf+tIHqmdcO1S2b9+ukpIS5eTkyLIs1dfXxyxva2vTnDlzlJOTI5fLpeLiYvl8vpgyJ06c0KxZs5SVlaWUlBRNmjRJGzZsuOj6gsGgPvnJT8qyLDU3NxtqFQAAAAAAAAAA115E1pCcrlZVVZV++MMfavXq1frDH/6gr371qwoEAnrwwQclSeXl5aqurr7gfStXrlRpaakyMz/Yo5Dj2qESCASUl5enFStWXLAsEomotLRUhw4d0qZNm9TU1KTRo0ersLBQgcCfn6VYXl6u/fv36+WXX1ZLS4seeOABlZWVqamp6YLMb3zjG8rJyTHaJgAAAAAAAAAAYM7nP/95LV++XN/85jf1yU9+Us3NzdqyZUt0oPqjR4/K7/fHvGf//v3asWOH5s6d+4HXG9cxVLxer7xe70WX+Xw+7dmzR/v27dOECRMkSbW1tcrKytKaNWs0b948SdKuXbtUW1sbHUBm0aJFevrpp7V3715NnDgxmvfzn/9cv/zlL7Vhwwb9/Oc/N9wyAAAAAAAAAABgyiOPPKJHHnnkost+/etfXzDvtttuUyQS+VDrHLBjqASDQUlSUlJSdJ7NZpPT6dSOHTui86ZOnap169apvb1d4XBYa9eu1fnz51VQUBAt09bWpoceekg//vGP5XK5rlsbAAAAAAAAAADA0DBgO1TGjRsnj8ej6upqnTlzRqFQSMuWLdOxY8dibtVZv369enp6lJmZKafTqfnz5+ull15Sbm6upHcfHTZnzhx95Stf0eTJk+PVHAAAAAAAAAAAMIjF9ZFfl+NwOLRx40bNnTtXGRkZstvtKiwslNfrjbktp6amRh0dHXrttdc0cuRI1dfXq6ysTK+//rpuv/12PfPMM3rnnXcuOgDN5QSDwehdMu/p6w3KnuC8Ju0DAAAAAAAAAOBqRKwBe4/ER8KA3vr5+flqbm5WR0eH/H6/tmzZotOnT2vs2LGSpIMHD+rZZ5/V888/r3vuuUd5eXlavHixJk+eHB3ovqGhQbt375bT6VRCQkL0zpXJkydr9uzZl1z3kiVLlJ6eHjP98Te15hsNAAAAAAAAAAAGnAHdofKe9PR0ud1u+Xw+NTY2aubMmZKk7u5uSe+OrfJ+drtd4XBYkvS9731Pv//979Xc3Kzm5mZt3rxZkrRu3Tp9+9vfvuQ6q6ur1dnZGTONu/OrJpoHAAAAAAAAAAAGuLg+8qurq0utra3R14cPH1Zzc7MyMjLk8XhUV1cnt9stj8ejlpYWVVZWqrS0VEVFRZLeHWclNzdX8+fP1/Lly5WZman6+npt3bpVr776qiTJ4/HErDM1NVWS9LGPfUw33njjJevmdDrldMY+3sue0H5N2g0AAAAAAAAAAAaXuHaoNDY2atq0adHXVVVVkqTZs2dr1apV8vv9qqqqUltbm7Kzs1VeXq6amppoeYfDoc2bN2vhwoUqKSlRV1eXcnNztXr1ak2fPv26twcAAAAAAAAAAGMYQyWu4tqhUlBQEDPA/F+qqKhQRUXFZTNuueUWbdiw4YrXOWbMmMuuEwAAAAAAAAAA4C/RnQUAAAAAAAAAANAPOlQAAAAAAAAAAAD6EddHfgEAAAAAAAAAgCsTsax4V+EjjTtUAAAAAAAAAAAA+sEdKleh4+QZY9nZN2cby+4J9RrLttvN9cmdebvTWLYrzWUsW5LOnDhtLLvrnZCx7OBwh7HsBLuxaCU5zfXMnzlvbl9JsJn7bv5Vsrl6R+xmTx32RHP55850G8selpVmLLvP4HHcOSzJWHYkHDaWHXznvLHswNvm9hNJcmWa2+aW3dzx8J395rZL1qdHGstOSDJ3bnMkJxrLNskyeVKWZDOYb9kM/jeewWzL4H8RJiSbO6bYnOb2cZP7YTho7npZkiyHueOKZTf4/XGYu8ayLIP/q2nyu5locB83mK3AO+ayE53msg07nzzCWPawMyeMZUcMfu9tBq/H7TaD9Q6eM5ZthfuMZUtSb6q5/TBicJuHLbPXh8BQwh0qAAAAAAAAAAAA/eAOFQAAAAAAAAAABoGIyTtD0a+4bv3t27erpKREOTk5sixL9fX1Mcvb2to0Z84c5eTkyOVyqbi4WD6fL6bMiRMnNGvWLGVlZSklJUWTJk3Shg0bYsqMGTNGlmXFTEuXLjXdPAAAAAAAAAAAMETEtUMlEAgoLy9PK1asuGBZJBJRaWmpDh06pE2bNqmpqUmjR49WYWGhAoFAtFx5ebn279+vl19+WS0tLXrggQdUVlampqammLwnnnhCfr8/On3ta18z3j4AAAAAAAAAADA0xPWRX16vV16v96LLfD6f9uzZo3379mnChAmSpNraWmVlZWnNmjWaN2+eJGnXrl2qra3VnXfeKUlatGiRnn76ae3du1cTJ06M5g0bNkxZWVmGWwQAAAAAAAAAAIaiAfvAtWAwKElKSkqKzrPZbHI6ndqxY0d03tSpU7Vu3Tq1t7crHA5r7dq1On/+vAoKCmLyli5dqszMTE2cOFFPPfWUent7r0s7AAAAAAAAAADA4DdgB6UfN26cPB6Pqqur9f3vf18pKSl6+umndezYMfn9/mi59evX6/Of/7wyMzOVkJAgl8ull156Sbm5udEyFRUVmjRpkjIyMrRr1y5VV1fL7/fru9/9bjyaBgAAAAAAAADA1bOseNfgI23Adqg4HA5t3LhRc+fOVUZGhux2uwoLC+X1ehWJRKLlampq1NHRoddee00jR45UfX29ysrK9Prrr+v222+XJFVVVUXL33HHHUpMTNT8+fO1ZMkSOZ3Oi64/GAxG75J5T7gvJJs90UBrAQAAAAAAAADAQDZgH/klSfn5+WpublZHR4f8fr+2bNmi06dPa+zYsZKkgwcP6tlnn9Xzzz+ve+65R3l5eVq8eLEmT5580YHu3zNlyhT19vbqyJEjlyyzZMkSpaenx0yH9z1/rZsIAAAAAAAAAAAGgQHdofKe9PR0ud1u+Xw+NTY2aubMmZKk7u5uSe+OrfJ+drtd4XD4knnNzc2y2WwaNWrUJctUV1ers7MzZrr5E//fa9AaAAAAAAAAAAAw2MT1kV9dXV1qbW2Nvj58+LCam5uVkZEhj8ejuro6ud1ueTwetbS0qLKyUqWlpSoqKpL07jgrubm5mj9/vpYvX67MzEzV19dr69atevXVVyVJu3fv1htvvKFp06Zp2LBh2r17txYsWKAvfelLGjFixCXr5nQ6L3gcGI/7AgAAAAAAAADES8QaFPdIDFlx7VBpbGzUtGnToq/fG+tk9uzZWrVqlfx+v6qqqtTW1qbs7GyVl5erpqYmWt7hcGjz5s1auHChSkpK1NXVpdzcXK1evVrTp0+X9G7HyNq1a/Wtb31LwWBQN998sxYsWBAzrgoAAAAAAAAAAMDlxLVDpaCgIGaA+b9UUVGhioqKy2bccsst2rBhwyWXT5o0SXv27PnAdQQAAAAAAAAAAOD+IAAAAAAAAAAAgH7E9Q4VAAAAAAAAAABwZSKy4l2FjzTuUAEAAAAAAAAAAOgHHSoAAAAAAAAAAAD9oEMFAAAAAAAAAACgH4yhchVGeW4wlm23G+zbSjT3MbuGJRnLTstwGcs+eeyMsWxJGvlXbmPZ2dnmtkvmcHPPYExNDhvLPhc09/3JTjG3r4wIv20sW64UY9F9b580li1J3W93GsseMSbTWHa419w+btkG5/NR7QbPP45wxFj2DRNGGcuWpMCpgLFsu6PHWHbWp0cayz6x45Sx7POfOG8s25mWaCy7+7S5eo/Ku9lYtiQpbO54aHea2+a2BLuxbMtm7lolEjG3vcM95o4pNoP1jvT2GcuWpIjN3HYx+f2J9JndLqZYlrnrIJPbxOo+Zyzb7jZ7rTJYuTqPG8uO2M2dIyIJToPZDmPZfQnm/h5kJfaayw6by5Yke6DDXLjBzzNsN5eNay9icY9EPLH1AQAAAAAAAAAA+kGHCgAAAAAAAAAAQD/i2qGyfft2lZSUKCcnR5Zlqb6+PmZ5W1ub5syZo5ycHLlcLhUXF8vn88WUOXHihGbNmqWsrCylpKRo0qRJ2rBhwwXr+tnPfqYpU6YoOTlZI0aMUGlpqcGWAQAAAAAAAACAoSSuHSqBQEB5eXlasWLFBcsikYhKS0t16NAhbdq0SU1NTRo9erQKCwsVCPz52ePl5eXav3+/Xn75ZbW0tOiBBx5QWVmZmpqaomU2bNigWbNm6cEHH9Tvf/977dy5U//4j/94XdoIAAAAAAAAAAAGv7gOSu/1euX1ei+6zOfzac+ePdq3b58mTJggSaqtrVVWVpbWrFmjefPmSZJ27dql2tpa3XnnnZKkRYsW6emnn9bevXs1ceJE9fb2qrKyUk899ZTmzp0bzf/4xz9uuHUAAAAAAAAAAFxDlhXvGnykDdgxVILBoCQpKSkpOs9ms8npdGrHjh3ReVOnTtW6devU3t6ucDistWvX6vz58yooKJAk/e53v9Px48dls9k0ceJEZWdny+v1at++fde1PQAAAAAAAAAAYPAasB0q48aNk8fjUXV1tc6cOaNQKKRly5bp2LFj8vv90XLr169XT0+PMjMz5XQ6NX/+fL300kvKzc2VJB06dEiS9K1vfUuLFi3Sq6++qhEjRqigoEDt7e1xaRsAAAAAAAAAABhcBmyHisPh0MaNG3XgwAFlZGTI5XJp27Zt8nq9stn+XO2amhp1dHTotddeU2Njo6qqqlRWVqaWlhZJUjgcliQ99thj+uxnP6v8/Hy98MILsixLdXV1l1x/MBjU2bNnY6a+3qDZRgMAAAAAAAAAgAEprmOo9Cc/P1/Nzc3q7OxUKBSS2+3WlClTNHnyZEnSwYMH9eyzz8aMs5KXl6fXX39dK1as0HPPPafs7GxJsWOmOJ1OjR07VkePHr3kupcsWaLHH388Zt7tn67SHf/PP1/rZgIAAAAAAAAA0K/IwL1H4iNhUGz99PR0ud1u+Xw+NTY2aubMmZKk7u5uSYq5Y0WS7HZ79M6U/Px8OZ1O7d+/P7q8p6dHR44c0ejRoy+5zurqanV2dsZME6Y+cq2bBgAAAAAAAAAABoG43qHS1dWl1tbW6OvDhw+rublZGRkZ8ng8qqurk9vtlsfjUUtLiyorK1VaWqqioiJJ746zkpubq/nz52v58uXKzMxUfX29tm7dqldffVWSlJaWpq985StavHixbrrpJo0ePVpPPfWUJOlzn/vcJevmdDrldDpj5tkTuq71JgAAAAAAAAAAAINAXDtUGhsbNW3atOjrqqoqSdLs2bO1atUq+f1+VVVVqa2tTdnZ2SovL1dNTU20vMPh0ObNm7Vw4UKVlJSoq6tLubm5Wr16taZPnx4t99RTTykhIUGzZs3SuXPnNGXKFDU0NGjEiBHXr7EAAAAAAAAAAGDQimuHSkFBgSKRyCWXV1RUqKKi4rIZt9xyizZs2HDZMg6HQ8uXL9fy5cs/UD0BAAAAAAAAAIi3iGXFuwofaYNiDBUAAAAAAAAAAIB4okMFAAAAAAAAAACgH3SoAAAAAAAAAAAA9COuY6gAAAAAAAAAAIArE7G4RyKe6FC5Cs4kh7HspGRz2b29YWPZw4Y5jWUnOMwdHM6NSDGWLUmORHNfLVeyuYGnnI6IuewEc/thqMfcNkmwes1lh3uMZauvz1h0uMfcNpGkYTe5jWVbBgdui0TMfX9sCeaOh3ZnorFsW4LdWHbvuaCx7IRkc+c2SbJs5vbDpDSD52WD10HnP3HeWHbHvi5j2bkPjDGW7TB4behIdRnLliSbw9x1kD05yVj2+bfbjWWHznYby3amm7uuNXkcD/eYO7f1Bs4Zy5bM7uMmt7lRtsH5hx2T53zLbu6ztA83dx2kiLnzj2mWwd9AVsjcNjdZ73DE3O9we4LB3xEhc9eGMrhNJLN1j4TN7Ss2u7lsYKgZnFc9AAAAAAAAAAAA1xEdKgAAAAAAAAAAAP2Ia4fK9u3bVVJSopycHFmWpfr6+pjlbW1tmjNnjnJycuRyuVRcXCyfzxdT5sSJE5o1a5aysrKUkpKiSZMmacOGDdHlv/71r2VZ1kWn3/72t9ejmQAAAAAAAAAAfGgRWUNyGizi2qESCASUl5enFStWXLAsEomotLRUhw4d0qZNm9TU1KTRo0ersLBQgUAgWq68vFz79+/Xyy+/rJaWFj3wwAMqKytTU1OTJGnq1Kny+/0x07x583TzzTdr8uTJ162tAAAAAAAAAABg8IrroPRer1der/eiy3w+n/bs2aN9+/ZpwoQJkqTa2lplZWVpzZo1mjdvniRp165dqq2t1Z133ilJWrRokZ5++mnt3btXEydOVGJiorKysqK5PT092rRpk772ta8ZHZwYAAAAAAAAAAAMHQN2DJVgMChJSkpKis6z2WxyOp3asWNHdN7UqVO1bt06tbe3KxwOa+3atTp//rwKCgoumvvyyy/r9OnTevDBB43WHwAAAAAAAAAADB0DtkNl3Lhx8ng8qq6u1pkzZxQKhbRs2TIdO3ZMfr8/Wm79+vXq6elRZmamnE6n5s+fr5deekm5ubkXzV25cqXuu+8+3XjjjderKQAAAAAAAAAAYJCL6yO/LsfhcGjjxo2aO3euMjIyZLfbVVhYKK/Xq0gkEi1XU1Ojjo4Ovfbaaxo5cqTq6+tVVlam119/XbfffntM5rFjx/SLX/xC69ev73f9wWAwepfMe/p6g7InOK9NAwEAAAAAAAAAuAoRa8DeI/GRMKC3fn5+vpqbm9XR0SG/368tW7bo9OnTGjt2rCTp4MGDevbZZ/X888/rnnvuUV5enhYvXqzJkydfdKD7F154QZmZmZoxY0a/616yZInS09Njpt9v/3+veRsBAAAAAAAAAMDAN6A7VN6Tnp4ut9stn8+nxsZGzZw5U5LU3d0t6d2xVd7PbrcrHA7HzItEInrhhRdUXl4uh8PR7zqrq6vV2dkZM+X9P5XXqEUAAAAAAAAAAGAwiesjv7q6utTa2hp9ffjwYTU3NysjI0Mej0d1dXVyu93yeDxqaWlRZWWlSktLVVRUJOndcVZyc3M1f/58LV++XJmZmaqvr9fWrVv16quvxqyroaFBhw8f1rx5866obk6nU05n7OO97AnBS5QGAAAAAAAAAABDWVw7VBobGzVt2rTo66qqKknS7NmztWrVKvn9flVVVamtrU3Z2dkqLy9XTU1NtLzD4dDmzZu1cOFClZSUqKurS7m5uVq9erWmT58es66VK1dq6tSpGjdu3PVpHAAAAAAAAAAA11DEsuJdhY+0uHaoFBQUxAww/5cqKipUUVFx2YxbbrlFGzZs6HddL7744lXXDwAAAAAAAAAAQBokY6gAAAAAAAAAAADEEx0qAAAAAAAAAAAA/YjrI78AAAAAAAAAAMCViYgxVOKJO1QAAAAAAAAAAAD6wR0qV6En1Gssu72tw1h2xg3DjWW3vdVpLNvhNLd7dp56x1i2JPX2mNtXMt0uY9mW5TCWfT5k7vOMRIxFq7sv2Vi205FmLHu4K9VYdkLaMGPZktRz+Lix7ISkRGPZpw+8ZSw7Kd3cfthxtN1Y9ogxI41lh3v7jGWfPXbaWLYkhQIhY9mOZHPHcUeyue+PM81cdu4DY4xlt248Yiw7/eMpxrJ7urqNZUtSYrq584TlMLePp95ys7HscPc5Y9l9gYCxbJPb27LM/Wdl8l9lGcuWJNntxqItg9lGWeb+V9NyGPyzRYK5fdzkNlGCwW0yWPdBSX1J5s6dVq+567eI3dx+GDG4r4Tt5q7fbA5z2VbY3O8ISQrbzH2HIgaPWWGD+yEw1HCHCgAAAAAAAAAAQD+4QwUAAAAAAAAAgEEgYvIuSPQrrlt/+/btKikpUU5OjizLUn19fczytrY2zZkzRzk5OXK5XCouLpbP54spc+LECc2aNUtZWVlKSUnRpEmTtGHDhpgyBw4c0MyZMzVy5EilpaXp05/+tLZt22a6eQAAAAAAAAAAYIiIa4dKIBBQXl6eVqxYccGySCSi0tJSHTp0SJs2bVJTU5NGjx6twsJCBd73nODy8nLt379fL7/8slpaWvTAAw+orKxMTU1N0TJ///d/r97eXjU0NGjv3r3Ky8vT3//93+vEiRPXpZ0AAAAAAAAAAGBwi2uHitfr1b/927/p/vvvv2CZz+fTnj17VFtbq7/+67/WbbfdptraWp07d05r1qyJltu1a5e+9rWv6c4779TYsWO1aNEiDR8+XHv37pUknTp1Sj6fTwsXLtQdd9yhW265RUuXLlV3d7f27dt33doKAAAAAAAAAAAGrwH7wLVgMChJSkpKis6z2WxyOp3asWNHdN7UqVO1bt06tbe3KxwOa+3atTp//rwKCgokSZmZmbrtttv0ox/9SIFAQL29vfr+97+vUaNGKT8//7q2CQAAAAAAAAAADE4DdlD6cePGyePxqLq6Wt///veVkpKip59+WseOHZPf74+WW79+vT7/+c8rMzNTCQkJcrlceumll5SbmytJsixLr732mkpLSzVs2DDZbDaNGjVKW7Zs0YgRI+LVPAAAAAAAAAAArkpEVryr8JE2YO9QcTgc2rhxow4cOKCMjAy5XC5t27ZNXq9XNtufq11TU6OOjg699tpramxsVFVVlcrKytTS0iLp3bFYHn74YY0aNUqvv/66fvOb36i0tFQlJSUxHTN/KRgM6uzZszFTX2/QeLsBAAAAAAAAAMDAM2A7VCQpPz9fzc3N6ujokN/v15YtW3T69GmNHTtWknTw4EE9++yzev7553XPPfcoLy9Pixcv1uTJk6MD3Tc0NOjVV1/V2rVr9alPfUqTJk3S//yf/1PJyclavXr1Jde9ZMkSpaenx0z7dj5zXdoNAAAAAAAAAAAGlgHdofKe9PR0ud1u+Xw+NTY2aubMmZKk7u5uSYq5Y0WS7Ha7wuHwZcvYbLZomYuprq5WZ2dnzPSJT33tmrUJAAAAAAAAAAAMHnEdQ6Wrq0utra3R14cPH1Zzc7MyMjLk8XhUV1cnt9stj8ejlpYWVVZWqrS0VEVFRZLeHWclNzdX8+fP1/Lly5WZman6+npt3bpVr776qiTp7rvv1ogRIzR79mx985vfVHJysn74wx/q8OHD+ru/+7tL1s3pdMrpdMbMsycEDGwFAAAAAAAAAAD6F7EGxT0SQ1ZcO1QaGxs1bdq06OuqqipJ0uzZs7Vq1Sr5/X5VVVWpra1N2dnZKi8vV01NTbS8w+HQ5s2btXDhQpWUlKirq0u5ublavXq1pk+fLkkaOXKktmzZoscee0yf+cxn1NPTowkTJmjTpk3Ky8u7vg0GAAAAAAAAAACD0lV1qPT29urFF1/UfffdpxtuuOFDr7ygoECRSOSSyysqKlRRUXHZjFtuuUUbNmy4bJnJkyfrF7/4xQeqIwAAAAAAAAAAwFXdH5SQkKCvfOUrOn/+vKn6AAAAAAAAAAAADDhX/civO++8U83NzRo9erSJ+gAAAAAAAAAAgIuIyIp3FT7SrrpD5Z/+6Z9UVVWl//qv/1J+fr5SUlJilt9xxx3XrHIAAAAAAAAAAAADwVV3qHzhC1+QpJixTSzLUiQSkWVZ6uvru3a1AwAAAAAAAAAAGACuukPl8OHDJuoBAAAAAAAAAAAwYF11h8pHeeyUYenJxrKD50LGslPTkoxl9/aYuyPJ4bzq3fOK9QR7jWVLUui8uc8zOcluLDvJae4ZjE5HxFh22Fy0kmxBY9mOsLlshc19NyM9Zr8/fcEeY9mRvrCx7BT3MGPZ3acDxrKTR7iMZZ/v7DaW3Xve3H5i8rOUJHuiufPbOyfOGss2qfv0eWPZjmSHsez0j6f0X+gD6vxPc9/7xHnpxrIlqa/7nLHsiMHsBIN32pvcJj3vmNtXbInmvj+Wzdx1ZyRi8OJQkmU3dz1uMtsog5+nzWFuP1SCuXOyZbOZy05MNJYtm+F90OB2sYfMHWutgLlrLCvB4D5uN7ePm2Q/12Uu3PSTdQwexyN95n6LW3Zzv69w7UUsc8dS9O8DH1n/8z//U0ePHlUoFPuH4xkzZnzoSgEAAAAAAAAAAAwkV92hcujQId1///1qaWmJjp0ivTuOiiTGUAEAAAAAAAAAAEPOVd8fVFlZqZtvvlknT56Uy+XSm2++qe3bt2vy5Mn69a9/fVVZ27dvV0lJiXJycmRZlurr62OWt7W1ac6cOcrJyZHL5VJxcbF8Pl9MmRMnTmjWrFnKyspSSkqKJk2apA0bNsSU+d3vfqd7771Xw4cPV2Zmpr785S+rq8vg7YMAAAAAAAAAAGBIueoOld27d+uJJ57QyJEjZbPZZLPZ9OlPf1pLlixRRUXFVWUFAgHl5eVpxYoVFyyLRCIqLS3VoUOHtGnTJjU1NWn06NEqLCxUIPDn5wSXl5dr//79evnll9XS0qIHHnhAZWVlampqkiS99dZbKiwsVG5urt544w1t2bJFb775pubMmXO1TQcAAAAAAAAAAB9RV/3Ir76+Pg0b9u5grSNHjtRbb72l2267TaNHj9b+/fuvKsvr9crr9V50mc/n0549e7Rv3z5NmDBBklRbW6usrCytWbNG8+bNkyTt2rVLtbW1uvPOOyVJixYt0tNPP629e/dq4sSJevXVV+VwOLRixQrZ/nvws+eee0533HGHWltblZube7WbAAAAAAAAAACA6y4iK95V+Ei76jtUPvGJT+j3v/+9JGnKlCn693//d+3cuVNPPPGExo4de80qFgwGJUlJSUnReTabTU6nUzt27IjOmzp1qtatW6f29naFw2GtXbtW58+fV0FBQTQnMTEx2pkiScnJyZIUkwMAAAAAAAAAAHApV92hsmjRIoXDYUnSE088ocOHD+tv/uZvtHnzZn3ve9+7ZhUbN26cPB6PqqurdebMGYVCIS1btkzHjh2T3++Pllu/fr16enqUmZkpp9Op+fPn66WXXoreefKZz3xGJ06c0FNPPaVQKKQzZ85o4cKFkhSTAwAAAAAAAAAAcClX3aFy33336YEHHpAk5ebm6o9//KNOnTqlkydP6jOf+cw1q5jD4dDGjRt14MABZWRkyOVyadu2bfJ6vTF3m9TU1Kijo0OvvfaaGhsbVVVVpbKyMrW0tEiSJkyYoNWrV+s73/mOXC6XsrKydPPNN+uGG26IyflLwWBQZ8+ejZn6eoPXrH0AAAAAAAAAAGDwuOoOlfe0trbqF7/4hc6dO6eMjIxrWaeo/Px8NTc3q6OjQ36/X1u2bNHp06ejjxY7ePCgnn32WT3//PO65557lJeXp8WLF2vy5MkxA93/4z/+o06cOKHjx4/r9OnT+ta3vqW33377so8oW7JkidLT02OmvQ1PG2knAAAAAAAAAAD9iVjWkJwGi6vuUDl9+rTuuece3XrrrZo+fXr0sVlz587VP//zP1/zCkpSenq63G63fD6fGhsbNXPmTElSd3e3JF1wp4ndbo8+luz9brjhBqWmpmrdunVKSkrSvffee8l1VldXq7OzM2bK/8yCa9gqAAAAAAAAAAAwWFx1h8qCBQvkcDh09OhRuVyu6PzPf/7z2rJly1VldXV1qbm5Wc3NzZKkw4cPq7m5WUePHpUk1dXV6de//rUOHTqkTZs26d5771VpaamKiookvTvOSm5urubPn6/f/OY3OnjwoL7zne9o69atKi0tja7n2Wef1e9+9zsdOHBAK1as0COPPKIlS5Zo+PDhl6yb0+lUWlpazGRPcF5V+wAAAAAAAAAAwNCQcLVv+OUvf6lf/OIXuvHGG2Pm33LLLfrTn/50VVmNjY2aNm1a9HVVVZUkafbs2Vq1apX8fr+qqqrU1tam7OxslZeXq6amJlre4XBo8+bNWrhwoUpKStTV1aXc3FytXr1a06dPj5b7zW9+o8WLF6urq0vjxo3T97//fc2aNetqmw4AAAAAAAAAAD6irrpDJRAIxNyZ8p729nY5nVd3B0dBQYEikcgll1dUVKiiouKyGbfccos2bNhw2TI/+tGPrqpeAAAAAAAAAAAMNJHI4BlvZCi64kd+vfXWW5Kkv/mbv4npoLAsS+FwWP/+7/8ec7cJAAAAAAAAAADAUHHFd6hMmDBBK1as0FNPPaXPfOYzamxsVCgU0je+8Q29+eabam9v186dO03WFQAAAAAAAAAAIC6uuEPl29/+tubPn6/i4mL953/+p5577jkNGzZMXV1deuCBB/Twww8rOzvbZF0BAAAAAAAAAADi4oo7VP7pn/5JXq9Xc+fO1YQJE/SDH/xAjz32mMm6AQAAAAAAAACA/xa58lE8YMBVDUp/8803q6GhQc8++6w++9nPavz48UpIiI343e9+d00rOJDs2/WfxrLT3COMZf/xd2eMZWdmjzSWbdLZ02eN5ie5koxlnzgRMJbd3e00lp2aelWHm6vS2dljLNtuyzKWfdOINGPZ6SP/y1i2fZi545UkuYelGsuOnD9vLLunvcNY9vBI2Fh2zzvdxrITM9KNZdsSE41ldx0+ZixbkmwJ54xlp92YaSzbSrAbyx6Vd7OxbEeqy1h2T5fB7888c9+f7VUvG8uWpNTcZGPZN3xilLFsV6a5849rlLlzp9PksTbJ3DWtbOYGU+17p8tYtnFhc+d8k8dxhc39YSfcY+5a32Y3uE1MZmeYOxZGTNZbkhWJmAvvNbevhNPMXWOZ3FfCdoex7F6nwd9tBustk/ugpISOk8ayrb4+c9kWg5wDV+qq/8L5pz/9SRs3btSIESM0c+bMCzpUAAAAAAAAAAAAhpqr6g354Q9/qH/+539WYWGh3nzzTbndblP1AgAAAAAAAAAAGDCu+L7c4uJiPfroo3r22We1cePGa9KZsn37dpWUlCgnJ0eWZam+vj5meVtbm+bMmaOcnBy5XC4VFxfL5/PFlDl48KDuv/9+ud1upaWlqaysTG1tbTFl2tvb9cUvflFpaWkaPny45s6dq66uQXwbOAAAAAAAAADgIycia0hOg8UVd6j09fXp//7f/6vy8vJrtvJAIKC8vDytWLHigmWRSESlpaU6dOiQNm3apKamJo0ePVqFhYUKBALR9xcVFcmyLDU0NGjnzp0KhUIqKSlR+H3Pnv3iF7+oN998U1u3btWrr76q7du368tf/vI1awcAAAAAAAAAABjarviRX1u3br3mK/d6vfJ6vRdd5vP5tGfPHu3bt08TJkyQJNXW1iorK0tr1qzRvHnztHPnTh05ckRNTU1KS3t3cOfVq1drxIgRamhoUGFhof7whz9oy5Yt+u1vf6vJkydLkp555hlNnz5dy5cvV05OzjVvFwAAAAAAAAAAGFqu+A6V6y0YDEqSkpKSovNsNpucTqd27NgRLWNZlpxOZ7RMUlKSbDZbtMzu3bs1fPjwaGeKJBUWFspms+mNN964Hk0BAAAAAAAAAACD3IDtUBk3bpw8Ho+qq6t15swZhUIhLVu2TMeOHZPf75ck3XXXXUpJSdGjjz6q7u5uBQIBff3rX1dfX1+0zIkTJzRq1KiY7ISEBGVkZOjEiRPXvV0AAAAAAAAAAGDwGbAdKg6HQxs3btSBAweUkZEhl8ulbdu2yev1ymZ7t9put1t1dXV65ZVXlJqaqvT0dHV0dGjSpEnRMh9UMBjU2bNnY6ZwX+haNA0AAAAAAAAAgKsW78HjGZR+AMvPz1dzc7M6Ojrk9/u1ZcsWnT59WmPHjo2WKSoq0sGDB3Xy5EmdOnVKP/7xj3X8+PFomaysLJ08eTImt7e3V+3t7crKyrrkupcsWaL09PSY6eiBH5tpKAAAAAAAAAAAGNAGdIfKe9LT0+V2u+Xz+dTY2KiZM2deUGbkyJEaPny4GhoadPLkSc2YMUOSdPfdd6ujo0N79+6Nlm1oaFA4HNaUKVMuuc7q6mp1dnbGTJ5bZ137xgEAAAAAAAAAgAEvIZ4r7+rqUmtra/T14cOH1dzcrIyMDHk8HtXV1cntdsvj8ailpUWVlZUqLS1VUVFR9D0vvPCCxo8fL7fbrd27d6uyslILFizQbbfdJkkaP368iouL9dBDD+m5555TT0+PHnnkEX3hC19QTk7OJevmdDpjBruXJJs98RpvAQAAAAAAAAAAMBjEtUOlsbFR06ZNi76uqqqSJM2ePVurVq2S3+9XVVWV2tralJ2drfLyctXU1MRk7N+/X9XV1Wpvb9eYMWP02GOPacGCBTFlfvKTn+iRRx7RPffcI5vNps9+9rP63ve+Z76BAAAAAAAAAABcI4NpvJGhKK4dKgUFBYpEIpdcXlFRoYqKistmLF26VEuXLr1smYyMDL344osfqI4AAAAAAAAAAACDYgwVAAAAAAAAAACAeKJDBQAAAAAAAAAAoB9xfeQXAAAAAAAAAAC4MoyhEl/coQIAAAAAAAAAANAP7lC5CpbNXO9fuK/PWLbdbjeWHQmHjWVbNnP9fSY/S0kKR8xtF6fT3NfW6TS3ryQmmvs8TdbbbosYy7ZkLtseOmcs2xY0ly1JfR2dxrLD588by7a7ko1ln3urzVh2QnKSsey+c+a2twyefxLTU4xlS5It0dxxPHS221i2LcHcsdbk52lzmNveienDjGX3dZs71qbmmjteSVJXq7m6D8sxt4+bvD60Ox3Gsk3+jkhIdhrLtixz14Y9Br8/kmQz+PvKMnisNVlvGfz+mDz/RHp6jWXbEhONZdsdp41lWw5zxytJUtjcbyCb09wxSw6D2SaPKXZzn2fEZvB4dT5gLNuKmNsHJUnnzV2ryOA2l8G/wQFDDd8WAAAAAAAAAACAfnCHCgAAAAAAAAAAg0Akwhgq8RTXO1S2b9+ukpIS5eTkyLIs1dfXxyxva2vTnDlzlJOTI5fLpeLiYvl8vpgyBw8e1P333y+32620tDSVlZWprS320Sjf/va3NXXqVLlcLg0fPtxwqwAAAAAAAAAAwFAT1w6VQCCgvLw8rVix4oJlkUhEpaWlOnTokDZt2qSmpiaNHj1ahYWFCgQC0fcXFRXJsiw1NDRo586dCoVCKikpUfh9z+IOhUL63Oc+p69+9avXrW0AAAAAAAAAAGDoiOsjv7xer7xe70WX+Xw+7dmzR/v27dOECRMkSbW1tcrKytKaNWs0b9487dy5U0eOHFFTU5PS0tIkSatXr9aIESPU0NCgwsJCSdLjjz8uSVq1apX5RgEAAAAAAAAAgCFnwA5KHwwGJUlJSUnReTabTU6nUzt27IiWsSxLTqczWiYpKUk2my1aBgAAAAAAAAAA4MMasB0q48aNk8fjUXV1tc6cOaNQKKRly5bp2LFj8vv9kqS77rpLKSkpevTRR9Xd3a1AIKCvf/3r6uvri5YBAAAAAAAAAGAoiMgaktNgMWA7VBwOhzZu3KgDBw4oIyNDLpdL27Ztk9frlc32brXdbrfq6ur0yiuvKDU1Venp6ero6NCkSZOiZT6oYDCos2fPxkzhvtC1aBoAAAAAAAAAABhkBmyHiiTl5+erublZHR0d8vv92rJli06fPq2xY8dGyxQVFengwYM6efKkTp06pR//+Mc6fvx4TJkPYsmSJUpPT4+Zju7/0YdtEgAAAAAAAAAAGIQGdIfKe9LT0+V2u+Xz+dTY2KiZM2deUGbkyJEaPny4GhoadPLkSc2YMeNDrbO6ulqdnZ0xk+e28g+VCQAAAAAAAAAABqeEeK68q6tLra2t0deHDx9Wc3OzMjIy5PF4VFdXJ7fbLY/Ho5aWFlVWVqq0tFRFRUXR97zwwgsaP3683G63du/ercrKSi1YsEC33XZbtMzRo0fV3t6uo0ePqq+vT83NzZKk3NxcpaamXrRuTqczZrB7SbLZE69h6wEAAAAAAAAAuHKDabyRoSiuHSqNjY2aNm1a9HVVVZUkafbs2Vq1apX8fr+qqqrU1tam7OxslZeXq6amJiZj//79qq6uVnt7u8aMGaPHHntMCxYsiCnzzW9+U6tXr46+njhxoiRp27ZtKigoMNQ6AAAAAAAAAAAwVMS1Q6WgoECRSOSSyysqKlRRUXHZjKVLl2rp0qWXLbNq1SqtWrXqg1QRAAAAAAAAAABgcIyhAgAAAAAAAAAA8J4VK1ZozJgxSkpK0pQpU/Sb3/zmsuU7Ojr08MMPKzs7W06nU7feeqs2b958VeuM6x0qAAAAAAAAAADgyjCGyrvWrVunqqoqPffcc5oyZYr+4z/+Q/fdd5/279+vUaNGXVA+FArp3nvv1ahRo/TTn/5Uf/VXf6U//elPGj58+FWtlw4VAAAAAAAAAAAwaHz3u9/VQw89pAcffFCS9Nxzz+lnP/uZnn/+eS1cuPCC8s8//7za29u1a9cuORwOSdKYMWOuer088gsAAAAAAAAAAAwKoVBIe/fuVWFhYXSezWZTYWGhdu/efdH3vPzyy7r77rv18MMP64YbbtAnPvEJPfnkk+rr67uqdXOHCgAAAAAAAAAAiJtgMKhgMBgzz+l0yul0XlD21KlT6uvr0w033BAz/4YbbtAf//jHi+YfOnRIDQ0N+uIXv6jNmzertbVV//RP/6Senh4tXrz4iutJh8pVGDU621i2ZZl79l24L2wsOy0j1Vi2SSa3tyTZE8zd/BXoChnLTky0G8tOSDC3zXt7ze3jgfMOY9lnnEnGss8Pu/BZkdeKI/EdY9mSlDhypLHsvjNnjGVHIub2Q2dGurFsy2FuH1fY3DYxybKbOxZKkt1h7vLL4brwQvNasWzmjuN2Z6K57GRzx1qT359I9zlj2Td8wtw5QpKG5XQby/Zvf9tYtuc+c59nT+C8sexIOGIsu++8uetOk0LvmNsHJcmymbvWN3msNXl+M1nvhCRz54iElGRj2SbPbZbJ7ERz2ZJkOQzmB/svMiBFzJ1/rKv8r+ur4eg8bSxbSea+m4qYO29KkoYNNxYdsRn8nWLxEKPBJBIZmmOoLFmyRI8//njMvMWLF+tb3/rWNckPh8MaNWqUfvCDH8hutys/P1/Hjx/XU089RYcKAAAAAAAAAAAYHKqrq1VVVRUz72J3p0jSyJEjZbfb1dbWFjO/ra1NWVlZF31Pdna2HA6H7O/7J5Px48frxIkTCoVCSrzCfyqg+xEAAAAAAAAAAMSN0+lUWlpazHSpDpXExETl5+frV7/6VXReOBzWr371K919990Xfc+nPvUptba2Kvy+p2kcOHBA2dnZV9yZIsW5Q2X79u0qKSlRTk6OLMtSfX19zPK2tjbNmTNHOTk5crlcKi4uls/niylz8OBB3X///XK73UpLS1NZWVlMz9SRI0c0d+5c3XzzzUpOTtbHPvYxLV68WKHQ4Lx9HQAAAAAAAACAj7Kqqir98Ic/1OrVq/WHP/xBX/3qVxUIBPTggw9KksrLy1VdXR0t/9WvflXt7e2qrKzUgQMH9LOf/UxPPvmkHn744atab1w7VAKBgPLy8rRixYoLlkUiEZWWlurQoUPatGmTmpqaNHr0aBUWFioQCETfX1RUJMuy1NDQoJ07dyoUCqmkpCTa0/THP/5R4XBY3//+9/Xmm2/q6aef1nPPPad//dd/va5tBQAAAAAAAAAAH97nP/95LV++XN/85jf1yU9+Us3NzdqyZUt0oPqjR4/K7/dHy9900036xS9+od/+9re64447VFFRocrKSi1cuPCq1hvXMVS8Xq+8Xu9Fl/l8Pu3Zs0f79u3ThAkTJEm1tbXKysrSmjVrNG/ePO3cuVNHjhxRU1OT0tLSJEmrV6/WiBEj1NDQoMLCQhUXF6u4uDiaO3bsWO3fv1+1tbVavny5+UYCAAAAAAAAAHANhDU0B6X/IB555BE98sgjF13261//+oJ5d999t/bs2fOh1jlgx1AJBoOSpKSkpOg8m80mp9OpHTt2RMtYlhXzLLWkpCTZbLZomYvp7OxURkaGoZoDAAAAAAAAAIChZsB2qIwbN04ej0fV1dU6c+aMQqGQli1bpmPHjkVv1bnrrruUkpKiRx99VN3d3QoEAvr617+uvr6+mNt53q+1tVXPPPOM5s+ffz2bAwAAAAAAAAAABrEB26HicDi0ceNGHThwQBkZGXK5XNq2bZu8Xq9stner7Xa7VVdXp1deeUWpqalKT09XR0eHJk2aFC3zfsePH1dxcbE+97nP6aGHHrrs+oPBoM6ePRsz9fUGjbQVAAAAAAAAAAAMbHEdQ6U/+fn5am5uVmdnp0KhkNxut6ZMmaLJkydHyxQVFengwYM6deqUEhISNHz4cGVlZWns2LExWW+99ZamTZumqVOn6gc/+EG/616yZIkef/zxmHkfv6tSE6b+/65J2wAAAAAAAAAAuBoRxlCJqwF7h8r7paeny+12y+fzqbGxUTNnzrygzMiRIzV8+HA1NDTo5MmTmjFjRnTZ8ePHVVBQoPz8fL3wwgsXvXvlL1VXV6uzszNmGnfnV69puwAAAAAAAAAAwOAQ1ztUurq61NraGn19+PBhNTc3KyMjQx6PR3V1dXK73fJ4PGppaVFlZaVKS0tVVFQUfc8LL7yg8ePHy+12a/fu3aqsrNSCBQt02223SfpzZ8ro0aO1fPlyvf3229H3ZmVlXbJuTqczZrB7SbIntF+rpgMAAAAAAAAAgEEkrh0qjY2NmjZtWvR1VVWVJGn27NlatWqV/H6/qqqq1NbWpuzsbJWXl6umpiYmY//+/aqurlZ7e7vGjBmjxx57TAsWLIgu37p1q1pbW9Xa2qobb7wx5r2RSMRg6wAAAAAAAAAAwFAR1w6VgoKCy3ZqVFRUqKKi4rIZS5cu1dKlSy+5fM6cOZozZ84HrSIAAAAAAAAAAANCJMIYKvE0KMZQAQAAAAAAAAAAiCc6VAAAAAAAAAAAAPpBhwoAAAAAAAAAAEA/4jqGCgAAAAAAAAAAuDIRMYZKPNGhchUsy9zO6nA6jGX39fQay05MMrcL2Qxu7/PdIWPZkuRwmtsuN940zFh2epq5m9ZSks19nu2d5uo9Ms3c92dE0nlj2YmBDmPZ9u6zxrIlSUnJxqJtLnPbPNLXZyzbJMtuj3cVPhCT9bYc5s7JktTXfc5Yts1k3W3mjuO2BHOf5/m3241lp95ys7HsBIPHFFdmqrFsSbIM7iue+8zt40d/8Zax7GG3dRjLTr0hxVi23WHuGsuymcsOnjV3vpckm8PgOcjg92ewfp4mt0liSqKx7ASDvwmHne0ylm3y7x6S2XO+PTnJWLZJJq9rbU5z+7gtyWksO2zwetkyuA9Kkkz+TrEMHmtNbpcCc9FAPPDILwAAAAAAAAAAgH7QoQIAAAAAAAAAANCPuHaobN++XSUlJcrJyZFlWaqvr49Z3tbWpjlz5ignJ0cul0vFxcXy+XwxZQ4ePKj7779fbrdbaWlpKisrU1tbW0yZGTNmyOPxKCkpSdnZ2Zo1a5beesvcLf0AAAAAAAAAAFxrkYg1JKfBIq4dKoFAQHl5eVqxYsUFyyKRiEpLS3Xo0CFt2rRJTU1NGj16tAoLCxUIBKLvLyoqkmVZamho0M6dOxUKhVRSUqJwOBzNmjZtmtavX6/9+/drw4YNOnjwoP7hH/7hurUTAAAAAAAAAAAMbnEdlN7r9crr9V50mc/n0549e7Rv3z5NmDBBklRbW6usrCytWbNG8+bN086dO3XkyBE1NTUpLS1NkrR69WqNGDFCDQ0NKiwslCQtWLAgmjt69GgtXLhQpaWl6unpkcPwwLMAAAAAAAAAAGDwG7BjqASDQUlSUlJSdJ7NZpPT6dSOHTuiZSzLktPpjJZJSkqSzWaLlvlL7e3t+slPfqKpU6fSmQIAAAAAAAAAAK7IgO1QGTdunDwej6qrq3XmzBmFQiEtW7ZMx44dk9/vlyTdddddSklJ0aOPPqru7m4FAgF9/etfV19fX7TMex599FGlpKQoMzNTR48e1aZNm+LRLAAAAAAAAAAAMAgN2A4Vh8OhjRs36sCBA8rIyJDL5dK2bdvk9Xpls71bbbfbrbq6Or3yyitKTU1Venq6Ojo6NGnSpGiZ9/zLv/yLmpqa9Mtf/lJ2u13l5eWKRCKXXH8wGNTZs2djpr7eoNE2AwAAAAAAAABwKRFZQ3IaLOI6hkp/8vPz1dzcrM7OToVCIbndbk2ZMkWTJ0+OlikqKtLBgwd16tQpJSQkaPjw4crKytLYsWNjskaOHKmRI0fq1ltv1fjx43XTTTdpz549uvvuuy+67iVLlujxxx+Pmffxuyv1iakLLloeAAAAAAAAAAAMXQP2DpX3S09Pl9vtls/nU2Njo2bOnHlBmZEjR2r48OFqaGjQyZMnNWPGjEvmhcNhSX8ep+Viqqur1dnZGTONv/OfPnxjAAAAAAAAAADAoBPXO1S6urrU2toafX348GE1NzcrIyNDHo9HdXV1crvd8ng8amlpUWVlpUpLS1VUVBR9zwsvvKDx48fL7XZr9+7dqqys1IIFC3TbbbdJkt544w399re/1ac//WmNGDFCBw8eVE1NjT72sY9d8u4USXI6nTGD3UuSPeHMNd4CAAAAAAAAAABgMIhrh0pjY6OmTZsWfV1VVSVJmj17tlatWiW/36+qqiq1tbUpOztb5eXlqqmpicnYv3+/qqur1d7erjFjxuixxx7TggV/fiyXy+XSxo0btXjxYgUCAWVnZ6u4uFiLFi26oMMEAAAAAAAAAICBKhIZPOONDEVx7VApKCi47MDwFRUVqqiouGzG0qVLtXTp0ksuv/3229XQ0PCB6wgAAAAAAAAAADAoxlABAAAAAAAAAACIJzpUAAAAAAAAAAAA+hHXR34BAAAAAAAAAIArE453BT7iuEMFAAAAAAAAAACgH9yhchVS013GshOTHMaye3v6jGWnpTmNZZtkcptIUpLL3OeZmmKuHzTVZRnLTkky138eDJnbJskOc/uK095jLNt+PmAs22YwW5IU6DIW3RcwWPdwxFh0X/c5Y9lWgt1ctt1gtsPcJUz4/Hlj2ZLUa/Dz7AuGjGVblrlzhGUzdxwPne02lh02+VkazHaNGmEsW5LsTnPXQT0Bc9/PYbd1GMt+Z7+5/TDSZ+78Y0809920bOaOKd1vBY1lS5I92eB2cZjbLnanuXrb7CbPEeaynWmJxrIdyeaOhYmpScayTZ6TJclm8BoubdRIY9nd//WWsWy709x+aOsx+JvTYHbfOYPHcYPHFEmyGfx9Jcvg+cdkvYEhhjtUAAAAAAAAAAAA+sEdKgAAAAAAAAAADAKRiNk7rXB53KECAAAAAAAAAADQj7h2qGzfvl0lJSXKycmRZVmqr6+PWd7W1qY5c+YoJydHLpdLxcXF8vl8MWUOHjyo+++/X263W2lpaSorK1NbW9tF1xcMBvXJT35SlmWpubnZUKsAAAAAAAAAAMBQE9cOlUAgoLy8PK1YseKCZZFIRKWlpTp06JA2bdqkpqYmjR49WoWFhQr896DCgUBARUVFsixLDQ0N2rlzp0KhkEpKShQOXzgA9je+8Q3l5OQYbxcAAAAAAAAAABha4jqGitfrldfrvegyn8+nPXv2aN++fZowYYIkqba2VllZWVqzZo3mzZunnTt36siRI2pqalJaWpokafXq1RoxYoQaGhpUWFgYzfv5z3+uX/7yl9qwYYN+/vOfm28cAAAAAAAAAAAYMgbsGCrBYFCSlJSUFJ1ns9nkdDq1Y8eOaBnLsuR0OqNlkpKSZLPZomWkdx8d9tBDD+nHP/6xXC7XdWoBAAAAAAAAAADXTkTWkJwGiwHboTJu3Dh5PB5VV1frzJkzCoVCWrZsmY4dOya/3y9Juuuuu5SSkqJHH31U3d3dCgQC+vrXv66+vr5omUgkojlz5ugrX/mKJk+eHM8mAQAAAAAAAACAQWrAdqg4HA5t3LhRBw4cUEZGhlwul7Zt2yav1yub7d1qu91u1dXV6ZVXXlFqaqrS09PV0dGhSZMmRcs888wzeuedd1RdXX1V6w8Ggzp79mzM1NcbvObtBAAAAAAAAAAAA9+A7VCRpPz8fDU3N6ujo0N+v19btmzR6dOnNXbs2GiZoqIiHTx4UCdPntSpU6f04x//WMePH4+WaWho0O7du+V0OpWQkKDc3FxJ0uTJkzV79uxLrnvJkiVKT0+PmX6//f8122AAAAAAAAAAADAgxXVQ+iuVnp4u6d2B6hsbG/U//sf/uKDMyJEjJb3bgXLy5EnNmDFDkvS9731P//Zv/xYt99Zbb+m+++7TunXrNGXKlEuus7q6WlVVVTHzKr5z9kO3BQAAAAAAAACADyISGTzjjQxFce1Q6erqUmtra/T14cOH1dzcrIyMDHk8HtXV1cntdsvj8ailpUWVlZUqLS1VUVFR9D0vvPCCxo8fL7fbrd27d6uyslILFizQbbfdJknyeDwx60xNTZUkfexjH9ONN954ybo5nc6Ywe4lyZ7AI78AAAAAAAAAAPgoimuHSmNjo6ZNmxZ9/d4dIbNnz9aqVavk9/tVVVWltrY2ZWdnq7y8XDU1NTEZ+/fvV3V1tdrb2zVmzBg99thjWrBgwXVtBwAAAAAAAAAAGNri2qFSUFCgSCRyyeUVFRWqqKi4bMbSpUu1dOnSK17nmDFjLrtOAAAAAAAAAACAvzQoxlABAAAAAAAAAOCjLiLGUIknW7wrAAAAAAAAAAAAMNDRoQIAAAAAAAAAANAPOlQAAAAAAAAAAAD6wRgqVyEp2WEs+8ypLmPZmVlpxrI72s8Zy3Y4ze2ega6gsWxJOn+ux1j2DTckG8vu7TP3DEaT2SnmNomSE8x9lsn288aybSFz300FzB2vJKmv6x2D2d3GsiN9fcay+86Z21esBLu5bLu5bMeIdGPZlsPc+V6SElzmDlrhkLljVkJykrHsSCRsLNuZnmIsuy8QMJbd8465bGeGue+PJIUNHg8j4Yix7NQbzO0rkT5z9e5qNXfOtxzmrt9sCeayU282eHEoybKZq7tlN/c/jza7wXob3CYOl7nzcoLB35wJTnPXQd2nzV2Pm/wsJbPbPLnzrLHsYKe587LdafD6LSlkLLvX4LV+uKfXWLZpRn9fWSbPy+bqjWvP4CUxrgB3qAAAAAAAAAAAAPSDDhUAAAAAAAAAAIB+xLVDZfv27SopKVFOTo4sy1J9fX3M8ra2Ns2ZM0c5OTlyuVwqLi6Wz+eLKXPw4EHdf//9crvdSktLU1lZmdra2mLKjBkzRpZlxUxLly413TwAAAAAAAAAADBExLVDJRAIKC8vTytWrLhgWSQSUWlpqQ4dOqRNmzapqalJo0ePVmFhoQL//bzqQCCgoqIiWZalhoYG7dy5U6FQSCUlJQqHY5/F/cQTT8jv90enr33ta9eljQAAAAAAAAAAYPCL66D0Xq9XXq/3ost8Pp/27Nmjffv2acKECZKk2tpaZWVlac2aNZo3b5527typI0eOqKmpSWlp7w68vnr1ao0YMUINDQ0qLCyM5g0bNkxZWVnmGwUAAAAAAAAAgAERWfGuwkfagB1DJRgMSpKSkpKi82w2m5xOp3bs2BEtY1mWnE5ntExSUpJsNlu0zHuWLl2qzMxMTZw4UU899ZR6e3uvQysAAAAAAAAAAMBQMGA7VMaNGyePx6Pq6mqdOXNGoVBIy5Yt07Fjx+T3+yVJd911l1JSUvToo4+qu7tbgUBAX//619XX1xctI0kVFRVau3attm3bpvnz5+vJJ5/UN77xjXg1DQAAAAAAAAAADDIDtkPF4XBo48aNOnDggDIyMuRyubRt2zZ5vV7ZbO9W2+12q66uTq+88opSU1OVnp6ujo4OTZo0KVpGkqqqqlRQUKA77rhDX/nKV/Sd73xHzzzzTPQumIsJBoM6e/ZszNTXe+nyAAAAAAAAAABg6BqwHSqSlJ+fr+bmZnV0dMjv92vLli06ffq0xo4dGy1TVFSkgwcP6uTJkzp16pR+/OMf6/jx4zFl/tKUKVPU29urI0eOXLLMkiVLlJ6eHjPtbXj6WjYPAAAAAAAAAIArFolYQ3IaLAZ0h8p70tPT5Xa75fP51NjYqJkzZ15QZuTIkRo+fLgaGhp08uRJzZgx45J5zc3NstlsGjVq1CXLVFdXq7OzM2bK/8yCa9IeAAAAAAAAAAAwuCTEc+VdXV1qbW2Nvj58+LCam5uVkZEhj8ejuro6ud1ueTwetbS0qLKyUqWlpSoqKoq+54UXXtD48ePldru1e/duVVZWasGCBbrtttskSbt379Ybb7yhadOmadiwYdq9e7cWLFigL33pSxoxYsQl6+Z0OmMGu5cke0L4Gm8BAAAAAAAAAAAwGMS1Q6WxsVHTpk2Lvq6qqpIkzZ49W6tWrZLf71dVVZXa2tqUnZ2t8vJy1dTUxGTs379f1dXVam9v15gxY/TYY49pwYI/30nidDq1du1afetb31IwGNTNN9+sBQsWRNcFAAAAAAAAAADQn7h2qBQUFCgSiVxyeUVFhSoqKi6bsXTpUi1duvSSyydNmqQ9e/Z84DoCAAAAAAAAADAQXObP6bgOBsUYKgAAAAAAAAAAAPFEhwoAAAAAAAAAAEA/6FABAAAAAAAAAADoR1zHUAEAAAAAAAAAAFcmLCveVfhIo0PlKvT1mRvxJxIOG8w2V+/eXnP1tmx9xrLDfebqLZnd5j09Jj9PY9EyuclNZvdGzN3I1xexG8uWwWOKIma/PzL4/bFsJi86zH2eVoLBbLu5bJvBetscDmPZEcvsDbwm90P7+f8/e38fH1V95///z5nJzCQhycRALrA0gO3WEEHBSM2UliIbk7pIm5Ju/axbrgS7dSdcZeuyqRQR97NRa6X620B3W0yo27RuPpWyRDc1EogFknWNpHLRRlFsVmEGrzJIgMlkZn5/+GXqLGBAeTOZ+Ljfbud2Y855zeu832fOnHMmL855O4zltjrN5Q4Hg8Zym9wPLQb3Q6vDYO7kZGO5JSkpxWksd+hUv7HcNru5777NYS63xW7umBIxeN0ZMpg7bPB3m2T2MQ8Wk5eHBreLyW0SHjD3uzBi8HsfCZvLHTb4O9yaZPY6yORvZZO/IxKW1eA+bnBUbLO/28yyWMy13WLw8zS5rwDDDd8WAAAAAAAAAACAQVBQAQAAAAAAAAAAGERcCyrPPvusZs+ercsvv1wWi0W//vWvY5b7fD4tWLBAl19+uVJTU/WVr3xFL7/8ckzMK6+8oq9//evKzs5WRkaGvvnNb8rn852xrieffFLXX3+9UlJSdNlll6m8vNxgzwAAAAAAAAAAuLgiEcuwnBJFXAsqfX19uuaaa1RbW3vGskgkovLycr366qvasmWL9uzZo7Fjx6qkpER9fX3R95eWlspisai1tVW7du1Sf3+/Zs+erfAHxg/41a9+pblz52rhwoX63e9+p127dunWW2+9ZP0EAAAAAAAAAACJLa6D0t9000266aabzrrs5ZdfVkdHh/bt26errrpKkrRhwwbl5eXpF7/4hRYvXqxdu3bptdde0549e5SRkSFJ2rRpky677DK1traqpKREAwMDWrZsmX7wgx9o0aJF0fyFhYXmOwgAAAAAAAAAAIaFITuGSiAQkCQlJydH51mtVjmdTu3cuTMaY7FY5HQ6ozHJycmyWq3RmBdeeEFvvPGGrFarpkyZotGjR+umm27Svn37LmFvAAAAAAAAAABAIhuyBZWCggLl5+erurpa7777rvr7+3X//ffr9ddf15EjRyRJxcXFGjFihFauXKkTJ06or69P3/3udxUKhaIxr776qiRpzZo1WrVqlZqamnTZZZdpxowZeuedd+LWPwAAAAAAAAAAkDiGbEHFbrfriSee0EsvvaSsrCylpqZq+/btuummm2S1vt/s7OxsNTY2auvWrUpLS5PL5VJvb6+uvfbaaMzpsVTuuusuVVRUqKioSHV1dbJYLGpsbDzn+gOBgI4dOxYzhQYC5jsOAAAAAAAAAMBZRCLDc0oUQ7agIklFRUXq6upSb2+vjhw5oubmZr399tu64oorojGlpaV65ZVXdPToUb311lt67LHH9MYbb0RjRo8eLSl2zBSn06krrrhCPT0951x3TU2NXC5XzLRn+zpDPQUAAAAAAAAAAEPZkC6onOZyuZSdna2XX35Zzz//vL72ta+dETNq1ChlZmaqtbVVR48e1Ve/+lVJ7xdlnE6nuru7o7HBYFCvvfaaxo4de851VldXy+/3x0xTblhx8TsHAAAAAAAAAACGvKR4rvz48eM6ePBg9PWhQ4fU1dWlrKws5efnq7GxUdnZ2crPz9fevXu1bNkylZeXq7S0NPqeuro6TZgwQdnZ2Wpvb9eyZcu0YsUKXXnllZKkjIwMfec739Hdd9+tT3/60xo7dqx+8IMfSJL+8i//8pxtczqdMYPdS5ItKXQxuw8AAAAAAAAAABJEXAsqzz//vG644Ybo66qqKknS/PnzVV9fryNHjqiqqko+n0+jR4/WvHnz9P3vfz8mR3d3t6qrq/XOO+9o3Lhxuuuuu7RiReydJD/4wQ+UlJSkuXPn6uTJk7r++uvV2tqqyy67zHwnAQAAAAAAAAC4CCKyxLsJn2hxLajMmDFDkQ8ZcWbp0qVaunTph+a47777dN99931ojN1u14MPPqgHH3zwI7UTAAAAAAAAAAB8siXEGCoAAAAAAAAAAADxREEFAAAAAAAAAABgEHF95BcAAAAAAAAAADg/4XOPoIFLgDtUAAAAAAAAAAAABsEdKhfAZrMYy2212YzlttnM1c0iSeZKokl2c9vE7kjcXd9ibjeUwd1QVoPtNpk7yRI2lttmCRnLHTH4YVpM7iiSLEkG2263G8utkLnP0+Q2txrc3rIY/H8bJvdxkwdaSZEE3VdMfjetEXPH2nDQ3H5ocl+xJOqJU5LF5HffIIvV4L5icJtbk8zlDgUT878/RkJm223uiCVJ5s4RJkVC5vZDm93cd3MgYPCcbPCYkshCVnPbPBwMmss9YPL6zeDvQoPtNrlNEpnFau4sYfJ6whIy+zsfGE44wwMAAAAAAAAAAAwicf+bPgAAAAAAAAAAnyCRiNk7zvHhuEMFAAAAAAAAAABgEHEtqDz77LOaPXu2Lr/8clksFv3617+OWe7z+bRgwQJdfvnlSk1N1Ve+8hW9/PLLMTGvvPKKvv71rys7O1sZGRn65je/KZ/PF12+Y8cOWSyWs07//d//fSm6CQAAAAAAAAAAElxcCyp9fX265pprVFtbe8aySCSi8vJyvfrqq9qyZYv27NmjsWPHqqSkRH19fdH3l5aWymKxqLW1Vbt27VJ/f79mz56tcPj9QaC+8IUv6MiRIzHT4sWLNX78eF133XWXtL8AAAAAAAAAACAxxXUMlZtuukk33XTTWZe9/PLL6ujo0L59+3TVVVdJkjZs2KC8vDz94he/0OLFi7Vr1y699tpr2rNnjzIyMiRJmzZt0mWXXabW1laVlJTI4XAoLy8vmjcYDGrLli1asmSJLBaeNwcAAAAAAAAAAAY3ZMdQCQQCkqTk5OToPKvVKqfTqZ07d0ZjLBaLnE5nNCY5OVlWqzUa87/9x3/8h95++20tXLjQYOsBAAAAAAAAALi4IpHhOSWKIVtQKSgoUH5+vqqrq/Xuu++qv79f999/v15//XUdOXJEklRcXKwRI0Zo5cqVOnHihPr6+vTd735XoVAoGvO/bdy4UWVlZRozZsyl7A4AAAAAAAAAAEhgQ7agYrfb9cQTT+ill15SVlaWUlNTtX37dt10002yWt9vdnZ2thobG7V161alpaXJ5XKpt7dX1157bTTmg15//XX95je/0aJFiwZdfyAQ0LFjx2Km0EDgovcTAAAAAAAAAAAMfUO2oCJJRUVF6urqUm9vr44cOaLm5ma9/fbbuuKKK6IxpaWleuWVV3T06FG99dZbeuyxx/TGG2/ExJxWV1enkSNH6qtf/eqg666pqZHL5YqZOlvXXdT+AQAAAAAAAACAxDCkCyqnuVwuZWdn6+WXX9bzzz+vr33ta2fEjBo1SpmZmWptbdXRo0fPKJpEIhHV1dVp3rx5stvtg66zurpafr8/ZiqaueKi9QkAAAAAAAAAgAsRlmVYTokiKZ4rP378uA4ePBh9fejQIXV1dSkrK0v5+flqbGxUdna28vPztXfvXi1btkzl5eUqLS2Nvqeurk4TJkxQdna22tvbtWzZMq1YsUJXXnllzLpaW1t16NAhLV68+Lza5nQ6Ywa7lyRbUvhj9BYAAAAAAAAAACSquBZUnn/+ed1www3R11VVVZKk+fPnq76+XkeOHFFVVZV8Pp9Gjx6tefPm6fvf/35Mju7ublVXV+udd97RuHHjdNddd2nFijPvJNm4caO+8IUvqKCgwGynAAAAAAAAAADAsBPXgsqMGTMUiUTOuXzp0qVaunTph+a47777dN999w26roaGhgtuHwAAAAAAAAAAgBTnggoAAAAAAAAAADg/H3J/Ai6BhBiUHgAAAAAAAAAAIJ4oqAAAAAAAAAAAAAyCggoAAAAAAAAAAMAgGEPlAgwMhI3lzhw5wljuUyeDxnJn56UZy22zWozljoTNPmzQ7rAZy52eZq4OmuwwllrJDnPbvPe4uX3lVMjcYbI/YjeWO5TqMpY7aWDAWG5JsgZOmUueZPC0Z3C7WO0G220xd0yxmGy3QeH+fqP5QydOGssdCYWM5Q4HzG2XyIC5dg/0mdveKZ/KM5Y7YvDByKH3jhvLLUlBg/t4/3snjOUOHDN3/jlxOGAsd9r4FGO5wyFz+2HEYO7jB83tg5JksZu79rQmmcttki3F3O+fk3Zz5x9HprlrFccIc9f62VdmG8ttMfg7XJJsDnPb3JaSbCy3Iz3VWO6kFKex3FaHuf3QqLC5v78lNKu5325Gf3PiootEEvN6YbjgDhUAAAAAAAAAAIBBUFABAAAAAAAAAAAYRFwLKs8++6xmz56tyy+/XBaLRb/+9a9jlvt8Pi1YsECXX365UlNT9ZWvfEUvv/xyTMwrr7yir3/968rOzlZGRoa++c1vyufzxcS89NJL+trXvqZRo0YpIyNDX/ziF7V9+3bT3QMAAAAAAAAAAMNEXAsqfX19uuaaa1RbW3vGskgkovLycr366qvasmWL9uzZo7Fjx6qkpER9fX3R95eWlspisai1tVW7du1Sf3+/Zs+erfAHnrd48803a2BgQK2trers7NQ111yjm2++WV6v95L1FQAAAAAAAAAAJK64jjh000036aabbjrrspdfflkdHR3at2+frrrqKknShg0blJeXp1/84hdavHixdu3apddee0179uxRRkaGJGnTpk267LLL1NraqpKSEr311lt6+eWXtXHjRl199dWSpPvuu0/r16/Xvn37lJdnbjBRAAAAAAAAAAAulnAk3i34ZBuyY6gEAgFJUnJycnSe1WqV0+nUzp07ozEWi0VOpzMak5ycLKvVGo0ZOXKkrrzySv3sZz9TX1+fBgYG9C//8i/KyclRUVHRJewRAAAAAAAAAABIVEO2oFJQUKD8/HxVV1fr3XffVX9/v+6//369/vrrOnLkiCSpuLhYI0aM0MqVK3XixAn19fXpu9/9rkKhUDTGYrHomWee0Z49e5Senq7k5GQ99NBDam5u1mWXXRbPLgIAAAAAAAAAgAQxZAsqdrtdTzzxhF566SVlZWUpNTVV27dv10033SSr9f1mZ2dnq7GxUVu3blVaWppcLpd6e3t17bXXRmMikYg8Ho9ycnL029/+Vs8995zKy8s1e/bsaNHlbAKBgI4dOxYzhQYCl6TvAAAAAAAAAABgaBmyBRVJKioqUldXl3p7e3XkyBE1Nzfr7bff1hVXXBGNKS0t1SuvvKKjR4/qrbfe0mOPPaY33ngjGtPa2qqmpib98pe/1LRp03Tttddq/fr1SklJ0aZNm8657pqaGrlcrphpz44fme4yAAAAAAAAAABnFYkMzylRDOmCymkul0vZ2dl6+eWX9fzzz4AF/yMAAKBbSURBVOtrX/vaGTGjRo1SZmamWltbdfToUX31q1+VJJ04cUKSonesnGa1WhUOh8+5zurqavn9/phpyozlF69TAAAAAAAAAAAgYSTFc+XHjx/XwYMHo68PHTqkrq4uZWVlKT8/X42NjcrOzlZ+fr727t2rZcuWqby8XKWlpdH31NXVacKECcrOzlZ7e7uWLVumFStW6Morr5Qkud1uXXbZZZo/f75Wr16tlJQU/eQnP9GhQ4c0a9asc7bN6XTGDHYvSbakgYu8BQAAAAAAAAAAQCKIa0Hl+eef1w033BB9XVVVJUmaP3++6uvrdeTIEVVVVcnn82n06NGaN2+evv/978fk6O7uVnV1td555x2NGzdOd911l1asWBFdPmrUKDU3N+uuu+7SzJkzFQwGddVVV2nLli265pprLk1HAQAAAAAAAABAQotrQWXGjBmKfMgD0pYuXaqlS5d+aI777rtP991334fGXHfddfrNb37zkdoIAAAAAAAAAMBQEJEl3k34REuIMVQAAAAAAAAAAADiiYIKAAAAAAAAAADAICioAAAAAAAAAAAADCKuY6gAAAAAAAAAAIDzEz73kOS4BCioXACLJTEH/DHZbpvVYG6budxWg7lNsxrc5haLuSOyRRzt/7dIxNxnGbEZPLzbbOZyS5LVXH6L3W4sdyRi8PuTZK7dliSDn6fBfcXkNrEmG0stSYoEBwwmDxtLbfT7Yw0ay221J+bx0GL6WGuQ1eR2sZq7wd5qN9duW4q5dlsMXhuafJyBuaOVZLGbvdaPBM2d80MGcxvdLidDxlLbZO67GQkZ/Cz7zW2TgYC5awmTxxTTwkFz1xMmmfwdobC5o23E4F90Te6HJtttmsXoiTlxtwtwqfHILwAAAAAAAAAAgEFQUAEAAAAAAAAAABhEXAsqzz77rGbPnq3LL79cFotFv/71r2OW+3w+LViwQJdffrlSU1P1la98RS+//HJMzCuvvKKvf/3rys7OVkZGhr75zW/K5/PFxLzwwgu68cYblZmZqZEjR+rb3/62jh8/brp7AAAAAAAAAABcNJHI8JwSRVwLKn19fbrmmmtUW1t7xrJIJKLy8nK9+uqr2rJli/bs2aOxY8eqpKREfX190feXlpbKYrGotbVVu3btUn9/v2bPnq3w//ecyMOHD6ukpESf/exn9V//9V9qbm7W/v37tWDBgkvZVQAAAAAAAAAAkMDiOij9TTfdpJtuuumsy15++WV1dHRo3759uuqqqyRJGzZsUF5enn7xi19o8eLF2rVrl1577TXt2bNHGRkZkqRNmzbpsssuU2trq0pKStTU1CS73a7a2lpZ/79BLH/84x/r6quv1sGDB/XZz3720nQWAAAAAAAAAAAkrCE7hkogEJAkJScnR+dZrVY5nU7t3LkzGmOxWOR0OqMxycnJslqtMTEOhyNaTJGklJQUSYrGAAAAAAAAAAAAfJghW1ApKChQfn6+qqur9e6776q/v1/333+/Xn/9dR05ckSSVFxcrBEjRmjlypU6ceKE+vr69N3vflehUCgaM3PmTHm9Xv3gBz9Qf3+/3n33Xf3DP/yDJEVjAAAAAAAAAAAAPsyQLajY7XY98cQTeumll5SVlaXU1FRt375dN910U/Ruk+zsbDU2Nmrr1q1KS0uTy+VSb2+vrr322mjMVVddpU2bNumHP/yhUlNTlZeXp/Hjxys3NzfmrpX/LRAI6NixYzFTaCBwSfoOAAAAAAAAAMD/Fu/B4xmUfggrKipSV1eXent7deTIETU3N+vtt9/WFVdcEY0pLS3VK6+8oqNHj+qtt97SY489pjfeeCMm5tZbb5XX69Ubb7yht99+W2vWrNGbb74ZE/O/1dTUyOVyxUx7tq8z2l8AAAAAAAAAADA0DemCymkul0vZ2dl6+eWX9fzzz+trX/vaGTGjRo1SZmamWltbdfToUX31q189IyY3N1dpaWl6/PHHlZycrBtvvPGc66yurpbf74+Zptyw4qL2CwAAAAAAAAAAJIakeK78+PHjOnjwYPT1oUOH1NXVpaysLOXn56uxsVHZ2dnKz8/X3r17tWzZMpWXl6u0tDT6nrq6Ok2YMEHZ2dlqb2/XsmXLtGLFCl155ZXRmH/+53/WF77wBaWlpamlpUV33nmn7rvvPmVmZp6zbU6nM2awe0myJYUuXucBAAAAAAAAAEDCiGtB5fnnn9cNN9wQfV1VVSVJmj9/vurr63XkyBFVVVXJ5/Np9OjRmjdvnr7//e/H5Oju7lZ1dbXeeecdjRs3TnfddZdWrIi9k+S5557T3XffrePHj6ugoED/8i//orlz55rvIAAAAAAAAAAAF0k4Yol3Ez7R4lpQmTFjhiIfMuLM0qVLtXTp0g/Ncd999+m+++770Jif/exnH6l9AAAAAAAAAAAAUoKMoQIAAAAAAAAAAHBabW2txo0bp+TkZF1//fV67rnnzhlbX18vi8USMyUnJ1/wOimoAAAAAAAAAACAhPH444+rqqpKd999t1544QVdc801Kisr09GjR8/5noyMDB05ciQ6/fGPf7zg9VJQAQAAAAAAAAAgAUQiw3O6UA899JBuv/12LVy4UIWFhfrxj3+s1NRUPfroo+d8j8ViUV5eXnTKzc294PVSUAEAAAAAAAAAAAmhv79fnZ2dKikpic6zWq0qKSlRe3v7Od93/PhxjR07Vp/+9Kf1ta99Tfv377/gdcd1UPpEMzAQMpbbYjX3UYRCYWO5TYp8lNLkeec2llqSZLVYjOUOh801Phw21+5QxFzu4ICx1IoYbHc4Yq6mHbY5zOVOMpdbkqx2u7HclrC547iSzLVbYYPHcau5/dBicJtYHGb3Q5MsNpu53Ca/PwbbbXIftyYZ3N4mP8sE3d6SZDG5za3mzstGc9sN5rYZPI4b3A0lc+dka5K57S1JoaDhHxOGRAy22+RRxTJgrt2hk+ZabrEZ/B0xYPK8afb/3UYM/p6NGPybDS4to/uJ4esgkywG/2aTuFsFw0kgEFAgEIiZ53Q65XQ6z4h96623FAqFzrjDJDc3V3/4wx/Omv/KK6/Uo48+qquvvlp+v18PPvigvvCFL2j//v0aM2bMebeTO1QAAAAAAAAAAEDc1NTUyOVyxUw1NTUXLb/b7da8efM0efJkffnLX9YTTzyh7Oxs/cu//MsF5eEOFQAAAAAAAAAAEoDpJ+/ES3V1taqqqmLmne3uFEkaNWqUbDabfD5fzHyfz6e8vLzzWp/dbteUKVN08ODBC2ond6gAAAAAAAAAAIC4cTqdysjIiJnOVVBxOBwqKirStm3bovPC4bC2bdsmt9t9XusLhULau3evRo8efUHtjGtBpaamRlOnTlV6erpycnJUXl6u7u7umJhTp07J4/Fo5MiRSktLU0VFxRmVp56eHs2aNUupqanKycnRnXfeqYGB2EEVduzYoWuvvVZOp1Of/exnVV9fb7p7AAAAAAAAAADgIquqqtJPfvITbdq0Sb///e91xx13qK+vTwsXLpQkzZs3T9XV1dH4tWvX6umnn9arr76qF154Qd/61rf0xz/+UYsXL76g9ca1oNLW1iaPx6OOjg61tLQoGAyqtLRUfX190ZgVK1Zo69atamxsVFtbmw4fPqw5c+ZEl4dCIc2aNUv9/f3avXu3Nm3apPr6eq1evToac+jQIc2aNUs33HCDurq6tHz5ci1evFi/+c1vLml/AQAAAAAAAADAx3PLLbfowQcf1OrVqzV58mR1dXWpubk5OlB9T0+Pjhw5Eo1/9913dfvtt2vChAn6i7/4Cx07dky7d+9WYWHhBa3XEokMnaeuvfnmm8rJyVFbW5umT58uv9+v7OxsNTQ06Bvf+IYk6Q9/+IMmTJig9vZ2FRcX6z//8z9188036/Dhw9GN9eMf/1grV67Um2++KYfDoZUrV+rJJ5/Uvn37ouv6P//n/6i3t1fNzc3n3b7F//eti9vhD7A7zA1nMxAMGct9+ZgMY7mtBst9774bMJdcksNuM5b7059ONpbblWYxljs1OWws99t+czvLZ/LM7SuZzhPGcv9ZX6ex3Pb3zB0LJcn67lFzyQOnjKWOBAcGD/qoufsNHrMMHmwtSXZzuR0OY7kj/f3GcktS6NgxY7nDBttusZk7t0WCQWO5g8eOG8ud+plxxnKH3jPXbpPbW5L6/e8Zy33C+7ax3G92+wYP+oj8Pea2idNl7nhoUtjgb5Tjh04ayy1JoZPmrmsTlcVu7neELcXc+ceebi53Upq53NlXjjKW25pk9v/dJjnN/e0j84oLe2TLheh/z9xvN1uyueO4zW5ue0fCQ+bPiRckEk7cY7g1ydxxxeTvwpGr/9VY7k+qhp2J+f0bzK1fNHc9cTENqTFU/H6/JCkrK0uS1NnZqWAwqJKSkmhMQUGB8vPz1d7eLklqb2/XpEmTosUUSSorK9OxY8e0f//+aMwHc5yOOZ0DAAAAAAAAAIChLhwZnlOiGDIFlXA4rOXLl2vatGmaOHGiJMnr9crhcCgzMzMmNjc3V16vNxrzwWLK6eWnl31YzLFjx3TypNn/vQQAAAAAAAAAABKfuXv/LpDH49G+ffu0c+fOeDdFkhQIBBQIxD5iJTQQkC3JGacWAQAAAAAAAACAeBkSd6hUVlaqqalJ27dv15gxY6Lz8/Ly1N/fr97e3ph4n8+nvLy8aIzP5ztj+ellHxaTkZGhlJSUs7appqZGLpcrZvpd28Mfq58AAAAAAAAAACAxxbWgEolEVFlZqc2bN6u1tVXjx4+PWV5UVCS73a5t27ZF53V3d6unp0dut1uS5Ha7tXfvXh09+qdBjFtaWpSRkaHCwsJozAdznI45neNsqqur5ff7Y6ZrvrzsY/cZAAAAAAAAAICPIhKxDMspUcT1kV8ej0cNDQ3asmWL0tPTo2OeuFwupaSkyOVyadGiRaqqqlJWVpYyMjK0ZMkSud1uFRcXS5JKS0tVWFiouXPn6oEHHpDX69WqVavk8XjkdL7/eK7vfOc7+ud//mf9/d//vW677Ta1trbq3//93/Xkk0+es21OpzP6/tNsSf2GtgQAAAAAAAAAABjK4nqHyoYNG+T3+zVjxgyNHj06Oj3++OPRmHXr1unmm29WRUWFpk+frry8PD3xxBPR5TabTU1NTbLZbHK73frWt76lefPmae3atdGY8ePH68knn1RLS4uuueYa/fCHP9RPf/pTlZWVXdL+AgAAAAAAAACAxBTXO1QikcigMcnJyaqtrVVtbe05Y8aOHaunnnrqQ/PMmDFDe/bsueA2AgAAAAAAAAAAxLWgAgAAAAAAAAAAzs953KMAg+L6yC8AAAAAAAAAAIBEQEEFAAAAAAAAAABgEBRUAAAAAAAAAAAABsEYKhfAYrEYyx0JJ+bD74LBsLHcSUnmtncoZK7dkhSymWt7okrU5ztaLOYabjJ3xJLA9XKTx0OrzWDukMHcBj9Pg+c2WQ3mNthui83gfmI4v8lrFYvd3GVjJGTw+4MzWJLM7uNWk/u4wdw2u7ljrc1pLrfV4HVnOJSgF3CGWewGfxcGE3Obm2x3JMncb7fQSXOfpS3F3Pd+IDBgLLctnLi/I0KBfmO5wwPmrlVsYXP7uMl2Rwz+yDd5TWuaye1i8m+HFpn9OxkurgT9M/KwkbhnSgAAAAAAAAAAgEuEggoAAAAAAAAAAMAg4lpQqamp0dSpU5Wenq6cnByVl5eru7s7JubUqVPyeDwaOXKk0tLSVFFRIZ/PFxPT09OjWbNmKTU1VTk5Obrzzjs1MPCnW2CPHDmiW2+9VZ/73OdktVq1fPnyS9E9AAAAAAAAAAAwTMS1oNLW1iaPx6OOjg61tLQoGAyqtLRUfX190ZgVK1Zo69atamxsVFtbmw4fPqw5c+ZEl4dCIc2aNUv9/f3avXu3Nm3apPr6eq1evToaEwgElJ2drVWrVumaa665pH0EAAAAAAAAAACJL66D0jc3N8e8rq+vV05Ojjo7OzV9+nT5/X5t3LhRDQ0NmjlzpiSprq5OEyZMUEdHh4qLi/X000/rwIEDeuaZZ5Sbm6vJkyfr3nvv1cqVK7VmzRo5HA6NGzdODz/8sCTp0UcfveT9BAAAAAAAAADg44owKH1cDakxVPx+vyQpKytLktTZ2algMKiSkpJoTEFBgfLz89Xe3i5Jam9v16RJk5SbmxuNKSsr07Fjx7R///5L2HoAAAAAAAAAADBcDZmCSjgc1vLlyzVt2jRNnDhRkuT1euVwOJSZmRkTm5ubK6/XG435YDHl9PLTywAAAAAAAAAAAD6uuD7y64M8Ho/27dunnTt3xrspkt4fdyUQCMTMCw0EZEtyxqlFAAAAAAAAAAAgXobEHSqVlZVqamrS9u3bNWbMmOj8vLw89ff3q7e3Nybe5/MpLy8vGuPz+c5YfnrZR1VTUyOXyxUzdbX96CPnAwAAAAAAAADg44hEhueUKOJaUIlEIqqsrNTmzZvV2tqq8ePHxywvKiqS3W7Xtm3bovO6u7vV09Mjt9stSXK73dq7d6+OHj0ajWlpaVFGRoYKCws/ctuqq6vl9/tjpslfXv6R8wEAAAAAAAAAgMQV10d+eTweNTQ0aMuWLUpPT4+OeeJyuZSSkiKXy6VFixapqqpKWVlZysjI0JIlS+R2u1VcXCxJKi0tVWFhoebOnasHHnhAXq9Xq1atksfjkdP5p8dzdXV1SZKOHz+uN998U11dXXI4HOcsujidzpj3S5ItKWhgKwAAAAAAAAAAgKEurgWVDRs2SJJmzJgRM7+urk4LFiyQJK1bt05Wq1UVFRUKBAIqKyvT+vXro7E2m01NTU2644475Ha7NWLECM2fP19r166NyTllypTovzs7O9XQ0KCxY8fqtddeM9I3AAAAAAAAAAAwfMS1oBI5j4ejJScnq7a2VrW1teeMGTt2rJ566qmPvS4AAAAAAAAAAIaqMH/mjqshMSg9AAAAAAAAAADAUEZBBQAAAAAAAAAAYBAUVAAAAAAAAAAAAAYR1zFUAAAAAAAAAADA+WGo8PiioHIBTA5sn6i5wwZHQQpHLMZyDwTDxnJLUlKSuZu/wmabnpCsCXqvnUWcAc/Kau67r0ii7izmtonF4BfIYrMZy230i29yHzSd3+TnaUnQ74/JfcXkNjG5n4QNf5YG224xmtvcdrHaEnObmNxTIiFz7balGDz/SNLJkLHUJi/1I8HEvPYMD5hrt8Vg7tBJc59meMDcPmiaxWpuu4T6B4zljoRMfp7mcifo1ZsiifojX1LE4PfT5DnCEjb8GwgYRhL3CAUAAAAAAAAAAHCJUFABAAAAAAAAAAAYRFwLKjU1NZo6darS09OVk5Oj8vJydXd3x8ScOnVKHo9HI0eOVFpamioqKuTz+WJienp6NGvWLKWmpionJ0d33nmnBgb+dKvnE088oRtvvFHZ2dnKyMiQ2+3Wb37zm0vSRwAAAAAAAAAALoZweHhOiSKuBZW2tjZ5PB51dHSopaVFwWBQpaWl6uvri8asWLFCW7duVWNjo9ra2nT48GHNmTMnujwUCmnWrFnq7+/X7t27tWnTJtXX12v16tXRmGeffVY33nijnnrqKXV2duqGG27Q7NmztWfPnkvaXwAAAAAAAAAAkJjiOih9c3NzzOv6+nrl5OSos7NT06dPl9/v18aNG9XQ0KCZM2dKkurq6jRhwgR1dHSouLhYTz/9tA4cOKBnnnlGubm5mjx5su69916tXLlSa9askcPh0I9+9KOY9fzTP/2TtmzZoq1bt2rKlCmXqrsAAAAAAAAAACBBDakxVPx+vyQpKytLktTZ2algMKiSkpJoTEFBgfLz89Xe3i5Jam9v16RJk5SbmxuNKSsr07Fjx7R///6zriccDuu9996LrgcAAAAAAAAAAODDDJmCSjgc1vLlyzVt2jRNnDhRkuT1euVwOJSZmRkTm5ubK6/XG435YDHl9PLTy87mwQcf1PHjx/XNb37zIvcCAAAAAAAAAAAMR3F95NcHeTwe7du3Tzt37jS6noaGBt1zzz3asmWLcnJyzhkXCAQUCARi5oUGArIlOY22DwAAAAAAAACAs4lE4t2CT7YhcYdKZWWlmpqatH37do0ZMyY6Py8vT/39/ert7Y2J9/l8ysvLi8b4fL4zlp9e9kG//OUvtXjxYv37v/97zGPEzqampkYulytm+l3bwx+1iwAAAAAAAAAAIIHFtaASiURUWVmpzZs3q7W1VePHj49ZXlRUJLvdrm3btkXndXd3q6enR263W5Lkdru1d+9eHT16NBrT0tKijIwMFRYWRuf94he/0MKFC/WLX/xCs2bNGrRt1dXV8vv9MdM1X172cbsMAAAAAAAAAAASUFwf+eXxeNTQ0KAtW7YoPT09OuaJy+VSSkqKXC6XFi1apKqqKmVlZSkjI0NLliyR2+1WcXGxJKm0tFSFhYWaO3euHnjgAXm9Xq1atUoej0dO5/uP52poaND8+fP18MMP6/rrr4+u5/Q6zsbpdEbff5otqd/UpgAAAAAAAAAAAENYXO9Q2bBhg/x+v2bMmKHRo0dHp8cffzwas27dOt18882qqKjQ9OnTlZeXpyeeeCK63GazqampSTabTW63W9/61rc0b948rV27Nhrzr//6rxoYGJDH44lZz7Jl3HECAAAAAAAAAEgMkcjwnBJFXO9QiZzHlkpOTlZtba1qa2vPGTN27Fg99dRT51y+Y8eOj9I8AAAAAAAAAAAASUNkUHoAAAAAAAAAAIChjIIKAAAAAAAAAADAIOL6yC8AAAAAAAAAAHB+wgk03shwxB0qAAAAAAAAAAAAg6CgAgAAAAAAAAAAMAge+XUBIgbvp7Kn2IzlDp8y126r1WIst8ntbVo4lJhtD4VN5ja3r4QNtjsYMld3DkcM5rbZjeWW1dzxSpJkMVjrN9h0i91hLrfJbWLwOC6701xukwzv4xabufwWu8FLO4P7isVicD80yOT2ttrNHcfDwaCx3JJkTTK3jyclGzzWmtzHDea2pxrcVwZCxnLb7ObObSft/cZyS5LN4AWFZcDc74hIkrmL5rDJdgfN5Q7J3D5uTTL3vQ8FDf4AMmzAYG6Tf0MI9Zs7d1psJv+vs7lzhMlzm8LmvptG2w3gE4GCCgAAAAAAAAAACSASScz/yD24xCh48sgvAAAAAAAAAACAQcS1oFJTU6OpU6cqPT1dOTk5Ki8vV3d3d0zMqVOn5PF4NHLkSKWlpamiokI+ny8mpqenR7NmzVJqaqpycnJ05513amDgTzeS7ty5U9OmTdPIkSOVkpKigoICrVu37pL0EQAAAAAAAAAAJL64FlTa2trk8XjU0dGhlpYWBYNBlZaWqq+vLxqzYsUKbd26VY2NjWpra9Phw4c1Z86c6PJQKKRZs2apv79fu3fv1qZNm1RfX6/Vq1dHY0aMGKHKyko9++yz+v3vf69Vq1Zp1apV+td//ddL2l8AAAAAAAAAAJCY4jqGSnNzc8zr+vp65eTkqLOzU9OnT5ff79fGjRvV0NCgmTNnSpLq6uo0YcIEdXR0qLi4WE8//bQOHDigZ555Rrm5uZo8ebLuvfderVy5UmvWrJHD4dCUKVM0ZcqU6HrGjRunJ554Qr/97W/17W9/+5L2GQAAAAAAAAAAJJ4hNYaK3++XJGVlZUmSOjs7FQwGVVJSEo0pKChQfn6+2tvbJUnt7e2aNGmScnNzozFlZWU6duyY9u/ff9b17NmzR7t379aXv/xlU10BAAAAAAAAAOCiikSG55Qo4nqHygeFw2EtX75c06ZN08SJEyVJXq9XDodDmZmZMbG5ubnyer3RmA8WU04vP73sg8aMGaM333xTAwMDWrNmjRYvXmyoNwAAAAAAAAAAYDgZMgUVj8ejffv2aefOncbW8dvf/lbHjx9XR0eH/uEf/kGf/exn9Vd/9VdnjQ0EAgoEAjHzQgMB2ZKcxtoHAAAAAAAAAACGpiHxyK/Kyko1NTVp+/btGjNmTHR+Xl6e+vv71dvbGxPv8/mUl5cXjfH5fGcsP73sg8aPH69Jkybp9ttv14oVK7RmzZpztqmmpkYulytm+t2zD3+MXgIAAAAAAAAAgEQV14JKJBJRZWWlNm/erNbWVo0fPz5meVFRkex2u7Zt2xad193drZ6eHrndbkmS2+3W3r17dfTo0WhMS0uLMjIyVFhYeM51h8PhM+5A+aDq6mr5/f6Y6Zrpyz5qVwEAAAAAAAAA+FjC4eE5JYq4PvLL4/GooaFBW7ZsUXp6enTME5fLpZSUFLlcLi1atEhVVVXKyspSRkaGlixZIrfbreLiYklSaWmpCgsLNXfuXD3wwAPyer1atWqVPB6PnM73H89VW1ur/Px8FRQUSJKeffZZPfjgg1q6dOk52+Z0OqPvP82WdO4CDAAAAAAAAAAAGL7iWlDZsGGDJGnGjBkx8+vq6rRgwQJJ0rp162S1WlVRUaFAIKCysjKtX78+Gmuz2dTU1KQ77rhDbrdbI0aM0Pz587V27dpoTDgcVnV1tQ4dOqSkpCR95jOf0f3336+/+Zu/Md5HAAAAAAAAAACQ+OJaUIlEIoPGJCcnq7a2VrW1teeMGTt2rJ566qlzLl+yZImWLFnykdoIAAAAAAAAAAAQ14IKAAAAAAAAAAA4P+dxjwIMiuug9AAAAAAAAAAAAImAggoAAAAAAAAAAMAgKKgAAAAAAAAAAAAMgjFULkAoFDaWO9gfMpY7FDSXu99gu202i7HcAwa3iSRZzTVdBndDo89gDCdou02KyNyOErI5jOUO253GckuS1W6u7Qob/O6HDe6IJndyi8EDVpLBywyrwf8TErKZyy3J4jD3HbIa3FcsDnPfzUjI3HczKcXgMSvJbjC3ue+P1WZ2H48EB4zlThqRYiy3Y4S5fdyZYS53ktPcvhKxmzvWDgTMfe8dmWZ/5kZC5o61oZPmLppDJ82d8y0DBreJzO0rkaDJz9Lgb/yAueNseMDgtaEka5LBfTzQbyz3wKmgsdwmRQz+AcFqN3esDQ+Y+/5YTP7BxjCLwd9A1iSz14e4uEz++QGD4w4VAAAAAAAAAACAQVBQAQAAAAAAAAAAGERcCyo1NTWaOnWq0tPTlZOTo/LycnV3d8fEnDp1Sh6PRyNHjlRaWpoqKirk8/liYnp6ejRr1iylpqYqJydHd955pwYGzn4L7K5du5SUlKTJkyeb6hYAAAAAAAAAABhm4lpQaWtrk8fjUUdHh1paWhQMBlVaWqq+vr5ozIoVK7R161Y1Njaqra1Nhw8f1pw5c6LLQ6GQZs2apf7+fu3evVubNm1SfX29Vq9efcb6ent7NW/ePP35n//5JekfAAAAAAAAAAAXSyQyPKdEEddB6Zubm2Ne19fXKycnR52dnZo+fbr8fr82btyohoYGzZw5U5JUV1enCRMmqKOjQ8XFxXr66ad14MABPfPMM8rNzdXkyZN17733auXKlVqzZo0cHxhA9Tvf+Y5uvfVW2Ww2/frXv76UXQUAAAAAAAAAAAlsSI2h4vf7JUlZWVmSpM7OTgWDQZWUlERjCgoKlJ+fr/b2dklSe3u7Jk2apNzc3GhMWVmZjh07pv3790fn1dXV6dVXX9Xdd999KboCAAAAAAAAAACGkbjeofJB4XBYy5cv17Rp0zRx4kRJktfrlcPhUGZmZkxsbm6uvF5vNOaDxZTTy08vk6SXX35Z//AP/6Df/va3SkoaMl0GAAAAAAAAAAAJYshUFzwej/bt26edO3de1LyhUEi33nqr7rnnHn3uc5877/cFAgEFAoHYXAMB2ZKcF7V9AAAAAAAAAABg6BsSj/yqrKxUU1OTtm/frjFjxkTn5+Xlqb+/X729vTHxPp9PeXl50Rifz3fG8tPL3nvvPT3//POqrKxUUlKSkpKStHbtWv3ud79TUlKSWltbz9qmmpoauVyumGnvzkcuYq8BAAAAAAAAADh/kXBkWE6JIq4FlUgkosrKSm3evFmtra0aP358zPKioiLZ7XZt27YtOq+7u1s9PT1yu92SJLfbrb179+ro0aPRmJaWFmVkZKiwsFAZGRnau3evurq6otN3vvMdXXnllerq6tL1119/1rZVV1fL7/fHTJO+uNTAVgAAAAAAAAAAAENdXB/55fF41NDQoC1btig9PT065onL5VJKSopcLpcWLVqkqqoqZWVlKSMjQ0uWLJHb7VZxcbEkqbS0VIWFhZo7d64eeOABeb1erVq1Sh6PR07n+4/nOj0my2k5OTlKTk4+Y/4HOZ3O6PtPsyWdvJjdBwAAAAAAAAAACSKuBZUNGzZIkmbMmBEzv66uTgsWLJAkrVu3TlarVRUVFQoEAiorK9P69eujsTabTU1NTbrjjjvkdrs1YsQIzZ8/X2vXrr1U3QAAAAAAAAAAAMNcXAsqkcjgz0ZLTk5WbW2tamtrzxkzduxYPfXUU+e93jVr1mjNmjXnHQ8AAAAAAAAAQLwl0HAjw9KQGJQeAAAAAAAAAABgKKOgAgAAAAAAAAAAMAgKKgAAAAAAAAAAAIOI6xgqAAAAAAAAAADg/JzHsOQwiILKBYgYHPEnGBgwljtwKmgst0lJSYl7A1WS3WYst8NuLLWSzDVbSTZz3x+LxWIsd5LVXLuTrOa+92GrucN7xGb41JFkcCeXwdz9/eZyG9zHZU3QY60j2VzuAcPnTavBz9PgvmJxOMzlPnHSXG6bwZObxdz3x2Lyu2lym0iyGtxXbE5zuZOc5s5v9hRz558kp7nPMxJOzH3cMcLktYQU6g8Zy22xmTuO21LMbfPQybCx3NYkc9skdNLcZ2lym5jcT6wmfxQaFuo39/sKZ4qEze3jJv9aHDHYbEmKhAyeIwyeO8MD5toNDDcJ+lcUAAAAAAAAAACAS4eCCgAAAAAAAAAAwCDiWlCpqanR1KlTlZ6erpycHJWXl6u7uzsm5tSpU/J4PBo5cqTS0tJUUVEhn88XE9PT06NZs2YpNTVVOTk5uvPOOzUw8KdbPXfs2CGLxXLG5PV6L0k/AQAAAAAAAAD4uMLhyLCcEkVcCyptbW3yeDzq6OhQS0uLgsGgSktL1dfXF41ZsWKFtm7dqsbGRrW1tenw4cOaM2dOdHkoFNKsWbPU39+v3bt3a9OmTaqvr9fq1avPWF93d7eOHDkSnXJyci5JPwEAAAAAAAAAQGKL66D0zc3NMa/r6+uVk5Ojzs5OTZ8+XX6/Xxs3blRDQ4NmzpwpSaqrq9OECRPU0dGh4uJiPf300zpw4ICeeeYZ5ebmavLkybr33nu1cuVKrVmzRo4PDIqZk5OjzMzMS9lFAAAAAAAAAAAwDAypMVT8fr8kKSsrS5LU2dmpYDCokpKSaExBQYHy8/PV3t4uSWpvb9ekSZOUm5sbjSkrK9OxY8e0f//+mPyTJ0/W6NGjdeONN2rXrl2muwMAAAAAAAAAAIaJIVNQCYfDWr58uaZNm6aJEydKkrxerxwOxxl3leTm5kbHP/F6vTHFlNPLTy+TpNGjR+vHP/6xfvWrX+lXv/qVPv3pT2vGjBl64YUXDPcKAAAAAAAAAAAMB3F95NcHeTwe7du3Tzt37rzoua+88kpdeeWV0ddf+MIX9Morr2jdunV67LHHzvqeQCCgQCAQMy80EJAtyXnR2wcAAAAAAAAAwGAiiTN++7A0JO5QqaysVFNTk7Zv364xY8ZE5+fl5am/v1+9vb0x8T6fT3l5edEYn893xvLTy87l85//vA4ePHjO5TU1NXK5XDHT3l3/vwvtGgAAAAAAAAAAGAbiWlCJRCKqrKzU5s2b1draqvHjx8csLyoqkt1u17Zt26Lzuru71dPTI7fbLUlyu93au3evjh49Go1paWlRRkaGCgsLz7nurq4ujR49+pzLq6ur5ff7Y6ZJ05Z81K4CAAAAAAAAAIAEFtdHfnk8HjU0NGjLli1KT0+PjnnicrmUkpIil8ulRYsWqaqqSllZWcrIyNCSJUvkdrtVXFwsSSotLVVhYaHmzp2rBx54QF6vV6tWrZLH45HT+f7juX70ox9p/Pjxuuqqq3Tq1Cn99Kc/VWtrq55++ulzts3pdEbff5ot6YShLQEAAAAAAAAAAIayuBZUNmzYIEmaMWNGzPy6ujotWLBAkrRu3TpZrVZVVFQoEAiorKxM69evj8babDY1NTXpjjvukNvt1ogRIzR//nytXbs2GtPf36+/+7u/0xtvvKHU1FRdffXVeuaZZ3TDDTcY7yMAAAAAAAAAABcDY6jEV1wLKpHz+PSTk5NVW1ur2trac8aMHTtWTz311DmX//3f/73+/u///iO1EQAAAAAAAAAAYEgMSg8AAAAAAAAAADCUUVABAAAAAAAAAAAYRFwf+QUAAAAAAAAAAM5PmEFU4oo7VAAAAAAAAAAAAAZBQQUAAAAAAAAAAGAQPPLrApx476Sx3BarxVjuy7IzjOU+/Md3jOXuP9lvLLcjxWEstyT98fc9xnKnpE4wlnvUSHPbJSXFXP12RIqx1Oo9aTeW22Ez1/Cg3Wksd9hm9vujSNhc7uPHzOVOM3es1UDQXG6Lue9mJGWEsdyWk33Gcstq+P+bjM43ltpqcrv0vWcstS07x1zuzICx3EoydyltcRg81maZ296SZLO/bSy3xWluu6QfO24styMt2VjuE2+ba3d4wOA52aDsK7ON5h8IDBjLbXKbm213yFjuUNDcNgkZ3CYWm7nf+L7d5n6HW+zm2i1J1iRz+Ud+ZpSx3O95zf2OsDnMXU8kOc3ldowwd042ebwy+fc3SXLlmzsHWZJsxnIDOH8UVAAAAAAAAAAASAAm/x8qBscjvwAAAAAAAAAAAAYR14JKTU2Npk6dqvT0dOXk5Ki8vFzd3d0xMadOnZLH49HIkSOVlpamiooK+Xy+mJienh7NmjVLqampysnJ0Z133qmBgdjbAwOBgO666y6NHTtWTqdT48aN06OPPmq8jwAAAAAAAAAAIPHF9ZFfbW1t8ng8mjp1qgYGBvS9731PpaWlOnDggEaMeP+56ytWrNCTTz6pxsZGuVwuVVZWas6cOdq1a5ckKRQKadasWcrLy9Pu3bt15MgRzZs3T3a7Xf/0T/8UXdc3v/lN+Xw+bdy4UZ/97Gd15MgRhcPcHwUAAAAAAAAAAAYX14JKc3NzzOv6+nrl5OSos7NT06dPl9/v18aNG9XQ0KCZM2dKkurq6jRhwgR1dHSouLhYTz/9tA4cOKBnnnlGubm5mjx5su69916tXLlSa9askcPhUHNzs9ra2vTqq68qKytLkjRu3LhL3V0AAAAAAAAAAJCghtQYKn6/X5KiRY/Ozk4Fg0GVlJREYwoKCpSfn6/29nZJUnt7uyZNmqTc3NxoTFlZmY4dO6b9+/dLkv7jP/5D1113nR544AF96lOf0uc+9zl997vf1cmTJy9V1wAAAAAAAAAA+FgikciwnBJFXO9Q+aBwOKzly5dr2rRpmjhxoiTJ6/XK4XAoMzMzJjY3N1derzca88Fiyunlp5dJ0quvvqqdO3cqOTlZmzdv1ltvvaW//du/1dtvv626ujrDPQMAAAAAAAAAAIluyBRUPB6P9u3bp507d1703OFwWBaLRT//+c/lcrkkSQ899JC+8Y1vaP369UpJSTnjPYFAQIFAIGZeaCAgW5LzorcPAAAAAAAAAAAMbUPikV+VlZVqamrS9u3bNWbMmOj8vLw89ff3q7e3Nybe5/MpLy8vGuPz+c5YfnqZJI0ePVqf+tSnosUUSZowYYIikYhef/31s7appqZGLpcrZvrDf2/42H0FAAAAAAAAAACJJ64FlUgkosrKSm3evFmtra0aP358zPKioiLZ7XZt27YtOq+7u1s9PT1yu92SJLfbrb179+ro0aPRmJaWFmVkZKiwsFCSNG3aNB0+fFjHjx+Pxrz00kuyWq0xBZwPqq6ult/vj5kKpt5x0foOAAAAAAAAAMCFCIeH55Qo4lpQ8Xg8+rd/+zc1NDQoPT1dXq9XXq83Oli8y+XSokWLVFVVpe3bt6uzs1MLFy6U2+1WcXGxJKm0tFSFhYWaO3eufve73+k3v/mNVq1aJY/HI6fz/cdz3XrrrRo5cqQWLlyoAwcO6Nlnn9Wdd96p22677ayP+5Ikp9OpjIyMmInHfQEAAAAAAAAA8MkU14LKhg0b5Pf7NWPGDI0ePTo6Pf7449GYdevW6eabb1ZFRYWmT5+uvLw8PfHEE9HlNptNTU1Nstlscrvd+ta3vqV58+Zp7dq10Zi0tDS1tLSot7dX1113nf76r/9as2fP1iOPPHJJ+wsAAAAAAAAAABJTXAelj0Qig8YkJyertrZWtbW154wZO3asnnrqqQ/NU1BQoJaWlgtuIwAAAAAAAAAAQFwLKgAAAAAAAAAA4Pycz00KMCeuj/wCAAAAAAAAAABIBBRUAAAAAAAAAAAABkFBBQAAAAAAAAAAYBCMoXIBrDZz9Ser1WIut8F2J9ltxnIPBM2122Ixt70lyWYzt11wJoNfn4QVtCUbyx2xGj51JNnJfSlZzR2vIkkOY7ktSf3GcsvwMTxht4vDaS63SRGD302T+4rJ76bhfdxiN7fNLQ6D3x+D14cWq8HrWpO/I5IS8//fmdwmpvOb3Oa2cGJ+niaFB0x+luaOtRa7uXZHgmafyx82mDsSTswxBUy2OxI2t8XDIXPtDg+Ya7fpc0Sof8BYbmuC7uO4+NgV4osrKgAAAAAAAAAAgEFQUAEAAAAAAAAAABhEXAsqNTU1mjp1qtLT05WTk6Py8nJ1d3fHxJw6dUoej0cjR45UWlqaKioq5PP5YmJ6eno0a9YspaamKicnR3feeacGBv50i92CBQtksVjOmK666qpL0k8AAAAAAAAAAJDY4lpQaWtrk8fjUUdHh1paWhQMBlVaWqq+vr5ozIoVK7R161Y1Njaqra1Nhw8f1pw5c6LLQ6GQZs2apf7+fu3evVubNm1SfX29Vq9eHY15+OGHdeTIkej0P//zP8rKytJf/uVfXtL+AgAAAAAAAADwUUXCkWE5JYq4Dkrf3Nwc87q+vl45OTnq7OzU9OnT5ff7tXHjRjU0NGjmzJmSpLq6Ok2YMEEdHR0qLi7W008/rQMHDuiZZ55Rbm6uJk+erHvvvVcrV67UmjVr5HA45HK55HK5ouv59a9/rXfffVcLFy68pP0FAAAAAAAAAACJaUiNoeL3+yVJWVlZkqTOzk4Fg0GVlJREYwoKCpSfn6/29nZJUnt7uyZNmqTc3NxoTFlZmY4dO6b9+/efdT0bN25USUmJxo4da6orAAAAAAAAAABgGInrHSofFA6HtXz5ck2bNk0TJ06UJHm9XjkcDmVmZsbE5ubmyuv1RmM+WEw5vfz0sv/t8OHD+s///E81NDQY6AUAAAAAAAAAABiOhkxBxePxaN++fdq5c6fR9WzatEmZmZkqLy//0LhAIKBAIBAzLzQQkC3JabB1AAAAAAAAAABgKBoSj/yqrKxUU1OTtm/frjFjxkTn5+Xlqb+/X729vTHxPp9PeXl50Rifz3fG8tPLPigSiejRRx/V3Llz5XA4PrRNNTU10bFXTk+/f279R+0iAAAAAAAAAAAfSyQyPKdEEdeCSiQSUWVlpTZv3qzW1laNHz8+ZnlRUZHsdru2bdsWndfd3a2enh653W5Jktvt1t69e3X06NFoTEtLizIyMlRYWBiTr62tTQcPHtSiRYsGbVt1dbX8fn/MNOHzf/txugsAAAAAAAAAABJUXB/55fF41NDQoC1btig9PT065onL5VJKSopcLpcWLVqkqqoqZWVlKSMjQ0uWLJHb7VZxcbEkqbS0VIWFhZo7d64eeOABeb1erVq1Sh6PR05n7OO5Nm7cqOuvvz46RsuHcTqdZ7zflvTuReo5AAAAAAAAAABIJHEtqGzYsEGSNGPGjJj5dXV1WrBggSRp3bp1slqtqqioUCAQUFlZmdav/9Ojt2w2m5qamnTHHXfI7XZrxIgRmj9/vtauXRuT0+/361e/+pUefvhho30CAAAAAAAAAADDT1wLKpHzeDhacnKyamtrVVtbe86YsWPH6qmnnvrQPC6XSydOnLjgNgIAAAAAAAAAMBSEwwk04MgwNCQGpQcAAAAAAAAAADhftbW1GjdunJKTk3X99dfrueeeO6/3/fKXv5TFYlF5efkFr5OCCgAAAAAAAAAASBiPP/64qqqqdPfdd+uFF17QNddco7KyMh09evRD3/faa6/pu9/9rr70pS99pPVSUAEAAAAAAAAAAAnjoYce0u23366FCxeqsLBQP/7xj5WamqpHH330nO8JhUL667/+a91zzz264oorPtJ6KagAAAAAAAAAAJAAIpHIsJwCgYCOHTsWMwUCgbNug/7+fnV2dqqkpCQ6z2q1qqSkRO3t7efcdmvXrlVOTo4WLVr0kbd/XAelTzTB/qCx3FaLudpWsH/AWG6TgyCFB8LmcttCxnJLUjhiru1JdnP7itNpMZY7yWYstZJsiTkYl81irt0hmdvgYZvZU0fEYm4/tNjMbZeI1Vxui9XcMUVWc8eUSJLdWG4Z/CyBIcHgd9MSMXzeNHh9aLE7jOW2GrxYsdrNnTuTnOZyRwx+liGruetxmyNxf+aa3OYmmbxWMfdrVrImGbzGMsiaZO562fQWiQQTcx8Phwye2wx+f0JBc/tKssG/TQRPmNwTzf7f8vCA2b83AcNZTU2N7rnnnph5d999t9asWXNG7FtvvaVQKKTc3NyY+bm5ufrDH/5w1vw7d+7Uxo0b1dXV9bHambhXmgAAAAAAAAAAIOFVV1erqqoqZp7T6bwoud977z3NnTtXP/nJTzRq1KiPlYuCCgAAAAAAAAAAiBun03neBZRRo0bJZrPJ5/PFzPf5fMrLyzsj/pVXXtFrr72m2bNnR+eFw+/fDZeUlKTu7m595jOfOa91U1ABAAAAAAAAACABGBxpIGE4HA4VFRVp27ZtKi8vl/R+gWTbtm2qrKw8I76goEB79+6Nmbdq1Sq99957evjhh/XpT3/6vNcd10Hpa2pqNHXqVKWnpysnJ0fl5eXq7u6OiTl16pQ8Ho9GjhyptLQ0VVRUnFF56unp0axZs5SamqqcnBzdeeedGhiIfdLqz3/+c11zzTVKTU3V6NGjddttt+ntt9823kcAAAAAAAAAAHDxVFVV6Sc/+Yk2bdqk3//+97rjjjvU19enhQsXSpLmzZun6upqSVJycrImTpwYM2VmZio9PV0TJ06Uw3H+YzXGtaDS1tYmj8ejjo4OtbS0KBgMqrS0VH19fdGYFStWaOvWrWpsbFRbW5sOHz6sOXPmRJeHQiHNmjVL/f392r17tzZt2qT6+nqtXr06GrNr1y7NmzdPixYt0v79+9XY2KjnnntOt99++yXtLwAAAAAAAAAA+HhuueUWPfjgg1q9erUmT56srq4uNTc3Rweq7+np0ZEjRy76euP6yK/m5uaY1/X19crJyVFnZ6emT58uv9+vjRs3qqGhQTNnzpQk1dXVacKECero6FBxcbGefvppHThwQM8884xyc3M1efJk3XvvvVq5cqXWrFkjh8Oh9vZ2jRs3TkuXLpUkjR8/Xn/zN3+j+++//5L3GQAAAAAAAAAAfDyVlZVnfcSXJO3YseND31tfX/+R1hnXO1T+N7/fL0nKysqSJHV2dioYDKqkpCQaU1BQoPz8fLW3t0uS2tvbNWnSpGjlSZLKysp07Ngx7d+/X5Lkdrv1P//zP3rqqacUiUTk8/n0//7f/9Nf/MVfXKquAQAAAAAAAACABDZkBqUPh8Navny5pk2bpokTJ0qSvF6vHA6HMjMzY2Jzc3Pl9XqjMR8sppxefnqZJE2bNk0///nPdcstt+jUqVMaGBjQ7NmzVVtba7hXAAAAAAAAAABcHOFIJN5N+EQbMneoeDwe7du3T7/85S8veu4DBw5o2bJlWr16tTo7O9Xc3KzXXntN3/nOd875nkAgoGPHjsVMoVDgorcNAAAAAAAAAAAMfUOioFJZWammpiZt375dY8aMic7Py8tTf3+/ent7Y+J9Pp/y8vKiMT6f74zlp5dJUk1NjaZNm6Y777xTV199tcrKyrR+/Xo9+uij5xyYpqamRi6XK2Z66fl/uVhdBgAAAAAAAAAACSSuBZVIJKLKykpt3rxZra2tGj9+fMzyoqIi2e12bdu2LTqvu7tbPT09crvdkt4fH2Xv3r06evRoNKalpUUZGRkqLCyUJJ04cUJWa2xXbTZbtA1nU11dLb/fHzN97rq/+fidBgAAAAAAAAAACSeuY6h4PB41NDRoy5YtSk9Pj4554nK5lJKSIpfLpUWLFqmqqkpZWVnKyMjQkiVL5Ha7VVxcLEkqLS1VYWGh5s6dqwceeEBer1erVq2Sx+OR0+mUJM2ePVu33367NmzYoLKyMh05ckTLly/X5z//eV1++eVnbZvT6Yy+/zSbzXnWWAAAAAAAAAAATDvXDQK4NOJaUNmwYYMkacaMGTHz6+rqtGDBAknSunXrZLVaVVFRoUAgEH1c12k2m01NTU2644475Ha7NWLECM2fP19r166NxixYsEDvvfee/vmf/1l/93d/p8zMTM2cOVP333+/8T4CAAAAAAAAAIDEF9eCyvlU05KTk1VbW6va2tpzxowdO1ZPPfXUh+ZZsmSJlixZcsFtBAAAAAAAAAAAGBKD0gMAAAAAAAAAAAxlcb1DBQAAAAAAAAAAnJ9wmDFU4ok7VAAAAAAAAAAAAAZBQQUAAAAAAAAAAGAQPPLrAkQM3k51zO83ltski9ViLHfaZSOM5fa95jOWW5LSMzOM5jfl5Clz+3goZCy13nonbCx3/uU2Y7n7kh3GcvfaMo3ltqaa296SFMkxV+sPW82d9pynDB7HI2a3uSlBZ7qx3MezJxjLbY0YPGBJSg30GsvtSDlmLPeplMuM5U71v2Est8XgCSiUbO5axdZ/0lhuDQTN5ZZkdTrNJQ+YS21LSTaWOyNnlLHcKX5z33sZ/P0TDprbD01+lpLZtkcGDB6zAv3mcvcPGMtt8nd4om6TkZ8xd0wxub1N27/pD8Zyu++eYSy3xWbuN6fJ47j9Mpex3KG+PmO5ZTH7f8tDp04Zy210XwFw3iioAAAAAAAAAACQACKJW/seFnjkFwAAAAAAAAAAwCDiWlCpqanR1KlTlZ6erpycHJWXl6u7uzsm5tSpU/J4PBo5cqTS0tJUUVEhny/2cU09PT2aNWuWUlNTlZOTozvvvFMDA7G319bW1mrChAlKSUnRlVdeqZ/97GfG+wcAAAAAAAAAAIaHuBZU2tra5PF41NHRoZaWFgWDQZWWlqrvA89KXLFihbZu3arGxka1tbXp8OHDmjNnTnR5KBTSrFmz1N/fr927d2vTpk2qr6/X6tWrozEbNmxQdXW11qxZo/379+uee+6Rx+PR1q1bL2l/AQAAAAAAAABAYorrGCrNzc0xr+vr65WTk6POzk5Nnz5dfr9fGzduVENDg2bOnClJqqur04QJE9TR0aHi4mI9/fTTOnDggJ555hnl5uZq8uTJuvfee7Vy5UqtWbNGDodDjz32mP7mb/5Gt9xyiyTpiiuu0H//93/r/vvv1+zZsy95vwEAAAAAAAAAQGIZUmOo+P1+SVJWVpYkqbOzU8FgUCUlJdGYgoIC5efnq729XZLU3t6uSZMmKTc3NxpTVlamY8eOaf/+/ZKkQCCg5OTkmHWlpKToueeeUzAYNNonAAAAAAAAAAAuhkg4MiynRDFkCirhcFjLly/XtGnTNHHiREmS1+uVw+FQZmZmTGxubq68Xm805oPFlNPLTy+T3i+w/PSnP1VnZ6cikYief/55/fSnP1UwGNRbb71luGcAAAAAAAAAACDRxfWRXx/k8Xi0b98+7dy586Ln/v73vy+v16vi4mJFIhHl5uZq/vz5euCBB2S1nr2mFAgEFAgEYuaFQv2y2RwXvX0AAAAAAAAAAGBoGxJ3qFRWVqqpqUnbt2/XmDFjovPz8vLU39+v3t7emHifz6e8vLxojM/nO2P56WXS+4/3evTRR3XixAm99tpr6unp0bhx45Senq7s7OyztqmmpkYulytmeqnzxxerywAAAAAAAAAAIIHEtaASiURUWVmpzZs3q7W1VePHj49ZXlRUJLvdrm3btkXndXd3q6enR263W5Lkdru1d+9eHT16NBrT0tKijIwMFRYWxuSz2+0aM2aMbDabfvnLX+rmm28+5x0q1dXV8vv9MdPnir5zsboOAAAAAAAAAMAFCUciw3JKFHF95JfH41FDQ4O2bNmi9PT06JgnLpdLKSkpcrlcWrRokaqqqpSVlaWMjAwtWbJEbrdbxcXFkqTS0lIVFhZq7ty5euCBB+T1erVq1Sp5PB45nU5J0ksvvaTnnntO119/vd5991099NBD2rdvnzZt2nTOtjmdzuj7T+NxXwAAAAAAAAAAfDLFtaCyYcMGSdKMGTNi5tfV1WnBggWSpHXr1slqtaqiokKBQEBlZWVav359NNZms6mpqUl33HGH3G63RowYofnz52vt2rXRmFAopB/+8Ifq7u6W3W7XDTfcoN27d2vcuHGmuwgAAAAAAAAAAIaBuBZUIudxK09ycrJqa2tVW1t7zpixY8fqqaeeOufyCRMmaM+ePR+pjQAAAAAAAAAAAHEtqAAAAAAAAAAAgPMTCSfOeCPDUVwHpQcAAAAAAAAAAEgEFFQAAAAAAAAAAAAGQUEFAAAAAAAAAABgEIyhcgFGjr7MWO6s3ExjudMzU4zl7nsvYCx34GS/sdyf+rPLjeWWpLePvGss98kTQWO509PMHRJMPt4xK9NmLHdacshY7gznSWO58yxvGMvtevd1Y7lNswX6jOUOOcwda63BU8Zyy2Lu/1Y4en3Gco/o22Msd3hknrHckhRyjjCW23bimLHc6e96jeWO2Mwdxy395q5VLAPmrlUsfeY+y3DGSGO5JUl2p9n8CejE/xw2ljvgN3duMyk8YO4ay5Geaix3IjO5zSOhsLHcoX5zv38GTpnLbdJ7XnPnCNPCIXM/DN13zzCWu/2eHcZyW+wWY7nt6eZ+46debu58f/JNc9dY1iRz21uSRhVmGcttsZptuynm/pr6ycUYKvHFHSoAAAAAAAAAAACDoKACAAAAAAAAAAAwiLgWVGpqajR16lSlp6crJydH5eXl6u7ujok5deqUPB6PRo4cqbS0NFVUVMjni32EyNKlS1VUVCSn06nJkyefdV0vvviivvSlLyk5OVmf/vSn9cADD5jqFgAAAAAAAAAAGGbiWlBpa2uTx+NRR0eHWlpaFAwGVVpaqr6+Pz0HeMWKFdq6dasaGxvV1tamw4cPa86cOWfkuu2223TLLbecdT3Hjh1TaWmpxo4dq87OTv3gBz/QmjVr9K//+q/G+gYAAAAAAAAAwMUUjgzPKVHEdVD65ubmmNf19fXKyclRZ2enpk+fLr/fr40bN6qhoUEzZ86UJNXV1WnChAnq6OhQcXGxJOmRRx6RJL355pt68cUXz1jPz3/+c/X39+vRRx+Vw+HQVVddpa6uLj300EP69re/bbiXAAAAAAAAAAAg0Q2pMVT8fr8kKSsrS5LU2dmpYDCokpKSaExBQYHy8/PV3t5+3nnb29s1ffp0ORyO6LyysjJ1d3fr3XffvUitBwAAAAAAAAAAw9WQKaiEw2EtX75c06ZN08SJEyVJXq9XDodDmZmZMbG5ubnyer3nndvr9So3N/eMHKeXAQAAAAAAAAAAfJi4PvLrgzwej/bt26edO3fGuymSpEAgoEAgEDMvNBCQLckZpxYBAAAAAAAAAIB4GRJ3qFRWVqqpqUnbt2/XmDFjovPz8vLU39+v3t7emHifz6e8vLzzzp+Xlyefz3dGjtPLzqampkYulytm+l3bw+e9TgAAAAAAAAAALqZIODIsp0QR14JKJBJRZWWlNm/erNbWVo0fPz5meVFRkex2u7Zt2xad193drZ6eHrnd7vNej9vt1rPPPqtgMBid19LSoiuvvFKXXXbZWd9TXV0tv98fM13z5WUX2EMAAAAAAAAAADAcxPWRXx6PRw0NDdqyZYvS09Oj45m4XC6lpKTI5XJp0aJFqqqqUlZWljIyMrRkyRK53W4VFxdH8xw8eFDHjx+X1+vVyZMn1dXVJUkqLCyUw+HQrbfeqnvuuUeLFi3SypUrtW/fPj388MNat27dOdvmdDrldMY+3suW1H/xNwIAAAAAAAAAABjy4lpQ2bBhgyRpxowZMfPr6uq0YMECSdK6detktVpVUVGhQCCgsrIyrV+/PiZ+8eLFamtri76eMmWKJOnQoUMaN26cXC6Xnn76aXk8HhUVFWnUqFFavXq1vv3tb5vrHAAAAAAAAAAAGDbiWlCJRAZ/NlpycrJqa2tVW1t7zpgdO3YMmufqq6/Wb3/72wtpHgAAAAAAAAAAQ8b5/E0d5gyJQekBAAAAAAAAAACGMgoqAAAAAAAAAAAAg6CgAgAAAAAAAAAAMIi4jqECAAAAAAAAAADOTzjMGCrxREHlAiQl2YzlHhgIGctts1kM5jZ3k5PVYG6Lxdw2kSSbzdy+gjOZ/DgN7oYKR8wlH7A6jOUO2czlNs2SFDSWO2Kzm8sdNneOiFjNHa8sSeb2FavB46zJbWI8v8ntYjJ3ktNYbkvI4PfH4PfekmQut8n9xHj+iMFtbrDdNqe546HNae7cZpLFZu67mZRi7pgiJe5AsLZw2Fju8IC53BaTF+QJyuYw96eciOE/0lmsJvcVg9e1dnM/OiNBc9s8dNLcsdYko9vEYG5Jihg81vKgIWBo4JsIAAAAAAAAAAAwCAoqAAAAAAAAAAAAg+CRXwAAAAAAAAAAJIBEffzocBHXO1Rqamo0depUpaenKycnR+Xl5eru7o6JOXXqlDwej0aOHKm0tDRVVFTI5/PFxCxdulRFRUVyOp2aPHnyGes5deqUFixYoEmTJikpKUnl5eUGewUAAAAAAAAAAIabuBZU2tra5PF41NHRoZaWFgWDQZWWlqqvry8as2LFCm3dulWNjY1qa2vT4cOHNWfOnDNy3XbbbbrlllvOup5QKKSUlBQtXbpUJSUlxvoDAAAAAAAAAACGp7g+8qu5uTnmdX19vXJyctTZ2anp06fL7/dr48aNamho0MyZMyVJdXV1mjBhgjo6OlRcXCxJeuSRRyRJb775pl588cUz1jNixAht2LBBkrRr1y719vYa7BUAAAAAAAAAABhuhtSg9H6/X5KUlZUlSers7FQwGIy5q6SgoED5+flqb2+PSxsBAAAAAAAAAMAnz5AZlD4cDmv58uWaNm2aJk6cKEnyer1yOBzKzMyMic3NzZXX641DKwEAAAAAAAAAiI9ImEHp42nIFFQ8Ho/27dunnTt3xrspkqRAIKBAIBAzLzQQkC3JGacWAQAAAAAAAACAeBkSj/yqrKxUU1OTtm/frjFjxkTn5+Xlqb+//4wxT3w+n/Ly8oy2qaamRi6XK2bas32d0XUCAAAAAAAAAIChKa4FlUgkosrKSm3evFmtra0aP358zPKioiLZ7XZt27YtOq+7u1s9PT1yu91G21ZdXS2/3x8zTblhhdF1AgAAAAAAAACAoSmuj/zyeDxqaGjQli1blJ6eHh0XxeVyKSUlRS6XS4sWLVJVVZWysrKUkZGhJUuWyO12q7i4OJrn4MGDOn78uLxer06ePKmuri5JUmFhoRwOhyTpwIED6u/v1zvvvKP33nsvGjN58uSzts3pdMrpjH28ly0pdHE3AAAAAAAAAAAA54kxVOIrrgWVDRs2SJJmzJgRM7+urk4LFiyQJK1bt05Wq1UVFRUKBAIqKyvT+vXrY+IXL16stra26OspU6ZIkg4dOqRx48ZJkv7iL/5Cf/zjH8+IiUTYAQEAAAAAAAAAwIeLa0HlfIoZycnJqq2tVW1t7TljduzYMWie11577QJaBgAAAAAAAAAA8CdDYlB6AAAAAAAAAACAoSyud6gAAAAAAAAAAIDzE2YIi7jiDhUAAAAAAAAAAIBBUFABAAAAAAAAAAAYBI/8ugBJdnP1p/5TQWO5w2Fzt4FZrBZjua0Wc7ltNrO1RJvdZjS/KQY3uVEm223w6yOLzCUPWpzGcofsycZym2aJhI3lNrldbDK3k0es5i4FLMkhY7mtp/qM5Q7b7MZyS1LI5jCW25pkMHfY3PcnkmRum4cNfu8jSQYvpW3mcpvexy0G81tCBo8rToPfn6C5a/2k5H5juWU1d80cGTD4WTrM7uMyeDw0KWxymxvLLEnmPs9IKDE/yySnuXNExPD+HQom5o83e7q5bR46ae67GTqZmPu4SRZ7gv7hQ2b/Bhcx+ccPYJihoAIAAAAAAAAAQAKgABZfPPILAAAAAAAAAABgEHEtqNTU1Gjq1KlKT09XTk6OysvL1d3dHRNz6tQpeTwejRw5UmlpaaqoqJDP54uJWbp0qYqKiuR0OjV58uQz1rNjxw597Wtf0+jRozVixAhNnjxZP//5z012DQAAAAAAAAAADCNxLai0tbXJ4/Goo6NDLS0tCgaDKi0tVV/fn56LvmLFCm3dulWNjY1qa2vT4cOHNWfOnDNy3XbbbbrlllvOup7du3fr6quv1q9+9Su9+OKLWrhwoebNm6empiZjfQMAAAAAAAAAAMNHXMdQaW5ujnldX1+vnJwcdXZ2avr06fL7/dq4caMaGho0c+ZMSVJdXZ0mTJigjo4OFRcXS5IeeeQRSdKbb76pF1988Yz1fO9734t5vWzZMj399NN64okndPPNN5voGgAAAAAAAAAAGEaG1Bgqfr9fkpSVlSVJ6uzsVDAYVElJSTSmoKBA+fn5am9v/9jrOr0eAAAAAAAAAACGukgkMiynRDFkCirhcFjLly/XtGnTNHHiREmS1+uVw+FQZmZmTGxubq68Xu9HXte///u/67//+7+1cOHCj9NkAAAAAAAAAADwCRHXR359kMfj0b59+7Rz506j69m+fbsWLlyon/zkJ7rqqqvOGRcIBBQIBGLmhQYCsiU5jbYPAAAAAAAAAAAMPUPiDpXKyko1NTVp+/btGjNmTHR+Xl6e+vv71dvbGxPv8/mUl5d3wetpa2vT7NmztW7dOs2bN+9DY2tqauRyuWKmzm0PXfA6AQAAAAAAAABA4otrQSUSiaiyslKbN29Wa2urxo8fH7O8qKhIdrtd27Zti87r7u5WT0+P3G73Ba1rx44dmjVrlu6//359+9vfHjS+urpafr8/Zir686oLWicAAAAAAAAAABdLOBwZllOiiOsjvzwejxoaGrRlyxalp6dHx0VxuVxKSUmRy+XSokWLVFVVpaysLGVkZGjJkiVyu90qLi6O5jl48KCOHz8ur9erkydPqqurS5JUWFgoh8Oh7du36+abb9ayZctUUVERXY/D4TjnwPROp1NOZ+zjvWxJifPBAgAAAAAAAACAiyeuBZUNGzZIkmbMmBEzv66uTgsWLJAkrVu3TlarVRUVFQoEAiorK9P69etj4hcvXqy2trbo6ylTpkiSDh06pHHjxmnTpk06ceKEampqVFNTE4378pe/rB07dlz8jgEAAAAAAAAAgGElrgWVSGTwOz6Sk5NVW1ur2trac8YMVhSpr69XfX39BbYOAAAAAAAAAADgfXEtqAAAAAAAAAAAgPMTSaDxRoajuA5KDwAAAAAAAAAAkAgoqAAAAAAAAAAAAAyCggoAAAAAAAAAAMAgGENliLBYLcZyR3is3iVnNfh5+t7wG8ttsZhrd3KKucPNqVM2Y7ntSeZyO5NSjOVOt58wlvuUI91YbtOSDeYOW83t4xGLuf//EJG57701FDCWO5yaYSx3yDHCWG5JCtrN5beEQ8Zy26zmjoehJHPfTluSw1jusM1cbpMGnGlG80cM7it2/9vGcluTncZy24JBY7kHbOa2d8TgD4nwgLnjlWmJ+txyk5+nSSZ/K1vtBq/fwmFjuR0jDJ7bQmb3k2S7ueta+2UuY7lTLzd3jkhUvfuOG8udOs7ctaE1ydwxRZKc6ebabvRvhwl6bvukStRz+nDBHSoAAAAAAAAAAACDoKACAAAAAAAAAAAwiLgWVGpqajR16lSlp6crJydH5eXl6u7ujok5deqUPB6PRo4cqbS0NFVUVMjn88XELF26VEVFRXI6nZo8efIZ6+nu7tYNN9yg3NxcJScn64orrtCqVasUNHjrPQAAAAAAAAAAGD7iOoZKW1ubPB6Ppk6dqoGBAX3ve99TaWmpDhw4oBEj3n+++IoVK/Tkk0+qsbFRLpdLlZWVmjNnjnbt2hWT67bbbtN//dd/6cUXXzxjPXa7XfPmzdO1116rzMxM/e53v9Ptt9+ucDisf/qnf7okfQUAAAAAAAAA4OMwOU4XBhfXgkpzc3PM6/r6euXk5Kizs1PTp0+X3+/Xxo0b1dDQoJkzZ0qS6urqNGHCBHV0dKi4uFiS9Mgjj0iS3nzzzbMWVK644gpdccUV0ddjx47Vjh079Nvf/tZU1wAAAAAAAAAAwDAypMZQ8fv9kqSsrCxJUmdnp4LBoEpKSqIxBQUFys/PV3t7+0dez8GDB9Xc3Kwvf/nLH6/BAAAAAAAAAADgE2HIFFTC4bCWL1+uadOmaeLEiZIkr9crh8OhzMzMmNjc3Fx5vd4LXscXvvAFJScn68/+7M/0pS99SWvXrr0YTQcAAAAAAAAAAMPckCmoeDwe7du3T7/85S+NrePxxx/XCy+8oIaGBj355JN68MEHzxkbCAR07NixmCk0EDDWNgAAAAAAAAAAMHTFdQyV0yorK9XU1KRnn31WY8aMic7Py8tTf3+/ent7Y+5S8fl8ysvLu+D1fPrTn5YkFRYWKhQK6dvf/rb+7u/+Tjab7YzYmpoa3XPPPTHzppau1OfLqi94vQAAAAAAAAAAfFzhcCTeTfhEi+sdKpFIRJWVldq8ebNaW1s1fvz4mOVFRUWy2+3atm1bdF53d7d6enrkdrs/1rrD4bCCwaDC4fBZl1dXV8vv98dMRX9e9bHWCQAAAAAAAAAAElNc71DxeDxqaGjQli1blJ6eHh0XxeVyKSUlRS6XS4sWLVJVVZWysrKUkZGhJUuWyO12q7i4OJrn4MGDOn78uLxer06ePKmuri5J79+J4nA49POf/1x2u12TJk2S0+nU888/r+rqat1yyy2y2+1nbZvT6ZTT6YyZZ0ui+gcAAAAAAAAAwCdRXAsqGzZskCTNmDEjZn5dXZ0WLFggSVq3bp2sVqsqKioUCARUVlam9evXx8QvXrxYbW1t0ddTpkyRJB06dEjjxo1TUlKS7r//fr300kuKRCIaO3asKisrtWLFCnOdAwAAAAAAAAAAw0ZcCyqRyOB3fCQnJ6u2tla1tbXnjNmxY8eH5rjlllt0yy23XGjzAAAAAAAAAAAYMs7nb+owJ65jqAAAAAAAAAAAACQCCioAAAAAAAAAAACDoKACAAAAAAAAAAAwiLiOoQIAAAAAAAAAAM5PJMwYKvFEQeUChELsrP+b1WIwd5K5G6hsNoMNl2S12YzlHpWXYSx3dnaysdx2u7lt7nSYy52ZFjaW25V8ylhuh6XfXO6Bk8Zym5bUf8JY7ojV3CnVGg4ayx2Rue+PLdBnLLe139x+aOs3125JchjMnWSw7daAuW1ucQwYy23tN3estdrNfZq2k8eN5Y7Y7MZyS5L1lMHvUHKKsdThE+b28dDJgLHc4aC574/F5MW+SWFz12+S2e1i8g8kFovBdlsNPvwiHDKXesBcbhkcMHggYO57Hx4w+/0JnjCXP9Rn7vxz8k1zv68iwcT8W1PqOHN/PzjxmrnrN4vBv01IUl+euf0wUc8/wHDDI78AAAAAAAAAAAAGQUEFAAAAAAAAAABgEDzyCwAAAAAAAACABMAj2uIrrneo1NTUaOrUqUpPT1dOTo7Ky8vV3d0dE3Pq1Cl5PB6NHDlSaWlpqqiokM/ni4lZunSpioqK5HQ6NXny5A9d58GDB5Wenq7MzMyL3BsAAAAAAAAAADBcxbWg0tbWJo/Ho46ODrW0tCgYDKq0tFR9HxhIbMWKFdq6dasaGxvV1tamw4cPa86cOWfkuu2223TLLbd86PqCwaD+6q/+Sl/60pcuel8AAAAAAAAAAMDwFddHfjU3N8e8rq+vV05Ojjo7OzV9+nT5/X5t3LhRDQ0NmjlzpiSprq5OEyZMUEdHh4qLiyVJjzzyiCTpzTff1IsvvnjO9a1atUoFBQX68z//c+3evdtQrwAAAAAAAAAAwHAzpAal9/v9kqSsrCxJUmdnp4LBoEpKSqIxBQUFys/PV3t7+wXlbm1tVWNjo2pray9egwEAAAAAAAAAwCfCkBmUPhwOa/ny5Zo2bZomTpwoSfJ6vXI4HGeMd5Kbmyuv13veud9++20tWLBA//Zv/6aMjIyL2WwAAAAAAAAAAC6JcCQc7yZ8og2ZgorH49G+ffu0c+fOi5779ttv16233qrp06ef93sCgYACgUDMvNBAQLYk58VuHgAAAAAAAAAAGOKGxCO/Kisr1dTUpO3bt2vMmDHR+Xl5eerv71dvb29MvM/nU15e3nnnb21t1YMPPqikpCQlJSVp0aJF8vv9SkpK0qOPPnrW99TU1MjlcsVML7Su+0j9AwAAAAAAAAAAiS2uBZVIJKLKykpt3rxZra2tGj9+fMzyoqIi2e12bdu2LTqvu7tbPT09crvd572e9vZ2dXV1Rae1a9cqPT1dXV1d+vrXv37W91RXV8vv98dM185c8dE6CgAAAAAAAAAAElpcH/nl8XjU0NCgLVu2KD09PTouisvlUkpKilwulxYtWqSqqiplZWUpIyNDS5YskdvtVnFxcTTPwYMHdfz4cXm9Xp08eVJdXV2SpMLCQjkcDk2YMCFmvc8//7ysVmt0rJazcTqdcjpjH+9lS+L5dAAAAAAAAACA+IiEI/FuwidaXAsqGzZskCTNmDEjZn5dXZ0WLFggSVq3bp2sVqsqKioUCARUVlam9evXx8QvXrxYbW1t0ddTpkyRJB06dEjjxo0z1n4AAAAAAAAAAPDJENeCSiQyeDUtOTlZtbW1qq2tPWfMjh07Lmi9CxYsiBZsAAAAAAAAAAAABjMkBqUHAAAAAAAAAAAYyuJ6hwoAAAAAAAAAADg/jKESX9yhAgAAAAAAAAAAMAgKKgAAAAAAAAAAAIPgkV8XIFFvp7LZLMZyh5LM1eQs/ebabbGay22ayc/TJJOb3GawNGy1mPveWy1hY7ktMtduSzhkLLdktu3W8ICx3OY+TckSCprLbTF4HB8wt70VMrcfWiImP03JYnA/NPn9NJvb4L5i8PM0ejw0uI8rYvaa1mIyv8HcliSbsdxGL4RwyZn8XRgJmz0HJSKTv91M5jZ5OZGo2+R9Bn+8GbyutSYZ/LtK0OC5zW6u3Sa3icl2Rwxub8nscdzwzxQA54mCCgAAAAAAAAAACSBi+D9I4cPxyC8AAAAAAAAAAIBBxLWgUlNTo6lTpyo9PV05OTkqLy9Xd3d3TMypU6fk8Xg0cuRIpaWlqaKiQj6fLyZm6dKlKioqktPp1OTJk89Yz2uvvSaLxXLG1NHRYbJ7AAAAAAAAAABgmIhrQaWtrU0ej0cdHR1qaWlRMBhUaWmp+vr6ojErVqzQ1q1b1djYqLa2Nh0+fFhz5sw5I9dtt92mW2655UPX98wzz+jIkSPRqaio6KL3CQAAAAAAAAAADD9xHUOlubk55nV9fb1ycnLU2dmp6dOny+/3a+PGjWpoaNDMmTMlSXV1dZowYYI6OjpUXFwsSXrkkUckSW+++aZefPHFc65v5MiRysvLM9QbAAAAAAAAAAAwXA2pMVT8fr8kKSsrS5LU2dmpYDCokpKSaExBQYHy8/PV3t5+wfm/+tWvKicnR1/84hf1H//xHxen0QAAAAAAAAAAXALhcHhYToliyBRUwuGwli9frmnTpmnixImSJK/XK4fDoczMzJjY3Nxceb3e886dlpamH/7wh2psbNSTTz6pL37xiyovL6eoAgAAAAAAAAAAzktcH/n1QR6PR/v27dPOnTsveu5Ro0apqqoq+nrq1Kk6fPiwfvCDH+irX/3qWd8TCAQUCARi5oUGArIlOS96+wAAAAAAAAAAwNA2JO5QqaysVFNTk7Zv364xY8ZE5+fl5am/v1+9vb0x8T6f72OPhXL99dfr4MGD51xeU1Mjl8sVM+3Zvu5jrRMAAAAAAAAAACSmuBZUIpGIKisrtXnzZrW2tmr8+PExy4uKimS327Vt27bovO7ubvX09Mjtdn+sdXd1dWn06NHnXF5dXS2/3x8zTblhxcdaJwAAAAAAAAAAH1UkHBmWU6KI6yO/PB6PGhoatGXLFqWnp0fHRXG5XEpJSZHL5dKiRYtUVVWlrKwsZWRkaMmSJXK73SouLo7mOXjwoI4fPy6v16uTJ0+qq6tLklRYWCiHw6FNmzbJ4XBoypQpkqQnnnhCjz76qH7605+es21Op1NOZ+zjvWxJoYu8BQAAAAAAAAAAQCKIa0Flw4YNkqQZM2bEzK+rq9OCBQskSevWrZPValVFRYUCgYDKysq0fv36mPjFixerra0t+vp04eTQoUMaN26cJOnee+/VH//4RyUlJamgoECPP/64vvGNb5jpGAAAAAAAAAAAGFbiWlCJRAa/lSc5OVm1tbWqra09Z8yOHTs+NMf8+fM1f/78C20eAAAAAAAAAACApCEyKD0AAAAAAAAAAPhwkUh4WE4fRW1trcaNG6fk5GRdf/31eu65584Z+8QTT+i6665TZmamRowYocmTJ+uxxx674HVSUAEAAAAAAAAAAAnj8ccfV1VVle6++2698MILuuaaa1RWVqajR4+eNT4rK0t33XWX2tvb9eKLL2rhwoVauHChfvOb31zQeimoAAAAAAAAAACAhPHQQw/p9ttv18KFC1VYWKgf//jHSk1N1aOPPnrW+BkzZujrX/+6JkyYoM985jNatmyZrr76au3cufOC1ktBBQAAAAAAAAAAxE0gENCxY8dipkAgcNbY/v5+dXZ2qqSkJDrParWqpKRE7e3tg64rEolo27Zt6u7u1vTp0y+onXEdlD7RJKfajeU+2Xf2neNiGAh+tGfQnY+kJHM1udzL043lfvvNE8ZyS9KovAxjuUeOTDaWOyPN3OeZZPBoE+iPGMudPeKksdyZ9veM5c7of8tY7uQ+c7klKWK1Gcvdn5JpLLfjZK+x3LaTx43llsViLLU1eMpY7mBmjrHc/amXGcstmd1XrAFzx6yBNHPbxdbXayy3td/cfhg2eLySzVzupN6z3wJ/0ZwyeJ2Vnmkut8Ftbk0yl9tiMrfBc4TFau43Cs4uEjF3zRwZCBnLnagiIXPbxJWfbSx3qH/AWG5JChvcV0KnzJ3zRxVmGcsdCSfm8dCZbu5vE315fcZym97evt3vGM0PSFIkbO6cHk81NTW65557YubdfffdWrNmzRmxb731lkKhkHJzc2Pm5+bm6g9/+MM51+H3+/WpT31KgUBANptN69ev14033nhB7aSgAgAAAAAAAAAA4qa6ulpVVVUx85xO50VdR3p6urq6unT8+HFt27ZNVVVVuuKKKzRjxozzzkFBBQAAAAAAAAAAxI3T6TzvAsqoUaNks9nk8/li5vt8PuXl5Z3zfVarVZ/97GclSZMnT9bvf/971dTUXFBBJa5jqNTU1Gjq1KlKT09XTk6OysvL1d3dHRNz6tQpeTwejRw5UmlpaaqoqDhjQy1dulRFRUVyOp2aPHnyWdcViUT04IMP6nOf+5ycTqc+9alP6f/+3/9rqmsAAAAAAAAAAOAiczgcKioq0rZt26LzwuGwtm3bJrfbfd55wuHwOcdpOZe43qHS1tYmj8ejqVOnamBgQN/73vdUWlqqAwcOaMSIEZKkFStW6Mknn1RjY6NcLpcqKys1Z84c7dq1KybXbbfdpv/6r//Siy++eNZ1LVu2TE8//bQefPBBTZo0Se+8847eeYfnGgIAAAAAAAAAEsNwHUPlQlVVVWn+/Pm67rrr9PnPf14/+tGP1NfXp4ULF0qS5s2bp0996lOqqamR9P7NHdddd50+85nPKBAI6KmnntJjjz2mDRs2XNB641pQaW5ujnldX1+vnJwcdXZ2avr06fL7/dq4caMaGho0c+ZMSVJdXZ0mTJigjo4OFRcXS5IeeeQRSdKbb7551oLK73//e23YsEH79u3TlVdeKUkaP368ya4BAAAAAAAAAAADbrnlFr355ptavXq1vF6vJk+erObm5uhA9T09PbJa//SArr6+Pv3t3/6tXn/9daWkpKigoED/9m//pltuueWC1jukxlDx+/2SpKysLElSZ2engsGgSkpKojEFBQXKz89Xe3t7tKAymK1bt+qKK65QU1OTvvKVrygSiaikpEQPPPBAdF0AAAAAAAAAACAxVFZWqrKy8qzLduzYEfP6H//xH/WP//iPH3udcR1D5YPC4bCWL1+uadOmaeLEiZIkr9crh8OhzMzMmNjc3Fx5vd7zzv3qq6/qj3/8oxobG/Wzn/1M9fX16uzs1De+8Y2L2QUAAAAAAAAAADBMDZk7VDwej/bt26edO3de9NynB5f52c9+ps997nOSpI0bN6qoqEjd3d3Rx4B9UCAQOGNAmoFgUEl250VvHwAAAAAAAAAAGNqGxB0qlZWVampq0vbt2zVmzJjo/Ly8PPX396u3tzcm3ufzKS8v77zzjx49WklJSdFiiiRNmDBB0vvPUjubmpoauVyumOn5lh9eQK8AAAAAAAAAALh4wpHwsJwSRVwLKpFIRJWVldq8ebNaW1vPGCi+qKhIdrtd27Zti87r7u5WT0+P3G73ea9n2rRpGhgY0CuvvBKd99JLL0mSxo4de9b3VFdXy+/3x0zX3fh3F9I9AAAAAAAAAAAwTMT1kV8ej0cNDQ3asmWL0tPTo+OiuFwupaSkyOVyadGiRaqqqlJWVpYyMjK0ZMkSud3umAHpDx48qOPHj8vr9erkyZPq6uqSJBUWFsrhcKikpETXXnutbrvtNv3oRz9SOByWx+PRjTfeGHPXygc5nU45nbGP90qyHzezIQAAAAAAAAAAwJAW14LKhg0bJEkzZsyImV9XV6cFCxZIktatWyer1aqKigoFAgGVlZVp/fr1MfGLFy9WW1tb9PWUKVMkSYcOHdK4ceNktVq1detWLVmyRNOnT9eIESN000036Yc/5BFeAAAAAAAAAABgcHEtqEQikUFjkpOTVVtbq9ra2nPG7NixY9A8l19+uX71q19dSPMAAAAAAAAAABgyIuHB/6YOc4bEoPQAAAAAAAAAAABDGQUVAAAAAAAAAACAQVBQAQAAAAAAAAAAGERcx1AB8P9v787joqr3+I9/ZmFHQJFNEdAUEckroYZQYqaoWS5hmS0uaWZhpbm3aJYtavdnZVqWinpdM/OW5pIKWrgmBiruinJdIM1EkZ15//7gx/wcAdEDx+HQ+/l4zOPemTO95ss4Zw7Md845RERERERERERERHcGJpO1h/CPxj1UiIiIiIiIiIiIiIiIKsE9VO5CUWGxau3iYvVmFtUct1EMqrWLCrX5nIiIGAw61drFJqjWLihUry2i4nOi4j9nMdQbN1R8Tkw69dZNk9FWtbaICNQcu4ptGGxUa4tBxXHrVWwXFajXVvF1qObrRETl51yjbTGqt/7ApN5GAmqOu7hItbZOzQ2niIhGX4c6nYrfNVOxrdOp9/uETq/iuPXqjVtUHLeIqv+cojOp+Lunin9HaPV7suq+xlVsG9V7L9Sr+DpRm07F35lVfc9S8bvOao5bq21o9Q2LiGoM7qFCRERERERERERERERUCe6hQkRERERERERERESkAWrudUqVs+oeKh9//LG0bdtW6tSpI56entK7d285duyYxX3y8vIkNjZW3N3dxdnZWWJiYiQzM9PiPq+//rqEhYWJnZ2dtG7duszjvPfee6LT6cpcnJyc1PzxiIiIiIiIiIiIiIiolrDqhMr27dslNjZWdu/eLZs3b5bCwkKJjo6WGzdumO8zatQoWbt2raxatUq2b98uFy5ckCeffLJM68UXX5R+/fqV+zhjxoyRixcvWlyCg4PlqaeeUu1nIyIiIiIiIiIiIiKi2sOqh/zauHGjxfWFCxeKp6enJCUlSYcOHSQrK0vmz58vy5Ytk06dOomISFxcnLRo0UJ2794t4eHhIiLyxRdfiIjIpUuX5MCBA2Uex9nZWZydnc3XU1JS5PDhw/L111+r9aMREREREREREREREVEtUqNOSp+VlSUiIvXq1RMRkaSkJCksLJTOnTub7xMUFCR+fn6ya9cuxY8zb948CQwMlIcffrhqAyYiIiIiIiIiIiIion+EGnNSepPJJCNHjpTIyEgJCQkREZGMjAyxtbUVNzc3i/t6eXlJRkaGosfJy8uTpUuXyoQJE6o6ZCIiIiIiIiIiIiKiewYwWXsI/2g1ZkIlNjZWDh06JImJiao+zpo1a+T69esycODA294vPz9f8vPzLW4rLsoXg9FOzeEREREREREREREREVENVCMO+TVixAhZt26dJCQkiK+vr/l2b29vKSgokKtXr1rcPzMzU7y9vRU91rx58+Txxx8XLy+v297v448/FldXV4tL0tb/o+gxiYiIiIiIiIiIiIhI26w6oQJARowYIWvWrJH4+Hhp3LixxfKwsDCxsbGRrVu3mm87duyYpKenS/v27e/68dLS0iQhIUGGDBlS6X0nTpwoWVlZFpewR9+868ckIiIiIiIiIiIiIiLts+ohv2JjY2XZsmXy448/Sp06dcznRXF1dRUHBwdxdXWVIUOGyJtvvin16tUTFxcXee2116R9+/YSHh5u7pw8eVKys7MlIyNDcnNzJTk5WUREgoODxdbW1ny/BQsWiI+Pj3Tv3r3SsdnZ2YmdneXhvQxGVMNPTURERERERERERER090wmfkZtTVadUPnqq69ERKRjx44Wt8fFxcmgQYNERGTmzJmi1+slJiZG8vPzpWvXrjJnzhyL+w8dOlS2b99uvh4aGioiJXukBAQEiEjJSe8XLlwogwYNEoPBoM4PREREREREREREREREtZJVJ1SAymfT7O3tZfbs2TJ79uwK77Nt27ZKO3q9Xv73v//dzfCIiIiIiIiIiIiIiIhEpIaclJ6IiIiIiIiIiIiIiKgms+oeKkREREREREREREREdGdgMll7CP9o3EOFiIiIiIiIiIiIiIioEpxQISIiIiIiIiIiIiIiqgQP+XUXYIIm22oyQcXnRMW22oqL1Rt7YYF6u/UVFRtUa4uo+JwUqtg2qfecFEG9t+BivXptk95GtbaIiOjUm+uHTr1/T5OabYOKz7lOp1oaKo5bzedbzdeJ2n0YVVz3Nfoa1xuKVWurOW6doVC9torrvYiI6FX8zpaK2widUb3XuJptvYptNf8tdSr+3qm3UfnPXBX/dlPzAB46Fes6k8rvKypRc/0xFam3/SG6U1r9HEurn5ER0T8DJ1SIiIiIiIiIiIiIiDSAk47WxUN+ERERERERERERERERVcKqEyoff/yxtG3bVurUqSOenp7Su3dvOXbsmMV98vLyJDY2Vtzd3cXZ2VliYmIkMzPT4j6vv/66hIWFiZ2dnbRu3brcx9q0aZOEh4dLnTp1xMPDQ2JiYuTMmTMq/WRERERERERERERERFSbWHVCZfv27RIbGyu7d++WzZs3S2FhoURHR8uNGzfM9xk1apSsXbtWVq1aJdu3b5cLFy7Ik08+Wab14osvSr9+/cp9nLS0NOnVq5d06tRJkpOTZdOmTXL58uVyO0RERERERERERERERLey6jlUNm7caHF94cKF4unpKUlJSdKhQwfJysqS+fPny7Jly6RTp04iIhIXFyctWrSQ3bt3S3h4uIiIfPHFFyIicunSJTlw4ECZx0lKSpLi4mKZOnWq6P/fiRXHjBkjvXr1ksLCQrGxUfkEy0REREREREREREREpGk16hwqWVlZIiJSr149ESmZCCksLJTOnTub7xMUFCR+fn6ya9euO+6GhYWJXq+XuLg4KS4ulqysLPnPf/4jnTt35mQKEREREREREREREWkCYKqVF62oMRMqJpNJRo4cKZGRkRISEiIiIhkZGWJraytubm4W9/Xy8pKMjIw7bjdu3Fh++eUXeeutt8TOzk7c3Nzk3Llz8t1331Xnj0BERERERERERERERLVUjZlQiY2NlUOHDsmKFSuqvZ2RkSEvvfSSDBw4UH7//XfZvn272NraSt++fQVAuf9Nfn6+XLt2zeJSXJRf7WMjIiIiIiIiIiIiIqKar0ZMqIwYMULWrVsnCQkJ4uvra77d29tbCgoK5OrVqxb3z8zMFG9v7zvuz549W1xdXWX69OkSGhoqHTp0kCVLlsjWrVtlz5495f43H3/8sbi6ulpckuJnKvr5iIiIiIiIiIiIiIhI26w6oQJARowYIWvWrJH4+Hhp3LixxfKwsDCxsbGRrVu3mm87duyYpKenS/v27e/4cXJycswnoy9lMBhEpORQY+WZOHGiZGVlWVzCOo2648ckIiIiIiIiIiIiIqpOMKFWXrTCaM0Hj42NlWXLlsmPP/4oderUMZ8XxdXVVRwcHMTV1VWGDBkib775ptSrV09cXFzktddek/bt20t4eLi5c/LkScnOzpaMjAzJzc2V5ORkEREJDg4WW1tb6dGjh8ycOVPef/996d+/v1y/fl3eeust8ff3l9DQ0HLHZmdnJ3Z2dha3GYzaOTkOERERERERERERERFVH6tOqHz11VciItKxY0eL2+Pi4mTQoEEiIjJz5kzR6/USExMj+fn50rVrV5kzZ47F/YcOHSrbt283Xy+dJElLS5OAgADp1KmTLFu2TKZPny7Tp08XR0dHad++vWzcuFEcHBzU+wGJiIiIiIiIiIiIiKhWsOqESkUnhL+Zvb29zJ49W2bPnl3hfbZt21Zp55lnnpFnnnnmboZHREREREREREREREQkIlaeUCEiIiIiIiIiIiIiojuDCs4JTveGVU9KT0REREREREREREREpAWcUCEiIiIiIiIiIiIiIqoEJ1SIiIiIiIiIiIiIiIgqA6p2eXl5mDx5MvLy8jTVVrvPNtvWbqvdZ5tta7fV7rPNtrXbavfZZrs2t9Xus822tdtq99lm29pttftss23tNpFW6ADA2pM6tc21a9fE1dVVsrKyxMXFRTNttftss23tttp9ttm2dlvtPttsW7utdp9ttmtzW+0+22xbu612n222rd1Wu88229ZuE2kFD/lFRERERERERERERERUCU6oEBERERERERERERERVYITKkRERERERERERERERJXghIoK7OzsZPLkyWJnZ6epttp9ttm2dlvtPttsW7utdp9ttq3dVrvPNtu1ua12n222rd1Wu88229Zuq91nm21rt4m0gielJyIiIiIiIiIiIiIiqgT3UCEiIiIiIiIiIiIiIqoEJ1SIiIiIiIiIiIiIiIgqwQkVIiIiIiIiIiIiIiKiSnBChYiIiIiIiIiIiIiIqBKcUCEiIiIiIiIiIiIiIqoEJ1SIiIiIiIiINCI/P1/y8/OtPYx/pG3btklubq61h3FX8vPz5dSpU5p8zWRmZkpGRka19YqLiyUzM1MuXbpUbc1SWVlZcuzYMTl27JhkZWVVe782ACDFxcWqtBcuXKi55/3EiROydetWOXnypLWHUqlb/9327t0ru3fv1uT7ClF14IRKNcrIyJAff/xR5s6dK3PnzpUff/yxWjf+5blx44b8+uuvqj5GVdz6prtnzx759ddfpbCwsNofa/DgwXLhwoVq74qIFBYWyokTJ6p9A3316lX59ttv5d1335V58+ZVqZ+UlFSNIyvrzz//lPj4ePMYMzMzZfr06fLJJ5/IwYMHq9w/ffq0LF68WKZNmyYzZsyQ1atXy7Vr16rcFREpKiqSlJQU2bRpk2zatElSUlJUeQ3e+pjp6emqPkZ1yszMVHW8U6ZMkcuXL6vSVuPfsqioSDZv3izz58+XLVu2VOkXf7V+7lLFxcVy+vRpMZlMIlLyR/N3330nK1askMzMzCr3S7czK1eulFWrVklSUpIAqHJXhNvNitSGbSe3m9rebopw/SwP182KaWndFNHm+rl582Z57LHHpG7duuLo6CiOjo5St25deeyxx2TLli1VHnNFjhw5Ik2aNFH836ekpMjUqVNlzpw5ZX4nunbtmrz44otVGt+8efNk4MCBEhcXJyIiK1eulBYtWkiTJk1k8uTJVWqXJzo6Ws6cOVOlxp9//mlxPTk5WQYOHCiRkZHSt29f2bZtm+L2woULZdeuXSIikpeXJ0OGDBEnJycJDAwUZ2dnGT58uOIPQO+//3754IMP5H//+5/i8VXkypUr0rdvX/Hz85NXXnlFiouLZejQoeLj4yMNGzaUiIgIuXjxouL+zz//LB06dBAnJydp0KCBeHt7i5ubm7zwwgtV/hto3rx5EhwcLPXq1ZPg4GCL/z9//vwqtSuTkpIiBoNB8X+/fv16GTp0qIwbN06OHj1qsezvv/+WTp06KeoWFRXJO++8I1FRUeb1cMaMGeLs7CyOjo4ycOBAKSgoUDzu8gwbNqzK2829e/dabOvXrVsnUVFR0rBhQ2nTpo0sXrxYcfvjjz+WrVu3ikjJc9u5c2dp3ry5dOnSRZo3by7du3eXq1evKmrXqVNHhgwZIjt37lQ8voqcPXtW2rRpI3Z2dtK9e3e5du2adOnSRcLDwyUiIkKCg4Pl+PHj1f64RDUeqMqys7Px3HPPwWAwwGg0wtPTE56enjAajTAYDHj++edx48YNVR47OTkZer1e0X9bUFCAsWPH4r777kPbtm0xf/58i+UZGRmK2xcuXEBkZCQMBgM6dOiAK1euoEePHtDpdNDpdAgMDMSFCxcUtVNSUsq92NjYYM2aNebrSk2bNg05OTkAgKKiIowePRq2trbQ6/UwGo0YPHgwCgoKFLX79OmDVatWAQAOHTqE+vXrw8PDAw8++CC8vLzg7e2Nw4cPK2rrdDrcd999+PDDD3H+/HlFjYokJCTAyckJOp0O3t7eSE5Ohq+vL5o1a4bmzZvDzs4OmzZtUtTOzs5G3759za8NvV4Pb29vGAwGODs748svv1Q87uLiYrz99ttwc3Mz90svbm5ueOedd1BcXKy4fztVWTcBYPbs2Xj00Ufx1FNPYcuWLRbLLl26hMaNGyvqXrt2Dc899xz8/PwwYMAA5Ofn49VXXzU/9x06dEBWVpbicWdlZZW5XL16FTY2NtizZ4/5NiVWrlyJ/Px88/VZs2bBz88Per0e7u7umDJliuJxjxgxAmvXrgUA/O9//0NQUBAMBgO8vLxgMBhw//3349y5c4raer0enTp1wtKlS5GXl6d4jOVJSUmBj48P9Ho9QkJCkJ6ejpCQEDg5OcHZ2Rl169bF3r17FbWLi4sxduxYODo6Qq/XQ6/Xm9cff39//PTTT4rHrdXtJsBtZ3m43SxLq9vN0r4W10+um2Vx3SyfFtfPhQsXwmg04plnnkFcXBzWr1+P9evXIy4uDv3794eNjQ0WL16sqF2ZqqyXmzZtgq2tLVq2bAk/Pz+4u7sjPj7evLwq6yUAzJw5E05OTnjyySfh4+ODqVOnwt3dHVOnTsWUKVPg4uKCuXPnKmqHhoaWe9HpdGjRooX5uhJ6vR6ZmZkAgB07dsDGxgZRUVEYO3YsunTpAqPRiO3btytqN27cGLt37wYAjBkzBgEBAfjhhx9w5MgR/Pe//0VgYCDGjh2rqK3T6eDu7g6DwYCuXbvi+++/R2FhoaLWrV588UWEhIRg1qxZiIqKQq9evdCqVSskJiZi586daNu2LQYMGKCovXjxYtSpUwejR4/G22+/DW9vb0yYMAFfffUVoqKiUL9+fRw/flxRe/r06XB0dMSECROQkJCAw4cP4/Dhw0hISMDEiRPh5OSEGTNmKGrfieTkZOh0OkX/7dKlS2EwGNCjRw889NBDsLe3x5IlS8zLq7J+vvPOO/Dy8sKbb76J4OBgDB8+HI0aNcKSJUuwaNEiNGzYENOmTVPUrlu3brkXnU4HV1dX83Ulbl43f/rpJ+j1egwYMACzZ8/G0KFDYTQa8cMPPyhq+/r6Yv/+/QCAoUOHIjQ0FPv370dubi6Sk5MRHh6OIUOGKGrrdDq0bNkSOp0OQUFB+PTTT/Hnn38qat0qJiYGUVFRWLt2LZ5++mlERkaiY8eOOHfuHC5cuICuXbuid+/e1fJYRFrCCZVqMGTIEDRr1gwbN25EUVGR+faioiJs2rQJgYGBGDp0qCqPXZVfcCdPngwvLy/MmDEDb7/9NlxdXTFs2DDz8oyMDMUb5xdeeAERERH46aef0K9fP0RERODhhx/GuXPncPbsWURGRiI2NlZRu/SPk1s/IL/59qr8Yn7zRnTGjBmoW7cuFixYgNTUVCxZsgSenp5V2vgfOXIEANC9e3c8++yz5g+ICwoKMGTIEERHRytq63Q6vPTSS+YPPXr06IE1a9ZYvCaVeuihhxAbG4vr169jxowZaNiwocW/35gxYxAREaGoPWzYMERGRuLgwYM4ceIE+vbti3HjxuHGjRuYP38+HB0dsXTpUkXtsWPHwsPDA19//TXS0tKQk5ODnJwcpKWlYe7cufD09MS4ceMUtStTlXXz888/h6OjI2JjY/H888/D1tYWH330kXl5VX65HTFiBIKCgvDFF1+gY8eO6NWrF0JCQpCYmIjt27cjODgYb731lqI2APMH77deqmP9vHndXLBgAezt7TFp0iT8/PPPmDp1KpycnPDtt98qant5eeHgwYMAgKeffhqdO3fGpUuXAAB//fUXHn/8cfTt21dRW6fToVu3brC1tUXdunUxYsQI/PHHH4pat+ratSv69u2LgwcP4o033kCLFi3w1FNPoaCgAIWFhXj++efRuXNnRe3x48ejRYsWWLt2LTZv3owOHTpg2rRpOHLkCN59990qfeCk1e0mwG1nebjdLEur201Au+sn182yuG6WT4vrZ7NmzW47GTN79mw0bdpU0ZhHjRp128vzzz+v+DXYvn178++VJpMJ06ZNg7OzMzZs2ACg6hMqQUFB5udz//79MBqNmDdvnnn5vHnzEBYWpqhtNBrRrVs3vPfee+bL5MmTodfr8eqrr5pvU0Kn05nXzS5duuDFF1+0WP7GG2+gU6dOitp2dnY4e/YsACAwMND8XJfavn07/Pz8FLV1Oh3Onz+PNWvW4IknnoDRaISHhwdGjx6teAK1lI+PD3bs2AHg/79f//LLL+bliYmJaNiwoaJ2UFAQVqxYYb7++++/w9fXFyaTCQDQr18/9OnTR1Hbz88PK1eurHD5ihUr0KhRI0VtoGTy+naXTp06KV6HWrdujc8//9x8feXKlXBycjKvQ1VZP5s0aWL+stqJEyeg1+st/g1WrlyJkJAQRW1nZ2f06NEDCxcuNF/i4uJgMBjw4Ycfmm9T4uZ186GHHsKECRMsln/44YcIDw9X1Lazs8OZM2cAAAEBAWUmTfft2wcfHx9F7dJxJycnY8SIEahXrx5sbW3x5JNPYv369ebXuhIeHh7mv12vXr0KnU6H3377zbw8KSkJXl5eivtEWsUJlWrg5uZm3viXJzExEW5uboraFc2+l15cXFwUb+SaNm1q3sgBJRu6pk2bYtCgQTCZTFXagPr4+GDXrl0ASj6M1Ol0Ft+y37p1K5o0aaKo/a9//Qs9evTAkSNHcObMGZw5cwZpaWkwGo3YvHmz+Talbt6IhoaGlvlW05IlS9CyZUtFbQcHB5w8eRJAyXNU+g2FUseOHYOrq6uidum4CwsL8f333+Oxxx4zf8N+3LhxOHbsmKIuALi4uJjHXVhYCKPRaPGB8PHjxxWPu379+ti3b5/5+pUrV2Bvb2/+9uuXX36J1q1bK2p7eXlh48aNFS7fuHEjPD09FbUr+tZa6SUoKEjx+hMcHGzxx/aOHTvg4eGBd999F0DVfrlt1KiR+ZuB58+fh06ns3gfWLduHZo3b66oDQANGzZEjx49EB8fj23btmHbtm1ISEiAwWBAXFyc+TYlbl4327Vrh+nTp1ssnzNnjuJvCtrb2+P06dMASr49tGfPHovlBw8eRP369RW1S8d96dIlfPrppwgODoZer8cDDzyAOXPmVGmPoLp165r/gM3JyYHBYLAY+6FDh+Du7q6o7ePjg19//dV8/dy5c3B2djbvZfP++++jffv2itpa3W4C3HaWh9vNsrS63QS0u35y3SyL62b5tLh+2tnZ4ejRoxUuP3r0KOzt7e9+wID5d5KOHTuWe2nTpo3idefm57rU0qVL4eTkhLVr11Z5QsXBwcE8eQCUPE+HDh0yXz9x4oTi96vExETcd999mDRpksUe7UajEampqYrHDFiumze/v5Qq3etLCX9/f/Pv+g0bNsTvv/9usfzw4cNwcnJS1L553EDJ3nsfffQRmjVrBr1ej/bt25fZO/BOOTo6WrzX2djYmL/sBACnT59WPG4HBwekpaVZ3GY0Gs17wO3Zs0fx68Te3v62k0mpqalwcHBQ1AZKxtm9e3cMGjSo3EvPnj0Vr0NOTk7mv39KxcfHw9nZGV999VWV1k97e3ukp6dbXC+dhAdK/j3r1KmjqH3ixAnzHkvXr183317d66anp6fF+zlQ8l6r9LUSGBiIdevWASjZk+zW37X++OMPuLi4KGrfum7m5eVh2bJlePTRR6HX6+Hr62v+LOFu1alTx/w6KS4uhtFoRHJysnn5iRMnFP9bEmkZz6FSDUwmk9ja2la43NbW1nxs+7uVn58vL774osycObPcy+jRo5UOW86fPy8hISHm602bNpVt27bJzp075YUXXqjSOQP+/vtvadiwoYiI1KtXTxwdHcXf39/isZQeA3Xv3r3StGlTiYmJkStXroi/v78EBASIiEiDBg3E39/f4rGU0Ol0IiKSnp4uERERFssiIiIkLS1NUbdVq1YSHx8vIiLe3t5y9uxZi+Vnz54VBwcHRe1SRqNRYmJi5Oeff5azZ89KbGysfP/999KiRQvp0KGDoqatra3k5eWJiEhBQYGYTCbzdRGR3NxcsbGxUdQuKioSFxcX83VnZ2cpKiqSGzduiEjJcYpvPZ7rnbp+/bo0aNCgwuU+Pj7mx7lbhw8fllatWkmvXr3KvURFRSnqioikpaVZvO4iIiIkPj5evvnmG5k4caLirkjJMZubNm0qIiXri4ODgwQGBpqXh4SEVOm4yAcOHBAbGxv54IMPpGnTphIVFSUdO3YUnU4n7dq1k6ioqCo9N6Xr5unTpyU6OtpiWXR0tOIT+gUGBsrevXtFpOQYtLce5/z69euK38dL1a9fX0aPHi2pqamSmJgorVu3lvHjx4uPj48MGDBAUROAGI1GEZEy/ysiYjAYFI87Ozvb/D4uUrK+5OXlyd9//y0iIjExMZKSkqKordXtpgi3nRXhdtOSVrebItpdP7lulo/rZllaXD9btmx523MxLFiwQIKDg+9+wFLy+h01apQkJCSUe/n2228VdUVE7OzsypwT4Nlnn5V58+ZJv379ZM2aNYrbIiKOjo4Wv8t7eHiIs7OzxX2KiooUtSMjIyUpKUmOHz8uERERcurUqSqN9VbXr1+Xa9euib29vdjZ2Vkss7e3l5ycHEXd5557Tt5++225evWqvPDCC/L+++9Ldna2iIjk5OTIe++9J5GRkYrape8npXx8fGTixIly/Phx2bp1q9x3333y+uuvK2o3a9ZM1q1bJyIiGzZsEHt7e/nll1/Myzdt2iSNGzdW1A4ICJB9+/aZr+/fv1/0er14eXmJSMn7utJzYbVt21Y++eSTcl9nxcXFMm3aNGnbtq2itohIixYtJCYmRuLi4sq9TJkyRXHbxcWlzPkWH3nkEVm3bp2MHTtWZs2apbjt6upqse4/8MADUqdOHfP1/Pz8Mq+nO9W0aVPZuXOneHt7S+vWrWXHjh2Kx1mew4cPy4EDB8TBwaHc33eUvqe89NJLMnbsWDl58qSMGDFCxowZY35fSUtLk1GjRpX5+/ZO3fpc2tnZSf/+/WXLli1y6tQpGTRokCxcuFBRu2XLlrJgwQIREVm0aJG4u7vLihUrzMuXL19u8XkC0T+GtWd0aoNnn33WfPzDW+3fvx9hYWF47rnnFLUjIiLw2WefVbi8KodGaNy4cZlzMwAl31oPDAxEly5dFLf9/PwsviU9fvx4/PXXX+brycnJir91U2r9+vXw9fXFRx99ZJ4pr+o3EoCS2f0PP/wQn3/+OXx8fMrsipmSkqL4mJzr1q1DvXr1EBcXh7i4OAQEBGDevHnYsWMHFixYgEaNGik+pu3Nh3Uoz5YtW/Dss88qavfq1QuPP/44EhMTMWzYMLRp0wY9evRAdnY2bty4gb59+6Jbt26K2l26dLE4zMKMGTMsdnXdv3+/4tfKY489hujoaPOhm2526dIldOvWDT169FDUDgsLw5w5cypc/scff1RpL5Kb9wwolZqaCi8vLwwYMEBxu0GDBkhKSjJf79+/v8Xr5tChQ4pf3zebM2cOGjRogGXLlgGovm8MLV68GD/++CN8fX2xc+dOi+WHDh1S/K2euLg4+Pr6IiEhAYsXL0aLFi2wZcsWnD9/HvHx8bj//vsVH+LmdutmdnY25s2bp/jQIo8++iiGDBmCc+fOYcqUKWjatCkGDx5sXv7qq6/i4YcfVtSOiIjA1KlTzdeXL19u8Y2sgwcPKn6taHW7CXDbWR5uN8vS6nYT0O76yXWzLK6b5dPi+ll63pf7778fo0aNwieffIJPPvkEo0aNQqtWreDs7Kz4nBvPPvssRo4cWeHyqpyjoUuXLhWeP2LZsmWwsbGp0jY5MjLS4jBCt1q7dq3iwwrdbMGCBfD29sbcuXNhY2NTLevmzYfF/eabbyyW//jjj4oP4Zafn4+ePXuibt266NKlC+zt7eHo6IhmzZrByckJfn5+ivfyuvVb8OVRuuf1kiVLYDAY0LRpU9jZ2WHVqlVo0KABnn76aTzzzDOwtbVVfA6iL7/8Eq6urhg3bhwmTZqEBg0aWJyrYsmSJYr3ck9JSYG3tzfc3d3Rp08fDB8+HMOHD0efPn3g7u4OHx8fiz1t7tagQYPw6quvVrj88OHDCAgIUNTu1asXJk2aVO6y0vccpevnI488ctvDbn333XeKD8d3s61bt8LPzw8TJ06s1nWz9NCbM2fOtFi+fPlyBAcHK+6/9tprsLGxQVBQEOzt7aHX683nNmvTpg0uXryoeNyVrZtKD/u1ceNG2Nvbw9bWFvb29ti+fTsCAwPRrl07hIeHw2Aw3Pawd0S1FSdUqsGVK1fQrVs36HQ61KtXD0FBQQgKCkK9evWg1+vRvXt3/P3334raH3744W2PzZqeno5BgwYpag8ZMqTM8VpLnTt3Dk2bNlW8Ae3Zs+dt/2D+8ssvFR8X9mYZGRno3r07Hn744WqbUPH390dAQID5cutG9LPPPlN83EwA+P777+Hr61vmeNn29vYYOXKk4uND38lGVKnjx4+jWbNm5pMwnjt3Dj179oTRaDQfO/fmD+nvRlJSEurVqwdvb2/4+fnB1tYWy5cvNy//8ssvFZ+AsPQE3UajEaGhoejWrRu6deuG0NBQGI1GtGrVymJX5Lvx+uuv44033qhw+cmTJ9GxY0dF7f79+1f4h+2hQ4fg4eGheN3s1q0bvv766wqXx8XFKf5w/1apqan417/+hf79+1fbB0M3X27+sB8oOU620j+GAODf//43HB0d4eDgYP7FtvTSu3dvi13K73bcaq2be/fuhbu7O/R6PTw8PHDo0CE8+OCD8Pb2RoMGDeDg4FDuB4x3YsuWLbCzs0O7du3QoUMHGI1Gi/fDGTNmKH4f1+p2E+C2szzcbpal1e0moN31k+tmWVw3y6fV9TMtLQ3jxo1Dhw4dEBgYiMDAQHTo0AHjx48vcziju3Hx4sUqHS75dn744YfbTtYsXbpU8e/LQMlhuW53XrrZs2dj1qxZivs3O378ONq2bQudTlfldbP0ELill1snOD777LMyh7a9Wxs2bMCrr76Kbt26ITo6GgMHDsQ333yD7Oxsxc1Bgwbh2rVrVRrX7SQmJuLTTz81HwopNTUVL7zwAmJiYhSfE6PUnDlzEBERgbCwMLz11lvIzc01Lzt+/LjF4aju1rVr1zBnzhwMGDAA0dHRiI6OxoABA/DVV19V6dC+QMmhm0oPGVjdtm3bZnGezlvFx8cr3iYfO3aszOHEbrZ06dJq+xD+8uXL6NOnD9zc3G57aMQ7UXqYzdLL5cuXLZYvWrQIixYtqtJjHD58GNOnT8fw4cMxbNgwTJ48Gb/88kuVznPy3nvvqfY6AUq2P99//715W5ORkYF3330Xo0ePNh9ikOifRgcA1t5LprY4evSo7Nq1SzIyMkSkZPf39u3bS1BQkJVHVr6zZ8/K0aNHpWvXruUuv3DhgmzevFkGDhxY7Y+9d+9ecXR0tDg0Q1V88cUXkpCQILNmzRJfX99qaVZk9+7dYmdnJ6GhoYobxcXFsn//fjl9+rSYTCbx8fGRsLAwi91g79b27dslMjLS4nA/1e2vv/4Sd3d38/WtW7dKbm6utG/f3uL2u3Xx4kVZt26d5OfnS6dOnRQfsqA8JpNJNm3aJLt37y6zbkZHR4teX/OOfHjgwAFJSkqSwYMHl7v80KFDsnr1apk8efJdt69cuSJ6vV7c3NzKXb5hwwZxcHCQjh073nW7PAUFBTJhwgRJSEiQH374QfGu+ndi3bp1YmNjU+F72p24evWqbN682WLdjIyMlGbNmiluLlq0SJ555pkyh3OoLjdu3JCjR49K8+bNxdnZWfLy8mTp0qWSm5srXbp0kebNmytup6SkyHfffSf5+fnStWtX6dKlSzWOXOTIkSPlrps1dbspwm2nEtxuamu7WUpr6yfXzbtXXetmUlKSpKWlaWrdFNH2+knWYTKZ5Pr16+Li4qL4cEVERESkfZxQISIiIiIiIqrhioqKJDU11TzR6ePjIy1atFB8zpfbtb29vSU4OLjGt9Xus812VRQWFsrFixfFz89PlX5RUZFcuHBBlT7b97at5mtFq88JUU2m7td+/iHy8/NFr9ebN8SnTp2SBQsWSHp6uvj7+8uQIUMUfyub7Xvb1vLY2S5r9erV0r17d3F0dFT037Nds/ps1562SMneL0lJSdKxY0dp0qSJpKamyuzZs8VkMkmfPn2qtKeRmm0tj53t2td+5JFHpHHjxtX+GhcRiY+Pl8TERLl48aLo9Xpp0qSJ9OzZs0p77LF95+377rtPnnjiCc2NWytttfvV3TaZTDJp0iSZPXu2ZGVlWSxzdXWVESNGyJQpUxTtea3VtpbHznbtaVfm8OHD8sADD0hxcXG1t0VEUlNTVeuzfW/bar5WtPqcENVo1j3iWO0QFRWFVatWASg57qednR1atWqFfv36ITQ0FI6OjmVOnsx2zWxreexsl6XT6eDi4oKXXnoJu3fvVtRgu+b02a497dWrV8NgMMDd3R3Ozs7YvHkz3Nzc0LlzZ3Tt2hUGgwFLly6tcW0tj51ttu9UZmYm2rVrB71eD6PRCL1ej7CwMHh7e8NgMCg+0TjbbNeEtlbHPnbsWHh4eODrr79GWloacnJykJOTg7S0NMydOxeenp4YN27cP6qt5bGzXXvalUlOTlZ8/i5r99lm29ptopqMEyrVwMXFBcePHwdQ8uHwqFGjLJa/8847iIyMZFsDbbX7bN/btk6nw/vvv4/Q0FDodDq0bNkSM2fOLHNyObarp612n+3a037ggQcwdepUAMDy5cvh5uaG999/37z8008/RevWrWtcW8tjZ5vtO9WvXz/07t0bWVlZyMvLw4gRI8wn0d66dSvc3d1ve4J2ttmuyW2tjt3LywsbN26scPnGjRvh6empaMxabavdZ5vtOxEaGnrbS1BQUJU+bFazzzbb1m4TaRknVKqBk5MTjhw5AqBkY52cnGyx/OTJk3B2dmZbA221+2zf27ZOp0NmZiYAYN++fXjllVfg5uYGOzs7PPXUU/jll18UddmufWNn+962nZyckJaWBgAwmUywsbHBgQMHzMtPnTpVpfcUtdpaHjvbbN8pFxcXHDp0yHw9OzsbNjY2yMrKAgD85z//QfPmzdlmW5NtrY7d0dHRYj2/VUpKCpycnO5+wBpuq91nm+07YWdnh4EDB+K9994r9/Lyyy9X6cNmNftss23tNpGWcUKlGnTq1AnTp08HAERERGDRokUWy7///nv4+fmxrYG22n2272375g+ES+Xm5mLx4sXo2LEj9Ho9AgIC2K6mtpbHzva9bXt7e2Pfvn0AgCtXrkCn0yEhIcG8fO/evfD29q5xbS2PnW2275SHhwdSU1PN13NycqDX6/HXX38BKJmwsbOzY5ttTba1OvbHHnsM0dHRuHTpUpllly5dQrdu3dCjRw9FY9ZqW+0+22zfibCwMMyZM6fC5X/88UeVPmxWs88229ZuE2kZJ1Sqwc6dO+Hq6orJkydj1qxZqF+/Pt555x0sXboUkyZNgpubG6ZNm8a2BtpaHjvbZen1+jIfCN/sxIkTeOutt9iuprbafbZrT/v555/Hgw8+iCVLluCJJ55A165dER4ejiNHjuDo0aOIiopC3759a1xby2Nnm+071adPH8TExCA7OxsFBQUYOXIkmjZtal6+e/duxRM2bLNt7bZWx56eno6QkBAYjUaEhoaiW7du6NatG0JDQ2E0GtGqVSukp6crGrNW21oeO9u1p/3666/jjTfeqHD5yZMn0bFjR0Vttftss23tNpGWcUKlmuzcuRPh4eHQ6XQWl4YNG1bpGL9s3/u2lsfOtqXyvmFfXdi+9322a087IyMDXbp0gbOzM7p27YqrV69ixIgR0Ol00Ov1aNasGU6ePFnj2loeO9ts36lTp07hvvvug9FohI2NDdzc3LB582bz8ri4OEyYMIFttjXZ1vLYi4uLsX79ekyaNAnDhg3DsGHDMGnSJGzYsAHFxcWKmlpva3nsbNeeNhER/fPoAECo2ly6dElOnz4tJpNJfHx8JCAggG2NttXus61+++zZs+Ln5yc6na56Bsi2Vfts1552RU6fPi05OTkSFBQkRqNRM221+2yzfa/bOTk5kpiYKAUFBRIeHi7169evplGyzbb122r31R47EREREVkXJ1SIiIiIiIiIari9e/fKrl27JCMjQ0REvL29JSIiQtq2bfuPbavdZ5ttpe327dtLu3btqtxWu88229ZuE2kRJ1SqSW5urixfvlwSExPl4sWLotfrpUmTJtK7d2959NFH2dZQW8tjZ5tta7e1PHa22a4JfbbZtnZby2Nnm+2a0Fej/eeff0pMTIzs2LFD/Pz8xMvLS0REMjMzJT09XSIjI2X16tXi6en5j2lreexss10T+myzbe02kaZZ83hjtcWJEyfg7+8PT09PNGrUCDqdDj169MCDDz4Ig8GAp556CoWFhWxroK3lsbPNtrXbWh4722zXhD7bbFu7reWxs812Teir1Y6JiUH79u1x9OjRMsuOHj2KiIgI9O3bV9GYtdpWu88229Zuq91nm21rt4m0jBMq1aB79+54+eWXYTKZAACffPIJunfvDgA4fvw4AgICMHnyZLY10Nby2Nlm29ptLY+dbbZrQp9ttq3d1vLY2Wa7JvTVajs7O2P//v0VLt+3bx+cnZ0VjVmrbbX7bLNt7bbafbbZtnabSMs4oVINHB0dcfz4cfP1/Px82NjY4PLlywCA//73vwgICGBbA20tj51ttq3d1vLY2Wa7JvTZZtvabS2PnW22a0Jfrba7uzu2bdtW4fKEhAS4u7vf/YA13Fa7zzbb1m6r3WebbWu3ibRMb+1DjtUGbm5ucv36dfP1nJwcKSoqEltbWxERadWqlVy8eJFtDbS1PHa22bZ2W8tjZ5vtmtBnm21rt7U8drbZrgl9tdr9+vWTgQMHypo1a+TatWvm269duyZr1qyRwYMHS//+/RWNWattLY+dbbZrQp9ttq3dJtI0a8/o1AYDBw5EVFQUjhw5gtOnT6Nfv34IDQ01L9+2bRsaNWrEtgbaWh4722xbu63lsbPNdk3os822tdtaHjvbbNeEvlrtvLw8DB8+HLa2ttDr9bC3t4e9vT30ej1sbW3xyiuvIC8vT9GYtdrW8tjZZrsm9Nlm29ptIi3jhEo1yMzMRHh4OHQ6HfR6Pfz9/S2OMbhq1Sp88cUXbGugreWxs822tdtaHjvbbNeEPttsW7ut5bGzzXZN6Ks99qysLMTHx2PZsmVYtmwZ4uPjkZWVpbhXG9pq99lm29pttftss23tNpEW6QDA2nvJ1BYnTpyQ/Px8CQoKEqPRyLaG22r32Wa7NrfV7rPNtrXbavfZZtvabbX7bLNt7bbafbXHTkRERERWZO0ZnX+C9PR0DB48mO1a0Fa7zzbbtbmtdp9ttq3dVrvPNtvWbqvdZ5tta7fV7lelnZOTg99++w2pqallluXm5mLRokWKx6XVttp9ttm2dlvtPttsW7tNpFWcULkHkpOTodfr2a4FbbX7bLNdm9tq99lm29pttftss23tttp9ttm2dlvtvtL2sWPH4O/vbz6UWIcOHXD+/Hnz8oyMDMVj1mpby2Nnm+2a0GebbWu3ibSM+x9Xg59++um2y0+fPs22Rtpq99lmuza31e6zzba122r32Wbb2m21+2yzbe222n212uPHj5eQkBDZt2+fXL16VUaOHCkPPfSQbNu2Tfz8/BQ1td7W8tjZZrsm9Nlm29ptIk2z9oxObVA6U6vT6Sq8KJ2xZfvetrU8drbZtnZby2Nnm+2a0GebbWu3tTx2ttmuCX212p6enjhw4ID5uslkwvDhw+Hn54dTp05V6RvCWm1reexss10T+myzbe02kZbprT2hUxv4+PjIDz/8ICaTqdzL/v372dZIW8tjZ5tta7e1PHa22a4JfbbZtnZby2Nnm+2a0FernZuba3Fye51OJ1999ZU88cQTEhUVJcePH1c8Zq22tTx2ttmuCX222bZ2m0jLOKFSDcLCwiQpKanC5TqdTgCwrYG22n222a7NbbX7bLNt7bbafbbZtnZb7T7bbFu7rXZfrXZQUJDs27evzO1ffvml9OrVS3r27HnXTa231e6zzba122r32Wbb2m0iTVNv55d/jl9//RUbNmyocHl2dja2bdvGtgbaavfZZrs2t9Xus822tdtq99lm29pttftss23tttp9tdofffQRunfvXuHyV155BTqd7q67Wm6r3WebbWu31e6zzba120RapgOq8PUeIiIiIiIiIiIiIiKifwAe8ouIiIiIiIiIiIiIiKgSnFAhIiIiIiIiIiIiIiKqBCdUiIiIiIiIiIiIiIiIKsEJFSIiIiIiIiIiIiIiokpwQoWIiIiIiIiIiIiIiKgSnFAhIiIiIqoBAEjnzp2la9euZZbNmTNH3Nzc5Ny5c1YYGREREREREYlwQoWIiIiIqEbQ6XQSFxcne/bskblz55pvT0tLk3HjxsmsWbPE19e3Wh+zsLCwWntERERERES1GSdUiIiIiIhqiEaNGsnnn38uY8aMkbS0NAEgQ4YMkejoaAkNDZXu3buLs7OzeHl5yQsvvCCXL182/7cbN26Uhx56SNzc3MTd3V0ef/xxOXXqlHn5mTNnRKfTycqVKyUqKkrs7e1l6dKl1vgxiYiIiIiINEkHANYeBBERERER/X+9e/eWrKwsefLJJ+WDDz6Q1NRUadmypQwdOlQGDBggubm5Mn78eCkqKpL4+HgREVm9erXodDpp1aqVZGdny6RJk+TMmTOSnJwser1ezpw5I40bN5aAgAD597//LaGhoWJvby8+Pj5W/mmJiIiIiIi0gRMqREREREQ1zJ9//iktW7aUK1euyOrVq+XQoUPy22+/yaZNm8z3OXfunDRq1EiOHTsmgYGBZRqXL18WDw8POXjwoISEhJgnVD777DN544037uWPQ0REREREVCvwkF9ERERERDWMp6envPzyy9KiRQvp3bu3pKSkSEJCgjg7O5svQUFBIiLmw3qdOHFC+vfvL02aNBEXFxcJCAgQEZH09HSLdps2be7pz0JERERERFRbGK09ACIiIiIiKstoNIrRWPLrenZ2tjzxxBMybdq0MvcrPWTXE088If7+/vLtt99KgwYNxGQySUhIiBQUFFjc38nJSf3BExERERER1UKcUCEiIiIiquEeeOABWb16tQQEBJgnWW72119/ybFjx+Tbb7+Vhx9+WEREEhMT7/UwiYiIiIiIajUe8ouIiIiIqIaLjY2VK1euSP/+/eX333+XU6dOyaZNm2Tw4MFSXFwsdevWFXd3d/nmm2/k5MmTEh8fL2+++aa1h01ERERERFSrcEKFiIiIiKiGa9CggezYsUOKi4slOjpa7r//fhk5cqS4ubmJXq8XvV4vK1askKSkJAkJCZFRo0bJjBkzrD1sIiIiIiKiWkUHANYeBBERERERERERERERUU3GPVSIiIiIiIiIiIiIiIgqwQkVIiIiIiIiIiIiIiKiSnBChYiIiIiIiIiIiIiIqBKcUCEiIiIiIiIiIiIiIqoEJ1SIiIiIiIiIiIiIiIgqwQkVIiIiIiIiIiIiIiKiSnBChYiIiIiIiIiIiIiIqBKcUCEiIiIiIiIiIiIiIqoEJ1SIiIiIiIiIiIiIiIgqwQkVIiIiIiIiIiIiIiKiSnBChYiIiIiIiIiIiIiIqBKcUCEiIiIiIiIiIiIiIqrE/wUybTDP2gEKWAAAAABJRU5ErkJggg==\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "df_co2_filled.columns" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "-sP2JGbB6-HV", "outputId": "c2593462-ea0c-4569-84dd-5b7c930b9aed" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Index(['Country Name', 1960, 1961, 1962,\n", " 1963, 1964, 1965, 1966,\n", " 1967, 1968, 1969, 1970,\n", " 1971, 1972, 1973, 1974,\n", " 1975, 1976, 1977, 1978,\n", " 1979, 1980, 1981, 1982,\n", " 1983, 1984, 1985, 1986,\n", " 1987, 1988, 1989, 1990,\n", " 1991, 1992, 1993, 1994,\n", " 1995, 1996, 1997, 1998,\n", " 1999, 2000, 2001, 2002,\n", " 2003, 2004, 2005, 2006,\n", " 2007, 2008, 2009, 2010,\n", " 2011, 2012, 2013, 2014,\n", " 2015, 2016, 2017, 2018],\n", " dtype='object', name='Year')" ] }, "metadata": {}, "execution_count": 71 } ] }, { "cell_type": "markdown", "source": [ "**Stage 5: Data Normalization**" ], "metadata": { "id": "UXEs5NG-7gKN" } }, { "cell_type": "code", "source": [ "from sklearn.preprocessing import MinMaxScaler\n", "\n", "# Copy dataset to preserve original\n", "df_minmax_scaled = df_co2_filled.copy()\n", "\n", "# Get all year columns (exclude 'Country Name')\n", "year_columns = df_minmax_scaled.columns.drop('Country Name')\n", "\n", "# Initialize MinMaxScaler\n", "scaler = MinMaxScaler()\n", "\n", "# Apply Min-Max scaling to year columns\n", "df_minmax_scaled[year_columns] = scaler.fit_transform(df_minmax_scaled[year_columns])\n", "\n", "# Show preview\n", "df_minmax_scaled.head()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 359 }, "id": "Fn6w5ucJ7Iff", "outputId": "d22d5730-2fca-4ea0-d6a1-6de580392de2" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Year Country Name 1960 1961 1962 1963 \\\n", "0 Afghanistan 0.010176 0.012215 0.016912 0.015899 \n", "1 Africa Eastern and Southern 0.240022 0.244291 0.238947 0.228401 \n", "2 Africa Western and Central 0.022155 0.023351 0.022843 0.025272 \n", "3 Albania 0.334134 0.364941 0.370842 0.287538 \n", "4 Algeria 0.146764 0.140804 0.124205 0.109448 \n", "\n", "Year 1964 1965 1966 1967 1968 ... 2009 \\\n", "0 0.017065 0.018785 0.018251 0.019424 0.020448 ... 0.013644 \n", "1 0.225235 0.217482 0.197850 0.181053 0.166294 ... 0.065989 \n", "2 0.027837 0.036327 0.034975 0.030891 0.024810 ... 0.027557 \n", "3 0.251709 0.242438 0.255838 0.235268 0.232796 ... 0.095285 \n", "4 0.103134 0.107911 0.124088 0.108606 0.103309 ... 0.206084 \n", "\n", "Year 2010 2011 2012 2013 2014 2015 2016 \\\n", "0 0.020950 0.027829 0.020922 0.015206 0.014384 0.015044 0.013834 \n", "1 0.073970 0.068729 0.068761 0.068117 0.074097 0.073525 0.071541 \n", "2 0.033345 0.033979 0.031762 0.031803 0.034629 0.034292 0.033831 \n", "3 0.110880 0.118600 0.107618 0.111011 0.130743 0.133352 0.127806 \n", "4 0.221777 0.220302 0.233679 0.231670 0.260912 0.281584 0.265675 \n", "\n", "Year 2017 2018 \n", "0 0.013368 0.013643 \n", "1 0.071064 0.071154 \n", "2 0.034193 0.038376 \n", "3 0.146469 0.150057 \n", "4 0.265183 0.279596 \n", "\n", "[5 rows x 60 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
YearCountry Name196019611962196319641965196619671968...2009201020112012201320142015201620172018
0Afghanistan0.0101760.0122150.0169120.0158990.0170650.0187850.0182510.0194240.020448...0.0136440.0209500.0278290.0209220.0152060.0143840.0150440.0138340.0133680.013643
1Africa Eastern and Southern0.2400220.2442910.2389470.2284010.2252350.2174820.1978500.1810530.166294...0.0659890.0739700.0687290.0687610.0681170.0740970.0735250.0715410.0710640.071154
2Africa Western and Central0.0221550.0233510.0228430.0252720.0278370.0363270.0349750.0308910.024810...0.0275570.0333450.0339790.0317620.0318030.0346290.0342920.0338310.0341930.038376
3Albania0.3341340.3649410.3708420.2875380.2517090.2424380.2558380.2352680.232796...0.0952850.1108800.1186000.1076180.1110110.1307430.1333520.1278060.1464690.150057
4Algeria0.1467640.1408040.1242050.1094480.1031340.1079110.1240880.1086060.103309...0.2060840.2217770.2203020.2336790.2316700.2609120.2815840.2656750.2651830.279596
\n", "

5 rows × 60 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "df_minmax_scaled" } }, "metadata": {}, "execution_count": 74 } ] }, { "cell_type": "code", "source": [ "# Define save path\n", "save_path = \"/content/drive/MyDrive/AuraClima/CO2_Emissions_MinMaxScaled.csv\"\n", "\n", "# Save as CSV\n", "df_minmax_scaled.to_csv(save_path, index=False)\n", "\n", "print(\"Dataset saved successfully to:\", save_path)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "yaNOuXX-7sUT", "outputId": "5de41dd7-2c27-4d0e-ff5a-c832255cafed" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Dataset saved successfully to: /content/drive/MyDrive/AuraClima/CO2_Emissions_MinMaxScaled.csv\n" ] } ] }, { "cell_type": "markdown", "source": [ "_________________________________________________________________________________________________________________________________________" ], "metadata": { "id": "WPN3LjaNVB-n" } }, { "cell_type": "markdown", "source": [ "## Predictive Modeling" ], "metadata": { "id": "YxCL6om_Z0D5" } }, { "cell_type": "markdown", "source": [ "### Agricultural Data" ], "metadata": { "id": "zBBJ4z8XZ2rs" } }, { "cell_type": "markdown", "source": [ "**1. Forecasting Future total_emission per Country via LSTM**" ], "metadata": { "id": "aZJ8FSmaaEuH" } }, { "cell_type": "code", "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "rxgVq9OA71P_", "outputId": "7b731d9f-ad40-4700-9924-0e1e7672067f" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Mounted at /content/drive\n" ] } ] }, { "cell_type": "code", "source": [ "csv_path = '/content/drive/MyDrive/AuraClima/Agrofood_co2_emission.csv'\n", "df = pd.read_csv(csv_path)" ], "metadata": { "id": "WdTKmSmyaLos" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "columns_to_measure = [\n", " 'Area', 'Year', 'Crop Residues', 'Savanna fires', 'Forest fires', 'Rice Cultivation',\n", " 'Drained organic soils (CO2)', 'Pesticides Manufacturing', 'Food Transport', 'Forestland',\n", " 'Net Forest conversion', 'Food Household Consumption', 'Food Retail',\n", " 'On-farm Electricity Use', 'Food Packaging', 'Agrifood Systems Waste Disposal',\n", " 'Food Processing', 'Fertilizers Manufacturing', 'IPPU', 'Manure applied to Soils',\n", " 'Manure left on Pasture', 'Manure Management', 'On-farm energy use',\n", " 'Rural population', 'Urban population', 'Fires in organic soils',\n", " 'Fires in humid tropical forests', 'Total Population - Male',\n", " 'Total Population - Female', 'total_emission', 'Average Temperature °C'\n", "]\n", "missing_cols = [col for col in columns_to_measure if col not in df.columns]\n", "if missing_cols:\n", " print(f\"Warning: These columns are missing from the dataset: {missing_cols}\")" ], "metadata": { "id": "BXKGmSxobbWQ" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Drop rows with missing total_emission or Year/Area\n", "df_ts = df[['Area', 'Year', 'total_emission']].dropna(subset=['Area', 'Year', 'total_emission']).copy()\n", "df_ts['Year'] = df_ts['Year'].astype(int)\n", "df_ts = df_ts.sort_values(['Area', 'Year'])" ], "metadata": { "id": "MP4QEyKMbfdk" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Scale total_emission globally to [0,1] for LSTM training\n", "scaler = MinMaxScaler()\n", "df_ts['total_scaled'] = scaler.fit_transform(df_ts[['total_emission']])" ], "metadata": { "id": "J-S57lV4bj1M" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Create sliding windows per country\n", "window_size = 29 # number of past years to use\n", "X_list, y_list = [], []\n", "end_years = [] # track the end year for each sequence\n", "for country, grp in df_ts.groupby('Area'):\n", " grp = grp.sort_values('Year').reset_index(drop=True)\n", " values = grp['total_scaled'].values\n", " years = grp['Year'].values\n", " for i in range(len(values) - window_size):\n", " # Ensure consecutive years: year difference equals window_size\n", " if years[i + window_size] - years[i] != window_size:\n", " continue\n", " seq_x = values[i : i + window_size]\n", " seq_y = values[i + window_size]\n", " X_list.append(seq_x)\n", " y_list.append(seq_y)\n", " end_years.append(years[i + window_size])" ], "metadata": { "id": "rEImPs8Xbnys" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Convert to numpy arrays\n", "X = np.array(X_list) # shape (samples, window_size)\n", "y = np.array(y_list) # shape (samples,)\n", "end_years = np.array(end_years)" ], "metadata": { "id": "cc8wMBSKb7Pz" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Reshape X for LSTM: (samples, timesteps, features=1)\n", "X = X.reshape((X.shape[0], X.shape[1], 1))" ], "metadata": { "id": "oD1c6lhob9ZO" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "from sklearn.model_selection import train_test_split\n", "# Simple shuffle split; for time-based split, adjust as needed\n", "X_train, X_test, y_train, y_test = train_test_split(\n", " X, y, test_size=0.2, random_state=42, shuffle=True\n", ")" ], "metadata": { "id": "L_KR8kLPb_ZS" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "import tensorflow as tf\n", "from keras import Sequential\n", "from keras.layers import LSTM, Dense, Dropout\n", "\n", "# Build LSTM model\n", "tf.random.set_seed(42)\n", "model = Sequential([\n", " LSTM(64, input_shape=(window_size, 1), return_sequences=False),\n", " Dropout(0.2),\n", " Dense(32, activation='relu'),\n", " Dropout(0.2),\n", " Dense(1, activation='linear')\n", "])" ], "metadata": { "id": "onP7CnWjcCa7" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "model.compile(optimizer='adam', loss='mse', metrics=['mae'])" ], "metadata": { "id": "D2ller6qcc7W" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "model.summary()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 289 }, "id": "UOc5ADOLctTC", "outputId": "e265e652-bace-4b20-f31c-fc8d42d7ec13" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1mModel: \"sequential\"\u001b[0m\n" ], "text/html": [ "
Model: \"sequential\"\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "│ lstm (\u001b[38;5;33mLSTM\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m16,896\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m2,080\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout_1 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m33\u001b[0m │\n", "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" ], "text/html": [ "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
              "│ lstm (LSTM)                     │ (None, 64)             │        16,896 │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ dropout (Dropout)               │ (None, 64)             │             0 │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ dense (Dense)                   │ (None, 32)             │         2,080 │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ dropout_1 (Dropout)             │ (None, 32)             │             0 │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ dense_1 (Dense)                 │ (None, 1)              │            33 │\n",
              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m19,009\u001b[0m (74.25 KB)\n" ], "text/html": [ "
 Total params: 19,009 (74.25 KB)\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m19,009\u001b[0m (74.25 KB)\n" ], "text/html": [ "
 Trainable params: 19,009 (74.25 KB)\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ], "text/html": [ "
 Non-trainable params: 0 (0.00 B)\n",
              "
\n" ] }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "history = model.fit(\n", " X_train, y_train,\n", " validation_data=(X_test, y_test),\n", " epochs=30,\n", " batch_size=32\n", ")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "SjZnevaCcwlT", "outputId": "2a7ec2c4-452f-419b-9809-7c6edbf23e4d" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Epoch 1/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 126ms/step - loss: 0.0108 - mae: 0.0786 - val_loss: 0.0029 - val_mae: 0.0457\n", "Epoch 2/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 44ms/step - loss: 0.0028 - mae: 0.0376 - val_loss: 0.0017 - val_mae: 0.0185\n", "Epoch 3/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 56ms/step - loss: 0.0015 - mae: 0.0258 - val_loss: 3.0072e-04 - val_mae: 0.0119\n", "Epoch 4/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 46ms/step - loss: 0.0011 - mae: 0.0256 - val_loss: 2.8104e-04 - val_mae: 0.0151\n", "Epoch 5/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - loss: 0.0013 - mae: 0.0235 - val_loss: 5.9391e-04 - val_mae: 0.0089\n", "Epoch 6/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 42ms/step - loss: 6.6188e-04 - mae: 0.0204 - val_loss: 0.0023 - val_mae: 0.0140\n", "Epoch 7/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 56ms/step - loss: 0.0018 - mae: 0.0238 - val_loss: 9.6851e-04 - val_mae: 0.0248\n", "Epoch 8/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 53ms/step - loss: 7.9409e-04 - mae: 0.0221 - val_loss: 2.2910e-04 - val_mae: 0.0110\n", "Epoch 9/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - loss: 0.0012 - mae: 0.0179 - val_loss: 2.8743e-04 - val_mae: 0.0055\n", "Epoch 10/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 58ms/step - loss: 8.5593e-04 - mae: 0.0191 - val_loss: 1.1776e-04 - val_mae: 0.0067\n", "Epoch 11/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step - loss: 9.0911e-04 - mae: 0.0187 - val_loss: 8.4364e-05 - val_mae: 0.0029\n", "Epoch 12/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - loss: 0.0013 - mae: 0.0183 - val_loss: 1.1124e-04 - val_mae: 0.0040\n", "Epoch 13/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - loss: 4.7526e-04 - mae: 0.0142 - val_loss: 1.3878e-04 - val_mae: 0.0084\n", "Epoch 14/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 62ms/step - loss: 8.2944e-04 - mae: 0.0157 - val_loss: 1.5159e-04 - val_mae: 0.0094\n", "Epoch 15/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 120ms/step - loss: 9.2724e-04 - mae: 0.0178 - val_loss: 1.9224e-04 - val_mae: 0.0122\n", "Epoch 16/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 86ms/step - loss: 4.1700e-04 - mae: 0.0154 - val_loss: 7.8943e-05 - val_mae: 0.0041\n", "Epoch 17/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 100ms/step - loss: 4.4576e-04 - mae: 0.0145 - val_loss: 7.6974e-05 - val_mae: 0.0040\n", "Epoch 18/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 66ms/step - loss: 4.7390e-04 - mae: 0.0139 - val_loss: 7.6368e-05 - val_mae: 0.0022\n", "Epoch 19/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 52ms/step - loss: 5.0270e-04 - mae: 0.0131 - val_loss: 1.9456e-04 - val_mae: 0.0099\n", "Epoch 20/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 61ms/step - loss: 4.2210e-04 - mae: 0.0145 - val_loss: 1.3377e-04 - val_mae: 0.0059\n", "Epoch 21/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 71ms/step - loss: 6.7242e-04 - mae: 0.0134 - val_loss: 1.6332e-04 - val_mae: 0.0044\n", "Epoch 22/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 43ms/step - loss: 4.0974e-04 - mae: 0.0132 - val_loss: 7.0382e-05 - val_mae: 0.0041\n", "Epoch 23/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 87ms/step - loss: 7.2073e-04 - mae: 0.0145 - val_loss: 2.2019e-04 - val_mae: 0.0096\n", "Epoch 24/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 64ms/step - loss: 7.3721e-04 - mae: 0.0136 - val_loss: 2.2803e-04 - val_mae: 0.0101\n", "Epoch 25/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 61ms/step - loss: 3.5764e-04 - mae: 0.0127 - val_loss: 2.4646e-04 - val_mae: 0.0114\n", "Epoch 26/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 76ms/step - loss: 3.5532e-04 - mae: 0.0140 - val_loss: 3.2368e-04 - val_mae: 0.0113\n", "Epoch 27/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 30ms/step - loss: 8.2147e-04 - mae: 0.0154 - val_loss: 1.3662e-04 - val_mae: 0.0054\n", "Epoch 28/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 27ms/step - loss: 3.0444e-04 - mae: 0.0113 - val_loss: 8.4438e-05 - val_mae: 0.0052\n", "Epoch 29/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step - loss: 3.6416e-04 - mae: 0.0109 - val_loss: 7.6011e-05 - val_mae: 0.0030\n", "Epoch 30/30\n", "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - loss: 2.4136e-04 - mae: 0.0101 - val_loss: 7.5911e-05 - val_mae: 0.0031\n" ] } ] }, { "cell_type": "code", "source": [ "loss, mae = model.evaluate(X_test, y_test)\n", "print(f\"Test MAE (scaled): {mae}\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "lJjt90M8czLK", "outputId": "2959b3cc-6ad8-49af-a8c3-c665397fa322" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 4.0942e-05 - mae: 0.0024 \n", "Test MAE (scaled): 0.003083903342485428\n" ] } ] }, { "cell_type": "markdown", "source": [ "- Scaled MAE ≈ 0.0031 means on average the prediction is off by ~0.0031 of the full [0,1] range." ], "metadata": { "id": "i2J-12_KefD4" } }, { "cell_type": "markdown", "source": [], "metadata": { "id": "PxN_tO7veL8Y" } }, { "cell_type": "code", "source": [ "def forecast_next(country, recent_years):\n", " \"\"\"\n", " Forecast next year's total_emission for a country.\n", " recent_years: list or array of the last `window_size` total_emission values (unscaled).\n", " Returns: predicted emission (original scale).\n", " \"\"\"\n", " if len(recent_years) != window_size:\n", " raise ValueError(f\"Need exactly {window_size} recent years of total_emission values.\")\n", " # Scale recent values using the same scaler\n", " scaled = scaler.transform(np.array(recent_years).reshape(-1,1)).flatten()\n", " inp = scaled.reshape((1, window_size, 1))\n", " scaled_pred = model.predict(inp)[0,0]\n", " # Inverse scale to original emission value\n", " pred = scaler.inverse_transform([[scaled_pred]])[0,0]\n", " return pred" ], "metadata": { "id": "ijYSMBhBdnZh" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Overall MAE\n", "mae_orig = mean_absolute_error(y_test_orig, y_pred_orig)\n", "print(f\"Original-scale MAE: {mae_orig:.3f}\")\n", "\n", "# Error distribution\n", "errors = y_pred_orig - y_test_orig\n", "plt.figure(figsize=(8,4))\n", "plt.hist(errors, bins=30, edgecolor='k')\n", "plt.title(\"Error Distribution (Predicted − True)\")\n", "plt.xlabel(\"Error\")\n", "plt.ylabel(\"Frequency\")\n", "plt.axvline(0, color='red', linestyle='--')\n", "plt.tight_layout()\n", "plt.show()\n", "\n", "# Scatter plot: predicted vs actual\n", "plt.figure(figsize=(6,6))\n", "plt.scatter(y_test_orig, y_pred_orig, alpha=0.6)\n", "plt.plot([y_test_orig.min(), y_test_orig.max()], [y_test_orig.min(), y_test_orig.max()], 'r--')\n", "plt.title(\"Predicted vs Actual total_emission\")\n", "plt.xlabel(\"Actual total_emission\")\n", "plt.ylabel(\"Predicted total_emission\")\n", "plt.tight_layout()\n", "plt.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "XObQhuR-eQUb", "outputId": "f0892d1c-96be-45f0-cdd8-93c195162d57" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Original-scale MAE: 10815.242\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAGGCAYAAADvrLe3AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAARRtJREFUeJzt3Xd8FHX+x/H3puwmlCQQIAEJIfSuAhKj2CBSVRBQBDwRsYOFgAXvjuYpiCdw+qPonQY9DzkRu4IiAjZAQRAQLgJGAkICoSSU9P3+/uDYY0kCmbDJ7pLX8/HYx2Nn5jvf/ezM7mTfmWYzxhgBAAAAgAUB3i4AAAAAgP8hSAAAAACwjCABAAAAwDKCBAAAAADLCBIAAAAALCNIAAAAALCMIAEAAADAMoIEAAAAAMsIEgAAAAAsI0gAwBmuvfZaXXvttZXyWjabTZMmTXINT5o0STabTZmZmZXy+o0bN9add95ZKa9VkunTp6tVq1ZyOp1eq+FMp9bB6by9nM5UUo1VydatWxUUFKQtW7Z4uxSgSiNIACiT+fPny2azlfpYs2aNt0ss0Z133ulWZ40aNdSkSRMNGjRIixcv9tgP2O+++06TJk3SkSNHPNKfJ/lqbdnZ2Xruuef0xBNPKCDgf3+OTl9fAQEBatCggXr06KGVK1d6r9hy2Lt3ryZNmqSNGzd6u5Tz8ttvv531u3/647fffquUmtq0aaO+fftqwoQJlfJ6AEoW5O0CAPiXKVOmKC4urtj4Zs2aeaGasnE4HPrHP/4hScrJydGuXbv00UcfadCgQbr22mv1wQcfKCwszNX+888/t/wa3333nSZPnqw777xTERERZZ4vJydHQUEVuyk+W20pKSluP+Ir02uvvabCwkINGTKk2LTrr79ed9xxh4wxSk1N1Zw5c9StWzd98skn6t27d6XXWp7ltHfvXk2ePFmNGzfWJZdcUjGFVYK6devqn//8p9u4F154QXv27NHMmTOLta0s999/v/r06aOdO3eqadOmlfa6AP6HIAHAkt69e6tz586W5iksLJTT6ZTdbi827fjx46pevXq56zHGKDc3V6GhoaW2CQoK0u233+427i9/+YumTZum8ePH65577tG///1v17SS6vQkp9Op/Px8hYSEKCQkpEJf61wcDofXXjs5OVk33XRTicugRYsWbuvs5ptvVocOHTRr1qxSg0Rubq7sdnuFBCNvLidvq169erHvz8KFC3X48OFi409Xlu/m+UhMTFStWrX0+uuva8qUKRXyGgDOjkObAHjUqcMg/vrXv2rWrFlq2rSpHA6Htm7d6jque+vWrRo6dKhq1aqlrl27SjoZNp5++mlX+8aNG+upp55SXl6eW/+NGzfWDTfcoM8++0ydO3dWaGioXn755XLV+uSTT6pHjx5atGiRfvnlF9f4ks6ReOmll9S2bVtVq1ZNtWrVUufOnbVgwQJJJ49Xf+yxxyRJcXFxxQ7zsNlsGj16tP71r3+pbdu2cjgcWrp0qWva6edInJKZmalbb71VYWFhioyM1COPPKLc3Nxiy3n+/PnF5j29z3PVVtKx/7/++qtuueUW1a5dW9WqVdPll1+uTz75xK3NypUrZbPZ9Pbbb+uZZ55Rw4YNFRISou7du2vHjh2lLvNTUlNTtWnTJiUmJp6zrSS1b99ederUUWpqqtvrL1y4UH/605900UUXqVq1asrOzpYkrV27Vr169VJ4eLiqVauma665Rt9++22xfr/55htddtllCgkJUdOmTUv9LJW0nI4cOaIxY8aocePGcjgcatiwoe644w5lZmZq5cqVuuyyyyRJI0aMcC3309eXp2v0ttK+m2X9rJ7y+++/66677lJUVJQcDofatm2r1157rdi8wcHBrj2KALyDPRIALMnKyip2IrDNZlNkZKTbuOTkZOXm5uree++Vw+FQ7dq1XdNuueUWNW/eXM8++6yMMZKku+++W6+//roGDRqksWPHau3atZo6daq2bdum9957z63vlJQUDRkyRPfdd5/uuecetWzZstzv5w9/+IM+//xzLVu2TC1atCixzd///nc9/PDDGjRokOsH/aZNm7R27VoNHTpUAwYM0C+//KK33npLM2fOVJ06dSS5H+bx5Zdf6u2339bo0aNVp04dNW7c+Kx13XrrrWrcuLGmTp2qNWvW6MUXX9Thw4f1xhtvWHp/ZantdBkZGbriiit04sQJPfzww4qMjNTrr7+um266Se+8845uvvlmt/bTpk1TQECAxo0bp6ysLE2fPl3Dhg3T2rVrz1rXd999J0nq2LFjmd7H4cOHdfjw4WKH0D399NOy2+0aN26c8vLyZLfb9eWXX6p3797q1KmTJk6cqICAACUnJ6tbt276+uuv1aVLF0nS5s2b1aNHD9WtW1eTJk1SYWGhJk6cqKioqHPWc+zYMV111VXatm2b7rrrLnXs2FGZmZn68MMPtWfPHrVu3VpTpkzRhAkTdO+99+qqq66SJF1xxRWSVCk1esP5fjczMjJ0+eWXu8J33bp1tWTJEo0cOVLZ2dl69NFH3dp36tRJH3zwgbKzs90OTwRQSQwAlEFycrKRVOLD4XC42qWmphpJJiwszOzfv9+tj4kTJxpJZsiQIW7jN27caCSZu+++2238uHHjjCTz5ZdfusbFxsYaSWbp0qVlqnv48OGmevXqpU7fsGGDkWTGjBnjGnfNNdeYa665xjXcr18/07Zt27O+zvPPP28kmdTU1GLTJJmAgADz888/lzht4sSJruFTy+imm25ya/fggw8aSeann34yxvxvOScnJ5+zz7PVFhsba4YPH+4afvTRR40k8/XXX7vGHT161MTFxZnGjRuboqIiY4wxK1asMJJM69atTV5enqvt3/72NyPJbN68udhrne5Pf/qTkWSOHj1aYv0jR440Bw4cMPv37zdr16413bt3N5LMCy+84Pb6TZo0MSdOnHDN63Q6TfPmzU3Pnj2N0+l0jT9x4oSJi4sz119/vWtc//79TUhIiNm1a5dr3NatW01gYKA588/jmctpwoQJRpJ59913i9V/6nV/+OGHEtdRRdVYmfr27WtiY2PdxpX23bTyWR05cqSpX7++yczMdGt32223mfDwcLd1bYwxCxYsMJLM2rVrz+v9ACgfDm0CYMns2bO1bNkyt8eSJUuKtRs4cGCp//W+//773YY//fRTSVJSUpLb+LFjx0pSscNq4uLi1LNnz3K/h9PVqFFDknT06NFS20RERGjPnj364Ycfyv0611xzjdq0aVPm9qNGjXIbfuihhyT9b1lVlE8//VRdunRxHXImnVxG9957r3777Tdt3brVrf2IESPczik59Z/3X3/99ayvc/DgQQUFBbmW/5leffVV1a1bV/Xq1VN8fLy+/fZbJSUlFfuP9PDhw92Owd+4caO2b9+uoUOH6uDBg8rMzFRmZqaOHz+u7t2766uvvpLT6VRRUZE+++wz9e/fX40aNXLN37p16zJ9thYvXqyLL7642B4aSee8LGtl1SidPGQwNzf3nI8zDyEsr/P5bhpjtHjxYt14440yxriWS2Zmpnr27KmsrCz9+OOPbvPUqlVLkirtcskA3HFoEwBLunTpUqaTrUu6slNp03bt2qWAgIBih61ER0crIiJCu3btKnPfVh07dkySVLNmzVLbPPHEE/riiy/UpUsXNWvWTD169NDQoUN15ZVXlvl1rNbcvHlzt+GmTZsqICCgwi+vuWvXLsXHxxcb37p1a9f0du3aucaf/gNX+t8Pu8OHD59XHf369dPo0aNls9lUs2ZNtW3btsST8s9crtu3b5d0MmCUJisrS3l5ecrJySm2nCWpZcuW5wxsO3fu1MCBA8vyVoqprBqlkxcVmDx58jnbRUVFKT09/ZztzuV8vpsHDhzQkSNH9Morr+iVV14psc3+/fvdhs1/D42syvfUALyJIAGgQpztSi2lTSvrjwFPXgXm1A2tznb52tatWyslJUUff/yxli5dqsWLF2vOnDmaMGFCmX6kSedf85nLprRlVVRUdF6vY1VgYGCJ40/9wCtNZGSkCgsLdfTo0RJDXMOGDct0IvaZy/XUfUGef/75Ui+5WqNGDY/9B748KrPG/v37n/N8HMlz36mS+inrZ/XUcrn99ttLDVkdOnRwGz4VWE+d+wOgchEkAHhdbGysnE6ntm/f7vrPt3TyxMsjR44oNja2wl77n//8p2w2m66//vqztqtevboGDx6swYMHKz8/XwMGDNAzzzyj8ePHKyQkxOP/Ed2+fbvbf3d37Nghp9Pp+lF46j//Z95k7sy9N5K1/9bGxsYqJSWl2Pj//Oc/rume0KpVK0knr9505o/D83HqfgJhYWFnDSJ169ZVaGioa+/A6Up6/yW9zrnuqlzacq+sGiXpkksu8fo9LMr6Wa1bt65q1qypoqKiMl/NKzU1VQEBAaVeKAFAxeIcCQBe16dPH0nSrFmz3MbPmDFDktS3b98Ked1p06bp888/1+DBg0s8fOSUgwcPug3b7Xa1adNGxhgVFBRIkuuwG0/dPXr27Nluwy+99JIkue6hEBYWpjp16uirr75yazdnzpxifVmprU+fPvr++++1evVq17jjx4/rlVdeUePGjS2d53E2CQkJkqR169Z5pL9TOnXqpKZNm+qvf/2r67C10x04cEDSyT0pPXv21Pvvv6+0tDTX9G3btumzzz475+sMHDhQP/30U7Erikn/2xtT2nKvrBp9RVk/q4GBgRo4cKAWL15cYkg7tVxOt379erVt21bh4eGeLRpAmbBHAoAlS5Yscf13+nRXXHGFmjRpUq4+L774Yg0fPlyvvPKKjhw5omuuuUbff/+9Xn/9dfXv31/XXXfdedVcWFioN998U9LJm5bt2rVLH374oTZt2qTrrruu1OOxT+nRo4eio6N15ZVXKioqStu2bdP//d//qW/fvq7Dcjp16iRJ+uMf/6jbbrtNwcHBuvHGG8t9s73U1FTddNNN6tWrl1avXq0333xTQ4cO1cUXX+xqc/fdd2vatGm6++671blzZ3311Vdu98M4xUptTz75pN566y317t1bDz/8sGrXrq3XX39dqampWrx4scdu9takSRO1a9dOX3zxhe666y6P9ClJAQEB+sc//qHevXurbdu2GjFihC666CL9/vvvWrFihcLCwvTRRx9JkiZPnqylS5fqqquu0oMPPqjCwkLX/UI2bdp01td57LHH9M477+iWW27RXXfdpU6dOunQoUP68MMPNW/ePF188cVq2rSpIiIiNG/ePNWsWVPVq1dXfHy84uLiKqVGX1LWz+q0adO0YsUKxcfH65577lGbNm106NAh/fjjj/riiy906NAhV9uCggKtWrVKDz74YGW+FQCn8+YlowD4j7Nd/lWnXdrx1KUen3/++WJ9nLq06YEDB4pNKygoMJMnTzZxcXEmODjYxMTEmPHjx5vc3Fy3drGxsaZv375lrnv48OFudVarVs00btzYDBw40Lzzzjuuy5me7szLv7788svm6quvNpGRkcbhcJimTZuaxx57zGRlZbnN9/TTT5uLLrrIBAQEuF1uVZIZNWpUifWplMu/bt261QwaNMjUrFnT1KpVy4wePdrk5OS4zXvixAkzcuRIEx4ebmrWrGluvfVWs3///mJ9nq22My9raowxO3fuNIMGDTIREREmJCTEdOnSxXz88cdubU5dfnXRokVu4892qc8zzZgxw9SoUaPYJT3PtrzO9fqnbNiwwQwYMMC1zmJjY82tt95qli9f7tZu1apVplOnTsZut5smTZqYefPmudbB6UpaTgcPHjSjR482F110kbHb7aZhw4Zm+PDhbpcu/eCDD0ybNm1MUFBQseXi6RorU2mXfy3tu2nls5qRkWFGjRplYmJiTHBwsImOjjbdu3c3r7zyilu7JUuWGElm+/btnnxrACywGXOOM+IAAKgAWVlZatKkiaZPn66RI0d6uxz4mf79+8tms5V4eBmAykGQAAB4zXPPPafk5GRt3brVY4dN4cK3bds2tW/fXhs3bnS7HDGAykWQAAAAAGAZ//4BAAAAYBlBAgAAAIBlBAkAAAAAlhEkAAAAAFh2wd+Qzul0au/evapZs6ZsNpu3ywEAAAB8jjFGR48eVYMGDcp8Fb0LPkjs3btXMTEx3i4DAAAA8Hm7d+9Ww4YNy9T2gg8SNWvWlHRyoYSFhXm5GsBHHD8uNWhw8vnevVL16t6tBwAAeFV2drZiYmJcv53L4oIPEqcOZwoLCyNIAKcEBv7veVgYQQIAAEiSpVMBONkaAAAAgGUECQAAAACWESQAAAAAWHbBnyMBoAQ2mxQb+7/nAAAAFhEkgKqoWjXpt9+8XQUAAPBjHNoEAAAAwDKCBAAAAADLvB4kfv/9d91+++2KjIxUaGio2rdvr3Xr1rmmG2M0YcIE1a9fX6GhoUpMTNT27du9WDFwAcjJkS677OQjJ8fb1QAAAD/k1SBx+PBhXXnllQoODtaSJUu0detWvfDCC6pVq5arzfTp0/Xiiy9q3rx5Wrt2rapXr66ePXsqNzfXi5UDfs7plNatO/lwOr1dDQAA8EM2Y4zx1os/+eST+vbbb/X111+XON0YowYNGmjs2LEaN26cJCkrK0tRUVGaP3++brvttnO+RnZ2tsLDw5WVlcWdrYFTjh+XatQ4+fzYMe5sDQBAFVee38xe3SPx4YcfqnPnzrrllltUr149XXrppfr73//ump6amqr09HQlJia6xoWHhys+Pl6rV6/2RskAAAAA5OXLv/7666+aO3eukpKS9NRTT+mHH37Qww8/LLvdruHDhys9PV2SFBUV5TZfVFSUa9qZ8vLylJeX5xrOzs6uuDcA+Ii0tDRlZmaWuX1ATo4u+e/zjRs3yhkaWqxNnTp11KhRI88UCAAALjheDRJOp1OdO3fWs88+K0m69NJLtWXLFs2bN0/Dhw8vV59Tp07V5MmTPVkm4NPS0tLUslVr5eacKPM81SQd/+/zK7t2VUlzhoRWU8p/thEmAABAibwaJOrXr682bdq4jWvdurUWL14sSYqOjpYkZWRkqH79+q42GRkZuuSSS0rsc/z48UpKSnINZ2dnKyYmxsOVA74jMzNTuTknFHnDWAVHlu2zHlqQJy14QpIUNfQ55QQ73KYXHNytgx+/oMzMTIIEAAAokVeDxJVXXqmUlBS3cb/88otiY2MlSXFxcYqOjtby5ctdwSE7O1tr167VAw88UGKfDodDDoejxGnAhSw4MkaO6GZlauvIz9XB0JMnUjmimsppD6nI0gAAwAXIq0FizJgxuuKKK/Tss8/q1ltv1ffff69XXnlFr7zyiiTJZrPp0Ucf1V/+8hc1b95ccXFx+vOf/6wGDRqof//+3iwd8Gs59hB1eniBt8sAAAB+zKtB4rLLLtN7772n8ePHa8qUKYqLi9OsWbM0bNgwV5vHH39cx48f17333qsjR46oa9euWrp0qUJC+A8qAAAA4C1eDRKSdMMNN+iGG24odbrNZtOUKVM0ZcqUSqwKAAAAwNl49T4SALzDUZCnhQue1MIFT8pRkHfuGQAAAM7g9T0SACpfgDG6fPcW13MAAACr2CMBAAAAwDKCBAAAAADLCBIAAAAALCNIAAAAALCMIAEAAADAMq7aBFRRJ4Id3i4BAAD4MYIEUAXl2EPUJmmxt8sAAAB+jEObAAAAAFhGkAAAAABgGYc2AVWQozBfc997VpL0wM1PKS/I7uWKAACAvyFIAFVQgNOpbr+ucz0HAACwikObAAAAAFhGkAAAAABgGUECAAAAgGUECQAAAACWESQAAAAAWEaQAAAAAGAZl38FqqAce4gaP/Gxt8sAAAB+jD0SAAAAACwjSAAAAACwjEObgCrIUZivGR+/IElKumGs8oLsXq4IAAD4G/ZIAFVQgNOpvinfqm/KtwpwOr1dDgAA8EMECQAAAACWESQAAAAAWEaQAAAAAGAZQQIAAACAZQQJAAAAAJYRJAAAAABYxn0kgCooJ9ih1mPecT0HAACwiiABVEU2m3LsId6uAgAA+DEObQIAAABgGXskgCrIXligZz/7P0nSUz1HKz8o2MsVAQAAf8MeCaAKCnQWadCW5Rq0ZbkCnUXeLgcAAPghggQAAAAAywgSAAAAACwjSAAAAACwzKtBYtKkSbLZbG6PVq1auabn5uZq1KhRioyMVI0aNTRw4EBlZGR4sWIAAAAAkg/skWjbtq327dvnenzzzTeuaWPGjNFHH32kRYsWadWqVdq7d68GDBjgxWoBAAAASD5w+degoCBFR0cXG5+VlaVXX31VCxYsULdu3SRJycnJat26tdasWaPLL7+8sksFAAAA8F9eDxLbt29XgwYNFBISooSEBE2dOlWNGjXS+vXrVVBQoMTERFfbVq1aqVGjRlq9enWpQSIvL095eXmu4ezs7Ap/D4C/yQl2qOND/3I9BwAAsMqrhzbFx8dr/vz5Wrp0qebOnavU1FRdddVVOnr0qNLT02W32xUREeE2T1RUlNLT00vtc+rUqQoPD3c9YmJiKvhdAH7IZtOhauE6VC1cstm8XQ0AAPBDXt0j0bt3b9fzDh06KD4+XrGxsXr77bcVGhparj7Hjx+vpKQk13B2djZhAgAAAPAwr59sfbqIiAi1aNFCO3bsUHR0tPLz83XkyBG3NhkZGSWeU3GKw+FQWFiY2wOAO3thgaZ8PldTPp8re2GBt8sBAAB+yKeCxLFjx7Rz507Vr19fnTp1UnBwsJYvX+6anpKSorS0NCUkJHixSsD/BTqLdMeGT3THhk8U6CzydjkAAMAPefXQpnHjxunGG29UbGys9u7dq4kTJyowMFBDhgxReHi4Ro4cqaSkJNWuXVthYWF66KGHlJCQwBWbAAAAAC/zapDYs2ePhgwZooMHD6pu3brq2rWr1qxZo7p160qSZs6cqYCAAA0cOFB5eXnq2bOn5syZ482SAQAAAMjLQWLhwoVnnR4SEqLZs2dr9uzZlVQRAAAAgLLwqXMkAAAAAPgHggQAAAAAywgSAAAAACzz6jkSALwjN9iurve/6noOAABgFUECqIKMLUB7wqO8XQYAAPBjHNoEAAAAwDL2SABVUHBRgcZ99U9J0l+v/oMKAoO9XBEAAPA37JEAqqCgoiLd9/27uu/7dxVUVOTtcgAAgB8iSAAAAACwjCABAAAAwDKCBAAAAADLCBIAAAAALCNIAAAAALCMIAEAAADAMu4jAVRBucF2XX/XbNdzAAAAqwgSQBVkbAHaXjfW22UAAAA/xqFNAAAAACxjjwRQBQUXFWjU6rclSbMTblVBYLCXKwIAAP6GIAFUQUFFRXr027ckSS93GUiQAAAAlnFoEwAAAADLCBIAAAAALCNIAAAAALCMIAEAAADAMoIEAAAAAMsIEgAAAAAs4/KvQBWUFxSsm+6Y4XoOAABgFUECqIKcAYHaVL+Ft8sAAAB+jEObAAAAAFjGHgmgCgouKtCIdR9KkpI738SdrQEAgGUECaAKCioq0lMrkyVJ/7y0L0ECAABYxqFNAAAAACwjSAAAAACwjCABAAAAwDKCBAAAAADLCBIAAAAALCNIAAAAALCMy78CVVBeULBuG/Ks6zkAAIBVPrNHYtq0abLZbHr00Udd43JzczVq1ChFRkaqRo0aGjhwoDIyMrxXJHCBcAYEak2jDlrTqIOcAYHeLgcAAPghnwgSP/zwg15++WV16NDBbfyYMWP00UcfadGiRVq1apX27t2rAQMGeKlKAAAAAKd4PUgcO3ZMw4YN09///nfVqlXLNT4rK0uvvvqqZsyYoW7duqlTp05KTk7Wd999pzVr1nixYsD/BRUV6g8/fqw//PixgooKvV0OAADwQ14PEqNGjVLfvn2VmJjoNn79+vUqKChwG9+qVSs1atRIq1evLrW/vLw8ZWdnuz0AuAsuKtTTy+bp6WXzFEyQAAAA5eDVk60XLlyoH3/8UT/88EOxaenp6bLb7YqIiHAbHxUVpfT09FL7nDp1qiZPnuzpUgEAAACcxmt7JHbv3q1HHnlE//rXvxQSEuKxfsePH6+srCzXY/fu3R7rGwAAAMBJXgsS69ev1/79+9WxY0cFBQUpKChIq1at0osvvqigoCBFRUUpPz9fR44ccZsvIyND0dHRpfbrcDgUFhbm9gAAAADgWV47tKl79+7avHmz27gRI0aoVatWeuKJJxQTE6Pg4GAtX75cAwcOlCSlpKQoLS1NCQkJ3igZAAAAwH95LUjUrFlT7dq1cxtXvXp1RUZGusaPHDlSSUlJql27tsLCwvTQQw8pISFBl19+uTdKBgAAAPBfPn1n65kzZyogIEADBw5UXl6eevbsqTlz5ni7LAAAAKDK86kgsXLlSrfhkJAQzZ49W7Nnz/ZOQcAFKj8oWCMGTXQ9BwAAsMqnggSAylEUEKgVTS/zdhkAAMCPleuqTb/++qun6wAAAADgR8oVJJo1a6brrrtOb775pnJzcz1dE4AKFlRUqEGbv9CgzV8oiDtbAwCAcihXkPjxxx/VoUMHJSUlKTo6Wvfdd5++//57T9cGoIIEFxXqr5/O0l8/naVgggQAACiHcgWJSy65RH/729+0d+9evfbaa9q3b5+6du2qdu3aacaMGTpw4ICn6wQAAADgQ87rztZBQUEaMGCAFi1apOeee047duzQuHHjFBMTozvuuEP79u3zVJ0AAAAAfMh5BYl169bpwQcfVP369TVjxgyNGzdOO3fu1LJly7R3717169fPU3UCAAAA8CHluvzrjBkzlJycrJSUFPXp00dvvPGG+vTpo4CAk7kkLi5O8+fPV+PGjT1ZKwAAAAAfUa4gMXfuXN1111268847Vb9+/RLb1KtXT6+++up5FQcAAADAN5UrSGzfvv2cbex2u4YPH16e7gEAAAD4uHIFieTkZNWoUUO33HKL2/hFixbpxIkTBAjAx+UHBevBfk+6ngMAAFhVrpOtp06dqjp16hQbX69ePT377LPnXRSAilUUEKhPW3XVp626qigg0NvlAAAAP1SuIJGWlqa4uLhi42NjY5WWlnbeRQEAAADwbeUKEvXq1dOmTZuKjf/pp58UGRl53kUBqFiBziL1+c836vOfbxToLPJ2OQAAwA+V6xyJIUOG6OGHH1bNmjV19dVXS5JWrVqlRx55RLfddptHCwTgefbCAs35YJokqfWYd5Rj5/AmAABgTbmCxNNPP63ffvtN3bt3V1DQyS6cTqfuuOMOzpEAAAAAqoByBQm73a5///vfevrpp/XTTz8pNDRU7du3V2xsrKfrAwAAAOCDyhUkTmnRooVatGjhqVoAAAAA+IlyBYmioiLNnz9fy5cv1/79++V0Ot2mf/nllx4pDgAAAIBvKleQeOSRRzR//nz17dtX7dq1k81m83RdAAAAAHxYuYLEwoUL9fbbb6tPnz6ergcAAACAHyj3ydbNmjXzdC0AKklBYJDG9XnU9RwAAMCqct2QbuzYsfrb3/4mY4yn6wFQCQoDg/RO+0S90z5RhQQJAABQDuX6BfHNN99oxYoVWrJkidq2bavg4GC36e+++65HigMAAADgm8oVJCIiInTzzTd7uhYAlSTQWaSrU3+UJH0V11FFAdzZGgAAWFOuIJGcnOzpOgBUInthgZLfmSxJaj3mHeXYCRIAAMCacp0jIUmFhYX64osv9PLLL+vo0aOSpL179+rYsWMeKw4AAACAbyrXHoldu3apV69eSktLU15enq6//nrVrFlTzz33nPLy8jRv3jxP1wkAAADAh5Rrj8Qjjzyizp076/DhwwoNDXWNv/nmm7V8+XKPFQcAAADAN5Vrj8TXX3+t7777Tna73W1848aN9fvvv3ukMAAAAAC+q1x7JJxOp4qKioqN37Nnj2rWrHneRQEAAADwbeUKEj169NCsWbNcwzabTceOHdPEiRPVp08fT9UGAAAAwEeV69CmF154QT179lSbNm2Um5uroUOHavv27apTp47eeustT9cIwMMKAoP05+vvdz0HAACwqly/IBo2bKiffvpJCxcu1KZNm3Ts2DGNHDlSw4YNczv5GoBvKgwM0j873uDtMgAAgB8r978ig4KCdPvtt3uyFgAAAAB+olxB4o033jjr9DvuuKNcxQCoHAHOInXZ87Mk6fuGbeUM4M7WAADAmnIFiUceecRtuKCgQCdOnJDdble1atUIEoCPcxQWaOFbT0mSWo95Rzl2ggQAALCmXFdtOnz4sNvj2LFjSklJUdeuXS2dbD137lx16NBBYWFhCgsLU0JCgpYsWeKanpubq1GjRikyMlI1atTQwIEDlZGRUZ6SAQAAAHhQuYJESZo3b65p06YV21txNg0bNtS0adO0fv16rVu3Tt26dVO/fv30888nD7kYM2aMPvroIy1atEirVq3S3r17NWDAAE+VDAAAAKCcPHrdx6CgIO3du7fM7W+88Ua34WeeeUZz587VmjVr1LBhQ7366qtasGCBunXrJklKTk5W69attWbNGl1++eWeLB0AAACABeUKEh9++KHbsDFG+/bt0//93//pyiuvLFchRUVFWrRokY4fP66EhAStX79eBQUFSkxMdLVp1aqVGjVqpNWrVxMkAAAAAC8qV5Do37+/27DNZlPdunXVrVs3vfDCC5b62rx5sxISEpSbm6saNWrovffeU5s2bbRx40bZ7XZFRES4tY+KilJ6enqp/eXl5SkvL881nJ2dbakeAAAAAOdWriDhdDo9VkDLli21ceNGZWVl6Z133tHw4cO1atWqcvc3depUTZ482WP1AQAAACjOo+dIlIfdblezZs0kSZ06ddIPP/ygv/3tbxo8eLDy8/N15MgRt70SGRkZio6OLrW/8ePHKykpyTWcnZ2tmJiYCqsf8EeFgYF69toRrucAAABWlStInP5D/VxmzJhhqW+n06m8vDx16tRJwcHBWr58uQYOHChJSklJUVpamhISEkqd3+FwyOFwWHpNoKopCAzWK/EDvV0GAADwY+UKEhs2bNCGDRtUUFCgli1bSpJ++eUXBQYGqmPHjq52NpvtrP2MHz9evXv3VqNGjXT06FEtWLBAK1eu1Geffabw8HCNHDlSSUlJql27tsLCwvTQQw8pISGBE60BAAAALytXkLjxxhtVs2ZNvf7666pVq5akkzepGzFihK666iqNHTu2TP3s379fd9xxh/bt26fw8HB16NBBn332ma6//npJ0syZMxUQEKCBAwcqLy9PPXv21Jw5c8pTMoDTBDiL1C5jpyRpS1RTOQM4vAkAAFhjM8YYqzNddNFF+vzzz9W2bVu38Vu2bFGPHj0s3UuiomVnZys8PFxZWVkKCwvzdjmAx/3444/q1KmToofPkiO6WZnmCc3P1baZgyRJrce8oxx7iNv0vPQdSn/9Ua1fv95tLyMAALgwlec3c7nubJ2dna0DBw4UG3/gwAEdPXq0PF0CAAAA8CPlChI333yzRowYoXfffVd79uzRnj17tHjxYo0cOVIDBgzwdI0AAAAAfEy5zpGYN2+exo0bp6FDh6qgoOBkR0FBGjlypJ5//nmPFggAAADA95QrSFSrVk1z5szR888/r507T56w2bRpU1WvXt2jxQEAAADwTeU6tOmUffv2ad++fWrevLmqV6+ucpy3DQAAAMAPlStIHDx4UN27d1eLFi3Up08f7du3T5I0cuTIMl/6FQAAAID/KleQGDNmjIKDg5WWlqZq1aq5xg8ePFhLly71WHEAKkZhYKBmXTlEs64cosJA7iEBAACsK9c5Ep9//rk+++wzNWzY0G188+bNtWvXLo8UBqDiFAQGa1bXYd4uAwAA+LFy7ZE4fvy4256IUw4dOiSHw3HeRQEAAADwbeUKEldddZXeeOMN17DNZpPT6dT06dN13XXXeaw4ABXDZpxqfmCXmh/YJZtxerscAADgh8p1aNP06dPVvXt3rVu3Tvn5+Xr88cf1888/69ChQ/r22289XSMADwspyNey10ZJklqPeUc59hAvVwQAAPxNufZItGvXTr/88ou6du2qfv366fjx4xowYIA2bNigpk2berpGAAAAAD7G8h6JgoIC9erVS/PmzdMf//jHiqgJAAAAgI+zvEciODhYmzZtqohaAAAAAPiJch3adPvtt+vVV1/1dC0AAAAA/ES5TrYuLCzUa6+9pi+++EKdOnVS9erV3abPmDHDI8UBAAAA8E2WgsSvv/6qxo0ba8uWLerYsaMk6ZdffnFrY7PZPFcdAAAAAJ9kKUg0b95c+/bt04oVKyRJgwcP1osvvqioqKgKKQ5AxSgMDNTLXQa4ngMAAFhlKUgYY9yGlyxZouPHj3u0IAAVryAwWFOvu8vbZQAAAD9WrpOtTzkzWAAAAACoGiztkbDZbMXOgeCcCMD/2IxTF2UfkCT9HlZXxnZe/1MAAABVkOVDm+688045HA5JUm5uru6///5iV2169913PVchAI8LKcjXN/NGSpJaj3lHOfYQL1cEAAD8jaUgMXz4cLfh22+/3aPFAAAAAPAPloJEcnJyRdUBAAAAwI9wYDQAAAAAywgSAAAAACwjSAAAAACwjCABAAAAwDJLJ1sDuDAUBQTqjUv7up4DAABYRZAAqqD8oGBN6PGAt8sAAAB+jEObAAAAAFjGHgmgKjJGtXOyJUmHQsMkm83LBQEAAH9DkACqoNCCPP340jBJUusx7yjHHuLligAAgL/h0CYAAAAAlhEkAAAAAFhGkAAAAABgGUECAAAAgGUECQAAAACWeTVITJ06VZdddplq1qypevXqqX///kpJSXFrk5ubq1GjRikyMlI1atTQwIEDlZGR4aWKAQAAAEheDhKrVq3SqFGjtGbNGi1btkwFBQXq0aOHjh8/7mozZswYffTRR1q0aJFWrVqlvXv3asCAAV6sGvB/RQGBeqddd73TrruKAgK9XQ4AAPBDXr2PxNKlS92G58+fr3r16mn9+vW6+uqrlZWVpVdffVULFixQt27dJEnJyclq3bq11qxZo8svv9wbZQN+Lz8oWOP6jvF2GQAAwI/51DkSWVlZkqTatWtLktavX6+CggIlJia62rRq1UqNGjXS6tWrS+wjLy9P2dnZbg8AAAAAnuUzQcLpdOrRRx/VlVdeqXbt2kmS0tPTZbfbFRER4dY2KipK6enpJfYzdepUhYeHux4xMTEVXTrgf4xRaH6uQvNzJWO8XQ0AAPBDPhMkRo0apS1btmjhwoXn1c/48eOVlZXleuzevdtDFQIXjtCCPG2bOUjbZg5SaEGet8sBAAB+yKvnSJwyevRoffzxx/rqq6/UsGFD1/jo6Gjl5+fryJEjbnslMjIyFB0dXWJfDodDDoejoksGAAAAqjSv7pEwxmj06NF677339OWXXyouLs5teqdOnRQcHKzly5e7xqWkpCgtLU0JCQmVXS4AAACA//LqHolRo0ZpwYIF+uCDD1SzZk3XeQ/h4eEKDQ1VeHi4Ro4cqaSkJNWuXVthYWF66KGHlJCQwBWbAAAAAC/yapCYO3euJOnaa691G5+cnKw777xTkjRz5kwFBARo4MCBysvLU8+ePTVnzpxKrhQAAADA6bwaJEwZrhYTEhKi2bNna/bs2ZVQEQAAAICy8JmrNgEAAADwHz5x1SYAlcsZEKBPWl7peg4AAGAVQQKogvKC7BrVf7y3ywAAAH6Mf0UCAAAAsIwgAQAAAMAyggRQBYXm5+q3527Qb8/doND8XG+XAwAA/BBBAgAAAIBlBAkAAAAAlhEkAAAAAFhGkAAAAABgGUECAAAAgGUECQAAAACWcWdroApyBgToyyadXc8BAACsIkgAVVBekF133TLJ22UAAAA/xr8iAQAAAFhGkAAAAABgGUECqIJC83O1dcZAbZ0xUKH5ud4uBwAA+CHOkQCqqGoFed4uAQAA+DH2SAAAAACwjCABAAAAwDKCBAAAAADLCBIAAAAALCNIAAAAALCMqzYBVZDTZtOamHau5wAAAFYRJIAqKC/YoduGTvN2GQAAwI9xaBMAAAAAywgSAAAAACwjSABVUGh+rta/OFTrXxyq0Pxcb5cDAAD8EOdIAFVUZE62t0sAAAB+jD0SAAAAACwjSAAAAACwjCABAAAAwDKCBAAAAADLCBIAAAAALOOqTUAV5LTZ9FN0c9dzAAAAqwgSQBWUF+xQv+EzvV0GAADwYxzaBAAAAMAyrwaJr776SjfeeKMaNGggm82m999/3226MUYTJkxQ/fr1FRoaqsTERG3fvt07xQIAAABw8WqQOH78uC6++GLNnj27xOnTp0/Xiy++qHnz5mnt2rWqXr26evbsqdzc3EquFLiwhBTk6pu5d+mbuXcppIDvEwAAsM6r50j07t1bvXv3LnGaMUazZs3Sn/70J/Xr10+S9MYbbygqKkrvv/++brvttsosFbig2IzUMHu/6zkAAIBVPnuydWpqqtLT05WYmOgaFx4ervj4eK1evbrUIJGXl6e8vDzXcHZ2doXXCpRVWlqaMjMzPdrntm3bPNofAABAWfhskEhPT5ckRUVFuY2PiopyTSvJ1KlTNXny5AqtDSiPtLQ0tWzVWrk5J7xdCgAAwHnz2SBRXuPHj1dSUpJrODs7WzExMV6sCDgpMzNTuTknFHnDWAVHeu4zmfPrOmV9/abH+gMAACgLnw0S0dHRkqSMjAzVr1/fNT4jI0OXXHJJqfM5HA45HI6KLg8ot+DIGDmim3msv4KDuz3WFwAAQFn57H0k4uLiFB0dreXLl7vGZWdna+3atUpISPBiZQAAAAC8ukfi2LFj2rFjh2s4NTVVGzduVO3atdWoUSM9+uij+stf/qLmzZsrLi5Of/7zn9WgQQP179/fe0UDFwBjk36JbOR6DgAAYJVXg8S6det03XXXuYZPndswfPhwzZ8/X48//riOHz+ue++9V0eOHFHXrl21dOlShYSEeKtk4IKQGxyiHnfP8XYZAADAj3k1SFx77bUypvSL2NtsNk2ZMkVTpkypxKoAAAAAnIvPniMBAAAAwHcRJIAqKKQgV5//40F9/o8HFVKQ6+1yAACAH/LZy78CqDg2I7U4mOZ6DgAAYBV7JAAAAABYRpAAAAAAYBlBAgAAAIBlBAkAAAAAlhEkAAAAAFjGVZuAKsjYpD1h9VzPAQAArCJIAFVQbnCIuj7wmrfLAAAAfoxDmwAAAABYRpAAAAAAYBlBAqiCHAV5+uD1Mfrg9TFyFOR5uxwAAOCHOEcCqIICjNHF6dtdzwEAAKxijwQAAAAAywgSAAAAACwjSAAAAACwjCABAAAAwDKCBAAAAADLuGoTUEUdDA3zdgkAAMCPESSAKijHHqJODy/wdhkAAMCPcWgTAAAAAMsIEgAAAAAsI0gAVZCjIE8LFzyphQuelKMgz9vlAAAAP8Q5EkAVFGCMLt+9xfUcAADAKvZIAAAAALCMPRJACdLS0pSZmenRPrdt2+bR/gAAALyJIAGcIS0tTS1btVZuzglvlwIAAOCzCBLAGTIzM5Wbc0KRN4xVcGSMx/rN+XWdsr5+02P9AQAAeBNBAihFcGSMHNHNPNZfwcHdHusLAADA2wgSQBV1Itjh7RIAAIAfI0gAVVCOPURtkhafs11FnCBep04dNWrUyOP9AgCAykWQAFBM0bHDks2m22+/3eN9h4RWU8p/thEmAADwcwQJAMU4845Jxnj8hPOCg7t18OMXlJmZSZAAAMDPESSAKshRmK+57z0rSXrg5qeUF2QvsZ2nTzgHAAAXDoIEUAUFOJ3q9us613MAAACrCBKVpCLulMxJq9yB2l9xEjcAwJ9VxO8Pyf/+lvlFkJg9e7aef/55paen6+KLL9ZLL72kLl26eLusMquoOyVX9ZNWuQO1/+EkbgCAv6vI3x/+9rfM54PEv//9byUlJWnevHmKj4/XrFmz1LNnT6WkpKhevXreLq9MKuJOyZy0yh2o/REncQMA/F1F/f7wx79lPh8kZsyYoXvuuUcjRoyQJM2bN0+ffPKJXnvtNT355JNers4aTlytGNyB2v/wXQAA+Dv+lkkB3i7gbPLz87V+/XolJia6xgUEBCgxMVGrV6/2YmUAAABA1ebTeyQyMzNVVFSkqKgot/FRUVH6z3/+U+I8eXl5ysvLcw1nZWVJkrKzsyuu0HM4duyYJCkvfYec+bke6bPg0B5J0vr16139e0pAQICcFXAlH0/3m5KSIsmzy1X63x6JC7rfwjyd+kbk7PlZOUGO8++zDCqsXz/7PvjLd8wf+/WnWiuqX3+q1d/69ada/a1ff6q1wn5//Pdv2bFjx7zyu/XUaxpjyjyPzVhpXcn27t2riy66SN99950SEhJc4x9//HGtWrVKa9euLTbPpEmTNHny5MosEwAAALgg7N69Ww0bNixTW5/eI1GnTh0FBgYqIyPDbXxGRoaio6NLnGf8+PFKSkpyDTudTh06dEjBwcFq1KiRdu/erbCwsAqtG6XLzs5WTEwM68EHsC58B+vCd7AufAfrwnewLnxHRa4LY4yOHj2qBg0alHkenw4SdrtdnTp10vLly9W/f39JJ4PB8uXLNXr06BLncTgccjjcD9OIiIhw7a4JCwvjS+ADWA++g3XhO1gXvoN14TtYF76DdeE7KmpdhIeHW2rv00FCkpKSkjR8+HB17txZXbp00axZs3T8+HHXVZwAAAAAVD6fDxKDBw/WgQMHNGHCBKWnp+uSSy7R0qVLi52ADQAAAKDy+HyQkKTRo0eXeihTWTkcDk2cOLHYYU+oXKwH38G68B2sC9/BuvAdrAvfwbrwHb62Lnz6qk0AAAAAfJNP35AOAAAAgG8iSAAAAACwjCABAAAAwDKfDhLPPPOMrrjiClWrVk0REREltklLS1Pfvn1VrVo11atXT4899pgKCwvd2qxcuVIdO3aUw+FQs2bNNH/+/GL9zJ49W40bN1ZISIji4+P1/fffu03Pzc3VqFGjFBkZqRo1amjgwIHFbpRXllouFI0bN5bNZnN7TJs2za3Npk2bdNVVVykkJEQxMTGaPn16sX4WLVqkVq1aKSQkRO3bt9enn37qNt0YowkTJqh+/foKDQ1VYmKitm/f7tbm0KFDGjZsmMLCwhQREaGRI0fq2LFjnn/TF5hzfeZRukmTJhX7/Ldq1co13VPbC09suy40X331lW688UY1aNBANptN77//vtt0T20zKmv75c/OtS7uvPPOYt+TXr16ubVhXZy/qVOn6rLLLlPNmjVVr1499e/fXykpKW5tfGmbVJZa/FVZ1sW1115b7Htx//33u7Xxq3VhfNiECRPMjBkzTFJSkgkPDy82vbCw0LRr184kJiaaDRs2mE8//dTUqVPHjB8/3tXm119/NdWqVTNJSUlm69at5qWXXjKBgYFm6dKlrjYLFy40drvdvPbaa+bnn38299xzj4mIiDAZGRmuNvfff7+JiYkxy5cvN+vWrTOXX365ueKKKyzVciGJjY01U6ZMMfv27XM9jh075pqelZVloqKizLBhw8yWLVvMW2+9ZUJDQ83LL7/savPtt9+awMBAM336dLN161bzpz/9yQQHB5vNmze72kybNs2Eh4eb999/3/z000/mpptuMnFxcSYnJ8fVplevXubiiy82a9asMV9//bVp1qyZGTJkSOUsCD9Vls88Sjdx4kTTtm1bt8//gQMHXNM9sb3w1LbrQvPpp5+aP/7xj+bdd981ksx7773nNt0T24zK3H75s3Oti+HDh5tevXq5fU8OHTrk1oZ1cf569uxpkpOTzZYtW8zGjRtNnz59TKNGjdz+JvvSNulctfizsqyLa665xtxzzz1u34usrCzXdH9bFz4dJE5JTk4uMUh8+umnJiAgwKSnp7vGzZ0714SFhZm8vDxjjDGPP/64adu2rdt8gwcPNj179nQNd+nSxYwaNco1XFRUZBo0aGCmTp1qjDHmyJEjJjg42CxatMjVZtu2bUaSWb16dZlruZDExsaamTNnljp9zpw5platWm7v/YknnjAtW7Z0Dd96662mb9++bvPFx8eb++67zxhjjNPpNNHR0eb55593TT9y5IhxOBzmrbfeMsYYs3XrViPJ/PDDD642S5YsMTabzfz+++/n9R4vZOf6zOPsJk6caC6++OISp3lqe+GJbdeF7swfr57aZlTW9utCUlqQ6NevX6nzsC4qxv79+40ks2rVKmOMb22TylLLheTMdWHMySDxyCOPlDqPv60Lnz606VxWr16t9u3bu92crmfPnsrOztbPP//sapOYmOg2X8+ePbV69WpJUn5+vtavX+/WJiAgQImJia4269evV0FBgVubVq1aqVGjRq42ZanlQjNt2jRFRkbq0ksv1fPPP++222316tW6+uqrZbfbXeN69uyplJQUHT582NXmbOsmNTVV6enpbm3Cw8MVHx/vttwjIiLUuXNnV5vExEQFBARo7dq1nn/TF4CyfOZxbtu3b1eDBg3UpEkTDRs2TGlpaZI8t73wxLarqvHUNqOytl9VwcqVK1WvXj21bNlSDzzwgA4ePOiaxrqoGFlZWZKk2rVrS/KtbVJZarmQnLkuTvnXv/6lOnXqqF27dho/frxOnDjhmuZv68IvbkhXmvT09GJ3uD41nJ6eftY22dnZysnJ0eHDh1VUVFRim//85z+uPux2e7HzNKKios75OqfXciF5+OGH1bFjR9WuXVvfffedxo8fr3379mnGjBmSTr7nuLg4t3lOXx61atUqdZmdvkxPn6+0NvXq1XObHhQUpNq1a1+Qy90TMjMzz/mZx9nFx8dr/vz5atmypfbt26fJkyfrqquu0pYtWzy2vfDEtquq8dQ2o7K2Xxe6Xr16acCAAYqLi9POnTv11FNPqXfv3lq9erUCAwNZFxXA6XTq0Ucf1ZVXXql27dpJ8txvmMr6PXWhKGldSNLQoUMVGxurBg0aaNOmTXriiSeUkpKid999V5L/rYtKDxJPPvmknnvuubO22bZtm9uJi6gcVtZNUlKSa1yHDh1kt9t13333aerUqT5zt0WgovTu3dv1vEOHDoqPj1dsbKzefvtthYaGerEywHfcdtttruft27dXhw4d1LRpU61cuVLdu3f3YmUXrlGjRmnLli365ptvvF1KlVfaurj33ntdz9u3b6/69eure/fu2rlzp5o2bVrZZZ63Sj+0aezYsdq2bdtZH02aNClTX9HR0cXOLj81HB0dfdY2YWFhCg0NVZ06dRQYGFhim9P7yM/P15EjR87a5ly1+LrzWTfx8fEqLCzUb7/9Jun81s3p00+fr7Q2+/fvd5teWFioQ4cO+c1yr2xl+czDmoiICLVo0UI7duzw2PbCE9uuqsZT24zK2n5VNU2aNFGdOnW0Y8cOSawLTxs9erQ+/vhjrVixQg0bNnSN96VtUllquRCUti5KEh8fL0lu3wt/WheVHiTq1q2rVq1anfVx+rGQZ5OQkKDNmze7bYiWLVumsLAwtWnTxtVm+fLlbvMtW7ZMCQkJkiS73a5OnTq5tXE6nVq+fLmrTadOnRQcHOzWJiUlRWlpaa42ZanF153Putm4caMCAgJcu6kTEhL01VdfqaCgwNVm2bJlatmypWrVquVqc7Z1ExcXp+joaLc22dnZWrt2rdtyP3LkiNavX+9q8+WXX8rpdLq+nHBXls88rDl27Jh27typ+vXre2x74YltV1XjqW1GZW2/qpo9e/bo4MGDql+/viTWhacYYzR69Gi99957+vLLL4sdCuZL26Sy1OLPzrUuSrJx40ZJcvte+NW6KPNp2V6wa9cus2HDBjN58mRTo0YNs2HDBrNhwwZz9OhRY8z/LpHVo0cPs3HjRrN06VJTt27dEi+R9dhjj5lt27aZ2bNnl3iJLIfDYebPn2+2bt1q7r33XhMREeF2xvz9999vGjVqZL788kuzbt06k5CQYBISElzTy1LLheK7774zM2fONBs3bjQ7d+40b775pqlbt6654447XG2OHDlioqKizB/+8AezZcsWs3DhQlOtWrVil+wLCgoyf/3rX822bdvMxIkTS7xkX0REhPnggw/Mpk2bTL9+/Uq8lOOll15q1q5da7755hvTvHlzLv96DmX5zKN0Y8eONStXrjSpqanm22+/NYmJiaZOnTpm//79xhjPbC88te260Bw9etT1t0CSmTFjhtmwYYPZtWuXMcYz24zK3H75s7Oti6NHj5px48aZ1atXm9TUVPPFF1+Yjh07mubNm5vc3FxXH6yL8/fAAw+Y8PBws3LlSrdLip44ccLVxpe2SeeqxZ+da13s2LHDTJkyxaxbt86kpqaaDz74wDRp0sRcffXVrj78bV34dJAYPny4kVTssWLFCleb3377zfTu3duEhoaaOnXqmLFjx5qCggK3flasWGEuueQSY7fbTZMmTUxycnKx13rppZdMo0aNjN1uN126dDFr1qxxm56Tk2MefPBBU6tWLVOtWjVz8803m3379rm1KUstF4L169eb+Ph4Ex4ebkJCQkzr1q3Ns88+6/bHwRhjfvrpJ9O1a1fjcDjMRRddZKZNm1asr7ffftu0aNHC2O1207ZtW/PJJ5+4TXc6nebPf/6ziYqKMg6Hw3Tv3t2kpKS4tTl48KAZMmSIqVGjhgkLCzMjRoxwhU2U7lyfeZRu8ODBpn79+sZut5uLLrrIDB482OzYscM13VPbC09suy40K1asKPHvwvDhw40xnttmVNb2y5+dbV2cOHHC9OjRw9StW9cEBweb2NhYc8899xQLuayL81fSOpDktr3wpW1SWWrxV+daF2lpaebqq682tWvXNg6HwzRr1sw89thjbveRMMa/1oXtv28cAAAAAMrMr+8jAQAAAMA7CBIAAAAALCNIAAAAALCMIAEAAADAMoIEAAAAAMsIEgAAAAAsI0gAAAAAsIwgAQAAAMAyggQAAAAAywgSAIByufPOO2Wz2Yo9evXq5e3SAACVIMjbBQAA/FevXr2UnJzsNs7hcJTYtqCgQMHBwW7j8vPzZbfbLb9ueecDAHgOeyQAAOXmcDgUHR3t9qhVq5YkyWazae7cubrppptUvXp1PfPMM5o0aZIuueQS/eMf/1BcXJxCQkIkSWlpaerXr59q1KihsLAw3XrrrcrIyHC9TmnzAQC8hyABAKgwkyZN0s0336zNmzfrrrvukiTt2LFDixcv1rvvvquNGzfK6XSqX79+OnTokFatWqVly5bp119/1eDBg936OnM+AIB3cWgTAKDcPv74Y9WoUcNt3FNPPaWnnnpKkjR06FCNGDHCbXp+fr7eeOMN1a1bV5K0bNkybd68WampqYqJiZEkvfHGG2rbtq1++OEHXXbZZSXOBwDwLoIEAKDcrrvuOs2dO9dtXO3atV3PO3fuXGye2NhYtzCwbds2xcTEuEKEJLVp00YRERHatm2bK0icOR8AwLsIEgCAcqtevbqaNWt21ullGVfW1wIA+A7OkQAAeFXr1q21e/du7d692zVu69atOnLkiNq0aePFygAAZ8MeCQBAueXl5Sk9Pd1tXFBQkOrUqVPmPhITE9W+fXsNGzZMs2bNUmFhoR588EFdc801JR4aBQDwDeyRAACU29KlS1W/fn23R9euXS31YbPZ9MEHH6hWrVq6+uqrlZiYqCZNmujf//53BVUNAPAEmzHGeLsIAAAAAP6FPRIAAAAALCNIAAAAALCMIAEAAADAMoIEAAAAAMsIEgAAAAAsI0gAAAAAsIwgAQAAAMAyggQAAAAAywgSAAAAACwjSAAAAACwjCABAAAAwDKCBAAAAADL/h9OJ3s0S7bJYQAAAABJRU5ErkJggg==\n" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAJOCAYAAACqbjP2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAeP5JREFUeJzt3Xd4FNXbxvHvpm1CGi0hAQKhF+kgCCi9CFhQVMACAnaQJhbUn9ixIVgQsIGIiCIdkRaaAtJRQEBa6L0kJIS0nfePeVkNSTAbNpmU+3Nde7EzOzP77LCEO2fOnGMzDMNARERERK7Jw+oCRERERPIDhSYRERGRLFBoEhEREckChSYRERGRLFBoEhEREckChSYRERGRLFBoEhEREckChSYRERGRLFBoEhEREckChSYRN4iMjOThhx92Lq9YsQKbzcaKFSssq+lqV9cormvVqhWtWrWyuowsefjhh4mMjLS6jAxFR0djs9mYNGmS249ts9l49dVX3X5cEVBokgJg0qRJ2Gw258PX15eqVasyYMAATp48aXV5LlmwYEGh+YG/c+dO59/XhQsXsn2ct99+m9mzZ7utLne43pr++usvXn31VaKjo91Wk4hcP4UmKTBef/11vv32Wz799FOaNWvGuHHjaNq0KZcuXcr1Wlq0aEFCQgItWrRwab8FCxbw2muv5VBVecuUKVMICwsD4Keffsr2cQpqaHrttdcKbGgqX748CQkJPPTQQ24/dkJCAi+//LLbjysCCk1SgHTq1IkHH3yQRx55hEmTJjF48GAOHDjAnDlzMt0nPj4+R2rx8PDA19cXDw/9E8uIYRhMnTqV+++/n86dO/Pdd99ZXZLkoistjJ6enm4/tq+vL15eXm4/rggoNEkB1qZNGwAOHDgAmH08AgIC2LdvH507dyYwMJAHHngAAIfDwZgxY7jhhhvw9fWlVKlSPP7445w/fz7NMQ3D4M0336Rs2bIUKVKE1q1bs2PHjnTvnVmfpnXr1tG5c2eKFSuGv78/derU4aOPPnLWN3bsWIA0lxuvcHeNV0tOTqZ48eL06dMn3WuxsbH4+voybNgw57pPPvmEG264gSJFilCsWDEaNWrE1KlT//N9AFavXk10dDQ9evSgR48erFq1iiNHjqTbzuFw8NFHH1G7dm18fX0JCQnh1ltvZePGjc7zFB8fzzfffOM8X1f6bWXWp+fVV19Nc14BJk6cSJs2bQgNDcVut1OzZk3GjRuXpc9ytWvVBLBlyxY6depEUFAQAQEBtG3blt9//935+qRJk7j33nsBaN26tfMYV75Lc+bMoUuXLpQuXRq73U6lSpV44403SE1NzVa9V1u3bh233norwcHBFClShJYtW7J69eo021w5h3///TcPPvggwcHBhISE8L///Q/DMDh8+DB33nknQUFBhIWFMWrUqDT7Z9Sn6cSJE/Tp04eyZctit9sJDw/nzjvvTNPatnHjRjp27EjJkiXx8/OjQoUK9O3bN82xM+rT9F/nHP65zL969WqGDh1KSEgI/v7+3HXXXZw+fTr7J1QKFMVxKbD27dsHQIkSJZzrUlJS6NixIzfffDMffPABRYoUAeDxxx9n0qRJ9OnTh4EDB3LgwAE+/fRTtmzZwurVq/H29gbglVde4c0336Rz58507tyZzZs306FDB5KSkv6zniVLlnDbbbcRHh7OoEGDCAsLY+fOncyfP59Bgwbx+OOPc+zYMZYsWcK3336bbv+crtHb25u77rqLmTNnMmHCBHx8fJyvzZ49m8TERHr06AHAF198wcCBA7nnnnsYNGgQly9f5s8//2TdunXcf//9/3kuvvvuOypVqsSNN95IrVq1KFKkCN9//z3PPvtsmu369evHpEmT6NSpE4888ggpKSn8+uuv/P777zRq1Ihvv/2WRx55hMaNG/PYY48BUKlSpf98/6uNGzeOG264gTvuuAMvLy/mzZvHU089hcPhoH///i4d61o17dixg1tuuYWgoCCee+45vL29mTBhAq1atWLlypU0adKEFi1aMHDgQD7++GNefPFFatSoAeD8c9KkSQQEBDB06FACAgJYtmwZr7zyCrGxsbz//vsuf/Z/W7ZsGZ06daJhw4aMGDECDw8PZ6D89ddfady4cZrtu3fvTo0aNXjnnXf4+eefefPNNylevDgTJkygTZs2vPvuu3z33XcMGzaMG2+88ZqXq7t168aOHTt4+umniYyM5NSpUyxZsoRDhw45lzt06EBISAgvvPACRYsWJTo6mpkzZ17zM2XlnP/b008/TbFixRgxYgTR0dGMGTOGAQMG8MMPP2T/xErBYYjkcxMnTjQAY+nSpcbp06eNw4cPG9OmTTNKlChh+Pn5GUeOHDEMwzB69+5tAMYLL7yQZv9ff/3VAIzvvvsuzfqFCxemWX/q1CnDx8fH6NKli+FwOJzbvfjiiwZg9O7d27lu+fLlBmAsX77cMAzDSElJMSpUqGCUL1/eOH/+fJr3+fex+vfvb2T0zzInaszIokWLDMCYN29emvWdO3c2Klas6Fy+8847jRtuuOGax8pMUlKSUaJECeOll15yrrv//vuNunXrptlu2bJlBmAMHDgw3TH+/dn8/f0z/Fy9e/c2ypcvn279iBEj0p3jS5cupduuY8eOaT6zYRhGy5YtjZYtW2bwqdLKrKauXbsaPj4+xr59+5zrjh07ZgQGBhotWrRwrps+fXqa789/1fr4448bRYoUMS5fvuxcl9nnz4zD4TCqVKlidOzYMc35vXTpklGhQgWjffv2znVXzuFjjz3mXJeSkmKULVvWsNlsxjvvvONcf/78ecPPzy/N+Thw4IABGBMnTnRuAxjvv/9+pvXNmjXLAIwNGzZc83MAxogRI5zLWT3nV36OtGvXLs3nHzJkiOHp6WlcuHDhmu8rhYMuz0mB0a5dO0JCQoiIiKBHjx4EBAQwa9YsypQpk2a7J598Ms3y9OnTCQ4Opn379pw5c8b5aNiwIQEBASxfvhyApUuXkpSUxNNPP53m8s7gwYP/s7YtW7Zw4MABBg8eTNGiRdO8dvWloozkRo1gXtIsWbJkmt+qz58/z5IlS+jevbtzXdGiRTly5AgbNmzI0nH/7ZdffuHs2bP07NnTua5nz5788ccfaS4jzpgxA5vNxogRI9IdIyvnzBV+fn7O5zExMZw5c4aWLVuyf/9+YmJi3PIeqampLF68mK5du1KxYkXn+vDwcO6//35+++03YmNjXar14sWLnDlzhltuuYVLly6xa9eubNe3detW9uzZw/3338/Zs2ed37H4+Hjatm3LqlWrcDgcafZ55JFHnM89PT1p1KgRhmHQr18/5/qiRYtSrVo19u/ff83P5OPjw4oVK9Jdbv73cQDmz59PcnJylj5Tds75Y489lub7dcstt5CamsrBgwez9J5SsBXq0LRq1Spuv/12Spcujc1my9bdLoZh8MEHH1C1alXsdjtlypThrbfecn+x8p/Gjh3LkiVLWL58OX/99Rf79++nY8eOabbx8vKibNmyadbt2bOHmJgYQkNDCQkJSfOIi4vj1KlTAM4fmlWqVEmzf0hICMWKFbtmbVcuFdaqVStbny03agTz/HTr1o05c+aQmJgIwMyZM0lOTk4Tmp5//nkCAgJo3LgxVapUoX///un6vWRmypQpVKhQAbvdzt69e9m7dy+VKlWiSJEiaTqE79u3j9KlS1O8ePEsHfd6rF69mnbt2uHv70/RokUJCQnhxRdfBHBbaDp9+jSXLl2iWrVq6V6rUaMGDoeDw4cP/+dxduzYwV133UVwcDBBQUGEhITw4IMPXnete/bsAaB3797pvmNffvkliYmJ6Y5frly5NMvBwcH4+vpSsmTJdOszC0MAdrudd999l19++YVSpUrRokUL3nvvPU6cOOHcpmXLlnTr1o3XXnuNkiVLcueddzJx4kTn9zQj2TnnV3+mK/9urlW/FB6Fuk9TfHw8devWpW/fvtx9993ZOsagQYNYvHgxH3zwAbVr1+bcuXOcO3fOzZVKVjRu3JhGjRpdcxu73Z7ujjaHw0FoaGimd3CFhIS4rcbsys0ae/TowYQJE/jll1/o2rUrP/74I9WrV6du3brObWrUqMHu3buZP38+CxcuZMaMGXz22We88sor1xwyITY2lnnz5nH58uV0wQ5g6tSpvPXWW25pScrsGFd3mN63bx9t27alevXqfPjhh0RERODj48OCBQsYPXp0utYVK124cIGWLVsSFBTE66+/TqVKlfD19WXz5s08//zz11XrlX3ff/996tWrl+E2AQEBaZYzuvstszviDMO45vsPHjyY22+/ndmzZ7No0SL+97//MXLkSJYtW0b9+vWx2Wz89NNP/P7778ybN49FixbRt29fRo0axe+//56utuzKbv1SOBTq0NSpUyc6deqU6euJiYm89NJLfP/991y4cIFatWrx7rvvOkcE3rlzJ+PGjWP79u3O32QqVKiQG6WLG1WqVImlS5fSvHnzNJc+rla+fHnA/I383039p0+f/s/fQq90BN6+fTvt2rXLdLvM/qPPjRqvaNGiBeHh4fzwww/cfPPNLFu2jJdeeinddv7+/nTv3p3u3buTlJTE3XffzVtvvcXw4cPx9fXN8NgzZ87k8uXLjBs3Ll1rxO7du3n55ZdZvXo1N998M5UqVWLRokWcO3fumq1NmZ2zYsWKZTho5tWXWebNm0diYiJz585N08pw5ZJndmRUU0hICEWKFGH37t3pXtu1axceHh5ERERkuj+Yd2WePXuWmTNnpulUfeUO0etx5TsaFBR0ze9oTqpUqRLPPPMMzzzzDHv27KFevXqMGjWKKVOmOLe56aabuOmmm3jrrbeYOnUqDzzwANOmTUtzqfAKV865SFYU6stz/2XAgAGsXbuWadOm8eeff3Lvvfdy6623Opux582bR8WKFZk/fz4VKlQgMjKSRx55RC1N+cx9991Hamoqb7zxRrrXUlJSnP/xtmvXDm9vbz755JM0v3WOGTPmP9+jQYMGVKhQgTFjxqT7j/zfx/L39wdIt01u1HiFh4cH99xzD/PmzePbb78lJSUlzaU5gLNnz6ZZ9vHxoWbNmhiGcc3+JlOmTKFixYo88cQT3HPPPWkew4YNIyAgwNma1q1bNwzDyLDl6upzllE4qlSpEjExMfz555/OdcePH2fWrFlptrvSsvDvY8bExDBx4sRMP8d/yagmT09POnTowJw5c9LcRn/y5EmmTp3KzTffTFBQkHN/SP89yKjWpKQkPvvss2zXekXDhg2pVKkSH3zwAXFxcelez8nb7i9dusTly5fTrKtUqRKBgYHOy2/nz59P19pzpUUss0t0rpxzkawo1C1N13Lo0CEmTpzIoUOHKF26NADDhg1j4cKFTJw4kbfffpv9+/dz8OBBpk+fzuTJk0lNTWXIkCHcc889LFu2zOJPIFnVsmVLHn/8cUaOHMnWrVvp0KED3t7e7Nmzh+nTp/PRRx9xzz33EBISwrBhwxg5ciS33XYbnTt3ZsuWLfzyyy/pWk2u5uHhwbhx47j99tupV68effr0ITw8nF27drFjxw4WLVoEmP9xAQwcOJCOHTvi6elJjx49cqXGf+vevTuffPIJI0aMoHbt2s7b3a/o0KEDYWFhNG/enFKlSrFz504+/fRTunTpQmBgYIbHPHbsGMuXL2fgwIEZvm632+nYsSPTp0/n448/pnXr1jz00EN8/PHH7Nmzh1tvvRWHw8Gvv/5K69atGTBggPOcLV26lA8//JDSpUtToUIFmjRpQo8ePXj++ee56667GDhwIJcuXWLcuHFUrVqVzZs3p/ksPj4+3H777Tz++OPExcXxxRdfEBoayvHjx7N8zv4ts5refPNNlixZws0338xTTz2Fl5cXEyZMIDExkffee8+5f7169fD09OTdd98lJiYGu91OmzZtaNasGcWKFaN3794MHDgQm83Gt99+65ZLRx4eHnz55Zd06tSJG264gT59+lCmTBmOHj3K8uXLCQoKYt68edf9Phn5+++/adu2Lffddx81a9bEy8uLWbNmcfLkSecwF9988w2fffYZd911F5UqVeLixYt88cUXBAUF0blz50yPndVzLpIlVtyylxcBxqxZs5zL8+fPNwDD398/zcPLy8u47777DMMwjEcffdQAjN27dzv327RpkwEYu3btyu2PUGhduVX4v25F7t27t+Hv75/p659//rnRsGFDw8/PzwgMDDRq165tPPfcc8axY8ec26SmphqvvfaaER4ebvj5+RmtWrUytm/fbpQvX/6aQw5c8dtvvxnt27c3AgMDDX9/f6NOnTrGJ5984nw9JSXFePrpp42QkBDDZrOluzXenTVei8PhMCIiIgzAePPNN9O9PmHCBKNFixZGiRIlDLvdblSqVMl49tlnjZiYmEyPOWrUKAMwoqKiMt1m0qRJBmDMmTPHeT7ef/99o3r16oaPj48REhJidOrUydi0aZNzn127dhktWrQw/Pz80g2rsHjxYqNWrVqGj4+PUa1aNWPKlCkZDjkwd+5co06dOoavr68RGRlpvPvuu8bXX39tAMaBAwec22V1yIFr1bR582ajY8eORkBAgFGkSBGjdevWxpo1a9Id44svvjAqVqxoeHp6pvkurV692rjpppsMPz8/o3Tp0sZzzz3nHCri3983V4ccuGLLli3G3Xff7fy7LV++vHHfffel+Xu7cg5Pnz6dZt/M/o21bNkyzRAVVw85cObMGaN///5G9erVDX9/fyM4ONho0qSJ8eOPP6Y5bz179jTKlStn2O12IzQ01LjtttuMjRs3pnkvrhpy4Mq+/3XOM/s5ktm/ZSmcbIah3m1g9iGYNWsWXbt2BeCHH37ggQceYMeOHek6BgYEBBAWFsaIESN4++2301yOSEhIoEiRIixevJj27dvn5kcQERGRHKTLc5moX78+qampnDp1iltuuSXDbZo3b05KSgr79u1zdqL8+++/gX865IqIiEjBUKhbmuLi4ti7dy9ghqQPP/yQ1q1bU7x4ccqVK8eDDz7I6tWrGTVqFPXr1+f06dNERUVRp04dunTpgsPh4MYbbyQgIIAxY8Y4p1wICgpi8eLFFn86ERHTuXPnrjmNjqenZ54YWkMkryvUoWnFihW0bt063frevXszadIkkpOTefPNN5k8eTJHjx6lZMmS3HTTTbz22mvUrl0bMDu3Pv300yxevBh/f386derEqFGjcmVAPhGRrLgyz1pmypcvn+buMhHJWKEOTSIihcGmTZuuOU6Xn58fzZs3z8WKRPInhSYRERGRLNDgliIiIiJZUOjunnM4HBw7dozAwEC3z5QuIiIieZ9hGFy8eJHSpUunm4/0WgpdaDp27JjmGhIREREOHz5M2bJls7x9oQtNV6Z4OHz4sOYcEhERKYRiY2OJiIjIdNqnzBS60HTlklxQUJBCk4iISCHmajcddQQXERERyQJLQ9O4ceOoU6eOs9WnadOm/PLLL9fcZ/r06VSvXh1fX19q167NggULcqlaERERKcwsDU1ly5blnXfeYdOmTWzcuJE2bdpw5513smPHjgy3X7NmDT179qRfv35s2bKFrl270rVrV7Zv357LlYuIiEhhk+cGtyxevDjvv/8+/fr1S/da9+7diY+PZ/78+c51N910E/Xq1WP8+PFZOn5sbCzBwcHExMSoT5OIiEghlN0skGf6NKWmpjJt2jTi4+Np2rRphtusXbuWdu3apVnXsWNH1q5dm+lxExMTiY2NTfMQERERcZXloWnbtm0EBARgt9t54oknmDVrFjVr1sxw2xMnTlCqVKk060qVKsWJEycyPf7IkSMJDg52PjRGk4iIiGSH5aGpWrVqbN26lXXr1vHkk0/Su3dv/vrrL7cdf/jw4cTExDgfhw8fdtuxRUREpPCwfJwmHx8fKleuDEDDhg3ZsGEDH330ERMmTEi3bVhYGCdPnkyz7uTJk4SFhWV6fLvdjt1ud2/RIiIiUuhY3tJ0NYfDQWJiYoavNW3alKioqDTrlixZkmkfKBERERF3sbSlafjw4XTq1Ily5cpx8eJFpk6dyooVK1i0aBEAvXr1okyZMowcORKAQYMG0bJlS0aNGkWXLl2YNm0aGzdu5PPPP7fyY4iIiEghYGloOnXqFL169eL48eMEBwdTp04dFi1aRPv27QE4dOhQmtmHmzVrxtSpU3n55Zd58cUXqVKlCrNnz6ZWrVpWfQQREREpJPLcOE05TeM0iYiIFG75fpwmERERkbxMoUlEREQkCxSaRERERLJAoUlEREQkCxSaRERERLJAoUlEREQkCxSaRERERLJAoUlERETyliNHYN8+q6tIR6FJRERE8o6DB6FlS2jdGqKjra4mDYUmERERyTsuX4b4ePD2BpvN6mrSsHTuOREREZE0qlWDqCgoWhTKlLG6mjQUmkRERMRaO3fCsWPQtq25fMMN1taTCV2eExEREets22b2YbrtNli92upqrkmhSURERKyxZYvZ4fv0aahRA6pXt7qia1JoEhERkdy3YQO0aQNnz0LjxmY/phIlrK7qmhSaREREJHetWQPt2sGFC9CsGSxeDMWKWV3Vf1JHcBEREck9O3ZAx44QFwctWsD8+RAYmGYTh8Mg+mw8Fy+nEOjrRWQJfzw8rB9+QKFJREREck+1anDrrXD+PMyZA/7+aV7efjSGGZuPsPdUHInJDuzeHlQODaBbg7LUKhNsUdEmhSYRERHJPV5eMHUqpKSAn1+al7YfjeHjqD2ci08iPNgPv2BPEpJS2XYkhqPnExjYtoqlwUl9mkRERCRnzZ8PTz0FDoe57O2dLjA5HAYzNh/hXHwSlUMDCPD1wtPDRoCvF5VDAzgXn8TMzUdxOAwLPoBJLU0iIiKSc2bNgu7dITkZ6teHRx/NcLPos/HsPRVHeLAftqumT7HZbIQH+7Hn1EWiz8ZTMSQgNypPRy1NIiIikjN+/BHuvdcMTN27w8MPZ7rpxcspJCY78PPxzPB1Px9PEpMdXLyckkPF/jeFJhEREXG/776Dnj0hNRUefBCmTDEvy2Ui0NcLu7cHCUmpGb6ekJSK3duDQF/rLpIpNImIiIh7TZoEDz1k9mHq08dc9rp22Iks4U/l0ACOxyRgGGn7LRmGwfGYBKqEBhJZwj+TI+Q8hSYRERFxnyNH4PHHwTDMP7/8EjwzvuT2bx4eNro1KEtxfx/2nooj7nIKqQ6DuMsp7D0VR3F/H+5uUMbS8ZrUEVxERETcp2xZ+P57+PVX+PBDsGU95NQqE8zAtlWc4zSdjDXHaapTtih3Nyhj+ThNNuPqNrACLjY2luDgYGJiYggKCrK6HBERkYIhNhbc9P9qTo8Int0soMtzIiIicn3eeQfq1IGDB91yOA8PGxVDAqgbUZSKIQF5YgoVUGgSERGR6/H66zB8uBmY5s61upocpT5NIiIi4jrDgP/9D956y1weORKeftramnKYQpOIiIi4xjDguefggw/M5VGjYOhQa2vKBQpNIiIiknWGAYMHw8cfm8uffAIDBlhaUm5RaBIREZGsu3gRli83n0+YAI89Zm09uUihSURERLIuKAiWLoWVK8155QoR3T0nIiIi15aSAlFR/yyHhha6wAQKTSIiInItycnmPHLt2sHXX1tdjaV0eU5EREQylpQEPXvCzJng7Q3FilldkaUUmkRERCS9xETzEty8eeDjAzNmwG23WV2VpRSaREREJK2EBLj7bli4EHx9YfZs6NjR6qosp9AkIiIi/0hKgttvNzt++/mZLU1t21pdVZ6gjuAiIiLyD29vaNIE/P3NliYFJieFJhEREfmHzQZvvgnbtkGLFlZXk6coNImIiBR258/DkCFw6ZK5bLNBhQrW1pQHqU+TiIhIYXb2LHToAJs3w4kT8P33VleUZyk0iYiIFFanTkH79vDnnxASAi++aHVFeZpCk4iISGF04oTZyfuvvyAszLxbrmZNq6vK0xSaRERECpujR6FNG/j7byhTBpYtg6pVra4qz1NHcBERkcLEMOCuu8zAVK4crFypwJRFCk0iIiKFic0Gn30G9evDqlVQqZLVFeUbujwnIiJSGKSmgqen+bxRI9i0yQxQkmVqaRIRESnodu2CWrVg3bp/1ikwuUyhSUREpCDbvh1atjSD07PPmn2aJFsUmkRERAqqP/6A1q3N8Zjq1YOZM9XCdB0UmkRERAqiTZvMwHTmjNmHKSoKSpa0uqp8TaFJRESkoPn9d3PgyvPn4aabYOlSKF7c6qryPYUmERGRgmb0aIiJgZtvhsWLITjY6ooKBA05ICIiUtBMmmSOv/TSS+Dvb3U1BYZamkRERAqC3bv/uTPOzw/efluByc0UmkRERPK7BQugbl144QUNKZCDFJpERETyszlzoGtXSEw0W5tSU62uqMBSaBIREcmvfvoJ7rkHkpPh3nth+nTwUnflnKLQJCIikh9NnQo9ekBKCtx/v7ns7W11VQWaQpOIiEh+88038NBD5qW4hx+GyZPVwpQLFJpERETyI8OARx+Fr74CT0+rqykUFEtFRETym969oXJlaNoUPNT+kVt0pkVERPKDiRPhxIl/lps3V2DKZZae7ZEjR3LjjTcSGBhIaGgoXbt2Zffu3dfcZ9KkSdhstjQPX1/fXKpYRETEAu+9B337mvPJxcVZXU2hZWloWrlyJf379+f3339nyZIlJCcn06FDB+Lj46+5X1BQEMePH3c+Dh48mEsVi4iI5LI334Tnnzef33OPRvm2kKV9mhYuXJhmedKkSYSGhrJp0yZatGiR6X42m42wsLCcLk9ERMQ6hgEjRsAbb5jLb75pziUnlslTF0NjYmIAKF68+DW3i4uLo3z58kRERHDnnXeyY8eO3ChPREQkdxgGDB/+T2B67z0Fpjwgz4Qmh8PB4MGDad68ObVq1cp0u2rVqvH1118zZ84cpkyZgsPhoFmzZhw5ciTD7RMTE4mNjU3zEBERydPeew/efdd8PmYMPPuspeWIyWYYeWNmvyeffJJffvmF3377jbJly2Z5v+TkZGrUqEHPnj1540oi/5dXX32V1157Ld36mJgYgoKCrqtmERGRHHH4MLRqBcOGwZNPWl1NgRMbG0twcLDLWSBPhKYBAwYwZ84cVq1aRYUKFVze/95778XLy4vvv/8+3WuJiYkkJiY6l2NjY4mIiFBoEhGRvO3SJShSxOoqCqTshiZLL88ZhsGAAQOYNWsWy5Yty1ZgSk1NZdu2bYSHh2f4ut1uJygoKM1DREQkT0lNhUceMSfcvUKBKc+xNDT179+fKVOmMHXqVAIDAzlx4gQnTpwgISHBuU2vXr0YPny4c/n1119n8eLF7N+/n82bN/Pggw9y8OBBHnnkESs+goiIyPVJSYFevczpUHr1guPHra5IMmHpkAPjxo0DoFWrVmnWT5w4kYcffhiAQ4cO4fGvEU/Pnz/Po48+yokTJyhWrBgNGzZkzZo11KxZM7fKFhERcY/kZLj/fvjpJ3PC3SlTIJMrJ2K9PNGnKTdl9zqmiIiIWyUmQvfuMGcO+PiYl+buuMPqqgqF7GYBTdgrIiKS2y5fhm7dYMECsNth9my49Varq5L/oNAkIiKS2yZONAOTnx/MnQvt2lldkWSBQpOIiEhue+IJ+Ptv6NoVWra0uhrJIoUmERGR3HDxonkpzscHbDYYPdrqisRFeWYaFRERkQLrwgVo3x569DDvmJN8SS1NIiIiOencOejQATZtguLF4cABqFrV6qokG9TSJCIiklNOn4Y2bczAVLIkLFumwJSPqaVJREQkJ5w8CW3bwo4dUKoUREXBDTdYXZVcB4UmERERdzt2zAxMu3ZB6dJmC1O1alZXJddJl+dERETcLToaDh2CiAhYuVKBqYBQS5OIiIi7NWtmDl5ZrhxUqGB1NeImCk0iIiLusG8fXLoEtWubyxq0ssDR5TkREZHrtXs3tGhh9mPaudPqaiSHKDSJiIhcj7/+MluVjh2DkBAoVszqiiSHKDSJiIhk159/QqtW5vACderAihUQFmZ1VZJDFJpERESyY/NmaN3aHMCyQQNzWIGQEKurkhyk0CQiIuKqP/80+y+dOwdNmpgDV5YoYXVVksN095yIiIirKlSAGjXAw8McWiAoyOqKJBcoNImIiLgqMBB++QU8PSEgwOpqJJfo8pyIiEhWREXBe+/9sxwcrMBUyKilSURE5L8sXAh33QWXL0PFinDPPVZXJBZQS5OIiMi1zJsHd95pBqY77oDbb7e6IrGIQpOIiEhmZs6Eu++GpCTo1g2mTwe73eqqxCIKTSIiIhn54Qe47z5ISYGePWHaNPDxsboqsZBCk4iIyNX27IEHHoDUVOjVC779FrzUDbiw0zdARETkalWqwPvvm/PKTZhgjsckhZ5Ck4iIyBXJyeDtbT4fMgQMA2w2a2uSPEPRWUREBOCTT6BZM7hw4Z91CkzyLwpNIiIio0bBwIGwcSN8953V1UgepdAkIiKF29tvw7Bh5vOXX4annrK2HsmzFJpERKRwMgx49VV46SVz+fXX4Y03dElOMqWO4CIiUvgYhhmWRo40l995B55/3tqaJM9TaBIRkcLnzBmYNMl8/uGH5p1yIv9BoUlERAqfkBBYtgxWr4Z+/ayuRvIJhSYRESkcHA7Yvh3q1DGXq1c3HyJZpI7gIiJS8KWmmi1KjRvDkiVWVyP5lFqaRESkYEtJgd69YepU8PQ0+zOJZINCk4iIFFzJyfDgg/Djj+aEu1Onwr33Wl2V5FMKTSIiUjAlJUGPHjBrljmf3PTpcOedVlcl+ZhCk4iIFDyJiXDPPTB/PtjtMHMmdO5sdVWSzyk0iYhIwePlBYGB4OsLc+ZAhw5WVyQFgEKTiIgUPJ6eMHky7NgBdetaXY0UEBpyQERECoaLF+Hdd83hBcBsbVJgEjdSS5OIiOR/MTHQqROsXQvHj8OYMVZXJAWQQpOIiORv589Dx46wYQMUK2YOMSCSAxSaREQk/zpzxuzkvWULlCgBS5dCvXpWVyUFlEKTiIjkT6dOQbt2sG0bhIZCVBTUqmV1VVKAKTSJiEj+k5pqXpLbtg3Cw2HZMk2+KzlOd8+JiEj+4+kJr70GFSvCypUKTJIrFJpERCT/MIx/nt9xB/z1F1SpYl09UqgoNImISP6wfz/ccov55xV2u3X1SKGj0CQiInnf339DixawejU88YTV1UghpdAkIiJ5286d0LIlHD0KNWrAN99YXZEUUgpNIiKSd23bZgamEyegdm1YscK8W07EAgpNIiKSN23ZAq1bw+nTUL8+LF9ujsckYhGFJhERyZuGDYOzZ+HGG82BK0uUsLoiKeQUmkREJG/64Qfo2xeWLDHnlBOxmEKTiIjkHSdO/PO8ZEn46isIDrauHpF/UWgSEZG8YdkyqFwZJkywuhKRDCk0iYiI9RYvhi5dID4e5swBh8PqikTSUWgSERFr/fwz3H47XL4Mt90GM2eCh/57krxH30oREbHO7Nlw112QlGT+OWMG+PpaXZVIhhSaRETEGtOnw733QnIy3Hefebecj4/VVYlkSqFJRESssXMnpKTAgw/Cd9+Bt7fVFYlck5fVBYiISCH1v/9BrVpw553g6Wl1NSL/SS1NIiKSe2bPNu+QA7DZ4O67FZgk31BoEhGR3DF2rNnZ+/bbITHR6mpEXGZpaBo5ciQ33ngjgYGBhIaG0rVrV3bv3v2f+02fPp3q1avj6+tL7dq1WbBgQS5UKyIi2TZ6NAwYYD5v2FAdviVfsjQ0rVy5kv79+/P777+zZMkSkpOT6dChA/FXmm4zsGbNGnr27Em/fv3YsmULXbt2pWvXrmzfvj0XKxcRkSx75x0YOtR8/uKL8N575qU5kXzGZhiGYXURV5w+fZrQ0FBWrlxJixYtMtyme/fuxMfHM3/+fOe6m266iXr16jF+/Pj/fI/Y2FiCg4OJiYkhKCjIbbWLiEgGXn8dRowwn7/2mtn5W4FJLJbdLJCn+jTFxMQAULx48Uy3Wbt2Le3atUuzrmPHjqxduzZHaxMRERe9884/gentt+GVVxSYJF/LM6HJ4XAwePBgmjdvTq1atTLd7sSJE5QqVSrNulKlSnHi3zNj/0tiYiKxsbFpHiIikgs6doRixWDUKBg+3OpqRK5bnhmnqX///mzfvp3ffvvNrccdOXIkr732mluPKSIiWVC/PuzeDSEhVlci4hZ5oqVpwIABzJ8/n+XLl1O2bNlrbhsWFsbJkyfTrDt58iRhYWEZbj98+HBiYmKcj8OHD7utbhER+ReHA555Blav/medApMUIJaGJsMwGDBgALNmzWLZsmVUqFDhP/dp2rQpUVFRadYtWbKEpk2bZri93W4nKCgozUNERNwsNRUeeww+/BBuuw3OnbO6IhG3s/TyXP/+/Zk6dSpz5swhMDDQ2S8pODgYPz8/AHr16kWZMmUYOXIkAIMGDaJly5aMGjWKLl26MG3aNDZu3Mjnn39u2ecQESnUUlOhTx/49lvw8IBPPoFr3NAjkl9Z2tI0btw4YmJiaNWqFeHh4c7HDz/84Nzm0KFDHD9+3LncrFkzpk6dyueff07dunX56aefmD179jU7j4uISA5JTjYn3P32W3M6lKlTzWWRAsjlcZri4+N55513iIqK4tSpUzgcjjSv79+/360FupvGaRIRcZOkJLj/fpgxA7y9Ydo0cy45kTwuu1nA5ctzjzzyCCtXruShhx4iPDwcm8bcEBEpnD780AxMPj7w00/mnHIiBZjLoemXX37h559/pnnz5jlRj4iI5BdDhsD69WYH8FtvtboakRzncmgqVqzYNUfsFhGRAuzyZbDbzZG97XaYOdPqikRyjcsdwd944w1eeeUVLl26lBP1iIhIXhUXZ7YoDR0KeWfaUpFc43JH8Pr167Nv3z4MwyAyMhJvb+80r2/evNmtBbqbOoKLiGRDbCx07mwOXBkUBH/8AZGRVlclki251hG8a9euru4iIiL52YUL5jxy69dD0aKwaJECkxRKLrc05XdqaRIRccHZs9ChA2zebA5YuWQJNGhgdVUi1yXXWpqu2LRpEzt37gTghhtuoH79+tk9lIiI5EWnT0O7dvDnn+YcckuXQp06VlclYhmXQ9OpU6fo0aMHK1asoGjRogBcuHCB1q1bM23aNEI0OaOISMGwdi1s3w5hYRAVBTVrWl2RiKVcvnvu6aef5uLFi+zYsYNz585x7tw5tm/fTmxsLAMHDsyJGkVExAp33AHffQcrVyowiZCNPk3BwcEsXbqUG2+8Mc369evX06FDBy5cuODO+txOfZpERK7h0CFzDrkyZayuRCTHZDcLuNzS5HA40g0zAODt7Z1uHjoREclHDhyAli2hbVs4ccLqakTyHJdDU5s2bRg0aBDHjh1zrjt69ChDhgyhbdu2bi1ORERyyd69ZmCKjgaHA1JSrK5IJM9xOTR9+umnxMbGEhkZSaVKlahUqRIVKlQgNjaWTz75JCdqFBGRnLRrF7RoAYcPQ/XqsGIFlC1rdVUieY7Ld89FRESwefNmli5dyq5duwCoUaMG7dq1c3txIiKSw7ZvN4cVOHkSatUyhxUoVcrqqkTyJA1uKSJSWG3bBm3awJkzUK+eOXBlyZJWVyWS43J0cMuPP/6Yxx57DF9fXz7++ONrbqthB0RE8onixSE42JwSZdEic1lEMpWllqYKFSqwceNGSpQoQYUKFTI/mM3G/v373Vqgu6mlSUTkX44cgYAAc045kUIiR1uaDhw4kOFzERHJZ1avNjt89+hhLqvDt0iWZXvuuStSU1PZtm0b5cuXp1ixYu6oSUREcsKKFXDbbZCQYM4lp2FiRFzi8pADgwcP5quvvgLMwNSiRQsaNGhAREQEK1ascHd9IiLiDkuXQufOEB9vhqWmTa2uSCTfcTk0/fTTT9StWxeAefPmER0dza5duxgyZAgvvfSS2wsUEZHrtGDBPy1MnTvD3LlQpIjVVYnkOy6HpjNnzhAWFgbAggULuPfee6latSp9+/Zl27Ztbi9QRESuw5w50LUrJCbCnXfCzJng62t1VSL5ksuhqVSpUvz111+kpqaycOFC2rdvD8ClS5fw9PR0e4EiIpJNW7fCPfdAcjLcey9Mnw52u9VVieRbLncE79OnD/fddx/h4eHYbDbnSODr1q2jevXqbi9QRESyqW5dePxxOH8evvkGvK773h+RQs3lf0GvvvoqtWrV4vDhw9x7773Y//+3Fk9PT1544QW3FygiIi4yDLDZzMfHH5vLuhIgct3cMo3KhQsXKJpPBkbT4JYiUqB9+SXMnw8//gg+PlZXI5InZTcLuNyn6d133+WHH35wLt93332UKFGCsmXL8ueff7p6OBERcZdx4+DRR83O399+a3U1IgWOy6Fp/PjxREREALBkyRKWLFnCL7/8wq233sqwYcPcXqCIiGTBRx/BU0+Zz4cMgb59ra1HpAByuU/TiRMnnKFp/vz53HfffXTo0IHIyEiaNGni9gJFROQ/vP8+PPec+fz552HkSLM/k4i4lcstTcWKFePw4cMALFy40Hn3nGEYpKamurc6ERG5trfe+icwvfKKApNIDnK5penuu+/m/vvvp0qVKpw9e5ZOnToBsGXLFipXruz2AkVEJBOHD5shCeCNN+Dll62tR6SAczk0jR49msjISA4fPsx7771HQEAAAMePH+epK9fTRUQk50VEmFOkbNwIQ4daXY1IgeeWIQfyEw05ICL5mmHAkSNmYBKRbMluFshSS9PcuXPp1KkT3t7ezJ0795rb3nHHHVl+cxERcYHDAQMHwrRpsHw51K5tdUUihUqWQlPXrl05ceIEoaGhdO3aNdPtbDabOoOLiOQEhwOeeAK++MLs6L11q0KTSC7LUmhyOBwZPhcRkVyQmgr9+pnzx3l4wKRJ8NBDVlclUuho9kYRkbwsJQV694apU83546ZMgR49rK5KpFDKVmjasGEDy5cv59SpU+lanj788EO3FCYiUuglJ8P998NPP4GXl9mXqVs3q6sSKbRcDk1vv/02L7/8MtWqVaNUqVLY/jWImk0DqomIuE9yMpw6ZU68+9NPcPvtVlckUqi5HJo++ugjvv76ax5++OEcKEdERJyKFIH5881O37fcYnU1IoWey9OoeHh40Lx585yoRURELl0y+y1dERiowCSSR7gcmoYMGcLYsWNzohYRkcItLg66dDHvjHv/faurEZGruHx5btiwYXTp0oVKlSpRs2ZNvL2907w+c+ZMtxUnIlJoxMaagem338zWpWbNrK5IRK7icmgaOHAgy5cvp3Xr1pQoUUKdv0VErteFC9CpE/z+OwQHw6JF0KSJ1VWJyFVcDk3ffPMNM2bMoEuXLjlRj4hI4XLuHHToAJs2QbFisGQJNGxodVUikgGXQ1Px4sWpVKlSTtQiIlK4JCVB27bm3XElS8LSpVC3rtVViUgmXO4I/uqrrzJixAguXbqUE/WIiBQePj7m9CilSsGKFQpMInmczTAMw5Ud6tevz759+zAMg8jIyHQdwTdv3uzWAt0tNjaW4OBgYmJiCAoKsrocERGzT1PRolZXIVJoZDcLuHx5rmvXrq7uIiIiVxw5AkOGwIQJULy4uU6BSSRfcDk0jRgxIifqEBEp+KKjoU0bOHAADMOcGkVE8g2X+zQBXLhwgS+//JLhw4dz7tw5wLwsd/ToUbcWJyJSYOzbBy1bmoGpUiXQ5OYi+Y7LLU1//vkn7dq1Izg4mOjoaB599FGKFy/OzJkzOXToEJMnT86JOkVE8q/du8275I4ehWrVICoKypSxuioRcZHLLU1Dhw7l4YcfZs+ePfj6+jrXd+7cmVWrVrm1OBGRfO+vv8wWpqNHoWZN8y45BSaRfMnl0LRhwwYef/zxdOvLlCnDiRMn3FKUiEiBYBjQqxecPAl16piBKSzM6qpEJJtcDk12u53Y2Nh06//++29CQkLcUpSISIFgs8G0aXDbbbBsGehnpEi+5nJouuOOO3j99ddJTk4GwGazcejQIZ5//nm6devm9gJFRPKduLh/nleuDPPmQYkS1tUjIm7hcmgaNWoUcXFxhIaGkpCQQMuWLalcuTKBgYG89dZbOVGjiEj+sWYNVKgAv/xidSUi4mYu3z0XHBzMkiVLWL16NX/88QdxcXE0aNCAdu3a5UR9IiL5x6pV0LkzxMfDxx/Drbeal+hEpEBwOTRd0bx5c5o3b57p67Vr12bBggVERERk9y1ERPKPqCi4/XZISIB27WDGDAUmkQImW4NbZkV0dLSz35OISIG2aJHZ2TshATp1MvswFSlidVUi4mY5FppERAqF+fPhjjvg8mXzz1mz4F9j2IlIwaHQJCJyPebMgaQk6NYNpk8Hu93qikQkh2S7T5OIiADjx0P9+vDYY+ClH6kiBZlamkREXLVqFaSmms89PeGppxSYRAoBhSYREVdMnAitWkHfvuBwWF2NiOSiHAtNEyZMoFSpUjl1eBGR3DdhghmWDAP8/a2uRkRyWZbakz/++OMsH3DgwIEA3H///f+57apVq3j//ffZtGkTx48fZ9asWXTt2jXT7VesWEHr1q3TrT9+/DhhmgRTRHLSJ5/A//98Y9AgGD1a4zCJFDJZCk2jR4/O0sFsNpszNGVFfHw8devWpW/fvtx9991Z3m/37t0EBQU5l0NDQ7O8r4iIy0aNgmHDzOfPPgvvvqvAJFIIZSk0HThwIEfevFOnTnTq1Mnl/UJDQylatKj7CxIRudr778Nzz5nPX34ZXn9dgUmkkMqXHcHr1atHeHg47du3Z/Xq1VaXIyIFWa1a4ONjhqU33lBgEinEsnWP7JEjR5g7dy6HDh0iKSkpzWsffvihWwrLSHh4OOPHj6dRo0YkJiby5Zdf0qpVK9atW0eDBg0y3CcxMZHExETncmxsbI7VJyIFUKdOsGMHVK5sdSUiYjGXQ1NUVBR33HEHFStWZNeuXdSqVYvo6GgMw8g0uLhLtWrVqFatmnO5WbNm7Nu3j9GjR/Ptt99muM/IkSN57bXXcrQuESlADAPefBN69IAqVcx1CkwiQjYuzw0fPpxhw4axbds2fH19mTFjBocPH6Zly5bce++9OVHjNTVu3Ji9e/dm+vrw4cOJiYlxPg4fPpyL1YlIvmIY5h1yr7wCbdtCXJzVFYlIHuJyaNq5cye9evUCwMvLi4SEBAICAnj99dd599133V7gf9m6dSvh4eGZvm632wkKCkrzEBFJx+GAJ5+ETz81+y29/DIEBFhdlYjkIS5fnvP393f2YwoPD2ffvn3ccMMNAJw5c8alY8XFxaVpJTpw4ABbt26lePHilCtXjuHDh3P06FEmT54MwJgxY6hQoQI33HADly9f5ssvv2TZsmUsXrzY1Y8hIvKP1FR49FFztG+bDb7+Gh5+2OqqRCSPcTk03XTTTfz222/UqFGDzp0788wzz7Bt2zZmzpzJTTfd5NKxNm7cmGawyqFDhwLQu3dvJk2axPHjxzl06JDz9aSkJJ555hmOHj1KkSJFqFOnDkuXLs1wwEsRkSxJSYE+fWDKFPDwgMmT4YEHrK5KRPIgm2EYhis77N+/n7i4OOrUqUN8fDzPPPMMa9asoUqVKnz44YeUL18+p2p1i9jYWIKDg4mJidGlOhGBESPM4QQ8PeH778GCvpkikruymwVcDk35nUKTiKRx7pw5rMDw4XCNaZxEpODIbhZwuSN4xYoVOXv2bLr1Fy5coGLFiq4eTkQk9zkc/zwvXhzWrlVgEpH/5HJoio6OJjU1Nd36xMREjh496paiRERyTEICdOli3iV3hUe+nBxBRHJZljuCz5071/l80aJFBAcHO5dTU1OJiooiMjLSrcWJiLhVfDzccQcsWwa//gr33ANhYVZXJSL5RJZDU9f/b7q22Wz07t07zWve3t5ERkYyatQotxYnIuI2Fy/CbbfBqlXm+EsLFigwiYhLshyaHP/fB6BChQps2LCBkiVL5lhRIiJuFRNjdvZeuxaCgmDhQmja1OqqRCSfcXmcpgMHDuREHSIiOeP8eejYETZsgGLFYPFiaNTI6qpEJB/KVu/HlStXcvvtt1O5cmUqV67MHXfcwa+//uru2kRErt/MmWZgKlHC7MukwCQi2eRyaJoyZQrt2rWjSJEiDBw4kIEDB+Ln50fbtm2ZOnVqTtQoIpJ9/frB++/DihVQr57V1YhIPuby4JY1atTgscceY8iQIWnWf/jhh3zxxRfs3LnTrQW6mwa3FCkETpwAf38IDLS6EhHJg3JtcMv9+/dz++23p1t/xx13qL+TiFjvyBFo0cIciyk+3upqRKQAcTk0RUREEBUVlW790qVLiYiIcEtRIiLZcvAgtGwJe/bAoUOQwewFIiLZ5fLdc8888wwDBw5k69atNGvWDIDVq1czadIkPvroI7cXKCKSJfv3Q5s2ZnCqWNHs9F2unNVViUgB4nJoevLJJwkLC2PUqFH8+OOPgNnP6YcffuDOO+90e4EiIv9pzx4zMB05AlWrQlQUlC1rdVUiUsC43BE8v1NHcJECZudOaNsWjh+HGjXMwBQebnVVIpKH5VpH8IoVK3I2g34CFy5coGLFiq4eTkTk+qSkQFIS1K5tDiugwCQiOcTly3PR0dGkpqamW5+YmMjRo0fdUpSISJbVrg3Ll5thSdM7iUgOynJomjt3rvP5okWLCA4Odi6npqYSFRVFZGSkW4sTEcnQxo1w6ZI5tACYwUlEJIdlOTR17doVAJvNRu/evdO85u3tTWRkJKNGjXJrcSIi6axdC7feCqmpsHIlNGxodUUiUkhkOTQ5HA4AKlSowIYNGyipZnARyW2//QadOkFcHNxyi3mnnIhILnG5T5NG/RYRSyxfDrfdZl6Wa9MG5s41p0oREcklLt89JyKS6xYvhs6dzcDUsSPMn6/AJCK5TqFJRPK29evhjjvg8mWzpWn2bPDzs7oqESmEXL48JyKSq+rVgw4dwMsLpk0DHx+rKxKRQkqhSUTyNh8fmD4dPDzA29vqakSkEMtSaIqNjc3yATU1iYhct6lTYd06GDMGbDaw262uSEQka6GpaNGi2Gy2LB0wo9HCRUSy7JtvoE8fMAxo1gy6d7e6IhERIIuhafny5c7n0dHRvPDCCzz88MM0bdoUgLVr1/LNN98wcuTInKlSRAqHL76Axx83A9Pjj8O991pdkYiIk80wDMOVHdq2bcsjjzxCz54906yfOnUqn3/+OStWrHBnfW6X3ZmNRSSHjR0LAwaYz59+Gj76yLw0JyLiZtnNAi4PObB27VoaNWqUbn2jRo1Yv369q4cTEYHRo/8JTM88o8AkInmSy6EpIiKCL774It36L7/8koiICLcUJSKFyN9/w7PPms9ffBHef1+BSUTyJJeHHBg9ejTdunXjl19+oUmTJgCsX7+ePXv2MGPGDLcXKCIFXNWqMHky7N0L//ufApOI5Fku92kCOHz4MOPGjWPXrl0A1KhRgyeeeCJftDSpT5NIHmAYEBMDRYtaXYmIFELZzQLZCk35mUKTiMUMA55/HmbOhFWroHRpqysSkUIm1zqCA/z66688+OCDNGvWjKNHjwLw7bff8ttvv2XncCJSWBgGDBli9lvatw+WLrW6IhGRLHM5NM2YMYOOHTvi5+fH5s2bSUxMBCAmJoa3337b7QWKSAHhcED//uadcQDjx0OvXtbWJCLiApdD05tvvsn48eP54osv8P7XPFDNmzdn8+bNbi1ORAoIhwMeewzGjTM7en/1lTl4pYhIPuLy3XO7d++mRYsW6dYHBwdz4cIFd9QkIgVJair07WveIefhYU6T8uCDVlclIuIyl1uawsLC2Lt3b7r1v/32GxUrVnRLUSJSgFy4AL//Dp6e5kS8Ckwikk+5HJoeffRRBg0axLp167DZbBw7dozvvvuOYcOG8eSTT+ZEjSKSn5UoAcuWwZw5mnxXRPI1ly/PvfDCCzgcDtq2bculS5do0aIFdrudYcOG8fTTT+dEjSKS3yQmwq+/Qrt25nKZMuZDRCQfy/Y4TUlJSezdu5e4uDhq1qxJQECAu2vLERqnSSSHJSTA3XfDokUwZQrcf7/VFYmIpJFr4zT17duXixcv4uPjQ82aNWncuDEBAQHEx8fTt29fVw8nIgXJpUtwxx2wcCH4+kKpUlZXJCLiNi6Hpm+++YaEhIR06xMSEpg8ebJbihKRfCguDjp3Nges9PeHX36Btm2trkpExG2y3KcpNjYWwzAwDIOLFy/i6+vrfC01NZUFCxYQGhqaI0WKSB4XG2sGptWrITDQbGlq1szqqkRE3CrLoalo0aLYbDZsNhtVq1ZN97rNZuO1115za3Eikg9cugQdOsC6deYEvIsWQePGVlclIuJ2WQ5Ny5cvxzAM2rRpw4wZMyhevLjzNR8fH8qXL09pTbwpUvj4+ZmtSnv2wJIl0KCB1RWJiOQIl++eO3jwIOXKlcNms+VUTTlKd8+J5ADDgCNHICLC6kpERP5Trt09t2zZMn766ad066dPn84333zj6uFEJD86eRIGDjTHYwJzPjkFJhEp4FwOTSNHjqRkyZLp1oeGhvL222+7pSgRycOOHYOWLeGTT0AD2opIIeJyaDp06BAVKlRIt758+fIcOnTILUWJSB51+LAZmHbvhnLl4Pnnra5IRCTXuByaQkND+fPPP9Ot/+OPPyhRooRbihKRPCg6Glq0gL17oUIFWLkSKlWyuioRkVzjcmjq2bMnAwcOZPny5aSmppKamsqyZcsYNGgQPXr0yIkaRcRqe/eagSk6GipXNgNTZKTVVYmI5CqXJ+x94403iI6Opm3btnh5mbs7HA569eqlPk0iBVFqqjk1yuHDUL06REWBhhcRkUIo2xP2/v333/zxxx/4+flRu3Ztypcv7+7acoSGHBDJhjVr4JlnYPZszScnIvledrNAtkNTfqXQJJJFKSng9a/GaMMwhxYQEcnnspsFsnR5bujQobzxxhv4+/szdOjQa2774YcfZvnNRSSP2rwZuneHH3+E+vXNdQpMIlLIZSk0bdmyheTkZOfzzOTXUcJF5F/WrYOOHSEmBl55BebNs7oiEZE8QZfnRHKQw2EQfTaei5dTCPT1IrKEPx4eefiXi9WroVMnuHgRbr4ZFiyAwECrqxIRcascvTwnIq7bfjSGGZuPsPdUHInJDuzeHlQODaBbg7LUKhNsdXnprVgBt90G8fHQurXZwuTvb3VVIiJ5RpZC0913353lA86cOTPbxYgUFNuPxvBx1B7OxScRHuyHX7AnCUmpbDsSw9HzCQxsWyVvBaelS81hBRISoH178y65IkWsrkpEJE/J0uCWwcHBzkdQUBBRUVFs3LjR+fqmTZuIiooiODgP/ScgYhGHw2DG5iOci0+icmgAAb5eeHrYCPD1onJoAOfik5i5+SgORx65Mm4YMHq0GZg6d4a5cxWYREQykKWWpokTJzqfP//889x3332MHz8eT09PAFJTU3nqqafUR0gEiD4bz95TcYQH+6W7OcJmsxEe7MeeUxeJPhtPxZAAi6pMU5R5l9x778GLL4LdbnVFIiJ5ksvTqHz99dcMGzbMGZgAPD09GTp0KF9//bVbixPJjy5eTiEx2YGfj2eGr/v5eJKY7ODi5ZRcruwq27ebrUxg9l167TUFJhGRa3A5NKWkpLBr165063ft2oXD4XBLUSL5WaCvF3ZvDxKSUjN8PSEpFbu3B4G+Ft6HMW0a1KsHr79uXQ0iIvmMyz+1+/TpQ79+/di3bx+NGzcGYN26dbzzzjv06dPH7QWK5DeRJfypHBrAtiMxVLYHpLlEZxgGx2MSqFO2KJElLLozbfJk6NMHHA7Yv9/808Pl359ERAodl0PTBx98QFhYGKNGjeL48eMAhIeH8+yzz/LMM8+4vUCR/MbDw0a3BmU5ej7B2bfJz8e8e+54TALF/X24u0EZa8Zr+uorePRR87LcI4/AhAkKTCIiWeTyT0sPDw+ee+45jh49yoULF7hw4QJHjx7lueeeS9PPKStWrVrF7bffTunSpbHZbMyePfs/91mxYgUNGjTAbrdTuXJlJk2a5OpHEMlxtcoEM7BtFWqXDeZCQhLRZ+K5kJBEnbJFrRtuYPx4MygZBjz1lAKTiIiLstWpIiUlhRUrVrBv3z7uv/9+AI4dO0ZQUBABAVm/Gyg+Pp66devSt2/fLI0FdeDAAbp06cITTzzBd999R1RUFI888gjh4eF07NgxOx9FJMfUKhNMzfCgvDEi+Mcfw6BB5vPBg+HDDzWXnIiIi1wOTQcPHuTWW2/l0KFDJCYm0r59ewIDA3n33XdJTExk/PjxWT5Wp06d6NSpU5a3Hz9+PBUqVGDUqFEA1KhRg99++43Ro0crNEme5OFhyxvDCvj6mn8+9xy8844Ck4hINrjcNj9o0CAaNWrE+fPn8fPzc66/6667iIqKcmtxV1u7di3t2rVLs65jx46sXbs2R99XJN977DFYu1aBSUTkOrjc0vTrr7+yZs0afHx80qyPjIzk6NGjbissIydOnKBUqVJp1pUqVYrY2FgSEhLShLgrEhMTSUxMdC7HxsbmaI0ieYJhwLhxcN99ULKkue6mm6ytSUQkn3O5pcnhcJCamn78mSNHjhCYB2dDHzlyZJppYCIiIqwuSSRnGYY5snf//uY8cv/6pUFERLLP5dDUoUMHxowZ41y22WzExcUxYsQIOnfu7M7a0gkLC+PkyZNp1p08eZKgoKAMW5kAhg8fTkxMjPNx+PDhHK1RxFKGAc88Y16GA3j4YY3yLSLiJtkap+nWW2+lZs2aXL58mfvvv589e/ZQsmRJvv/++5yo0alp06YsWLAgzbolS5bQtGnTTPex2+3Y9Z+GFAYOBwwcCGPHmsuffQZPPmltTSIiBYjLoSkiIoI//viDH374gT/++IO4uDj69evHAw88kGlrT2bi4uLYu3evc/nAgQNs3bqV4sWLU65cOYYPH87Ro0eZPHkyAE888QSffvopzz33HH379mXZsmX8+OOP/Pzzz65+DJGCxeGAJ56AL74wO3p/8QX062d1VSIiBYrNMK7M2PnfkpOTqV69OvPnz6dGjRrX/eYrVqygdevW6db37t2bSZMm8fDDDxMdHc2KFSvS7DNkyBD++usvypYty//+9z8efvjhLL9nbGwswcHBxMTEEBQUdN2fQSRPGD7cvCTn4QETJ0KvXlZXJCKSZ2U3C7gUmgDKlCnD0qVL3RKarKDQJAXS/v3Qti28/Tb07Gl1NSIieVp2s4DLHcH79+/Pu+++S0pKiqu7ikhOqVgRdu5UYBIRyUEu92nasGEDUVFRLF68mNq1a+Pvn3am9pkzZ7qtOBHJRGIiPPQQPPgg3HGHue7KqN8iIpIjXA5NRYsWpVu3bjlRi4hkxeXLcM898PPPsGgRREdDsWJWVyUiUuC5HJomTpyYE3WISFZcugR33QWLF4OfH8yYocAkIpJLstynyeFw8O6779K8eXNuvPFGXnjhBRISEnKyNhH5t/h4uO02MzD5+8OCBXDVXIwiIpJzshya3nrrLV588UUCAgIoU6YMH330Ef3798/J2kTkiosXoVMnWL4cAgNh4UJo1crqqkRECpUsh6bJkyfz2WefsWjRImbPns28efP47rvvcDgcOVmfiIA5+e6vv0JwsNnSdPPNVlckIlLoZLlP06FDh9LMLdeuXTtsNhvHjh2jbNmyOVKciPy/YcPgyBFz0MpGjayuRkSkUMpyaEpJScH3qluavb29SU5OdntRIgKcP29eivPyMkf6/vhjqysSESnUshyaDMPg4YcfTjP57eXLl3niiSfSjNWkcZpE3ODkSbOTd+3a8O234OlpdUUiIoVelkNT796906178MEH3VqMiADHj0ObNrBrF5w9C8eOQUSE1VWJiBR6WQ5NGp9JJBccOWIGpj17zKC0bJkCk4hIHuHy3HMikkOio6FFCzMwRUbCypVQubLVVYmIyP9TaBLJC/btg5Yt4cABqFTJDEwVKlhdlYiI/ItCk0hecOiQ2fm7WjUzMJUrZ3VFIiJyFZfnnhORHNC6tTktSs2aEBZmdTUiIpIBhSYRq2zbBt7eUL26udymjbX1iIjINenynIgVtmwxW5fatDH7M4mISJ6n0CSS2zZsMMPS2bPmcAIlSlhdkYiIZIFCk0huWrPGHOn7wgVo1gyWLIGiRa2uSkREskChSSS3rFoFHTtCbKw5vMCiRRAUZHVVIiKSRQpNIrlh7Vro1Ani4syWpgULICDA6qpERMQFuntOJIc5HAaHQiIIrVQVQkLwnT0bjyJFrC5LRERcpNAkkoO2H41hxuYj7D0Vh1fvd8C/CJHLDtCtQVlqlQm2ujwREXGBQpNIDjn45RS2r9jCtubdCA/2wy84nISkVLYdieHo+QQGtq2i4CQiko8oNInkAMe0H4h4/GHKO1K5FFmZPaVuBiDA14vK9gD2nopj5uaj1AwPwsPDZnG1IiKSFeoILuJuU6Zge+B+PByprL+5C/vq3pTmZZvNRniwH3tOXST6bLxFRYqIiKsUmkTcaeJE6NULm8PBsma3MWPAGzg80zfo+vl4kpjs4OLlFAuKFBGR7NDlORF3mTABnngCgNje/ZjUvB/BqRDgnX7ThKRU7N4eBPrqn6CISH6hliYRd9iyxRmYGDiQgK8+p1JYEMdjEjAMI82mhmFwPCaBKqGBRJbwt6BYERHJDv2aK+IO9evD22/DuXPw3nt42Gx0a1CWo+cT2Hsqzrx7zseThKRUjsckUNzfh7sblFEncBGRfMRmXP1rcAEXGxtLcHAwMTExBGkKC7leiYlgt/+zbBhg+ycI/XucpsRkB3ZvD6qEBnJ3gzIabkBExCLZzQJqaRLJDsOA1183549btAgCA831trQtR7XKBFMzPIjos/FcvJxCoK8XkSX81cIkIpIPKTSJuMow4OWXzctxAHPnwgMPZLq5h4eNiiGaZ05EJL9TaBJxhWHAc8/BBx+Yy6NGXTMwiYhIwaHQJJJVhgGDB8PHH5vLn3wCAwZYWpKIiOQehSaRrHA4oH9/GD/eXJ4wAR57zNqaREQkVyk0iWTFsWMwY4bZ0furr6BPH6srEhGRXKbQJJIJh8P4111vRYlcshSPnX9Bjx5WlyYiIhZQaBLJwPajMcxaf4DLf2xnT1gl7N4eVA4NoNstnahldXEiImIJTaMicpXtR2MYu+gv2r8+mBEjH6X1qV0U9fNh25EYPo7aw/ajMVaXKCIiFlBoEvkXh8Ng9rr99B3zLDdtXYmHIxW/xEsE+HpROTSAc/FJzNx8FIejUA2kLyIiKDSJpHHwyBnueOUpbty2mmQfO5OHf8Luhi0AsNlshAf7sefURaLPxltcqYiI5DaFJpEr4uMp2fMe6uz4nSS7L5Ne/JQ99Zql2cTPx5PEZAcXL6dYVKSIiFhFHcFFAOLjoXNnAtesIsFehAnPfczJ2o3TbZaQlIrd24NAX/3TEREpbNTSJALg4wMlSmAEBTH1jc/5LbwGhpG235JhGByPSaBKaCCRJfwtKlRERKyiX5dFALy9Ydo0bPv20SSoNOui9rD3VBzhwX74+XiSkJTK8ZgEivv7cHeDMnh42KyuWEREcplamqTwOnsWRo40p0gBs7WpRg1qlQlmYNsq1C4bzIWEJKLPxHMhIYk6ZYsysG0VapUJtrZuERGxhFqapHA6dQratYNt2yAuDt56K83LtcoEUzM86F8jgnsRWcJfLUwiIoWYQpMUPsePQ9u2sHMnhIXBgw9muJmHh42KIQG5XJyIiORVCk1SuBw9Cm3awN9/Q5kysGwZVK1qdVUiIpIPKDRJ4XHwoBmY9u+HcuVg+XKoWNHqqkREJJ9QR3ApHJKSzD5M+/dDhQqwapUCk4iIuEShSQoHHx94+22oUcMMTOXLW12RiIjkMwpNUrD9e4DKe++FP/6AsmWtq0dERPIthSYpuLZvh2bN4PDhf9Z5e1tXj4iI5GsKTVIwbd0KrVrB77/DkCFWVyMiIgWAQpMUPBs3mnfJnT0LjRrB559bXZGIiBQACk1SsPz+uzlw5fnz0LQpLF0KxYtbXZWIiBQACk1ScPz2G3ToALGxcMstsGgRBGueOBERcQ+FJikYDAOGDYOLF81Lc7/8AoGBVlclIiIFiEKTFAw2G8yeDU8+CfPng7+/1RWJiEgBo9Ak+dvRo/88DwuDzz4DPz/r6hERkQJLoUnyrzlzoFIl+OYbqysREZFCQKFJ8qfp0+GeeyAx0ezw/e+Rv0VERHKAQpPkP1OnQo8ekJICDzwAkyebfZpERERykEKT5C/ffAMPPggOBzz8sLns5WV1VSIiUgjkidA0duxYIiMj8fX1pUmTJqxfvz7TbSdNmoTNZkvz8PX1zcVqxTJffAF9+piX4h57DL76Cjw9ra5KREQKCctD0w8//MDQoUMZMWIEmzdvpm7dunTs2JFTp05luk9QUBDHjx93Pg4ePJiLFYtl9u0zA9OAATB+PHhY/vUVEZFCxPL/dT788EMeffRR+vTpQ82aNRk/fjxFihTh66+/znQfm81GWFiY81GqVKlcrFgsM3Kkecfcxx+rD5OIiOQ6S0NTUlISmzZtol27ds51Hh4etGvXjrVr12a6X1xcHOXLlyciIoI777yTHTt2ZLptYmIisbGxaR6Sj/zwAyQkmM9tNrjjDgUmERGxhKWh6cyZM6SmpqZrKSpVqhQnTpzIcJ9q1arx9ddfM2fOHKZMmYLD4aBZs2YcOXIkw+1HjhxJcHCw8xEREeH2zyE55I03zLvkunUz75QTERGxkOWX51zVtGlTevXqRb169WjZsiUzZ84kJCSECRMmZLj98OHDiYmJcT4OHz6cyxWLywwD/vc/eOUVc/nmm3WHnIiIWM7S/4lKliyJp6cnJ0+eTLP+5MmThIWFZekY3t7e1K9fn71792b4ut1ux263X3etkksMA154Ad57z1x+/31zIl4RERGLWdrS5OPjQ8OGDYmKinKuczgcREVF0bRp0ywdIzU1lW3bthEeHp5TZUpuMQwYOvSfwPTRRwpMIiKSZ1h+zWPo0KH07t2bRo0a0bhxY8aMGUN8fDx9+vQBoFevXpQpU4aRI0cC8Prrr3PTTTdRuXJlLly4wPvvv8/Bgwd55JFHrPwY4g4vvABjxpjPx42DJ56wtBwREZF/szw0de/endOnT/PKK69w4sQJ6tWrx8KFC52dww8dOoTHv8bjOX/+PI8++ignTpygWLFiNGzYkDVr1lCzZk2rPoK4y913w+efw6hR0Lev1dWIiIikYTOMwjXTaWxsLMHBwcTExBAUFGR1OXK1c+egeHGrqxARkQIsu1kg3909JwVISgo8/jhs2PDPOgUmERHJoxSaxBpJSeYYTJ9/DrfdBvHxVlckIiJyTZb3aZJCKDER7rsP5s4FHx/48kvw97e6KhERkWtSaJLcdfmy2eH7l1/AbofZs+HWW62uSkRE5D8pNEnuuXQJunaFJUvAzw/mzYO2ba2uSkREJEsUmiT3vPWWGZj8/eHnn6FlS6srEhERyTJ1BJfc8/LLZkvTokUKTCIiku+opUly1qVL5qU4m838c9YsqysSERHJFrU0Sc45dw5atICXXjLnlRMREcnHFJokZ5w+DW3awKZN8MUXcPKk1RWJiIhcF4Umcb+TJ6F1a/jjDyhVClasgLAwq6sSERG5LurTJO517Jg5jMCuXVC6NCxbBtWqWV2ViIjIdVNoEvc5fNi8JLd3L5QrZwamSpWsrkpERMQtdHlO3Gf1ajMwVagAK1cqMImISIGiliZxnx49wOGAW26BiAirqxEREXErhSa5Pn//DcHBZodvgPvvt7YeERGRHKLLc5J9O3aY4zC1awdnzlhdjYiISI5SaJLs+eMPaNXKHF7A01ODV4qISIGn0CSu27TJHIfpzBlo2NC8Sy4kxOqqREREcpRCk7hm3TpzHKbz56FJE1i6FIoXt7oqERGRHKfQJFn3++/Qvj3ExMDNN8PixVC0qNVViYiI5ArdPSdZFx5utio1bAjz5kFAgNUViYiI5BqFJsm68uVh1SooWRKKFLG6GhERkVyly3NybQsXwsyZ/yyXK6fAJCIihZJamiRz8+bBPfeYo3yvWgVNm1pdkYiIiGXU0iQZmzED7r4bkpLgzjvNfkwiIiKFmEKTpPfDD9C9O6SkQM+eMG0a+PhYXZWIiIilFJokrW+/NeePS02FXr3MZS9dxRUREVFokn+sXg29e5t9mB55BCZONKdIEREREXUEl39p2hT69jUvxX36KXgoU4uIiFyh0CRmy5KHh/n4/HOw2cyHiIiIOKkpobD74IN/On2DGZwUmERERNJRaCrM3noLnn0WfvoJZs+2uhoREZE8TaGpMDIMGDECXn7ZXH7jDXMQSxEREcmU+jQVNoYBL74I77xjLr/7Ljz3nLU1iYiI5AMKTYWJYcCwYfDhh+by6NEweLClJYmIiOQXCk2FyZ49MG6c+XzsWHjqKWvrERERyUcUmgoQh8Mg+mw8Fy+nEOjrRWQJfzw8/nUnXNWqMGcOHDoE/fpZV6iIiEg+pNBUQGw/GsOMzUfYeyqOxGQHdm8PKocG0K1uOLWIg3LlzA3bt7e2UBERkXxKd88VANuPxvBx1B62HYmhqJ8PkSX9Kernw46DZ4nvcT/JjW7k8NrN/HH4AvtPx+FwGFaXLCIiku+opSmfczgMZmw+wrn4JCqHBmD7/4Epg7wMHp36FnXWLibFw5Pp3y3l91q3/NMC1aAstcoEW1y9iIhI/qHQlM9Fn41n76k4woP9nIHJMzmZnh8+yw3rl5Hs6cUz97zExYatiQy0k5CUyrYjMRw9n8DAtlUUnERERLJIl+fyuYuXU0hMduDn4wmAV1IiD74/hBvWLyPJy5tneo5gba3meHva8PSwEeDrReXQAM7FJzFz81FdqhMREckihaZ8LtDXC7u3BwlJqXglXuahdwZRfdMqkrztDHvoTTbWbIqnhwfenv/8VdtsNsKD/dhz6iLRZ+MtrF5ERCT/UGjK5yJL+FM5NIDjMQl4pCTje+kiSXZfPnlmDGsq1Ccp1UGwnxeBvmmvxPr5eJKY7ODi5RSLKhcREclf1Kcpn/PwsNGtQVmOnk9gR1wSnz77KRFnDrM9rAqJB8/j7+NFZMl/OohfkZCUit3bI12YEhERkYyppSm/i4mh1rK5DGxbhdplgznuYefXYhVJSTWIKOZHcX9vihXxTrOLYRgcj0mgSmggkSX8LSpcREQkf1EzQz7mOHuOpHbt8d26mbCRo3hp2GAOnb/kHBE8LjGFT5ftdd5d5+fjSUJSKsdjEiju78PdDcqkHTFcREREMqXQlE/t3Lafond2IfzALmIDijL6cig+v+ykW4Oy1I0o6txuYNsqzpHCT8aaI4XXKVuUuxuU0XADIiIiLlBoyoOunkOuXLEiHDp/iZiEZC5cSuLgzmha9b+f8OP7iQ0uwRevTCA2rCLHMxh/qVaZYGqGB117TjoRERH5TwpNeczVc8glpzpITEkl1WFwOi4R3zMn+ea7l4g8e5hTAcV55pFR+IdEUszXi8r2APaeimPm5qPUDA9yBiMPDxsVQwIs/mQiIiL5m0JTHnJlDrlz8UmEB/uR6JXKn0cuEHM5mRSHgT3pMj9NGU7Fc0c5FliSXg+8zSF7KEUPnadBuWIU8/dJM/6SgpKIiIj76O65POLqOeQC7J5En4snxTCwYZCcanDJy85P9W/lSFAoPe5/h0PFy2CzwcXLyew/EweGofGXREREcohamvII5xxyQb7EJaZw4VIypy4mkpicSkKyOdWJw4AJN97FlDodibcXAQPsnjYcDoNz8UlcTEzBhk3jL4mIiOQAtTTlERcvp3AuPomdJ2PZGH2ezYfOc+FSMmEnDzN+1lsEJprTnaQacNGnCAZg/GveuBSHQVJyqsZfEhERySFqjsgjTsRc5kTMZRyGgd3Lg8SUVCqdOcz3014kNP48F338ebbLYOf2hgHYwGEYGIaBDTgWe5nSwX4af0lERCQHKDTlAQ6HwZp9pzEwcBgGMQnJVD4ZzXfTXqLkpRh2hkTyTquH0+3nZbORmmq2Nvl5e3Jj+eJ0a1hW4y+JiIjkAIWmPGDJXydYsvMUDgMuJaVS9dhevv3hfxRPiGV7qUo82P0NLvgFObe/clHO29OGp4cH5UsU4ek2VWhfs5RamERERHKIQpPFth+N4evV0cRcSibQ14sbjuzls+9fJDgxnq3hVel93+vE+ppDB9j4JzB52CDA15umFUvwaIuKal0SERHJYQpNFnE4DPafiWPCyn0cu5CAwzCIjbvMGzPfJzgxno1latDn3ldJ8PXH19OGAxtFi3iTmpJKXFIqdSOK8eadtagUGqDWJRERkVyg0GSBK6N+/3H4AjuPx5KU4sBhgIfNxuD7XuapZZMZ1mkwcf8/rIDNYeDn44GPpwfnL6cQGuTHy11qUCUs0OqPIiIiUmgoNOWy7Udj+Gjp3+w/E8/ZuEQSkh0EJF4izl6EVAO2BZVl8D0vk5zqcF6LM/+wEZOQTPEAO890qErtskWt+xAiIiKFkMZpykUOh8Hnq/axIfocB89e4kJCCi32b+LX8f1oevAPwAxIiSkOPDxseNjMfkwhAXYqhvjTvmYYn95fnzvrlbH0c4iIiBRGamnKRYt2HGfpjhNcSjHbjtrsXc+42W9jT02h5x+LWFu+rnNbHw8b3j6eeHp6MKR9VRpFFieyhL/6L4mIiFhELU25ZHP0OYb8sNUZmDr+vYbxs8zA9EvVZjzTZYhzWxuQmOrA09ODcsWK0CiyOBVD1OFbRETESmppygXP/rSF6RuPOZe77PyVj+a9j5fhYG6NFgztMpQUz3/+KgzMIQWCfL2pX66YpkQRERHJAxSacliN4T+T8M8UcXTdsZxRP4/G03Aw44bWPNd5MKkens7XbZiDVnp7elC6qK+mRBEREckj8sTlubFjxxIZGYmvry9NmjRh/fr119x++vTpVK9eHV9fX2rXrs2CBQtyqVLXRL6QNjBhGLTetxFPw8EPtdvz7FWBCQCb2dJUvngRXri1ugatFBERySMsD00//PADQ4cOZcSIEWzevJm6devSsWNHTp06leH2a9asoWfPnvTr148tW7bQtWtXunbtyvbt23O58muLfOHn9CttNp7pMoQXOg7ghU5P47g6MAF2Tw9qhgfxzj11NKyAiIhIHmIzDMP4781yTpMmTbjxxhv59NNPAXA4HERERPD000/zwgsvpNu+e/fuxMfHM3/+fOe6m266iXr16jF+/Pj/fL/Y2FiCg4OJiYkhKCjoP7fPjo8X/8mHyw47l5tHb2VN+ToYtmtnVBvQuloIQztUUwuTiIhIDsluFrC0pSkpKYlNmzbRrl075zoPDw/atWvH2rVrM9xn7dq1abYH6NixY6bbJyYmEhsbm+aRk1JSHGkCU7/1s/juh5d5a9Fn8B/5tFXVknz+UCMFJhERkTzI0tB05swZUlNTKVWqVJr1pUqV4sSJExnuc+LECZe2HzlyJMHBwc5HRESEe4rPxOp9Z5zPn/x9Ov9b/hUA54pcO8lWCinCMx2r4+Vl+RVTERERyUCB/x96+PDhxMTEOB+HDx/+752yyeEw2HE8FgyDgau/5/mV3wDw4c0P8MEtD4Et47vg6kUE81GPBmphEhERycMsHXKgZMmSeHp6cvLkyTTrT548SVhYWIb7hIWFubS93W7Hbre7p+Br2H40hp82HWb1ntM88+sUnl77AwDvtejFZ03vy3S/ZhWCmfJocw0rICIiksdZ2tLk4+NDw4YNiYqKcq5zOBxERUXRtGnTDPdp2rRpmu0BlixZkun2uWH70RjenP8XC7adoOecCc7A9EbrftcMTGWDfZj6+M0KTCIiIvmA5YNbDh06lN69e9OoUSMaN27MmDFjiI+Pp0+fPgD06tWLMmXKMHLkSAAGDRpEy5YtGTVqFF26dGHatGls3LiRzz//3JL6r0zCu+vERbw8beytcAPJa7x4o3U/Jje8PdP9SgX48Nvw9rlYqYiIiFwPy0NT9+7dOX36NK+88gonTpygXr16LFy40NnZ+9ChQ3h4/NMg1qxZM6ZOncrLL7/Miy++SJUqVZg9eza1atWypP79Z+LYePC8c9qTdXVa8HCZb9njXxIuJma4T8caJZnQu0kuVyoiIiLXw/JxmnKbu8dpWrDtOC/M+JNgP298vNIOVmkYDs5dTCA20aBcCT9aVw3h2fbVKVLE+7rfV0RERLInu1nA8pam/C/zzGmzeRBYxBeHLZnnbq1O59qlc7EuERERcacCP+RATqtaKpAAXy/iElNIH6AM4hJTCPD1omqpQCvKExERETdRaLpOFUsG0Kh8cQwDLlxKIjnVgWEYJKc6uHApCcOAG8sXp2LJAKtLFRERkeugy3PXycPDxmMtKnLq4mX2n47nUlKK2eBkAy8PD6qU8ufRFhU1rICIiEg+p9DkBrXKBPNyl5rM2HSEbUdjuJScShFvT2qXCaZbw7Ia6VtERKQAUGhyk1plgqkZHkT02XguXk4h0NeLyBL+amESEREpIBSa3MjDw0bFEPVdEhERKYjUEVxEREQkCxSaRERERLJAoUlEREQkCxSaRERERLJAoUlEREQkCxSaRERERLJAoUlEREQkCxSaRERERLJAoUlEREQkCxSaRERERLJAoUlEREQkCxSaRERERLJAoUlEREQkCxSaRERERLJAoUlEREQkC7ysLiC3GYYBQGxsrMWViIiIiBWuZIArmSCrCl1ounjxIgAREREWVyIiIiJWunjxIsHBwVne3ma4GrPyOYfDwbFjxwgMDMRms+X4+8XGxhIREcHhw4cJCgrK8fcraHT+ro/O3/XR+bs+On/Zp3N3ff7r/BmGwcWLFyldujQeHlnvqVToWpo8PDwoW7Zsrr9vUFCQvvjXQefv+uj8XR+dv+uj85d9OnfX51rnz5UWpivUEVxEREQkCxSaRERERLJAoSmH2e12RowYgd1ut7qUfEnn7/ro/F0fnb/ro/OXfTp31yenzl+h6wguIiIikh1qaRIRERHJAoUmERERkSxQaBIRERHJAoUmNxg7diyRkZH4+vrSpEkT1q9ff83tp0+fTvXq1fH19aV27dosWLAglyrNm1w5f5MmTcJms6V5+Pr65mK1ecuqVau4/fbbKV26NDabjdmzZ//nPitWrKBBgwbY7XYqV67MpEmTcrzOvMjVc7dixYp03z2bzcaJEydyp+A8ZuTIkdx4440EBgYSGhpK165d2b1793/up59/puycP/38M40bN446deo4x2Bq2rQpv/zyyzX3cdf3TqHpOv3www8MHTqUESNGsHnzZurWrUvHjh05depUhtuvWbOGnj170q9fP7Zs2ULXrl3p2rUr27dvz+XK8wZXzx+Yg5UdP37c+Th48GAuVpy3xMfHU7duXcaOHZul7Q8cOECXLl1o3bo1W7duZfDgwTzyyCMsWrQohyvNe1w9d1fs3r07zfcvNDQ0hyrM21auXEn//v35/fffWbJkCcnJyXTo0IH4+PhM99HPv39k5/yBfv4BlC1blnfeeYdNmzaxceNG2rRpw5133smOHTsy3N6t3ztDrkvjxo2N/v37O5dTU1ON0qVLGyNHjsxw+/vuu8/o0qVLmnVNmjQxHn/88RytM69y9fxNnDjRCA4OzqXq8hfAmDVr1jW3ee6554wbbrghzbru3bsbHTt2zMHK8r6snLvly5cbgHH+/PlcqSm/OXXqlAEYK1euzHQb/fzLXFbOn37+Za5YsWLGl19+meFr7vzeqaXpOiQlJbFp0ybatWvnXOfh4UG7du1Yu3ZthvusXbs2zfYAHTt2zHT7giw75w8gLi6O8uXLExERcc3fLiQ9ff+uX7169QgPD6d9+/asXr3a6nLyjJiYGACKFy+e6Tb6/mUuK+cP9PPvaqmpqUybNo34+HiaNm2a4Tbu/N4pNF2HM2fOkJqaSqlSpdKsL1WqVKb9HE6cOOHS9gVZds5ftWrV+Prrr5kzZw5TpkzB4XDQrFkzjhw5khsl53uZff9iY2NJSEiwqKr8ITw8nPHjxzNjxgxmzJhBREQErVq1YvPmzVaXZjmHw8HgwYNp3rw5tWrVynQ7/fzLWFbPn37+/WPbtm0EBARgt9t54oknmDVrFjVr1sxwW3d+7wrdhL2SvzVt2jTNbxPNmjWjRo0aTJgwgTfeeMPCyqSgq1atGtWqVXMuN2vWjH379jF69Gi+/fZbCyuzXv/+/dm+fTu//fab1aXkS1k9f/r5949q1aqxdetWYmJi+Omnn+jduzcrV67MNDi5i1qarkPJkiXx9PTk5MmTadafPHmSsLCwDPcJCwtzafuCLDvn72re3t7Ur1+fvXv35kSJBU5m37+goCD8/Pwsqir/aty4caH/7g0YMID58+ezfPlyypYte81t9fMvPVfO39UK888/Hx8fKleuTMOGDRk5ciR169blo48+ynBbd37vFJqug4+PDw0bNiQqKsq5zuFwEBUVlem11aZNm6bZHmDJkiWZbl+QZef8XS01NZVt27YRHh6eU2UWKPr+udfWrVsL7XfPMAwGDBjArFmzWLZsGRUqVPjPffT9+0d2zt/V9PPvHw6Hg8TExAxfc+v3Lhud1OVfpk2bZtjtdmPSpEnGX3/9ZTz22GNG0aJFjRMnThiGYRgPPfSQ8cILLzi3X716teHl5WV88MEHxs6dO40RI0YY3t7exrZt26z6CJZy9fy99tprxqJFi4x9+/YZmzZtMnr06GH4+voaO3bssOojWOrixYvGli1bjC1bthiA8eGHHxpbtmwxDh48aBiGYbzwwgvGQw895Nx+//79RpEiRYxnn33W2LlzpzF27FjD09PTWLhwoVUfwTKunrvRo0cbs2fPNvbs2WNs27bNGDRokOHh4WEsXbrUqo9gqSeffNIIDg42VqxYYRw/ftz5uHTpknMb/fzLXHbOn37+mV544QVj5cqVxoEDB4w///zTeOGFFwybzWYsXrzYMIyc/d4pNLnBJ598YpQrV87w8fExGjdubPz+++/O11q2bGn07t07zfY//vijUbVqVcPHx8e44YYbjJ9//jmXK85bXDl/gwcPdm5bqlQpo3PnzsbmzZstqDpvuHIb/NWPK+esd+/eRsuWLdPtU69ePcPHx8eoWLGiMXHixFyvOy9w9dy9++67RqVKlQxfX1+jePHiRqtWrYxly5ZZU3wekNG5A9J8n/TzL3PZOX/6+Wfq27evUb58ecPHx8cICQkx2rZt6wxMhpGz3zubYRiG6+1TIiIiIoWL+jSJiIiIZIFCk4iIiEgWKDSJiIiIZIFCk4iIiEgWKDSJiIiIZIFCk4iIiEgWKDSJiIiIZIFCk4iIiOQpq1at4vbbb6d06dLYbDZmz57t8jEMw+CDDz6gatWq2O12ypQpw1tvvXVddSk0iUiuy+4PwZzy8MMP07VrV0traNWqFYMHD77u4+SFzyJyveLj46lbty5jx47N9jEGDRrEl19+yQcffMCuXbuYO3cujRs3vq66vK5rbxHJ09auXcvNN9/Mrbfeys8//+zSvpGRkQwePNgt/5G7qlWrVtSrV48xY8bkyn55wcyZM/H29r7u43z00UdoogfJ7zp16kSnTp0yfT0xMZGXXnqJ77//ngsXLlCrVi3effddWrVqBcDOnTsZN24c27dvp1q1agDZmhT5amppEinAvvrqK55++mlWrVrFsWPHrC5HrqF48eIEBgZe93GCg4MpWrTo9RckkocNGDCAtWvXMm3aNP7880/uvfdebr31Vvbs2QPAvHnzqFixIvPnz6dChQpERkbyyCOPcO7cuet74+xOmCciedvFixeNgIAAY9euXUb37t2Nt956K902c+fONRo1amTY7XajRIkSRteuXQ3DMCe85KqJRA3DMEaMGGHUrVs3zTFGjx5tlC9f3rm8fv16o127dkaJEiWMoKAgo0WLFsamTZvS7AMYs2bNyrDu3r17p3vvAwcOGIZhGCtWrDBuvPFGw8fHxwgLCzOef/55Izk5+Zr7paSkGH379jUiIyMNX19fo2rVqsaYMWPSveedd96ZpfOamppqvP32287j1alTx5g+fbrz9SsTAS9cuNCoV6+e4evra7Ru3do4efKksWDBAqN69epGYGCg0bNnTyM+Pt65X8uWLY1BgwY5l8eOHWtUrlzZsNvtRmhoqNGtWzfna9OnTzdq1arlnDy4bdu2RlxcXIaf5fLly8bTTz9thISEGHa73WjevLmxfv36dPUuXbrUaNiwoeHn52c0bdrU2LVrV5bOh0hOu/rnxcGDBw1PT0/j6NGjabZr27atMXz4cMMwDOPxxx837Ha70aRJE2PVqlXOicpbt259XbWopUmkgPrxxx+pXr061apV48EHH+Trr79Oc9nm559/5q677qJz585s2bKFqKgo5/X+mTNnUrZsWV5//XWOHz/O8ePHs/y+Fy9epHfv3vz222/8/vvvVKlShc6dO3Px4sUs7f/RRx/RtGlTHn30Ued7R0REcPToUTp37syNN97IH3/8wbhx4/jqq6948803r7mfw+GgbNmyTJ8+nb/++otXXnmFF198kR9//NGFs/mPkSNHMnnyZMaPH8+OHTsYMmQIDz74ICtXrkyz3auvvsqnn37KmjVrOHz4MPfddx9jxoxh6tSp/PzzzyxevJhPPvkkw/fYuHEjAwcO5PXXX2f37t0sXLiQFi1aAHD8+HF69uxJ37592blzJytWrODuu+/O9JLcc889x4wZM/jmm2/YvHkzlStXpmPHjul+437ppZcYNWoUGzduxMvLi759+2br/IjktG3btpGamkrVqlUJCAhwPlauXMm+ffsAcDgcJCYmMnnyZG655RZatWrFV199xfLly9m9e3f23/y6IpeI5FnNmjVztqgkJycbJUuWNJYvX+58vWnTpsYDDzyQ6f7ly5c3Ro8enWZdVlqarpaammoEBgYa8+bNc67jGi1NhpG+1cUwDOPFF180qlWrZjgcDue6sWPHGgEBAUZqamqm+2Wkf//+aVpustrSdPnyZaNIkSLGmjVr0qzv16+f0bNnT8Mw0rbcXDFy5EgDMPbt2+dc9/jjjxsdO3bM8DPPmDHDCAoKMmJjY9PVsGnTJgMwoqOjM6zx358lLi7O8Pb2Nr777jvn60lJSUbp0qWN9957L9N6f/75ZwMwEhIS/vOciOS0q39eTJs2zfD09DR27dpl7NmzJ83j+PHjhmEYxiuvvGJ4eXmlOc6lS5cMwFi8eHG2a1FLk0gBtHv3btavX0/Pnj0B8PLyonv37nz11VfObbZu3Urbtm3d/t4nT57k0UcfpUqVKgQHBxMUFERcXByHDh26ruPu3LmTpk2bYrPZnOuaN29OXFwcR44cuea+Y8eOpWHDhoSEhBAQEMDnn3+erXr27t3LpUuXaN++fZrfcCdPnuz8DfeKOnXqOJ+XKlWKIkWKULFixTTrTp06leH7tG/fnvLly1OxYkUeeughvvvuOy5dugRA3bp1adu2LbVr1+bee+/liy++4Pz58xkeZ9++fSQnJ9O8eXPnOm9vbxo3bszOnTszrTc8PBwg0/pErFS/fn1SU1M5deoUlStXTvMICwsDzJ8NKSkpaf5d/v333wCUL18+2++tu+dECqCvvvqKlJQUSpcu7VxnGAZ2u51PP/2U4OBg/Pz8XD6uh4dHustAycnJaZZ79+7N2bNn+eijjyhfvjx2u52mTZuSlJSUvQ9znaZNm8awYcMYNWoUTZs2JTAwkPfff59169a5fKy4uDjAvLRZpkyZNK/Z7fY0y/++E85ms6W7M85ms+FwODJ8n8DAQDZv3syKFStYvHgxr7zyCq+++iobNmygaNGiLFmyhDVr1jgv8b300kusW7fuuu4OurpeINP6RHJaXFwce/fudS4fOHCArVu3Urx4capWrcoDDzxAr169GDVqFPXr1+f06dNERUVRp04dunTpQrt27WjQoAF9+/ZlzJgxOBwO+vfvT/v27alatWq261JLk0gBk5KSwuTJkxk1ahRbt251Pv744w9Kly7N999/D5gtC1FRUZkex8fHh9TU1DTrQkJCOHHiRJrgtHXr1jTbrF69moEDB9K5c2duuOEG7HY7Z86ccekzZPTeNWrUYO3atWnee/Xq1QQGBlK2bNlM91u9ejXNmjXjqaeeon79+lSuXDldq1BW1axZE7vdzqFDh9L9hhsREZGtY2bGy8uLdu3a8d577/Hnn38SHR3NsmXLADPUNG/enNdee40tW7bg4+PDrFmz0h2jUqVK+Pj4sHr1aue65ORkNmzYQM2aNd1ar4g7bdy4kfr161O/fn0Ahg4dSv369XnllVcAmDhxIr169eKZZ56hWrVqdO3alQ0bNlCuXDnA/AVv3rx5lCxZkhYtWtClSxdq1KjBtGnTrqsutTSJFDDz58/n/Pnz9OvXj+Dg4DSvdevWja+++oonnniCESNG0LZtWypVqkSPHj1ISUlhwYIFPP/884A5TtOqVavo0aMHdrudkiVL0qpVK06fPs17773HPffcw8KFC/nll18ICgpyvkeVKlX49ttvadSoEbGxsTz77LMut2pFRkaybt06oqOjCQgIoHjx4jz11FOMGTOGp59+mgEDBrB7925GjBjB0KFD8fDwyHS/KlWqMHnyZBYtWkSFChX49ttv2bBhQ7ZaZQIDAxk2bBhDhgzB4XBw8803ExMTw+rVqwkKCqJ3794uHzMj8+fPZ//+/bRo0YJixYqxYMECHA4H1apVY926dURFRdGhQwdCQ0NZt24dp0+fpkaNGumO4+/vz5NPPsmzzz5L8eLFKVeuHO+99x6XLl2iX79+bqlVJCe0atXqmuONeXt789prr/Haa69luk3p0qWZMWOGW+tSS5NIAfPVV1/Rrl27dIEJzNC0ceNG/vzzT1q1asX06dOZO3cu9erVo02bNqxfv9657euvv050dDSVKlUiJCQEMFt7PvvsM8aOHUvdunVZv349w4YNS/f+58+fp0GDBjz00EMMHDiQ0NBQlz7DsGHD8PT0pGbNmoSEhHDo0CHKlCnDggULWL9+PXXr1uWJJ56gX79+vPzyy9fc7/HHH+fuu++me/fuNGnShLNnz/LUU0+5VM+/vfHGG/zvf/9j5MiR1KhRwzlwqDsGzruiaNGizJw5kzZt2lCjRg3Gjx/P999/zw033EBQUBCrVq2ic+fOVK1alZdffplRo0ZlOhDgO++8Q7du3XjooYdo0KABe/fuZdGiRRQrVsxt9YoUFjbjWlFORERERAC1NImIiIhkiUKTiMj/O3ToUJqhBK5+XO+wCSKSv+nynIjI/0tJSSE6OjrT1yMjI/Hy0v0zIoWVQpOIiIhIFujynIiIiEgWKDSJiIiIZIFCk4iIiEgWKDSJiIiIZIFCk4iIiEgWKDSJiIiIZIFCk4iIiEgWKDSJiIiIZMH/ARhhn1BIVfozAAAAAElFTkSuQmCC\n" }, "metadata": {} } ] }, { "cell_type": "markdown", "source": [ "MAE Interpretation (with 0-1 scaling): Since the target variable is scaled between 0 and 1, an MAE of 0.00308... is an excellent result. It means, on average, the model's predictions are off by only about 0.31% of the total possible range of the scaled data (which is 1)." ], "metadata": { "id": "u1Ox-dXigC78" } }, { "cell_type": "code", "source": [ "save_path = '/content/drive/MyDrive/AuraClima/Agri_TimeSeries.keras'\n", "model.save(save_path)\n", "print(f\"Model successfully saved to: {save_path}\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "GpD8yOFUe4Ui", "outputId": "925fabbb-ec2e-4136-87ba-239ed89c1713" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Model successfully saved to: /content/drive/MyDrive/AuraClima/Agri_TimeSeries.keras\n" ] } ] }, { "cell_type": "markdown", "source": [ "**2. Regression Neural Network for total_emission with Slider-Ready Features**" ], "metadata": { "id": "jwaUkJE7htsb" } }, { "cell_type": "code", "source": [ "import os\n", "import pickle\n", "import numpy as np\n", "import pandas as pd\n", "import tensorflow as tf\n", "from tensorflow.keras.models import Sequential\n", "from tensorflow.keras.layers import Dense, Dropout\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.metrics import mean_absolute_error" ], "metadata": { "id": "CITaeAgbgkes" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Load dataset\n", "csv_path = '/content/drive/MyDrive/AuraClima/Agrofood_co2_emission.csv'\n", "df = pd.read_csv(csv_path)" ], "metadata": { "id": "x0wZP15-hy2_" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Define column sets\n", "required_cols = ['Area', 'Year', 'total_emission']\n", "numeric_cols = [\n", " 'Year', 'Crop Residues', 'Savanna fires', 'Forest fires', 'Rice Cultivation',\n", " 'Drained organic soils (CO2)', 'Pesticides Manufacturing', 'Food Transport', 'Forestland',\n", " 'Net Forest conversion', 'Food Household Consumption', 'Food Retail',\n", " 'On-farm Electricity Use', 'Food Packaging', 'Agrifood Systems Waste Disposal',\n", " 'Food Processing', 'Fertilizers Manufacturing', 'IPPU', 'Manure applied to Soils',\n", " 'Manure left on Pasture', 'Manure Management', 'On-farm energy use',\n", " 'Rural population', 'Urban population', 'Fires in organic soils',\n", " 'Fires in humid tropical forests', 'Total Population - Male',\n", " 'Total Population - Female', 'Average Temperature °C'\n", "]" ], "metadata": { "id": "Bb6rAOzgh3t1" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Check for any missing required columns\n", "missing = [col for col in required_cols + numeric_cols if col not in df.columns]\n", "if missing:\n", " print(f\"⚠️ Missing columns in dataset: {missing}\")" ], "metadata": { "id": "PdUMVCLhh6S4" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Drop incomplete rows\n", "df.dropna(subset=required_cols, inplace=True)" ], "metadata": { "id": "qHc-8awVh8_j" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "print(\"\\n--- Converting general numeric columns to numeric (coercing errors) ---\")\n", "for col in numeric_cols:\n", " if col in df.columns:\n", " df[col] = pd.to_numeric(df[col], errors='coerce')\n", " else:\n", " print(f\"Warning: Column '{col}' in numeric_cols not found in DataFrame.\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "cND2foEPlykD", "outputId": "fbe7eb92-edbe-4723-a639-9bd00e11049e" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", "--- Converting general numeric columns to numeric (coercing errors) ---\n" ] } ] }, { "cell_type": "code", "source": [ "# Fill NaNs created by the coercion for these columns\n", "print(\"\\n--- Handling NaNs in general numeric columns ---\")\n", "for col in numeric_cols:\n", " if col in df.columns and df[col].isnull().any():\n", " df[col].fillna(df[col].mean(), inplace=True) # Fill NaNs with mean\n", " print(f\"Filled NaNs in '{col}'.\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "rhMdQI8Il2MH", "outputId": "7a95dd15-b509-49bf-b30a-aba203dd211e" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", "--- Handling NaNs in general numeric columns ---\n", "Filled NaNs in 'Crop Residues'.\n", "Filled NaNs in 'Savanna fires'.\n", "Filled NaNs in 'Forest fires'.\n", "Filled NaNs in 'Forestland'.\n", "Filled NaNs in 'Net Forest conversion'.\n", "Filled NaNs in 'Food Household Consumption'.\n", "Filled NaNs in 'IPPU'.\n", "Filled NaNs in 'Manure applied to Soils'.\n", "Filled NaNs in 'Manure Management'.\n", "Filled NaNs in 'On-farm energy use'.\n", "Filled NaNs in 'Fires in humid tropical forests'.\n" ] } ] }, { "cell_type": "code", "source": [ "df_encoded = pd.get_dummies(df, columns=['Area'], drop_first=True) # Get dummies first\n", "print(\"\\n--- df_encoded dtypes immediately after get_dummies ---\")\n", "print(df_encoded.dtypes) # Check what dtypes these new columns have initially" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "8E75Monwl8xV", "outputId": "6ad9bd5d-8565-476f-fed2-2fef7f3fabfc" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", "--- df_encoded dtypes immediately after get_dummies ---\n", "Year int64\n", "Savanna fires float64\n", "Forest fires float64\n", "Crop Residues float64\n", "Rice Cultivation float64\n", " ... \n", "Area_Western Sahara bool\n", "Area_Yemen bool\n", "Area_Yugoslav SFR bool\n", "Area_Zambia bool\n", "Area_Zimbabwe bool\n", "Length: 265, dtype: object\n" ] } ] }, { "cell_type": "code", "source": [ "# Identify the newly created one-hot encoded columns\n", "area_ohe_cols = [col for col in df_encoded.columns if col.startswith('Area_')]" ], "metadata": { "id": "xoyFh5jBmAK4" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# One-hot encode categorical column\n", "df_encoded = pd.get_dummies(df, columns=['Area'], drop_first=True)" ], "metadata": { "id": "HxOEGKYWh_0L" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "print(\"\\n--- Converting one-hot encoded 'Area_X' columns from 'TRUE'/'FALSE' strings to numeric 0/1 ---\")\n", "for col in area_ohe_cols:\n", " if col in df_encoded.columns and df_encoded[col].dtype == 'object':\n", " # Replace 'TRUE' with 1, 'FALSE' with 0, and then convert to numeric\n", " df_encoded[col] = df_encoded[col].replace({'TRUE': 1, 'FALSE': 0}).astype(float)\n", " print(f\"Converted '{col}' from object to float (0/1).\")\n", " elif col in df_encoded.columns and df_encoded[col].dtype == 'bool':\n", " # If they came as booleans, convert to float (0.0/1.0) for consistency\n", " df_encoded[col] = df_encoded[col].astype(float)\n", " print(f\"Converted '{col}' from bool to float (0.0/1.0).\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "9ZRkMPRqmDIE", "outputId": "091f43d6-bf81-4b38-c54a-d1ed26733711" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", "--- Converting one-hot encoded 'Area_X' columns from 'TRUE'/'FALSE' strings to numeric 0/1 ---\n", "Converted 'Area_Albania' from bool to float (0.0/1.0).\n", "Converted 'Area_Algeria' from bool to float (0.0/1.0).\n", "Converted 'Area_American Samoa' from bool to float (0.0/1.0).\n", "Converted 'Area_Andorra' from bool to float (0.0/1.0).\n", "Converted 'Area_Angola' from bool to float (0.0/1.0).\n", "Converted 'Area_Anguilla' from bool to float (0.0/1.0).\n", "Converted 'Area_Antigua and Barbuda' from bool to float (0.0/1.0).\n", "Converted 'Area_Argentina' from bool to float (0.0/1.0).\n", "Converted 'Area_Armenia' from bool to float (0.0/1.0).\n", "Converted 'Area_Aruba' from bool to float (0.0/1.0).\n", "Converted 'Area_Australia' from bool to float (0.0/1.0).\n", "Converted 'Area_Austria' from bool to float (0.0/1.0).\n", "Converted 'Area_Azerbaijan' from bool to float (0.0/1.0).\n", "Converted 'Area_Bahamas' from bool to float (0.0/1.0).\n", "Converted 'Area_Bahrain' from bool to float (0.0/1.0).\n", "Converted 'Area_Bangladesh' from bool to float (0.0/1.0).\n", "Converted 'Area_Barbados' from bool to float (0.0/1.0).\n", "Converted 'Area_Belarus' from bool to float (0.0/1.0).\n", "Converted 'Area_Belgium' from bool to float (0.0/1.0).\n", "Converted 'Area_Belgium-Luxembourg' from bool to float (0.0/1.0).\n", "Converted 'Area_Belize' from bool to float (0.0/1.0).\n", "Converted 'Area_Benin' from bool to float (0.0/1.0).\n", "Converted 'Area_Bermuda' from bool to float (0.0/1.0).\n", "Converted 'Area_Bhutan' from bool to float (0.0/1.0).\n", "Converted 'Area_Bolivia (Plurinational State of)' from bool to float (0.0/1.0).\n", "Converted 'Area_Bosnia and Herzegovina' from bool to float (0.0/1.0).\n", "Converted 'Area_Botswana' from bool to float (0.0/1.0).\n", "Converted 'Area_Brazil' from bool to float (0.0/1.0).\n", "Converted 'Area_British Virgin Islands' from bool to float (0.0/1.0).\n", "Converted 'Area_Brunei Darussalam' from bool to float (0.0/1.0).\n", "Converted 'Area_Bulgaria' from bool to float (0.0/1.0).\n", "Converted 'Area_Burkina Faso' from bool to float (0.0/1.0).\n", "Converted 'Area_Burundi' from bool to float (0.0/1.0).\n", "Converted 'Area_Cabo Verde' from bool to float (0.0/1.0).\n", "Converted 'Area_Cambodia' from bool to float (0.0/1.0).\n", "Converted 'Area_Cameroon' from bool to float (0.0/1.0).\n", "Converted 'Area_Canada' from bool to float (0.0/1.0).\n", "Converted 'Area_Cayman Islands' from bool to float (0.0/1.0).\n", "Converted 'Area_Central African Republic' from bool to float (0.0/1.0).\n", "Converted 'Area_Chad' from bool to float (0.0/1.0).\n", "Converted 'Area_Channel Islands' from bool to float (0.0/1.0).\n", "Converted 'Area_Chile' from bool to float (0.0/1.0).\n", "Converted 'Area_China' from bool to float (0.0/1.0).\n", "Converted 'Area_China, Hong Kong SAR' from bool to float (0.0/1.0).\n", "Converted 'Area_China, Macao SAR' from bool to float (0.0/1.0).\n", "Converted 'Area_China, Taiwan Province of' from bool to float (0.0/1.0).\n", "Converted 'Area_China, mainland' from bool to float (0.0/1.0).\n", "Converted 'Area_Colombia' from bool to float (0.0/1.0).\n", "Converted 'Area_Comoros' from bool to float (0.0/1.0).\n", "Converted 'Area_Congo' from bool to float (0.0/1.0).\n", "Converted 'Area_Cook Islands' from bool to float (0.0/1.0).\n", "Converted 'Area_Costa Rica' from bool to float (0.0/1.0).\n", "Converted 'Area_Croatia' from bool to float (0.0/1.0).\n", "Converted 'Area_Cuba' from bool to float (0.0/1.0).\n", "Converted 'Area_Cyprus' from bool to float (0.0/1.0).\n", "Converted 'Area_Czechia' from bool to float (0.0/1.0).\n", "Converted 'Area_Czechoslovakia' from bool to float (0.0/1.0).\n", "Converted 'Area_Democratic People's Republic of Korea' from bool to float (0.0/1.0).\n", "Converted 'Area_Democratic Republic of the Congo' from bool to float (0.0/1.0).\n", "Converted 'Area_Denmark' from bool to float (0.0/1.0).\n", "Converted 'Area_Djibouti' from bool to float (0.0/1.0).\n", "Converted 'Area_Dominica' from bool to float (0.0/1.0).\n", "Converted 'Area_Dominican Republic' from bool to float (0.0/1.0).\n", "Converted 'Area_Ecuador' from bool to float (0.0/1.0).\n", "Converted 'Area_Egypt' from bool to float (0.0/1.0).\n", "Converted 'Area_El Salvador' from bool to float (0.0/1.0).\n", "Converted 'Area_Equatorial Guinea' from bool to float (0.0/1.0).\n", "Converted 'Area_Eritrea' from bool to float (0.0/1.0).\n", "Converted 'Area_Estonia' from bool to float (0.0/1.0).\n", "Converted 'Area_Eswatini' from bool to float (0.0/1.0).\n", "Converted 'Area_Ethiopia' from bool to float (0.0/1.0).\n", "Converted 'Area_Ethiopia PDR' from bool to float (0.0/1.0).\n", "Converted 'Area_Falkland Islands (Malvinas)' from bool to float (0.0/1.0).\n", "Converted 'Area_Faroe Islands' from bool to float (0.0/1.0).\n", "Converted 'Area_Fiji' from bool to float (0.0/1.0).\n", "Converted 'Area_Finland' from bool to float (0.0/1.0).\n", "Converted 'Area_France' from bool to float (0.0/1.0).\n", "Converted 'Area_French Polynesia' from bool to float (0.0/1.0).\n", "Converted 'Area_Gabon' from bool to float (0.0/1.0).\n", "Converted 'Area_Gambia' from bool to float (0.0/1.0).\n", "Converted 'Area_Georgia' from bool to float (0.0/1.0).\n", "Converted 'Area_Germany' from bool to float (0.0/1.0).\n", "Converted 'Area_Ghana' from bool to float (0.0/1.0).\n", "Converted 'Area_Gibraltar' from bool to float (0.0/1.0).\n", "Converted 'Area_Greece' from bool to float (0.0/1.0).\n", "Converted 'Area_Greenland' from bool to float (0.0/1.0).\n", "Converted 'Area_Grenada' from bool to float (0.0/1.0).\n", "Converted 'Area_Guadeloupe' from bool to float (0.0/1.0).\n", "Converted 'Area_Guam' from bool to float (0.0/1.0).\n", "Converted 'Area_Guatemala' from bool to float (0.0/1.0).\n", "Converted 'Area_Guinea' from bool to float (0.0/1.0).\n", "Converted 'Area_Guinea-Bissau' from bool to float (0.0/1.0).\n", "Converted 'Area_Guyana' from bool to float (0.0/1.0).\n", "Converted 'Area_Haiti' from bool to float (0.0/1.0).\n", "Converted 'Area_Holy See' from bool to float (0.0/1.0).\n", "Converted 'Area_Honduras' from bool to float (0.0/1.0).\n", "Converted 'Area_Hungary' from bool to float (0.0/1.0).\n", "Converted 'Area_Iceland' from bool to float (0.0/1.0).\n", "Converted 'Area_India' from bool to float (0.0/1.0).\n", "Converted 'Area_Indonesia' from bool to float (0.0/1.0).\n", "Converted 'Area_Iran (Islamic Republic of)' from bool to float (0.0/1.0).\n", "Converted 'Area_Iraq' from bool to float (0.0/1.0).\n", "Converted 'Area_Ireland' from bool to float (0.0/1.0).\n", "Converted 'Area_Isle of Man' from bool to float (0.0/1.0).\n", "Converted 'Area_Israel' from bool to float (0.0/1.0).\n", "Converted 'Area_Italy' from bool to float (0.0/1.0).\n", "Converted 'Area_Jamaica' from bool to float (0.0/1.0).\n", "Converted 'Area_Japan' from bool to float (0.0/1.0).\n", "Converted 'Area_Jordan' from bool to float (0.0/1.0).\n", "Converted 'Area_Kazakhstan' from bool to float (0.0/1.0).\n", "Converted 'Area_Kenya' from bool to float (0.0/1.0).\n", "Converted 'Area_Kiribati' from bool to float (0.0/1.0).\n", "Converted 'Area_Kuwait' from bool to float (0.0/1.0).\n", "Converted 'Area_Kyrgyzstan' from bool to float (0.0/1.0).\n", "Converted 'Area_Lao People's Democratic Republic' from bool to float (0.0/1.0).\n", "Converted 'Area_Latvia' from bool to float (0.0/1.0).\n", "Converted 'Area_Lebanon' from bool to float (0.0/1.0).\n", "Converted 'Area_Lesotho' from bool to float (0.0/1.0).\n", "Converted 'Area_Liberia' from bool to float (0.0/1.0).\n", "Converted 'Area_Libya' from bool to float (0.0/1.0).\n", "Converted 'Area_Liechtenstein' from bool to float (0.0/1.0).\n", "Converted 'Area_Lithuania' from bool to float (0.0/1.0).\n", "Converted 'Area_Luxembourg' from bool to float (0.0/1.0).\n", "Converted 'Area_Madagascar' from bool to float (0.0/1.0).\n", "Converted 'Area_Malawi' from bool to float (0.0/1.0).\n", "Converted 'Area_Malaysia' from bool to float (0.0/1.0).\n", "Converted 'Area_Maldives' from bool to float (0.0/1.0).\n", "Converted 'Area_Mali' from bool to float (0.0/1.0).\n", "Converted 'Area_Malta' from bool to float (0.0/1.0).\n", "Converted 'Area_Marshall Islands' from bool to float (0.0/1.0).\n", "Converted 'Area_Martinique' from bool to float (0.0/1.0).\n", "Converted 'Area_Mauritania' from bool to float (0.0/1.0).\n", "Converted 'Area_Mauritius' from bool to float (0.0/1.0).\n", "Converted 'Area_Mayotte' from bool to float (0.0/1.0).\n", "Converted 'Area_Mexico' from bool to float (0.0/1.0).\n", "Converted 'Area_Micronesia (Federated States of)' from bool to float (0.0/1.0).\n", "Converted 'Area_Monaco' from bool to float (0.0/1.0).\n", "Converted 'Area_Mongolia' from bool to float (0.0/1.0).\n", "Converted 'Area_Montenegro' from bool to float (0.0/1.0).\n", "Converted 'Area_Montserrat' from bool to float (0.0/1.0).\n", "Converted 'Area_Morocco' from bool to float (0.0/1.0).\n", "Converted 'Area_Mozambique' from bool to float (0.0/1.0).\n", "Converted 'Area_Myanmar' from bool to float (0.0/1.0).\n", "Converted 'Area_Namibia' from bool to float (0.0/1.0).\n", "Converted 'Area_Nauru' from bool to float (0.0/1.0).\n", "Converted 'Area_Nepal' from bool to float (0.0/1.0).\n", "Converted 'Area_Netherlands (Kingdom of the)' from bool to float (0.0/1.0).\n", "Converted 'Area_Netherlands Antilles (former)' from bool to float (0.0/1.0).\n", "Converted 'Area_New Caledonia' from bool to float (0.0/1.0).\n", "Converted 'Area_New Zealand' from bool to float (0.0/1.0).\n", "Converted 'Area_Nicaragua' from bool to float (0.0/1.0).\n", "Converted 'Area_Niger' from bool to float (0.0/1.0).\n", "Converted 'Area_Nigeria' from bool to float (0.0/1.0).\n", "Converted 'Area_Niue' from bool to float (0.0/1.0).\n", "Converted 'Area_North Macedonia' from bool to float (0.0/1.0).\n", "Converted 'Area_Northern Mariana Islands' from bool to float (0.0/1.0).\n", "Converted 'Area_Norway' from bool to float (0.0/1.0).\n", "Converted 'Area_Oman' from bool to float (0.0/1.0).\n", "Converted 'Area_Pacific Islands Trust Territory' from bool to float (0.0/1.0).\n", "Converted 'Area_Pakistan' from bool to float (0.0/1.0).\n", "Converted 'Area_Palau' from bool to float (0.0/1.0).\n", "Converted 'Area_Palestine' from bool to float (0.0/1.0).\n", "Converted 'Area_Panama' from bool to float (0.0/1.0).\n", "Converted 'Area_Papua New Guinea' from bool to float (0.0/1.0).\n", "Converted 'Area_Paraguay' from bool to float (0.0/1.0).\n", "Converted 'Area_Peru' from bool to float (0.0/1.0).\n", "Converted 'Area_Philippines' from bool to float (0.0/1.0).\n", "Converted 'Area_Poland' from bool to float (0.0/1.0).\n", "Converted 'Area_Portugal' from bool to float (0.0/1.0).\n", "Converted 'Area_Puerto Rico' from bool to float (0.0/1.0).\n", "Converted 'Area_Qatar' from bool to float (0.0/1.0).\n", "Converted 'Area_Republic of Korea' from bool to float (0.0/1.0).\n", "Converted 'Area_Republic of Moldova' from bool to float (0.0/1.0).\n", "Converted 'Area_Romania' from bool to float (0.0/1.0).\n", "Converted 'Area_Russian Federation' from bool to float (0.0/1.0).\n", "Converted 'Area_Rwanda' from bool to float (0.0/1.0).\n", "Converted 'Area_Saint Helena, Ascension and Tristan da Cunha' from bool to float (0.0/1.0).\n", "Converted 'Area_Saint Kitts and Nevis' from bool to float (0.0/1.0).\n", "Converted 'Area_Saint Lucia' from bool to float (0.0/1.0).\n", "Converted 'Area_Saint Pierre and Miquelon' from bool to float (0.0/1.0).\n", "Converted 'Area_Saint Vincent and the Grenadines' from bool to float (0.0/1.0).\n", "Converted 'Area_Samoa' from bool to float (0.0/1.0).\n", "Converted 'Area_San Marino' from bool to float (0.0/1.0).\n", "Converted 'Area_Sao Tome and Principe' from bool to float (0.0/1.0).\n", "Converted 'Area_Saudi Arabia' from bool to float (0.0/1.0).\n", "Converted 'Area_Senegal' from bool to float (0.0/1.0).\n", "Converted 'Area_Serbia' from bool to float (0.0/1.0).\n", "Converted 'Area_Serbia and Montenegro' from bool to float (0.0/1.0).\n", "Converted 'Area_Seychelles' from bool to float (0.0/1.0).\n", "Converted 'Area_Sierra Leone' from bool to float (0.0/1.0).\n", "Converted 'Area_Singapore' from bool to float (0.0/1.0).\n", "Converted 'Area_Slovakia' from bool to float (0.0/1.0).\n", "Converted 'Area_Slovenia' from bool to float (0.0/1.0).\n", "Converted 'Area_Solomon Islands' from bool to float (0.0/1.0).\n", "Converted 'Area_Somalia' from bool to float (0.0/1.0).\n", "Converted 'Area_South Africa' from bool to float (0.0/1.0).\n", "Converted 'Area_South Sudan' from bool to float (0.0/1.0).\n", "Converted 'Area_Spain' from bool to float (0.0/1.0).\n", "Converted 'Area_Sri Lanka' from bool to float (0.0/1.0).\n", "Converted 'Area_Sudan' from bool to float (0.0/1.0).\n", "Converted 'Area_Sudan (former)' from bool to float (0.0/1.0).\n", "Converted 'Area_Suriname' from bool to float (0.0/1.0).\n", "Converted 'Area_Sweden' from bool to float (0.0/1.0).\n", "Converted 'Area_Switzerland' from bool to float (0.0/1.0).\n", "Converted 'Area_Syrian Arab Republic' from bool to float (0.0/1.0).\n", "Converted 'Area_Tajikistan' from bool to float (0.0/1.0).\n", "Converted 'Area_Thailand' from bool to float (0.0/1.0).\n", "Converted 'Area_Timor-Leste' from bool to float (0.0/1.0).\n", "Converted 'Area_Togo' from bool to float (0.0/1.0).\n", "Converted 'Area_Tokelau' from bool to float (0.0/1.0).\n", "Converted 'Area_Tonga' from bool to float (0.0/1.0).\n", "Converted 'Area_Trinidad and Tobago' from bool to float (0.0/1.0).\n", "Converted 'Area_Tunisia' from bool to float (0.0/1.0).\n", "Converted 'Area_Turkmenistan' from bool to float (0.0/1.0).\n", "Converted 'Area_Turks and Caicos Islands' from bool to float (0.0/1.0).\n", "Converted 'Area_Tuvalu' from bool to float (0.0/1.0).\n", "Converted 'Area_USSR' from bool to float (0.0/1.0).\n", "Converted 'Area_Uganda' from bool to float (0.0/1.0).\n", "Converted 'Area_Ukraine' from bool to float (0.0/1.0).\n", "Converted 'Area_United Arab Emirates' from bool to float (0.0/1.0).\n", "Converted 'Area_United Kingdom of Great Britain and Northern Ireland' from bool to float (0.0/1.0).\n", "Converted 'Area_United Republic of Tanzania' from bool to float (0.0/1.0).\n", "Converted 'Area_United States Virgin Islands' from bool to float (0.0/1.0).\n", "Converted 'Area_United States of America' from bool to float (0.0/1.0).\n", "Converted 'Area_Uruguay' from bool to float (0.0/1.0).\n", "Converted 'Area_Uzbekistan' from bool to float (0.0/1.0).\n", "Converted 'Area_Vanuatu' from bool to float (0.0/1.0).\n", "Converted 'Area_Venezuela (Bolivarian Republic of)' from bool to float (0.0/1.0).\n", "Converted 'Area_Viet Nam' from bool to float (0.0/1.0).\n", "Converted 'Area_Wallis and Futuna Islands' from bool to float (0.0/1.0).\n", "Converted 'Area_Western Sahara' from bool to float (0.0/1.0).\n", "Converted 'Area_Yemen' from bool to float (0.0/1.0).\n", "Converted 'Area_Yugoslav SFR' from bool to float (0.0/1.0).\n", "Converted 'Area_Zambia' from bool to float (0.0/1.0).\n", "Converted 'Area_Zimbabwe' from bool to float (0.0/1.0).\n" ] } ] }, { "cell_type": "code", "source": [ "print(\"\\n--- Dtypes of 'df_encoded' AFTER ALL conversions ---\")\n", "print(df_encoded.dtypes)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "JN3gYqvDmHAD", "outputId": "968d3f68-9c8e-4620-945c-3ae829830426" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", "--- Dtypes of 'df_encoded' AFTER ALL conversions ---\n", "Year int64\n", "Savanna fires float64\n", "Forest fires float64\n", "Crop Residues float64\n", "Rice Cultivation float64\n", " ... \n", "Area_Western Sahara float64\n", "Area_Yemen float64\n", "Area_Yugoslav SFR float64\n", "Area_Zambia float64\n", "Area_Zimbabwe float64\n", "Length: 265, dtype: object\n" ] } ] }, { "cell_type": "code", "source": [ "# --- Prepare features and target ---\n", "feature_cols = [col for col in df_encoded.columns if col != 'total_emission']\n", "X = df_encoded[feature_cols].copy()\n", "y = df_encoded['total_emission'].values.reshape(-1, 1)" ], "metadata": { "id": "fa6AD_5hmKLY" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "print(\"\\n--- Dtypes of X DataFrame (before scaling and to_numpy) ---\")\n", "print(X.dtypes)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "TLwGPIW6mNnR", "outputId": "99f2350d-613b-4fed-8bad-38fc9bca2c40" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", "--- Dtypes of X DataFrame (before scaling and to_numpy) ---\n", "Year int64\n", "Savanna fires float64\n", "Forest fires float64\n", "Crop Residues float64\n", "Rice Cultivation float64\n", " ... \n", "Area_Western Sahara float64\n", "Area_Yemen float64\n", "Area_Yugoslav SFR float64\n", "Area_Zambia float64\n", "Area_Zimbabwe float64\n", "Length: 264, dtype: object\n" ] } ] }, { "cell_type": "code", "source": [ "# Normalize numeric features only\n", "num_idx = [X.columns.get_loc(col) for col in numeric_cols if col in X.columns and col != 'total_emission']\n", "scaler_X = StandardScaler()\n", "X_scaled = X.values.copy()\n", "X_scaled[:, num_idx] = scaler_X.fit_transform(X_scaled[:, num_idx])" ], "metadata": { "id": "HEcq4JDNmP0W" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Prepare features and target\n", "feature_cols = [col for col in df_encoded.columns if col != 'total_emission']\n", "X = df_encoded[feature_cols].copy()\n", "y = df_encoded['total_emission'].values.reshape(-1, 1)" ], "metadata": { "id": "wHLlvBqViCHl" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Normalize target\n", "scaler_y = StandardScaler()\n", "y_scaled = scaler_y.fit_transform(y)" ], "metadata": { "id": "fzpglxaRmU_q" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Split dataset\n", "X_train, X_test, y_train, y_test = train_test_split(\n", " X_scaled, y_scaled, test_size=0.2, random_state=42, shuffle=True\n", ")" ], "metadata": { "id": "hOXqQZp_mYYK" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# --- Final check of NumPy array dtypes ---\n", "print(\"\\n--- Final NumPy Array dtypes for model input ---\")\n", "print(\"X_train dtype:\", X_train.dtype)\n", "print(\"y_train dtype:\", y_train.dtype)\n", "print(\"X_train shape:\", X_train.shape)\n", "print(\"y_train shape:\", y_train.shape)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "8me0b6Xpma6y", "outputId": "c70c0b2c-f7c8-4225-bdde-daa3a68bfa13" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", "--- Final NumPy Array dtypes for model input ---\n", "X_train dtype: float64\n", "y_train dtype: float64\n", "X_train shape: (5572, 264)\n", "y_train shape: (5572, 1)\n" ] } ] }, { "cell_type": "code", "source": [ "# --- Build and compile model ---\n", "tf.random.set_seed(42)\n", "model = Sequential([\n", " Dense(64, activation='relu', input_shape=(X_train.shape[1],)),\n", " Dropout(0.2),\n", " Dense(32, activation='relu'),\n", " Dropout(0.2),\n", " Dense(1, activation='linear')\n", "])\n", "\n", "model.compile(optimizer='adam', loss='mse', metrics=['mae'])\n", "model.summary()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 289 }, "id": "kc-NuBSOiJJu", "outputId": "2094f255-74b6-436d-c9f3-73c3af4f015c" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1mModel: \"sequential_2\"\u001b[0m\n" ], "text/html": [ "
Model: \"sequential_2\"\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "│ dense_5 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m16,960\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout_4 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense_6 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m2,080\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout_5 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense_7 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m33\u001b[0m │\n", "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" ], "text/html": [ "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
              "│ dense_5 (Dense)                 │ (None, 64)             │        16,960 │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ dropout_4 (Dropout)             │ (None, 64)             │             0 │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ dense_6 (Dense)                 │ (None, 32)             │         2,080 │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ dropout_5 (Dropout)             │ (None, 32)             │             0 │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ dense_7 (Dense)                 │ (None, 1)              │            33 │\n",
              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m19,073\u001b[0m (74.50 KB)\n" ], "text/html": [ "
 Total params: 19,073 (74.50 KB)\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m19,073\u001b[0m (74.50 KB)\n" ], "text/html": [ "
 Trainable params: 19,073 (74.50 KB)\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ], "text/html": [ "
 Non-trainable params: 0 (0.00 B)\n",
              "
\n" ] }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "# --- Train model ---\n", "history = model.fit(\n", " X_train, y_train,\n", " validation_data=(X_test, y_test),\n", " epochs=50,\n", " batch_size=32\n", ")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Op7RcE0QiM_p", "outputId": "66d1d6ef-9ee0-475e-aeaf-1c5b4c6e604f" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Epoch 1/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 7ms/step - loss: 0.5021 - mae: 0.2308 - val_loss: 0.0861 - val_mae: 0.0912\n", "Epoch 2/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - loss: 0.1248 - mae: 0.1270 - val_loss: 0.0161 - val_mae: 0.0602\n", "Epoch 3/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - loss: 0.1008 - mae: 0.1090 - val_loss: 0.0521 - val_mae: 0.0679\n", "Epoch 4/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - loss: 0.0667 - mae: 0.0930 - val_loss: 0.0105 - val_mae: 0.0408\n", "Epoch 5/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 8ms/step - loss: 0.0931 - mae: 0.0958 - val_loss: 0.0075 - val_mae: 0.0398\n", "Epoch 6/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 5ms/step - loss: 0.0567 - mae: 0.0832 - val_loss: 0.0137 - val_mae: 0.0468\n", "Epoch 7/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - loss: 0.0890 - mae: 0.0896 - val_loss: 0.0139 - val_mae: 0.0431\n", "Epoch 8/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - loss: 0.0632 - mae: 0.0801 - val_loss: 0.0050 - val_mae: 0.0378\n", "Epoch 9/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - loss: 0.0566 - mae: 0.0787 - val_loss: 0.0099 - val_mae: 0.0416\n", "Epoch 10/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - loss: 0.0791 - mae: 0.0802 - val_loss: 0.0555 - val_mae: 0.0599\n", "Epoch 11/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - loss: 0.0482 - mae: 0.0749 - val_loss: 0.0132 - val_mae: 0.0439\n", "Epoch 12/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - loss: 0.0470 - mae: 0.0744 - val_loss: 0.0176 - val_mae: 0.0436\n", "Epoch 13/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - loss: 0.0468 - mae: 0.0716 - val_loss: 0.0124 - val_mae: 0.0383\n", "Epoch 14/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - loss: 0.0509 - mae: 0.0718 - val_loss: 0.0350 - val_mae: 0.0589\n", "Epoch 15/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - loss: 0.0290 - mae: 0.0653 - val_loss: 0.0098 - val_mae: 0.0390\n", "Epoch 16/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 8ms/step - loss: 0.0550 - mae: 0.0720 - val_loss: 0.0150 - val_mae: 0.0473\n", "Epoch 17/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 4ms/step - loss: 0.0408 - mae: 0.0682 - val_loss: 0.0180 - val_mae: 0.0381\n", "Epoch 18/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - loss: 0.0474 - mae: 0.0694 - val_loss: 0.0125 - val_mae: 0.0399\n", "Epoch 19/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - loss: 0.0384 - mae: 0.0650 - val_loss: 0.0247 - val_mae: 0.0468\n", "Epoch 20/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - loss: 0.0473 - mae: 0.0701 - val_loss: 0.0103 - val_mae: 0.0428\n", "Epoch 21/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - loss: 0.0404 - mae: 0.0637 - val_loss: 0.0053 - val_mae: 0.0327\n", "Epoch 22/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - loss: 0.0477 - mae: 0.0683 - val_loss: 0.0353 - val_mae: 0.0472\n", "Epoch 23/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - loss: 0.0383 - mae: 0.0641 - val_loss: 0.0073 - val_mae: 0.0353\n", "Epoch 24/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - loss: 0.0297 - mae: 0.0613 - val_loss: 0.0071 - val_mae: 0.0326\n", "Epoch 25/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - loss: 0.0378 - mae: 0.0664 - val_loss: 0.0102 - val_mae: 0.0407\n", "Epoch 26/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - loss: 0.0455 - mae: 0.0678 - val_loss: 0.0091 - val_mae: 0.0346\n", "Epoch 27/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 8ms/step - loss: 0.0403 - mae: 0.0646 - val_loss: 0.0084 - val_mae: 0.0278\n", "Epoch 28/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 6ms/step - loss: 0.0354 - mae: 0.0620 - val_loss: 0.0074 - val_mae: 0.0298\n", "Epoch 29/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - loss: 0.0581 - mae: 0.0713 - val_loss: 0.0157 - val_mae: 0.0419\n", "Epoch 30/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - loss: 0.0460 - mae: 0.0696 - val_loss: 0.0042 - val_mae: 0.0276\n", "Epoch 31/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - loss: 0.0424 - mae: 0.0661 - val_loss: 0.0066 - val_mae: 0.0256\n", "Epoch 32/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - loss: 0.0496 - mae: 0.0663 - val_loss: 0.0126 - val_mae: 0.0393\n", "Epoch 33/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - loss: 0.0296 - mae: 0.0625 - val_loss: 0.0059 - val_mae: 0.0291\n", "Epoch 34/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - loss: 0.0508 - mae: 0.0679 - val_loss: 0.0293 - val_mae: 0.0472\n", "Epoch 35/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - loss: 0.0545 - mae: 0.0653 - val_loss: 0.0084 - val_mae: 0.0326\n", "Epoch 36/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - loss: 0.0319 - mae: 0.0614 - val_loss: 0.0130 - val_mae: 0.0298\n", "Epoch 37/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - loss: 0.0592 - mae: 0.0708 - val_loss: 0.0038 - val_mae: 0.0215\n", "Epoch 38/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - loss: 0.0341 - mae: 0.0631 - val_loss: 0.0211 - val_mae: 0.0329\n", "Epoch 39/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 8ms/step - loss: 0.0551 - mae: 0.0661 - val_loss: 0.0032 - val_mae: 0.0225\n", "Epoch 40/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - loss: 0.0388 - mae: 0.0651 - val_loss: 0.0108 - val_mae: 0.0282\n", "Epoch 41/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - loss: 0.0311 - mae: 0.0619 - val_loss: 0.0078 - val_mae: 0.0265\n", "Epoch 42/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - loss: 0.0423 - mae: 0.0650 - val_loss: 0.0076 - val_mae: 0.0269\n", "Epoch 43/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - loss: 0.0474 - mae: 0.0633 - val_loss: 0.0079 - val_mae: 0.0250\n", "Epoch 44/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - loss: 0.0362 - mae: 0.0656 - val_loss: 0.0039 - val_mae: 0.0212\n", "Epoch 45/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - loss: 0.0329 - mae: 0.0647 - val_loss: 0.0035 - val_mae: 0.0230\n", "Epoch 46/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - loss: 0.0453 - mae: 0.0671 - val_loss: 0.0028 - val_mae: 0.0236\n", "Epoch 47/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - loss: 0.0344 - mae: 0.0665 - val_loss: 0.0120 - val_mae: 0.0299\n", "Epoch 48/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - loss: 0.0275 - mae: 0.0610 - val_loss: 0.0043 - val_mae: 0.0230\n", "Epoch 49/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - loss: 0.0344 - mae: 0.0622 - val_loss: 0.0194 - val_mae: 0.0384\n", "Epoch 50/50\n", "\u001b[1m175/175\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 5ms/step - loss: 0.0464 - mae: 0.0662 - val_loss: 0.0030 - val_mae: 0.0246\n" ] } ] }, { "cell_type": "code", "source": [ "y_pred_scaled = model.predict(X_test)\n", "y_pred_orig = scaler_y.inverse_transform(y_pred_scaled).flatten()\n", "y_test_orig = scaler_y.inverse_transform(y_test).flatten()\n", "mae_orig = mean_absolute_error(y_test_orig, y_pred_orig)\n", "print(f\"\\n✅ Test MAE (original scale): {mae_orig:.4f}\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "aMjfyQDAiPIG", "outputId": "b5115d5c-4cf2-4a4f-8468-418458bfea53" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\u001b[1m44/44\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 8ms/step\n", "\n", "✅ Test MAE (original scale): 5609.6419\n" ] } ] }, { "cell_type": "code", "source": [ "print(\"Original total_emission min:\", df['total_emission'].min())\n", "print(\"Original total_emission max:\", df['total_emission'].max())\n", "print(\"Original total_emission mean:\", df['total_emission'].mean())" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "lGmdb6OJiShp", "outputId": "182ed2e8-152e-4ce8-cad8-3ad902c76b4c" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Original total_emission min: -391884.0563\n", "Original total_emission max: 3115113.7483999995\n", "Original total_emission mean: 64091.24414739476\n" ] } ] }, { "cell_type": "markdown", "source": [ "- An average absolute error of 5609.6419 is quite small relative to the mean value of total_emission (around 8.75% of the mean) and exceptionally small relative to the overall range (0.16% of the range).\n", "- This indicates that, on average, your model's predictions are quite close to the actual total_emission values, even though these values can fluctuate significantly." ], "metadata": { "id": "_eh70zyInquv" } }, { "cell_type": "code", "source": [ "# 1. Make predictions on the test set\n", "y_pred_scaled = model.predict(X_test)\n", "\n", "# 2. Inverse transform predictions and actual values back to original scale\n", "# y_test and y_pred_scaled are 2D arrays because of reshape(-1,1) in scaling.\n", "y_test_original_scale = scaler_y.inverse_transform(y_test)\n", "y_pred_original_scale = scaler_y.inverse_transform(y_pred_scaled)\n", "\n", "# Flatten arrays for easier plotting if they are 2D with a single column\n", "y_test_original_scale = y_test_original_scale.flatten()\n", "y_pred_original_scale = y_pred_original_scale.flatten()\n", "\n", "# 3. Calculate residuals\n", "residuals = y_test_original_scale - y_pred_original_scale\n", "\n", "print(f\"Shape of y_test_original_scale: {y_test_original_scale.shape}\")\n", "print(f\"Shape of y_pred_original_scale: {y_pred_original_scale.shape}\")\n", "print(f\"Shape of residuals: {residuals.shape}\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "wnAa_HzMjSTw", "outputId": "c00b0cbe-b843-4b35-9be3-3512f5f1bbb5" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\u001b[1m44/44\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n", "Shape of y_test_original_scale: (1393,)\n", "Shape of y_pred_original_scale: (1393,)\n", "Shape of residuals: (1393,)\n" ] } ] }, { "cell_type": "code", "source": [ "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "\n", "# --- Graph 1: Predicted vs. Actual Values Plot ---\n", "plt.figure(figsize=(10, 8))\n", "sns.scatterplot(x=y_test_original_scale, y=y_pred_original_scale, alpha=0.6)\n", "plt.plot([min(y_test_original_scale), max(y_test_original_scale)],\n", " [min(y_test_original_scale), max(y_test_original_scale)],\n", " color='red', linestyle='--', label='Perfect Prediction (y=x)')\n", "plt.title('Actual vs. Predicted Total Emission (Original Scale)')\n", "plt.xlabel('Actual Total Emission')\n", "plt.ylabel('Predicted Total Emission')\n", "plt.grid(True, linestyle='--', alpha=0.7)\n", "plt.legend()\n", "plt.tight_layout()\n", "plt.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 807 }, "id": "-HgIg5G1n8zW", "outputId": "a1125a56-e32f-4505-f405-053b5ddaa1ff" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAA94AAAMWCAYAAAAH1l7yAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA+JFJREFUeJzs3Xd8E4X7B/BPku7dQltGKLRllG1Zyl4i4AJBQNQfGxeoOMAt4KCA4lZAQYaCbBAREQd8FQWkUHbZBSwFWkYXnUnu98fZcLl0pSS9XPJ5v168JJdL8lzzafDJ3T2nEQRBABERERERERE5hFbpAoiIiIiIiIhcGRtvIiIiIiIiIgdi401ERERERETkQGy8iYiIiIiIiByIjTcRERERERGRA7HxJiIiIiIiInIgNt5EREREREREDsTGm4iIiIiIiMiB2HgTERERERERORAbbyIiJ6TRaDBt2jSly3BK06ZNg0ajsVjWoEEDjBo1SpmCSlFajc7MGet11O+A0lmZPXs24uLiYDKZHPL8Z8+ehUajweLFi6v0+Or47OnRowd69Ojh0Neoqlv5+W3ZsgUBAQHIyMiwf2FEpHpsvInI5X3xxRfQaDS4/fbbq/wcaWlpmDZtGvbv32+/wlRKo9GY/2i1WtSpUwd33XUXtm/frnRpNlHyPd2+fbvFz7G8PxWpzu0YNWpUmXX6+Pg4/PXVLjs7G7NmzcJLL70Erdbyf8Fu3LiBt99+G61atYKfnx+Cg4PRtWtXLF26FIIgKFSxsoqKivDxxx8jPj4eQUFBCAkJQfPmzfHYY4/h2LFjSpdnpV+/fmjYsCESEhKULoWInJCH0gUQETnasmXL0KBBA/zzzz84deoUGjZsaPNzpKWlYfr06WjQoAFuu+02+xepMn369MGIESMgCAJSUlLwxRdfoFevXvjxxx/Rv3//aq/n+PHjVo1MRZR8T5s2bYpvvvnGYtkrr7yCgIAAvPbaazY9V3Vvh7e3NxYsWGC1XKfT2fV18vPz4eFh//9NqUpW7OXrr7+GwWDA8OHDLZZfvnwZvXv3RnJyMh566CFMnDgRBQUFWLt2LUaOHInNmzdj2bJllfoZ169fH/n5+fD09KxSjY76uVfF4MGD8dNPP2H48OEYP348iouLcezYMWzatAmdOnVCXFyc0iVaefzxx/Hiiy9i+vTpCAwMVLocInIizvHJSkTkICkpKfj777+xbt06PP7441i2bBmmTp2qdFmq17hxYzz66KPm2w888ABatWqFjz76qMzGu6CgAF5eXg5pery9ve3+nI4UGRlp8fMDgJkzZ6JmzZpWy52Nh4dHtdToqD3oSmZl0aJFuP/++622beTIkUhOTsb69etx//33m5c/88wzmDx5Mt5//33Ex8fjpZdeKvO5DQYDTCYTvLy8buln5yxHLuzZswebNm3Cu+++i1dffdXivs8++wyZmZnKFFaBwYMH4+mnn8bq1asxZswYpcshIifCQ82JyKUtW7YMoaGhuOeee/Dggw9i2bJlpa6XmZmJ5557Dg0aNIC3tzf0ej1GjBiBK1euYPv27Wjfvj0AYPTo0eZDa0vOASzrnFH5eYxFRUV488030bZtWwQHB8Pf3x9du3bFtm3bbN6uy5cvw8PDA9OnT7e67/jx49BoNPjss88AAMXFxZg+fToaNWoEHx8f1KhRA126dMEvv/xi8+uWpWXLlqhZsyZSUlIA3DyUesWKFXj99ddRt25d+Pn5ITs7GwCwe/du9OvXD8HBwfDz80P37t3x119/WT3vjh070L59e/j4+CA2Nhbz588v9fVLew9u5T11RI1VcebMGQwZMgRhYWHw8/PDHXfcgR9//NF8f0Xb8eeff2LIkCGIioqCt7c36tWrh+eeew75+fl2q7E0ixcvhkajwY4dO/DMM88gPDwcISEhePzxx1FUVITMzEyMGDECoaGhCA0NxZQpU6wOp5afa5yTk4NJkyaZ38+IiAj06dMH+/btM69z8uRJDB48GLVq1YKPjw/0ej0eeughZGVlmdcpLSsV/ZyBm5letWoV3n33Xej1evj4+KB37944depUhT+TlJQUHDx4EHfeeafF8l27duHnn3/GqFGjLJruEgkJCWjUqBFmzZplft9KzkN+//338dFHHyE2Nhbe3t44evRomecor169Gs2aNYOPjw9atGiB9evXY9SoUWjQoIHFevKfe8n5/6dOncKoUaMQEhKC4OBgjB49Gnl5eRaPXbRoEXr16oWIiAh4e3ujWbNmmDt3boU/m9KcPn0aANC5c2er+3Q6HWrUqGGx7MKFCxg7dizq1KkDb29vREdH48knn0RRUREA4Nq1a3jxxRfRsmVLBAQEICgoCP3798eBAwcqVc+xY8fw4IMPIiwsDD4+PmjXrh02btxotV5ERARatWqF77//3tZNJiIXxz3eROTSli1bhkGDBsHLywvDhw/H3LlzsWfPHnOzAgC5ubno2rUrkpOTMWbMGLRp0wZXrlzBxo0bkZqaiqZNm+Ktt97Cm2++icceewxdu3YFAHTq1MmmWrKzs7FgwQLzYZM5OTlYuHAh+vbti3/++cemw4QjIyPRvXt3rFq1ymoP/sqVK6HT6TBkyBAA4v84JyQkYNy4cejQoQOys7ORmJiIffv2oU+fPjZtQ1muX7+O69evWx3G//bbb8PLywsvvvgiCgsL4eXlhd9//x39+/dH27ZtMXXqVGi1WvP/sP/555/o0KEDAODQoUO46667EB4ejmnTpsFgMGDq1KmIjIyssJ5bfU+ro8aKXL58GZ06dUJeXh6eeeYZ1KhRA0uWLMH999+PNWvW4IEHHqhwO1avXo28vDw8+eSTqFGjBv755x98+umnSE1NxerVq6tc25UrV6yWeXl5ISgoyGLZ008/jVq1amH69OnYtWsXvvzyS4SEhODvv/9GVFQUZsyYgc2bN+O9995DixYtMGLEiDJf84knnsCaNWswceJENGvWDFevXsWOHTuQnJyMNm3aoKioCH379kVhYaH5dS9cuIBNmzYhMzMTwcHBpT5vZX7OUjNnzoRWq8WLL76IrKwszJ49G4888gh2795d7s/s77//BgC0adPGYvkPP/wAAGVuu4eHBx5++GFMnz4df/31l0XjvmjRIhQUFOCxxx6Dt7c3wsLCSh3a9uOPP2LYsGFo2bIlEhIScP36dYwdOxZ169Ytt2apoUOHIjo6GgkJCdi3bx8WLFiAiIgIzJo1y7zO3Llz0bx5c9x///3w8PDADz/8gKeeegomkwkTJkyo9GsB4iHzgPgZ3rlz53IPf09LS0OHDh2QmZmJxx57DHFxcbhw4QLWrFmDvLw8eHl54cyZM9iwYQOGDBmC6OhoXL58GfPnz0f37t1x9OhR1KlTp8znP3LkCDp37oy6devi5Zdfhr+/P1atWoWBAwdi7dq1Vhlp27YtNmzYYNP2EpEbEIiIXFRiYqIAQPjll18EQRAEk8kk6PV64dlnn7VY78033xQACOvWrbN6DpPJJAiCIOzZs0cAICxatMhqnfr16wsjR460Wt69e3ehe/fu5tsGg0EoLCy0WOf69etCZGSkMGbMGIvlAISpU6eWu33z588XAAiHDh2yWN6sWTOhV69e5tutW7cW7rnnnnKfyxYAhLFjxwoZGRlCenq6sHv3bqF3794CAGHOnDmCIAjCtm3bBABCTEyMkJeXZ36syWQSGjVqJPTt29f8sxUEQcjLyxOio6OFPn36mJcNHDhQ8PHxEc6dO2dedvToUUGn0wnyf77k78GtvKeOqrEizZs3t8jLpEmTBADCn3/+aV6Wk5MjREdHCw0aNBCMRmO521FSs1xCQoKg0Wgsap46dWql6h05cqQAoNQ/ffv2Na+3aNEi8zLpz7Bjx46CRqMRnnjiCfMyg8Eg6PV6i20XBOvfgeDgYGHChAll1paUlCQAEFavXl3uNsizUtmfc0mmmzZtavF7/PHHH5f6eyj3+uuvCwCEnJwci+UDBw4UAAjXr18v87Hr1q0TAAiffPKJIAiCkJKSIgAQgoKChPT0dIt1S+6T5qFly5aCXq+3eO3t27cLAIT69etbPF7+cy/Jhvwz6oEHHhBq1Khhsay0vPXt21eIiYmxWCb/bCyNyWQSunfvLgAQIiMjheHDhwuff/65RW5LjBgxQtBqtcKePXtKfR5BEISCggLze1kiJSVF8Pb2Ft566y2LZfKfX+/evYWWLVsKBQUFFs/bqVMnoVGjRlavOWPGDAGAcPny5XK3kYjcCw81JyKXtWzZMkRGRqJnz54AxEMohw0bhhUrVsBoNJrXW7t2LVq3bm2116LkMfai0+ng5eUFADCZTLh27RoMBgPatWtncbhsZQ0aNAgeHh5YuXKlednhw4dx9OhRDBs2zLwsJCQER44cwcmTJ299I/6zcOFChIeHIyIiArfffjv++usvPP/885g0aZLFeiNHjoSvr6/59v79+3Hy5Ek8/PDDuHr1Kq5cuYIrV67gxo0b6N27N/744w+YTCYYjUb8/PPPGDhwIKKiosyPb9q0Kfr27VthfbfynlZXjRXZvHkzOnTogC5dupiXBQQE4LHHHsPZs2dx9OjRCp9D+rO/ceMGrly5gk6dOkEQBCQlJVWpLh8fH/zyyy9Wf2bOnGm17tixYy1+3rfffjsEQcDYsWPNy3Q6Hdq1a4czZ86U+7ohISHYvXs30tLSSr2/ZI/2zz//bHUIdHls/TmPHj3a/HsMwHyUQUX1X716FR4eHggICLBYnpOTAwDlDuIqua/kVI0SgwcPRnh4eLmvm5aWhkOHDmHEiBEWr929e3e0bNmy3MdKPfHEExa3u3btiqtXr1rUJM1bVlYWrly5gu7du+PMmTMWh/tXhkajwc8//4x33nkHoaGh+O677zBhwgTUr18fw4YNM5/jbTKZsGHDBtx3331o165dqc8DiOf2l8yXMBqNuHr1KgICAtCkSZNyP3+vXbuG33//HUOHDkVOTo758+Dq1avo27cvTp48iQsXLlg8JjQ0FEDpR4YQkfty68b7jz/+wH333Yc6depAo9FU6bAgQRDw/vvvo3HjxvD29kbdunXx7rvv2r9YIrKJ0WjEihUr0LNnT6SkpODUqVM4deoUbr/9dly+fBm//fabed3Tp0+jRYsW1VLXkiVL0KpVK/O51uHh4fjxxx9t/p9SAKhZsyZ69+6NVatWmZetXLkSHh4eGDRokHnZW2+9hczMTDRu3BgtW7bE5MmTcfDgwVvajgEDBuCXX37Br7/+it27d+PKlSuYM2eO1eC06Ohoi9slzf/IkSMRHh5u8WfBggUoLCxEVlYWMjIykJ+fj0aNGlm9dpMmTSqs71be0+qqsSLnzp0r9XmaNm1qvr8i58+fx6hRoxAWFoaAgACEh4eje/fuAFClzAFio3znnXda/SntVAnpFxLAzea4Xr16VsuvX79e7uvOnj0bhw8fRr169dChQwdMmzbNotmNjo7G888/jwULFqBmzZro27cvPv/88wq309afs3ybSpqsiuovS0lTXdKAl6as5lz++1WakvpLu5qDLVd4qMx2lxwK7+/vj5CQEISHh5sHo1Ulb97e3njttdeQnJyMtLQ0fPfdd7jjjjuwatUqTJw4EQCQkZGB7OzsCn/fTSYTPvzwQzRq1Aje3t6oWbMmwsPDcfDgwXJrO3XqFARBwBtvvGH1eVBymk96errFY4T/5hXY84tbIlI/tz7H+8aNG2jdujXGjBlj8T+ptnj22WexdetWvP/++2jZsiWuXbuGa9eu2blSIrLV77//josXL2LFihVYsWKF1f3Lli3DXXfdZZfXKut/roxGo8Xlf7799luMGjUKAwcOxOTJkxEREQGdToeEhATzICFbPfTQQxg9ejT279+P2267DatWrULv3r1Rs2ZN8zrdunXD6dOn8f3332Pr1q1YsGABPvzwQ8ybNw/jxo2r0uvq9XqrIVGlke4BA2A+//S9994r85z2gIAAFBYWVqkue1BDjZVhNBrRp08fXLt2DS+99BLi4uLg7++PCxcuYNSoUaWeC2xvZV3+qrTlQgXXqh46dCi6du2K9evXY+vWrXjvvfcwa9YsrFu3zjxJf86cORg1apQ568888wwSEhKwa9cu6PX6W9+gMmqvTP01atSAwWBATk6ORQPdtGlTbNiwAQcPHkS3bt1KfWzJF2XNmjWzWC7//XKkirb79OnT6N27N+Li4vDBBx+gXr168PLywubNm/Hhhx/ect5q166Nhx56CIMHD0bz5s2xatUqqwFy5ZkxYwbeeOMNjBkzBm+//TbCwsKg1WoxadKkcmsrue/FF18s80gW+RcYJV9GSD+HiYjcuvHu379/udebLSwsxGuvvYbvvvsOmZmZaNGiBWbNmmWeUpycnIy5c+fi8OHD5m/LK/PtMxE53rJlyxAREYHPP//c6r5169Zh/fr1mDdvHnx9fREbG4vDhw+X+3zl7bkIDQ0t9dI2586dQ0xMjPn2mjVrEBMTg3Xr1lk8361c3mzgwIF4/PHHzYebnzhxAq+88orVemFhYRg9ejRGjx6N3NxcdOvWDdOmTaty411VsbGxAICgoKByG/fw8HD4+vqWenj88ePHK/U6VX1Pq6vGitSvX7/U5zl27Jj5fqDs7Th06BBOnDiBJUuWWAzusuc0++pWu3ZtPPXUU3jqqaeQnp6ONm3a4N1337X4t7xly5Zo2bIlXn/9dfz999/o3Lkz5s2bh3feeafU56zsz/lWlVxzOiUlBa1atTIvv/fee5GQkIClS5eW2ngbjUYsX74coaGhpU74rkhJ/aVNXq/MNPbK+uGHH1BYWIiNGzda7B2vylUbyuPp6YlWrVrh5MmTuHLlCiIiIhAUFFTh7/uaNWvQs2dPLFy40GJ5ZmZmuQ1yyWe4p6dnpb5sBMT3uGSPOhFRCbc+1LwiEydOxM6dO7FixQocPHgQQ4YMQb9+/cz/k/XDDz8gJiYGmzZtQnR0NBo0aIBx48ZxjzeRwvLz87Fu3Trce++9ePDBB63+TJw4ETk5OeZLwQwePBgHDhzA+vXrrZ6rZG+Ov78/AJTaYMfGxmLXrl3my9YAwKZNm/Dvv/9arFeyx0i6Z2z37t3YuXNnlbc1JCQEffv2xapVq7BixQp4eXlh4MCBFutcvXrV4nZAQAAaNmxoscc2KysLx44dq/Lhx5XVtm1bxMbG4v3330dubq7V/RkZGQDEn1Xfvn2xYcMGnD9/3nx/cnIyfv755wpf51be0+qqsSJ33303/vnnH4t83LhxA19++SUaNGhg3vtZ1naUljdBEPDxxx/fcm3VzWg0WmUzIiICderUMec4OzsbBoPBYp2WLVtCq9WWe3RCZX/Ot6pjx44AgMTERIvlnTp1wp133olFixZh06ZNVo977bXXcOLECUyZMqVKe7jr1KmDFi1aYOnSpRZ5/t///odDhw7Z/HxlKS1vWVlZWLRoUZWe7+TJkxa/VyUyMzOxc+dOhIaGIjw8HFqtFgMHDsQPP/xg9bOV1qPT6ayOSli9erXV+dlyERER6NGjB+bPn4+LFy9a3V/yeSC1d+9e8/tNRFTCrfd4l+f8+fNYtGgRzp8/b77ExIsvvogtW7Zg0aJFmDFjBs6cOYNz585h9erVWLp0KYxGI5577jk8+OCD+P333xXeAiL3tXHjRuTk5JR6TVwAuOOOOxAeHo5ly5Zh2LBhmDx5MtasWYMhQ4ZgzJgxaNu2La5du4aNGzdi3rx5aN26NWJjYxESEoJ58+YhMDAQ/v7+uP322xEdHY1x48ZhzZo16NevH4YOHYrTp0/j22+/Ne85LXHvvfdi3bp1eOCBB3DPPfcgJSUF8+bNQ7NmzUpt8Cpr2LBhePTRR/HFF1+gb9++CAkJsbi/WbNm6NGjB9q2bYuwsDAkJiaaL8tUYv369Rg9ejQWLVpU6jXJ7UWr1WLBggXo378/mjdvjtGjR6Nu3bq4cOECtm3bhqCgIPPllaZPn44tW7aga9eueOqpp2AwGPDpp5+iefPmFZ6jfqvvaXXUWJGXX34Z3333Hfr3749nnnkGYWFhWLJkCVJSUrB27Vrz+fRlbUdcXBxiY2Px4osv4sKFCwgKCsLatWurfC5yCYPBgG+//bbU+x544AHzFwH2lJOTA71ejwcffBCtW7dGQEAAfv31V+zZswdz5swBIJ5eMnHiRAwZMgSNGzeGwWDAN998A51Oh8GDB5f53JX9Od+qmJgYtGjRAr/++ivGjBljcd/SpUvRu3dvDBgwAA8//DC6du2KwsJCrFu3Dtu3bzd/TlXVjBkzMGDAAHTu3BmjR4/G9evX8dlnn6FFixa39Nkjddddd8HLywv33XcfHn/8ceTm5uKrr75CREREqQ1rRQ4cOICHH34Y/fv3R9euXREWFoYLFy5gyZIlSEtLw0cffWRu9mfMmIGtW7eie/fueOyxx9C0aVNcvHgRq1evxo4dOxASEoJ7770Xb731FkaPHo1OnTrh0KFDWLZsmcVRSWX5/PPP0aVLF7Rs2RLjx49HTEwMLl++jJ07dyI1NdXiWuDp6ek4ePCgzZdPIyI3UP2D1J0TAGH9+vXm25s2bRIACP7+/hZ/PDw8hKFDhwqCIAjjx48XAAjHjx83P27v3r0CAOHYsWPVvQlE9J/77rtP8PHxEW7cuFHmOqNGjRI8PT2FK1euCIIgCFevXhUmTpwo1K1bV/Dy8hL0er0wcuRI8/2CIAjff/+90KxZM8HDw8PqcjNz5swR6tatK3h7ewudO3cWEhMTrS6ZYzKZhBkzZgj169cXvL29hfj4eGHTpk3CyJEjK7ykT3mys7MFX19fAYDw7bffWt3/zjvvCB06dBBCQkIEX19fIS4uTnj33XeFoqIi8zoll38q7ZJUcgDKvayTINy89FJZl3ZKSkoSBg0aJNSoUUPw9vYW6tevLwwdOlT47bffLNb73//+J7Rt21bw8vISYmJihHnz5pV66avSLul2q++pvWusiPxyYoIgCKdPnxYefPBBISQkRPDx8RE6dOggbNq0yeqxZW3H0aNHhTvvvFMICAgQatasKYwfP144cOCA1bba43JiAISUlBRBEG7mSX55p5LXycjIsHpef39/i2XS34HCwkJh8uTJQuvWrYXAwEDB399faN26tfDFF1+Y1z9z5owwZswYITY2VvDx8RHCwsKEnj17Cr/++qvF85aWlcr8nMvKdGmXnyrLBx98IAQEBJR62a2cnBxh2rRpQvPmzQVfX18hMDBQ6Ny5s7B48WKLS7JJX/O9996zep6y6lmxYoUQFxcneHt7Cy1atBA2btwoDB48WIiLi7NYT/7ZU9Z7VvIel7zngiAIGzduFFq1aiX4+PgIDRo0EGbNmiV8/fXXVutV5nJily9fFmbOnCl0795dqF27tuDh4SGEhoYKvXr1EtasWWO1/rlz54QRI0YI4eHhgre3txATEyNMmDDBfOm3goIC4YUXXhBq164t+Pr6Cp07dxZ27txpVUtZP7/Tp08LI0aMEGrVqiV4enoKdevWFe69916rWubOnSv4+fkJ2dnZ5W4fEbkfjSBUMA3ETWg0Gqxfv958iObKlSvxyCOP4MiRI1YDRQICAlCrVi1MnToVM2bMQHFxsfm+/Px8+Pn5YevWrejTp091bgIRERE5saysLMTExGD27NkWl1RTym233Ybw8HBVn/fvbOLj49GjRw98+OGHSpdCRE6G53iXIT4+HkajEenp6WjYsKHFn1q1agEAOnfuDIPBYDGN+MSJEwDsN4yFiIiIXENwcDCmTJmC9957r1qmypcoLi62Ov99+/btOHDggHlgLN26LVu24OTJk6UOuCQicus93rm5ueaJnvHx8fjggw/Qs2dPhIWFISoqCo8++ij++usvzJkzB/Hx8cjIyMBvv/2GVq1a4Z577oHJZEL79u0REBCAjz76CCaTCRMmTEBQUBC2bt2q8NYRERERAWfPnsWdd96JRx99FHXq1MGxY8cwb948BAcH4/Dhw6hRo4bSJRIRuTy3bry3b9+Onj17Wi0fOXIkFi9ejOLiYrzzzjtYunQpLly4gJo1a+KOO+7A9OnT0bJlSwBAWloann76aWzduhX+/v7o378/5syZg7CwsOreHCIiIiIrWVlZeOyxx/DXX38hIyMD/v7+6N27N2bOnGk1BJKIiBzDrRtvIiIiIiIiIkfjOd5EREREREREDsTGm4iIiIiIiMiBPJQuoLqZTCakpaUhMDAQGo1G6XKIiIiIiIhIhQRBQE5ODurUqQOttvx92m7XeKelpaFevXpKl0FEREREREQu4N9//4Very93HbdrvAMDAwGIP5ygoCCFq3EtBoMBSUlJiI+Ph4eH20WLSsFMkBwzQVLMA8kxEyTFPJCcs2UiOzsb9erVM/eY5VG+2mpWcnh5UFAQG287MxgM8Pf3R1BQkFP8IpDymAmSYyZIinkgOWaCpJgHknPWTFTmFGYOVyMiIiIiIiJyIDbeZDcajQbBwcEcWkdmzATJMRMkxTyQHDNBUswDyak5ExpBEASli6hO2dnZCA4ORlZWFg81JyIiIiIioiqxpbd0ngPjnYzRaERxcbHSZaiKyWRCeno6IiIiKhynT+6hJBN169aFp6en0uWQEyi5pGNlLrtBro95IDlmgqSYB5JTcybYeMsIgoBLly4hMzNT6VJURxAEFBUVIS8vT5WHf5D9STMRGhqKWrVqMRtuzmQyITU1FbVq1VLdP5hkf8wDyTETJMU8kJyaM8HGW6ak6Y6IiICfnx+bBBsIgoC8vDz+3MisJBOCICAjIwMAULt2bYWrIiIiIiKqXmy8JYxGo7nprlGjhtLlqI4gCDAajfDx8WHjTQBuZsLf3x8ajcZ8KoJOp1O6NCIiIiKiaqOu/fMOVnJOt5+fn8KVqJczXU+PnENJJkp+rzg7wb1ptVqEh4er7vAwcgzmgeSYCZJiHkhOzZlgl1QK7q2tGo1GAx8fH6XLICcizQR/rwgQ/8GMjY1VugxyEswDyTETJMU8kJyaM6G+rwrIaQmCgIKCArjZFeqoHMwEyZlMJpw+fRomk0npUsgJMA8kx0yQFPNAcmrOBBtvqtC0adMQGRkJjUaDDRs2lLuuwWConqLsbNq0abjtttvMt0eNGoWBAwfe0nPa4zkqa+HChbjrrruq5bVKM2/ePNx3332l3qfWTJBjmEwmZGRkqPIfTLI/5oHkmAmSYh5ITs2ZYOPtIkaNGgWNRgONRgMvLy80bNgQb7311i03PcnJyZg+fTrmz5+Pixcvon///rdcq7zJLW+9km3y8PBAgwYN8NxzzyE3N/eWa6jIxx9/jMWLF1dq3bNnz0Kj0WD//v1Vfo5bUVBQgDfeeANTp051+GuVZcyYMdi3bx/+/PNPxWogIiIiInJWPMfbhfTr1w+LFi1CYWEhNm/ejAkTJsDT0xOvvPKKzc9lNBqh0Whw+vRpAMCAAQMUOUe3efPm+PXXX2EwGPDXX39hzJgxyMvLw/z5863WLSoqgpeXl11eNzg42CmeozLWrFmDoKAgdO7cuVperzReXl54+OGH8cknn6Br166K1UFERERE5Iy4x9uFeHt7o1atWqhfvz6efPJJ3Hnnndi4cSMAoLCwEC+++CLq1q0Lf39/3H777di+fbv5sYsXL0ZISAg2btyIZs2awdvbG2PGjDEfPqzVai0a7wULFqBp06bw8fFBXFwcvvjiCwAwN76pqakYPnw4wsLC4O/vj3bt2mH37t1YvHgxpk+fjgMHDpj3Zpe3V9jDwwO1atWCXq/HsGHD8Mgjj5i3qWTP+YIFCxAdHW0e4pWZmYlx48YhPDwcQUFB6NWrFw4cOGDxvDNnzkRkZCQCAwMxduxYFBQUWNwvP0zcZDJh9uzZaNiwIby9vREVFYV3330XABAdHQ0AiI+Ph0ajQY8ePUp9jsLCQjzzzDOIiIiAj48PunTpgj179pjv3759OzQaDX777Te0a9cOfn5+6NSpE44fP17mzwcAVqxYYXGY9x9//AFPT09cunTJYr1JkyZVqSnOyMhArVq1MGPGDPOyv//+G15eXvjtt9/My+677z5s3LgR+fn5Fo+315ch5Bq0Wi30er0qp5GS/TEPJMdMkBTzQHJqzoT6KlbKjRtl/5E1beWuK2tKylzPDnx9fVFUVAQAmDhxInbu3IkVK1bg4MGDGDJkCPr164eTJ0+a18/Ly8OsWbOwYMECHDlyBJ988gkWLVoEALh48SIuXrwIAFi2bBnefPNNvPvuu0hOTsaMGTPwxhtvYOnSpfDy8sKNGzfQvXt3XLhwARs3bsSBAwcwZcoUmEwmDBs2DC+88AKaN29ufs5hw4ZVaZsA4NSpU1i7di3WrVtnPtR7yJAhSE9Px08//YS9e/eiTZs26N27N65duwYAWLVqFaZNm4YZM2YgMTERtWvXNn9xUJZXXnkFM2fOxBtvvIGjR49i+fLliIyMBAD8888/AIBff/0VFy9exLp160p9jilTpmDt2rVYsmQJ9u3bh4YNG6Jv377mukq89tprmDNnDhITE+Hh4YExY8aUW9uOHTvQrl078+1u3bohJiYG33zzjXlZcXExli1bZn6u8+fPIyAgoNw/JY12eHg4vv76a0ybNg2JiYnIycnB//3f/2HixIno3bu3+TXatWsHg8GA3bt3m5eVnPrAieZUQs3/YJL9MQ8kx0yQFPNAcqrOhOBmsrKyBABCVlaW1X35+fnC0aNHhfz8fOsHAmX/uftuy3X9/Mpet3t3y3Vr1ix9PRuNHDlSGDBggCAIgmAymYRffvlF8Pb2Fl588UXh3Llzgk6nEy5cuGDxmN69ewuvvPKKIAiCsGjRIgGAsH//fot11q9fL8hjEhsbKyxfvtxi2dtvvy107NhRyMvLE+bNmycEBgYKV69eLbXWqVOnCq1bt65wm+TrJSYmCjVr1hQefPBB8/2enp5Cenq6eZ0///xTCAoKEgoKCqxqnj9/viAIgtCxY0fhqaeesrj/9ttvt3gt6c8zOztb8Pb2Fr766qtS60xJSREACElJSRbLpc+Rm5sreHp6CsuWLTPfX1RUJNSpU0eYPXu2IAiCsG3bNgGA8Ouvv5rX+fHHHwUApWdSEITr168LAIQ//vjDYvmsWbOEpk2bmm+vXbtWCAgIEHJzcwVBEITi4mLh5MmT5f6Rv39PPfWU0LhxY+Hhhx8WWrZsafUzFgRBCA0NFRYvXmy+bTKZhLy8PMFkMpX/+0Vuw2AwCEePHhUMBoPSpZATYB5IjpkgKeaB5JwtE+X1lnI8x9uFbNq0CQEBASguLobJZMLDDz+MadOmYfv27TAajWjcuLHF+oWFhahRo4b5tpeXF1q1alXua9y4cQOnT5/G2LFjMX78ePNyg8GA4OBgGI1G7N+/H/Hx8QgLC7vlbTp06BACAgJgNBpRVFSEe+65B5999pn5/vr16yM8PNx8+8CBA8jNzbXYLgDIz883n6+enJyMJ554wuL+jh07Ytu2baXWkJycjMLCQou9u7Y6ffo0iouLLc7D9vT0RIcOHZCcnGyxrvQ9qF27NgAgPT0dUVFRVs9bcli3/Prpo0aNwuuvv45du3bhjjvuwOLFizF06FD4+/sDEA/hb9iwoU3b8P7776NFixZYvXo19u7dC29vb6t1fH19kZeXZ7HMaDTa9Drk2gRBQFZWFi8xRwCYB7LGTJAU80Byas4EG+/KKm+Stk5neTs9vex15YdFnD1b5ZLkevbsiblz58LLywt16tSBh4f49ubm5kKn02Hv3r3QyWoNCAgw/93X17fCQ4JLJop/9dVXuP322y3uKznkw9fX95a3pUSTJk2wceNGeHh4oE6dOlbnC5c0ktL6ateubXH+eomQkJAq1WDP7akMT09P899L3o+yLplQo0YNaDQaXL9+3WJ5REQE7rvvPixatAjR0dH46aefLH4m58+fR7Nmzcqt49VXX8Wrr75qvn369GmkpaXBZDLh7NmzaNmypdVjrl27ZvFFCBERERERsfGuPFmDp8i6FT6Vf6l7MePj42E0GpGenn7LE6cjIyNRp04dnDlzBo888ojFfYIg4MaNG2jVqhUWLlyIa9eulbrX28vLq9J7QUsujVZZbdq0waVLl8yXHytN06ZNsXv3bowYMcK8bNeuXWU+Z6NGjeDr64vffvsN48aNK7VGoPw9u7GxsfDy8sJff/2F+vXrAxDPu96zZw8mTZpUiS0rnZeXF5o1a4ajR49aXcd73LhxGD58OPR6PWJjYy32ttepU8fq8mdy0veuqKgIjz76KIYNG4YmTZpg3LhxOHToECIiIszrnD59GgUFBYiPj6/y9hARERERuSI23m6gcePGeOSRRzBixAjMmTMH8fHxyMjIwG+//YZWrVrhnnvusen5pk+fjmeeeQbBwcHo168fCgsLkZiYiGvXruGZZ57B8OHDkZCQgIEDByIhIQG1a9dGUlIS6tSpg44dO6JBgwZISUnB/v37odfrERgYWOphy1Vx5513omPHjhg4cCBmz56Nxo0bIy0tDT/++CMeeOABtGvXDs8++yxGjRqFdu3aoXPnzli2bBmOHDmCmJiYUp/Tx8cHL730EqZMmQIvLy907twZGRkZOHLkCMaOHYuIiAj4+vpiy5Yt0Ov18PHxsbqUmL+/P5588klMnjwZYWFhiIqKwuzZs5GXl4exY8fe0jb37dsXO3bssGrg+/bti6CgILzzzjt46623LO6z9VDz1157DVlZWfjkk08QEBCAzZs3Y8yYMdi0aZN5nT///BMxMTGIjY21eKy93ltyDVqtFjExMeocikJ2xzyQHDNBUswDyak5E+qrmKpk0aJFGDFiBF544QU0adIEAwcOxJ49e0o9b7gi48aNw4IFC7Bo0SK0bNkS3bt3x+LFixETEwNPT094e3tj69atiIiIwN13342WLVti5syZ5sPcBw8ejH79+qFnz54IDw/Hd999Z7ft1Gg02Lx5M7p164bRo0ejcePGeOihh3Du3DnzFPJhw4bhjTfewJQpU9C2bVucO3cOTz75ZLnP+8Ybb+CFF17Am2++iaZNm2LYsGFI/++UAg8PD3zyySeYP38+6tSpgwEDBpT6HDNnzsTgwYPxf//3f2jTpg1OnTqFn3/+GaGhobe0zWPHjsXmzZuRlZVlsVyr1WLUqFEwGo0We/dttX37dnz00Uf45ptvEBQUBK1Wi2+++QZ//vkn5s6da17vu+++szjvHxDfD09PT041JzOtVouIiAhV/oNJ9sc8kBwzQVLMA8mpORMaQcEz0+fOnYu5c+fi7H/nOTdv3hxvvvkm+vfvX+ZjVq9ejTfeeANnz55Fo0aNMGvWLNx9992Vfs3s7GwEBwcjKysLQUFBFvcVFBQgJSXF4prQVHmCICA/P79S54qTfQ0ZMgRt2rTBK6+8YrF87NixyMjIMF/73FGOHDmCXr164cSJExZ7+6WZKCws5O8XwWg04vDhw2jRooXVzAlyP8wDyTETJMU8kJyzZaK83lJO0a8K9Ho9Zs6cib179yIxMRG9evXCgAEDcOTIkVLX//vvvzF8+HCMHTsWSUlJGDhwIAYOHIjDhw9Xc+VUlrKGgJFjvffeexaD8rKysrBjxw4sX74cTz/9tMNf/+LFi1i6dKnVIfYAM0GWSr6MUeM0UrI/5oHkmAmSYh5ITs2ZUPQc7/vuu8/i9rvvvou5c+di165daN68udX6H3/8Mfr164fJkycDAN5++2388ssv+OyzzzBv3rxqqZnIGTVo0MCiwR4wYAD++ecfPPHEE+jTp4/DX//OO+90+GsQEREREamV0wxXMxqNWL16NW7cuIGOHTuWus7OnTvx/PPPWyzr27cvNmzYUObzFhYWorCw0Hw7OzsbgHjdaYPBAEA8V0Cr1cJkMkEQBPMfQDxHtbRvVGxdbgt7vaajl8uVrONMNbrr+yS9Jrkt22nvWqSZKPm70Wg0/+4BN3//jEajxXPpdDpoNBqLdUuWlzxPZZZ7eHhAEASL5RqNBjqdDiaTyWKPfFnLpZ8RpS2X185tKrv2kiy40ja54vtUXdtUUqfRaHSZbXLF94mfEXyf+BnB98lZtsnZPiNsoXjjfejQIXTs2BEFBQUICAjA+vXry7y+8KVLl8wDskpERkbi0qVLZT5/QkICpk+fbrU8KSnJfA3o8PBwxMbGIjU1FUVFRcjLy4PRaISXlxe8vLxQUFBg8SZ6e3vD09MT+fn5Fm+Kj48PPDw8kJeXZ/Gm+Pr6QqvV4saNGxY1+Pv7w2QyIT8/37xMo9HA398fRqMRBQUF5uVarRZ+fn4wGAwWXyTodDr4+vqiuLgYRUVF5uUeHh7w8fFBYWGhRZAdvU0+Pj4QBAF5eXkus02u+D5V5zaV5KGk3rNnzyInJ8e8fkxMDCIiInD48GGLeuLi4hASEoKkpCSLn0GrVq3g5eWFxMREi21q164dioqKcPDgQYsa27dvj6ysLBw7dszi59K6dWtcuXIFZ86cMS8PDg5G06ZNkZaWhtTUVPPyks+IlJQUZGRkmJfr9Xro9XqcOHHCYrgdt6nsbWrbti2io6ORlJTkMtvkiu9TdW6TwWBAUlKSS22TK75P1bVN/IzgNvEzgttU3jY522eELXOLFB2uBojXBz5//jyysrKwZs0aLFiwAP/73/9Kbb69vLywZMkSDB8+3Lzsiy++wPTp03H58uVSn7+0Pd716tXD1atXzSfAl3yLkZeXh7Nnz1oMf+KeVG5TWZytdmffpoKCApw9exZRUVEWlxjjt7rcJm4Tt4nbxG3iNnGbuE3cJjVuU25ubqWHqym+x9vLy8t8PeG2bdtiz549+PjjjzF//nyrdWvVqmXVYF++fBm1atUq8/m9vb1LvY6wh4cHPDwsN1+r1ZobBo3m5lRu6d+lbF1uC3u9pqOXS5Xs2fTz8yt1fWer3V3fp4rYsxZpJko+qHQ6ndXvXsny0pS2rq3LNRpNqctLPkhvdXlZtXObrJeX7LmIj4+3uk+t21Tecm5T+ctNJpM5DyXrqH2bXPF94mcE3yd+RvB9cpZtcsbPiMpSvPGWM5lMFnuopTp27IjffvsNkyZNMi/75Zdfyjwn3FZeXl7QarVIS0tDeHg4vLy87NLIuAtBEFBQUGD+AoOoJBMGgwEZGRnQarXw8vJSuixSmPxbanJvzAPJMRMkxTy4IUEA/vwT6Nat1LvVmglFG+9XXnkF/fv3R1RUFHJycrB8+XJs374dP//8MwBgxIgRqFu3LhISEgAAzz77LLp37445c+bgnnvuwYoVK5CYmIgvv/zSLvVotVpER0fj4sWLSEtLs8tzuhNBEFBUVMQvLMhMmgl/f39ERUWV+g0iERERERFycoDHHwe++w5Ytgx4+GGlK7IbRRvv9PR0jBgxAhcvXkRwcDBatWqFn3/+2Xz5o/Pnz1v8T3qnTp2wfPlyvP7663j11VfRqFEjbNiwAS1atLBbTV5eXoiKioLBYFDttylKMRgMOHz4MBo2bFjm4SLkXkoyERcXB29vb34hQ0RERESlO3AAGDIEOHkS0OmAK1eUrsiuFB+uVt2ys7MrfQI82UYQxAva+/r6ssEiAMwEWWMmSIp5IDlmgqSYBzchCMBXXwHPPAMUFgJ6PbByJdCpUymrOlcmbOktecwn2RXP3yU5ZoLkmAmSYh5IjpkgKebBDWzeLB5eXlgI3H03sH9/qU13CbVmgo032Y3RaERiYiIP0SczZoLkmAmSYh5IjpkgKebBTdx9NzB4MDB7NvDDD0CNGmWuquZM8ERcIiIiIiIiqh6CIA5Pu+8+IDAQ0GiA1avF/7ow7vEmIiIiIiIix8vNBf7v/4BHHgGeeEJswgGXb7oB7vEmIiIiIiIiRzt4EBg6FDh+XJxa3rq10hVVK041J7sRBAFGoxE6nc4ppgyS8pgJkmMmSIp5IDlmgqSYBxchCMDChcDTTwMFBUDduuLU8s6dq/BUzpUJTjUnxRQVFSldAjkZZoLkmAmSYh5IjpkgKeZB5UoOLR8/Xmy6+/cXp5ZXoekuodZMsPEmuzEajTh48KAqpwySYzATJMdMkBTzQHLMBEkxDy7gxg3gt9/EQ8tnzgQ2bQJq1qzy06k5EzzHm4iIiIiIiOwvMlI8rFyrBbp0UboaRXGPNxEREREREd26kkPLV6y4uaxbN7dvugE23mRnOp1O6RLIyTATJMdMkBTzQHLMBEkxDypy6BDQrh3w7bfAU08B2dkOeRm1ZoJTzYmIiIiIiKhqBAH4+mtg4sSbU8tXrHCLvdycak6KEAQBmZmZcLPvcqgczATJMRMkxTyQHDNBUsyDCuTmAiNGAOPGiU13v37i1PJbaLpzCoqRfDEbe1KuIfliNnIKis33qTkTbLzJboxGI44dO6bKKYPkGMwEyTETJMU8kBwzQVLMg5PLywM6dBAPLdfpgIQE4Mcfb2lq+fmreVi4IwVLd57DuqQLWLrzHBbuSMH5q3kA1J0JNt5ERERERERkGz8/4O67xUPLt20DXn5ZnF5eRTkFxViXlIrL2YUWyy9nF2JdUqrFnm81YuNNREREREREFbtxA7h06ebthATx0PKuXW/5qVOv51s13SUuZxci9Xr+Lb+Gkth4k91oNBr4+vpCo9EoXQo5CWaC5JgJkmIeSI6ZICnmwckcPgy0bw8MGgQU/7f32dPzlg4tl8otMFR4v5ozwanmREREREREVDpBABYvBiZMAPLzgTp1gO3bgUaN7PoyyRezsXTnuTLvH9GxPprWdq7+jVPNSREmkwnp6ekwmUxKl0JOgpkgOWaCpJgHkmMmSIp5cAI3bgCjRgFjxohNd9++4qHldm66AUAf6ovIIO9S74sM8oY+1FfVmWDjTXZjMplw5swZVf4ikGMwEyTHTJAU80ByzARJMQ8KKzm0fOlScWjau+8CmzcD4eEOeblAH08MitdbNd+RQd4Y1EaPQB9PVWfCQ+kCiIiIiIiIyIkIAjB+PJCcDNSuDaxYAXTr5vCXjarhh7FdopF6PR+5BQYE+HhAH+qLQB9Ph7+2o7HxJiIiIiIiops0GmDJEuCVV4C5c4GIiGp76UAfTzStrf5GW46HmpPdaDQaBAcHq3LKIDkGM0FyzARJMQ8kx0yQFPNQzY4cAb766ubtxo2BtWurtemuiJozwanmRERERERE7mzxYuCpp4DCQuD334Hu3ZWuSBU41ZwUYTKZkJqaqsphB+QYzATJMRMkxTyQHDNBUsxDNSiZWj56tDi1/M47gaZNla6qTGrOBBtvshs1/yKQYzATJMdMkBTzQHLMBEkxDw529CjQoQOwZAkErRbpL72OPV8sQ7LRBzkFxUpXVyo1Z4LD1YiIiIiIiNzJt98Cjz8O5OXBEFkL6ye/h33RrYEDFwH8dwmveD2iavgpXKjr4B5vIiIiIiIid5KXJzbdve/Ewk/XiU23xOXsQqxLSnXaPd9qxD3eZDdarRbh4eHQavl9DomYCZJjJkiKeSA5ZoKkmAc7MxoBnU78+/jxQM2aOHl7L5zd/W+pq1/OLkTq9XynurSXmjOhvorJaWm1WsTGxqryF4Ecg5kgOWaCpJgHkmMmSIp5sKOlS4HWrYHr18XbGg0waBByi8o/Vzq3wFANxVWemjOhvorJaZlMJpw+fVqVww7IMZgJkmMmSIp5IDlmgqSYh6rJKShG8sVs7Em5hmOnL6J4xEhg5EjxOt2ffWaxboBP+QdAV3R/dVNzJth4k92YTCZkZGSo8heBHIOZIDlmgqSYB5JjJkiKebDd+at5WLgjBUt3nsOOjX8gtEdXeH6zFIJWC7z9NvDqqxbr60N9ERnkXepzRQZ5Qx/qWx1lV5qaM8HGm4iIiIiISOVyCoqxLikVl7MLEb99Iya8NByRqaeRHVITa2cvRs6LL908x/s/gT6eGBSvt2q+I4O8MaiNHoE+znN+t9o517EDREREREREZLPU6/m4nF2IO35agQELZgAATra6A6ueTUBuSA00L2NQWlQNP4ztEo3U6/nILTAgwMcD+lBfNt12xsab7Ear1UKv16ty2AE5BjNBcswESTEPJMdMkBTzYJuSQWgHu/RD142LsbfXA9g2aByE//ZylzcoLdDH06mml5dFzZnQCIIgKF1EdcrOzkZwcDCysrIQFBSkdDlERERERES3ZscOJMe0xNJd5wEAnoX5KPa2PD97RMf6aFqb/Y892dJbqu+rAnJaRqMRycnJMBqNSpdCToKZIDlmgqSYB5JjJkiKeaiEvDxg7Figa1c0+GGV+VxtedPtjIPSqkLNmWDjTXYjCAKysrLgZgdRUDmYCZJjJkiKeSA5ZoKkmIcKHDsG3H478PXXgEYD38xrLj8oTc2Z4DneREREREREavLtt8ATTwA3bgCRkcDy5UCvXogCOCjNSbHxJiIiIiIiUoO8PBRNmAivxYsAADe6dIfwzTcIaFDPvIpaBqW5GzbeZDdarRYxMTGqnDJIjsFMkBwzQVLMA8kxEyTFPFi7/PtfiFiyGCaNBr8NfRLbBo9HxKl8DArMQ1QNP6XLczg1Z4JTzYmIiIiIiJxcTkExFu5IQaNvv0JadBOcaXm7+b7IIG+M7RLNQ8qrGaeakyKMRiMOHDigyimD5BjMBMkxEyTFPJAcM0FSzAOA/Hzg6aeBU6eQej0fl7MLseP+ERZNNwBczi5E6vV8hYqsPmrOBBtvshtBEJCfn6/KKYPkGMwEyTETJMU8kBwzQVJun4eSqeWffQYMH47cvKJyV88tMFRTYcpRcybYeBMRERERETmTZcuAdu2AQ4fEqeWzZiHAz6vchwT4cHyXM2PjTURERERE5Azy84Hx44FHHxUvFdarF7B/P9CrF/ShvlbX6C4RGeQNfahv9dZKNmHjTXaj0+kQFxcHnU6ndCnkJJgJkmMmSIp5IDlmgqTcLg8XLoiHli9YAGg0wNSpwNatQK1aAMTLhA2K11s135FB3hjURu8Wg9XUnAlONSciIiIiIlJaURHQpQtw7hywfDnQu3epq+UUFCP1ej5yCwwI8PGAPtTXLZpuZ8Sp5qQIg8GAPXv2wGBw/cEOVDnMBMkxEyTFPJAcM0FSbpGH/HyguFj8u5cXsGaNeGh5GU03IO75blo7CO2jw9C0dpBbNd1qzgQbb7IrNY72J8diJkiOmSAp5oHkmAmScuk8HD8O3HEH8OabN5dFRQG1aytXkwqoNRNsvImIiIiIiKrTd9+JU8sPHgQWLQIyM5WuiByMjTcREREREVF1yM8HHn8cePhhIDcX6NEDSEoCQkKUrowcjMPVyG5KLmjv6+sLjUajdDnkBJgJkmMmSIp5IDlmgqRcLg/HjwNDh4p7uTUa4I03xMPMVTihWynOlglbekteZZ3sysvLS+kSyMkwEyTHTJAU80ByzARJuUweCgrEvduXLgHh4cCyZUCfPkpXpUpqzQQPNSe7MRqNSExMVO3AA7I/ZoLkmAmSYh5IjpkgKZfKg48P8P77QPfu4tRyNt1VouZMsPEmIiIiIiKytxMngN27b95+5BHg99+BOnWUq4kUw8abiIiIiIjInr77DmjbFhg0CMjIuLlcy/bLXfGdJyIiIiIisof8fOCJJ25OLW/UCFDhYdFkf5xqTnYjCAKMRiN0Op1TTBkk5TETJMdMkBTzQHLMBEk5Sx5yCoqRej0fuQUGBPh4QB/qi0AfT+sVT5wQp5YfOCBOLX/9dXFquQfnWduLs2SiBKeak2KKiorg6+urdBnkRJgJkmMmSIp5IDlmgqSqIw/lNdbnr+ZhXVIqLmcXmtePDPLGoHg9omr43XySFSuA8ePFvdycWu5Qav2M4KHmZDdGoxEHDx5U5ZRBcgxmguSYCZJiHkiOmSCp6sjD+at5WLgjBUt3nsO6pAtYuvMcFu5IwfmrecgpKLZqugHgcnYh1iWlIqegWFwgCMD69WLT3a0bp5Y7kJo/I9h4ExERERGR26mosb5wPd/qPuk6qdfzxRsaDfDVV8Ds2cBvv3FqOZWKjTcREREREbmd1Aoa6/Qy7gOAln9tQc1nnhT3dgNAUBAweTLP56YyMRlkVzqdTukSyMkwEyTHTJAU80ByzARJOTIPuQWGcu8vMpqslnkUFeKeRbNxx9bV4oLVA8SBalRt1PoZwanmRERERETkdpIvZmPpznNl3v9Q+3rYdjzdvFe8Rto5PPzBZNRJOQYAKHzpZXi/8zb3crsxW3pLHmpOdiMIAjIzM+Fm3+VQOZgJkmMmSIp5IDlmgqQcnQd9qC8ig7xLvS8yyBsx4f4YFK9HZJA3Wv61BROnPIQ6KceQFxyK9NUb4D0zgU13NVPzZwQbb7Ibo9GIY8eOqXLKIDkGM0FyzARJMQ8kx0yQlKPzEOjjaW6spSKDvDGojR6BPp6IquGHJ7ctxcMfTIFP/g3k3d4Jpr37EPHgAIfUROVT82cEv6IhIiIiIiK3FFXDD2O7RJd5HW8A8L67P/DebGDyZPhNn8693FQlTA0REREREbmtQB9PNK3tabnw33+BevXEv3fuDJw8CdSvX/3FkcvgoeZkNxqNBr6+vtBoNEqXQk6CmSA5ZoKkmAeSYyZISpE8FBQAEyYAcXHAkSM3l7Ppdgpq/ozgVHMiIiIiIqJTp8RLgyUlibc//RSYOFHZmsipcao5KcJkMiE9PR0mk/U1D8k9MRMkx0yQFPNAcswESVVrHlavBtq0EZvumjWBn35i0+2E1PwZwcab7MZkMuHMmTOq/EUgx2AmSI6ZICnmgeSYCZKyNQ85BcVIvpiNPSnXkHwxGzkFxRU/qKBAbLCHDgVycoAuXcTmu1+/W6yeHEHNnxEcrkZERERERKp2/moe1iWl4nJ2oXlZZJA3BsXrEVXDr+wHLlgAfP65+PdXXgHeeotTy8khuMebiIiIiIhUK6eg2KrpBoDL2YVYl5Ra/p7vJ54ABg8GNm8GZsxg000Ow8ab7Eaj0SA4OFiVUwbJMZgJkmMmSIp5IDlmgqQqm4fU6/lWTXeJy9mFSL2ef3NBYSEwe7b4X0BstNesAfr3t1fZ5EBq/ozgVzpkNzqdDk2bNlW6DHIizATJMRMkxTyQHDNBUpXNQ26BoXL3nz4tnsu9bx+Qmgp88ok9yqRqpObPCO7xJrsxmUxITU1V5bADcgxmguSYCZJiHkiOmSCpyuYhwKf8fYkBPv/t1W7TRmy6a9Tg8DSVUvNnBBtvshs1/yKQYzATJMdMkBTzQHLMBElVNg/6UF9EBnmXel8dHw1i33oFGDIEyM4GOncG9u8H7r7bARWTo6n5M4KNNxERERERqVagjycGxeutmu9GN9Lx+Kv/B695X4gLXn4Z2LYN0OsVqJLcHc/xJiIiIiIiVYuq4YexXaKRej0fuQUGBPh4oF6mF7zOpoiHli9dyr3cpCg23mQ3Wq0W4eHh0Gp5IAWJmAmSYyZIinkgOWaCpGzNQ6CPJ5pG6oCS9WsHAevWAY0aAfXqObBSqi5q/ozQCIIgKF1EdcrOzkZwcDCysrIQFBSkdDlERERERGQPZ84ADz0EvP020Lev0tWQG7Clt1TfVwXktEwmE06fPq3KYQfkGMwEyTETJMU8kBwzQVI25WHtWiA+HtizB5g0CTAaHV4fVT81f0aw8Sa7MZlMyMjIUOUvAjkGM0FyzARJMQ8kx0yQVKXyUFgIPPss8OCD4tTyTp2ArVsBna76CqVqo+bPCDbeRERERESkPmfOAF26AJ98It6eMgXYvp3nc5NT4nA1IiIiIiJSl3//Bdq0AbKygLAwcWr5PfcoXRVRmdh4k91otVro9XpVThkkx2AmSI6ZICnmgeSYCZIqNw/16gGDBgHHjgErV3Ivt5tQ82eEohUnJCSgffv2CAwMREREBAYOHIjjx4+X+5jFixdDo9FY/PHx8ammiqk8av5FIMdgJkiOmSAp5oHkmAmSsspDSgpw5crNFT7/HPjf/9h0uxE1f0YoWvH//vc/TJgwAbt27cIvv/yC4uJi3HXXXbhx40a5jwsKCsLFixfNf86dO1dNFVN5jEYjkpOTYeQUSfoPM0FyzARJMQ8kx0yQlEUe1q8Xp5aPGAGUDNby9QU8PZUtkqqVmj8jFD3UfMuWLRa3Fy9ejIiICOzduxfdunUr83EajQa1atVydHlkI0EQkJWVBTe7NDyVg5kgOWaCpJgHkmMmSEoQBGRfuQLN3LnAp5+KCzMzxfO6Q0MVrY2UoebPCKfaR5+VlQUACAsLK3e93Nxc1K9fH/Xq1cOAAQNw5MiR6iiPiIiIiIiqS0oKmj/+OLQlTffkyeKh5Wy6SYWcZriayWTCpEmT0LlzZ7Ro0aLM9Zo0aYKvv/4arVq1QlZWFt5//3106tQJR44cgV6vt1q/sLAQhYWF5tvZ2dkAAIPBAIPBAEA8V0Cr1cJkMllcE65kudFotPhWpazlOp0OGo3G/LzS5QCsDokoa7mHhwcEQbBYrtFooNPprGosa7kS21TyWEEQrNZX6zaVt5zbVPE2ldRpNBpdZptc8X2qzm0q+YxwpW1yxfeJnxF8n/gZwfdJ8W1auxa6sWMRkJUFITQUwqJF0A4YINYuqVNV2+SK75Obf0bYwmka7wkTJuDw4cPYsWNHuet17NgRHTt2NN/u1KkTmjZtivnz5+Ptt9+2Wj8hIQHTp0+3Wp6UlAR/f38AQHh4OGJjY5GSkoKMjAzzOnq9Hnq9HidOnDDvjQeAmJgYRERE4PDhw8jPzzcvj4uLQ0hICJKSkize9FatWsHLywuJiYkWNbRr1w5FRUU4ePCgeZlOp0P79u2RlZWFY8eOmZf7+vqidevWuHLlCs6cOWNeHhwcjKZNmyItLQ2pqanm5UptU4MGDVBYWIjDhw+7zDa54vtUndtUXFyMpKQkl9omV3yfqmub2rRpA71ej6SkJJfZJld8n/gZwfeJnxF8nxTdJr0exuefh2dWFrKbNcOpd99FRNu20APq3SZXfJ/4GWHTkG+N4AQHyE+cOBHff/89/vjjD0RHR9v8+CFDhsDDwwPfffed1X2l7fGuV68erl69iqCgIAD8ForbxG3iNnGbuE3cJm4Tt4nbxG1yqm3aswdYuRKmt98GPD1dY5tc8X1y823Kzc1FcHAwsrKyzL1lWRRtvAVBwNNPP43169dj+/btaNSokc3PYTQa0bx5c9x999344IMPKlw/Ozu70j8cso3RaMThw4fRokUL8y8FuTdmguSYCZJiHkiOmXBj338PXL0KjBljXsQ8kJyzZcKW3lLRQ80nTJiA5cuX4/vvv0dgYCAuXboEQNz97+vrCwAYMWIE6tati4SEBADAW2+9hTvuuAMNGzZEZmYm3nvvPZw7dw7jxo1TbDtIJAgC8vPzVTllkByDmSA5ZoKkmAeSYybcUFER8PLLwIcfAl5eQPv2QMuWAJgHsqbmTCjaeM+dOxcA0KNHD4vlixYtwqhRowAA58+ftzhx/fr16xg/fjwuXbqE0NBQtG3bFn///TeaNWtWXWUTEREREdGtOnsWGDYM+Ocf8fbTTwNNmihaEpGjKNp4V+abiu3bt1vc/vDDD/Hhhx86qCIiIiIiInK4DRuA0aPF63KHhgKLFwP3369wUUSO41TX8SZ10+l0iIuLc4rzLcg5MBMkx0yQFPNAcsyEm5gyBXjgAbHpvv12ICmp1KabeSA5NWfCaS4nRuqn0WgQEhKidBnkRJgJkmMmSIp5IDlmQjk5BcVIvZ6P3AIDAnw8oA/1RaCPp2NeLDRU/O/zzwMJCeK53aVgHkhOzZngHm+yG4PBgD179lhdDoDcFzNBcswESTEPJMdMKOP81Tws3JGCpTvPYV3SBSzdeQ4Ld6Tg/NU8+72I5NrNeOkl4M8/gTlzymy6AeaBrKk5E2y8ya7k19QjYiZIjpkgKeaB5JiJ6pVTUIx1Sam4nF1osfxydiHWJaUip6D41l6gqAh44QXxkPK8/xp5rRbo0qVSD2ceSE6tmWDjTURERETkplKv51s13SUuZxci9Xp+qfdVyrlzQLduwAcfAIcOAZs2Vf25iFSO53gTEREREbmp3ILyD9mt6P4ybdwIjBwpDlALCRGnlg8YAKCazycnchJsvMludDodWrVqpcopg+QYzATJMRMkxTyQHDNR/QJ8ym8HKrrfSlER8Mor4l5uAOjQAVi5EmjQAIB4Prn80PbIIG8MitcjqoafxVMxDySn5kzwUHOyK69yBmSQe2ImSI6ZICnmgeSYieqlD/VFZJB3qfdFBnlDH+pr2xO+8MLNpvu558Qhav813VU5n5x5IDm1ZoKNN9mN0WhEYmKiagcekP0xEyTHTJAU80ByzET1C/TxxKB4vVXzHRnkjUFt9LYfAv7SS0CjRsD69WIDLmmSbD2fnHkgOTVngoeaExERERG5sagafhjbJbpq510XFwM//QTcf794W68Hjh4FPKzbDIedT06kAmy8iYiIiIjcXKCPJ5rWtnHv9rlzwEMPAbt2iXu4Bw4Ul5fSdAMOOJ+cSEV4qDkREREREdnmhx+A+Hix6Q4OBiox7Mru55MTqYhGEARB6SKqU3Z2NoKDg5GVlYWgoCCly3EpgiDAaDRCp9NBo9EoXQ45AWaC5JgJkmIeSI6ZUIHiYuDVV4H33xdvt28vTi2Pjq7Uw8ucat5Gj6gwy6nmzAPJOVsmbOkteTwH2VVRURF8ffltJd3ETJAcM0FSzAPJMRNOTHpoOQBMmgTMmmUxQK0itp5PzjyQnFozwUPNyW6MRiMOHjyoyimD5BjMBMkxEyTFPJAcM+HkEhNvHlq+fj3w4Yc2Nd0lxPPJg9A+OgxNaweV2XQzDySn5kxwjzcREREREVVs8GDxEmEDB1b60HIiEnGPNxERERERWfv3X7HJTku7uey559h0E1UB93iTXekqMdGS3AszQXLMBEkxDyTHTDiJTZuAkSOBa9fE2xs2KFIG80Byas0Ep5oTEREREZGouBh47TXgvffE2+3aAatWcS83USls6S15qDnZjSAIyMzMhJt9l0PlYCZIjpkgKeaB5JgJhf37L9C9+82m+9lngR07FGu6mQeSU3Mm2HiT3RiNRhw7dkyVUwbJMZgJkmMmSIp5IDlmQkF79wK33Qbs3ClOLV+7FvjoI8DbW7GSmAeSU3MmeI43EREREZG7i4sDIiPFvdurVgExMUpXRORS2HgTEREREbmjy5eB8HBAqwX8/YEtW8TmW8G93ESuioeak91oNBr4+vpCo9EoXQo5CWaC5JgJkmIeSI6ZqEabNwPNmonX5S4RFeVUTTfzQHJqzgSnmhMRERERuYviYuCNN4BZs8Tbd9whDlBT6SWaiJTEqeakCJPJhPT0dJhMJqVLISfBTJAcM0FSzAPJMRMO9u+/QM+eN5vup58Gtm932qabeSA5NWeCjTfZjclkwpkzZ1T5i0COwUyQHDNBUswDyTETDrR5MxAfD/z1FxAUBKxZA3zyiVMdWi7HPJCcmjPB4WpERERERK4sLQ144AGgqAho2xZYuRKIjVW6KiK3wsabiIiIiMiV1akDzJ4NnDoFvP++U+/lJnJVbLzJbjQaDYKDg1U5ZZAcg5kgOWaCpJgHkmMm7GjLFqBWLeC228Tbzz6raDlVwTyQnJozwanmRERERESuwmAQp5bPnAk0bAjs3QsEBSGnoBip1/ORW2BAgI8H9KG+CPTxVLpaIlWzpbfkHm+yG5PJhLS0NNSpUwdaLef2ETNB1pgJkmIeSI6ZuEWpqcDw4eLlwQCgXz/A2xvnr+ZhXVIqLmcXmleNDPLGoHg9omr4KVRsxZgHklNzJtRVLTk1k8mE1NRUVU4ZJMdgJkiOmSAp5oHkmIlbsGWLOLV8xw4gMBBYtQr49FPkCFqrphsALmcXYl1SKnIKihUquGLMA8mpORNsvImIiIiI1MpgAF59FejfH7hyRWy+9+0DhgwBAKRez7dquktczi5E6vX86qyWyG2x8SYiIiIiUiutFkhMFP/+1FPA33+L53b/J7fAUO7DK7qfiOyD53iT3Wi1WoSHh6vufAtyHGaC5JgJkmIeSI6ZsIEgABqN2Hh/+y3w55/A4MFWqwX4lP+/+xXdryTmgeTUnAlONSciIiIiUguDAZg6Fbh6FZg3r8LVcwqKsXBHSqmHm0cGeWNsl2hONyeqIlt6S/V9VUBOy2Qy4fTp06ocdkCOwUyQHDNBUswDyTETFbhwAejVC5gxA5g/H9izp8KHBPp4YlC8HpFB3hbLI4O8MaiN3qmbbuaB5NScCTbeZDcmkwkZGRmq/EUgx2AmSI6ZICnmgeSYiXL8/DNw223iIeWBgcDKlUD79pV6aFQNP4ztEo0RHetjUHxdjOhYH2O7RCMqzHkvJQYwD2RNzZlw3pM6iIiIiIjcXcmh5TNmiLdvuw1YvdpigFplBPp4omlt5927TeTq2HgTERERETmroUOB9evFvz/5JPDBB4CPj7I1EZHNeKg52Y1Wq4Ver1fllEFyDGaC5JgJkmIeSI6ZKMXYsUBQELBiBfDFF27VdDMPJKfmTHCqORERERGRszAYgBMngGbNbi67dg0IC1OuJiIqFaeakyKMRiOSk5NhNBqVLoWcBDNBcswESTEPJOf2mUhLA3r3Brp0Ac6du7ncTZtut88DWVFzJth4k90IgoCsrCy42UEUVA5mguSYCZJiHkjOrTOxdas4OO2PP4DiYuDYMaUrUpxb54FKpeZMsPEmIiIiIlKKwQC8/jrQrx+QkQG0bg3s2wf07at0ZURkR5xqTkRERESkhLQ0YPhwcS83ADzxBPDhh241QI3IXbDxJrvRarWIiYlR5ZRBcgxmguSYCZJiHkjO7TLx0Udi0x0QAHz1FfDQQ0pX5FTcLg9UITVnglPNiYiIiIiUUFAAPPaYeKh548ZKV0NENuJUc1KE0WjEgQMHVDllkByDmSA5ZoKkmAeSc/lMXLwIvPwyULJ9Pj7A0qVsusvg8nkgm6k5EzzUnOxGEATk5+ercsogOQYzQXLMBEkxDyTn0pn45Rfg0UeB9HTx0PLXX1e6Iqfn0nmgKlFzJrjHm4iIiIjIUYxG4M03xSnl6elAq1bA0KFKV0VE1Yx7vImIiIiIHOHiReDhh4Ht28Xbjz0mDlTz9VWyKiJSABtvshudToe4uDjodDqlSyEnwUyQHDNBUswDyblUJv74Axgy5Oah5fPni004VZpL5YHsQs2ZYONNdqPRaBASEqJ0GeREmAmSYyZIinkgOZfKREgIkJ0tHlq+ahXQpInSFamOS+WB7ELNmeA53mQ3BoMBe/bsgcFgULoUchLMBMkxEyTFPJCc6jNRWHjz761aAVu3Art2semuItXngexOzZlg4012pcbR/uRYzATJMRMkxTyQnGoz8euvQMOGYqNdomtXns99i1SbB3IYtWaCjTcRERERUVUZjcDUqcBddwGpqcC77ypdERE5IZ7jTURERERUFRcvAo88AmzbJt4ePx74+GNlayIip6QR1Hj18VuQnZ2N4OBgZGVlISgoSOlyXErJBe19fX2h0WiULoecADNBcswESTEPJKeqTPz2m9h0X74M+PuLU8sfeUTpqlyKqvJA1cLZMmFLb8k93mRXXl5eSpdAToaZIDlmgqSYB5JTRSZ27gT69AEEAWjRAli9GoiLU7oql6SKPFC1UmsmeI432Y3RaERiYqJqBx6Q/TETJMdMkBTzQHKqycQddwD33w+MGwfs3s2m20FUkweqNmrOBPd4ExERERFV5M8/gdtuAwIDAY1GvDa3Sve8EVH14x5vIiIiIqKyGI3A9OlA9+7AE0+Ih5cDbLqJyCbc401EREREVJrLl8WBab/9Jt729QUMBsDTU9m6iEh1ONWc7EYQBBiNRuh0OqeYMkjKYyZIjpkgKeaB5JwqE7//Ljbdly4Bfn7AvHnA//2fsjW5GafKAzkFZ8uELb0lDzUnuyoqKlK6BHIyzATJMRMkxTyQnOKZKDm0/M47xaa7RQsgMZFNt0IUzwM5HbVmgo032Y3RaMTBgwdVOWWQHIOZIDlmgqSYB5Jzikxcvy7u3RYEYOxYcWp506bK1ePGnCIP5FTUnAme401EREREVKJmTWD5cuDff4ERI5SuhohcBBtvIiIiInJfRiPw7rtAkybAsGHisp49la2JiFwOG2+yK51Op3QJ5GSYCZJjJkiKeSC5as2EdGp5QADQowcQGVl9r08V4mcEyak1E5xqTkRERETuZ9s24OGHb04tnzuXh5YTkU041ZwUIQgCMjMz4Wbf5VA5mAmSYyZIinkguWrJhNEIvP32zanlzZuLU8vZdDsdfkaQnJozwcab7MZoNOLYsWOqnDJIjsFMkBwzQVLMA8k5PBMGA9C/P/Dmm4DJBIwZA/zzD6eWOyl+RpCcmjPBxpuIiIiI3IOHB9CqlXho+ZIlwMKF4t+JiByMjTcRERERuS6TSbw2d4mEBCApiYeWE1G1YuNNdqPRaODr6wuNRqN0KeQkmAmSYyZIinkgObtnIj0d6NcPuOceoLhYXObpCTRubJ/nJ4fiZwTJqTkTnGpORERERK5n+3ZxavnFi+Lh5Nu3A+3bK10VEbkQTjUnRZhMJqSnp8NkMildCjkJZoLkmAmSYh5Izi6ZMJmAd94BevcWm+5mzYA9e9h0qxA/I0hOzZlg4012YzKZcObMGVX+IpBjMBMkx0yQFPNAcreciZJDy994Q2zAR44Up5Y3a2bfQqla8DOC5NScCQ+lCyAiIiIisouRI4FffgF8fYEvvgBGjVK6IiIiANzjTURERESu4qOPgA4dxEPL2XQTkRNh4012o9FoEBwcrMopg+QYzATJMRMkxTyQnM2ZSE8HVqy4ebtJE2DXLqB5c8cUSNWKnxEkp+ZMcKo5EREREanPH38Aw4cDly4Bv/0G9OihdEVE5GY41ZwUYTKZkJqaqsphB+QYzATJMRMkxTyQXKUyYTIBM2YAPXsCaWniXu7w8OorkqoNPyNITs2ZYONNdqPmXwRyDGaC5JgJkmIeSK7CTGRkAP37A6+9JjbgI0aI53Pz0HKXxM8IklNzJjjVnIiIiIicX8mh5WlpnFpORKrDxpuIiIiInN+xY2LTHRcHrF4NtGihdEVERJXGxpvsRqvVIjw8HFotz2AgETNBcswESTEPJGeVCUEASqYXjx8vHl7+6KNAQIByRVK14WcEyak5E4pWnJCQgPbt2yMwMBAREREYOHAgjh8/XuHjVq9ejbi4OPj4+KBly5bYvHlzNVRLFdFqtYiNjVXlLwI5BjNBcswESTEPJGeRiT//BLp1A65fF+/UaIAnnmDT7Ub4GUFyas6EohX/73//w4QJE7Br1y788ssvKC4uxl133YUbN26U+Zi///4bw4cPx9ixY5GUlISBAwdi4MCBOHz4cDVWTqUxmUw4ffq0KocdkGMwEyTHTJAU80ByJpMJp0+ehKlkavmOHcC0aUqXRQrhZwTJqTkTijbeW7ZswahRo9C8eXO0bt0aixcvxvnz57F3794yH/Pxxx+jX79+mDx5Mpo2bYq3334bbdq0wWeffVaNlVNpTCYTMjIyVPmLQI7BTJAcM0FSzAPJmS5fRo3/+z9oX3sNMBrFw8rffVfpskgh/IwgOTVnwqnO8c7KygIAhIWFlbnOzp078fzzz1ss69u3LzZs2FDq+oWFhSgsLDTfzs7OBgAYDAYYDAYA4iELWq0WJpPJ4k0sWW40GiEIQoXLdTodNBqN+XmlywHAaDRWarmHhwcEQbBYrtFooNPprGosa7kS21TyWEEQrNZX6zaVt5zbVPE2ldRpNBpdZptc8X2qzm0q+YxwpW1yxfeJnxF8nxTZph07oHvkEYSkpUHw8YHp448hjB4NaDTwANS5TeUsV+37VI3bxM8IbpOz/3+ELZym8TaZTJg0aRI6d+6MFuVMqbx06RIiIyMtlkVGRuLSpUulrp+QkIDp06dbLU9KSoK/vz8AIDw8HLGxsUhJSUFGRoZ5Hb1eD71ejxMnTpi/FACAmJgYRERE4PDhw8jPzzcvj4uLQ0hICJKSkize9FatWsHLywuJiYkWNbRr1w5FRUU4ePCgeZlOp0P79u2RlZWFY8eOmZf7+vqidevWuHLlCs6cOWNeHhwcjKZNmyItLQ2pqanm5UpsU0kQCwoKcOTIEZfYJsD13qfq3Kb09HRkZmZi3759qFevnktskyu+T9W5TfHx8TCZTNi3bx80/w1MUvs2ueL7xM8Ivk/VvU1h27ah0RtvQGM0Ii8qCifffRf5DRsCe/eqdptc8X2q7m3iZwS3ydn/P8LHxweVpRGkbbuCnnzySfz000/YsWMH9Hp9met5eXlhyZIlGD58uHnZF198genTp+Py5ctW65e2x7tevXq4evUqgoKCAPBbKHttk8lkwuXLl1GnTh3IY6XWbSpvObep4m0yGAy4dOkSatWqBQ8PD5fYJld8n6pzmzQaDdLS0hAZGWnxTbGat8kV3yd+RvB9qvZtunoVuvbtIXTtirQ33kBETAw/I7hN/IzgNjn9/0fk5uYiODgYWVlZ5t6yLE7ReE+cOBHff/89/vjjD0RHR5e7blRUFJ5//nlMmjTJvGzq1KnYsGEDDhw4UOFrZWdnV/qHQ0REREQOcvw40LjxzcuFpacD4eE3bxMROTlbektFh6sJgoCJEydi/fr1+P333ytsugGgY8eO+O233yyW/fLLL+jYsaOjyqRKMhqNSE5OtvpmitwXM0FyzARJMQ9uymQCZs0CmjcHFi26uTwiAkaTiZkgM35GkJyaM6Fo4z1hwgR8++23WL58OQIDA3Hp0iVcunTJ4rj/ESNG4JVXXjHffvbZZ7FlyxbMmTMHx44dw7Rp05CYmIiJEycqsQkkIQgCsrKyrA4zJ/fFTJAcM0FSzIMbunIFuPde4OWXxanlu3ZZ3M1MkBTzQHJqzoSijffcuXORlZWFHj16oHbt2uY/K1euNK9z/vx5XLx40Xy7U6dOWL58Ob788ku0bt0aa9aswYYNG8odyEZERERECvvrL+C224CffgJ8fIAFC4D585WuioioWig61bwy31Rs377datmQIUMwZMgQB1RERERERHZlMgHvvQeUXJu7cWNg9WqgVSulKyMiqjaK7vEm16LVahEjm0JK7o2ZIDlmgqSYBzeRlAS88orYdD/8MJCYWGbTzUyQFPNAcmrOhFNMNa9OnGpOREREVM1mzBAnlo8bx6nlROQyVDPVnFyL0WjEgQMHVDllkByDmSA5ZoKkmAcXZTIBH3wAnDp1c9mrrwLjx1fYdDMTJMU8kJyaM8HGm+xGEATk5+ercsogOQYzQXLMBEkxDy7oyhXgvvuAF14Ahg4FiopsejgzQVLMA8mpOROKDlcjIiIiIhfx11/AQw8Bqani1PKnngI8PZWuiojIKXCPNxERERFVnckEzJ4NdO8uNt2NGwO7d/N8biIiCe7xJrvR6XSIi4uDTqdTuhRyEswEyTETJMU8uICsLOCRR4AffxRvDx8uXps7MLBKT8dMkBTzQHJqzgQbb7IbjUaDkJAQpcsgJ8JMkBwzQVLMgwvw9QXS0wFvb+CTTyo1QK08zARJMQ8kp+ZM8FBzshuDwYA9e/bAYDAoXQo5CWaC5JgJkmIeVMpkEq/JDQBeXsCqVeKh5Y89dsuHljMTJMU8kJyaM8HGm+xKjaP9ybGYCZJjJkiKeVCZq1eBAQOA11+/uaxBA6B1a7u9BDNBUswDyak1E2y8iYiIiKhiO3cC8fHApk3Axx8DaWlKV0REpBpsvImIiIiobIIAzJkDdOsG/Psv0KgR8PffQJ06SldGRKQaGkGNVx+/BdnZ2QgODkZWVhaCgoKULsellFzQ3tfXFxpePoTATJA1ZoKkmAcVuHoVGDVK3MsNAMOGAV9+CTjo/6GYCZJiHkjO2TJhS2/JqeZkV15eXkqXQE6GmSA5ZoKkmAcnZjSKe7mPHhWnln/8sV0GqFWEmSAp5oHk1JoJHmpOdmM0GpGYmKjagQdkf8wEyTETJMU8ODmdDnj1VaBhQ2DXLuDxxx3edDMTJMU8kJyaM8HGm4iIiIhE164B+/ffvP3II8ChQ8BttylVERGRS2DjTURERETiXu34eOCee4CMjJvLfXyUq4mIyEWw8SYiIiJyZyVTy7t2Bc6fB/z8gCtXlK6KiMilcKo52Y0gCDAajdDpdE4xZZCUx0yQHDNBUu6Yh5yCYqRez0dugQEBPh7Qh/oi0MdTuYKuXROnlv/wg3jbwVPLK+KOmaCyMQ8k52yZ4FRzUkxRURF8fX2VLoOcCDNBcswESblTHs5fzcO6pFRczi40L4sM8sageD2iavhVf0G7domN9vnz4tTyjz6qlgFqFXGnTFDFmAeSU2smeKg52Y3RaMTBgwdVOWWQHIOZIDlmgqTcKQ85BcVWTTcAXM4uxLqkVOQUFFd/UZ9+KjbdDRsCO3cCTzyheNPtTpmgijEPJKfmTHCPNxEREZGDpV7Pt2q6S1zOLkTq9Xw0rV3Nh5zPnQtERADTpyt2aDkRkbvgHm8iIiIiB8stMNzS/Xbxzz/As8+Kw9QAsdn+8EM23URE1YB7vMmudDqd0iWQk2EmSI6ZICl3yUOAT/n/y1XR/bdEEICPPwamTAGKi4FWrYCxYx33erfIXTJBlcM8kJxaM8Gp5kREREQOllNQjIU7Uko93DwyyBtju0Q7Zrr59evA6NHA99+Lt4cMAb76CggOtv9rERG5GVt6Sx5qTnYjCAIyMzPhZt/lUDmYCZJjJkjKnfIQ6OOJQfF6RAZ5WyyPDPLGoDZ6xzTd//wDxMeLTbeXF/D558DKlU7ddLtTJqhizAPJqTkTbLzJboxGI44dO6bKKYPkGMwEyTETJOVueYiq4YexXaIxomN9DIqvixEd62Nsl2hEhTngUmJffw106QKcOwfExIhTy596SvGp5RVxt0xQ+ZgHklNzJniONxEREVE1CfTxrJ7p5U2aACYT8OCDwIIFTr2Xm4jIHbDxJiIiInIFWVk3G+zOnYE9e4DbbnP6vdxERO6Ah5qT3Wg0Gvj6+kLDf+DpP8wEyTETJMU82EnJ1PIGDYAjR24uj49XXdPNTJAU80Byas4Ep5oTERERqdX168CYMcCGDeLtKVOAWbMULYmIyF1wqjkpwmQyIT09HSaTSelSyEkwEyTHTJAU83CL9uwB2rQRm24vL+Czz4CZM5Wu6pYwEyTFPJCcmjPBxpvsxmQy4cyZM6r8RSDHYCZIjpkgKeahigQB+OQT8Tzus2fFqeV//w1MmKC6Q8vlmAmSYh5ITs2ZYONNREREpCbLlwPPPgsUFwODBwP79gFt2ypdFRERlYONNxEREZGaDBsG9OkDfPopsHo1LxVGRKQCvJwY2Y1Go0FwcLAqpwySYzATJMdMkBTzUEmCACxbBgwZAnh7Ax4ewM8/q/6w8tIwEyTFPJCcmjNR5anmRUVFpZ7YHhUVZZfCHIVTzYmIiEg1MjPFqeXr1wNPPy2e201ERE7BoVPNT548ia5du8LX1xf169dHdHQ0oqOj0aBBA0RHR1e5aFI/k8mE1NRUVQ47IMdgJkiOmSAp5qECJVPL168HPD2BRo2UrsjhmAmSYh5ITs2ZsPlQ81GjRsHDwwObNm1C7dq1Vbmbnxyj5BehVq1a0Go5PoCYCbLGTJAU81AGQRAvDfbCC+IAtehoYNUqoF07pStzOGaCpJgHklNzJmxuvPfv34+9e/ciLi7OEfUQERERua/MTGDsWGDdOvH2oEHAwoVASIiSVRER0S2y+WuCZs2a4cqVK46ohYiIiMi9XbsG/PqreGj5J58Aa9aw6SYicgE27/GeNWsWpkyZghkzZqBly5bw9PS0uJ8Dy9yXVqtFeHi46g77IMdhJkiOmSAp5qEUMTHAd98B4eFA+/ZKV1PtmAmSYh5ITs2ZsHmqeclGys/tFgQBGo0GRqPRftU5AKeaExERkdPIygLGjxcPL+/bV+lqiIjIBrb0ljbv8d62bVuVCyPXZjKZkJKSgujoaFV+C0X2x0yQHDNBUm6fh717gaFDgTNngL//Bk6fFq/T7cbcPhNkgXkgOTVnwubGu3v37o6og1yAyWRCRkYG6tevr7pfBHIMZoLkmAmScts8CALwxRfA888DRUVAgwbi1HI3b7oBN84ElYp5IDk1Z8LmxhsAMjMzsXDhQiQnJwMAmjdvjjFjxiA4ONiuxRERERG5lKwsYNw4cWgaADzwAPD11xygRkTk4mz+miAxMRGxsbH48MMPce3aNVy7dg0ffPABYmNjsW/fPkfUSERERKR+164BbduKTbenJ/DRR8DatWy6iYjcgM17vJ977jncf//9+Oqrr+DhIT7cYDBg3LhxmDRpEv744w+7F0nqoNVqodfrVXfYBzkOM0FyzARJuV0ewsKArl0BoxFYuRLo0EHpipyO22WCysU8kJyaM2HzVHNfX18kJSUhLi7OYvnRo0fRrl075OXl2bVAe+NUcyIiIqo2WVliox0WJt7OywMKC4HQUGXrIiKiW2ZLb2nzVwVBQUE4f/681fJ///0XgYGBtj4duRCj0Yjk5GSnv6QcVR9mguSYCZJy+Tzs2we0aQM8+ihgMonL/PzYdJfD5TNBNmEeSE7NmbC58R42bBjGjh2LlStX4t9//8W///6LFStWYNy4cRg+fLgjaiSVEAQBWVlZsPEgCnJhzATJMRMk5bJ5KJla3rGjeKmw5GQgLU3pqlTBZTNBVcI8kJyaM2HzOd7vv/8+NBoNRowYAYPBAADw9PTEk08+iZkzZ9q9QCIiIiLVyMoCxo8HVq8Wbw8YACxaxL3cRERuzubG28vLCx9//DESEhJw+vRpAEBsbCz8/PzsXhwRERGRauzbBwwdCpw+DXh4AO+9Bzz7LKDRKF0ZEREprErX8QYAPz8/tGzZ0p61kMpptVrExMSocsogOQYzQXLMBEm5VB5MJvFc7tOngfr1xanlt9+udFWq41KZoFvGPJCcmjNRqanmgwYNwuLFixEUFIRBgwaVu+66devsVpwjcKo5EREROcTevcDMmcD8+TenmBMRkcuy+1Tz4OBgaP47TCo4OLjcP+S+jEYjDhw4oMopg+QYzATJMRMkpfo8JCUBy5ffvN22rXhuN5vuKlN9JsiumAeSU3MmKnWo+aJFi0r9O5GUIAjIz89X5ZRBcgxmguSYCZJSbR4EAZg3D5g0SbwdFydeNoxumWozQQ7BPJCcmjNh88Hx+fn5yMvLM98+d+4cPvroI2zdutWuhRERERE5nexsYPhw4KmngKIioF8/oEEDpasiIiInZ3PjPWDAACxduhQAkJmZiQ4dOmDOnDkYMGAA5s6da/cCiYiIiJzC/v3i4eQrV4pTy+fMATZs4KHlRERUIZsb73379qFr164AgDVr1qBWrVo4d+4cli5dik8++cTuBZJ66HQ6xMXFQafTKV0KOQlmguSYCZJSVR6++gq44w7g1CkgKgr480/g+ed5qTA7U1UmyOGYB5JTcyZsvpxYXl4eAgMDAQBbt27FoEGDoNVqcccdd+DcuXN2L5DUQ6PRICQkROkyyIkwEyTHTJCUqvJw5QpQWAjcdx+weDH3cjuIqjJBDsc8kJyaM2HzHu+GDRtiw4YN+Pfff/Hzzz/jrrvuAgCkp6fz8lxuzmAwYM+ePTAYDEqXQk6CmSA5ZoKknD4P0qm5L70kHmL+/fdsuh3I6TNB1Yp5IDk1Z8LmxvvNN9/Eiy++iAYNGuD2229Hx44dAYh7v+Pj4+1eIKmLGkf7k2MxEyTHTJCUU+ZBEMRrcd9xB1AyUFarBYYO5aHl1cApM0GKYR5ITq2ZsPlQ8wcffBBdunTBxYsX0bp1a/Py3r1744EHHrBrcURERETVKjsbePxxYMUK8fbChcDTTytbExERqZ7NjTcA1KpVC7Vq1QIAZGdn4/fff0eTJk0QFxdn1+KIiIiIqs3+/eJe7ZMnxanls2YBEycqXRUREbkAjWDj1ceHDh2Kbt26YeLEicjPz0fr1q1x9uxZCIKAFStWYPDgwY6q1S6ys7MRHByMrKwsnpNuZyUXtPf19YWGh+IRmAmyxkyQlNPkQRCAL78Enn1WHKBWr554Pvd/p9NR9XGaTJBTYB5IztkyYUtvafM53n/88Yf5cmLr16+HIAjIzMzEJ598gnfeeadqFZPL8PLyUroEcjLMBMkxEyTlFHlISACeeEJsuu+5B0hKYtOtIKfIBDkN5oHk1JoJmxvvrKwshP03zXPLli0YPHgw/Pz8cM899+DkyZN2L5DUw2g0IjExUbUDD8j+mAmSYyZIymnyMGIEUKsW8N57wMaNQI0aytbjxpwmE+QUmAeSU3MmbD7Hu169eti5cyfCwsKwZcsWrPhv+Mj169fh4+Nj9wKJiIiI7EoQgF27bu7V1uvF87oDApSti4iIXJbNe7wnTZqERx55BHq9HnXq1EGPHj0AiIegt2zZ0t71EREREdlPTg7wyCNAp07Ahg03l7PpJiIiB7J5j/dTTz2FDh064N9//0WfPn2g1Yq9e0xMDM/xJiIiIud18CAwZAhw4gSg0wGpqUpXREREbsLmqeZqx6nmjiMIAoxGI3Q6nVNMGSTlMRMkx0yQVLXlQRCABQuAZ54BCgrEQ8tXrhT3epNT4WcESTEPJOdsmbClt6zUHu/nn38eb7/9Nvz9/fH888+Xu+4HH3xQ+UrJ5RQVFcHX11fpMsiJMBMkx0yQlMPzkJMjTixfvly8fffdwNKlHKDmxPgZQVLMA8mpNROVOsc7KSkJxcXF5r+X9Wf//v2OrJWcnNFoxMGDB1U5ZZAcg5kgOWaCpKolD9u2iU23TgfMng388AObbifGzwiSYh5ITs2ZqNQe723btpX6dyIiIiKndv/9wPTpQO/eQOfOSldDRERuyuap5kREREROKzcXmDABSEu7uezNN9l0ExGRomyeal5QUIBPP/0U27ZtQ3p6Okwmk8X9+/bts1txpD46nU7pEsjJMBMkx0yQlF3zcPAgMHQocPy4OLl861bACYbvkG34GUFSzAPJqTUTNk81f+SRR7B161Y8+OCDiIyMtJomN3XqVLsWaG+cak5ERORiBAFYuBB4+umbU8tXrOBebiIicii7TzWX2rRpEzZv3ozO/MeMZARBQFZWFoKDg51ivD8pj5kgOWaCpOySh9xc4MkngW+/FW/ffTewZAlQs6b9CqVqw88IkmIeSE7NmbD5HO+6desiMDDQEbWQyhmNRhw7dkyVUwbJMZgJkmMmSOqW83DmDNCundh063TAzJni1HI23arFzwiSYh5ITs2ZsLnxnjNnDl566SWcO3fOEfUQERERVU5kJKDVAnXrAtu3Ay+9JN4mIiJyMjYfat6uXTsUFBQgJiYGfn5+8PT0tLj/2rVrdiuOiIiIyMKNG4Cvr9hg+/sD338PhIZyLzcRETk1mxvv4cOH48KFC5gxY0apw9XIfWk0Gvj6+jITZMZMkBwzQVI25+HQIWDIEGDsWGDyZHFZo0aOK5CqHT8jSIp5IDk1Z8LmqeZ+fn7YuXMnWrdu7aiaHIpTzYmIiFRGEICvvwYmThSnltevDyQni3u+iYiIFGJLb2nziVBxcXHIz8+vcnHkukwmU6nXdif3xUyQHDPhHnIKipF8MRt7Uq4h+WI2cgqKS12vUnnIzQVGjADGjROb7n79gD172HS7KH5GkBTzQHJqzoTNjffMmTPxwgsvYPv27bh69Sqys7Mt/pD7MplMOHPmjCp/EcgxmAmSYyZc3/mreVi4IwVLd57DuqQLWLrzHBbuSMH5q3lW61aYh8OHgfbtb04tT0gAfvwRCA938FaQUvgZQVLMA8mpORM2n+Pdr18/AEDv3r0tlguCAI1Go8rR7kRERHTrcgqKsS4pFZezCy2WX84uxLqkVIztEo1AH88yHi2TmQl06QJkZYlTy7/7Duja1f5FExERVQObG+9t27Y5og4iIiJSudTr+VZNd4nL2YVIvZ6PprUr2XiHhADTpwNbtgBLl3IvNxERqZrNjXf37t3t9uJ//PEH3nvvPezduxcXL17E+vXrMXDgwDLX3759O3r27Gm1/OLFi6hVq5bd6qKq0Wg0CA4OVuWUQXIMZoLkmAnXlltgsOl+qzwcPgyYTECrVuLtZ54Bnn6a1+Z2I/yMICnmgeTUnIlK/0s2e/Zsi6Fqf/31FwoLb36rnZOTg6eeesqmF79x4wZat26Nzz//3KbHHT9+HBcvXjT/iYiIsOnx5Bg6nQ5NmzaFTqdTuhRyEswEyTETri3Ap/zv8+X3W+Rh0SKgQwfgwQeBkpkxGg2bbjfDzwiSYh5ITs2ZqPS/Zq+88gpycnLMt/v3748LFy6Yb+fl5WH+/Pk2vXj//v3xzjvv4IEHHrDpcREREahVq5b5j5b/KDsFk8mE1NRUVQ47IMdgJkiOmXBt+lBfRAZ5l3pfZJA39KGWk8hNJhMunDgBYeRIYMwYID8fiIkBikufgk6uj58RJMU8kJyaM1HpjlV+uW8bL/9tV7fddhtq166NPn364K+//lKsDrKk5l8EcgxmguSYCdcW6OOJQfF6q+Y7Msgbg9rorQarmQ4dQmjfvtAsXSru2Z4xA9i8GahRozrLJifCzwiSYh5ITs2ZsPkcbyXVrl0b8+bNQ7t27VBYWIgFCxagR48e2L17N9q0aVPqYwoLCy0OiS+55JnBYIDBIJ5rptVqodVqYTKZLN7EkuVGo9Hii4aylut0Omg0GvPzSpcDsJr4XtZyDw8PCIJgsVyj0UCn01nVWNZyJbap5LGCIFitr9ZtKm85t6nibSqp02g0usw2ueL7VJ3bVPIZ4Urb5Irv061sU51gL4zqGIULmfnIKxLg76VFnRAfBHh7wGAw3Nymr7+GbuJE+OXnQ6hTB8KyZdD26CHWLqnTGbapouVqfJ+cdZv4GcFt4v9HcJvKq93ZPiNsoarGu0mTJmjSpIn5dqdOnXD69Gl8+OGH+Oabb0p9TEJCAqZPn261PCkpCf7+/gCA8PBwxMbGIiUlBRkZGeZ19Ho99Ho9Tpw4gaysLPPymJgYRERE4PDhwxbnvcfFxSEkJARJSUkWb3qrVq3g5eWFxMREixratWuHoqIiHDx40LxMp9Ohffv2yMrKwrFjx8zLfX190bp1a1y5cgVnzpwxLw8ODkbTpk2RlpaG1NRU83IltqkkiAUFBThy5IhLbBPgeu9TdW5Teno6MjMzsW/fPtSrV88ltskV36fq3Kb4+HiYTCbs27fPPBhF7dvkiu+TvbapfdOmSE1NxbFDN9cPDw9HbHQ0Cr7+Gn75+cho0wZn33oLtRs2hB5w+m1yxffJmbaJnxHcJv5/BLepvG1yts8IHx8fVJZGqOQx41qtFu+88w4CAgIAAC+99BImT56MmjVrAhCHq7355ptVvo63RqOpcKp5aSZPnowdO3Zg586dpd5f2h7vevXq4erVqwgKCgLAb6HstU0mkwnnz59HdHS01akIat2m8pZzmyreJoPBgHPnzqF+/frw8PBwiW1yxfepOrdJo9EgJSUFUVFRFt8Uq3mbXPF9qpZtunQJpiVLkDJwIOpHR/MzgttkroefEdwm/n8Et0ktnxG5ubkIDg5GVlaWubcsS6Ub7wYNGlRqbHtKSkplns66kCo23n369EFgYCDWrVtXqfWzs7Mr/cMhIiIiO1m8GNi/H/joI4ULISIisg9bestKH2p+9uzZW63LSm5uLk6dOmW+nZKSgv379yMsLAxRUVF45ZVXcOHCBSxduhQA8NFHHyE6OhrNmzdHQUEBFixYgN9//x1bt261e21kO5PJhJSUFERHR9t8zgO5JmaC5JgJN3TjBjBhArBkiXj7nnuAPn0AMA9kjZkgKeaB5NScCUWrTUxMRHx8POLj4wEAzz//POLj4/Hmm28CAC5evIjz58+b1y8qKsILL7yAli1bonv37jhw4AB+/fVX9O7dW5H6yZLJZEJGRobFoRnk3pgJkmMm3MzRo+K1uZcsEaeWv/MOIPk3m3kgOWaCpJgHklNzJhQdrtajR49yL0u2ePFii9tTpkzBlClTHFwVERER3bIlS4CnngLy8oDatYHvvgO6d1e6KiIiIkWoa/88EREROb8XXgBGjRKb7j59xHO72XQTEZEbY+NNdqPVaqHX61V3vgU5DjNBcsyEm+jVC9DpxEPLt2wBIiJKXY15IDlmgqSYB5JTcyYqPdXcVXCqORERkQNcuADUrXvzdkoKEB2tXD1EREQOZktvWamvCrKzsyv9h9yX0WhEcnJyla/lTq6HmSA5ZsIF5eUBY8YALVsC587dXF6Jppt5IDlmgqSYB5JTcyYqNVwtJCSkwmt4C4IAjUajyh8C2YcgCMjKyip3YB65F2aC5JgJF3P0KDB0KHDkiDi1fPt2YOTISj+ceSA5ZoKkmAeSU3MmKtV4b9u2zdF1EBERkZosXQo8+aS4x7tWLXFqeY8eSldFRETklCrVeHfnJFIiIiICxEb76aeBr78Wb995J/Dtt0BkpLJ1ERERObEqX8c7Ly8P58+fR1FRkcXyVq1a3XJRpE5arRYxMTGqnDJIjsFMkBwz4QLef19surVaYNo04NVXxQnmVcA8kBwzQVLMA8mpORM2TzXPyMjA6NGj8dNPP5V6v7Of482p5kRERLegoAAYNAiYPBno2VPpaoiIiBRj96nmUpMmTUJmZiZ2794NX19fbNmyBUuWLEGjRo2wcePGKhdN6mc0GnHgwAGn//KFqg8zQXLMhArl5QFz5gAl75mPD7B5s12abuaB5JgJkmIeSE7NmbD5UPPff/8d33//Pdq1awetVov69eujT58+CAoKQkJCAu655x5H1EkqIAgC8vPzVTllkByDmSA5ZkJljh0DhgwBDh8GcnLEQ8vtiHkgOWaCpJgHklNzJmze433jxg1EREQAAEJDQ5GRkQEAaNmyJfbt22ff6oiIiEgZ334LtGsnNt2RkUC3bkpXREREpFo2N95NmjTB8ePHAQCtW7fG/PnzceHCBcybNw+1a9e2e4FERERUjfLygHHjgP/7P+DGDaB3b2D/fqBXL6UrIyIiUi2bDzV/9tlncfHiRQDA1KlT0a9fPyxbtgxeXl5YvHixvesjFdHpdIiLi4OuitNtyfUwEyTHTDi548eBBx8U93JrNOKh5a+9VuWp5RVhHkiOmSAp5oHk1JwJm6eay+Xl5eHYsWOIiopCzZo17VWXw3CqORERURkOHgRuvx0IDgaWL+debiIionI4dKr5W2+9hby8PPNtPz8/tGnTBv7+/njrrbdsr5ZchsFgwJ49e2AwGJQuhZwEM0FyzIQTkn7/3qoVsHZttR1azjyQHDNBUswDyak5EzY33tOnT0dubq7V8ry8PEyfPt0uRZF6qXG0PzkWM0FyzIQTOXZMHKC2a9fNZXffDdSqVW0lMA8kx0yQFPNAcmrNhM2NtyAI0Gg0VssPHDiAsLAwuxRFREREDrZsmdh079sHPPus5Z5vIiIisqtKD1cLDQ2FRqOBRqNB48aNLZpvo9GI3NxcPPHEEw4pkoiIiOwkP19stL/6Srzds6d4PncpX6oTERGRfVR6uNqSJUsgCALGjBmDjz76CMHBweb7vLy80KBBA3Ts2NFhhdoLh6s5TskF7X19fUs9KoLcDzNBcsyEwo4fB4YMAQ4dEhvtN98E3njDYVPLK8I8kBwzQVLMA8k5WyZs6S0rvcd75MiRAIDo6Gh06tQJnp6et1YluSQvLy+lSyAnw0yQHDOhkORkoH178drcERHiXu7evZWuinkgK8wESTEPJKfWTNh8jnf37t2h1Wqxdu1avPPOO3jnnXewfv161Z7kTvZjNBqRmJjILJAZM0FyzISC4uLESeU9e4pTyx3UdOcUFCP5Yjb2pFxD8sVs5BQUl7ku80ByzARJMQ8kp+ZMVHqPd4lTp07h7rvvxoULF9CkSRMAQEJCAurVq4cff/wRsbGxdi+SiIiIquDECaB2bSAwUDy0fPlywNfXYYeWn7+ah3VJqbicXWheFhnkjUHxekTV8HPIaxIREamBzXu8n3nmGcTGxuLff//Fvn37sG/fPpw/fx7R0dF45plnHFEjERER2eq774C2bYEnnrg5sTwgwC5Nd2l7tXMKiq2abgC4nF2IdUmp5e75JiIicnU27/H+3//+h127dllcOqxGjRqYOXMmOnfubNfiiIiIyEb5+cCkScCXX4q309LEZX722eNc1l7tzrE1rZruEpezC5F6PR9Na3M+DBERuSeb93h7e3sjJyfHanlubq5qT3Qn+9DpdGjXrh10Ck3HJefDTJAcM+FgJ04Ad9whNt0lU8t//dVuTXd5e7WTL2Wj2Ggq87G5BQarZcwDyTETJMU8kJyaM1HpxvuPP/5AcXEx7r33Xjz22GPYvXs3BEGAIAjYtWsXnnjiCdx///2OrJVUoKioSOkSyMkwEyTHTDhIyaHlBw8C4eHAzz8D06fb9Xzu1Ov5Ze7VFgTgRqF1c10iwKf0g+yYB5JjJkiKeSA5tWai0o13z549cf36dXzyySeIjY1Fx44d4ePjAx8fH3Tu3BkNGzbExx9/7MhayckZjUYcPHhQlVMGyTGYCZJjJhwkJwd47jkgNxfo3l2cWt6nj91fprS91iWKDEbUDPQu9b7IIG/oQ32tljMPJMdMkBTzQHJqzkSlz/EW/hvMEhISgu+//x4nT57EsWPHAABNmzZFw4YNHVMhERERlS8wUJxYvm0bMHUq4GHzCJdKKWuvNQCcu5aPB9vUxfYTGdZTzdvoEejD87uJiMh92fQvs0ajMf+9UaNGaNSokd0LIiIiokpYsUJssB98ULzdq5f4x4H0ob6IDPIu9XDzmgFeiI0IQGxEAFKv5yO3wIAAHw/oQ33ZdBMRkduzqfEeNWoUvL1LP4ysxLp1626pIFI3NQ46IMdiJkiOmbhFBQXiYeXz5ol7utu2BaKjq+WlA308MSheX/q1uiV7tW2ZXs48kBwzQVLMA8mpNRMaoeQY8gpotVoMHToUvr7W52hJLVq0yC6FOUp2djaCg4ORlZWFoKAgpcshIiKqvJMngSFDgAMHxKnlr78uTi530KHlZckpKOZebSIicnu29JY2/Uv9ySefICIi4paKI9clCAKysrIQHBxscVoCuS9mguSYiVuwciUwbpw4QC08HFi2zCED1Coj0MfTLtfkZh5IjpkgKeaB5NSciUpPNVfbhlH1MxqNOHbsmCqnDJJjMBMkx0xUgSAATz0FPPSQw6eWVzfmgeSYCZJiHkhOzZmodONdySPSiYiIyJ40GsDP7+ah5b/+CtSpo3RVREREZINKH2q+bds2hIWFObIWIiIiKlFQAPj4iH9PSAAGDgS6dFG0JCIiIqqaSu/x7t69OzyqeXgLqYtGo4Gvry9PSyAzZoLkmIlKKCgQDy3v1QsoLhaXeXq6ZNPNPJAcM0FSzAPJqTkTlZ5q7io41ZyIiJzWqVPi1PL9+8VDyzdvBvr1U7oqIiIiKoUtvWWl93gTVcRkMiE9PR0mk0npUshJMBMkx0yUY9UqoE0bsemuWRP46SeXb7qZB5JjJkiKeSA5NWeCjTfZjclkwpkzZ1T5i0COwUyQHDNRioICYMIEYNgwICcH6NpVbL779lW6ModjHkiOmSAp5oHk1JyJSp20nZ2dXekn5OHbRERENnjsMeCbb8S/v/oqMH06wJkqRERELqVS/7KHhIRU+gR2NV5TjYiISDGvvQbs2AF88YXLH1pORETkrirVeG/bts3897Nnz+Lll1/GqFGj0LFjRwDAzp07sWTJEiQkJDimSlIFjUaD4OBgVU4ZJMdgJkiOmYB4aPn27Teb7CZNgBMn3HIvN/NAcswESTEPJKfmTNg81bx3794YN24chg8fbrF8+fLl+PLLL7F9+3Z71md3nGpORES3KqegGKnX85FbYECAjwf0ob4I9PGs+IGnT4tTyw8cAH77DejRw+G1EhERkWM4dKr5zp070a5dO6vl7dq1wz///GPr05ELMZlMSE1NVeWwA3IMZoLknCUTOQXFSL6YjT0p15B8MRs5BcWVfuz5q3lYuCMFS3eew7qkC1i68xwW7kjB+at55T9w9WpxanlSEhAWBhgMt7gV6ucseSDnwUyQFPNAcmrOhM2Nd7169fDVV19ZLV+wYAHq1atnl6JIndT8i0COwUyQnDNkosqNM8SGfV1SKi5nF1osv5xdiHVJqaU38IWFwMSJwNChQHY20KWL2Hzfeae9Nskmt/Klg705Qx7IuTATJMU8kJyaM2HzCWUffvghBg8ejJ9++gm33347AOCff/7ByZMnsXbtWrsXSEREZC8VNc5ju0SXe8h46vV8q8dKnyP1ej6a1pY8/vRpseHet0+8/corwFtvKXY+9/mreVbbHxnkjUHxekTV8FOkJiIiIndg8x7vu+++GydOnMB9992Ha9eu4dq1a7jvvvtw4sQJ3H333Y6okYiIyC4q0ziXJ7eg/MPDre7//Xex6a5RA/jpJ2DGDMWa7irtrSciIiK7qNK//vXq1cOMGTPsXQupnFarRXh4OLRam7/PIRfFTJCc0pmwuXGWCfAp/59Nq/vHjQPS04GRIwG9vlI1OorNe+urgdJ5IOfDTJAU80Byas5ElSr+888/8eijj6JTp064cOECAOCbb77Bjh077FocqYtWq0VsbKwqfxHIMZgJklM6EzY3zjL6UF9EBnmXel9kkDfqZV4EBg8Grl8XF2o04nW6FW66gVv/0sERlM4DOR9mgqSYB5JTcyZsrnjt2rXo27cvfH19sW/fPhQWit+eZ2VlcS+4mzOZTDh9+rQqhx2QYzATJKd0JipqnPWhvuU+PtDHE4Pi9VbPERnkjUdSExFwRwdg3Trg+eftVnNlVGZg2q1+6eAISueBnA8zQVLMA8mpORM2N97vvPMO5s2bh6+++gqenjcPSevcuTP2lQyPIbdkMpmQkZGhyl8EcgxmguSUzkR5jfOgNvpKXYs7qoYfxnaJxoiO9TEovi5GtqmFp9Z+jPDRj4hTyzt3Bt5+21GbYKWyU9pv9UsHR1A6D+R8mAmSYh5ITs2ZsPnr7ePHj6Nbt25Wy4ODg5GZmWmPmoiIiBympHFOvZ6P3AIDAnw8oA/1rVTTXSLQx1M8H/r0aWDYMGDvXvGOl18Wp5Z7Vs+50rZMaS/50qHUqeaV/NKBiIiIqsbmxrtWrVo4deoUGjRoYLF8x44diImJsVddREREDmNunG/Fn38C994r7uUOCwO++Qao5qt72DowzR5fOhAREZHtbG68x48fj2effRZff/01NBoN0tLSsHPnTrz44ot44403HFEjqYRWq4Ver1flsANyDGaC5FwqE82aAcHBQIsWwIoVQL161V5CVQam2eVLBztxqTyQXTATJMU8kJyaM2Fz4/3yyy/DZDKhd+/eyMvLQ7du3eDt7Y0XX3wRTz/9tCNqJJUo+UUgKsFMkJzqM5GeDoSHi9PKa9QAtm8XG+5qOrRczhkHptlC9Xkgu2MmSIp5IDk1Z8Lmrwo0Gg1ee+01XLt2DYcPH8auXbuQkZGBt6txkAw5J6PRiOTkZBiNRqVLISfBTJCcqjOxdi3QqBGwaNHNZTExijXdgHMOTLOFqvNADsFMkBTzQHJqzoTNjfeYMWOQk5MDLy8vNGvWDB06dEBAQABu3LiBMWPGOKJGUglBEJCVlQVBEJQuhZwEM0Fy1ZWJylxeq9IKC4FnnwUefFA8n/u77wAnybQ9prQriZ8RJMdMkBTzQHJqzoTNx6AtWbIEM2fORGBgoMXy/Px8LF26FF9//bXdiiMiIrLV+at5pU/ujtcjqoafbU+WkgIMHQokJoq3p0wB3nlHPNTcSXBgGhERkfOrdOOdnZ0NQRAgCAJycnLg4+Njvs9oNGLz5s2IiIhwSJFERESVYcvltSq0fj0wejSQlSVOLV+6FLjnHgdUfeucaWAaERERWat04x0SEgKNRgONRoPGjRtb3a/RaDB9+nS7FkfqotVqERMTo8opg+QYzATJOToTtl5eq0wnT4qHlptMQMeOwMqVikwtd3X8jCA5ZoKkmAeSU3MmKt14b9u2DYIgoFevXli7di3CwsLM93l5eaF+/fqoU6eOQ4okddBqtTzqgSwwEyTn6ExU5fJapWrUCHjjDSAvD3j3XUUHqLkyfkaQHDNBUswDyak5E5VuvLt37w4ASElJQVRUFDROdH4bOQej0YjDhw+jRYsW0Ol0SpdDToCZIDlHZ+KWLq+1YYN4Te6GDcXbU6c61bncroifESTHTJAU80Byas6Ezfvof//9d6xZs8Zq+erVq7FkyRK7FEXqJAgC8vPzVTllkByDmSA5R2eiSpfXKioCJk0CHnhAHKRWUCAuZ9PtcPyMIDlmgqSYB5JTcyZsbrwTEhJQs2ZNq+URERGYMWOGXYoiIiKqCpsvr5WSAnTpAnz8sXi7d29AZd+gExERkfOz+XJi58+fR3R0tNXy+vXr4/z583YpioiIqKoqfXmtDRvEqeWZmUBoKLBkCXDffUqUTERERC7O5sY7IiICBw8eRIMGDSyWHzhwADVq1LBXXaRCOp0OcXFxqjvfghyHmSC56spEuZfXKioCXnoJ+Ogj8fYdd4hTy6OiHFoTWeNnBMkxEyTFPJCcmjNh86Hmw4cPxzPPPINt27b9f3t3Ht5Enf8B/J076ZH0pLSkLS1nUYFyyrErKoqAroiKeCyouOquN66Ku/5E13XRFTzWRbwQVndXwRXwPlF0ERRKWxCkoFAphd60TXqkTWbm90e2cTq9IWky6fv1PH20k0ny/XbeHfrJzHwGgiBAEAR8/vnnuOOOOzB//vxAjJFUQqPR+G47RwQwE9RWyGTi66+9//3974GvvmLRHSQhkwcKGcwEyTEPpKTmTPS48H7kkUcwceJEnHvuubBYLLBYLDj//PNxzjnn8BrvPs7j8WDnzp3weLp5ux4Ke8wEKQU1Ey2NWIxGYP164J13gCee4K3Cgoj7CFJiJkiOeSAlNWeix6eaG41GrFu3Do888gh2794Ni8WCM844A+np6YEYH6mMIAjBHgKFGGaClHo9E83NwJIlgMkELFvmXTZwoPeLgo77CFJiJkiOeSAltWaix4V3i6FDh2Lo0KH+HAsREZF//fQTcMUVwI4d3tuDXXstMGxYsEdFREREfUy3Cu/FixfjkUceQWRkJBYvXtzpuk8++aRfBkZERHRK3n7bW2i3dC1fu5ZFNxEREQVFtwrvvLw8uN1u3/93RI0XuZP/6HQ6jBw5UpVdBikwmAlS6pVMtJxa/tRT3u8nTvR2LeclUSGH+whSYiZIjnkgJTVnQiNJLd1m+gaHwwGbzYba2lpYrdZgDyesSJIEQRCg0+n4IQwBYCaorYBnQpKA884DNm/2fr94sfe6bqPR/+9Fp4z7CFJiJkiOeSClUMtET2rLHnc1J+qIIAjIyclRbcMD8j9mgpQCnomW67hjYoBNm4AVK1h0hzDuI0iJmSA55oGU1JyJbp1qPnfu3G6/4IYNG056MERERD3W3OxtotbS8POaa4CZM4H4+KAOi4iIiKhFt45422w235fVasXmzZuRk5Pje3zXrl3YvHkzbDZbwAZKRETUxpEjwC9/CZx9NlBR8fNyFt1EREQUQrp1xHvNmjW+/7/vvvswb948PP/8876L2gVBwO9+9zteM01ERL3n3XeBhQuB6mrvqeUHDgCJicEeFREREVEbPW6ulpiYiK1bt2KY4pYsBw4cwOTJk1FVVeXXAfobm6sFTqg1O6DgYyZIyS+ZcLuB++/3Xr8NABMmeLuWDxzot3FS7+A+gpSYCZJjHkgp1DIR0OZqHo8HBQUFbZYXFBRAFMWevhyFmebm5mAPgUIMM0FKp5SJllPLW4ruxYuB//6XRbeKcR9BSswEyTEPpKTWTPS48L7uuuuwaNEiPPnkk9i6dSu2bt2KFStW4IYbbsB1110XiDGSSgiCgD179qiyyyAFBjNBSqeciUceAb75hl3LwwT3EaTETJAc80BKas5Et67xllu+fDn69++PFStWoKSkBACQnJyMe+65B3fffbffB0hEROSzYgVQX++9NzePchMREZFK9Ljw1mq1uPfee3HvvffC4XAAAK+VJiKiwCgqAlavBh56yHuPbpsNeP31YI+KiIiIqEd6fKo54L3O+7PPPsPrr7/uu6j9+PHjqKur8+vgSH1aOt0TtWAmSKnbmXjvPWD0aOBPfwJWrQromCh4uI8gJWaC5JgHUlJrJnrc1fzIkSO44IILUFRUhKamJhw8eBCZmZm444470NTUhOeffz5QY/ULdjUnIgpxbjfwhz8Ay5d7vx8/3tu1PCMjuOMiIiIikgloV/M77rgD48aNQ3V1NSwWi2/5JZdcgs2bN/d8tBQ2JElCTU0NevhZDoUxZoKUusxEURFw1lk/F9133AFs3cqiO0xxH0FKzATJMQ+kpOZM9Ljw/u9//4sHHngARkUX2YEDB+LYsWN+GxipjyAIKCgoUGWXQQoMZoKUOs3EJ58A2dnA9u3ea7k3bACefppdy8MY9xGkxEyQHPNASmrORI+bq4mi2O5Ei4uLER0d7ZdBERFRHxQZCdTWAuPGAevXt3uU2+lyo7i6EXUuD6LMethjLYg2G4IwWCIiIqLu63Hhff755+Ppp5/Giy++CADQaDSoq6vD0qVLMWvWLL8PkIiIwlhz889HtKdMAT7+GJg6FTCZ2qxaVNWADXnFKHM0+ZYlWU2Ym21HWnxEb42YiIiIqMd6fKr58uXL8fXXX2PEiBFwuVy46qqrfKeZP/744z16ra+++goXXXQRUlJSoNFosGnTpi6fs2XLFowZMwYmkwmDBw/G2rVrezoFChCNRgOLxeLrdE/ETJBSq0y8/z4weDCwb9/PK5x7brtFt9PlblN0A0CZowkb8orhdLkDPXQKAO4jSImZIDnmgZTUnIkeF96pqanYvXs3/vjHP+Kuu+5CdnY2HnvsMeTl5aFfv349eq36+nqMGjUKK1eu7Nb6hYWFmD17Ns4++2zk5+fjzjvvxA033ICPP/64p9OgANDpdBg1apRqW/yT/zETpKTT6TBqxAjo/vAH4MILgaNHgcce6/J5xdWNbYruFmWOJhRXN/p7qNQLuI8gJWaC5JgHUlJzJnp0qrnb7cbw4cPx3nvv4eqrr8bVV199Sm8+c+ZMzJw5s9vrP//888jIyMCKFSsAAFlZWdi6dSueeuopzJgx45TGQqdOFEVUVlYiISEBWu1J3SKewgwzQUrikSPwXH45jDt3ehfccQfQjbOl6lyeU3qcQhP3EaTETJAc80BKas5Ejwpvg8EAl8sVqLF0afv27Zg+fXqrZTNmzMCdd97Z4XOamprQ1PTzURKHwwEA8Hg88Hi8f6hptVpotVqIoghRFH3rtiwXBKFVy/qOlut0Omg0Gt/rypcDaNOUrqPler0ekiS1Wq7RaKDT6dqMsaPlwZiTIAg4dOgQYmNjW72nmufU2XLOqes5ud1uHDp0CDabDQaDISzmFI7bqbfmpPnwQ2ivvRbGEycg2WwQX3oJ0iWXeOcEdDqnCIMGWnjHKQGQoIUGEjTwjiXCoIEoitxOKpsT9xGck3LskiT5MiE/oqXmOYXjduI+gtuJ+wj0uPDvcXO1W265BY8//jhefvll6PU9fvopKS0tRVJSUqtlSUlJcDgcaGxsbHVf8RbLli3Dww8/3GZ5Xl4eIiMjAQCJiYkYNGgQCgsLUVFR4VvHbrfDbrfj4MGDqK2t9S3PzMxEv379sHfvXjQ2/nx64/DhwxETE4O8vLxWG33kyJEwGo3IyclpNYZx48ahubkZe/bs8S3T6XQYP348amtrUVBQ4FtusVgwatQoVFZW4vDhw77lNpsNWVlZOH78OIqLi33LgzGnliC6XC7sk12zqeY5AeG3nXpzTuXl5aipqUFubi5SU1PDYk7huJ16Y062b79F1v8+JHUOH44fHnkEzXY7kJPTrTlVFx3C6cYGNHlE1EtGFEtxiNPUI0FTB5Nei+qiBhQ29eN2UtmcuI/gnJRzys7OhiiKyM3N9V3DqfY5heN24j6C24n7CO+czGYzuksj9fDu45dccgk2b96MqKgonHHGGb7itcWGDRt68nI/D0SjwcaNGzFnzpwO1xk6dCiuu+463H///b5lH3zwAWbPno2GhoZ2C+/2jninpqaiqqoKVqsVAD+F8tecBEFAbm4uxo0b16bhgVrn1Nlyzql7n1Tn5uZizJgx/KS6r8/J44Hu/PMhjhqFnZddhuwzz+zxJ9XFJxrx9u5jKHM2+Y54J0UbcfHoAbDHWridVDgn7iM4p/aOZuXk5GDMmDEhcTSL24n7CG6n0JpTqO0j6urqYLPZUFtb66stO9LjQ9YxMTG49NJLe/o0v+jfvz/KyspaLSsrK4PVam236AYAk8kEUzsdcvV6fZsj9i0/VCX5Ru3O8o7OBOjJco1G0+7yjsbY0+WBmJNGo0FMTAy0Wm27r6PGOXW1nHPqfLler0dMTAz0er1vHbXPKRy3U8DmtGUL9JMmebuU6/XAp58Cej1sBw9Cr9e3ea2u5jSwXzSu/8WgLu/jze2knjlxH8E5KZcLguDLRE/3Eae6nNsp9ObEfQTnpIZ9RHf1uPBes2bNKb3hqZg0aRI++OCDVss+/fRTTJo0KUgjIjmdToesrKxgD4NCCDPRR7ndwP/9n7dp2m23AX/7m3e5yQQdcEqZiDYbkJVs6HpFUgXuI0iJmSA55oGU1JyJbl8RLooiHn/8cUyZMgXjx4/HkiVLWp2ffzLq6uqQn5+P/Px8AN7bheXn56OoqAgAcP/992PBggW+9W+++WYcPnwY9957LwoKCvDcc89h/fr1uOuuu05pHOQfoiiiuLi41akZ1LcxE+rmdLmxv8SBnYUnsL/E0b17ZR89Cpx99s+dyiUJkG3/rjJxUu9JqsV9BCkxEyTHPJCSmjPR7SPejz76KB566CFMnz4dFosFzzzzDMrLy/HKK6+c9Jvn5OTg7LPP9n2/ePFiAMDChQuxdu1alJSU+IpwAMjIyMD777+Pu+66C8888wzsdjtefvll3kosRLT8IvTv37/d0zOo72Em1KuoqgEb8opb3Ts7yWrC3Gw70uIj2n/SBx8ACxYAVVWA1QqsXg1cdlmrVdrLhNPl/t99ul2ocDahpqEZR040QhClrt+TVI37CFJiJkiOeSAlNWei24X3q6++iueeew433XQTAOCzzz7D7Nmz8fLLL5/0pKdNm9bqAnWltWvXtvucvLy8k3o/IqK+oqWY7exa6M6eqyy6AaDM0YQNecVYNDWj9WvJTy0HgDFjgPXrgUGDunyvlgK/uLoRBaUONDaLSI+PwLnD+2F/qbPj9yQiIiJSkW4X3kVFRZg1a5bv++nTp0Oj0eD48eOw2+0BGRwREfXcSR2tlvEefW5q97EyRxOKqxtbX2ddUgI8/7z3/2+9FVi+3NtQrQvyAr++yYPGZu9pY0eqGrC5oByTMuNwuLKh/fckIiIiUpFuH6r2eDxt7lNmMBjgdvP6O/LSarVITExU3WkfFDjMRO/r6mh1d66ZrnN5evZ4Whrwj394j3I/+2ynRbc8E/IC3y20vlbrSFUDjPqfu4d2NSZSJ+4jSImZIDnmgZTUnIluH/GWJAnXXnttq1tzuVwu3Hzzza3u5X2y9/Em9dNqtRjUjVNLqe9gJnpfj49WtyPK3Pk/DVF6AH/4A3DWWUBLj42LL+7W+OSZkBfTBl3bf0Cb3D/fi7OrMZE6cR9BSswEyTEPpKTmTHT7o4KFCxeiX79+sNlsvq9rrrkGKSkprZZR3yWKIg4dOqTKLoMUGMxE7+vx0ep22GMtSLK2f9Q6s7kGQ+b/Cli2DPj1r4Ha2h6NT54JeTEdadLDYmz9T5LJ4D3inWQ1wR5r6dH7kDpwH0FKzATJMQ+kpOZMdPsQQjDv303qIIoiKioqkJ6ersrTP8j/mIne1+XR6m4cOY42GzA3297mlPUJB77Fr1bcD11VJRAdDaxcCfTwA1d5JloK/DJHEww6LTLio1BYVedrsNbsEbzXpo+xs7FamOI+gpSYCZJjHkhJzZnguXtERGFEXswq9eTIcVp8BBZNzfB2Rq9zIePvf0XC31Z4H8zO9l7PPXjwKY1VWeBHmfUY3t8Kq1mPmaf3R7TZgAE96MZOREREFKpYeBMRhZGOjlafzJHjaLMBWTY3cMVlwH//6114yy3eruWKZpsnq1WBfxK3PiMiIiJSAxbe5DdarRZ2u111p31Q4DATweHXYjYiwns/7vx8YPVq4PLLT2ls7WUi2mzgrcL6KO4jSImZIDnmgZTUnAmNJElSsAfRmxwOB2w2G2pra2G1WoM9HCKi0OPxAA0NQMs+sqHBe69ulXYRJSIiIgqEntSW6vuogEKWIAjYv38/BEHoemXqE5gJFTp2DDjnHGD+fKClY2jLUW8/YCZIjnkgJWaC5JgHUlJzJniqOfmNJEmora1FHzuJgjrBTKjMxx8D11wDVP6va3lBATBihF/fgpkgOeaBlJgJkmMeSEnNmeARbyKivs7jAf74R+CCC7xF9+jRQG6u34tuIiIior6KR7yJiPqy48eBK68EvvrK+/1vfws8+aTfupYTEREREQtv8iOtVovMzExVdhmkwGAmQpwkAZdeCnzzjffU8pdeAq64IqBvyUyQHPNASswEyTEPpKTmTLCrORFRX7Zrl/fe3K+9BgwZEuzREBEREakGu5pTUAiCgN27d6uyyyAFBjMRfE6XG/tLHNhZeAL7SxyoO3wEePvtn1cYOxbYvr3Xim5mguSYB1JiJkiOeSAlNWeCp5qT30iShMbGRlV2GaTAYCaCq6iqARvyilHmaAIADN69HVf+7X5IDXXQbN8OjBnjXVGj6bUxMRMkxzyQEjNBcswDKak5Eyy8iYjCkNPl9hXdGkHAueufx9lvvQitJKEiczgsRjOigj1IIiIioj6ChTcRURgqrm5EmaMJ0dUVuOKpJRi0bycA4JvzL8f7192Lq+LtyAryGImIiIj6Chbe5Dc6nQ7Dhw+HTqcL9lAoRDATwVPn8mDw7u2Y98z9iK49gSZzBDb8din2TJ3pezwYmAmSYx5IiZkgOeaBlNScCRbe5DcajQYxMTHBHgaFEGYieKLMegw4tA/RtSdwfOAwvH73E6hMGdjq8WBgJkiOeSAlZoLkmAdSUnMm2NWc/Mbj8WDnzp3weIJzJI1CDzMRPPZYCwoW/BbvLFqCVX95rVXRnWQ1wR5rCcq4mAmSYx5IiZkgOeaBlNScCRbe5FdqbO1PgcVM9KJPPwWmTwcaGhBtNmDu2DQcnn8dPCazb5Ukqwlzx9gRbTYEbZjMBMkxD6TETJAc80BKas0ETzUnIlI7QQAefhj4858BSQKeeAJYuhRp8RFYNDUDxdWNqHN5EGXWwx5rCWrRTURERNQXsfAmIlKzkhLgqquALVu83990E3Dvvb6Ho80GZCWz0CYiIiIKJo2kxruPnwKHwwGbzYba2lpYrdZgDyestNzQ3mKxQKPRBHs4FAKYiQD77DPg6quB8nIgKgp48UXgyiuDPapOMRMkxzyQEjNBcswDKYVaJnpSW/KIN/mV0WgM9hAoxDATAfKPfwDXXec9tXzkSGD9emDYsGCPqluYCZJjHkiJmSA55oGU1JoJNlcjvxEEATk5OapteED+x0wE0LnnAnFxwI03At98o5qim5kgOeaBlJgJkmMeSEnNmeARbyKiEOd0uVFc3Qh3wUEYhg/1Nkiz24G9e4H+/YM9PCIiIiLqAo94ExGFsKKqBrzy5Y84dud9OH36ROQ8vQartxaiqKqBRTcRERGRSrDwJiIKUU6XGx9tzsOFv1+I6eufh1YUkV6QizJHEzbkFcPpcgd7iERERETUDexqTn4jSRIEQYBOpwuJLoMUfMzEqTmy/h3E3XQ9omuq0GS2YNNNDyL/l7N9jy+YlI6sZHXtx5gJkmMeSImZIDnmgZRCLRM9qS15xJv8qrm5OdhDoBDDTJwEQQAefhhp8+cguqYKpWmDsfLxN1oV3QBQ5/IEaYCnhpkgOeaBlJgJkmMeSEmtmWDhTX4jCAL27Nmjyi6DFBjMxEnasgV46CFoJAk7ps/Fc4/9CxX2jDarRZnV1x+TmSA55oGUmAmSYx5ISc2ZUN9fbURE4e7cc4F770Xj8CxsS50Mt6OpzSpJVhPssZYgDI6IiIiIeopHvImIgsjpcmN/cTWO3rcUP+Qf/Llh2uOPw3LdtZibbUeS1dTqOUlWE+aOsSPabAjCiImIiIiop3jEm/xKp9MFewgUYpiJjhVVNeCjz/NxziOLkfrdtzj0/odY/eSrmDs2DWnxEQCAtPgILJqageLqRtS5PIgy67338VZx0c1MkBzzQErMBMkxD6Sk1kywqzkRURA4XW58/PfXcf6jd8NaU+ntWn7j/yH/rAuRZDVh0dQMVRfXREREROGOXc0pKCRJQk1NDfrYZznUCWaiA4IA1/89hLn3XQdrTeXPXcvPuhAAUOZoQnF1Y5AHGRjMBMkxD6TETJAc80BKas4EC2/yG0EQUFBQoMougxQYzEQ7KiuBCy5A4vK/QCuK2HnuJe12LVfrrcK6wkyQHPNASswEyTEPpKTmTPAabyKi3mSxAMeOQbRE4D83/BF50y5qdzU13iqMiIiIiNrHv+yIiLrJ6XKfXJMzQQA0GkCrBSIjgf/8B43NHhyvNAO8VRgRERFR2GPhTX6j0WhgsVig0WiCPRQKEeGUiaKqBmzIK0aZrFBOspowN9vu60DerrIy4OqrgRkzgHvu8S4bMQKRAOZ29JphfKuwcMoEnTrmgZSYCZJjHkhJzZlgV3Mioi44XW6s3lrYqkBu0WkH8i++AK66CigtBWw2oLAQiI1t89rhdKswIiIior6CXc0pKERRRHl5OURRDPZQKESESyaKqxvbLbqBDjqQCwLwyCPA9Oneovu004Bt29oU3QAQbTYgK9mK8RlxyEq2hn3RHS6ZIP9gHkiJmSA55oGU1JwJFt7kN6Io4vDhw6r8RaDACJdMdNVhvNXj5eXAzJnAgw8Coghcfz2wYwcwYkSAR6kO4ZIJ8g/mgZSYCZJjHkhJzZngNd5ERF3oqsO473GXC+L4CdAWHYFgiUDZY08i+sbrw/4oNhERERF1jke8iYi6YI+1IMlqavcxeQfyonoRX82+GmX2Qfjbsn/hWftkrN5aiKKqht4cLhERERGFGBbe5DcajQY2m02VXQYpMMIlE9FmA+Zm29sU30lWEy5LNSK68Ec4XW5syCvGx+degb//9XWUpw4C4L0GfENeMZwudzCGHnLCJRPkH8wDKTETJMc8kJKaM8Gu5kRE3aTsQJ6+dyciFv4aiIrCgfc+x9q91R0+d8GkdGQlc59DREREFC7Y1ZyCQhRFFBcXq7LZAQVGuGXC14E8PQZZrzyLiAvOB0pKAIMBTSXlnT63qwZtfUW4ZYJODfNASswEyTEPpKTmTLDwJr9R8y8CBUZYZqKla/kDD3i7ll97LbBjBwxDB3f6tK4atPUVYZkJOmnMAykxEyTHPJCSmjPBwpuIqLu++grIzgY++QSwWIA1a7xfkZHdbsBGRERERH0PC28iou567DHg+HHvPbl37vQe7f6fzhqwzR1j5y3FiIiIiPownvtIfqPVapGYmAitlp/nkFfYZWLtWuAvf4Hz/x5CcbMWdYUnEGXWwx5rQbTZgLT4CCyamtGqAVvLY+QVdpmgU8I8kBIzQXLMAympORPsak5E1JGvvvKeVv7nP/sWFVU1YENeMcocTb5lSVYT5mbbkRYfEYxREhEREVEQsKs5BYUoijh06JAqmx1QYKg2E6II/OUvwNlnA48+CmzcCKfLjYISB17aehgHSp1wCz/Piffq7j7VZoICgnkgJWaC5JgHUlJzJlh4k9+IooiKigpV/iJQYKgyExUV3q7lf/yjtwBfsABHx07F6q2F2PnTCewtrkW5swk/VdajwunyFeBljiYUVzcGefChT5WZoIBhHkiJmSA55oGU1JwJXuNNRNTiq6+AK6/0NlCzWIDnnoNz/tV4a2shKuuakWIzo8zp8t2TW6fVICXGgsyEKESZ9bxXNxERERG1i0e8iYgA4NlnvaeWHz8ODB8O7NgBXHstiqsbUeZoQnqcBSca3K2Ka0GU4Gh0o7CqDm5B5L26iYiIiKhdLLzJb7RaLex2uyq7DFJgqCoTmZneU8t//WvvrcJOPx0AfIW2Ua9DYUU9BiZEQhAleEQJgihBkCQ0Nouw/q+DOXVOVZmggGMeSImZIDnmgZTUnAkeniG/aflFIGoR8plwOICWDpSzZ3sL7rFjAY3Gt0rLUewmt4CcIydwzvB+aPYIOFRRDwDwCBIGJJgx8/T+vG1YN4R8JqhXMQ+kxEyQHPNASmrOhPo+KqCQJQgC9u/fD0EQgj0UChEhmwlRBB57DBg8GDhy5Ofl48a1KroBwB5rQZLVBINeixP1zdiQW4yMhEgsmJSOBZPScfXENKQnRMCk1/XyJNQpZDNBQcE8kBIzQXLMAympORMsvMlvJElCbW0t+tit4akTIZmJykrv0e377/d2MP/XvzpdPdpswNxsOzQA0uIi4BYkfP1jFT7cW4o9xbV4d08JjtW4YNRzd9odIZkJChrmgZSYCZJjHkhJzZngqeZE1Hds3QrMnw8cOwaYzcDKlcB113X5tLT4CGSnxiDJasYH35XgeK0LoiihusGNtLgInJvVjx3NiYiIiKhDLLyJSHWcLjeKqxtR5/Ig6n9NzTq9vloUgSee8N6bWxC8XcvXrwfOOKPb72k06PD1oSqMtNswbmAcmtwCTAYdmj0C9pc4MSYt1g8zIyIiIqJwxMKb/Ear1SIzM1OVXQYpMAKRiaKqBmzIK0aZo8m3LMlqwtxsO9LiI9p/0qpVwJIl3v+/5hpg1So49SYUlzi6XbzbYy1IiDLicGVDm8eSrCZ2NO8m7idIjnkgJWaC5JgHUlJzJjSSGk+QPwUOhwM2mw21tbWwtnQzJiJVcLrcWL21sFXR3SLJasKiqRntF88uF3DuucD11wPXX4+iE409L97RSdE/xo60uI6fR0REREThpye1pfo+KqCQJQgCdu/ercougxQY/s5EcXVju0U3AJQ5mlBc3ej9RhS9TdNa3tdsBv77X2DRIjibPG2K55bnb8grhtPl7vD90+IjsGhqBhZMSsfc7AFYMCkdi6ZmsOjuAe4nSI55ICVmguSYB1JScyZ4qjn5jSRJaGxsVGWXQQoMf2eiqwZmdS6Pt2v5ggXAhx8CP/4ILF3qffB/pyR1p3jPSu74lPNos6HTx6lz3E+QHPNASswEyTEPpKTmTPCINxGpRpS5888KE/fkAKNHe4tusxmw29us063inYiIiIjIj3jEm4hUwx5rQZLV1OaItUYUMfPjfyJ9zVPe08uHDgXefBMYObLNa3RVvHf1OBERERFRT/EvTPIbnU6H4cOHQ6fTBXsoFCJ6momubhMWbTZgbra91TXaEY5qXLPqQWTs+NK70lVXAc8/D0RHt/seHRXvALuT9wbuJ0iOeSAlZoLkmAdSUnMm2NWciEJCT24TJi/Q4wsPIGP2OdAAwLPPAosWARrNyb0Xu5MTERERUTexqzkFhcfjwc6dO+Hx8BpZ8upuJpwud486jXsbnFkxPiMOmedMgubVV4FvvwVuuKHLohtgd/Jg4n6C5JgHUmImSI55ICU1Z4KFN/mVGlv7U2B1JxPdvk0YAFRVAZdcAnzzzc/LLr+83eu5OyMv3rOSre3f/5sCgvsJkmMeSImZIDnmgZTUmgle401EQdftTuPbtgFXXAEUFwP79wP79gEqvMaHiIiIiPoWHvEmoqDrstO4UQs88QTwy196i+6hQ4F161h0ExEREZEqsLka+U3LDe0tFgs03bjOlsJfdzPhdLmxemthu6ebp6MBN7z8J+g//MC74MorgRde6LBrOYU27idIjnkgJWaC5JgHUgq1TLC5GgWN0WgM9hAoxHQnEy23CUuymlotz2yuwQ23X+Ytuk0mb8H9r3+x6FY57idIjnkgJWaC5JgHUlJrJlh4k98IgoCcnBzVNjwg/+tJJtrrND7/4onQjx0DDBni7Vp+443d6lpOoYv7CZJjHkiJmSA55oGU1JwJNlcjopARbTYgy+gAoow/H9X+xz8ArRbgpSFEREREpFI84k1EoWP7diA7G7j5ZqCl/URMDItuIiIiIlI1Ft5EFHySBKxY4e1afvQosHMncOJEsEdFREREROQX7GpOfiNJEgRBgE6nC4kugxR83crEiRPAtdcC777r/X7+fODFF9lALUxxP0FyzAMpMRMkxzyQUqhlgl3NKWiam5uDPQQKMZ1m4ptvvKeWv/uut2v5888D//43i+4wx/0EyTEPpMRMkBzzQEpqzQQLb/IbQRCwZ88eVXYZpMDoNBPNzcC8eUBRETB4sLcIv+kmdi0Pc9xPkBzzQErMBMkxD6Sk5kywqzkRnTSny43i6kbUuTyIMuthj7Ug2mzo3pONRmDtWuDll71HunnpBxERERGFqZA44r1y5UoMHDgQZrMZEydOxI4dOzpcd+3atdBoNK2+zGZzL46WiACgqKoBq7cW4tXtR7Ah7xhe3X4Eq7cWoqiqoeMnffMN8PbbP39/zjneU8tZdBMRERFRGAt64b1u3TosXrwYS5cuRW5uLkaNGoUZM2agvLy8w+dYrVaUlJT4vo4cOdKLI6bO6HS6YA+BeoHT5caGvGKUOZpaLS9zNOHt/GMod7iwv8SBXUeqUe8WUedye7uW/+IXwDXXAAcPBmnkFAq4nyA55oGUmAmSYx5ISa2ZCHpX84kTJ2L8+PH4+9//DgAQRRGpqam47bbbsGTJkjbrr127FnfeeSdqampO6v3Y1Zzo1O0vceDV7W0/8NJpNcjqH41DFXVodIsAAIuzFle/sBSDtn/uXWnePOCll3iUm4iIiIhUTTVdzZubm7Fr1y5Mnz7dt0yr1WL69OnYvn17h8+rq6tDeno6UlNTcfHFF2Pfvn29MVzqgiRJqKmpQR+7Q12fVOfytLs8Pc6CzQXlKDrhPd089eBu3H7PPAza/jk8BgNczzwLvPEGi+4+jPsJkmMeSImZIDnmgZTUnImgNlerrKyEIAhISkpqtTwpKQkFBQXtPmfYsGF45ZVXMHLkSNTW1mL58uWYPHky9u3bB7vd3mb9pqYmNDX9fDqsw+EAAHg8Hng83uJBq9VCq9VCFEWIouhbt2W5IAitNm5Hy1vuJ9fyuvLlANp03+touV6v992jroVGo4FOp2szxo6WB2NOgiBg//79GDduXJv76ql1Tp0t78tzijBooIEICVpoIEED71iMOg2OVtVjcFI0prz3Gma++hR0ggdV/VPx77ufwPTLZ2KoKIbknDpbrtbtFIpzkiQJ+/fvx5gxY1qdKqbmOYXjduqtObndbl8eDAZDWMwpHLcT9xHcTtxHcDuFypxCbR/RE6rraj5p0iRMmjTJ9/3kyZORlZWFF154AY888kib9ZctW4aHH364zfK8vDxERkYCABITEzFo0CAUFhaioqLCt47dbofdbsfBgwdRW1vrW56ZmYl+/fph7969aGxs9C0fPnw4YmJikJeX12qjjxw5EkajETk5Oa3GMG7cODQ3N2PPnj2+ZTqdDuPHj0dtbW2rDx8sFgtGjRqFyspKHD582LfcZrMhKysLx48fR3FxsW95MObUEkSXy9XqLAQ1zwkIv+3kjzl5RAlDzSIOuKyI09QjQVPnXbemCmPiBAgmPZKrjkIneHB0ylR89bvFaLL0R53LE7JzCsftFIpzys7OhiiKyM3N9X1Ap/Y5heN26q05lZeXo6amBrm5uUhNTQ2LOYXjduI+gtuJ+whup1CZU6jtI3rS5Duo13g3NzcjIiIC//nPfzBnzhzf8oULF6KmpgZvy7sfd+Lyyy+HXq/H66+/3uax9o54p6amoqqqyncePj+F8t8R79zcXB7x7iNzKq5uxKbdJSh3uHxHvEelWLG1sBqRJgN0nmac8e2naJyajUNSPwjQ4deTBmJov8iQnVM4bqdQm5MkScjJyQmZT6q5nYJ/NCs3N5dHszgnH+4jOCfuIzinzsYeavuIurq6bl/jHdQj3kajEWPHjsXmzZt9hbcoiti8eTNuvfXWbr2GIAj47rvvMGvWrHYfN5lMMJlMbZbr9Xro9a2n3/JDVZJv1O4sV77uySzXaDTtLu9ojD1dHog5aTQaREREQKvVtvs6apxTV8v78pwGJkZj0VSz9z7ejW6k/vMlxD31AUr/uAolDSIEvRG7p8xEOk5AgBb9rGbYYy0hPaeTXc45dX/sgiAgIiICer2+zWupdU6dLeecOl+u1+t9eWhZR+1zCsftxH0EtxP3EdxOoTKnUNxHdFfQu5qvW7cOCxcuxAsvvIAJEybg6aefxvr161FQUICkpCQsWLAAAwYMwLJlywAAf/rTn3DmmWdi8ODBqKmpwRNPPIFNmzZh165dGDFiRJfvx67mRH5WXQ1cd53v/tyVz72Efw75ZatbjSVZTZg7xo60uIhgjZKIiIiIyK96UlsG/RrvK664AhUVFXjwwQdRWlqK0aNH46OPPvI1XCsqKmr1iUN1dTV+85vfoLS0FLGxsRg7diy2bdvWraKbAksURVRWViIhIaHdT4koDO3Y4b092JEjgNEIPP00Em5ehEVNHhRXN8LZ6Ia22YkhacmwRbQ984T6Hu4nSI55ICVmguSYB1JScyaCfsS7t/GId+B4PB7k5ORg3LhxHZ4uQmFCkoBnngHuvRdwu4HMTODNN4ExY1qtxkyQEjNBcswDKTETJMc8kFKoZUI19/EmIpVasgS46y5v0X3ZZUBubpuim4iIiIiIvFh4E1HPXX89EB8P/P3vwPr1gM0W7BEREREREYWs4B+fp7Ch0Whgs9na3EqMwoAkATt3AhMmeL8fNgwoLASiozt9GjNBSswEyTEPpMRMkBzzQEpqzgSv8SaizlVXe49wv/MOsHkzMG1asEdERERERBR0vMabgkIURRQXF7e64Typ3M6d3mu3N20C9Hrgp5969HRmgpSYCZJjHkiJmSA55oGU1JwJFt7kN2r+RSAFSQL+9jdgyhRvsZ2ZCWzbBlx7bY9ehpkgJWaC5JgHUmImSI55ICU1Z4LXeBNRazU13lPLN270fn/ppcDq1WygRkRERER0knjEm4hae/ttb9FtNALPPuu9PzeLbiIiIiKik8Yj3uQ3Wq0WiYmJ0Gr5eY6qLVgA7N0LXHEFMG7cKb0UM0FKzATJMQ+kxEyQHPNASmrOBLuaE/V1NTXAAw8AjzwCxMZ26ylOlxvF1Y2oc3kQZdbDHmtBtNkQ2HESEREREYWQntSWPOJNfiOKIgoLC5GRkaHKT6HCQY8L4pwcYN487z25y8uB9eu7fI+iqgZsyCtGmaPJtyzJasLcbDvS4iNarctMkBIzQXLMAykxEyTHPJCSmjOhrtFSSBNFERUVFarsMhgOiqoasHprIV7dfgQb8o7h1e1HsHprIYqqGtquLEne67cnT/YW3RkZwL33dvkeTpe7TdENAGWOJmzIK4bT5W61nJkgJWaC5JgHUmImSI55ICU1Z4KFN1EY6FFBXFMDXHYZcPvtgNsNzJ0L5OZ263ru4urGNu8hf6/i6sZTmQYRERERUVhi4U0UBrpdEH//PTBmDLBhA2AwAM88A/znP0BMTLfep87lOaXHiYiIiIj6Il7jTX6j1Wpht9tVd71FOOh2QZyUBHg8wMCB3uu5x4/v0ftEmTvfZSgfZyZIiZkgOeaBlJgJkmMeSEnNmWDhTX7T8otAva+zgtjQ1Igok877TXw88MEHgN3e7lHurpqz2WMtSLKa2j26nmQ1wR5rabWMmSAlZoLkmAdSYiZIjnkgJTVnQn0fFVDIEgQB+/fvhyAIwR5Kn9NSECulHPoei+++DAPflXUrP/30dovu7jRnizYbMDfb3ua9kqwmzB1jb9NBnZkgJWaC5JgHUmImSI55ICU1Z4JHvMlvJElCbW0t+tit4UNCS0Hsa7AmSZj04RuY9epy6N1u4G9PA4uuA/Tt/8p31Zxt0dQMRJsNcLrcqG/2YMLAOGg0gMWgg9mgw4AOblvGTJASM0FyzAMpMRMkxzyQkpozwcKbKIT15L7cafERWDQ1A8ePlCLxrlsR9+E73gcuuQR45ZUOi26g6+Zsx6obEWFsW5y33L+703uFExERERH1cSy8iUJUUVVDh4VuWnxEu8+J/v47DLv8cuDwYW/X8iee8N42TKPp9L26as7mcgv4aF9pl0fEiYiIiIioLV7jTX6j1WqRmZmpyi6DoaZH9+VuUVICTJ3qLboHDgS2bgXuuKPLohvoult5g1s4qft3MxOkxEyQHPNASswEyTEPpKTmTKhvxBSytFot+vXrp8pfhFDT7ftyyyUnA/fcA8yZA+TmAhMmdPv9OmrOBniPsqOLy2g6OmLOTJASM0FyzAMpMRMkxzyQkpozob4RU8gSBAG7d+9WZZfBUNPt+3Ln5gKHDv38wIMPAhs2ALGxPXq/rrqVx0YaO31+R0fMmQlSYiZIjnkgJWaC5JgHUlJzJniNN/mNJElobGxUZZfBUNPVqd9RJh3w3HPAXXcBp50GbNsGmM2ATnfS79nSnK29Zm5Ol7tH9+9uwUyQEjNBcswDKTETJMc8kJKaM8HCmygEtZz63V6hm6prxuDbFgEb3vIuSEsDmpq8hfcpijYbkJXctklam9uV/U9H9+8mIiIiIqKfsfAmCiEttw+rd3kwbWgiPttfhqr6nxupnV72I+Y98XsYCg97bw/2xBPdbqB2qjo7Ik5ERERERB3TSGo8Tn8KHA4HbDYbamtrYbVagz2csNJyQ3ubzQZNLxSC4UZ5+zCdVoORA6zISIgCJAmp69Yi6aE/QNPcDKSnA+vWARMnBnnUnWMmSImZIDnmgZSYCZJjHkgp1DLRk9qSzdXIbzQaDWJiYkLil0Bt2rt9mCBKyDtai68PVWJ4ogX9N67zFt2/+pW3qVqIF90AM0FtMRMkxzyQEjNBcswDKak5Eyy8yW88Hg927twJj6fzjtzUVpe3D6vzAOvXA888A2zaBMTF9e4ATxIzQUrMBMkxD6TETJAc80BKas4EC2/yKzW29g8FbW4fJkmY+NE6TH9j5c+PDxwI3H57r1zP7U/MBCkxEyTHPJASM0FyzAMpqTUTbK5GFALktw8zNdRh7qqHMXLbxwCAgrG/RNSk9GANjYiIiIiIThELb6IgcLrcOFbdCJdbQINbgCBKGJMWA11+Hn754G1IKCmCoNPjo2vuhHvM2A7vk01ERERERKGPXc3Jb1puaG+xWFTZ8KC3FFU14O38Y4iLNGJzQTmOVDUg0qDFFXkfYN6/noTB3YyaxGT8e/Ff0TxuAuaOsSMtLiLYwz4pzAQpMRMkxzyQEjNBcswDKYVaJnpSW/KIN/mV0WgM9hBCWkv38kijzld0A8BN/34cs799HwBwYMI0NL+0GmcnJoTFfbKZCVJiJkiOeSAlZoLkmAdSUmsm2FyN/EYQBOTk5Ki24UFvaOlebtTrfEU3AOzJHAWPVof/XHUn1t77DPSJCchKtqq+6GYmSImZIDnmgZSYCZJjHkhJzZngEW+iXtTSvbyp2YM4RxVOWOMBAJ+NPR/70k+DefgQJGo0bbucExERERGRavGIN1EvijLrYWqow3mPLsaqp2+Cra7G91hJwgAYdFrfekREREREFB5YeBP1orSiA7hjyVXI+OxdxNRX44zCPb7HLEYtIk16JFlN7GJORERERBRG2NWc/EaSJAiCAJ1OFxJdBkOKJAEvvgjccQfQ1ARnYjK2Pfp3rDOk4khVAyxGLTISojAoMVLVXcyVmAlSYiZIjnkgJWaC5JgHUgq1TLCrOQVNc3MzLBYerW3F6QRuugl4/XXv9xdeCLzwMtI1Ftz+v/t4QwJiI41h0cVciZkgJWaC5JgHUmImSI55ICW1ZoKnmpPfCIKAPXv2qLLLYEAtXeotuvV6YPly4J13EJ2ShOHJVoxOi8XkQQmYPDg8upgrMROkxEyQHPNASswEyTEPpKTmTPCIN1GgLV0K5OcDjz4KTJoU7NEQEREREVEvY+FN5EdOlxvHj5bD/M9X0XDT72CPi0C0zQZ8/nmwh0ZEREREREHCwpv8SqfTBXsIQVNU1YCv3voMMx6+HYnHj+CdYw58PP86zM22Iy0+PJqlnYy+nAlqHzNBcswDKTETJMc8kJJaM8Gu5kR+4Gxsxrd//CvOWvlnGJqbUBOfhNcXP4Gi4aORZDVh0dSMsLt+m4iIiIioL+tJbcnmauQ3kiShpqYGfeyzHMDphHj1NZj+1P/B0NyEgjG/wLMr3kTR8NEAgDJHE4qrG4M7xiDps5mgDjETJMc8kBIzQXLMAympORMsvMlvBEFAQUGBKrsMnrTvvgPGjYNt45sQtDp88Ou78Or9z6IhOqbVanUuT3DGF2R9MhPUKWaC5JgHUmImSI55ICU1Z4LXeBOdCocDOHQI7uQBWH3rX3BkeHa7q0WZ+atGRERERNRXsRog6ilJAjQa7/9PmQKsX4+mCZPgKnACjqY2qydZTbDHWnp5kEREREREFCp4qjn5jUajgcVigaalKA0zTpcbhzdvQ90Zo5H/4VbkF1WjoMQB56yLEGVPxtxsO5KsplbPSbKaMHeMvc82Vgv3TFDPMRMkxzyQEjNBcswDKak5E+xqTgRvUV1c3Yg6lwdRZj3ssZZWxfL3xTUo+MvTuPDlZTC6m5E7fDxW3rcS5wzvhxP1zbh49ACkxUd0+TpERERERBQeelJb8lRz8htRFFFZWYmEhARoteo5maKoqgEb8opRJjtNPMVmxoUjk+HyiCgprsCgpfdg7ocbAQC7R07Gktl3IaqhGZ8XlOPMzDhsyCv23TIsK5mFdgu1ZoICh5kgOeaBlJgJkmMeSEnNmWDhTX4jiiIOHz6MuLg41fwiOF1u7CisxODEKKTHRUCjASKMOkQaDXjpv4dh/H4frvvbfUivOApBq8Vn19yBp0f9CpMyE/DRvhJ4RAlGvQ6HKxtQXN3IoltBjZmgwGImSI55ICVmguSYB1JScyZYeFOfVlheB5NBh1KHC3UuDzyihHKnC0cq6zG7+TiuePhamDzNKImOx+0X34cTIycgNdaCrYeqcNoAG07Uu9Hk9t7OoK/eMoyIiIiIiDrHwpv6LKfLjWMOF97adQx7j9dCA0ACMCghEtOG98PeEiPOO2006vUmvPybpfipUkR9bSOmDo7HlgMVmDo4HuWOapgMOgC8ZRgREREREbVPXcfnKaRpNBrYbDbVdBk8Vt2ILw+UY3+pA00eESfqm2H76RD2/lSJd3Yfh95sxIaHVmLG9Huwu1GPC05LhgaA2aCDVgO4BQnp8RFoaPbwlmEdUFsmKPCYCZJjHkiJmSA55oGU1JwJFt7kNzqdDllZWdDpdMEeSpecLjeO1zTip6oG1DcJaHILmLv7E7z3jztx72cvY3+JExaDDpLVhn62CByqaMC2Q1UYnxEHjygiyWpGf5sJvxiSgBP1zX36lmGdUVMmqHcwEyTHPJASM0FyzAMpqTkTLLzJb0RRRHFxMURRDPZQOlVU1YAXvjyEHYUnIIoSUOfEY28vxxMf/g0WTxPSTxyHXvCgsVlETIQB0SbvKeSFlXUYabehpLYRUwbHY8rgBEiShNlnJCMtLiLIswpNaskE9R5mguSYB1JiJkiOeSAlNWeChTf5TSj/IpQ7XNh+qBI5hVX48mA5jHodMhIjcba7DO++uhhz930Bj0aL5Wdfi+suXwqPTo+4SCNczQKgASRIsFoMiLUYUVPvxkUjU/DRvjLsOeb0XeNNbYVyJig4mAmSYx5IiZkgOeaBlNScCXaDorD3XXEN/r2jCGPSYvDN4RP4vKAcBq0G8777DLdtegam5iaUR8fjlovuwXcZIyF5RIyy2xAXaUC5owmJUSbERhjhEUREmfWIjzbB6XKjzsVru4mIiIiIqGssvCksOV1uFFbUo8zpQmOzB5eOseM/u46izOHCoH5RsFRX4eZ3n4OpuQn5IybirTv/gto6HTK1WthjzZiYEY/39hxHenwkSmpdKKltxIgUG7YcKEd1gxuCKCHJauK13URERERE1CUW3uQ3Wq0WiYmJQb+ZfVFVA3YUVuJgeR0kCchIiEReUTX2HXegtNaFqvpm6LU6PHjxYmRWHsXOeb/BRdl2SMU1iIs0oqahGZv3l2HK4ER8e7gKNY1ujEixYdKgeBwqc+Ku6UNgNRtwTlYSi+4uhEomKHQwEyTHPJASM0FyzAMpqTkTGkmSpGAPojc5HA7YbDbU1tbCarUGezjkR06XG8eqG7Htx3LERJpQWNkAvVYDjyghNdaCgmXP4Ig5Dl8OzIYoSdDrtNBrNTDptbhr+hDUNwuIjzRCp9Wgv82MsloXtFoNrGYDjDotdDoNBiVGoZ/VHOypEhERERFRkPWktuQRb/IbURRRWFiIjIyMXv8UqqiqAetzimCzGGCPjcRL/z2M3KIaDOkXheLiSvxj1z8w76t3cSLCil/duAqllhg0e0RYLHo4XG5EGPXwiBJ2FJ5AfbOAK8enISvFBnushUe1T0EwM0GhiZkgOeaBlJgJkmMeSEnNmVDXaCmkiaKIioqKXu8yeOxEA175+jAgAQPjI7C5oAz7jjug12qQVlKId169CxO+eheCRovPL7gaVRE2GHQaGHUa6HVajE6NhdmgxeHKBhj0OsREGGEx6pCVbGXRfYqClQkKXcwEyTEPpMRMkBzzQEpqzgSPeJOqfX+8FkdP1CM7LQZFVY2odXlw9EQjzhhgwy+3vY+b1q2Ayd2EE7Z4PHrNg0i+aAbE/x6GBkCzICEtNgLj0mNQ6WyCIP581UWUmb8aRERERETkH6wuSLW+P1aLV7/5CQlRJliMehyvaUSUSQ+96MHCl/+MWbmfAAD+mzkGf563BIaU/hio12Lh5IFo9ogw6rWob3LjQKkTCVEm3+vyFmFERERERORPLLzJb7RaLex2e8Cvt3C63Pj+WC0OV9ZjwsA4JFnNOFDqxHfHapGRGIl95Q2obxYhaLR47pwFePWX81HbJCKxvhkxkQa8sbMIZoMOGQmR0GmA807rj/0lTgDgLcL8rLcyQerBTJAc80BKzATJMQ+kpOZMsKs5qUpBiQP//OYIjtU04kCZE65mAdOG94M9xoLXvjyIxReegbXbjqCkpBJZpYX4Ln0EYiKMcLkFDE2Kxt3nD4Wz0Q1JA/S3WpBsM+NEfTOcLg+izHo2UyMiIiIiom7pSW2pvo8KKGQJgoD9+/dDEAS/v7bT5cbuomo89mEBCqvq4XC5kRBlwqB+UXBU1OCMB+7Eq+89hsNlDkwdHI/k5ATk2rPg+d9124MSozBlcAKKquphNmiREGHCqNQY9LOaMTzZivEZcWymFgCBzASpEzNBcswDKTETJMc8kJKaM8FTzclvJElCbW0t/HkShdPlxtHKekiQ8EO5EyNSoqHVatDYLECv1cK9dy+ue+pepJb+BFGrxa4fvsMTzgSMz4jFlMHx8AgS+ttM2HO0Bv/ZdRQP/eo0fLK/AldPTPPbGKljgcgEqRszQXLMAykxEyTHPJCSmjPBwptCVlFVAwqrnDBoNRABxEWa8Nq3RThY6kSzR8ScPZvx509XweJ2oSIqFh//8Ul83W8o0o2N2HKgAgBg0muRlWxFQYkDkwbFw6DVICHKyOZpRERERETUa1h4U0hyutworWlAtFEPSZQgaTV4N78Y3x93wNzkwp8+XoXL934GAMgbOg5v3vkX9Bucjp3bCzF/XBoEUcJPVQ1IjDKiqr4J2WkxuPGXmcgvqmHzNCIiIiIi6lUsvMlvtFotMjMz/dJl8Fil91rsBreIhmYPnC4BAxMi8atRKbjowZsx7cC3EDRaPDX1Kjx35uW4b0Smt4Fav2jsPV6LKYMTMH98BKwWPYx6LTLjI2HUaXHNpHQW3b3In5mg8MBMkBzzQErMBMkxD6Sk5kywqzmFnAPHalHT5MbeYw58e7gKuUdrkBhtwk+V9Rje34oLPcdxwUO34e6Zd+CbtJGwmvW4/dwhMBu0MGi1iDDpYNLroNNpEG3QIWuAjcU2ERERERH5FbuaU1AIgoDdu3efUpfBgqM1EDTAnuJafHu4CnlHa6BvbMTIg7mQJOC7Y7XYqOmPF178APWTpmJIvyhEmfVwutzIKaxGs0eETqNBUrQJEwbGYcKgBBbdQeSPTFB4YSZIjnkgJWaC5JgHUlJzJniqOfmNJElobGzsdpdBp8uNY9WNcLkF1DV7EKHTwCMBxeWNKHW4UFjVANtPP+L5dx5H2onjKPrNM8iLH4j9JQ6MTY9Fk8eJH8rrMDrVhrgIEwo8Tpxut0ILDUalxQZ4ttQdPc0EhT9mguSYB1JiJkiOeSAlNWeChTcFRVFVA97adRQxEQZ8tr8c/aJNuHbKQGw9WIEmt4gmt4hzcz7B7f9ZgQh3E8ojY9Ff70GkWY/6Jg80Gg2iTHpccHoSpg1NxP5SJ66dnA5nkxuJUexYTkREREREoYOFN/U6p8uNf357BBnxFhj1Olw0KgURRh2OVDXAajagtPoE5j7/KMZs3ggA+CZjNG6dfTeqo2LRX69Ff2sUsvpH48zMOIiihAiTHpmJkfAIEvYVO3HNpLggz5CIiIiIiOhnbK5GftNyQ3ubzQaNRtPhermHq1DnEVBc3YgvCsrR6BZRXN2AaLMeI+tKcfdLDyCu8CBEjQarzroGq6ZcgSZJA48gQafVYNj/im6LXofaJjfGpccAEiCIwLiMeKTFRfTepKlT3c0E9R3MBMkxD6TETJAc80BKoZaJntSWPOJNfqPRaBATE9PpOsdONKBBFCGKIgpKnXC5BQzvb8W4gbEQRAkT1r2NuMKDaIhPxPv3LUduYhZ0R04gQgKaNCIG94vCrDP6Q5KAghIHpg3vB5dbwvCkaGT2i2IjtRDTnUxQ38JMkBzzQErMBMkxD6Sk5kyw8Ca/8Xg8yMvLQ3Z2NvT6ttHad6wW7+05jpEDrIgwGfBdcS2mDUvElwcrUFhZD0kC1qWfhzvPr0DEXbdjc4WEX2TG46JRyXALEqJMekSb9ThR3wSdVotJmfGIMumRHGthwR2iusoE9T3MBMkxD6TETJAc80BKas6EukZLIa+91v5OlxvF5XV457sSTMiMhyhJKHO4MHtkf9Tk7sUNL6zA4pl3QLJEQG/W4+lf/hqjy0U0CxIeevd72GPM+OWwRJyf1Q8AMCzJihQW26qhxts9UGAxEyTHPJASM0FyzAMpqTUTLLwpoH4sd8LhaoKzScC5Wf2wKf84CivrIUrApO0f4pbXn4Cl2YWy6Hg8fPYNgMuDmAgD6poEXDk+FdOH90NMhBGxEQbYYy1IT4gK9pSIiIiIiIh6hIU3BcyhMifKnC5oICHSYMDfP/8RBaVOWDwu3PnO33Hxro8AAHmDxyD/yhuBUhFuQYTFoENxdQMKSp1odAv4sbwM98wYxqKbiIiIiIhUiV3NyW9abmjv0ehRVFGPkroG9LdGoNzZhNoGD6LMeiQcPYzkGxci+eiPEDUavDDtGvzz3Gtw7ukpeG37EdgiDBg5wIaaBjeumpiKfccduHJCGkak2II9PToJLZmwWCwh0XmSgo+ZIDnmgZSYCZJjHkgp1DLBruYUFE6XG0crG9EkSNDrtLAYjHjxq8M4VFEPR6MHg/O2YtWmx2BpbkRdbALunXMPdmZmo1+0GWaDDkOSouARJGg0GmQlR2NEsg2zR6bwWm6VMxqNwR4ChRhmguSYB1JiJkiOeSAltWZCG+wBUHgoqmrAj8ercezQ93C43PjuuAP5R2ug1WhR7nShwS3AkzUCjToD9gwdi83/+hCac8+FVquBIEpwuQUcPdEInVaDtHgLrpyQhpGpMSy6VU4QBOTk5Ki2CQb5HzNBcswDKTETJMc8kJKaM8Ej3nTKnC43mhtcEDValNS68Nqu/bCYDDhYVoeRpmZcnD0E7+w+hgKNDbf87m/YqYvFssQkJAtOCOIJDEuKxukpVqSdPwRD+kVjYHwEr+cmIiIiIqKwERJHvFeuXImBAwfCbDZj4sSJ2LFjR6frv/nmmxg+fDjMZjPOOOMMfPDBB700UpIrd7jwzaFK5BdXohEa/PPbI6htdOPIiQY0Nou4YPdmrPnzlZA2bsTYtFi43AIcaZkQtTo0NHngESWMHGDDpWPtsBi0OC3FiozEKBbdREREREQUVoJeeK9btw6LFy/G0qVLkZubi1GjRmHGjBkoLy9vd/1t27bhyiuvxKJFi5CXl4c5c+Zgzpw52Lt3by+PvG/bd6wWj39UgJe2FiIhMgI/lNdh+6ETECUJJncT7vrPcjzz3gpENTdi4tb3YY+NgE6rQUsrv0izHqPsNtx+7mBs/aEcqTEWnD4gBmlxEcGdGBERERERkZ8Fvav5xIkTMX78ePz9738HAIiiiNTUVNx2221YsmRJm/WvuOIK1NfX47333vMtO/PMMzF69Gg8//zzXb4fu5qfunKHC099egBFJxph0mtx5YQ0lDlcePi9fThLrMLdq5ciq+IniNDg2cnz8ezU+bhmyiBsyC1GWlwETHotFk5OR2ZCJNwuD/rFRWIAC+6wJEkSBEGATqcLic6TFHzMBMkxD6TETJAc80BKoZYJ1XQ1b25uxq5du3D//ff7lmm1WkyfPh3bt29v9znbt2/H4sWLWy2bMWMGNm3a1O76TU1NaGpq8n3vcDgAAB6PBx6Px/eeWq0WoihCFMVWY9FqtRAEAfLPJzpa3hKAlteVLwfQpglAR8v1er0vVC00Gg10Ol2bMXa0PBBzqmvy4Hh1IyrqXDha3YjDlU7MH5cKR0MTjDpgzvdb8PAHKxHR3IjKiBisWPAAPul/GnTNHhi0GljNOqTHmfGrUSlIjjbhh+IKjB1qR3KMudXPrDfnFI7bKZTmJAgCXC4XzGYzdDpdWMwpHLdTb85Jq9WiqakJRqOx1T+Yap5TOG4n7iO4nbiP4HYKhTlxH8E5hfo+oieCWnhXVlZCEAQkJSW1Wp6UlISCgoJ2n1NaWtru+qWlpe2uv2zZMjz88MNtlufl5SEyMhIAkJiYiEGDBqGwsBAVFRW+dex2O+x2Ow4ePIja2lrf8szMTPTr1w979+5FY2Ojb/nw4cMRExODvLy8Vht95MiRMBqNyMnJaTWGcePGobm5GXv27PEt0+l0GD9+PGpra1v9DCwWC0aNGoXKykocPnzYt9xmsyErKwvHjx9HcXGxb7m/5/T1tzk4Xl0PDYAIow7Hqpowon8MdFWHYUQkog4U4IlNywEAewePwpbb7kK0NRZX6T2IMBnQLzka4wdkADXHoa06jPJKINUWhbS4CJSXlwdlTuG4nUJtTuXl5aipqUFMTAxSU1PDYk7huJ16c07Z2dnIz8+HVqv1/YOp9jmF43biPoLbifsIbqdQmBP3EZxTqO8jzGYzuiuop5ofP34cAwYMwLZt2zBp0iTf8nvvvRdffvklvv322zbPMRqN+Mc//oErr7zSt+y5557Dww8/jLKysjbrt3fEOzU1FVVVVb7TAfgpVOdzqmvy4JX/HkK5swmpcRHIiI/Azf/Kw68npeP9/GP4x/UT8EVBGaY99ygatCIWDbsCsdZIRJn0SI2zeI9w2yLgFj2I0OsxYoAt6HMKx+0UinNyu93Izc3FmDFjYDAYwmJO4bidenNOkiQhJycHY8aM8a2j9jmF43biPoLbifsIbqdQmBP3EZxTqO8j6urq1HGqeUJCAnQ6XZuCuaysDP3792/3Of379+/R+iaTCSaTqc1yvV4Pvb719Ft+qEryjdqd5crXPZnlGo2m3eUdjbGny3syp2PVjYgwGTA00gzN/9bJTIxG1lcf4zNPf6z4ZD9+d/Yw5N29FKj6CdfoU9AsAmajDrEWA1JiIlBV14Avf6zFxaNSuv1zD+ScgPDbTh2NsafL/Tmnlp1py+lhnY1dLXMKx+3Um3PyeDy+TCgfU+ucOlvOOXEfAXBOHY2xveXcR3Q+xr42J+4jOCc17CO6K6hdzY1GI8aOHYvNmzf7lomiiM2bN7c6Ai43adKkVusDwKefftrh+nTqahqa8eXBCrz41SEcr22E1NiAxz/9O6588h6s2PRXfHuoGqu+OIhx6fHoZ7NgpN2GUfYYnJkRh2lDEvDfgxX4/GANBFFClJm3ju9rTnUnReGHmSA55oGUmAmSYx5ISa2ZCHpX83Xr1mHhwoV44YUXMGHCBDz99NNYv349CgoKkJSUhAULFmDAgAFYtmwZAO/txM466yw89thjmD17Nt544w385S9/QW5uLk4//fQu349dzXumsKIOz37xIz773nuWwZyIOvx+9f/BenA/JI0G7150Pf7+i6tgNBpgMmihhQbQAElWE6ZkJmDnkWqYDN5fjiSrCYumZiDabAjmlIiIiIiIiE6ZarqaA97bg1VUVODBBx9EaWkpRo8ejY8++sjXQK2oqKjVof7Jkyfj3//+Nx544AH84Q9/wJAhQ7Bp06ZuFd3UOafLjeLqRtS5PIgy6xEfacSuomoUVtQjNtKABT9txzVr/gJTYwOa4+KxcfFjKBwzBboD5ThY5kRcpAET7RHQmSJwZmY89hxztCq6546xs+juYyRJQm1tLWw2W6vOk9R3MRMkxzyQEjNBcswDKak5E0E/4t3beMS7fUVVDdiQV4wyx8+N6CwGLc7MjMc/vyjAfZ+8iNPefR0A8G3aGVix8EEMzR6GC07vj2aPABHeay6EssM4Y1Q2YqPNrYp4e6yFRXcf5PF4kJOTg3HjxnV47Q71LcwEyTEPpMRMkBzzQEqhlglVHfGm4HO63G2K7jqXBzk/OXC8phET0myI3rENokaDNdOuwgtnXQNRp8PxgxXQaIBLx9hhMuiQbDWioL4YKbEW6PV6ZCWz0CYiIiIiImLhTSiubmxVdLsFEYVVdXA1e3CwrA7nZg3CzRfdi3711dgxeCwsWh3cHhHxkUY0ukWYDDpkJVvb3AaAiIiIiIiIWHgTvEe35Zqddbjp30+gOH4AXp44F4IooTRtCH5wuQFBRIRRB5vFgMH9omDQaX3P12g0sFgsqrveggKHmSAlZoLkmAdSYiZIjnkgJTVngoU3Icqsh06rQXqcBQnHj2DqX25B4qECePQGbMk+BzqtBjEWA5JtZgiihLhII+Iijb5rtltuEabT6TBq1KhgToVCDDNBSswEyTEPpMRMkBzzQEpqzkRQ7+NNocEea8HY9BgIr7+BGddeiMRDBTgRYcOfb1yG6eeNhV4HpMSYUdPQjPomD6JNel/RnWQ1wR5rAeC9B3t5eTlEUQzmdCiEMBOkxEyQHPNASswEyTEPpKTmTLDwJsDlQvoff4+bn38AEU2N2J05EvN/+xw+SR2N70scqK53Y+bpyRjW3wpbhAHRlp+LbvktwkRRxOHDh1X5i0CBwUyQEjNBcswDKTETJMc8kJKaM8FTzfs6QYD+nLMxJm8XRI0GH190HTZefAPSdHo4XR58d6wWo1NjsL/UiQtOS0JGYhQggbcIIyIiIiIi6iYW3n2dToeKCy9F3KHDWH/7X/BD9hTE/++hmAgRcZFGJEWbMCEjjoU2ERERERHRSWDh3Re5XEBJCZCRAQCov/l3+EfmFDRYY1utZtBpERNhRHpCJLKSO78hPODtMmiz2VTZZZACg5kgJWaC5JgHUmImSI55ICU1Z0IjSZIU7EH0JofDAZvNhtraWlitXReTYefHH4HLLwfq64GcHMBqhdPlxuqtha3u5d0iyWrCoqkZPNJNREREREQk05Paks3V+pL164ExY4D8fKC6GvjhBwBAtNmAudl2JFlNrVZXNk/riiiKKC4uVmWzAwoMZoKUmAmSYx5IiZkgOeaBlNScCZ5q3he4XMDddwPPPef9/he/AF5/HRgwwLdKWnwEFk3NQHF1I+pcnpNqntbyi9C/f39otfxMh5gJaouZIDnmgZSYCZJjHkhJzZlg4R3ufvwRmDcPyMvzfv+HPwAPPwzo2276aLMBWck8pZyIiIiIiMifWHiHu/vu8xbdCQnAa68BF1wQ7BERERERERH1KSy8w92qVYBWCzz1FGC3B/SttFotEhMTVXfaBwUOM0FKzATJMQ+kxEyQHPNASmrOBLuah5sffwTeest7pJuIiIiIiIgCgl3N+6o33/R2LV+yBHjjjV5/e1EUcejQIVV2GaTAYCZIiZkgOeaBlJgJkmMeSEnNmWDhHQ5cLuDWW71N1JxOYMoUYOrUXh+GKIqoqKhQ5S8CBQYzQUrMBMkxD6TETJAc80BKas4EC2+1O3TIW2ivXOn9fskSYMuWgF/PTURERERERN3D5mpqtmkTsHAh4HAA8fHeruUzZwZ7VERERERERCTDwlvNDAZv0T1livea7iAf5dZqtbDb7arsMkiBwUyQEjNBcswDKTETJMc8kJKaM8Gu5mrjdnsL7hYffgicdx6g52coREREREREvYVdzcPVW28Bw4YBR478vGzmzJApugVBwP79+yEIQrCHQiGCmSAlZoLkmAdSYiZIjnkgJTVngoW3GjQ1AbffDlx2GVBYCDzxRLBH1C5JklBbW4s+dhIFdYKZICVmguSYB1JiJkiOeSAlNWciNA6VUscOH/beJmzXLu/3990HPPJIcMdERERERERE3cbCO5S99RZw/fXeBmpxcd6u5bNmBXtURERERERE1AMsvEPVm296j3QDwOTJ3q7lqanBHVMXtFotMjMzVdllkAKDmSAlZoLkmAdSYiZIjnkgJTVngl3NQ5XL5b1N2PTpwJ//3LqTOREREREREQUVu5qHA7MZ+Ppr4PHHVVN0C4KA3bt3q7LLIAUGM0FKzATJMQ+kxEyQHPNASmrOBAvvUGY2B3sEPSJJEhobG1XZZZACg5kgJWaC5JgHUmImSI55ICU1Z4KFNxEREREREVEAsfAmIiIiIiIiCiAW3uQ3Op0Ow4cPh06nC/ZQKEQwE6TETJAc80BKzATJMQ+kpOZMsKs5ERERERERUQ+xqzkFhcfjwc6dO+HxeII9FAoRzAQpMRMkxzyQEjNBcswDKak5Eyy8ya/U2NqfAouZICVmguSYB1JiJkiOeSAltWaChTcRERERERFRAOmDPQBqy+lyo7i6EXUuD6LMethjLYg2G4I9LCIiIiIiIjoJbK4WYoqqGrAhrxhljibfsiSrCXOz7UiLjwjiyLrWckN7i8UCjUYT7OFQCGAmSImZIDnmgZSYCZJjHkgp1DLB5moq5XS52xTdAFDmaMKGvGI4Xe4gjaz7jEZjsIdAIYaZICVmguSYB1JiJkiOeSAltWaChXcIKa5ubFN0tyhzNKG4urGXR9QzgiAgJydHtQ0PyP+YCVJiJkiOeSAlZoLkmAdSUnMmWHiHkDpX523xu3qciIiIiIiIQg8L7xASZe68111XjxMREREREVHoYeEdQuyxFiRZTe0+lmQ1wR5r6eURERERERER0aliV/MQ02FX8zF2pMWFfldzQRCg0+lCossgBR8zQUrMBMkxD6TETJAc80BKoZaJntSWPHc5xKTFR2DR1AzV3se7ubkZFguPzNPPmAlSYiZIjnkgJWaC5JgHUlJrJniqeQiKNhuQlWzF+Iw4ZCVbVVN0C4KAPXv2qLLLIAUGM0FKzATJMQ+kxEyQHPNASmrOBAtvIiIiIiIiogBi4U1EREREREQUQCy8ya90Ol2wh0AhhpkgJWaC5JgHUmImSI55ICW1ZoJdzYmIiIiIiIh6qCe1JY94k99IkoSamhr0sc9yqBPMBCkxEyTHPJASM0FyzAMpqTkTLLzJbwRBQEFBgSq7DFJgMBOkxEyQHPNASswEyTEPpKTmTLDwJiIiIiIiIgogFt5EREREREREAcTCm/xGo9HAYrFAo9EEeygUIpgJUmImSI55ICVmguSYB1JScybY1ZyIiIiIiIioh9jVnIJCFEWUl5dDFMVgD4VCBDNBSswEyTEPpMRMkBzzQEpqzgQLb/IbURRx+PBhVf4iUGAwE6TETJAc80BKzATJMQ+kpOZMsPAmIiIiIiIiCiAW3kREREREREQBxMKb/Eaj0cBms6myyyAFBjNBSswEyTEPpMRMkBzzQEpqzgS7mhMRERERERH1ELuaU1CIooji4mJVNjugwGAmSImZIDnmgZSYCZJjHkhJzZlg4U1+o+ZfBAoMZoKUmAmSYx5IiZkgOeaBlNScCRbeRERERERERAHEwpuIiIiIiIgogFh4k99otVokJiZCq2WsyIuZICVmguSYB1JiJkiOeSAlNWeCXc2JiIiIiIiIeohdzSkoRFHEoUOHVNnsgAKDmSAlZoLkmAdSYiZIjnkgJTVngoU3+Y0oiqioqFDlLwIFBjNBSswEyTEPpMRMkBzzQEpqzgQLbyIiIiIiIqIA0gd7AL2t5ZJ2h8MR5JGEH4/Hg/r6ejgcDuj1fS5a1A5mgpSYCZJjHkiJmSA55oGUQi0TLTVld9qmBX+0vczpdAIAUlNTgzwSIiIiIiIiUjun0wmbzdbpOn2uq7koijh+/Diio6Oh0WiCPZyw4nA4kJqaiqNHj7JjPAFgJqgtZoLkmAdSYiZIjnkgpVDLhCRJcDqdSElJ6fIWZ33uiLdWq4Xdbg/2MMKa1WoNiV8ECh3MBCkxEyTHPJASM0FyzAMphVImujrS3YLN1YiIiIiIiIgCiIU3ERERERERUQCx8Ca/MZlMWLp0KUwmU7CHQiGCmSAlZoLkmAdSYiZIjnkgJTVnos81VyMiIiIiIiLqTTziTURERERERBRALLyJiIiIiIiIAoiFNxEREREREVEAsfCmHlm5ciUGDhwIs9mMiRMnYseOHZ2u/+abb2L48OEwm80444wz8MEHH/TSSKm39CQTa9euhUajafVlNpt7cbQUSF999RUuuugipKSkQKPRYNOmTV0+Z8uWLRgzZgxMJhMGDx6MtWvXBnyc1Ht6moktW7a02UdoNBqUlpb2zoApoJYtW4bx48cjOjoa/fr1w5w5c3DgwIEun8e/JcLTyeSBf0eEt1WrVmHkyJG+e3RPmjQJH374YafPUdP+gYU3ddu6deuwePFiLF26FLm5uRg1ahRmzJiB8vLydtfftm0brrzySixatAh5eXmYM2cO5syZg7179/byyClQepoJALBarSgpKfF9HTlypBdHTIFUX1+PUaNGYeXKld1av7CwELNnz8bZZ5+N/Px83Hnnnbjhhhvw8ccfB3ik1Ft6mokWBw4caLWf6NevX4BGSL3pyy+/xC233IJvvvkGn376KdxuN84//3zU19d3+Bz+LRG+TiYPAP+OCGd2ux2PPfYYdu3ahZycHJxzzjm4+OKLsW/fvnbXV93+QSLqpgkTJki33HKL73tBEKSUlBRp2bJl7a4/b948afbs2a2WTZw4UbrpppsCOk7qPT3NxJo1aySbzdZLo6NgAiBt3Lix03Xuvfde6bTTTmu17IorrpBmzJgRwJFRsHQnE1988YUEQKquru6VMVFwlZeXSwCkL7/8ssN1+LdE39GdPPDviL4nNjZWevnll9t9TG37Bx7xpm5pbm7Grl27MH36dN8yrVaL6dOnY/v27e0+Z/v27a3WB4AZM2Z0uD6py8lkAgDq6uqQnp6O1NTUTj/FpPDHfQR1ZPTo0UhOTsZ5552Hr7/+OtjDoQCpra0FAMTFxXW4DvcTfUd38gDw74i+QhAEvPHGG6ivr8ekSZPaXUdt+wcW3tQtlZWVEAQBSUlJrZYnJSV1eO1daWlpj9YndTmZTAwbNgyvvPIK3n77bfzzn/+EKIqYPHkyiouLe2PIFGI62kc4HA40NjYGaVQUTMnJyXj++efx1ltv4a233kJqaiqmTZuG3NzcYA+N/EwURdx5552YMmUKTj/99A7X498SfUN388C/I8Lfd999h6ioKJhMJtx8883YuHEjRowY0e66ats/6IM9ACLqOyZNmtTqU8vJkycjKysLL7zwAh555JEgjoyIQsGwYcMwbNgw3/eTJ0/GoUOH8NRTT+G1114L4sjI32655Rbs3bsXW7duDfZQKAR0Nw/8OyL8DRs2DPn5+aitrcV//vMfLFy4EF9++WWHxbea8Ig3dUtCQgJ0Oh3KyspaLS8rK0P//v3bfU7//v17tD6py8lkQslgMCA7Oxs//vhjIIZIIa6jfYTVaoXFYgnSqCjUTJgwgfuIMHPrrbfivffewxdffAG73d7puvxbIvz1JA9K/Dsi/BiNRgwePBhjx47FsmXLMGrUKDzzzDPtrqu2/QMLb+oWo9GIsWPHYvPmzb5loihi8+bNHV53MWnSpFbrA8Cnn37a4fqkLieTCSVBEPDdd98hOTk5UMOkEMZ9BHVHfn4+9xFhQpIk3Hrrrdi4cSM+//xzZGRkdPkc7ifC18nkQYl/R4Q/URTR1NTU7mOq2z8Eu7sbqccbb7whmUwmae3atdL3338v3XjjjVJMTIxUWloqSZIk/frXv5aWLFniW//rr7+W9Hq9tHz5cmn//v3S0qVLJYPBIH333XfBmgL5WU8z8fDDD0sff/yxdOjQIWnXrl3S/PnzJbPZLO3bty9YUyA/cjqdUl5enpSXlycBkJ588kkpLy9POnLkiCRJkrRkyRLp17/+tW/9w4cPSxEREdI999wj7d+/X1q5cqWk0+mkjz76KFhTID/raSaeeuopadOmTdIPP/wgfffdd9Idd9whabVa6bPPPgvWFMiPfvvb30o2m03asmWLVFJS4vtqaGjwrcO/JfqOk8kD/44Ib0uWLJG+/PJLqbCwUNqzZ4+0ZMkSSaPRSJ988okkSerfP7Dwph559tlnpbS0NMloNEoTJkyQvvnmG99jZ511lrRw4cJW669fv14aOnSoZDQapdNOO016//33e3nEFGg9ycSdd97pWzcpKUmaNWuWlJubG4RRUyC03ApK+dWSgYULF0pnnXVWm+eMHj1aMhqNUmZmprRmzZpeHzcFTk8z8fjjj0uDBg2SzGazFBcXJ02bNk36/PPPgzN48rv2sgCg1e89/5boO04mD/w7Irxdf/31Unp6umQ0GqXExETp3HPP9RXdkqT+/YNGkiSp946vExEREREREfUtvMabiIiIiIiIKIBYeBMREREREREFEAtvIiIiIiIiogBi4U1EREREREQUQCy8iYiIiIiIiAKIhTcRERERERFRALHwJiIiIiIiIgogFt5EREREREREAcTCm4iIKARpNBps2rQp2MNoJVhjeuihhzB69OhTfp21a9ciJibmlF+HiIjU4auvvsJFF12ElJSUk/43TJIkLF++HEOHDoXJZMKAAQPw6KOP9vh1WHgTEVGftn37duh0OsyePbvHzx04cCCefvpp/w+qCxqNptOvhx56qMPn/vTTT9BoNMjPz/f7uK699tp2x3PBBRec0uv+/ve/x+bNm095fFdccQUOHjx4yq9DRETqUF9fj1GjRmHlypUn/Rp33HEHXn75ZSxfvhwFBQV45513MGHChB6/jv6kR0BERBQGVq9ejdtuuw2rV6/G8ePHkZKSEuwhdamkpMT3/+vWrcODDz6IAwcO+JZFRUUFY1gAgAsuuABr1qxptcxkMp3Sa0ZFRfllThaLBRaL5ZRfh4iI1GHmzJmYOXNmh483NTXhj3/8I15//XXU1NTg9NNPx+OPP45p06YBAPbv349Vq1Zh7969GDZsGAAgIyPjpMbCI95ERNRn1dXVYd26dfjtb3+L2bNnY+3atW3WeffddzF+/HiYzWYkJCTgkksuAQBMmzYNR44cwV133eU7sgu0f1r0008/jYEDB/q+37lzJ8477zwkJCTAZrPhrLPOQm5ubrfH3b9/f9+XzWaDRqPxfd+vXz88+eSTsNvtMJlMGD16ND766CPfc1v+YMjOzoZGo/H9cXGqY2phMplaja9///6IjY31Pa7RaPDCCy/gwgsvREREBLKysrB9+3b8+OOPmDZtGiIjIzF58mQcOnTI9xzlz3TLli2YMGECIiMjERMTgylTpuDIkSMAgN27d+Pss89GdHQ0rFYrxo4di5ycHADtn2q+atUqDBo0CEajEcOGDcNrr73W6nGNRoOXX34Zl1xyCSIiIjBkyBC88847Pf65EBFR6Ln11luxfft2vPHGG9izZw8uv/xyXHDBBfjhhx8AeP8GyMzMxHvvvYeMjAwMHDgQN9xwA06cONHj92LhTUREfdb69esxfPhwDBs2DNdccw1eeeUVSJLke/z999/HJZdcglmzZiEvLw+bN2/2nV62YcMG2O12/OlPf0JJSUmro9BdcTqdWLhwIbZu3YpvvvkGQ4YMwaxZs+B0Ok95Ts888wxWrFiB5cuXY8+ePZgxYwZ+9atf+f6I2LFjBwDgs88+Q0lJCTZs2BDwMSk98sgjWLBgAfLz8zF8+HBcddVVuOmmm3D//fcjJycHkiTh1ltvbfe5Ho8Hc+bMwVlnnYU9e/Zg+/btuPHGG30ffFx99dWw2+3YuXMndu3ahSVLlsBgMLT7Whs3bsQdd9yBu+++G3v37sVNN92E6667Dl988UWr9R5++GHMmzcPe/bswaxZs3D11Vef1B9dREQUOoqKirBmzRq8+eab+MUvfoFBgwbh97//PaZOneo7c+vw4cM4cuQI3nzzTbz66qtYu3Ytdu3ahcsuu6znbygRERH1UZMnT5aefvppSZIkye12SwkJCdIXX3zhe3zSpEnS1Vdf3eHz09PTpaeeeqrVsqVLl0qjRo1qteypp56S0tPTO3wdQRCk6Oho6d133/UtAyBt3LixyzmsWbNGstlsvu9TUlKkRx99tNU648ePl373u99JkiRJhYWFEgApLy+v09c9mTEtXLhQ0ul0UmRkZKsv+XgASA888IDv++3bt0sApNWrV/uWvf7665LZbPZ9L/+ZVlVVSQCkLVu2tDuG6Ohoae3ate0+pvxZTZ48WfrNb37Tap3LL79cmjVrVofjraurkwBIH374YYc/ByIiCj3Kf8Pee+89CUCbf7P0er00b948SZIk6Te/+Y0EQDpw4IDvebt27ZIASAUFBT16f17jTUREfdKBAwewY8cObNy4EQCg1+txxRVXYPXq1b7Tr/Pz8/Gb3/zG7+9dVlaGBx54AFu2bEF5eTkEQUBDQwOKiopO6XUdDgeOHz+OKVOmtFo+ZcoU7N69u1fGdPbZZ2PVqlWtlsXFxbX6fuTIkb7/T0pKAgCcccYZrZa5XC44HA5YrdY2r3XttddixowZOO+88zB9+nTMmzcPycnJAIDFixfjhhtuwGuvvYbp06fj8ssvx6BBg9od6/79+3HjjTe2WjZlyhQ888wzHY43MjISVqsV5eXlnf4ciIgotNXV1UGn02HXrl3Q6XStHmvpK5KcnAy9Xo+hQ4f6HsvKygLgPWLect13d/BUcyIi6pNWr14Nj8eDlJQU6PV66PV6rFq1Cm+99RZqa2sB4KQacWm12lanqwOA2+1u9f3ChQuRn5+PZ555Btu2bUN+fj7i4+PR3Nx88hM6Rf4aU2RkJAYPHtzqS1l4y0/9bjlFvL1loii2+x5r1qzB9u3bMXnyZKxbtw5Dhw7FN998A8B7Pfi+ffswe/ZsfP755xgxYoTvw5WTpTxVXaPRdDg2IiJSh+zsbAiCgPLy8jb/bvXv3x+A98NYj8fTqu9Iy90x0tPTe/R+LLyJiKjP8Xg8ePXVV7FixQrk5+f7vnbv3o2UlBS8/vrrALxHOju7jZXRaIQgCK2WJSYmorS0tFXxrbx119dff43bb78ds2bNwmmnnQaTyYTKyspTnpfVakVKSgq+/vrrNu83YsQI35gBtBl3oMYUKNnZ2bj//vuxbds2nH766fj3v//te2zo0KG466678Mknn2Du3Lltuqy3yMrK6vRnRURE6lZXV+f7Nx4ACgsLkZ+fj6KiIgwdOhRXX301FixYgA0bNqCwsBA7duzAsmXL8P777wMApk+fjjFjxuD6669HXl4edu3ahZtuugnnnXdeq6Pg3cFTzYmIqM957733UF1djUWLFsFms7V67NJLL8Xq1atx8803Y+nSpTj33HMxaNAgzJ8/Hx6PBx988AHuu+8+AN77eH/11VeYP38+TCYTEhISMG3aNFRUVOCvf/0rLrvsMnz00Uf48MMPW50yPWTIELz22msYN24cHA4H7rnnHr/d5uqee+7B0qVLMWjQIIwePRpr1qxBfn4+/vWvfwEA+vXrB4vFgo8++gh2ux1msxk2m81vY2pqakJpaWmrZXq9HgkJCX6ZX2FhIV588UX86le/QkpKCg4cOIAffvgBCxYsQGNjI+655x5cdtllyMjIQHFxMXbu3IlLL7203de65557MG/ePGRnZ2P69Ol49913sWHDBnz22Wd+GSsREQVXTk4Ozj77bN/3ixcvBuA9y2vt2rVYs2YN/vznP+Puu+/GsWPHkJCQgDPPPBMXXnghAO9ZbO+++y5uu+02/PKXv0RkZCRmzpyJFStW9HwwfrhOnYiISFUuvPDCVg205L799lsJgLR7925JkiTprbfekkaPHi0ZjUYpISFBmjt3rm/d7du3SyNHjpRMJpMk/yd11apVUmpqqhQZGSktWLBAevTRR1s1V8vNzZXGjRsnmc1maciQIdKbb77ZplEbTrK5miAI0kMPPSQNGDBAMhgM0qhRo9o0AnvppZek1NRUSavVSmeddZbfxrRw4UIJQJuvYcOGdfga7TV7++KLLyQAUnV1tSRJrZurlZaWSnPmzJGSk5Mlo9EopaenSw8++KAkCILU1NQkzZ8/X0pNTZWMRqOUkpIi3XrrrVJjY2O7PytJkqTnnntOyszMlAwGgzR06FDp1VdfbfV4e3O22WzSmjVrOvw5EBERKWkkSXEhGhERERERERH5Da/xJiIiIiIiIgogFt5EREREREREAcTCm4iIiIiIiCiAWHgTERERERERBRALbyIiIiIiIqIAYuFNREREREREFEAsvImIiIiIiIgCiIU3ERERERERUQCx8CYiIiIiIiIKIBbeRERERERERAHEwpuIiIiIiIgogFh4ExEREREREQXQ/wMBJekdSRXJYQAAAABJRU5ErkJggg==\n" }, "metadata": {} } ] }, { "cell_type": "markdown", "source": [ "- Observation: The scatter points are tightly clustered around the red diagonal line (the line of perfect prediction, y=x). This is a very strong indicator of good model performance.\n", "- Interpretation: It shows that your model's predictions are, for the most part, very close to the actual total emission values across the entire range of your data, from negative values up to around 3 million. The linearity of the scatter confirms that the model has captured the underlying relationship well. There are no obvious signs of the model systematically over- or under-predicting across different ranges of emissions." ], "metadata": { "id": "zujsI7k5o2Py" } }, { "cell_type": "code", "source": [ "# --- Graph 2: Residuals Plot (vs. Actual Values) ---\n", "plt.figure(figsize=(10, 6))\n", "sns.scatterplot(x=y_test_original_scale, y=residuals, alpha=0.6)\n", "plt.axhline(y=0, color='red', linestyle='--', label='Zero Error Line')\n", "plt.title('Residuals Plot (Errors vs. Actual Values)')\n", "plt.xlabel('Actual Total Emission')\n", "plt.ylabel('Residuals (Actual - Predicted)')\n", "plt.grid(True, linestyle='--', alpha=0.7)\n", "plt.legend()\n", "plt.tight_layout()\n", "plt.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 607 }, "id": "dr7Vvrx3n_m1", "outputId": "a53d9093-222c-44e5-9578-f01dc30f0363" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA2dJJREFUeJzs3Xd8VFXiNvDnTp+USa+EhCSUhCIdRBBEWRErYkVcEVHXwrJ2fV0blnV1V0XXgmt3BSvYVldFEP0pLEskgHQIoYT0OinT73n/CBkypJAyKZPzfD+f7Jp7T2bOmWfuMOfec89RhBACREREREREROR3mp6uABEREREREVFfxU43ERERERERURdhp5uIiIiIiIioi7DTTURERERERNRF2OkmIiIiIiIi6iLsdBMRERERERF1EXa6iYiIiIiIiLoIO91EREREREREXYSdbiIiIiIiIqIuwk43ERF1iUceeQSKorSprKIoeOSRR7q0PmeccQbOOOOMLn2OE3VHuxq75ZZb8Lvf/a7bno8Cx8GDB6EoCt5+++1uf+7uPg6a43K50L9/f7z88ss9Wg8ikhM73UREfdzbb78NRVG8PzqdDv369cO1116Lo0eP9nT1Ak5D56XhR6vVIjk5GRdffDG2bNnil+fYuXMnHnnkERw8eLDNf5Obm4vXX38d999/f4t1PfHnr3/9q1/qK6N77rkHiqLgiiuu6PBjdCTnrrR48WIoioL9+/e3WObPf/4zFEXBtm3burFmnafX63HHHXfgiSeegN1u7+nqEJFk2OkmIpLEo48+in/9619YtmwZZs2ahffeew/Tpk3rsi+gDzzwAGw2W5c8dm8wd+5c/Otf/8Kbb76Jq666CmvXrsWpp57ql473zp07sWTJknZ1xp5//nmkpqZi+vTpLdb1xJ8LLrig03WVkRAC77//PgYMGIAvv/wS1dXVHXqcjuTclebNmwcAWLFiRYtl3n//fYwYMQKnnHJKd1XLbxYsWIDS0tJW20dE1BV0PV0BIiLqHrNmzcK4ceMAANdffz2io6Px1FNP4YsvvsDll1/u9+fT6XTQ6fruPzNjxozB1Vdf7f198uTJuPDCC/HKK6/g1Vdf7da6uFwuLF++HDfddFOz+0+sa1sIIWC322E2m5vss9vtMBgM0Gg6fu6+trYWwcHBHf77nrRu3Trk5eVh7dq1mDlzJlatWoX58+f3dLU6beLEiRg4cCDef/99PPTQQ032b9iwAbm5uQE7QiI8PBxnn3023n77bVx33XU9XR0ikgivdBMRSer0008HAOTk5Phs3717Ny699FJERkbCZDJh3Lhx+OKLL3zKuFwuLFmyBIMGDYLJZEJUVBSmTJmC1atXe8s0d0+3w+HA7bffjpiYGISGhuLCCy9EXl5ek7pde+21GDBgQJPtzT3mW2+9hTPPPBOxsbEwGo0YOnQoXnnllTa9Bv/4xz8wbNgwBAUFISIiAuPGjevwVbAzzzwTQP0w79ZkZ2dj1qxZsFgsCAkJwVlnnYX//ve/3v1vv/02LrvsMgDA9OnTvUPB161b1+Jj/vzzzygtLcWMGTM6VHcAGDBgAM4//3x8++23GDduHMxmM1599VWsW7cOiqLggw8+wAMPPIB+/fohKCgIVqsVAPDxxx9j7NixMJvNiI6OxtVXX93ktoVrr70WISEhyMnJwbnnnovQ0FDvVdV9+/bhkksuQXx8PEwmE5KSknDllVeiqqqqxbouWrQIISEhqKura7Jv7ty5iI+Ph8fjAQBkZWVh5syZiI6OhtlsRmpqaqc7XMuXL8fQoUMxffp0zJgxA8uXL2+23NGjR7Fw4UIkJibCaDQiNTUVN998M5xO50lzbuk+6AEDBuDaa6/1/l5eXo677roLI0aMQEhICCwWC2bNmoWtW7d2qG3z5s3D7t27sXnz5ib7VqxYAUVRMHfuXDidTjz00EMYO3YswsLCEBwcjNNPPx0//PDDSZ+jPcc3ALz33nve91hkZCSuvPJKHDlyxKdMW99Hv/vd7/Dzzz+jvLz8pPUkIvKXvnsJgoiIWtUwpDUiIsK7bceOHZg8eTL69euH++67D8HBwfjoo48we/ZsrFy5EhdffDGA+i/HTz75JK6//npMmDABVqsVWVlZ2Lx5c6sTeV1//fV47733cNVVV+G0007D2rVrcd5553WqHa+88gqGDRuGCy+8EDqdDl9++SVuueUWqKqKW2+9tcW/e+2117B48WJceuml+NOf/gS73Y5t27Zh48aNuOqqq9pdj4aTF1FRUS2W2bFjB04//XRYLBbcc8890Ov1ePXVV3HGGWfgxx9/xMSJEzF16lQsXrwYL7zwAu6//35kZmYCgPf/m7N+/XooioLRo0c3u7+urg6lpaVNtoeHh/uMRtizZw/mzp2LP/zhD7jhhhswZMgQ777HHnsMBoMBd911FxwOBwwGA95++20sWLAA48ePx5NPPomioiI8//zz+OWXX5CdnY3w8HDv37vdbsycORNTpkzB3//+dwQFBcHpdGLmzJlwOBz44x//iPj4eBw9ehT//ve/UVlZibCwsGbbc8UVV+Cll17CV1995e24NrTzyy+/xLXXXgutVovi4mKcffbZiImJwX333Yfw8HAcPHgQq1atavG1PBmHw4GVK1fizjvvBFDfyV+wYAEKCwsRHx/vLZefn48JEyagsrISN954IzIyMnD06FF88sknqKur61DOzTlw4AA+++wzXHbZZUhNTUVRURFeffVVTJs2DTt37kRiYmK7Hm/evHlYsmQJVqxYgTFjxni3ezwefPTRRzj99NORnJyM0tJSvP7665g7dy5uuOEGVFdX44033sDMmTPxv//9D6NGjWrX87bkiSeewIMPPojLL78c119/PUpKSvCPf/wDU6dO9b7H2vM+Gjt2LIQQWL9+Pc4//3y/1JGI6KQEERH1aW+99ZYAIL7//ntRUlIijhw5Ij755BMRExMjjEajOHLkiLfsWWedJUaMGCHsdrt3m6qq4rTTThODBg3ybhs5cqQ477zzWn3ehx9+WDT+Z2bLli0CgLjlllt8yl111VUCgHj44Ye92+bPny9SUlJO+phCCFFXV9ek3MyZM0VaWprPtmnTpolp06Z5f7/ooovEsGHDWm1Dc3JzcwUAsWTJElFSUiIKCwvFunXrxOjRowUAsXLlSm/ZE9s1e/ZsYTAYRE5Ojndbfn6+CA0NFVOnTvVu+/jjjwUA8cMPP7SpTldffbWIiopqsa4t/WzYsMFbNiUlRQAQ33zzjc9j/PDDDwKASEtL83mtnU6niI2NFcOHDxc2m827/d///rcAIB566CHvtvnz5wsA4r777vN57OzsbAFAfPzxx21qZwNVVUW/fv3EJZdc4rP9o48+EgDETz/9JIQQ4tNPPxUAxKZNm9r1+K355JNPBACxb98+IYQQVqtVmEwm8dxzz/mUu+aaa4RGo2n2uVVVFUK0nvOJ750GKSkpYv78+d7f7Xa78Hg8PmVyc3OF0WgUjz76qM82AOKtt946aRvHjx8vkpKSfB73m2++EQDEq6++KoQQwu12C4fD4fN3FRUVIi4uTlx33XWttqWtx/fBgweFVqsVTzzxhE+53377Teh0Ou/29ryP8vPzBQDx1FNPnbQsEZG/cHg5EZEkZsyYgZiYGPTv3x+XXnopgoOD8cUXXyApKQlA/TDVtWvX4vLLL0d1dTVKS0tRWlqKsrIyzJw5E/v27fMOGw4PD8eOHTuwb9++Nj//119/DaB+huTGbrvttk61q/E9x1VVVSgtLcW0adNw4MCBVocoh4eHIy8vD5s2berQ8z788MOIiYlBfHw8zjjjDOTk5OCpp57CnDlzmi3v8Xjw3XffYfbs2UhLS/NuT0hIwFVXXYWff/7ZO2S7vcrKynxGLJzoxhtvxOrVq5v8DB061KdcamoqZs6c2exjzJ8/3+e1zsrKQnFxMW655RaYTCbv9vPOOw8ZGRn46quvmjzGzTff7PN7wxXIb7/9ttmh4i1RFAWXXXYZvv76a9TU1Hi3f/jhh+jXrx+mTJkCAN4r7f/+97/hcrna/PitWb58OcaNG4eBAwcCAEJDQ3Heeef5DDFXVRWfffYZLrjgAu88CifW31+MRqP33nqPx4OysjKEhIRgyJAhzQ4Rb4urr74aeXl5+Omnn7zbVqxYAYPB4B1ZoNVqYTAYANS3t7y8HG63G+PGjevw855o1apVUFUVl19+uffzqLS0FPHx8Rg0aJB3KHt73kcNx0lzIz+IiLoKO91ERJJ46aWXsHr1anzyySc499xzUVpaCqPR6N2/f/9+CCHw4IMPIiYmxufn4YcfBgAUFxcDqJ8JvbKyEoMHD8aIESNw9913n3QJoUOHDkGj0SA9Pd1ne+MhzB3xyy+/YMaMGQgODkZ4eDhiYmK8y2a11um+9957ERISggkTJmDQoEG49dZb8csvv7T5eRs6smvWrMGvv/6K4uJi3HPPPS2WLykpQV1dXbPtzczMhKqqTe5TbQ8hRIv7Bg0ahBkzZjT5sVgsPuVSU1NbfIwT9x06dAhA8/llZGR49zfQ6XTeEzyNH/OOO+7A66+/jujoaMycORMvvfRSq7k1uOKKK2Cz2bzzDdTU1ODrr7/GZZdd5u3UTps2DZdccgmWLFmC6OhoXHTRRXjrrbfgcDhO+vjNqaysxNdff41p06Zh//793p/JkycjKysLe/fuBVCftdVqxfDhwzv0PO2hqiqee+45DBo0CEajEdHR0YiJicG2bdva9Do258orr4RWq/XOb2C32/Hpp59i1qxZPid33nnnHZxyyineeR1iYmLw1Vdfdfh5T7Rv3z4IITBo0KAmn0m7du3yfh61533UcJz488QHEdHJsNNNRCSJCRMmYMaMGbjkkkvwxRdfYPjw4bjqqqu8VwpVVQUA3HXXXc1eFV29erX36t7UqVORk5ODN998E8OHD8frr7+OMWPG4PXXX/dLXVv6QtwwOVaDnJwcnHXWWSgtLcWzzz6Lr776CqtXr8btt9/u06bmZGZmYs+ePfjggw8wZcoUrFy5ElOmTPGeYDiZho7smWeeiTFjxvicwOhuUVFRqKio6PTjNDdTeVv2tUXjK7KNPfPMM9i2bRvuv/9+2Gw2LF68GMOGDWt2gr3GTj31VAwYMAAfffQRAODLL7+EzWbzWTdbURR88skn2LBhAxYtWoSjR4/iuuuuw9ixY32ukLfVxx9/DIfDgWeeeQaDBg3y/txxxx0A0OKEav504jHwl7/8BXfccQemTp2K9957D99++y1Wr16NYcOGtfr+b01sbCx+97vfYeXKlXC5XN5l0RomvwPqJze79tprkZ6ejjfeeAPffPMNVq9ejTPPPPOkz9vW41tVVSiK4n3sE38arxLQ1vdRw3ESHR3drteEiKgzOJEaEZGEtFotnnzySUyfPh0vvvgi7rvvPu+QZ71e36ZZsCMjI7FgwQIsWLAANTU1mDp1Kh555BFcf/31zZZPSUmBqqrIycnxuTq6Z8+eJmUjIiJQWVnZZPuJV0+//PJLOBwOfPHFF0hOTvZub8sMygAQHByMK664AldccQWcTifmzJmDJ554Av/v//0/nyHT/hATE4OgoKBm27t7925oNBr0798fQPuvwmVkZGD58uWoqqpqcfIxf0tJSQFQn1/DzO0N9uzZ493fFiNGjMCIESPwwAMPYP369Zg8eTKWLVuGxx9/vNW/u/zyy/H888/DarXiww8/xIABA3Dqqac2KXfqqafi1FNPxRNPPIEVK1Zg3rx5+OCDD1p8r7Zk+fLlGD58eLMnZl599VWsWLECS5YsQUxMDCwWC7Zv397q47WWc3PHgNPpREFBgc+2Tz75BNOnT8cbb7zhs72ysrJTHct58+bhm2++wX/+8x+sWLECFovFZ133Tz75BGlpaVi1apVPO9py0qqtx3d6ejqEEEhNTcXgwYNP+rhteR81rC7Q3gnriIg6g1e6iYgkdcYZZ2DChAlYunQp7HY7YmNjccYZZ+DVV19t8sUeqB8y26CsrMxnX0hICAYOHNjqsN1Zs2YBAF544QWf7UuXLm1SNj09HVVVVT5D1gsKCvDpp5/6lNNqtQB8h1ZXVVXhrbfearEeLbXBYDBg6NChEEL47f7fxrRaLc4++2x8/vnn3pnjAaCoqAgrVqzAlClTvMO9G9avbq5j0pxJkyZBCIFff/3V39Vu0bhx4xAbG4tly5b55P6f//wHu3btatOs9FarFW6322fbiBEjoNFo2jQE/IorroDD4cA777yDb775psl68xUVFU2G3TfMqt348XNycposnXeiI0eO4KeffsLll1+OSy+9tMnPggULsH//fmzcuBEajQazZ8/Gl19+iaysrCaP1VCn1nJOT0/3uacaAP75z382uRqs1WqbtPHjjz9usmxbe82ePRtBQUF4+eWX8Z///Adz5szxORHV3LG3ceNGbNiw4aSP3dbje86cOdBqtViyZEmTNgohvMdwe95Hv/76KxRFwaRJk05aTyIif+GVbiIiid1999247LLL8Pbbb+Omm27CSy+9hClTpmDEiBG44YYbkJaWhqKiImzYsAF5eXnetX+HDh2KM844A2PHjkVkZCSysrLwySefYNGiRS0+16hRozB37ly8/PLLqKqqwmmnnYY1a9Zg//79TcpeeeWVuPfee3HxxRdj8eLFqKurwyuvvILBgwf7TNJ09tlnw2Aw4IILLsAf/vAH1NTU4LXXXkNsbGyzJw4aO/vssxEfH4/JkycjLi4Ou3btwosvvojzzjsPoaGhHXxFW/f4449j9erVmDJlCm655RbodDq8+uqrcDgcePrpp73lRo0aBa1Wi6eeegpVVVUwGo3etcibM2XKFERFReH7779vctUZADZv3oz33nuvyfb09PQOdz70ej2eeuopLFiwANOmTcPcuXO9S4YNGDDAO8S/NWvXrsWiRYtw2WWXYfDgwXC73fjXv/4FrVaLSy655KR/P2bMGAwcOBB//vOf4XA4fIaWA/X3HL/88su4+OKLkZ6ejurqarz22muwWCw499xzveXOOussAPA5GXKiFStWQAiBCy+8sNn95557LnQ6HZYvX46JEyfiL3/5C7777jtMmzYNN954IzIzM1FQUICPP/4YP//8M8LDw1vN+frrr8dNN92ESy65BL/73e+wdetWfPvtt02uXp9//vl49NFHsWDBApx22mn47bffsHz5cp/J+joiJCQEs2fP9t7X3XhoecPzrlq1ChdffDHOO+885ObmYtmyZRg6dOhJh+639fhOT0/H448/jv/3//4fDh48iNmzZyM0NBS5ubn49NNPceONN+Kuu+5q1/to9erVmDx5cqtL+xER+V0PzJhORETdqGHJsOaWLvJ4PCI9PV2kp6cLt9sthBAiJydHXHPNNSI+Pl7o9XrRr18/cf7554tPPvnE+3ePP/64mDBhgggPDxdms1lkZGSIJ554QjidTm+Z5pb3stlsYvHixSIqKkoEBweLCy64QBw5cqTZ5ZG+++47MXz4cGEwGMSQIUPEe++91+xjfvHFF+KUU04RJpNJDBgwQDz11FPizTffFABEbm6ut9yJS4a9+uqrYurUqSIqKkoYjUaRnp4u7r77blFVVdXq69mw9NLf/va3VssJ0fyyT5s3bxYzZ84UISEhIigoSEyfPl2sX7++yd++9tprIi0tTWi12jYtH7Z48WIxcODAZuva0k/jpadSUlKaXQauYcmwlpZj+vDDD8Xo0aOF0WgUkZGRYt68eSIvL8+nzPz580VwcHCTvz1w4IC47rrrRHp6ujCZTCIyMlJMnz5dfP/99622tbE///nPAkCTtgtR/1rPnTtXJCcnC6PRKGJjY8X5558vsrKyfMqlpKQ0u4RVYyNGjBDJycmtljnjjDNEbGyscLlcQgghDh06JK655hrv8nxpaWni1ltv9Vlqq6WcPR6PuPfee0V0dLQICgoSM2fOFPv37292ybA777xTJCQkCLPZLCZPniw2bNjQ5P3eniXDGnz11VcCgEhISGiyLJmqquIvf/mLSElJEUajUYwePVr8+9//bnY5sM4c30IIsXLlSjFlyhQRHBwsgoODRUZGhrj11lvFnj17hBBtfx9VVlYKg8EgXn/99Ta/BkRE/qAI0cp0p0RERBQQDhw4gIyMDPznP//xXrklouOWLl2Kp59+Gjk5OZ2eGJCIqD3Y6SYiIuojbr75Zuzfvx+rV6/u6aoQ9Soulwvp6em47777cMstt/R0dYhIMux0ExEREREREXURzl5ORERERERE1EXY6SYiIiIiIiLqIux0ExEREREREXURdrqJiIiIiIiIuoiupytALVNVFfn5+QgNDYWiKD1dHSIiIiIiIjpGCIHq6mokJiZCo2n5ejY73b1Yfn4++vfv39PVICIiIiIiohYcOXIESUlJLe5np7sXCw0NBVAfosVi6eHaBDa3243s7GyMHj0aOh3f9rJg7vJi9nJi7vJi9nJi7vLqLdlbrVb079/f229rCd+dvVjDkHKLxcJOdye53W4EBwfDYrHwQ1kizF1ezF5OzF1ezF5OzF1evS37k90KzInUiIiIiIiIiLoIO90kDa1W29NVoB7A3OXF7OXE3OXF7OXE3OUVSNkrQgjR05Wg5lmtVoSFhaGqqorDy4mIiIiIiHqRtvbXen4APFE3EEKgqqoKYWFhXH5NIsxdXsxeTsxdXsxeTo1zV1UVLperp6tE3aRhqa6uXlpZr9f75Yo6O90kBY/Hg927d2PcuHG9YrIF6h7MXV7MXk7MXV7MXk4Nuffv3x9Wq7Wnq0PdSAgBp9MJg8HQ5SfawsPDER8f36nn4acSEREREREFJI1Gg6qqKsTFxSEoKIgjHSQhhEBdXV2XZt7wHMXFxQCAhISEDj8WO91ERERERBRwPB4P9Ho9YmNjERUV1dPVoW4khIDH44HJZOrSEy1msxkAUFxcjNjY2A4PNefs5SQFRVFgNpt59lMyzF1ezF5OzF1ezF5ObrcbGo0GQUFBPV0V6gEaTfd0ZRveX52ZM4BXukkKWq0WI0eO7OlqUDdj7vJi9nJi7vJi9nLSarUwGAzd1vmi3kNRlG472eKPk3l8h5IUVFVFcXExVFXt6apQN2Lu8mL2cmLu8mL2clJVFR6PB1wBWT5CCLhcroDJnp1ukoKqqjhw4AD/MZYMc5cXs5cTc5cXs5eTqqpwu909XQ3qIQ6HA+vWrYOiKKisrOzp6rSKnW4iIiIiIqJu0tBRbOln+vTpvapOhYWF3V6fxgYMGIClS5c2u++0005DQUEBwsLCurdS7cR7uomIiIiIiLpJQ0fxRF988QVuuukm3HLLLR1+7Ia1qztqz549sFgsPttiY2Pb9Vwulwt6vb7dz92RvzMYDIiPj2/3c3U3XukmKSiKgrCwMM5qKhnmLi9mLyfmLi9mLydFUQJyErWGjmLjn4qKCtx11124//77cdlll3nLbt++HbNmzUJISAji4uLw+9//HqWlpd79Z5xxBhYtWoTbbrsN0dHRmDlzJgDgxx9/xIQJE2A0GpGQkID77ruvTUPxY2Njm9St4TW+9tprMXv2bDzxxBNITEzEkCFDcPDgQSiKgg8//BDTpk2DyWTC8uXLoaoqHn30USQlJcFoNGLUqFH45ptvvM/T0t+1h1arbTK8/O2330Z4eDi+/fZbZGZmIiQkBOecc06Tkxyvv/46MjMzYTKZkJGRgZdffrldz91evNJNUtBqtcjMzOzpalA3Y+7yYvZyYu7yYvZy0mq10Ov1zZ9sqa1t7Q8Bk6ltZTUa4Nhaza2WDQ5uvbKtqKysxEUXXYQzzjgDjz32mM/2M888E9dffz2ee+452Gw23Hvvvbj88suxdu1ab7l33nkHN998M3755RcAwNGjR3Huuefi2muvxbvvvovdu3fjhhtugMlkwiOPPNLhegLAmjVrYLFYsHr1ap/t9913H5555hmMHj0aJpMJzz//PJ555hm8+uqrGD16NN58801ceOGF2LFjBwYNGtTi37VVa8sE1tXV4e9//zv+9a9/QaPR4Oqrr8Zdd93l7dQvX74cDz30EF588UWMHj0a2dnZuOGGGxAcHIz58+d38JU5CUG9VlVVlQAgqqqqeroqAc/j8YgjR44Ij8fT01WhbsTc5cXs5cTc5cXs5VRbWyu2bdsm6urqmu4EWv4591zfskFBLZedNs23bHR08+U6yOPxiFmzZonMzExhtVp99j322GPi7LPP9tl25MgRAUDs2bNHCCHEtGnTxOjRo33K3H///WLIkCFCVVXvtpdeekmEhIS0eIz88MMPAoAIDg72+Rk6dKi3zPz580VcXJxwOBzebbm5uQKAWLp0qc/jJSYmiieeeMJn2/jx48Utt9zS6t81JyUlRTz33HM+21RVFQ6HQ6xdu1YAEBUVFUIIId566y0BQOzfv9+n7XFxcd7f09PTxYoVK3we77HHHhOTJk1q9vltNpvYuXOnsNlsTfa1tb8WUOMxfvrpJ1xwwQVITEyEoij47LPPfPZfe+21TW78P+ecc3zKlJeXY968ebBYLAgPD8fChQtRU1PjU2bbtm04/fTTYTKZ0L9/fzz99NNN6vLxxx8jIyMDJpMJI0aMwNdff+2zXwiBhx56CAkJCTCbzZgxYwb27dvnnxeC2k1VVeTl5XFWU8kwd3kx++5XbXdhV4EVm3LLsavAimq7q9vrwNzlxezl1LBkWCC7//77sWHDBnz++ecIDQ312bd161b88MMPCAkJ8f5kZGQAAHJycrzlxo4d6/N3u3btwqRJk3yuAk+ePBk1NTXIy8trtT7/93//hy1btnh/TuzjjBgxotn7uMeNG+f9b6vVivz8fEyePNmnzOTJk7Fr164W/669nE5ns9uDgoKQnp7u/T0hIQHFxcUAgNraWuTk5GDhwoU+r+vjjz/u85r6W0ANL6+trcXIkSNx3XXXYc6cOc2WOeecc/DWW295fzcajT77582bh4KCAqxevRoulwsLFizAjTfeiBUrVgCof5OcffbZmDFjBpYtW4bffvsN1113HcLDw3HjjTcCANavX4+5c+fiySefxPnnn48VK1Zg9uzZ2Lx5M4YPHw4AePrpp/HCCy/gnXfeQWpqKh588EHMnDkTO3fubNfQCSIiot7ucFkdVmXnocjq8G6LsxgxZ3QSkqOCerBmRCStEy6q+dBqfX8/1iFr1on3jB882OEqneiDDz7A3//+d3z11Vc+Q64b1NTU4IILLsBTTz3VZF9CQoL3v4M7MbT9RKmpqQgPD29xf0vP1dE6+LPuDU6cjE1RFO963g0XW1977TVMnDjRp5z2xPeFHwVUp3vWrFmYNWtWq2WMRmOLM9jt2rUL33zzDTZt2uQ9q/KPf/wD5557Lv7+978jMTERy5cvh9PpxJtvvgmDwYBhw4Zhy5YtePbZZ72d7ueffx7nnHMO7r77bgDAY489htWrV+PFF1/EsmXLIITA0qVL8cADD+Ciiy4CALz77ruIi4vDZ599hiuvvNJfLwkREVGPqra7mnS4AaDI6sCq7DwsnJKKUFP7Z7ElIuqU9nTmuqpsK7Zs2YKFCxfir3/9q3fysxONGTMGK1euxIABA6DTtb3blpmZiZUrV0II4b3a/csvvyA0NBRJSUl+qX9rLBYLEhMT8csvv2DatGne7b/88gsmTJjQ5c/fmri4OCQmJuLAgQOYN29etz1vQHW622LdunWIjY1FREQEzjzzTDz++OOIiooCAGzYsAHh4eE+wxhmzJgBjUaDjRs34uKLL8aGDRswdepUn2ETM2fOxFNPPYWKigpERERgw4YNuOOOO3yed+bMmd7h7rm5uSgsLMSMGTO8+8PCwjBx4kRs2LChxU63w+GAw3H8S4vVagUAuN1u72yDGo0GGo0Gqqr6DKFq2O7xeLxnclrbrtVqoShKk1kMG87wnDhUp6XtOp0OQgif7YqiQKvVNqljS9u7o02KoiAqKgqqqnr3B3qbmqs72+Rbd1VVERUV5X3+vtCmk21nm45vb+6YD/Q29cacDpfWoMRqgwIFwvu/9XUssdpwpKwWQ/uFd0ubGo75hvoyJ7nadOIx3xfa1Bdz8mebVFWFRqOBEMKnTFs0vvrZ3dtLSkowe/ZsnHHGGd5RuI3La7VaxMTE4JZbbsFrr72GuXPn4u6770ZkZCT279+PDz/8EK+99po3r4b2NzzGzTffjKVLl2LRokVYtGgR9u7di4cffhi33367z/M0/u+G/y8qKoLdbvepe1RUlM/V48b7Gv994+133XUXHnnkEaSlpWHUqFF46623sGXLFrz33ns+ZU+WXcNJg7y8PGRnZ/vsi4+Pb/FxWqojADzyyCP405/+BIvFglmzZsFutyMrKwsVFRXePt6Jr03jx298PLVlRnigj3W6zznnHMyZMwepqanIycnB/fffj1mzZmHDhg3QarUoLCxsss6cTqdDZGSkd9H3wsJCpKam+pSJi4vz7ouIiEBhYaF3W+MyjR+j8d81V6Y5Tz75JJYsWdJke3Z2tnfoRUxMDNLT05Gbm4uSkhJvmaSkJCQlJWHv3r2oqqrybk9LS0NsbCy2b98Om83m3Z6RkYHw8HBkZ2f7fICecsopMBgMyMrK8qnDuHHj4HQ6sW3bNu82rVaL8ePHo6qqCrt37/ZuN5vNGDlyJEpLS3HgwAHv9rCwMGRmZiI/P9/nfpLualNZWRnKysr6VJv6Yk5d0Sa3293n2tQXc/J3m+rq6rB58+Y+1abemFNlnQuDNHZUCTMKRRjiFCvClON1LCkyAv3Cu7VNlZWVzEnCNmk0Gp9jvi+0qS/m5O82mUwm2Gw2GI1GaDQa1J4wu3hwcDBUVfV5DEVREBwcDI/HA7vd7t2u0WgQFBQEt9vtcyFMq9XCbDbD5XL53Ees0+lgMpngcDh8Ol8GgwEGgwF2u93ndTcajdDr9fj0009x6NAhHDp0CImJiThRcnIyduzYgfj4ePz888+46667MHPmTDgcDvTv39878re2thYejwdutxt1dXXeNoWHh2PlypV44IEH8PrrryMyMhLXXnstbr/9du/rc2KbGl6HhnvGG1uzZg2mTJkCoP6ETOPXuKHddrvdZ/utt94Kq9WKO++8EyUlJcjIyMCHH37ovde6rq4OAGCz2VBbW9tqTgDwzDPP4JlnnvGp11tvveXtb9XW1vrcwtu4Li5X/RwjDTnNnTsXWq0WL7zwAu655x4EBwdj6NChuOWWW1BbW+vNyWazQVVVOBwOOJ1OVFdXw2w2+xxPJ77fWqKI9p4W6iUURcGnn36K2bNnt1jmwIEDSE9Px/fff4+zzjoLf/nLX/DOO+9gz549PuViY2OxZMkS3HzzzTj77LORmpqKV1991bt/586dGDZsGHbu3InMzEwYDAa88847mDt3rrfMyy+/jCVLlqCoqAjr16/H5MmTkZ+f73O/xeWXX+5dj645zV3p7t+/P8rKyryL1PPMZ8fapKoqDhw4gJSUFO9ag4HepubqzjY1vdJ96NAhDBgwAHq9vk+06WTb2SZ4j/GcnJwmx3wgt6m35rSnsBor/nf42PVt3yvdADBvYkq3Xuk+dOgQUlJSYDAYmJNEbQKaHvOB3qa+mJO/21RXV4eDBw9i4MCBMDde1qsNevJKd3u2t0dvq3tXtgmo7zsZDAafCeO6ou52ux25ublITU2F2Wz2OZ6sViuioqJQVVXl7a81p09d6T5RWloaoqOjsX//fpx11lmIj4/3zlzXwO12o7y83HsfeHx8PIqKinzKNPx+sjKN9zdsa9zpLioqwqhRo1qsr9FobDLxG1D/QXfifRwNH0QnaviwbOv2lu4Pac92RVGa3d5SHdu73R9tEkKgrKwMqampTfYHapvau13GNrndbm/urdU9kNrU2e2ytKlx9m055tu7nTkd354cHYIYi9l7T3dD5xuon0ytf1Rwq3X3Z5tOPOaZkzxtau2YD9Q2tbadbaqvY0MnXlEUn45XW7X0N71te3v0trp3VZuEEHC73TAajU32+7vuDe+vht8bHwdtvdc+oJYMa6+8vDyUlZV5O76TJk1CZWUlfv31V2+ZtWvXQlVV7+x1kyZNwk8//eQdhgAAq1evxpAhQxAREeEts2bNGp/nWr16NSZNmgSgfta/+Ph4nzJWqxUbN270liEiIuoLQk16zBmdhDiL70njOIsRc8YkcRI1IiKSXkBd6a6pqcH+/fu9v+fm5mLLli2IjIxEZGQklixZgksuuQTx8fHIycnBPffcg4EDB3pnBMzMzMQ555yDG264AcuWLYPL5cKiRYtw5ZVXeu+nuOqqq7BkyRIsXLgQ9957L7Zv347nn38ezz33nPd5//SnP2HatGl45plncN555+GDDz5AVlYW/vnPfwKoPxty22234fHHH8egQYO8S4YlJia2OhyeiIgoECVHBWHhlFTkVdhQY3cjxKRDUoSZHW4iIiIEWKc7KysL06dP9/7eMLvc/Pnz8corr2Dbtm145513UFlZicTERJx99tl47LHHfIZsL1++HIsWLcJZZ50FjUaDSy65BC+88IJ3f1hYGL777jvceuutGDt2LKKjo/HQQw95lwsDgNNOOw0rVqzAAw88gPvvvx+DBg3CZ5995l2jGwDuuece1NbW4sYbb0RlZSWmTJmCb775hmt09xCNRoOkpKRmhzNR38Xc5cXsu1+oSY/MhJ7tZDN3eTF7OWk0mhaHn1Pf13i1qd4uYCdSk4HVakVYWNhJb8wnIiIiIpJN4wmueGGLukpr77O29td4OpCk4PF4sGvXriazcVLfxtzlxezlxNzlxezlpKoqXC4Xc5eQEAI2m63Ts6O3RePZ9jsqoIaXE3WUEAJVVVXdcmBS78Hc5cXs5cTc5cXs5aTT6eByuZCfn4/Y2Ngmy0dR3yWE8K713VWZCyHgdDpRUlICjUbTqeHs7HQTEREREVHA0Wg0cLlc0Ol0yM/P7+nqUDdq6BB3x4mWoKAgJCcnd2rOCHa6iYiIiIgoYCUlJQEAh5lLxO12Y/v27Rg4cGCb18ruCK1WC51O1+mOPTvdJAWNRoO0tDTOaioZ5i4vZi8n5i4vZi+nhty1Wi00Gg30ei5TKAtVVZGWloagoKCAOO45e3kvxtnLiYiIiIiIeifOXk7UiMfjwdatWznsSDLMXV7MXk7MXV7MXk7MXV6Blj073SSF7lxWgHoP5i4vZi8n5i4vZi8n5i6vQMuenW4iIiIiIiKiLsJONxEREREREVEXYaebpKDVapGRkQGtVtvTVaFuxNzlxezlxNzlxezlxNzlFWjZc/byXoyzlxMREREREfVOnL2cqBG3241NmzbB7Xb3dFWoGzF3eTF7OTF3eTF7OTF3eQVa9ux0kzQCZUkB8i/mLi9mLyfmLi9mLyfmLq9Ayl7X0xUgIiKi3qna7kJehQ01djdCTDokRZgRatL3dLWIiIgCCjvdRERE1MThsjqsys5DkdXh3RZnMWLO6CQkRwX1YM2IiIgCCydS68U4kZr/CCFgs9lgNpuhKEpPV4e6CXOXF7PvnGq7C2/8nOvT4W4QZzFi4ZTUXnnFm7nLi9nLibnLq7dkz4nUiE5gMBh6ugrUA5i7vJh9x+VV2JrtcANAkdWBvApbN9eo7Zi7vJi9nJi7vAIpe3a6SQoejwdZWVkBNeECdR5zlxez75wae+uzwZ5sf09h7vJi9nJi7vIKtOzZ6SYiIiIfIabWp3w52X4iIiI6jp1uIiIi8pEUYUacxdjsvjiLEUkR5m6uERERUeBip5uIiIh8hJr0mDM6qUnHO85ixJwxSb1yEjUiIqLeirOX92Kcvdx/hBDweDzQarWc3VIizF1ezN4/Am2dbuYuL2YvJ+Yur96SfVv7a7wpi6ThdDphNnNIpGyYu7yYfeeFmvTITOi9nezmMHd5MXs5MXd5BVL2HF5OUvB4PNi2bVvAzHBI/sHc5cXs5cTc5cXs5cTc5RVo2bPTTURERERERNRF2OkmIiIiIiIi6iLsdJM0tFptT1eBegBzlxezlxNzlxezlxNzl1cgZc/Zy3sxzl5ORERERETUO7W1v8Yr3SQFIQQqKyvBc0xyYe7yYvZyYu7yYvZyYu7yCrTs2ekmKXg8HuzevTtgZjgk/2Du8mL2cmLu8mL2cmLu8gq07NnpJiIiIiIiIuoi7HQTERERERERdRF2ukkKiqLAbDZDUZSergp1I+YuL2YvJ+YuL2YvJ+Yur0DLnrOX92KcvZyIiIiIiKh34uzlRI2oqori4mKoqtrTVaFuxNzlxezlxNzlxezlxNzlFWjZs9NNUlBVFQcOHAiYA5P8g7nLi9nLibnLi9nLibnLK9CyZ6ebiIiIiIiIqIuw001ERERERETURdjpJikoioKwsLCAmeGQ/IO5y4vZy4m5y4vZy4m5yyvQsufs5b0YZy8nIiIiIiLqnTh7OVEjqqoiLy8vYCZbIP9g7vJi9nJi7vJi9nJi7vIKtOzZ6SYpBNqBSf7B3OXF7PuOarsLuwqs2JRbjl0FVlTbXS2WZe7yYvZyYu7yCrTsdT1dASIiIqLmHC6rw6rsPBRZHd5tcRYj5oxOQnJUUA/WjIiIqO14pZuIiIh6nWq7q0mHGwCKrA6sys5r9Yo3ERFRb8JON0lBo9EgJiYGGg3f8jJh7vJi9oEvr8LWpMPdoMjqQF6Frcl25i4vZi8n5i6vQMuew8tJChqNBunp6T1dDepmzF1ezD7w1djd7d7P3OXF7OXE3OUVaNkHxqkBok5SVRU5OTkBM9kC+QdzlxezD3whptavCzS3n7nLi9nLibnLK9CyZ6ebpKCqKkpKSgLmwCT/YO7yYvaBLynCjDiLsdl9cRYjkiLMTbYzd3kxezkxd3kFWvbsdBMREVGvE2rSY87opCYd7ziLEXPGJCHUpO+hmhEREbUP7+kmIiKiXik5KggLp6Qir8KGGrsbISYdkiLM7HATEVFAYaebpKDRaJCUlBQwMxySfzB3eTH7viPUpEdmQts62cxdXsxeTsxdXoGWvSKEED1dCWqe1WpFWFgYqqqqYLFYero6REREREREdExb+2uBcWqAqJM8Hg927doFj8fT01WhbsTc5cXs5cTc5cXs5cTc5RVo2bPTTVIQQqCqqgoc2CEX5i4vZi8n5i4vZi8n5i6vQMuenW4iIiIiIiKiLsJONxEREREREVEXYaebpKDRaJCWlhYwMxySfzB3eTF7OTF3eTF7OTF3eQVa9py9vBfj7OVERERERES9E2cvJ2rE4/Fg69atATPDIfkHc5cXs5cTc5cXs5cTc5dXoGXPTjdJQQgBm80WMDMckn8wd3kxezkxd3kxezkxd3kFWvbsdBMRERERERF1EXa6iYiIiIiIiLoIO90kBa1Wi4yMDGi12p6uCnUj5i4vZi8n5i4vZi8n5i6vQMues5f3Ypy9nIiIiIiIqHfi7OVEjbjdbmzatAlut7unq0LdiLnLi9nLibnLi9nLibnLK9CyZ6ebpBEoSwqQfzF3eTF7OTF3eTF7OTF3eQVS9ux0ExEREREREXURdrqJiIiIiIiIuggnUuvFOJGa/wghYLPZYDaboShKT1eHuglzlxezlxNzlxezlxNzl1dvyZ4TqRGdwGAw9HQVqAcwd3kxezkxd3kxezkxd3kFUvbsdJMUPB4PsrKyAmrCBeo85i4vZi8n5i4vZi8n5i6vQMs+oDrdP/30Ey644AIkJiZCURR89tlnPvuFEHjooYeQkJAAs9mMGTNmYN++fT5lysvLMW/ePFgsFoSHh2PhwoWoqanxKbNt2zacfvrpMJlM6N+/P55++ukmdfn444+RkZEBk8mEESNG4Ouvv253XYiIiIiIiKhvC6hOd21tLUaOHImXXnqp2f1PP/00XnjhBSxbtgwbN25EcHAwZs6cCbvd7i0zb9487NixA6tXr8a///1v/PTTT7jxxhu9+61WK84++2ykpKTg119/xd/+9jc88sgj+Oc//+kts379esydOxcLFy5EdnY2Zs+ejdmzZ2P79u3tqgsRERERERH1bbqerkB7zJo1C7NmzWp2nxACS5cuxQMPPICLLroIAPDuu+8iLi4On332Ga688krs2rUL33zzDTZt2oRx48YBAP7xj3/g3HPPxd///nckJiZi+fLlcDqdePPNN2EwGDBs2DBs2bIFzz77rLdz/vzzz+Occ87B3XffDQB47LHHsHr1arz44otYtmxZm+pCRERE9artLuRV2FBjdyPEpENShBmhJn1PV4uIiMgvAupKd2tyc3NRWFiIGTNmeLeFhYVh4sSJ2LBhAwBgw4YNCA8P93a4AWDGjBnQaDTYuHGjt8zUqVN9bsyfOXMm9uzZg4qKCm+Zxs/TUKbhedpSF+peWq0W48aNg1ar7emqUDdi7vJi9oHjcFkd3vg5F+9uOIRV2Ufx7oZDeOPnXBwuq2v3YzF3eTF7OTF3eQVa9gF1pbs1hYWFAIC4uDif7XFxcd59hYWFiI2N9dmv0+kQGRnpUyY1NbXJYzTsi4iIQGFh4Umf52R1aY7D4YDD4fD+brVaAQButxtutxsAoNFooNFooKoqVFX1lm3Y7vF40HgVuJa2a7VaKIrifdzG2wE0mZSgpe06nQ5CCJ/tiqJAq9U2qWNL27ujTQ3LCphMJu+yAoHepubqzjb51l0IAbvdDrPZDJ1O1yfadLLtbFP9dkVRmj3mA7lNfTGnWqcHn24+jJJqh/cqgAoFRVYHPt18GPNPG4AQo67NbWo45k0mE/R6PXOSqE2KosBut8NoNHqP+UBvU1/Myd9tanzM63S6PtGmttSdbVKg0WiaHPM90aYT29eSPtPp7guefPJJLFmypMn27OxsBAcHAwBiYmKQnp6O3NxclJSUeMskJSUhKSkJe/fuRVVVlXd7WloaYmNjsX37dthsNu/2jIwMhIeHIzs72+dNfMopp8BgMCArK8unDuPGjYPT6cS2bdu827RaLcaPH4+qqirs3r3bu91sNmPkyJEoLS3FgQMHvNvDwsKQmZmJ/Px85OXlebd3R5u0Wi1+/vlnhIeHew/MQG9TX8zJ320SQqCyshLJyckYNmxYn2hTX8ypK9oUGRmJDRs2IDQ01HvMB3qb+mJOZR4TTDUFGKQ5/qXliBqBOhgRWpOHrKxSb6e7LW1qOOajoqIwYcIE5iRRm1JSUvC///3PZ83eQG9TX8zJ321yu92orKxEeHg4Ro4c2Sfa1Bdz6oo2DRs2DL/++isMBoP3mO+JNtXW1qItFNG4+x5AFEXBp59+itmzZwMADhw4gPT0dGRnZ2PUqFHectOmTcOoUaPw/PPP480338Sdd97pHSYO1J+dMJlM+Pjjj3HxxRfjmmuugdVq9ZkZ/YcffsCZZ56J8vJyREREIDk5GXfccQduu+02b5mHH34Yn332GbZu3dqmujSnuSvd/fv3R1lZmXex9UA5+9Tbzqi53W5kZWVhzJgx3rYEepuaqzvb5Ft3j8eDzZs3Y8yYMTAajX2iTSfbzjbBW3bTpk1NjvlAblNfzOnXQ5X4NPsIlEZ1UaEAUKCBigtHJmJsSkSb23TiMc+c5GlTc8d8oLepL+bk7zY1PuYbbg0N9Da1pe5skwIhRJNjvifaZLVaERUVhaqqKm9/rTl95kp3amoq4uPjsWbNGm9H12q1YuPGjbj55psBAJMmTUJlZSV+/fVXjB07FgCwdu1aqKqKiRMnesv8+c9/hsvlgl5fP4nL6tWrMWTIEERERHjLrFmzxqfTvXr1akyaNKnNdWmO0WiE0Whssl2n03mHzDRoeDOcqOFN19btJz5uR7YritLs9pbq2N7t/miToijeA/HE/YHapvZul7VNDbm3VvdAa1NntsvSJlVV23XMt3c7c/JPm0JMOgho0NzZfxUaWIKM7c6v8THPnORpU2vHfKC2qbXtbFPTY77hamdfaFNntsvSJrfb3eIx351taqkdTf6mTaV6iZqaGuzfv9/7e25uLrZs2YLIyEgkJyfjtttuw+OPP45BgwYhNTUVDz74IBITE71XwzMzM3HOOefghhtuwLJly+ByubBo0SJceeWVSExMBABcddVVWLJkCRYuXIh7770X27dvx/PPP4/nnnvO+7x/+tOfMG3aNDzzzDM477zz8MEHHyArK8u7rJiiKCetC3W/lg4cCiztneWYucuL2fd+SRFmxFmMKLI6muyLsxiRFGFu92Myd3kxezkx977rZN/5Ain7gBpevm7dOkyfPr3J9vnz5+Ptt9+GEAIPP/ww/vnPf6KyshJTpkzByy+/jMGDB3vLlpeXY9GiRfjyyy+h0WhwySWX4IUXXkBISIi3zLZt23Drrbdi06ZNiI6Oxh//+Efce++9Ps/58ccf44EHHsDBgwcxaNAgPP300zj33HO9+9tSl5OxWq0ICws76XAFIlkcLqvDquw8ny/ocRYj5oxOQnJUUA/WjIg6qsXjekwSkiN5XBMRyShQvvO1tb8WUJ1u2bDT7T9CCFRVVSEsLMw7/IgCS7XdhTd+zm3xitjCKalNrngzd3kx+8Dir3W6mbu8mL2cmHvf1JbvfCFGXa/Ivq39tT6zTjdRazweD3bv3t1kcgYKHHkVtmY/fAGgyOpAXoWtyXbmLi9mH1hCTXpkJlgwPjUSmQmWDnW4AeYuM2YvJ+beN7XlO1+gZc9ONxEFhBp76+sgnmw/EREREfV+ffE7HzvdRBQQQkytz/t4sv1ERERE1Pv1xe987HSTFBRFgdls5v0+AaxhluPmtDTLMXOXF7OXE3OXF7OXE3Pvm9rynS/QsudEar0YJ1Ij8sVZjomIiIj6vkD5zsfZy/sAdrr9R1VVlJaWIjo6GhoNB3gEsvbMcszc5cXs5cTc5cXs5cTc+7bWvvP1luzb2l8LvAHxRB2gqioOHDiAyMhIfigHuPpZjts2szFzlxezlxNzlxezlxNz79ta+84XaNn3/hoSERERERERBSh2uomIiIiIiIi6CDvdJAVFURAWFhYwMxySfzB3eTF7OTF3eTF7OTF3eQVa9pxIrRfjRGpERERERES9U1v7a7zSTVJQVRV5eXlQVbWnq0LdiLnLi9nLibnLi9nLibnLK9CyZ6ebpBBoByb5B3OXF7OXE3OXF7OXE3OXV6Blz043ERERERERURdhp5uIiIiIiIioi7DTTVLQaDSIiYmBRsO3vEyYu7yYvZyYu7yYvZyYu7wCLXvOXt6LcfZyIiIiIiKi3omzlxM1oqoqcnJyAmayBfIP5i4vZi8n5i4vZi8n5i6vQMuenW6SgqqqKCkpCZgDk/yDucuL2cuJucuL2cuJucsr0LJnp5uIiIiIiIioi7DTTURERERERNRF2OkmKWg0GiQlJQXMDIfkH8xdXsxeTsxdXsxeTsxdXoGWPWcv78U4ezkREREREVHvxNnLiRrxeDzYtWsXPB5PT1eFuhFzlxezlxNzlxezlxNzl1egZc9ON0lBCIGqqipwYIdcmLu8mL2cmLu8mL2cmLu8Ai17drqJiIiIiIiIugg73URERERERERdhJ1ukoJGo0FaWlrAzHBI/sHc5cXs5cTc5cXs5cTc5RVo2XP28l6Ms5cTERERERH1Tpy9nKgRj8eDrVu3BswMh+QfzF1ezF5OzF1ezF5OzF1egZY9O90kBSEEbDZbwMxwSP7B3OXF7OXE3OXF7OXE3OUVaNmz001ERERERETURdjpJiIiIiIiIuoi7HSTFLRaLTIyMqDVanu6KtSNmLu8mL2cmLu8mL2cmLu8Ai17zl7ei3H2ciIiIiIiot6Js5cTNeJ2u7Fp0ya43e6ergp1I+YuL2YvJ+YuL2YvJ+Yur0DLXtfTFSDqLoGypAD5F3OXV0vZV9tdyKuwocbuRohJh6QIM0JN+m6uHXUVHvPyYvZyYu7yCqTs2ekmIiJpHC6rw6rsPBRZHd5tcRYj5oxOQnJUUA/WjIiIiPoqDi8nIiIpVNtdTTrcAFBkdWBVdh6q7a4eqhkRERH1ZR2aSM3hcGDjxo04dOgQ6urqEBMTg9GjRyM1NbUr6igtTqTmP0II2Gw2mM1mKIrS09WhbsLc5dVc9rsKrHh3w6EW/+aaSSnITOBnbSDjMS8vZi8n5i6v3pJ9W/tr7Rpe/ssvv+D555/Hl19+CZfLhbCwMJjNZpSXl8PhcCAtLQ033ngjbrrpJoSGhna6EUT+ZDAYeroK1AOYu7xOzL7G3vpkKyfbT4GBx7y8mL2cmLu8Ain7Ng8vv/DCC3HFFVdgwIAB+O6771BdXY2ysjLk5eWhrq4O+/btwwMPPIA1a9Zg8ODBWL16dVfWm6hdPB4PsrKyAmrCBeo85i6v5rIPMbV+nvlk+6n34zEvL2YvJ+Yur0DLvs3fMM477zysXLkSen3zM7ympaUhLS0N8+fPx86dO1FQUOC3ShIREXVWUoQZcRZjk3u6gfrJ1JIizD1QKyIiIurr2nyl+w9/+EOLHe4TDR06FGeddVaHK0VERORvoSY95oxOQpzF6LM9zmLEnDFJXDaMiIiIugTH0hERkTSSo4KwcEoq1+kmIiKibtPm2csjIiLaPDNceXl5pypF9Xrr7OXVdlfAfWEVQsDj8UCr1XJ2S4kwd3kxezkxd3kxezkxd3n1luz9Pnv50qVLvf9dVlaGxx9/HDNnzsSkSZMAABs2bMC3336LBx98sOO1pl7vcFldk3Vu4yxGzBmdhOSooB6s2ck5nU6YzbxnUzbMXV7MXk7MXV7MXk7MXV6BlH2b7+meP3++9+eXX37Bo48+ivfffx+LFy/G4sWL8f777+PRRx/Fjz/+2JX1pR5UbXc16XADQJHVgVXZeai2u3qoZifn8Xiwbdu2gJnhkPyDucuL2cuJucuL2cuJucsr0LJvc6e7sW+//RbnnHNOk+3nnHMOvv/++05XinqnvApbs7P+AvUd77wKWzfXiIio7artLuwqsGJTbjl2FVh79YlCIiIi6js6NJFaVFQUPv/8c9x5550+2z///HNERUX5pWLU+9TY3Z3aT0TUUwL51hgiIiIKbB3qdC9ZsgTXX3891q1bh4kTJwIANm7ciG+++QavvfaaXytIvUeIqfW3y8n29zStVtvTVaAewNzl1ZD9yW6NWTgltddPBkltx2NeXsxeTsxdXoGUfZtnLz/Rxo0b8cILL2DXrl0AgMzMTCxevNjbCafO622zl1fbXXjj59xmh5jHWYz84kpEvdKuAive3XCoxf3XTEpBZkLPf8YSERFRYPH77OUnmjhxIpYvX97RP6cAFGrSY87opOaHaI5J6tUdbiEEqqqqEBYWxiUlJMLc5dU4e94aIw8e8/Ji9nJi7vIKtOw7NJEaAOTk5OCBBx7AVVddheLiYgDAf/7zH+zYscNvlaPeJzkqCAunpOKaSSmYM7ofrpmUgoVTUpEc2bvvifR4PNi9e3fAzHBI/sHc5dU4+0C/NYbajse8vJi9nJi7vAIt+w51un/88UeMGDECGzduxMqVK1FTUwMA2Lp1Kx5++GG/VpB6n1CTHpkJFoxPjURmgqVXX+EmIkqKMCPOYmx2X5zFiKSIwFjjk4iIiAJThzrd9913Hx5//HGsXr0aBoPBu/3MM8/Ef//7X79VjoiIqLMabo05seMdCLfGEBERUeDr0Ji63377DStWrGiyPTY2FqWlpZ2uFJG/KYoCs9kcEPd8kP8wd3mdmH3DrTF5FTbU2N0IMemQFGFmh7uP4TEvL2YvJ+Yur0DLvkOd7vDwcBQUFCA1NdVne3Z2Nvr16+eXihH5k1arxciRI3u6GtTNmLu8msu+/tYYdrL7Mh7z8mL2cmLu8gq07Ds0vPzKK6/Evffei8LCQiiKAlVV8csvv+Cuu+7CNddc4+86EnWaqqooLi6Gqqo9XRXqRsxdXsxeTsxdXsxeTsxdXoGWfYc63X/5y1+QkZGB/v37o6amBkOHDsXUqVNx2mmn4YEHHvB3HYk6TVVVHDhwIGAOTGpdtd2FXQVWbMotx64CK6rtrmbLMXd5MXs5MXd5MXs5MXd5BVr2HRpebjAY8Nprr+Ghhx7Cb7/9hpqaGowePRqDBg3yd/2IiHwcLqtrfq340UlIjurdS9cRERERkXw6dKX70UcfRV1dHfr3749zzz0Xl19+OQYNGgSbzYZHH33U33UkIgJQf4X7xA43ABRZHViVndfiFW8iIiIiop7SoU73kiVLvGtzN1ZXV4clS5Z0ulJE/qYoCsLCwgJmhkNqXl6FrUmHu0GR1YG8CpvPNuYuL2YvJ+YuL2YvJ+Yur0DLvkPDy4UQzTZw69atiIyM7HSliPxNq9UiMzOzp6tBnVRjd7drf1/Jvdru4lJX7dSZ7Pl6B66+csxT+zF7OTF3eQVa9u3qdEdEREBRFCiKgsGDB/t0vD0eD2pqanDTTTf5vZJEnaWqKvLz85GYmAiNpkMDPKgXCDG1/pF14v6+kDvvYe+YjmbP1zuw9YVjnjqG2cuJucsr0LJvV6d76dKlEELguuuuw5IlSxAWFubdZzAYMGDAAEyaNMnvlSTqLFVVkZeXh/j4+IA4MGXW2lXGpAgz4izGZoeYx1mMSIow+2wL9NxPdg/7wimpvALbgo5kz9c78AX6MU8dx+zlxNzlFWjZt6vTPX/+fABAamoqJk+eDJ2uQ6PTiYiadbKrjKEmPeaMTmq+zJikPtchass97JkJfavNPYmvNxEREXWFDvWaa2trsWbNGsycOdNn+7fffgtVVTFr1iy/VI6I5NHWq4zJUUFYOCVVintu23sPO3UOX28iIiLqCh26Fn/ffffB4/E02S6EwH333dfpShH5m0ajQUxMTEAMP5FVe2YmDzXpkZlgwfjUSGQmWFrscAd67u29h52O60j2fL0DX6Af89RxzF5OzF1egZZ9h2q5b98+DB06tMn2jIwM7N+/v9OVIvI3jUaD9PT0gDkwZdQVVxkDPfeGe9ib09w97HRcR7Ln6x34Av2Yp45j9nJi7vIKtOw7VMuwsDAcOHCgyfb9+/cjODi405Ui8jdVVZGTkwNVVXu6KtSCrrjKGOi5N9zDfmJHsK/ew+5PHcmer3fgC/RjnjqO2cuJucsr0LLv0Fi5iy66CLfddhs+/fRTpKenA6jvcN9555248MIL/VpBIn9QVRUlJSVISUkJmDNismnvzORt0Rdyl+kedn/qaPZ8vQNbXzjmqWOYvZyYu7wCLfsOdbqffvppnHPOOcjIyEBSUhIAIC8vD6effjr+/ve/+7WCRCQH2WYmb4/6e9jlbX934+tNRERE/tTh4eXr16/HV199hVtuuQV33nkn1qxZg7Vr1yI8PNzPVWy7Rx55BIqi+PxkZGR499vtdtx6662IiopCSEgILrnkEhQVFfk8xuHDh3HeeechKCgIsbGxuPvuu+F2+95Lum7dOowZMwZGoxEDBw7E22+/3aQuL730EgYMGACTyYSJEyfif//7X5e0magvabjKeM2kFMwZ3Q/XTErBwimpSI4M6umqERERERF1SIenYlUUBWeffTbOPvtsf9an04YNG4bvv//e+3vjtcRvv/12fPXVV/j4448RFhaGRYsWYc6cOfjll18AAB6PB+eddx7i4+Oxfv16FBQU4JprroFer8df/vIXAEBubi7OO+883HTTTVi+fDnWrFmD66+/HgkJCd4l1D788EPccccdWLZsGSZOnIilS5di5syZ2LNnD2JjY7vx1aAGGo0GSUlJATH8RHb+vMrI3OXF7OXE3OXF7OXE3OUVaNkrQgjRloIvvPACbrzxRphMJrzwwgutll28eLFfKtdejzzyCD777DNs2bKlyb6qqirExMRgxYoVuPTSSwEAu3fvRmZmJjZs2IBTTz0V//nPf3D++ecjPz8fcXFxAIBly5bh3nvvRUlJCQwGA+6991589dVX2L59u/exr7zySlRWVuKbb74BAEycOBHjx4/Hiy++CKD+noP+/fvjj3/8Y7uWVLNarQgLC0NVVRUsFktHXxYiIiIiIiLys7b219p8auC5555DbW2t979b+lm6dGmnK98Z+/btQ2JiItLS0jBv3jwcPnwYAPDrr7/C5XJhxowZ3rIZGRlITk7Ghg0bAAAbNmzAiBEjvB1uAJg5cyasVit27NjhLdP4MRrKNDyG0+nEr7/+6lNGo9FgxowZ3jLU/TweD3bt2tXs+vLUdzF3eTF7OTF3eTF7OTF3eQVa9m0eXp6bm9vsf/cmEydOxNtvv40hQ4agoKAAS5Yswemnn47t27ejsLAQBoOhyT3ncXFxKCwsBAAUFhb6dLgb9jfsa62M1WqFzWZDRUUFPB5Ps2V2797dav0dDgccjuMTSFmtVgCA2+323leu0Wig0WigqqrPFPkN2z0eDxoPXmhpu1arhaIoTe5X12q1ANDkDdzSdp1OByGEz3ZFUaDVapvUsaXt3dEmVVVRWVkJt9vt/ZtAb1NzdWebfOvu8Xi8ufeVNp1sO9tUv10I0ewxH8ht6os5+btNJx7zfaFNjfWVnLqiTc0d84Hepr6Yk7/b1PiYbxhmHOhtakvd2Sal2WO+J9p0Yvta0uF7unujWbNmef/7lFNOwcSJE5GSkoKPPvoIZnP7lxvqbk8++SSWLFnSZHt2drZ3/fOYmBikp6cjNzcXJSUl3jJJSUlISkrC3r17UVVV5d2elpaG2NhYbN++HTabzbs9IyMD4eHhyM7O9nkTn3LKKTAYDMjKyvKpw7hx4+B0OrFt2zbvNq1Wi/Hjx6OqqsrnhILZbMbIkSNRWlrqs557WFgYMjMzkZ+fj7y8PO/27miTVqtFZWUlNm/eDEVR+kSb+mJO/m5Twwfy/v37MWzYsD7Rpr6YU1e0KTIyEtXV1T7HfKC3qS/m5O82NRzzW7duxYQJE/pEm/piTl3RppSUFNhsNp9jPtDb1Bdz8neb3G639/vdyJEj+0Sb+mJOXdGmYcOGwel0+hzzPdGmhpHgJ9Pme7rvuOOONj0gADz77LNtLtvVxo8fjxkzZuB3v/sdzjrrLFRUVPhc7U5JScFtt92G22+/HQ899BC++OILn3vCc3NzkZaWhs2bN2P06NGYOnUqxowZ4zOM/q233sJtt92GqqoqOJ1OBAUF4ZNPPsHs2bO9ZebPn4/Kykp8/vnnLda1uSvd/fv3R1lZmfcegUA5+9Tbzqi53W5kZWVhzJgx3rYEepuaqzvb1PRK9+bNm72rDfSFNp1sO9sEb9lNmzY1OeYDuU19MaeuuNLd+JjvC21qrK/k1BVtau6YD/Q29cWcuuJKd8MxbzAY+kSb2lJ3tqn+SveJx3xPtMlqtSIqKuqk93S3+Up3dna2z++bN2+G2+3GkCFDAAB79+6FVqvF2LFj2/qQXa6mpgY5OTn4/e9/j7Fjx0Kv12PNmjW45JJLAAB79uzB4cOHMWnSJADApEmT8MQTT6C4uNg7y/jq1athsVgwdOhQb5mvv/7a53lWr17tfQyDwYCxY8dizZo13k63qqpYs2YNFi1a1Gp9jUYjjEZjk+06nc5nFnbg+JvhRA1vurZuP/FxO7JdUZRmt7dUx/Zu90ebtFot0tPTodfrmzxHoLapvdtlbJNGo/Hm3lrdA6lNnd0uU5vac8y3dztz6p1tOvGY7wttOhHb1PL2lo75QG5TX8zJn21qfMw3XO0M9DZ1drssbVJVtcVjvjvb1FI7mvxNm0oB+OGHH7z//eyzzyI0NBTvvPMOIiIiAAAVFRVYsGABTj/99LY+pN/ddddduOCCC5CSkoL8/Hw8/PDD0Gq1mDt3LsLCwrBw4ULccccdiIyMhMViwR//+EdMmjQJp556KgDg7LPPxtChQ/H73/8eTz/9NAoLC/HAAw/g1ltv9XaGb7rpJrz44ou45557cN1112Ht2rX46KOP8NVXX3nrcccdd2D+/PkYN24cJkyYgKVLl6K2thYLFizokdeF6g8yLtcmH+YuL2YvJ+YuL2bft1TbXcirsKHG7kaISYekCDNCTU2XE2Xu8gq07Ns8vLyxfv364bvvvsOwYcN8tm/fvh1nn3028vPz/VbB9rjyyivx008/oaysDDExMZgyZQqeeOIJpKenAwDsdjvuvPNOvP/++3A4HJg5cyZefvllxMfHex/j0KFDuPnmm7Fu3ToEBwdj/vz5+Otf/+pzFmPdunW4/fbbsXPnTiQlJeHBBx/Etdde61OXF198EX/7299QWFiIUaNG4YUXXsDEiRPb1R4uGeY/Ho8H27dvx/Dhw1s8a0V9D3OXF7OXE3OXF7PvOw6X1WFVdh6KrMdvuYyzGDFndBKSo4J8yjJ3efWW7NvaX+vQRGpWq9XnJvQGJSUlqK6u7shD+sUHH3zQ6n6TyYSXXnoJL730UotlUlJSmgwfP9EZZ5zRZLj9iRYtWnTS4eTUfYQQsNls6MA5JgpgzF1ezF5OzF1ezL5vqLa7mnS4AaDI6sCq7DwsnJLqc8Wbucsr0LJv8zrdjV188cVYsGABVq1ahby8POTl5WHlypVYuHAh5syZ4+86EhERERFRH5dXYWvS4W5QZHUgr8LW7D6i3q5DV7qXLVuGu+66C1dddRVcLlf9A+l0WLhwIf72t7/5tYJERERERNT31dhbX/P4ZPuJeqsO3dPdoLa2Fjk5OQDqZ4xsWEua/IP3dPuPEAJVVVUICwvzzm5JfR9zlxezlxNzlxez7xt2FVjx7oZDLe6/ZlIKMhOOfydm7vLqLdl36T3dDQoKClBQUICpU6fCbDZDCME3PPVKiqL4rM9Ocugrubd1Flc6rq9kT+3D3OXF7PuGpAgz4izGZoeYx1mMSIow+2xj7vIKtOw7dE93WVkZzjrrLAwePBjnnnsuCgoKAAALFy7EnXfe6dcKEvmD2+3Gpk2bfBazp76vL+R+uKwOb/yci3c3HMKq7KN4d8MhvPFzLg6X1fV01Xq1vpA9tR9zlxez7xtCTXrMGZ2EOIvRZ3ucxYg5Y5KanHBm7vIKtOw71Om+/fbbodfrcfjwYQQFHZ+6/4orrsA333zjt8oR+ZPH4+npKlAPCOTcTzaLa7Xd1UM1CwyBnD11HHOXF7PvG5KjgrBwSiqumZSCOaP74ZpJKVg4JRXJkUHNlmfu8gqk7Ds0vPy7777Dt99+i6SkJJ/tgwYNwqFDLd+HQUREbdeWWVwzEzjMnIiI+pZQk57/vlGf0qEr3bW1tT5XuBuUl5fDaDQ28xdERNRenMWViIiIKPB1qNN9+umn49133/X+rigKVFXF008/jenTp/utckT+otVqccopp0Cr1fZ0VagbBXruIabWByOdbL/MAj176hjmLi9mLyfmLq9Ay75D39iefvppnHXWWcjKyoLT6cQ999yDHTt2oLy8HL/88ou/60jkFwaDoaerQD0gkHNv7yyu5CuQs6eOY+7yYvZyYu7yCqTsO3Sle/jw4di7dy+mTJmCiy66CLW1tZgzZw6ys7ORnp7u7zoSdZrH40FWVlZATbhAnRfoubd3Flc6LtCzp45h7vJi9nJi7vIKtOzbfaXb5XLhnHPOwbJly/DnP/+5K+pERETHNMziynW6iYiIiAJTuzvder0e27Zt64q6EBFRMxpmca22u5BXYcPugmp2vomIiIgCRIfu6b766qvxxhtv4K9//au/60NERM04XFbXZM3uOIsRc0YnITmq+bVLiYiIiKjnKUII0d4/+uMf/4h3330XgwYNwtixYxEcHOyz/9lnn/VbBWVmtVoRFhaGqqoqWCyWnq5OQBNCwOPxQKvVQlGUnq4OdZO+knu13YU3fs5tcUK1hVNSecX7BH0le2of5i4vZi8n5i6v3pJ9W/trHbrSvX37dowZMwYAsHfvXp99fMNTb+V0OmE2c7Zn2fS23BuGiLfn/uy8CluzHW4AKLI6kFdhQ2YCO90n6m3ZU/dg7vJi9nJi7vIKpOw71On+4Ycf/F0Poi7l8Xiwbds2jBs3Djod1zaWRW/LvaNDxGvs7lYf92T7ZdTbsqfuwdzlxezlxNzlFWjZt3vJsA8//BDz5s3DZZddhmXLlnVFnYiI+pxqu6tJhxuov1K9KjsP1XZXi38bYmr9H5OT7SciIiKintOub2qvvPIKbr31VgwaNAhmsxmrVq1CTk4O/va3v3VV/YiI+oSODhGvtrugANBpFZRWOxBs1EGvPX6+NM5iRFJEYAytIiKi3q0jt0AR0cm1q9P94osv4uGHH8bDDz8MAHjvvffwhz/8gZ1uCgharbanq0A9oLfk3pEh4g3D0UtrnMiMD8WaChuOVFiRGhWCEJOufmj6mCR+IWpBb8meuhdzlxez75xAXSWDucsrkLJv1+zlZrMZu3btwoABAwAAqqrCbDbj4MGDSEhI6Ko6SouzlxP1HbsKrHh3w6EW918zKQWZCceP8xNnLNdqFKREmmHQaaEowMikcKTFBLPDTUREncZVMog6pq39tXbd0+1wOHyWB9NoNDAYDLDZbB2vKVE3EEKgsrISHVghjwJYb8o9KcKMOIux2X3NDRE/cTi6RxU4UFqH3YXV2FVQDYNOwy9ArehN2VP3Ye7yYvad05ZboHoj5i6vQMu+3bPvPPjggwgKOj7ExOl04oknnkBYWJh3G9fppt7G4/Fg9+7dATPDIflHb8o91KTHnNFJzQ/da2aIOGcs75zelD11H+YuL2bfOYH6bw5zl1egZd+uGk6dOhV79uzx2XbaaafhwIED3t+5TjcRUfOSo4KwcEpqmyap4YzlRETUXfhvDlHXatcRtG7dui6qBhG1B2cXDVyhJn2zs5SfqGE4ekv313HGciIi8hf+m0PUtXjaiqSgKArMZnOfGIkRqLOL9oRAzr29w9HJVyBnTx3H3OXF7DsnUP/NYe7yCrTs2zV7OXUvzl5OJ+LsovLhqAYiIuou/DeHqH26ZPZyokClqiqKi4uhqmpPV6VTAnV20Z7SF3KvH45uwfjUSGQmWPjlp436QvbUfsxdXszePwLt3xzmLq9Ay56dbpKCqqo4cOBAwByYLQnU2UV7Sl/JndqP2cuJucuL2cuJucsr0LJnp5sogHB2USIiIiKiwNLpTveIESNw5MgRf9SFiE6iYXbR5nB2USIiIiKi3qfTne6DBw/C5XL5oy5EXUZRFISFhQXMDIctaZhd9MSOd2+fXbSn9JXcqf2YvZyYu7yYvZyYu7wCLftOz14eGhqKrVu3Ii0tzV91omM4e7n/9fZZOdtav97eDiIiIiKivq6t/bVO3wB6+umnw2zmkFbq3VRVxbY9uViX50ZRtdO7vTetb92e9bfrZxdlJ/tkVFVFfn4+EhMTodFwCguZMHs5MXd5MXs5MXd5BVr2na7h119/jYSEBH/UhajLWG1O7Mo5iJJqu8/2IqsDq7LzUG3v2Vskqu2uJh1uoGn9qu0u7CqwYlNuOXYVWHu83r2dqqrIy8sLmJktyX+YvZyYu7yYvZyYe9cIhO+bgZY9pzomKRytsMHhbv6gbFjfuruuHDc3NLwt628HG5p2zHvTlXoiIiIiCmztGXlJbcdON0mhxtE71rdu6YNsVP/wVv+uotaJb3cUtnglfOGUVN7TTUREREQddrKRl/y+2XHsdJMUQk16VAkzBJqf4bA71rdu7YOsuNoBl0eFXtvCHR8KUFrjRFp0EAw6LRwuD0yG+v8/VG7r1iv1gUSj0SAmJiYg7vUh/2L2cmLu8mL2cmLu/tWWkZe95ftmoGXPTjdJoX9UMERoLEQzHyTdtb51ax9kVXVOWEw62FxNh8DHWYwI1muRGR+KNbuLcaiszrsvJSoIZ2XEorabrtQHGo1Gg/T09J6uBvUAZi8n5i4vZi8n5u5fJxv52V0jQ9si0LIPjFMDRJ0UbNBiSpyKuFCDz/buXN+6tQ+qQ+U2nDMsvsX1t016bZMONwAcKqvDmt3F3XKlPhCpqoqcnJyAmWSD/IfZy4m5y4vZy4m5+9fJvk/2pu+bgZZ9m1+5iIiINi8+Xl5e3uEKEXUFVVXhrq3EtaeNQoHV2SPrW7f2QeVRBSxmPRZOSW12/e2tRypRfMLM6w2Kq+0tThInO1VVUVJSgpSUlIAZfkT+wezlxNzlxezlxNz9KynCjDiLsdmRmd01MrStAi37Nne6ly5d2oXVIOoeIUYdMhNMPfLcJ/sg63esg93cvTJOt4rUqBDkltXA5jzewTYbNEiNDoGTnW4iIiIi6oRQkx5zRic1P3t5N40M7ava3OmeP39+V9aDqFOaW4art30wdOaDLMSkQ4hJh4x4C2odbu+ka8FGHfRaTa8a7kPdLxDe/0RERNT7JUcFtTjykjqu09/U7XY7nE6nzzaLxdLZhyVqs7asJ6jRaJCUlNSlw0/a0vHp6AdZ46vk4UFN70vvTcN9epPuyL2ncT3N5smQPTXF3OXF7OXE3LtGSyMve5NAy14RQoj2/lFtbS3uvfdefPTRRygrK2uy3+Px+KVysrNarQgLC0NVVRVPZLSg2u7CGz/ntjhku7vWE8wtqcGmQxWorHV6l/Kyu1RcNKqf3zo+zXWuooL1mJEZB7dHIJhnIqXTW97/RERERDJqa3+tQ6cG7rnnHqxduxavvPIKjEYjXn/9dSxZsgSJiYl49913O1xpovZqy3qCQP2JoF27dnXJCaH9xdV4+ts9ePXHA/gwKw/vrD+EDQfKERlswOdbjqLa7vLL8zRcJb9mUgrmjO6HOaP7ITkyCJ9sPoqV2Ufx7oZDeOPnXBw+YYZzmXVl7r1BW9//Murr2VPzmLu8mL2cmPtx1XYXdhVYsSm3HLsKrH77/tlbBVr2HRpe/uWXX+Ldd9/FGWecgQULFuD000/HwIEDkZKSguXLl2PevHn+ridRs9q6nqAQAlVVVejAwI5WVdtd+HlfKdJjQtA/MghGnQbFVge25lVize5iTEqLRF6FrdNDdE4cup4SFYQPNx1BfpXvjOZFVgdWZefxCucxXZV7bxFI62l2t76ePTWPucuL2cuJudeT8VazQMu+Q53u8vJypKWlAai/f7thibApU6bg5ptv9l/tiE6ip9cTzCmuwXc7i7D9aJV3W2p0MH43NA6rdxbBoNN2uuPT3AepWa9BekwIiqod8Ki+HzYNVzh7+7041Hk9/f4nIiKinlVtdzX5ngjwQkxv06Hh5WlpacjNzQUAZGRk4KOPPgJQfwU8PDzcb5UjOpmGCcaa09UTjFXbXViZfRRHyn2Hc+eW1uKnvSUYmRQOm8sDl6p2eKhPwwdpXoUNlXVOlFTbUVnnxMGyOqzZXYyUyObbJ/MVTpn05PufiIiIeh5vNQsMHep0L1iwAFu3bgUA3HfffXjppZdgMplw++234+677/ZrBYla07AM14kdjxOX4dJoNEhLS/PrDId5FTaUVjug02qg1Sg++3JLaxEVYoBWAXYcrcLnW/Px874S/Gd7IdbtKW5zBzyvwoac4lrsLrRib1ENckvrsLeoBrUON/YX18Cg0zb7d7zCWa8rcu9N2vr+l1Ffz56ax9zlxezlxNzlvdUs0LLv0Dfz22+/3fvfM2bMwO7du/Hrr79i4MCBOOWUU/xWOaK2aMsyXBqNBrGxsX593hq7G8FGHYKNWnhUPartLu9QbwFAr1WQFBGE/+aWIzM+FGt2F+NQWR3MBg0y4i1IijCf9F6biloncstqYHOqPtudbhVCCNhcTSeP4BXO47oi996G62k2T4bsqSnmLi9mLyfmLu+tZoGWvV9SSElJQUpKij8eiqhDTraeoMfjwfbt2zF8+HBotc1fHW7/c+owJC4EGfGhKKt1QqsoKKiy4ddD5dBptRiaYMH6A+VICjd5O9wAYHOqqHW423avjYImHW4BAbcq6ocWhxph0mvgcqs4VG5DdIhB+iucjXVF7r1RIKyn2d1kyZ58MXd5MXs5Mffjt5q1tHxoX70QE2jZd6jT/eijj7a6/6GHHupQZYi6ihACNpvN7zMc7iqsxoGSWmg1gMOlIjxIj2smDcDRChuOVNjgdKsw6LTeDncDl6e+I32ySc8MWg0SwozILa2FRlGg1SiIs5hQ53QjyKiDRwjkldvgcHtw6ZgkpMeGsMPdSFflTr0fs5cTc5cXs5cTcz9+q1mzs5f34QsxgZZ9hzrdn376qc/vLpcLubm50Ol0SE9PZ6ebAsqJy3G1ZWhubkkNnl+zDzvyrd5h5cFGHQw6DdbnlOHW6enYfKgCWo0Cl0dFXKgBUOr/W6/VQK89fv9JS/faHC6rw8GyWoxOjkC13Y38ShtSooKRU1KDiCADksLN+Pu3exATYsSMoXH4YXcx0mNDOtUuIiIiIgosvNWs9+tQpzs7O7vJNqvVimuvvRYXX3xxpytF1F06sq5htd2FTYcqsLeoBnqtBuFBBjjdHjjcKkprnNBpFPx6sAI7C6oxKS0S4UEG5JTWorzWCQBQFAWxoUYMTwxDRLCh2XttGmYtDzZosSvfioGxIbhsXBLKa10YVmPBkYo6rNp8FBoNsLuoGm4hcFZGrPequYzrNVLb8YQMERFR38JbzXo3v033ZrFYsGTJEjz44IP+ekgiv9FqtcjIyPC556OldQ3zKmx4e30uthyuaHaW8bwKGyqPdaAb1Do8sNrdKKiyodbpQXGNEzsLrNBqFWw+XIGIIL13eLhOo6Ci1ont+VUIO9bhOVHD8g8786txSlIY8srrUF7rxBdb8/HOhkP4eX8ZNBqgzumBVlG8M5lX1DpPul5je5ctC2TN5S67w2V1eOPnXLy74RBWZR/FuxsO4Y2fc3H4hFsgAh2zlxNzlxezlxNzl1egZe/X6eyqqqpQVVXlz4ckAtD5K3OKojRZQ765dQ1r7G7vbOEpUcHYXVjd5Apxjd0No/74Ae5yq7C5PDDqNNBpFBh1GqTHBKOqzgWPCny9vQDnDk+AgmLsL6mFB/X3noSadJg2OKbZdtTY3XB5VOwrqUZeRR3OzIxBbKgJ4UF6hJl18Kj1ZVQBCA2g1ShwulVAadt6jbKcCW0ud5md7IRM40n9Av1qOLOXE3OXF7OXE3OXV6Bl36FO9wsvvODzuxACBQUF+Ne//oVZs2b5pWJEDfwxVNrtdiM7OxujR4+GTlf/tj/xXmqXR/VZnstxbDmuEzskISYdnG4PUqKCcKisDh4hEGTQos7pQa1HRVSwAev2FCO/0o7RyeFweQRWbs7D2JQInDYwGm6PgE6rIL/ShrzKOlTbXU06MyEmHWodbticKoINOljMBpTXOlFe44QQQI3DDQWAotQff3qtFuFBegTptdKu19ic5nKXWVtPyPSF2xOYvZyYu7yYvZyYu7wCLfsO1fC5557z+V2j0SAmJgbz58/H//t//88vFSMC2ndl7mQ8Ht81rU+8l7qhk9ug8dXsxh2SqGADIoINmDO6H77fVYR9RTU4UFoDl0fFyKQwTEqPwks/7IfLI6DVKBCifvj5j3tLoQDQaBQoqF/H+/Jx/fHb0SroNRqfq4lJEWZEhxqxt6gGmfGhOFJeh5ziGqTFBCPIoMXh8jpY7W4IAZh0GowfEIGkcDNMei2MJ3k5+up6jS05MXeZteWEjD+PuZ7G7OXE3OXF7OXE3OUVSNl36Nt3bm6uv+tB1KyuHCp94rqGDct4AUBKVBCcbt8Dudbu9l4BzCmuxZGKWgyJs+DcUxJg0mlQbXchItiIV9btg8tTP4S8pMaOzIRQZB+uhBD1V6Y9an1n/PrT0/D1bwWoqHMhJtQEwPdq4iWj+8Fa50J0qBFlNU78375SzJuYcmwZMg00igKPEEiNCsZFoxKx/agVkwdFex9HtvUa6eROdsIlxKTj7QlEREREftahidSuu+46VFdXN9leW1uL6667rtOVImrQlUOlG9Y1jLMYodUoGJ4YhlnD43HRqERcPLofFEWBQadBWnQQBseFoLTWgR/3lQACCDJqMTA2FFa7C1m55dhZYEVyVBDyK+swOjkCeq2C8CA9tFBwxfhkpMeE1A8/d3rgVgWuGJeEQ2W12HbUCr1Wg8o6J0qq7dhTWI2Psg4jt6QGP+wuhsWsQ3SIER5VxbB+Fnyx9SiCDFrMHBaPWcPjMWd0P5yZEQOXx4MLRiUi1KT3aVdjfX29Rjq5hhNNzWk4IcPbE4iIiIj8SxEdWFFcq9WioKAAsbGxPttLS0sRHx8Pt5tfyvzBarUiLCwMVVVVsFgsPV2dHrGrwIp3Nxxqcf81k1KQmXDy10YIAZvNBrPZDEVRfPZV213IKa7BJ7/mYV9xDZxuFXa3B2cNicXI/uHYVWCF3a3C5VGxanMekiKCcGZGLA6W1sGtCuwtsqK42oE7fjcYRypsMGg1GBAdBIfLg4paF9yqisgQIyKDDPAIAYfLgxCjDq/93wGY9FpY7W7YXcevspv0GiyaPhC/5JSh1u7G5IFR+HDTYVwwsh9KaxywmHWosrmxK78Ku4uqMSTOgsyEUFw+LtnnfttAnwjLH1rLXVYt3q89JgnJkUF+O+Z6GrOXE3OXF7OXE3OXV2/Jvq39tXYNL7darRBCQAiB6upqmEwm7z6Px4Ovv/66SUecqDNOHALeWHuHShsMhhb3rdtbAo8AYkNNOFJRixmZcdiQU4aPfs1DsLF+crKUqGDMHp2EL7YcxZYjlThvRAJySmqRFh2M8CAdft5fgp/3lUEAiArW4w/T0vHb0Ur8vL8MDrcKjyqQFhOCyelRMOg1sJj1KKl2wOH2Pe9ltbmwr7gGKZH1bTtUVofTB8dgVXYeFCgorXGgxuFGWkwI5o5PxuEKG8pqXU3ut+V6jfVay11GyVFBWDgltcUTMv485noas5cTc5cXs5cTc5dXIGXfruHl4eHhiIyMhKIoGDx4MCIiIrw/0dHRuO6663Drrbd2VV1JQv4aKu3xeJCVldXshAuN72ENMekwc1g8sg9X4GilzTuzuArgYFkt1u8vxcxh8diaV4W9xTV4d8NB7Cmy4t/bClBt9yDMrIfFpMeY5Eh8uTUf/ztYgYhgA4QQUBTgYGkNNhwoQ/9wM1QBhJn1CDXpEBGkh8Wkg6IAqhDH7tvWwqDToqzOgZ0FVhwut6HO5UZBlR01Djd2FVix/kAZBsYEAzh+vy0d11ruMqs/IWPB+NRIZCZYfI6jvnJ7ArOXE3OXF7OXE3OXV6Bl364r3T/88AOEEDjzzDOxcuVKREZGevcZDAakpKQgMTHR75UkuZ3sylxb1DjcqHG48euhCliCjN6/r7a7cLTChpJqO/RaDYKNOui1GuzIt0JRFDg99cPBhQoY9BoUWR0IMtYv5+XyqBAAEsJMWJ9ThshgAwZEBcGtCqTFBmNjbjlcnvrlxFRRP2s5hEBuaS3CgvTQKIp3ODtQ3+HvF25GosWEkmoHLMcmvYoMMuLrbYWIDDYgxKiDxazHsYfCwdJaGIbGH28n77clP/DHMUdERERE9drV6Z42bRqA+tnLk5OTee8EdZvODJU+XFaHjzcdhKW2FlkHD0Cj1SE9JhjnDk/AjgIrDDoNSmuc0GkU1DrciA4xoNbpQbBBe2wNbA3sbg/qnG5YzHrUOd1QhYBRp4FJr0WQQQf1WLmD5XXIr7RjcHz9JGuqKhBi1EGnVeA+NqN5gsWI/cU1mDAgAjanGzsLqqEKgao6F1Iig3D5+P7IOlSOuDATbE4PQkw6TEyNxMbcMgQZtHB5VDQceUEGrXc9cUC+5cCo6/D2BCIiIiL/6NA39LVr1yIkJASXXXaZz/aPP/4YdXV1mD9/vl8qR9RZ1XYX3v/fIdQ5XIg3aDEgOgQGvQ5WmxPZRyrw39xymPVaeDwq9hTWIs5ixKjkcAgh4FYFYkKNqHG4YXd5oArA5FZh0GowPDEMdU43hidaEBViQEZ8KPKr7HC6VQQZtNAqClweFTpN/f/HhBiRX2UHAEQEG6DTKPhiaz5OTYvE+NRI1Njd0GkVFFsdUIVAfoUN249aUWVzwaTXwO5ScfGYJGQdLEewQYc6pxtajQKdVuNdTzzQ7rclIiIiIpJBh2YvHzx4MF599VVMnz7dZ/uPP/6IG2+8EXv27PFbBWXG2cs7b9uRSvywpxhrdxchr6wWLgEACkYnR2BMcji25VWif4QZw5PCcaisDi63CkuQDuv3lyGvwoa06GDsL6lBea0Ldpcbw/uFYUicBUadBv/+LR83nJ6GvIo6WG0u/LSvFAoUKApw+qAY7C6worLOCUuQAeFBelTWuqDRAEPiQxFu0uPbnUWICNbDrNfhQEkNACA6xIgLRyZib1E1rHYXXB4Bi0mH/SU1iAgyYFiCBXuKqlFQZYeiKBgYG4JJaZGodXq8s0/TcUIIeDweaLVajsyRDLOXE3OXF7OXE3Nvm764ok1vyb5LZi9vcPjwYaSmpjbZnpKSgsOHD3fkIYm6RI3DjbW7i3GwtBYWPWB1ATqtgv4RZhh1Glw0qh+KrHZkH67Ab0etcLlVDI4LxfWnp+HD/x1G9pFKKIqClKggpMeEYObQOGw6WIaCKhsWnzUIO45akRYdjLgUE/YU1SCnuAYCwA97inHLGWnYV1SLA6W10KB+3e5+4WacPSwOf/3PLsQfu3c7Mrr+SrlGo0Cv0cCg02B/SQ1UIRAZXH+FPCbEBKvdhSCjDsXVDgxNtKBfuBmzhscj1KRHvz7w4dlVnE4nzGaOAJARs5cTc5cXs5cTc29di0uFjk7yWWo2EAVS9h3qdMfGxmLbtm0YMGCAz/atW7ciKirKH/UialF7ztbZXSpyS2uhV4Dz+7vw2REjLh2fgqyD5ccmSwPqnB6kRJpx+bgkbNhfhiMVdfho0xFcMDIRpw+Owc58KzQaBR5VxXc7CjBpUAy251uhVRTYXG58u7MQ41IikRhuxqlpUXB7BEx6DcLMekSHGhBrMUKnUaBR6mc/02kUDE0Iw6aD5ahxuBEWpEeR1Y46pwczh8XjYFktgvQ6FFfbcaS8Ei5P/URrcRYThsSFQKNJQGK4CTOHxiPWYmq23VTP4/Fg27ZtGDduHHQ63u8uE2YvJ+YuL2YvJ+beumq7q0mHG6hf8ebEpWYDTaBl36Eazp07F4sXL0ZoaCimTp0KoH5o+Z/+9CdceeWVfq0gUWPtPVunCoEQkw4OhwsKgN8NjcNPe0ug1SiotDnrh2kDOFxeh8o6F2aPTsLS7/dgf3ENBseHYk+hFdOHxOKHXcUQCnDhqESs/PUohieGoazGibEpkdhffAQ1djcq65z4X245bE4Ppg2JwYYDZSircUJRgIExIfjtaBXsLg/SY4Jx/dQ0HK6og7vCBqvdhTqnB5kJobh4dCJe/ekAyuoccKvi2D3h9W0pstqRV2lHeY0TB0trMS4lkp1uIiIiImpW42VxT9Sw1CwnTe0eHep0P/bYYzh48CDOOuss75kFVVVxzTXX4IknnvBrBYkatPdsXbHVDr1WQf+IILjcbpgN1VANOhh0Ghwpt8Hu8sDhqr+KrNEAW/KqMHlQDE5Ni8LG3Aq4PCrKalxYt7cEmYkWuFSBvYU1yDpUjulDhiA8yICyWgdmj+oHk16DQfHBsNrc2FtUjYRwM9bnlCHBYoLJoMXRShsGRAfjUFktCqwOFFU5MD4lAldPTMaeohroNAoy4kOx5XAlQow6FFTavUuMNSxtlh4Tgn1F1UiPCYZHCC4PRr1SX7xvjIiIKBCd7Lsiv0t2nw51ug0GAz788EM8/vjj2LJlC8xmM0aMGIGUlBR/14/Iqz1n63YercLqXUWIDjVg+pAYDIkNQm1BDjzhocg6XH/FWa9VEGrSQVEAjaJACKDO6cbkgdGoc9bPVr6joApBpVqcNyIBb/x8AFeNT8YlY5Kw8WA5NuWWY0BUMHYWWJEcGYQzM2Lxf/tKMCA6BFMHRWPrkUoEG3TYV1QDt6oi3mJCYnj9fSeRwQbsKrDig01HsL+4BlMGRiP7cCU8QsXc8ck4Ul6Hg2V1cHgE4HRjWIIFYwZE4PudRchIsECv1XB5sDbSarU9XQVp9Lb7xpi9nJi7vJi9nJh7y072XTHQv0sGUvaazvzxoEGDcNlll+H8889HREQEXnnlFYwbN85fdesTXnrpJQwYMAAmkwkTJ07E//73v56uUsBq69m6YqsdG3PLsH5/KVZlHYVWo+Dv3+/HA7/Y4BQKPEKgzuVBlc2NGocbdU7PsU62gMOlYke+FeW1TkQFGQABuDwCuwqsOGNIHELNeqzfX4qKWicSw80oqLLDpNfiUHkdvvqtEGFBBnyafRRv/F8uLhzZD26PQFiQHm61fgmygiobCqvscKsqvtxWgLwKG5KjgjAgOgQFVXbYnSqOVNiQGhWM+acNwA2np+IP09IxbkAEth6pRFSIERaTjsuDtZFOp8P48eMD4l6fQHeykSjVdle31ofZy4m5y4vZy4m5ty4pwow4i7HZfYH+XTLQsu9UpxsAfvjhB/z+979HQkICHnvsMUycONEf9eoTPvzwQ9xxxx14+OGHsXnzZowcORIzZ85EcXFxT1ctILX1bN2Rijp8s70QJTVOjE+NxOdb8rG7wIpYgwdmnQbxFiOcbhUujwqDTgOPKuBwq0gMr58h3GzQwuFW8fGvRzAhNRJ1zvrOfEZ8KAAgOtSE/Eob7C4V+VU2lNc64XCrKK2xIyUqCAqA7flW1DrcSAw3oaDShshgAxxuD4IMOsSHmVBVVz9cvNbhwfiUSKREmXHuiHhMz4hFfJgJFTYXftlfis+yj+KVdTn4dEs+9hfXIsSoQ2KEGXPGJHHIbhsIIVBZWYkOrIxI7dSWkSjdidnLibnLi9nLibm3LtSkx5zRSU063nEWY8B/lwy07Dt0auDo0aN4++238dZbb6GyshIVFRVYsWIFLr/8cq6R18izzz6LG264AQsWLAAALFu2DF999RXefPNN3HfffW1/oNpaoLnhE1otYDL5lmuJRgM0nlK/PWXr6oCW3tCKAgQFdayszQaoasv1CA72KZtkUNFP70FxddMv9pGxEd6zdRVlVuQdLUVUsAFRigvF+eW487QkJKpFUOqqMWdMEs4YHIuCKhvs1XWAxw272wOzXoeymloIxYWy4gpYbS6cmjYYhbEhcHlUHDhaBr2qYv/BItidHiRHmhHicsDuVqEAsJvrlyELM+thFm64qqvR3wSgtg7x4Tr0txgxaFA4dBoFVo8Ht88YCLcqsHrLEXx3pASFVjtq7G4M6xeGWyf2xzvrD6KwphYmvQFBei0GJATj7IHh2Lk3HxNiUoHaZl5nk+n4e8XpBFytXF1sXNblqi/fEqMRaDiT2J6ybjfgaL4jBgAwGAC9vv1lPR7Abm+5rF4PGAzweDzYvWMHxg0f3vKZ0GNlAdS/H22tdA7bU1anq38tgPpjoq7OP2Xbc9x342dEXXkV9PZm6q0ocBnNx0eqdOFnROOyHrcbe7OzMWbMmPrsG5e12+vfQ2153JOVDQqqrzdQ//51tzIipz1lzeb61xk4+bHcnrJ9/DPCoyjYvXs3xo0eDV1rr2/jY7mNnycA+BnRi79HNDnmgVY/I5rgZ0S9APuM8Gg09cf8uHH1nRo/f49od9le+BmRbAIWjo7F0Uobau1uBAcZ0S8h4niHO0A/I5o95v34PaLVso2P+9ba2Zhoh08++UTMmjVLBAcHi0svvVR89tlnwuFwCJ1OJ3bs2NGeh+rzHA6H0Gq14tNPP/XZfs0114gLL7yw2b+x2+2iqqrK+3PkyBEBQFTVvw2b/HhmzRIul0u4XC7h8XiECApqtpwAhDp1qresy+USanR0y2XHjfMtm5LSYlkxdKhQVfV42aFDW37clBQhhBAej6e+7NixLZeNjq5vkxDC7XYLderUFss6jWaRW2wVqqoKq80pjp42veX6AuLZb3aKa1/fIK5+bYP4v1HTWi3790/+Jx79fJu46IUfxZYzL2q17IQ/vSee/WanGPXIf8SHEy5otewNj3wobnz7v+Ifq3eJ96de1mrZ15d9Id78v/3in+v2irVX3NRqWXXjRm8e7r/+tdWy7u+/9+ZR+8xzrZf9/HNvHp433mi97PvvH39PfvRR62Vff/34e+fLL1sv+/zz3rLu779vtWzd438R24+Uiw17C8R/X3m11bLi4Ye970nXli2tv7533ul9T7r27Wu1rOemm4SqqvV55Oe3Xvb3vxcul0sIIYRaXd162UsuqX8N3O76D47WyvaCz4jCpHRx38qtYvuR8h77jFCDguofT1XrH3/WrFZfN2+7VFWol17aetnKyuN5zJ/fetn8/OOPffPNrb/f9+8/nt0dd7T+Ht6+/XjZBx9s/T3cwc8I9/PPt162l3xG2O12sX79euH49tvWj42nnjr+Hl6/vvXXl58R9W3rw98j+BnR6LUIsM8I5z//KdavXy/sdrtfv0fwM+JYWX5G1Jdt5TOiChAARFVVVbP9uwbtutJ9xRVX4N5778WHH36I0NDQ9vypdEpLS+HxeBAXF+ezPS4uDrt37272b5588kksWbKkzc9RVVWFPVlZAICkpCQktVK2trYW24+VBYAJQqDFMQlCIKtR2dEOB5q/G+R4PRradIrNhpamS3K5XDAAyM/PR15eHobX1SGkhbJutxtF+flISkrC3r170a+6GpYWyiqKwG9bNuNwQgpCLRbEu1ofxhpcfQgjzR78WGGBWdf6HRYpKEJulcCZ8WZ4hGi17HUZCox1R3BVmgtJwa0WRbK+BiH6UniKS5EZ3spZNQAHS2vRryAHWo1AuKhptazH44HTZsO2bduQcOQIUlopm5ubi4EAdh44Cvu+A2htNoZ9+/ZBn5uL9PR0lJaWIraVsjk5OSjPykJaWlqr5QDg4MGDKDn2XhvldKK1BdAOHz6MomNlw/ftQ0YrZbfmFmF3VhYAgaTq1l8zoP61KCkpgfnAAYxspVydzYZgANu3b4d64ABGt1K2uLgYFpsNBoMBW7ZsafX1LSsrw8HsbIwfPx5VVVUIb6VsRXk59mVlISwsDJmZma01q9d8RvQPFqg4vBtZeUqPfEaoqoqsrCxkZGQgPDwcVqu11de4oW3jxo0DPJ5Wh4Rt3rwZqtkMs9nc6nsHALZs2QJ3RAQAINNqRVgrZXNzc1FaUgIASC4sROJJHjs7OxsejwdJ+fmt5tyRz4jS0lLUHj6M1FbK9pbPiMLNm1FZWYmcgwfR2tFR1+j9HrxrF0acpB78jOjb3yP4GXFcoH1GHDp0CJVJSdi8eTNG+/F7BD8j6vEzol57PyOao9Sf4GibP/zhD/jwww8xbNgw/P73v8cVV1yBiIgI6PV6bN26FUOHDm3n0/dd+fn56NevH9avX49JkyZ5t99zzz348ccfsXHjxiZ/43A44Gg0LMZqtaJ///4oO3wYFkv920Cj0UCj0UBVVaiK4h3yodFooLHZ4PF40DjShvIeISAaDQ/R2u1QFAXuE4YuabVaQKOBp2HoCwDU1UF7bFiS54QhVDq9HsJsPr69rg7KscdRVRVqo2EaikYDbWjo8e3HhnH4tKlReU1oaH3dPR6IujrvkI+G8tvzyvHG/+Uip6QWDqMZwUYd+kcG4aLB4fjof4dxuKwGi88chPd/zUNVnR2XpCqoMsbgxf8VQQBwqUBaiBbxwTo43SqOVthw36wMvP7LIYSZtKiscyEuPgJuFZg2JAbP/HsHrhobD49HxeZDFcirtGFAZDDyqhyIDtZjbGYithy1QqMA4xNC8OuBEiRaTBgYG4zvdxWhyuZGcmQQapwq9lU5kRwdgoPldbh6VDzW7SyATqOFAhXJEUFwelSMSLJgza4SHLErCA3SITHMDI/dgQEWA66bmoaMeEuTPLTBwYBWW7+90bAwnU4HIYRPecVsRp2q4I3/O4Cyimpoj70XBAABBbEhBlx9ajJCjPVDljQGQ31ODgfURsOsvO+xhvfesWFhGo0GGlWFp67O5z2p1WqPv/caDfXSCgE4HE3bdGzomker9RkWpnO7m7SpxuHGexuPoLDOA6HX1b+eainyncGIDg3C709NRrDh+K0aGo0GGqMRqk5X/9479r5s0qaG8kYjNCZT/XaPxzsszKdN3oNDB+2xIU4et9tnqJe3TQ11PzYsTKfTQagqPNXVx3NSFN/j6dhQL+/26mrf46YHPyOOlNXhy615KKk5Pmww2mLGBZMGol+Y0Vu2Oz4jhBDYvn07MjMzodFogODg4znV1PgMB22Sx7EhZFqtFrDb4TlhGKTP8XRsOKiiKNC63VCdTt82Nc7PZPIOHdW4XNAca09z+XkMBoiGYaZOJzQeT7PvSa1WCyUoCO6Gxzh23DdpU0P5dn5GaA2G+jo6HN7hoE3ek0Cv+YxQtVrs2LEDwzIyYFDVpm1qqLtWC7VhOKLHA8XhaPY9yc+IwPkeIYTAjh07kJGRUX/M4+TfI3zays+I+vIB9hmh6nTYsXcvhg0bBr2idPp7BD8jAuczAkCTY97ffY22fEZYrVZEJSejqqrK219rTrs63QBgs9nw0Ucf4c0338TGjRsxc+ZMfPXVV9iyZQuGDx/enofq05xOJ4KCgvDJJ59g9uzZ3u3z589HZWUlPv/885M+htVqRVhY2ElDlFGx1Y6Hv9iBvUXHr2KGB+mRER+KPYVWTBscgz2F1ZgxNA4rfz0Kk16DA6V1mJgaiRX/OwwA0GqAUKMeoWYdEiwmOD0C550Sj5W/HsXQBAsmpEWi2uZCemwIbnt/C5weFQunpGJ/SQ0igw2ICTHCrapIigiC26OiqNqByCAD9hRVY3ehFaOSIrCnqBrnDIvHqz/lAFAQYtKhX7gJewprEGcxYm9RNa4+NQVrd9efrVaFQFSwATqtgrMyYrFyc/3s6zanB063iphQI+LDTFhy4TDEWlo7n9s2uwqseHfDoRb3XzMpBZkJgfPe62vtCURcp5uIiIhk0db+WrtnLzebzZg/fz5+/PFH/Pbbbxg2bBji4uIwefJkXHXVVVi1alWnKt5XGAwGjB07FmvWrPFuU1UVa9as8bnyTR2zv6TGp8MNAB61fnmubXlV2Hy4EtdOTkVksAHldU4khJugc1qh0zYuD2g0Cqrtbui1Grg9KmJDTbhuSiouGZOEw2V1iAgy4OOsI0iKNOPycf2xZncxYkNNyDpYgX+s3Y/PsvOxKvsovttZhIGxIYi1GHH6oGhcNDIRRr0GaTHBKLDaUe1wo7SmfhSDANAvwoQwsx5xYSaY9FpYTDqEB+kRatLBrNci3KyDSa8FILC3qBqVNhfCgvRIiQrClEHRKK9tZQKSdmjrMmyBoml9BcJQh/pXPfDaE4hCTXpkJlgwPjUSmQmWHutwq6qK4uJinzPa1Pcxd3kxezkxd3kFWvadWths0KBB+Mtf/oLHH38cX331Fd544w3MnTvXZ4i0zO644w7Mnz8f48aNw4QJE7B06VLU1tZ6ZzOnjrPWNZ1NU6tRUGN3w2zQQQigwuZAsF6P9JhgBOs0OLMfcKTGhiFxIdhTVAO9VoGqCmg1Clye+iXDiirtsLk9GBBpxu5CK6w2F7IPV+IP09Lx+Zaj2F1YjYOltZg8MArTh8TCpNcgKsSA6GAjNh4sQ43dgziLCW/+kgsNgEvHJiE1OhiT0qJQ63Ajt7QWv+U5UONwQwhg1vA4WEw6FFXXz1yuAEiPDcH4ATE4WmnDoNgQTB4YDbdHIDLYgBFJYVi7uwSDY/0zp0Jbl2ELFCfWVwOBeI0V1aoJ6rGRBiQHVVVx4MABREZGeoedUd/H3OXF7OXE3OUVaNn75RuoRqPBBRdcgAsuuIBrUDdyxRVXoKSkBA899BAKCwsxatQofPPNN00mV6P2swQ1vXqmqgLBBi08qoBbFYgLNqKk1onMhFDYHW7UeQR+2FeKS8cnQ6/V4EhFHTxCwKTVol+4GeedkoB9hTUY2T8MeZU2nD4wBsFGLYqr7SiudqC81oXMhFBoFAUFVXbsKqyGxaSH3eXBdZMHQK/VQlHcSIkKwu9PTcHA2BDsKbTir1/vwuKzBuHLbfkoq3UiPMgAvVaD5EgzRidHoNBqx7wJyahxehBu1mNrXiXe/CUX8WEmpEYH4+OsPG8bH5s9HB5V+K3zmBRhRpzF2Oz6ynEWo3cZtkDR19pDRERERIGvzd/c//vf/+LUU089abnY2FjU1dUhNzcXw4YN61Tl+oJFixZh0aJFPV2NPmdgTAgGx4X4DDGvdbohAAxNCIVbVeFUBf6zvRBfbyvE7WelIzjUgP4RJmzKLcfwfmGYnhELnUaBQafBsAQL3EKFXgf8erACX28vxNFKGwbHhiLMrMOg2BDYXfVDxOuc9RMnWEw66DQK7C4VZoMWGgXYWVCN/x4oR5jZgE+zjyIiyICLRvVDWa0DEUEGXD8lDYoCmPQaFFsdsNrc+NeGw5iQGomYUCP2FlZj8+EKeARwoLQOkwdGe9sXYtKh1uH2a+cx1KTHnNFJWJWd59NRjbMYMWdMUsDdi9tSe2JDjbg4ANtDRERERIGvzZ3u3//+90hLS8P111+Pc889F8HBTddE2rlzJ9577z289dZbeOqpp9jppi4TazFh0fSBePGH/d6Od7BBh5yiatx0Rjq+2V6I0honduVXI9Sswz/W7sfi8SEINgL7SupwtNKGIXEWpEabMTA2FB4IrN5ZjKRwM7YftaLIaocqgEPltRgQFYwfdhdjRL8wrDk24ZnFpEOcxYQj5XWwmPUIMepxqLQWOo2CqGADIoKNOFhWi6qyWggAV5+ajDW7S7DtaBUqjl3trrG7MO/UFBj1Gjjc9R15g06DyGADMuJDEW8xISGs/l7ysloHCqvs0Gs1fu8MJ0cFYeGU1D4z+VXj9lTXOeEoFxgxdADCgzs/8RwFDkVREBYWBkVpccES6oOYu7yYvZyYu7wCLfs2d7p37tyJV155BQ888ACuuuoqDB48GImJiTCZTKioqMDu3btRU1ODiy++GN999x1GjDjZinZEnTOsXxiWXDgM+0tqYK1zwWTUotbmwuaDFThzcAzsLg/2FFVjTEoEDpbU4LlNtTg1LRKX9I+AoiiYmBqJQ2V1SIkKgrXOiQtOScSfPsjGwNgQAAoMWiDIoEN5rRNRwQZMTIvCoTIbFKV+aaqckhqY9VqkRgVBqwF+2lcKjUaBXqvAqNdCoygINelQaXMiOsSAkmqHdwI0j6rC6RFQhYDd6YFRp0Gtww2LWY8LRyZize5irNtTgkFxoSiutiM1OhgXj+6HaYNj/DJreYMTZ5rOSAgN2M52Y/WTeR1rR3p064WpT9JqtSddf5T6HuYuL2YvJ+Yur0DLvs2dbr1ej8WLF2Px4sXIysrCzz//jEOHDsFms2HkyJG4/fbbMX36dERGRnZlfYl8xFpM3k7o1sMV2F9Ygw255ThSYcPs0f0QZNBi86EKZMSFICPMjQO1TlTZ3fB4BE4fFIOoYAO25VVhcFwockqqUe1ww6MKDI4LgV6rgVGnQWmNA7UON4IMWggA+4vrr6wbdRqM6GfBGRmxOFJeB7cq4Har6Bdugtsj4PKosLsEFAVwulVEBRtQXuusX1vw2EJ9h8vqMDTRAq2igc3pwbiUcJRWOzFxQCTGD4hAmEmPo5V27CmyYn9JDWaNSPDba3e4rK75YeWjk5AcFeS35+lJqqoiPz8fiYmJATHJBvkPs5cTc5cXs5cTc5dXoGXfodmYxo0bh3Hjxvm7LkSd4hYC3+4sxM78KozuH4aoYD2mDo7GhpwyxFmMGBHhgMkSCrNRj1CTHiFGDe7/dA9umpqO3YXVSI4MQpBBh1qnB7sLrIi1mDAwJgRajYKiagfCzHqcOzwOUOLhUQWCjTooiqhfckyjwK0KhJv1SIsOgc3lRnSIATanB6oAVAGcMSQGCoDcslq41Pped1mtAwtOS8Uv+0tRUGVHQngQvthagMPldQg26CAgkBodjEvGJGFPUQ3yKmzHr+B2QrXd1aTDDQBFVgdWZedh4ZTUPnHFW1VV5OXlIT4+PiA+kMl/mL2cmLu8mL2cmLu8Ai17rp9DfUaVzY0d+VY43CpcKrCvqApXTUjG6KQIfL39KAqr7PjmYAGMBj2mD4lF1sEKBBm0CAvS4/tdRUgMM2FwXDAOl9mg12rg8qiosrsQatJhQFQQjDoNhsSHQgjA7lZh0mlQXO1AbJQRdreKGf+/vTsPj6q6/wf+nn0my0z2kDAhJOzIFtYGqWBFUVCLuNcKKopasQKKpdUfuFP9KksrxbYiqNWqFKSuVIpgqwTZEiIYQCESIySEEDJZJsvMnN8fMVOG7MmdzNw579fz8Dzk3pvJ5+TNJfnMvfecQQk4XVmHY6crcbK8Bn0TIlBR44I92gKtBvhb1nFcdkEPXD0iGVW1Lpj0OhQ5arD834fx5M+HwuUR2HzwJM78+My39sdnVE6W12Lb4RJkpscots50YZmz2Rm+gYbGW6nmnoiIiIhIdmy6KWQ461zweAS0Gg30WuA/35zBNRlmHC+rRqTRgEiTHkOSoyC0Gnz+zWnER5owtncshBD4vsyJ0qo63PXTPvjT9qOoc3twtroO8REm1Ou0mJFhhxsC1XUNt4uHG3WorHEh61gpfihreM57ekZP/OtgMc5W18MjgGMlVRjTOxozMnpCr9PgiqFJ+OqHcuzML4XDWQ9nvQd6rQb9EyNQUVMPAQ1OO+pg1OuajO14aTUm9o9XbKmwtpp3pZp7IiIiIiLZsemmkGEx6hBm1CHix7WzTQYtvj1VhRNnnfjuTDVMdQIHSstR54b3KnZm31jUuwQGJ1kBAPsLzqJXjAVDe1pR5xIY2tOK78ucqHW58ef/HkN+SRVqXR6M7h0DIQTS4iJwpqoWlwxMhD3KgqlDEnHjaDuc9W4UljnxzalKrP7sKPomROKKoT1wvLShHren4ZnwvgkRmDa0B7KOnUGi1QyzUQeLUQtnnafJ+DQaKLZUWFvNu1LNfaBptVrEx8er4rYjUhazlxNzlxezlxNzl5fasg+N36yJAJgNOkwakIDPjpRg494f8IebM/D9mWp8e6oSRoMOO0/pUFHrgkYDuD2AxahHktUMp8uNntEW/GnbUfxiXC9sPlAMIQTS48NRUVOPBKsJmw8Uo9hRC7doWKKgrKoOYUYdKmvr8eBlA/HS9m/x0YEi5J10wCOAQT0icNkFScgvqURyVBiOn6lGWVUtxveJxZCeNtS7BUx6LRruINdg7/EyXH5BIjwegbTYCOSXVvo03hajFoOSrIo9Z22PtiDRamr2FnMl1wEPNK1Wiz59+gS6DAoAZi8n5i4vZi8n5i4vtWWv2FsDZ8+eVeqliDqsoqYeFoMWAxIjYI+xwGzU4Ux1HeIiTaipd6PE4cSkZIEBCeFIj4vAwB6RiDDpEGbSIT7ChC1fF8EeE4aCM1WABuiTEIFxabHY8nUxwox6fH3SgcoaF5JsZoQZdTDqtcgpLEeUxYA3dh5H7g8OuH+8td2o0+Do6WpsO1SMqUOT8E1xBQxaDX4oq4EtzABoGtbjjjDr4fJ4sOXrYuh1Gmi1WiTYzA1Ld/Wwon9iBNLiwtA/MQKT+sdjYI9Ixb5fkWYDZmTYkWg1+WxPtJoUXwc8kDweD44ePQqPp+mdAxTamL2cmLu8mL2cmLu81JZ9p5ruZ599Fm+//bb34xtuuAGxsbHo2bMn9u/fr1hxRO1RUFqNNZ/nI+f7cnx44CRSYyx44JJ+CDfqYTHq0CsmDJFmPZLN9Sgoq8bxM9XIP12FKIsBESYDXv48H4OSrJh7cR+kx0fg1p+kwh5lwVu7C1Dj8sCg06Ki1gVHjQvFjhrERZhgNesxIDESsREmHD9TDYNOAyEEosMM0Gg00Gk0+PpkBUx6Leo9HtijLegZbYHZoEPWt6X44tvTeC3rO3xTXAmTQYt+8RE4VVGLazN6ItFqgkGnRVSYEfGRZgzoEYkbxvRSvBHuFRuG2RPSMDMzFTMyemJmZipmT0hDr5jQWC4MaPgPuaSkRDX/IZNymL2cmLu8mL2cmLu81JZ9p24vf+mll/DGG28AALZs2YItW7bg448/xjvvvIOFCxfik08+UbRIopacu/RVmEGHqlo3esdG4J85J3Cy3IlZmb0xpKcNNXX10GlrYDMbUOcB+iZE4NJBiaird+Hui9KRd9KBwjNOeISADhrEW024aWwvaIRAaowFxY4aaADUujyICjOgus6Nipp6VNW64fYIVNa4UFXnQmpMONweoLK2Hi6PQJ1bYEzvGCTZLHjhkyO4ZFAidDoNSivroNdpUe8WKKuuR3SYEakRRvRJiEBylAXfllTCUV0Pa5gBfeMjvGuRKy3SbOAs5UREREREftSppruoqAgpKSkAgA8++AA33HADLrvsMvTu3Rvjxo1TtECi1py79JXJoMOo1Ghs+boIR05VIslqwaGiChw7XYFkqxk9rPW4engSPNDCUdNw1Xt4ig3/OXIa6fHhOF1Rh5wfqnHKUQtnvRvmH5cIc3kEfpIWg2Onq6HVAHUuD74/U42kKAtiI4yo/nEtbniAIkcNkqxm9NSZ4fYAI3tFIS0uDAdPOHDz2F44U12Lif3jsfe7MvxQ7oT7x/W64yIbbusuq2q6fnai1YQZGXb0ig2dK9BERERERLLoVNMdHR2N77//HikpKdi8eTOeeuopAIAQAm63W9ECiYCGK9qFZU5U1rgQYdbDHm1BpNngs7RVncuN3rHheDf7BwgBhJl0+PehU7huZE/sOnYaH5TVwGk4g2JHHdLiwnDvpL44XFSBD78qwrj0aFTWuFBcXgOjXgu3RwNnvRvbDpfgu9Jq3Djajvf2n8ChogrUuDxw1nvg9niQHh+OXjEWOGrqodVoYNJrUVHjgkcIjEqNxv7vz+KLo6XoGW1BXLgJCZFmpMWFo298BCxGHU6UO2HU6TAuLQbRYQas+Ty/yeRmxY5abMwuxOwJaSHzrHV30Wq1sNvtqpnZkpTD7OXE3OXF7OXE3OWltuw71XTPmDEDv/jFL9CvXz+UlpbiiiuuAABkZ2ejb9++ihZIVFBa3eLV38hzlrY6fsaJC5IiEWk2wOFsWCu73u3Bhn0/YFL/OMRHxqN3XBgqalyod3nwzSkHPB4gNTYM0WFG5H5fjgMnHEi2mVFV60JFrQs6rQbZBWUY2SsKw+xRuHhAAlwegdMVtSg8W40l//wK9/+sP6pqXcg7WQG91gCDQYOhyTaMS4/BK5/n4+KBidhz/Ay++LYUEEBUmAGjekdhZEoMjpc6ERdhRM9oi89V+/MVO2pRWObkreAd1PgfMsmH2cuJucuL2cuJuctLbdl36q2B5cuXY+7cuRg8eDC2bNmCiIgIAMDJkyfxq1/9StECSW7nPrN9rsarvzHhRu8M3G6PQFWdG1EWAwb0iERsuBFRFgP0Og3+e+QUzvyQj5o6F74rrcYP5TWINBtx/IwTlwxMgF6rgVs03Op9qqIWSVEWxIQbvbd/19S7UVJRgx42M7KOnsbbe77HF9+WotzpxrIthzGxfzyWzhiK31w+AAsvG4DrRqXg77sKcFG/eOz//iwKzzih+3HW8tOVtThWUo0tecUY1tPqnS383Kv2zWlrPzXldruRl5fHO3AkxOzlxNzlxezlxNzlpbbsO3Wl22Aw4KGHHmqyff78+V0uiOhcbV39La2qw4wMu7cxr3d7EB1uwMnyGkSHGaHXaVBTL2DQatAvRgshBAw6LRKtJoxJjcaJs07kFVVgaLIVMWFG2Cx66DRaFJU7EWkxoF9EBIQHuCDZit5x4fj4QDEm9I1HWXU98k9XAQCq6zzYdrgE90y04nRlLT4+UoSxvWNQUy8QYTbgSHGFt2arWQebxYAwgw4mvRYDeli9s4VHmFs/HdvaT00JIVBeXg7x4xsqJA9mLyfmLi9mLyfmLi+1Zd/u3+Lfe++9dr/o1Vdf3aliiM7Xnqu/g5KsmD0hDYVlTlTVuDCqVzTe2v09DpwoR88oC34464Q9yoTEyHp8VV6DRKsZM0ba0SsmzPt5ZVV1SI0Nw9GSKpRWNTT5VXUN75z1iQ/HD2VO/LRvPKLDDNhfeBYDe1jx037xqHN7YNQ1NPMnzlbD7QEMOi1MBh0AoM7tu4yBgIBJr0eEWY+oMCPqXP/bb4+2INFqavZNhkSrCfZoS5e+l0RERERE1P3a3XRPnz69XcdpNBrVXOan4Nfeq7/nL33VOy7cu+yWLcyAcIMWJ789iBuHpaBXXIR3QrLGz6uoqcfpylp4hMC2wyU4U1UHoKHhnp7RExP6xKFnTBhmZNjxzp4CbD9SAufxhoY5NTYMlwxKQN7JCgyz2xBu0qPO5UZqbBiMOt8nOLQaDSxGLcJN+ibjizQbvFftC8ucqKp1od7tQa+YMFw1LImTqBERERERqVC7m261LDxOoaWzV38TrGafta09Hg96mAcgLs7W7CyHkWYDRqREw+X24NLBiaiocUOv0yDaYkCi1Yy+iZEAgF6xYbh7Yh9M7J+AvCIHhGiYNT3vZAXiIowY07vhlvXGZ8VPnHUiLS4c+aeroNNqYLUYkBYX4b3F/fz6e8WG4efDk7H7eBnOVtXBZNChzuXGR18V4ecjdFw2rIO0Wi3S09NVM7MlKYfZy4m5y4vZy4m5y0tt2WuEWm6El5DD4YDNZkN5eTmsVmugywmYFmcv//EWcSV9e6oCb35ZgIIz1TDoGq5I26Mtza6T3dIyZo31nq6sQ1qsBclRYfjXwSJU1roQFWb0NtzN1V9RU9/ssmGNY+6uZcNaGhsRERERETVob7/W6aa7qqoKn332GQoKClBXV+ez79e//nVnXpLOw6b7f7raBLrdbhw4cABDhgyBTqdr8Wso1fCeW2+kWY+YcCNKq+rarD/vpAOvZR1v8XVnZqZiUJJ//y20tkSb2q60tyd3Ck3MXk7MXV7MXk7MXV7Bkn17+7VOTYecnZ2NqVOnorq6GlVVVYiJicHp06cRFhaGhIQENt2kuPOf2e4oIQScTmerMxwquU52c/Wee7t7SwK9bFhbS7R115V2pbQndwpNzF5OzF1ezF5OzF1easu+UzfBz58/H1dddRXKyspgsViwc+dOHD9+HKNGjcLzzz+vdI1E3SLQDS8Q+GXD2vPGAxERERERtV+nmu6cnBw8+OCD0Gq10Ol0qK2tRUpKCp577jn87ne/U7pGom4R6IYX+N/Ecc3pjmXDguGNByIiIiKiUNKppttgMHhniktISEBBQQEAwGaz4fvvv1euOiKF6HQ6DBw4sNVnPgLd8AL/Wzbs/DoaJ17z963dwfDGg5LakzuFJmYvJ+YuL2YvJ+YuL7Vl36nfoDMyMrB7927069cPEydOxOLFi3H69Gm8/vrrGDJkiNI1EnWZRqNBVFRUq8ecu052czOld9ezzL1iwzB7QlpAZg/v7BJtwao9uVNoYvZyYu7yYvZyYu7yUlv2nbrS/cwzzyApKQkA8PTTTyM6Ohr33nsvSkpK8Je//EXRAomU4HK5sHv3brhcrd8e3djwzsxMxYyMnpiZmYrZE9IUX5qsLQ0TsVkxJi0Gg5Ks3dbwB/pKu9LamzuFHmYvJ+YuL2YvJ+YuL7Vl36kr3aNHj/b+PSEhAZs3b1asICJ/cbvd7TquqzOlq10gr7T7Q3tzp9DD7OXE3OXF7OUUyNy7uqQtdY2aznl1PaBJRN1C9jceiIiIiFpTUFrd/COJGXb0iu3eOyQp+HWq6U5LS4NGo2lx/7FjxzpdEBERERERUbCqqKlv0nADDcurbswuxOwJabziTT461XTPmzfP5+P6+npkZ2dj8+bNWLhwoRJ1ESlKp9Nh2LBhqpnhkJTB3OXF7OXE3OXF7OUUqNwLy5zNTjoLNDTehWVO3jHoZ2o75zvVdD/wwAPNbl+1ahX27NnTpYKI/MVoNAa6BAoA5i4vZi8n5i4vZi+nQOReWdP65F1t7SdlqOmc79Ts5S254oorsGHDBiVfkkgRbrcbe/bsUdWEC9R1zF1ezF5OzF1ezF5Ogco9wtz6dcu29lPXqe2cV7Tp/sc//oGYmBglX5KIiIiIiCho2KMtTZZXbZRoNcEebenmiijYdeptmIyMDJ+J1IQQKCoqQklJCf70pz8pVhwREREREVEwiTQbMCPD3vzs5SPtnESNmuhU0z19+nSfj7VaLeLj4zFp0iQMHDhQibqIiIiIiIiCUq/YMMyekMZ1uqldNEIIEegiqHkOhwM2mw3l5eWwWq2BLkfVhBBwu93Q6XStLndHoYW5y4vZy4m5y4vZy4m5yytYsm9vv9buK90Oh6PdX5wNIgWjuro6WCx8xkY2zF1ezF5OzF1ezF5OzF1easq+3ROpRUVFITo6ul1/iIKN2+1Gbm6uamY4VLuKmnrknXRgd/4Z5J10oKKmPiB1MHd5MXs5MXd5MXs5MXd5qS37dl/p3rZtm/fv3333HRYtWoTbbrsNmZmZAICsrCy8+uqrWLp0qfJVEpFqFJRWNz+xSIYdvWLDAlgZEREREVH3a3fTPXHiRO/fn3jiCSxbtgw333yzd9vVV1+NoUOH4i9/+QtmzZqlbJVEpAoVNfVNGm4AKHbUYmN2IWZPSOMEI0REREQklU6t052VlYXRo0c32T569Gjs2rWry0UR+YNOpwt0CSGvsMzZpOFuVOyoRWGZs5srYu4yY/ZyYu7yYvZyYu7yUlP2nWq6U1JS8Ne//rXJ9pdffhkpKSldLopIaXq9HmPGjIFe36lV8qidKmtcXdqvNOYuL2YvJ+YuL2YvJ+YuL7Vl36kqly9fjmuvvRYff/wxxo0bBwDYtWsXvvnmG2zYsEHRAomUIIRAeXk5bDYbl5Twowhz6/+ltLVfacxdPSpq6hVd65TZy4m5y4vZy4m5y0tt2XfqSvfUqVNx5MgRXHXVVThz5gzOnDmDq666CkeOHMHUqVOVrpGoy9xuNw4dOqSaGQ7Vyh5tQaLV1Oy+RKsJ9ujuXdaBuatDQWk11nyej9eyjmNj9g94Les41nyej4LS6k6/JrOXE3OXF7OXU0dyD5aVVUgZajvnO33ZKSUlBc8884yStRCRykWaDZiRYW9+9vKRdk6iRk1w8j0iIvI3rqxCgdbupjs3NxdDhgyBVqtFbm5uq8cOGzasy4URkTr1ig3D7Alpit4qTKGrPZPvDUrivx0iIuocvrlLwaDdTfeIESNQVFSEhIQEjBgxAhqNBkKIJsdpNBrVXOYneWg0GlgsFlU88xEKIs2GoGiUOpq70s8VU9v8Nfkez3k5MXd5MXs5tSd3vrkbmtR2zre76c7Pz0d8fLz370RqotPpMHz48ECXQd2sI7m399YzNubK8tfkezzn5cTc5cXs5dSe3INtZRVShtrO+Xb/NpOamtrs34nUwOPx4PTp04iLi4NW26n5A0mF2pt7e2894zNhymucfK+5qxBdmXxP7ec839zpHLXnTp3H7OXUntyDbWUVUobazvlOVfjqq6/iww8/9H788MMPIyoqCuPHj8fx48cVK45IKR6PB8eOHYPH4wl0KaoUrDN+tlVXe3Nvz61nbTXmwfI9UZvGyffOn/W+q5Pvqfmc98ds7rJQc+7UNcxeTu3JPdhWViFlqO2c79RbO8888wxWr14NAMjKysKLL76IFStW4IMPPsD8+fOxceNGRYskosAJ1qu7StbVnlvP+EyY/3Dyvf/hhD9ERMriyioUDDrVdH///ffo27cvAGDTpk247rrrMGfOHFx44YWYNGmSkvURUQAFawOgdF3tufWMz4T5V7BMvhdofHOHiEh5fHOXAq1Tt5dHRESgtLQUAPDJJ5/g0ksvBQCYzWY4nU7lqiNSiEajgc1mU80Mh8GiPQ1AILS3rvbm3p5bz/hMmLqo9Zznmztdo9bcqeuYvZw6knvDm7tWjEmLwaAkKxtulVPbOd+p3xIvvfRS3HnnncjIyMCRI0cwdepUAMDBgwfRu3dvJesjUoROp8OgQYMCXYbqBGsD0N662pt7e249s0fDLxN+kX+o9Zznmztdo9bcqeuYvZyYu7zUln2nrnSvWrUKmZmZKCkpwYYNGxAbGwsA2Lt3L26++WZFCyRSgsfjQWFhoWomWwgWwdoAtLeujuTeeOvZzMxUzMjoiZmZqZg9IQ29YhqeD/fXhF/kH2o95znhT9eoNXfqOmYvJ+YuL7Vl36nfmKOiovDiiy822f744493uSAif2g8MXv06KGKZQWChb+Wc+qq9tbV0dzbeq6Yz4Sph1rPeU740zVqzZ26jtnLibnLS23Zd/oy1X//+1/8+c9/xrFjx7B+/Xr07NkTr7/+OtLS0jBhwgQlaySiAAnWBiCQdXX3hF9cr1k+fHOHiIgotHSq6d6wYQNuvfVW3HLLLdi3bx9qaxt+6S0vL8czzzyDjz76SNEiiShwgrUBCNa6lBSsy7WR/3E2dyIiotDRqWvxTz31FF566SX89a9/hcHwv18KLrzwQuzbt0+x4oiUotVqER8fr4rbT4JRsM742VZdas69rWXRKmrqA1SZOqg5e+o85i4vZi8n5i4vtWXfqSoPHz6Miy66qMl2m82Gs2fPdrUmIsVptVr06dNHNScmKUPNuQfrcm1qoebsqfOYu7yYvZyYu7zUln2nquzRowe+/fbbJts///xzpKend7koIqV5PB4cPXpUNTMckjLUnHuwLtemFmrOnjqPucuL2cuJuctLbdl3qum+66678MADD+DLL7+ERqPBiRMn8MYbb+Chhx7Cvffeq3SNRF3m8XhQUlKimhOTlKHm3IN1uTa1UHP21HnMXV7MXk7MXV5qy75Tv7UtWrQIHo8Hl1xyCaqrq3HRRRfBZDLhoYcewv333690jURE0gnW5dqIiIiIqGM6daVbo9HgkUcewZkzZ3DgwAHs3LkTJSUlePLJJ+F08jlDIqKualwWLdFq8tke6OXaiIiIiKhjunR/otFoxODBgwEAtbW1WLZsGZ577jkUFRUpUhyRUrRaLex2u2omWyBlqD13GZZF8xe1Z0+dw9zlxezlxNzlpbbsNUII0d6Da2tr8dhjj2HLli0wGo14+OGHMX36dKxduxaPPPIIdDod5s6di9/85jf+rFkaDocDNpsN5eXlsFqtgS6HiIiIiIiIftTefq1Dbw0sXrwYq1evRu/evfHdd9/h+uuvx5w5c7B8+XIsW7YM3333HRtuCkputxt5eXlwu92BLoW6EXOXF7OXE3OXF7OXE3OXl9qy79Dt5evXr8drr72Gq6++GgcOHMCwYcPgcrmwf/9+aDQaf9VI1GVCCJSXl6MDN3ZQCGDu8mL2cmLu8mL2cmLu8lJb9h260l1YWIhRo0YBAIYMGQKTyYT58+ez4SYiIiIiIiJqRoeabrfbDaPR6P1Yr9cjIiJC8aKIiIiIiIiIQkGHbi8XQuC2226DydSwhE1NTQ3uuecehIeH+xy3ceNG5SokUoBWq0V6erpqZjgkZTB3eTF7OTF3eTF7OTF3eakt+w5VOWvWLCQkJMBms8Fms+GXv/wlkpOTvR83/gmU3r17Q6PR+Pz5/e9/73NMbm4ufvrTn8JsNiMlJQXPPfdck9dZv349Bg4cCLPZjKFDh+Kjjz7y2S+EwOLFi5GUlASLxYLJkyfjm2++8TnmzJkzuOWWW2C1WhEVFYXZs2ejsrJS+UFTu2i1WiQkJKjmxCRlMHd5MXs5MXd5MXs5MXd5qS37Dl3pXrt2rb/qUMwTTzyBu+66y/txZGSk9+8OhwOXXXYZJk+ejJdeeglfffUV7rjjDkRFRWHOnDkAgB07duDmm2/G0qVLceWVV+LNN9/E9OnTsW/fPgwZMgQA8Nxzz+EPf/gDXn31VaSlpeH//b//hylTpuDrr7+G2WwGANxyyy04efIktmzZgvr6etx+++2YM2cO3nzzzW78blAjt9uNAwcOYMiQIdDpdIEuh7oJc5cXs5cTc5cXs5cTc5eX2rLvUNOtBpGRkejRo0ez+9544w3U1dXhlVdegdFoxAUXXICcnBwsW7bM23SvXLkSl19+ORYuXAgAePLJJ7Flyxa8+OKLeOmllyCEwIoVK/Doo4/i5z//OQDgtddeQ2JiIjZt2oSbbroJeXl52Lx5M3bv3o3Ro0cDAP74xz9i6tSpeP7555GcnNwN3wk6lxACTqdTNTMckjKYu7yYvZyYu7yYvZz8nXtFTT0Ky5yorHEhwqyHPdqCSLPBL1+LOkZt57w6rsd3wO9//3vExsYiIyMD//d//weXy+Xdl5WVhYsuushnMrgpU6bg8OHDKCsr8x4zefJkn9ecMmUKsrKyAAD5+fkoKiryOcZms2HcuHHeY7KyshAVFeVtuAFg8uTJ0Gq1+PLLL5UfNBERERERKaagtBprPs/Ha1nHsTH7B7yWdRxrPs9HQWl1oEsjFQqpK92//vWvMXLkSMTExGDHjh347W9/i5MnT2LZsmUAgKKiIqSlpfl8TmJiondfdHQ0ioqKvNvOPaaoqMh73Lmf19IxCQkJPvv1ej1iYmK8xzSntrYWtbW13o8dDgcAwOVyed880Gq10Gq18Hg88Hg83mMbt7vdbp93fFrartPpoNFofN6UaNwOoMlC8y1t1+v1EEL4bNdoNNDpdE1qbGl7d4xJCNGkTrWPqbnaOSbf2hu/ttvthl6vD4kxtbWdY4L3+a7mznk1jykUc1J6TOef86EwpnNxTC2PCWh6zqt9TKGYk9JjOvecV3JM5dW1eHdfAUoqaqEFIAAIaHHKUYN39xVg1vjeiDDpmVMAxwQ0PecDMabzx9eSoG+6Fy1ahGeffbbVY/Ly8jBw4EAsWLDAu23YsGEwGo24++67sXTpUu+M68Fs6dKlePzxx5tsz87O9s4QHx8fjz59+iA/Px8lJSXeY+x2O+x2O44cOYLy8nLv9vT0dCQkJODAgQNwOp3e7QMHDkRUVBSys7N9/rE2ft/27NnjU8Po0aNRV1eH3Nxc7zadTocxY8agvLwchw4d8m63WCwYPnw4Tp8+jWPHjnm322w2DBo0CCdOnEBhYaF3e3eMyWAwwOVyITs7O2TGFIo5+WNMLpcLx44dC6kxAaGXk9Jjio+Ph16v9znn1T6mUMzJH2NyuVzIzc0NqTEBoZeT0mNKT09HZGSkzzmv9jGFYk7+GFPj73dKjumbgpOwVX0P24/3BFcJIwpFDGI0VbBVFWPPntOIMOmZUwDHNGzYMCQmJvqc84EYU1VVFdpDI4L8RviSkhKUlpa2ekx6errPLeONDh48iCFDhuDQoUMYMGAAZs6cCYfDgU2bNnmP2bZtG372s5/hzJkziI6ORq9evbBgwQLMmzfPe8ySJUuwadMm7N+/H8eOHUOfPn2QnZ2NESNGeI+ZOHEiRowYgZUrV+KVV17Bgw8+6L1lHWj4JcBsNmP9+vW45pprmh1Hc1e6U1JSUFpaCqvVCkA97z6F4jtqHBPHxDFxTBwTx8QxcUwcU+iPadexUvwz539NW+OVbg0ENBC4engyRqVGq2pMoZhTMIzJ4XAgNjYW5eXl3n6tOUF/pTs+Ph7x8fGd+tycnBxotVrvrd6ZmZl45JFHUF9fD4OhYRKELVu2YMCAAYiOjvYes3XrVp+me8uWLcjMzAQApKWloUePHti6dau36XY4HPjyyy9x7733el/j7Nmz2Lt3L0aNGgUA+PTTT+HxeDBu3LgW6zWZTM1ekdfr9dDrfaNq/MdwvsZ/sO3dfv7rdma7RqNpdntLNXZ0uxJjanwXNCMjo8l+tY6po9tlHNO5ubdWu5rG1NXtsoypo+d8R7czp+Ac0/nnfCiM6XwcU/PbWzvn1Tqm1rZzTE3P+cZbjpUYU6TFAE8zU1+JH9tua5jJ5/OYU/ePqbVzvjvH1NI4mnztdh2lAllZWVixYoX3avQbb7yB+fPn45e//KW3of7FL34Bo9GI2bNn4+DBg3j77bexcuVKn9vSH3jgAWzevBkvvPACDh06hMceewx79uzB3LlzATSEPm/ePDz11FN477338NVXX2HmzJlITk7G9OnTAQCDBg3C5Zdfjrvuugu7du3CF198gblz5+Kmm27izOUBdP47ZyQH5i4vZi8n5i4vZi8nf+Ruj7Yg0dr8o6mJVhPs0RbFvyZ1nJrO+aC/0t1eJpMJb731Fh577DHU1tYiLS0N8+fP92mobTYbPvnkE9x3330YNWoU4uLisHjxYu9yYQAwfvx4vPnmm3j00Ufxu9/9Dv369cOmTZu8a3QDwMMPP4yqqirMmTMHZ8+exYQJE7B582bvGt1Aw/Jkc+fOxSWXXAKtVotrr70Wf/jDH7rnm0FERERERJ0SaTZgRoYdG7MLUez436OfiVYTZoy0c9kw6rCQabpHjhyJnTt3tnncsGHD8N///rfVY66//npcf/31Le7XaDR44okn8MQTT7R4TExMDN5888026yEiIqK2cb1cIupOvWLDMHtCGv/fIUUE/URqMnM4HLDZbG0+mE9tE0LA6XTCYrF4n/mh0Mfc5cXsQ0tBaXXzV5wy7OgVG+bdxtzlxezlxNzlFSzZt7dfC5lnuona0twM9xT6mLu8mH1oqKipb9JwA0CxoxYbswtRUVPvs525y4vZy4m5y0tN2bPpJim43W7s2bNHVRMuUNcxd3kx+9BRWOZs0nA3KnbUorDsf2uoMnd5MXs5MXd5qS37kHmmm4iIqDvxGePuUVnj6tJ+IiKiQGPTTURE1EHtfcaYui7C3PqvKm3tJyIiCjTeXk5ERNQBHX3GmLqG6+USEZHacfbyIMbZy5UjhIDb7YZOp+PslhJh7vLyZ/Z5Jx14Let4i/tnZqZiUBL/z1ZSi3cWjLSjV4zv7OU85+XE7OXE3OUVLNm3t1/jPVkkjbq6OlgsvCIiG+YuL39lz2eMu19H1svlOS8vZi8n5i4vNWXP28tJCm63G7m5uaqZ4ZCUwdzl5c/s+YxxYESaDRiUZMWYtBgMSrI223DznJcXs5cTc5eX2rJn001ERNQBfMaYiIiIOoJNNxERUQdEmg2YkWFv0ng3PmPMZcOIiIjoXLwHjqSh0+kCXQIFAHOXlz+z78gzxtS9eM7Li9nLibnLS03Zc/byIMbZy4mIiIiIiIJTe/s13l5OUhBC4OzZs+B7THJh7vJi9nJi7vJi9nJi7vJSW/ZsukkKbrcbhw4dUs0Mh6QM5i4vZi8n5i4vZi8n5i4vtWXPppuIiIiIiIjIT9h0ExEREREREfkJm26SgkajgcVigUajCXQp1I2Yu7yYvZyYu7yYvZyYu7zUlj1nLw9inL2ciIiIiIgoOHH2cqJzeDwenDp1Ch6PJ9ClUDdi7vJi9nJi7vJi9nJi7vJSW/ZsukkKHo8Hx44dU82JScpg7vJi9nJi7vJi9nJi7vJSW/ZsuomIiIiIiIj8hE03ERERERERkZ+w6SYpaDQa2Gw21cxwSMpg7vJi9nJi7vJi9nJi7vJSW/acvTyIcfZyIiIiIiKi4MTZy4nO4fF4UFhYqJrJFkgZzF1ezF5OzF1ezF5OzF1easueTTdJQW0nJimDucuL2cuJucuL2cuJuctLbdmz6SYiIiIiIiLyEzbdRERERERERH7CppukoNVqER8fD62W/+RlwtzlxezlxNzlxezlxNzlpbbsOXt5EOPs5URERERERMGJs5cTncPj8eDo0aOqmWyBlMHc5cXs5cTc5cXs5cTc5aW27Nl0kxQ8Hg9KSkpUc2KSMpi7vJi9nJi7vJi9nJi7vNSWPZtuIiIiIiIiIj9h001ERERERETkJ2y6SQparRZ2u101MxySMpi7vJi9nJi7vJi9nJi7vNSWPWcvD2KcvZyIiIiIiCg4cfZyonO43W7k5eXB7XYHuhTqRsxdXsxeTsxdXsxeTsxdXmrLXh/oAoi6gxAC5eXl4I0dcmHu8mL2cmLu8mL23aeiph6FZU5U1rgQYdbDHm1BpNkQkFqYu7zUlj2bbiIiIiIialNBaTU2Zhei2FHr3ZZoNWFGhh29YsMCWBlRcOPt5URERERE1KqKmvomDTcAFDtqsTG7EBU19QGqjCj4sekmKWi1WqSnp6tmhkNSBnOXF7OXE3OXF7P3v8IyZ5OGu1GxoxaFZc5uroi5y0xt2fP2cpKCVqtFQkJCoMugbsbc5cXs5cTc5cXs/a+yxtWl/f7A3OWltuzV8dYAURe53W7s379fNTMckjKYu7yYvZyYu7yYvf9FmFu/VtfWfn9g7vJSW/ZsukkKQgg4nU7VzHBIymDu8mL2cmLu8mL2/mePtiDRamp2X6LVBHu0pZsrYu4yU1v2bLqJiIiIiKhVkWYDZmTYmzTeiVYTZoy0B2zZMCI14DPdRERERETUpl6xYZg9IS1o1ukmUguNUMs1eQk5HA7YbDaUl5fDarUGuhxVE0KgvLwcNpsNGo0m0OVQN2Hu8mL2cmLu8mL2cmLu8gqW7Nvbr7HpDmJsuomIiIiIiIJTe/s1PtNNUnC5XNi9ezdcru5fzoICh7nLi9nLibnLi9nLibnLS23Z85lukoZalhQgZTH37lFRUx90z/gxezkxd3kxezkxd3mpKXs23URE1CUFpdXYmF2IYketd1ui1YQZGXb0ig0LYGVEREREgcfby4mIqNMqauqbNNwAUOyoxcbsQlTU1AeoMiIiIqLgwKabpKDT6TBs2DDodLpAl0LdiLn7X2GZs0nD3ajYUYvCMmc3V9SA2cuJucuL2cuJuctLbdmz6SZpGI3GQJdAAcDc/auypvUJTNra70/MXk7MXV7MXk7MXV5qyp5NN0nB7XZjz549qppwgbqOuftfhLn1qUHa2u8vzF5OzF1ezF5OzF1easueTTcREXWaPdqCRKup2X2JVhPs0ZZuroiIiIgouLDpJiKiTos0GzAjw96k8U60mjBjpD3gy4YRERERBRqXDCMioi7pFRuG2RPSgm6dbiIiIqJgoBFCiEAXQc1zOByw2WwoLy+H1WoNdDmqJoSA2+2GTqeDRqMJdDnUTZi7vJi9nJi7vJi9nJi7vIIl+/b2a7y9nKRRV1cX6BIoAJi7vJi9nJi7vJi9nJi7vNSUPZtukoLb7UZubq5qZjgkZTB3eTF7OTF3eTF7OTF3eaktezbdRERERERERH7CppuIiIiIiIjIT9h0kzR0Ol2gS6AAYO7yYvZyYu7yYvZyYu7yUlP2nL08iHH2ciIidaqoqecSakRERCGuvf0a1+kmKQghUF5eDpvNxiUlJMLc5RXI7AtKq7ExuxDFjlrvtkSrCTMy7OgVG9attciG57y8mL2cmLu81JY9by8nKbjdbhw6dEg1MxySMpi7vAKVfUVNfZOGGwCKHbXYmF2Iipr6bq1HNjzn5cXs5cTc5aW27Nl0ExERKaSwzNmk4W5U7KhFYZmzmysiIiKiQGPTTUREpJDKGleX9hMREVHoYdNNUtBoNLBYLKp45oOUw9zlFajsI8ytT5XS1n7qGp7z8mL2cmLu8lJb9py9PIhx9nIiInWpqKnHms/zm73FPNFqwuwJaZzFnIiIKES0t1/jlW6SgsfjwalTp+DxeAJdCnUj5i6vQGUfaTZgRoYdiVaTz/ZEqwkzRtrZcPsZz3l5MXs5MXd5qS171TTdTz/9NMaPH4+wsDBERUU1e0xBQQGmTZuGsLAwJCQkYOHChXC5fJ+f2759O0aOHAmTyYS+ffti3bp1TV5n1apV6N27N8xmM8aNG4ddu3b57K+pqcF9992H2NhYRERE4Nprr0VxcXGHa6Hu4/F4cOzYMdWcmKQM5i6vQGbfKzYMsyekYWZmKmZk9MTMzFTMnpCGXjFcLszfeM7Li9nLibnLS23Zq6bprqurw/XXX49777232f1utxvTpk1DXV0dduzYgVdffRXr1q3D4sWLvcfk5+dj2rRpuPjii5GTk4N58+bhzjvvxL/+9S/vMW+//TYWLFiAJUuWYN++fRg+fDimTJmCU6dOeY+ZP38+3n//faxfvx6fffYZTpw4gRkzZnSoFiIiCl2RZgMGJVkxJi0Gg5KsvMJNREQkMdU03Y8//jjmz5+PoUOHNrv/k08+wddff42//e1vGDFiBK644go8+eSTWLVqFerq6gAAL730EtLS0vDCCy9g0KBBmDt3Lq677josX77c+zrLli3DXXfdhdtvvx2DBw/GSy+9hLCwMLzyyisAgPLycqxZswbLli3Dz372M4waNQpr167Fjh07sHPnznbXQkRERERERKFPNU13W7KysjB06FAkJiZ6t02ZMgUOhwMHDx70HjN58mSfz5syZQqysrIANFxN37t3r88xWq0WkydP9h6zd+9e1NfX+xwzcOBA9OrVy3tMe2qh7qXRaGCz2VQzwyEpg7nLi9nLibnLi9nLibnLS23Zh8zaJUVFRT5NLgDvx0VFRa0e43A44HQ6UVZWBrfb3ewxhw4d8r6G0Whs8lx5YmJim1/n3FqaU1tbi9ra/81463A4AAAul8v7PLhWq4VWq4XH4/F5hqFxu9vtxrkT0re0XafTQaPRNHnOXKfTAWi4Rb492/V6PYQQPts1Gg10Ol2TGlva3h1j0mq16NevH4QQ3v1qH1NztXNMTWvv16+fd3+ojKm17RxTw3adTof+/fs3OefVPKZQzMkfY2r8vx5AyIypUSjlpPSYdDodBgwYAI/H0+R3JrWOKRRz8seYGs/5xmNCYUxt1c4xaZo95wMxpvbO2RXQpnvRokV49tlnWz0mLy8PAwcO7KaKAmvp0qV4/PHHm2zPzs5GeHg4ACA+Ph59+vRBfn4+SkpKvMfY7XbY7XYcOXIE5eXl3u3p6elISEjAgQMH4HQ6vdsHDhyIqKgoZGdn+/wjHjZsGIxGI/bs2eNTw+jRo1FXV4fc3FzvNp1OhzFjxqC8vNz7pgQAWCwWDB8+HKdPn8axY8e82202GwYNGoQTJ06gsLDQu707xqTX67Fjxw6YzeaQGVMo5uSPMdXU1CAhIQGDBw8OmTEBoZeT0mOKi4vDl19+Ca32fzd0qX1MoZiTP8ZUU1ODsLAwjB07NmTGBIReTkqPKS0tDTk5OT6P8al9TKGYkz/GVFNTA7PZHFJjCsWclB7T0KFDcejQIe9FykCNqaqqCu0R0HW6S0pKUFpa2uox6enpMBqN3o/XrVuHefPm4ezZsz7HLV68GO+99x5ycnK82/Lz85Geno59+/YhIyMDF110EUaOHIkVK1Z4j1m7di3mzZuH8vJy1NXVISwsDP/4xz8wffp07zGzZs3C2bNn8c9//hOffvopLrnkEpSVlflc7U5NTcW8efMwf/78dtXSnOaudKekpKC0tNS77pua3n0KpnfUXC4X9uzZg5EjR3rHovYxNVc7x+Rbu9vtxr59+7wrFoTCmNrazjHBe+zu3bubnPNqHlMo5qT0mM4/50NhTOcKlZz8Mabmznm1jykUc1J6TOee8439gtrH1J7aOSYNhBBNzvlAjMnhcCA2NrbNdboDeqU7Pj4e8fHxirxWZmYmnn76aZw6dQoJCQkAgC1btsBqtWLw4MHeYz766COfz9uyZQsyMzMBAEajEaNGjcLWrVu9TbfH48HWrVsxd+5cAMCoUaNgMBiwdetWXHvttQCAw4cPo6CgwPs67amlOSaTCSaTqcl2vV4Pvd43qsZ/DOdr/EfX3u3nv25ntms0mma3t1RjR7crMSaNRuM9Ec/fr9YxdXS7rGNqzL212tU2pq5sl2VMHo+nQ+d8R7czp+Ad07nnfKiM6VwcU/PbWzvn1Tqm1rZzTE3P+cZne0NhTF3ZLsuYXC5Xi+d8d46ppXE0+Zx2HRUECgoKcObMGRQUFMDtdnuvIvft2xcRERG47LLLMHjwYNx666147rnnUFRUhEcffRT33Xeft5G955578OKLL+Lhhx/GHXfcgU8//RTvvPMOPvzwQ+/XWbBgAWbNmoXRo0dj7NixWLFiBaqqqnD77bcDaLhtYfbs2ViwYAFiYmJgtVpx//33IzMzEz/5yU8AoF21EBERERERUehTTdO9ePFivPrqq96PG2/R3rZtGyZNmgSdTocPPvgA9957LzIzMxEeHo5Zs2bhiSee8H5OWloaPvzwQ8yfPx8rV66E3W7Hyy+/jClTpniPufHGG1FSUoLFixejqKgII0aMwObNm30mRlu+fDm0Wi2uvfZa1NbWYsqUKfjTn/7k3d+eWqh7abVaxMfHN/vuFoUu5i4vZi8n5i4vZi8n5i4vtWUf0Ge6qXUOhwM2m63NZwSIiIiIiIioe7W3X1PHWwNEXeTxeHD06FGfyRMo9DF3eTF7OTF3eTF7OTF3eaktezbdJAWPx4OSkhLVnJikDOYuL2YvJ+YuL2YvJ+YuL7Vlz6abiIiIiIiIyE/YdBMRERERERH5CZtukoJWq4XdblfNDIekDOYuL2YvJ+YuL2YvJ+YuL7Vlz9nLgxhnLyciIiIiIgpOnL2c6Bxutxt5eXlwu92BLoW6EXOXF7OXE3OXF7OXE3OXl9qyZ9NNUhBCoLy8HLyxQy7MXV7MXk7MXV7MXk7MXV5qy55NNxEREREREZGfsOkmIiIiIiIi8hM23SQFrVaL9PR01cxwSMpg7vJi9nJi7vJi9nJi7vJSW/acvTyIcfZyIiIiIiKi4MTZy4nO4Xa7sX//ftXMcEjKYO7yYvZyYu7yYvZyYu7yUlv2bLpJCkIIOJ1O1cxwSMpg7vJi9nJi7vJi9nJi7vJSW/ZsuomIiIiIiIj8hE03ERERERERkZ+w6SYp6HQ6DBw4EDqdLtClUDdi7vJi9nJi7vJi9nJi7vJSW/acvTyIcfZyIiIiIiKi4MTZy4nO4XK5sHv3brhcrkCXQt2IucuL2cuJucuL2cuJuctLbdmz6SZpqGVJAVIWc5cXs5cTc5cXs5cTc5eXmrJn001ERERERETkJ2y6iYiIiIiIiPyEE6kFMU6kphwhBJxOJywWCzQaTaDLoW7C3OXF7OXE3OXF7OXE3OUVLNlzIjWi8xiNxkCXQAHA3OXF7OXE3OXF7OXE3OWlpuzZdJMU3G439uzZo6oJF6jrmLu8mL2cmLu8mL2cmLu81JY9m24iIiIiIiIiP2HTTUREREREROQnbLqJiIiIiIiI/ISzlwcxzl6uHCEE3G43dDodZ7eUCHOXF7OXE3OXF7OXE3OXV7Bkz9nLic5TV1cX6BIoAJi7vJi9nJi7vJi9nJi7vNSUPZtukoLb7UZubq5qZjgkZTB3eTF7OcmSe0VNPfJOOrA7/wzyTjpQUVMf6JICTpbsyRdzl5fastcHugAiIiIiap+C0mpszC5EsaPWuy3RasKMDDt6xYYFsDIiImoJr3QTERERqUBFTX2ThhsAih212JhdyCveRERBik03SUOn0wW6BAoA5i4vZi+nUM69sMzZpOFuVOyoRWGZs5srCi6hnD21jLnLS03Zc/byIMbZy4mIiKjR7vwz2Jj9Q4v7Z2T0xJi0mG6siIhIbpy9nOgcQgicPXsWfI9JLsxdXsxeTqGee4S59al42tofykI9e2oec5eX2rJn001ScLvdOHTokGpmOCRlMHd5MXs5hXru9mgLEq2mZvclWk2wR1u6uaLgEerZU/OYu7zUlj2bbiIiIiIViDQbMCPD3qTxTrSaMGOkHZFmQ4AqIyKi1sh7HxIRERGRyvSKDcPsCWkoLHOissaFCLMe9mgLG24ioiDGppukoNFoYLFYoNFoAl0KdSPmLi9mLydZco80GzAoiU32uWTJnnwxd3mpLXvOXh7EOHs5ERERERFRcOLs5UTn8Hg8OHXqFDweT6BLoW7E3OXF7OXE3OXF7OXE3OWltuzZdJMUPB4Pjh07ppoTk5TB3OXF7OXE3OXF7OXE3OWltuzZdBMRERERERH5CZtuIiIiIiIiIj9h001S0Gg0sNlsqpnhkJTB3OXF7OXE3OXF7OXE3OWltuw5e3kQ4+zlREREREREwYmzlxOdw+PxoLCwUDWTLZAymLu8mL2cmLu8mL2cmLu81JY9m26SgtpOTFIGc5cXs5cTc5cXs5cTc5eX2rJn001ERERERETkJ2y6iYiIiIiIiPyETTdJQavVIj4+Hlot/8nLhLnLi9nLibnLi9nLibnLS23Zc/byIMbZy4mIiIiIiIITZy8nOofH48HRo0dVM9kCKYO5y4vZy4m5y4vZy4m5y0tt2bPpJil4PB6UlJSo5sQkZTB3eTF7OTF3eTF7OTF3eaktezbdRERERERERH6iD3QB1LLGx+0dDkeAK1E/l8uFqqoqOBwO6PX8Zy8L5i4vZi8n5i4vZi8n5i6vYMm+sU9ra5o0/usMYhUVFQCAlJSUAFdCREREREREzamoqIDNZmtxP2cvD2IejwcnTpxAZGQkNBpNoMtRNYfDgZSUFHz//fecCV4izF1ezF5OzF1ezF5OzF1ewZK9EAIVFRVITk5udfkyXukOYlqtFna7PdBlhBSr1cr/lCXE3OXF7OXE3OXF7OXE3OUVDNm3doW7ESdSIyIiIiIiIvITNt1EREREREREfsKmm6RgMpmwZMkSmEymQJdC3Yi5y4vZy4m5y4vZy4m5y0tt2XMiNSIiIiIiIiI/4ZVuIiIiIiIiIj9h001ERERERETkJ2y6iYiIiIiIiPyETTeFjFWrVqF3794wm80YN24cdu3a1erx69evx8CBA2E2mzF06FB89NFH3VQpKakjua9btw4ajcbnj9ls7sZqSQn/+c9/cNVVVyE5ORkajQabNm1q83O2b9+OkSNHwmQyoW/fvli3bp3f6yTldTT77du3NznnNRoNioqKuqdgUsTSpUsxZswYREZGIiEhAdOnT8fhw4fb/Dz+nFe3zuTOn/OhYfXq1Rg2bJh3De7MzEx8/PHHrX5OsJ/vbLopJLz99ttYsGABlixZgn379mH48OGYMmUKTp061ezxO3bswM0334zZs2cjOzsb06dPx/Tp03HgwIFurpy6oqO5A4DVasXJkye9f44fP96NFZMSqqqqMHz4cKxatapdx+fn52PatGm4+OKLkZOTg3nz5uHOO+/Ev/71Lz9XSkrraPaNDh8+7HPeJyQk+KlC8ofPPvsM9913H3bu3IktW7agvr4el112Gaqqqlr8HP6cV7/O5A7w53wosNvt+P3vf4+9e/diz549+NnPfoaf//znOHjwYLPHq+J8F0QhYOzYseK+++7zfux2u0VycrJYunRps8ffcMMNYtq0aT7bxo0bJ+6++26/1knK6mjua9euFTabrZuqo+4AQLz77rutHvPwww+LCy64wGfbjTfeKKZMmeLHysjf2pP9tm3bBABRVlbWLTVR9zh16pQAID777LMWj+HP+dDTntz5cz50RUdHi5dffrnZfWo433mlm1Svrq4Oe/fuxeTJk73btFotJk+ejKysrGY/Jysry+d4AJgyZUqLx1Pw6UzuAFBZWYnU1FSkpKS0+q4phQ6e7zRixAgkJSXh0ksvxRdffBHocqiLysvLAQAxMTEtHsPzPvS0J3eAP+dDjdvtxltvvYWqqipkZmY2e4waznc23aR6p0+fhtvtRmJios/2xMTEFp/bKyoq6tDxFHw6k/uAAQPwyiuv4J///Cf+9re/wePxYPz48SgsLOyOkilAWjrfHQ4HnE5ngKqi7pCUlISXXnoJGzZswIYNG5CSkoJJkyZh3759gS6NOsnj8WDevHm48MILMWTIkBaP48/50NLe3PlzPnR89dVXiIiIgMlkwj333IN3330XgwcPbvZYNZzv+kAXQETUXTIzM33eJR0/fjwGDRqEP//5z3jyyScDWBkR+cOAAQMwYMAA78fjx4/H0aNHsXz5crz++usBrIw667777sOBAwfw+eefB7oU6kbtzZ0/50PHgAEDkJOTg/LycvzjH//ArFmz8Nlnn7XYeAc7Xukm1YuLi4NOp0NxcbHP9uLiYvTo0aPZz+nRo0eHjqfg05ncz2cwGJCRkYFvv/3WHyVSkGjpfLdarbBYLAGqigJl7NixPOdVau7cufjggw+wbds22O32Vo/lz/nQ0ZHcz8ef8+plNBrRt29fjBo1CkuXLsXw4cOxcuXKZo9Vw/nOpptUz2g0YtSoUdi6dat3m8fjwdatW1t89iMzM9PneADYsmVLi8dT8OlM7udzu9346quvkJSU5K8yKQjwfKdz5eTk8JxXGSEE5s6di3fffReffvop0tLS2vwcnvfq15ncz8ef86HD4/Ggtra22X2qON8DPZMbkRLeeustYTKZxLp168TXX38t5syZI6KiokRRUZEQQohbb71VLFq0yHv8F198IfR6vXj++edFXl6eWLJkiTAYDOKrr74K1BCoEzqa++OPPy7+9a9/iaNHj4q9e/eKm266SZjNZnHw4MFADYE6oaKiQmRnZ4vs7GwBQCxbtkxkZ2eL48ePCyGEWLRokbj11lu9xx87dkyEhYWJhQsXiry8PLFq1Sqh0+nE5s2bAzUE6qSOZr98+XKxadMm8c0334ivvvpKPPDAA0Kr1Yp///vfgRoCdcK9994rbDab2L59uzh58qT3T3V1tfcY/pwPPZ3JnT/nQ8OiRYvEZ599JvLz80Vubq5YtGiR0Gg04pNPPhFCqPN8Z9NNIeOPf/yj6NWrlzAajWLs2LFi586d3n0TJ04Us2bN8jn+nXfeEf379xdGo1FccMEF4sMPP+zmikkJHcl93rx53mMTExPF1KlTxb59+wJQNXVF4zJQ5/9pzHrWrFli4sSJTT5nxIgRwmg0ivT0dLF27dpur5u6rqPZP/vss6JPnz7CbDaLmJgYMWnSJPHpp58GpnjqtOYyB+BzHvPnfOjpTO78OR8a7rjjDpGamiqMRqOIj48Xl1xyibfhFkKd57tGCCG677o6ERERERERkTz4TDcRERERERGRn7DpJiIiIiIiIvITNt1EREREREREfsKmm4iIiIiIiMhP2HQTERERERER+QmbbiIiIiIiIiI/YdNNRERERERE5CdsuomIiIiIiIj8hE03ERGRRDQaDTZt2hToMnwEqqbHHnsMI0aM6PLrrFu3DlFRUV1+HSIiUtZ//vMfXHXVVUhOTu70zxohBJ5//nn0798fJpMJPXv2xNNPP92h12DTTURE5AdZWVnQ6XSYNm1ahz+3d+/eWLFihfJFtUGj0bT657HHHmvxc7/77jtoNBrk5OQoXtdtt93WbD2XX355l173oYcewtatW7tc34033ogjR450+XWIiEhZVVVVGD58OFatWtXp13jggQfw8ssv4/nnn8ehQ4fw3nvvYezYsR16DX2nvzoRERG1aM2aNbj//vuxZs0anDhxAsnJyYEuqU0nT570/v3tt9/G4sWLcfjwYe+2iIiIQJQFALj88suxdu1an20mk6lLrxkREaHImCwWCywWS5dfh4iIlHXFFVfgiiuuaHF/bW0tHnnkEfz973/H2bNnMWTIEDz77LOYNGkSACAvLw+rV6/GgQMHMGDAAABAWlpah+vglW4iIiKFVVZW4u2338a9996LadOmYd26dU2Oef/99zFmzBiYzWbExcXhmmuuAQBMmjQJx48fx/z5871XdIHmb4VesWIFevfu7f149+7duPTSSxEXFwebzYaJEydi37597a67R48e3j82mw0ajcb7cUJCApYtWwa73Q6TyYQRI0Zg8+bN3s9t/CUkIyMDGo3G+wtLV2tqZDKZfOrr0aMHoqOjvfs1Gg3+/Oc/48orr0RYWBgGDRqErKwsfPvtt5g0aRLCw8Mxfvx4HD161Ps5539Pt2/fjrFjxyI8PBxRUVG48MILcfz4cQDA/v37cfHFFyMyMhJWqxWjRo3Cnj17ADR/e/nq1avRp08fGI1GDBgwAK+//rrPfo1Gg5dffhnXXHMNwsLC0K9fP7z33nsd/r4QEVHnzZ07F1lZWXjrrbeQm5uL66+/Hpdffjm++eYbAA0/q9PT0/HBBx8gLS0NvXv3xp133okzZ8506Ouw6SYiIlLYO++8g4EDB2LAgAH45S9/iVdeeQVCCO/+Dz/8ENdccw2mTp2K7OxsbN261Xur2saNG2G32/HEE0/g5MmTPlef21JRUYFZs2bh888/x86dO9GvXz9MnToVFRUVXR7TypUr8cILL+D5559Hbm4upkyZgquvvtr7i8muXbsAAP/+979x8uRJbNy40e81ne/JJ5/EzJkzkZOTg4EDB+IXv/gF7r77bvz2t7/Fnj17IITA3Llzm/1cl8uF6dOnY+LEicjNzUVWVhbmzJnjfdPjlltugd1ux+7du7F3714sWrQIBoOh2dd699138cADD+DBBx/EgQMHcPfdd+P222/Htm3bfI57/PHHccMNNyA3NxdTp07FLbfc0uFf5IiIqHMKCgqwdu1arF+/Hj/96U/Rp08fPPTQQ5gwYYL3zqpjx47h+PHjWL9+PV577TWsW7cOe/fuxXXXXdexLyaIiIhIUePHjxcrVqwQQghRX18v4uLixLZt27z7MzMzxS233NLi56emporly5f7bFuyZIkYPny4z7bly5eL1NTUFl/H7XaLyMhI8f7773u3ARDvvvtum2NYu3atsNls3o+Tk5PF008/7XPMmDFjxK9+9SshhBD5+fkCgMjOzm71dTtT06xZs4ROpxPh4eE+f86tB4B49NFHvR9nZWUJAGLNmjXebX//+9+F2Wz2fnzu97S0tFQAENu3b2+2hsjISLFu3bpm953/vRo/fry46667fI65/vrrxdSpU1ust7KyUgAQH3/8cYvfByIi6rzzf9Z88MEHAkCTny16vV7ccMMNQggh7rrrLgFAHD582Pt5e/fuFQDEoUOH2v21+Uw3ERGRgg4fPoxdu3bh3XffBQDo9XrceOONWLNmjfeW65ycHNx1112Kf+3i4mI8+uij2L59O06dOgW3243q6moUFBR06XUdDgdOnDiBCy+80Gf7hRdeiP3793dLTRdffDFWr17tsy0mJsbn42HDhnn/npiYCAAYOnSoz7aamho4HA5YrdYmr3XbbbdhypQpuPTSSzF58mTccMMNSEpKAgAsWLAAd955J15//XVMnjwZ119/Pfr06dNsrXl5eZgzZ47PtgsvvBArV65ssd7w8HBYrVacOnWq1e8DEREpo7KyEjqdDnv37oVOp/PZ1zjfR1JSEvR6Pfr37+/dN2jQIAANV8obn/NuC28vJyIiUtCaNWvgcrmQnJwMvV4PvV6P1atXY8OGDSgvLweATk26pdVqfW5RB4D6+nqfj2fNmoWcnBysXLkSO3bsQE5ODmJjY1FXV9f5AXWRUjWFh4ejb9++Pn/Ob7rPvd278bbw5rZ5PJ5mv8batWuRlZWF8ePH4+2330b//v2xc+dOAA3Pfx88eBDTpk3Dp59+isGDB3vfWOms829P12g0LdZGRETKysjIgNvtxqlTp5r8fOnRoweAhjdMXS6Xz3wgjatVpKamtvtrsekmIiJSiMvlwmuvvYYXXngBOTk53j/79+9HcnIy/v73vwNouMLZ2lJVRqMRbrfbZ1t8fDyKiop8Gu/zl+f64osv8Otf/xpTp07FBRdcAJPJhNOnT3d5XFarFcnJyfjiiy+afL3Bgwd7awbQpG5/1eQvGRkZ+O1vf4sdO3ZgyJAhePPNN737+vfvj/nz5+OTTz7BjBkzmsym3mjQoEGtfq+IiKh7VFZWen8WA0B+fj5ycnJQUFCA/v3745ZbbsHMmTOxceNG5OfnY9euXVi6dCk+/PBDAMDkyZMxcuRI3HHHHcjOzsbevXtx991349JLL/W5+t0W3l5ORESkkA8++ABlZWWYPXs2bDabz75rr70Wa9aswT333IMlS5bgkksuQZ8+fXDTTTfB5XLho48+wm9+8xsADet0/+c//8FNN90Ek8mEuLg4TJo0CSUlJXjuuedw3XXXYfPmzfj44499bpPu168fXn/9dYwePRoOhwMLFy5UbCmrhQsXYsmSJejTpw9GjBiBtWvXIicnB2+88QYAICEhARaLBZs3b4bdbofZbIbNZlOsptraWhQVFfls0+v1iIuLU2R8+fn5+Mtf/oKrr74aycnJOHz4ML755hvMnDkTTqcTCxcuxHXXXYe0tDQUFhZi9+7duPbaa5t9rYULF+KGG25ARkYGJk+ejPfffx8bN27Ev//9b0VqJSKi9tmzZw8uvvhi78cLFiwA0HAX1rp167B27Vo89dRTePDBB/HDDz8gLi4OP/nJT3DllVcCaLjL7P3338f999+Piy66COHh4bjiiivwwgsvdKwQhZ5LJyIikt6VV17pM1nWub788ksBQOzfv18IIcSGDRvEiBEjhNFoFHFxcWLGjBneY7OyssSwYcOEyWQS5/6oXr16tUhJSRHh4eFi5syZ4umnn/aZSG3fvn1i9OjRwmw2i379+on169c3mZQNnZxIze12i8cee0z07NlTGAwGMXz48CaTfv31r38VKSkpQqvViokTJypW06xZswSAJn8GDBjQ4ms0N7Hbtm3bBABRVlYmhPCdSK2oqEhMnz5dJCUlCaPRKFJTU8XixYuF2+0WtbW14qabbhIpKSnCaDSK5ORkMXfuXOF0Opv9XgkhxJ/+9CeRnp4uDAaD6N+/v3jttdd89jc3ZpvNJtauXdvi94GIiNRJI8R5D4gRERERERERkSL4TDcRERERERGRn7DpJiIiIiIiIvITNt1EREREREREfsKmm4iIiIiIiMhP2HQTERERERER+QmbbiIiIiIiIiI/YdNNRERERERE5CdsuomIiIiIiIj8hE03ERERERERkZ+w6SYiIiIiIiLyEzbdRERERERERH7CppuIiIiIiIjIT/4/F/QZ5rJOFdIAAAAASUVORK5CYII=\n" }, "metadata": {} } ] }, { "cell_type": "markdown", "source": [ "- Observation: Most of the residuals (errors) are clustered around the red dashed \"Zero Error Line\".\n", "For lower actual emission values (e.g., up to ~0.5 million), the errors are generally small and tightly clustered around zero.\n", "As actual emission values increase, the spread of the residuals seems to slightly increase, forming a very subtle \"fanning out\" or megaphone shape. This is common in regression and indicates heteroscedasticity, meaning the model's error magnitude increases with the magnitude of the predicted value.\n", "There are a few outliers (points far from zero) especially at higher actual emission values (e.g., around 1.4 million and 3 million), where the model has larger prediction errors (both positive and negative).\n", "- Interpretation:\n", "The model is generally unbiased, with errors centered around zero.\n", "The slight fanning out suggests that while the model performs very well overall, its predictions might be less precise for very high emission values compared to lower ones. This is often an inherent characteristic of data with a wide dynamic range, where absolute errors are naturally larger for larger values. Given your large range of total_emission, this slight heteroscedasticity is not necessarily a major flaw but something to be aware of.\n" ], "metadata": { "id": "jss4eOoKpA5R" } }, { "cell_type": "code", "source": [ "# --- Graph 3: Distribution of Residuals (Histogram/KDE) ---\n", "plt.figure(figsize=(10, 6))\n", "sns.histplot(residuals, bins=50, kde=True, color='skyblue')\n", "plt.axvline(x=0, color='red', linestyle='--', label='Mean Residual (ideally 0)')\n", "plt.title('Distribution of Residuals')\n", "plt.xlabel('Residuals (Actual - Predicted)')\n", "plt.ylabel('Frequency')\n", "plt.legend()\n", "plt.tight_layout()\n", "plt.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 607 }, "id": "4b9_oyAloH1z", "outputId": "4fd412c9-31ba-4be4-f436-aa54174581c3" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAk3lJREFUeJzs3Xl8VNX9//H3nS0rSVgTkFVFNkEEFeNeRRDRakWrfkURcalCVXCltS5YxX0tivWn4Fqq1trWBQXEDQEVUREQAZGgkLAnZM/MnN8fydxkSAJZZjJLXs/HYx6ZuffMvWfCkDuf+ZzzOZYxxggAAAAAAIScI9IdAAAAAAAgXhF0AwAAAAAQJgTdAAAAAACECUE3AAAAAABhQtANAAAAAECYEHQDAAAAABAmBN0AAAAAAIQJQTcAAAAAAGFC0A0AAAAAQJgQdAMA4sKdd94py7Ja5FwnnXSSTjrpJPvxRx99JMuy9MYbb7TI+S+99FL17NmzRc7VVIWFhbr88suVlZUly7J0/fXXR7pLtViWpTvvvHO/7VrivRV4D3300UdhPQ8AoOURdAMAos7s2bNlWZZ9S0xMVJcuXTRy5Eg98cQT2rNnT0jOs3nzZt1555365ptvQnK8UIrmvjXEvffeq9mzZ+vqq6/WSy+9pIsvvrjetj179gz6905JSdFRRx2lF198sQV7DABAeLgi3QEAAOozbdo09erVSxUVFcrNzdVHH32k66+/Xo888oj++9//atCgQXbb2267Tbfeemujjr9582bddddd6tmzpwYPHtzg533wwQeNOk9T7Ktvzz77rPx+f9j70Bwffvihjj76aN1xxx0Naj948GDdcMMNkqQtW7bo//2//6dx48aprKxMV1xxRVj6WFJSIpeLj0IAgPDiSgMAiFqjRo3SEUccYT+eOnWqPvzwQ51xxhn67W9/q9WrVyspKUmS5HK5wh5AFRcXKzk5WR6PJ6zn2R+32x3R8zfE1q1b1b9//wa3P+CAAzR27Fj78aWXXqoDDzxQjz76aNiC7sTExLAcFwCAmhheDgCIKSeffLL+8pe/aOPGjXr55Zft7XXNu503b56OO+44ZWRkKDU1VX369NGf/vQnSZVzaI888khJ0vjx4+2hzbNnz5ZUOW/70EMP1bJly3TCCScoOTnZfu7ec7oDfD6f/vSnPykrK0spKSn67W9/q02bNgW16dmzpy699NJaz615zP31ra453UVFRbrhhhvUrVs3JSQkqE+fPnrooYdkjAlqZ1mWJk2apLfeekuHHnqoEhISNGDAAM2dO7fuX/hetm7dqgkTJigzM1OJiYk67LDD9MILL9j7A3OTN2zYoHfeecfu+88//9yg4wd07NhRffv21fr164O2+/1+PfbYYxowYIASExOVmZmpq666Srt27Qpq99VXX2nkyJHq0KGDkpKS1KtXL1122WW1fhd7z+n+7LPPdOSRRyoxMVEHHXSQnnnmmVp9+/nnn4P+PfZ1zI0bN+qaa65Rnz59lJSUpPbt2+u8885r0O9j7dq1GjNmjLKyspSYmKiuXbvqggsuUH5+/n6fCwCIHmS6AQAx5+KLL9af/vQnffDBB/VmQVeuXKkzzjhDgwYN0rRp05SQkKB169Zp0aJFkqR+/fpp2rRpuv3223XllVfq+OOPlyQdc8wx9jF27NihUaNG6YILLtDYsWOVmZm5z37dc889sixLt9xyi7Zu3arHHntMw4cP1zfffGNn5BuiIX2ryRij3/72t1q4cKEmTJigwYMH6/3339dNN92kX3/9VY8++mhQ+88++0xvvvmmrrnmGrVp00ZPPPGExowZo5ycHLVv377efpWUlOikk07SunXrNGnSJPXq1Uuvv/66Lr30Uu3evVvXXXed+vXrp5deekmTJ09W165d7SHjHTt2bPDrlySv16tffvlFbdu2Ddp+1VVXafbs2Ro/fryuvfZabdiwQX/729+0fPlyLVq0SG63W1u3btWIESPUsWNH3XrrrcrIyNDPP/+sN998c5/nXLFihf28O++8U16vV3fcccd+/9335csvv9Tnn3+uCy64QF27dtXPP/+sp59+WieddJJWrVql5OTkOp9XXl6ukSNHqqysTH/84x+VlZWlX3/9VW+//bZ2796t9PT0JvcJANDCDAAAUWbWrFlGkvnyyy/rbZOenm4OP/xw+/Edd9xhal7WHn30USPJbNu2rd5jfPnll0aSmTVrVq19J554opFkZs6cWee+E0880X68cOFCI8kccMABpqCgwN7+2muvGUnm8ccft7f16NHDjBs3br/H3Fffxo0bZ3r06GE/fuutt4wk89e//jWo3bnnnmssyzLr1q2zt0kyHo8naNu3335rJJknn3yy1rlqeuyxx4wk8/LLL9vbysvLTXZ2tklNTQ167T169DCjR4/e5/Fqth0xYoTZtm2b2bZtm1mxYoW5+OKLjSQzceJEu92nn35qJJlXXnkl6Plz584N2v7vf/97v+8fYyp/F3fccYf9+OyzzzaJiYlm48aN9rZVq1YZp9MZ9N7asGFDvf82ex+zuLi4VpvFixcbSebFF1+0twXeQwsXLjTGGLN8+XIjybz++uv7fA0AgOjH8HIAQExKTU3dZxXzjIwMSdJ//vOfJhcdS0hI0Pjx4xvc/pJLLlGbNm3sx+eee646d+6sd999t0nnb6h3331XTqdT1157bdD2G264QcYYvffee0Hbhw8froMOOsh+PGjQIKWlpemnn37a73mysrJ04YUX2tvcbreuvfZaFRYW6uOPP27ya/jggw/UsWNHdezYUQMHDtRLL72k8ePH68EHH7TbvP7660pPT9epp56q7du327ehQ4cqNTVVCxculFT9b//222+roqKiQef3+Xx6//33dfbZZ6t79+729n79+mnkyJFNfl01RzhUVFRox44dOvjgg5WRkaGvv/663ucFMtnvv/++iouLm3x+AEDkEXQDAGJSYWFhUIC7t/PPP1/HHnusLr/8cmVmZuqCCy7Qa6+91qgA/IADDmhU0bTevXsHPbYsSwcffHCj5zM31saNG9WlS5dav49+/frZ+2uqGVQGtG3btta86LrO07t3bzkcwR8f6jtPYwwbNkzz5s3T3Llz9dBDDykjI0O7du0K+v2vXbtW+fn56tSpkx2gB26FhYXaunWrJOnEE0/UmDFjdNddd6lDhw4666yzNGvWLJWVldV7/m3btqmkpKTWv6Ek9enTp8mvq6SkRLfffrs9175Dhw7q2LGjdu/evc+52b169dKUKVP0//7f/1OHDh00cuRIzZgxg/ncABCDmNMNAIg5v/zyi/Lz83XwwQfX2yYpKUmffPKJFi5cqHfeeUdz587VP//5T5188sn64IMP5HQ693uexszDbqi9i70F+Hy+BvUpFOo7j9mr6FpL6tChg4YPHy5JGjlypPr27aszzjhDjz/+uKZMmSKpsohap06d9Morr9R5jMC8ccuy9MYbb2jJkiX63//+p/fff1+XXXaZHn74YS1ZskSpqanN6uu+/g339sc//lGzZs3S9ddfr+zsbKWnp8uyLF1wwQX7/QLo4Ycf1qWXXqr//Oc/+uCDD3Tttddq+vTpWrJkibp27dqs1wAAaDlkugEAMeell16SpP0O+3U4HDrllFP0yCOPaNWqVbrnnnv04Ycf2sOQ6wuemmrt2rVBj40xWrduXVCl8bZt22r37t21nrt3lrgxfevRo4c2b95ca7j9Dz/8YO8PhR49emjt2rW1gsVQn0eSRo8erRNPPFH33nuvioqKJEkHHXSQduzYoWOPPVbDhw+vdTvssMOCjnH00Ufrnnvu0VdffaVXXnlFK1eu1Jw5c+o8X8eOHZWUlFTr31CS1qxZE/Q4UNxt73/HujL9b7zxhsaNG6eHH35Y5557rk499VQdd9xxdb4H6jJw4EDddttt+uSTT/Tpp5/q119/1cyZMxv0XABAdCDoBgDElA8//FB33323evXqpYsuuqjedjt37qy1bfDgwZJkDzNOSUmRVDt4aqoXX3wxKPB94403tGXLFo0aNcredtBBB2nJkiUqLy+3t7399tu1lhZrTN9OP/10+Xw+/e1vfwva/uijj8qyrKDzN8fpp5+u3Nxc/fOf/7S3eb1ePfnkk0pNTdWJJ54YkvME3HLLLdqxY4eeffZZSdLvf/97+Xw+3X333bXaer1e+3e1a9euWln7vf/t9+Z0OjVy5Ei99dZbysnJsbevXr1a77//flDbtLQ0dejQQZ988knQ9qeeeqrO4+7dlyeffLLOrHhNBQUF8nq9QdsGDhwoh8Oxz2HyAIDow/ByAEDUeu+99/TDDz/I6/UqLy9PH374oebNm6cePXrov//9rxITE+t97rRp0/TJJ59o9OjR6tGjh7Zu3aqnnnpKXbt21XHHHSepMgDOyMjQzJkz1aZNG6WkpGjYsGHq1atXk/rbrl07HXfccRo/frzy8vL02GOP6eCDDw5a1uzyyy/XG2+8odNOO02///3vtX79er388stBhc0a27czzzxTv/nNb/TnP/9ZP//8sw477DB98MEH+s9//qPrr7++1rGb6sorr9QzzzyjSy+9VMuWLVPPnj31xhtvaNGiRXrsscf2Oce+KUaNGqVDDz1UjzzyiCZOnKgTTzxRV111laZPn65vvvlGI0aMkNvt1tq1a/X666/r8ccf17nnnqsXXnhBTz31lH73u9/poIMO0p49e/Tss88qLS1Np59+er3nu+uuuzR37lwdf/zxuuaaa+wvFAYMGKDvvvsuqO3ll1+u++67T5dffrmOOOIIffLJJ/rxxx9rHfOMM87QSy+9pPT0dPXv31+LFy/W/Pnz97k0m1T55dKkSZN03nnn6ZBDDpHX69VLL70kp9OpMWPGNO0XCgCIjIjWTgcAoA6BJcMCN4/HY7Kyssypp55qHn/88aClqQL2XjJswYIF5qyzzjJdunQxHo/HdOnSxVx44YXmxx9/DHref/7zH9O/f3/jcrmCloE68cQTzYABA+rsX31Lhv3jH/8wU6dONZ06dTJJSUlm9OjRQctPBTz88MPmgAMOMAkJCebYY481X331Va1j7qtvey8ZZowxe/bsMZMnTzZdunQxbrfb9O7d2zz44IPG7/cHtdNey3AF1LeU2d7y8vLM+PHjTYcOHYzH4zEDBw6sc+msxi4ZVl/b2bNn11qe6+9//7sZOnSoSUpKMm3atDEDBw40N998s9m8ebMxxpivv/7aXHjhhaZ79+4mISHBdOrUyZxxxhnmq6++Cjq29lreyxhjPv74YzN06FDj8XjMgQceaGbOnFnrvWVM5VJgEyZMMOnp6aZNmzbm97//vdm6dWutY+7atcv+faWmppqRI0eaH374odbve+8lw3766Sdz2WWXmYMOOsgkJiaadu3amd/85jdm/vz5DfqdAgCih2VMBKumAAAAAAAQx5jTDQAAAABAmBB0AwAAAAAQJgTdAAAAAACECUE3AAAAAABhQtANAAAAAECYEHQDAAAAABAmrkh3IBr4/X5t3rxZbdq0kWVZke4OAAAAACDKGWO0Z88edenSRQ5H/flsgm5JmzdvVrdu3SLdDQAAAABAjNm0aZO6du1a736Cbklt2rSRVPnLSktLi3BvAACtRlGR1KVL5f3Nm6WUlMj2BwAANFhBQYG6detmx5P1IeiW7CHlaWlpBN0AgJbjdFbfT0sj6AYAIAbtb4oyhdQAAAAAAAgTgm4AAAAAAMIkokF3z549ZVlWrdvEiRMlSaWlpZo4caLat2+v1NRUjRkzRnl5eUHHyMnJ0ejRo5WcnKxOnTrppptuktfrjcTLAQAAAAAgSETndH/55Zfy+Xz24++//16nnnqqzjvvPEnS5MmT9c477+j1119Xenq6Jk2apHPOOUeLFi2SJPl8Po0ePVpZWVn6/PPPtWXLFl1yySVyu9269957I/KaAAAAgHDw+XyqqKiIdDeAVsPtdstZs/5KE1nGGBOC/oTE9ddfr7fffltr165VQUGBOnbsqFdffVXnnnuuJOmHH35Qv379tHjxYh199NF67733dMYZZ2jz5s3KzMyUJM2cOVO33HKLtm3bJo/H06DzFhQUKD09Xfn5+RRSAwC0nKIiKTW18n5hIYXUANTJGKPc3Fzt3r070l0BWp2MjAxlZWXVWSytoXFk1FQvLy8v18svv6wpU6bIsiwtW7ZMFRUVGj58uN2mb9++6t69ux10L168WAMHDrQDbkkaOXKkrr76aq1cuVKHH354necqKytTWVmZ/bigoCB8LwwAgPokJUkbNlTfB4A6BALuTp06KTk5eb+VkgE0nzFGxcXF2rp1qySpc+fOTT5W1ATdb731lnbv3q1LL71UUuUfF4/Ho4yMjKB2mZmZys3NtdvUDLgD+wP76jN9+nTdddddoes8AABN4XBIPXtGuhcAopjP57MD7vbt20e6O0CrklT1hfjWrVvVqVOnJg81j5rq5c8995xGjRqlLl26hP1cU6dOVX5+vn3btGlT2M8JAAAANFZgDndycnKEewK0ToH/e82ppxAVme6NGzdq/vz5evPNN+1tWVlZKi8v1+7du4Oy3Xl5ecrKyrLbfPHFF0HHClQ3D7SpS0JCghISEkL4CgAAaILycunPf668f889UgNrkQBofRhSDkRGKP7vRUWme9asWerUqZNGjx5tbxs6dKjcbrcWLFhgb1uzZo1ycnKUnZ0tScrOztaKFSvscfaSNG/ePKWlpal///4t9wIAAGiKigrpoYcqb1QkBgAgLkU86Pb7/Zo1a5bGjRsnl6s68Z6enq4JEyZoypQpWrhwoZYtW6bx48crOztbRx99tCRpxIgR6t+/vy6++GJ9++23ev/993Xbbbdp4sSJZLIBAAAARFzPnj312GOP7bONZVl66623Qnrek046Sddff/1+251wwgl69dVXG9yXn3/+WZZl6Ztvvml+J+s55kcffSTLssJasb+8vFw9e/bUV199FbZzBEQ86J4/f75ycnJ02WWX1dr36KOP6owzztCYMWN0wgknKCsrK2gIutPp1Ntvvy2n06ns7GyNHTtWl1xyiaZNm9aSLwEAAABADZdeeqksy9If/vCHWvsmTpwoy7LsAsqRNHv2bFmWJcuy5HA41LlzZ51//vnKyckJ2Tm+/PJLXXnllSE7Xij997//VV5eni644AJ725YtWzRq1KgI9ip0ZsyYoZ49eyoxMVHDhg0Lmprs8Xh044036pZbbgl7PyIedI8YMULGGB1yyCG19iUmJmrGjBnauXOnioqK9Oabb9aaq92jRw+9++67Ki4u1rZt2/TQQw8FZcwBAAAAtLxu3bppzpw5KikpsbeVlpbq1VdfVffu3SPYs2BpaWnasmWLfv31V/3rX//SmjVrdN5554Xs+B07dozaQnhPPPGExo8fL4ejOizMysqKi1HD//znPzVlyhTdcccd+vrrr3XYYYdp5MiRQVOTL7roIn322WdauXJlWPsS8aAbAAAAQPwZMmSIunXrFjRS9c0331T37t11+OGHB7X1+/2aPn26evXqpaSkJB122GF644037P0+n08TJkyw9/fp00ePP/540DEuvfRSnX322XrooYfUuXNntW/fXhMnTtxv1WnLspSVlaXOnTvrmGOO0YQJE/TFF1+ooKDAbvOf//xHQ4YMUWJiog488EDddddd8nq9kirXc77zzjvVvXt3JSQkqEuXLrr22mvt5+49vHzt2rU64YQTlJiYqP79+2vevHlB/alraPU333wjy7L0888/S5J27NihCy+8UAcccICSk5M1cOBA/eMf/9jn69zbtm3b9OGHH+rMM8+s9fuoObz8iy++0OGHH67ExEQdccQRWr58ea1jff/99xo1apRSU1OVmZmpiy++WNu3b7f3z507V8cdd5wyMjLUvn17nXHGGVq/fn2D+llUVKS0tLSg94NUueR0SkqK9uzZU+fzHnnkEV1xxRUaP368+vfvr5kzZyo5OVnPP/+83aZt27Y69thjNWfOnAb1pakIugEAAIBYU1RU/620tOFta2Sh99m2iS677DLNmjXLfvz8889r/PjxtdpNnz5dL774ombOnKmVK1dq8uTJGjt2rD7++GNJlUF5165d9frrr2vVqlW6/fbb9ac//UmvvfZa0HEWLlyo9evXa+HChXrhhRc0e/ZszZ49u8H93bp1q/7973/L6XTaazJ/+umnuuSSS3Tddddp1apVeuaZZzR79mzdc889kqR//etfevTRR/XMM89o7dq1euuttzRw4MA6j+/3+3XOOefI4/Fo6dKlmjlzZpOGN5eWlmro0KF655139P333+vKK6/UxRdfXGtlp3357LPPlJycrH79+tXbprCwUGeccYb69++vZcuW6c4779SNN94Y1Gb37t06+eSTdfjhh+urr77S3LlzlZeXp9///vd2m6KiIk2ZMkVfffWVFixYIIfDod/97nfy+/377WdKSoouuOCCoPeRVFmM+9xzz1WbNm1qPae8vFzLli3T8OHD7W0Oh0PDhw/X4sWLg9oeddRR+vTTT/fbj+ZgHDYAAAAQa1JT6993+unSO+9UP+7USSourrvtiSdKH31U/bhnT6lGhtJmTFN6qbFjx2rq1KnauHGjJGnRokWaM2eOPqpxzrKyMt17772aP3++vUrRgQceqM8++0zPPPOMTjzxRLndbt111132c3r16qXFixfrtddeCwru2rZtq7/97W9yOp3q27evRo8erQULFuiKK66ot4/5+flKTU2VMUbFVb+na6+9VikpKZKku+66S7feeqvGjRtn9+3uu+/WzTffrDvuuEM5OTnKysrS8OHD5Xa71b17dx111FF1nmv+/Pn64Ycf9P7776tLly6SpHvvvbfRc6gPOOCAoOD3j3/8o95//3299tpr9Z57bxs3blRmZmbQ0PK9vfrqq/L7/XruueeUmJioAQMG6JdfftHVV19tt/nb3/6mww8/XPfee6+97fnnn1e3bt30448/6pBDDtGYMWOCjvv888+rY8eOWrVqlQ499ND99vXyyy/XMcccoy1btqhz587aunWr3n33Xc2fP7/O9tu3b5fP51NmZmbQ9szMTP3www9B27p06WK/P8OFoBsAgEhJSpK+/776PgDEmY4dO2r06NGaPXu2jDEaPXq0OnToENRm3bp1Ki4u1qmnnhq0vby8PGgY+owZM/T8888rJydHJSUlKi8v1+DBg4OeM2DAADtDLUmdO3fWihUr9tnHNm3a6Ouvv1ZFRYXee+89vfLKK3YWW5K+/fZbLVq0KGibz+dTaWmpiouLdd555+mxxx7TgQceqNNOO02nn366zjzzzDrrTK1evVrdunWzA25J9hcNjeHz+XTvvffqtdde06+//qry8nKVlZU1au54SUmJEhMT99lm9erVGjRoUFC7vfv77bffauHChUqt44ug9evX65BDDtHatWt1++23a+nSpdq+fbud4c7JyWlQ0H3UUUdpwIABeuGFF3Trrbfq5ZdfVo8ePXTCCSc05KXuU1JSkv1lS7gQdAMAECkOhzRgQKR7ASAWFRbWv69G0ClJqlE4qpa9s5xVc4ZD6bLLLtOkSZMkVQbOeyusei3vvPOODjjggKB9gYJec+bM0Y033qiHH35Y2dnZatOmjR588EEtXbo0qL3b7Q56bFnWfocwOxwOHXzwwZKkfv36af369br66qv10ksv2f276667dM4559R6bmJiorp166Y1a9Zo/vz5mjdvnq655ho9+OCD+vjjj2v1pyECmWdTY3TB3vPSH3zwQT3++ON67LHHNHDgQKWkpOj6669XeXl5g8/ToUMH7dq1q9H921thYaHOPPNM3X///bX2de7cWZJ05plnqkePHnr22WfVpUsX+f1+HXrooY3q7+WXX64ZM2bo1ltv1axZszR+/HhZllVn2w4dOsjpdCovLy9oe15eXq3C3Dt37lTHjh0b3I+mIOgGAAAAYk3V0OeItm2g0047TeXl5bIsSyNHjqy1v3///kpISFBOTo5OPPHEOo+xaNEiHXPMMbrmmmvsbQ0txNVYt956qw466CBNnjxZQ4YM0ZAhQ7RmzRo7MK9LUlKSzjzzTJ155pmaOHGi+vbtqxUrVmjIkCFB7fr166dNmzbZw6QlacmSJUFtAgHgli1b1LZtW0mqtSb2okWLdNZZZ2ns2LGSKueK//jjj+rfv3+DX+fhhx+u3Nxc7dq1yz7P3vr166eXXnpJpaWldrZ77/4OGTJE//rXv9SzZ886s/s7duzQmjVr9Oyzz+r444+XVDmfvLHGjh2rm2++WU888YRWrVplD/evi8fj0dChQ7VgwQKdffbZkip/RwsWLLC/AAr4/vvvaxX2CzUKqQEAECnl5dKdd1beGvFtPwDEEqfTqdWrV2vVqlVBQ78D2rRpoxtvvFGTJ0/WCy+8oPXr1+vrr7/Wk08+qRdeeEGS1Lt3b3311Vd6//339eOPP+ovf/mLvvzyy7D0t1u3bvrd736n22+/XZJ0++2368UXX9Rdd92llStXavXq1ZozZ45uu+02SZVrfT/33HP6/vvv9dNPP+nll19WUlKSevToUevYw4cP1yGHHKJx48bp22+/1aeffqo///nPQW0OPvhgdevWTXfeeafWrl2rd955Rw8//HBQm969e2vevHn6/PPPtXr1al111VW1srr7c/jhh6tDhw5atGhRvW3+7//+T5Zl6YorrtCqVav07rvv6qGHHgpqM3HiRO3cuVMXXnihvvzyS61fv17vv/++xo8fL5/Pp7Zt26p9+/b6+9//rnXr1unDDz/UlClTGtVXqXK+/jnnnKObbrpJI0aMUNeuXffZfsqUKXr22Wf1wgsvaPXq1br66qtVVFRUq5Dfp59+qhEjRjS6P41B0A0AQJj4jNEnm4v0U0E9AXVFhXTXXZW3/SxpAwCxLC0tTWlpafXuv/vuu/WXv/xF06dPV79+/XTaaafpnXfeUa9evSRJV111lc455xydf/75GjZsmHbs2BGU9Q61yZMn65133tEXX3yhkSNH6u2339YHH3ygI488UkcffbQeffRRO6jOyMjQs88+q2OPPVaDBg3S/Pnz9b///U/t27evdVyHw6F///vfKikp0VFHHaXLL788aK64VDlE/h//+Id++OEHDRo0SPfff7/++te/BrW57bbbNGTIEI0cOVInnXSSsrKy7IxuQzmdTo0fP16vvPJKvW1SU1P1v//9TytWrNDhhx+uP//5z7WGkXfp0kWLFi2Sz+fTiBEjNHDgQF1//fXKyMiQw+GQw+HQnDlztGzZMh166KGaPHmyHnzwwUb1NWDChAkqLy/XZZddtt+2559/vh566CHdfvvtGjx4sL755hvNnTs3qLja4sWLlZ+fr3PPPbdJ/Wkoy5gmliKMIwUFBUpPT1d+fv4+/xgAANAY3+8s1dsbC9U+wakr+tcxdK+oqLoCcWFhWIZ1AohtpaWl2rBhg3r16rXfoldAY+Xm5mrAgAH6+uuv68zMR5uXXnpJkydP1ubNm+XxeJp9vPPPP1+HHXaY/vSnP9XbZl//BxsaR5LpBgAgTH7YVZnhLqjwie+4AQDRJisrS88995xycnIi3ZV9Ki4u1vr163XffffpqquuCknAXV5eroEDB2ry5Mkh6OG+EXQDABAGpT6/NuypDLor/FK5n6AbABB9zj77bLvAWbR64IEH1LdvX2VlZWnq1KkhOabH49Ftt92mpBZYspOgGwCAMFiXXy5fjTi7sGLfS9YAAIC63XnnnaqoqNCCBQvqXA882hF0AwAQBoGh5QEE3QAAtE4E3QAAhFjNoeVt3JWXWoJuAABap9qrlwMAgGYJDC1vn+hUVpJLK3eV1R10JyZKX3xRfR8A6uH388UdEAmh+L9H0A0AQIgFhpb3zfDIW3Wt3lNX0O10Skce2YI9AxBrPB6PHA6HNm/erI4dO8rj8ciyrEh3C4h7xhiVl5dr27ZtcjgczaqYTtANAEAI1Rxa3jcjQT/vqZAkFTG8HEATOBwO9erVS1u2bNHmzZsj3R2g1UlOTlb37t3lcDR9ZjZBNwAAIVRzaHnHJJe2l/ok1ZPpLi+XHn+88v5110khWHcUQPzxeDzq3r27vF6vfD5fpLsDtBpOp1Mul6vZo0sIugEACKHVu8okVQ4tl6TUfRVSq6iQbr658v411xB0A6iXZVlyu91yu92R7gqARqJ6OQAAIVLq89vDyftmJEgKrl5ujKn3uQAAID4RdAMAECI/5VcEDS2XpJSqoNtrpDIfQTcAAK0NQTcAACGSX14517JLcvXsLbfDUoKzci5YoZdiagAAtDYE3QAAhEhpVSY70RlccKXNvuZ1AwCAuEbQDQBAiJT6KoPqRFfw5XWfxdQAAEBcI+gGACBE6st0p7gIugEAaK1YMgwAgBAp9e57eHmttboTE6WFC6vvAwCAuEPQDQBAiASqkyc46x5eXrR30O10Sied1BJdAwAAEcLwcgAAQsSe071Xpps53QAAtF5kugEACBF7Trer7qC71vDyigrp73+vvH/llZLbHfY+AgCAlkXQDQBACBhj7OHlifUMLy+s8MsYI8uqCsrLy6VJkyrvX3opQTcAAHGI4eUAAIRAmd/IVN2vb3i5z1TP+wYAAK0DQTcAACEQCKadluRyBAfdLodlB+K1hpgDAIC4RtANAEAI1LdcWEAbiqkBANAqEXQDABACduVyV92XViqYAwDQOhF0AwAQAnbl8noy3SkE3QAAtEoE3QAAhMD+gm57eLmXoBsAgNaEJcMAAAiBQCG1BGcjhpcnJEhvv119HwAAxB2CbgAAQqC0KoNdX6a7zqDb5ZJGjw573wAAQOQwvBwAgBDY3/DyQNDNkmEAALQuZLoBAAiB6uHl+w66iyr8MsbIsiypokJ65ZXKBhddJLndLdJXAADQcgi6AQAIgf0tGZZStd1nKrPiSS5LKi+Xxo+vbHDeeQTdAADEIYaXAwAQAvsbXu5yWJWBthhiDgBAa0LQDQBACOwv6JakVBdrdQMA0NoQdAMAEALV1cvrv7TWWcEcAADENYJuAABCYH+F1CSCbgAAWiOCbgAAmsnrN/JWxtxKdNUfdLch6AYAoNUh6AYAoJkC87klKcFBphsAAFRjyTAAAJrJXi7MaVWuv12PWkF3QoL02mvV9wEAQNwh6AYAoJnKGlC5XKoj6Ha5KtfnBgAAcYvh5QAANFOpd/9F1KTgoNsYs8+2AAAgPpDpBgCgmaqHlwd/l52Tk6Pt27fbj72yJKub/JK+XP6NXN4KZSxcKEna/ZvfVGa+99KhQwd17949fJ0HAABhRdANAEAzBQqp1axcnpOTo379+qm4uDio7T1f5srhdGr4yFHybc9TUdX2FEnBLSslJydr9erVBN4AAMQogm4AAJqptI453du3b1dxcbFu+9tz6nFwH3v7Dksykh74x3+VWFQgnX2qJGnGW/PkTUwKOu7GdWv010kTtH37doJuAABiFEE3AADNVF1IrXaplB4H91GfQYPtx19uLVW536j7If2UXlFib+996CD5k1PC3lcAANCyKKQGAEAzlXor53Tvr5CaJLmqrrw+P4XUAABoDQi6AQBoprqGl9cn0MRHzA0AQKtA0A0AQDNVF1Lb/2XVaVVG3T6WDAMAoFUg6AYAoJmqlwxrRKbbH84eAQCAaEEhNQAAmqmsMcPLHdWZbuPxaM2jMyVJxu0JXwcBAEDEEHQDANBMgeHlDSmkVnNOt3G7tfX8seHsGgAAiLCIDy//9ddfNXbsWLVv315JSUkaOHCgvvrqK3u/MUa33367OnfurKSkJA0fPlxr164NOsbOnTt10UUXKS0tTRkZGZowYYIKCwtb+qUAAFohvzH7XDJsb4E53V7mdAMA0CpENOjetWuXjj32WLndbr333ntatWqVHn74YbVt29Zu88ADD+iJJ57QzJkztXTpUqWkpGjkyJEqLS2121x00UVauXKl5s2bp7fffluffPKJrrzyyki8JABAK1Neowx5w4aXV/70+SV5vWo7f67azp8reb1h6iEAAIikiA4vv//++9WtWzfNmjXL3tarVy/7vjFGjz32mG677TadddZZkqQXX3xRmZmZeuutt3TBBRdo9erVmjt3rr788ksdccQRkqQnn3xSp59+uh566CF16dKlZV8UAKBVCQwtdzuq52vvS83q5Y7yMh16ybmSpEXr8uR3MesLAIB4E9FM93//+18dccQROu+889SpUycdfvjhevbZZ+39GzZsUG5uroYPH25vS09P17Bhw7R48WJJ0uLFi5WRkWEH3JI0fPhwORwOLV26tM7zlpWVqaCgIOgGAEBTlDZiaLkkuVinGwCAViWiQfdPP/2kp59+Wr1799b777+vq6++Wtdee61eeOEFSVJubq4kKTMzM+h5mZmZ9r7c3Fx16tQpaL/L5VK7du3sNnubPn260tPT7Vu3bt1C/dIAAK1EYLmwhhRRk1inGwCA1iaiQbff79eQIUN077336vDDD9eVV16pK664QjNnzgzreadOnar8/Hz7tmnTprCeDwAQv0q9DV8uTNprTjcAAIh7EQ26O3furP79+wdt69evn3JyciRJWVlZkqS8vLygNnl5efa+rKwsbd26NWi/1+vVzp077TZ7S0hIUFpaWtANAICmaEzlcolMNwAArU1Eg+5jjz1Wa9asCdr2448/qkePHpIqi6plZWVpwYIF9v6CggItXbpU2dnZkqTs7Gzt3r1by5Yts9t8+OGH8vv9GjZsWAu8CgBAa9b44eWVP5nTDQBA6xDRMqmTJ0/WMccco3vvvVe///3v9cUXX+jvf/+7/v73v0uSLMvS9ddfr7/+9a/q3bu3evXqpb/85S/q0qWLzj77bEmVmfHTTjvNHpZeUVGhSZMm6YILLqByOQAg7OxCaq7GzumuXKUDAADEt4gG3UceeaT+/e9/a+rUqZo2bZp69eqlxx57TBdddJHd5uabb1ZRUZGuvPJK7d69W8cdd5zmzp2rxMREu80rr7yiSZMm6ZRTTpHD4dCYMWP0xBNPROIlAQBamerq5Y2b0y1JXpdH6+55WJJk3J6Q9w0AAERexBcEPeOMM3TGGWfUu9+yLE2bNk3Tpk2rt027du306quvhqN7AADsU6m3cnh5Q+d0OyRZkowkr8utLeOvClvfAABA5EV0TjcAALGurJGZbsuyaszrZng5AADxLuKZbgAAYllgeHlDC6lJlfO6vcbIV+FT+hefSZLyhx0rOZ1h6SMAAIgcgm4AAJqhupBawwePOR2S/JJKSzTo3NMlSYvW5cmfnBKGHgIAgEhieDkAAM0QWDKsocPLpeAK5gAAIL4RdAMA0ETGmEZXL5fEnG4AAFoRgm4AAJrIayR/Vdzc0OrlkuR0VGW6/eHoFQAAiCYE3QAANFFguTBLkrsRV9RApttLphsAgLhH0A0AQBNVF1GzZFmNH17uJ+YGACDuEXQDANBETZnPLUkuu5AaUTcAAPGOJcMAAGii6srljfsOO9C8wuHWT7f9VZJkXO6Q9g0AAEQHgm4AAJqorImZ7sCSYRVut3695vpQdwsAAEQRhpcDANBEpd7KoDuh0UF35U/W6QYAIP6R6QYAoImq53Q3cnh5VabbX+FV6jffS5IKBw6WnM6Q9g8AAEQeQTcAAE1UPae7kZnuqhjdlJbq8NNPlCQtWpcnf3JKSPsHAAAij+HlAAA0UWBOd+OHl1dVLxfjywEAiHcE3QAANFFF1ULb7ibO6WadbgAA4h9BNwAATWQH3Y5GrtNd1Z6gGwCA+EfQDQBAE5VXRc2eRgbdjUyMAwCAGEbQDQBAE1VU1lFrdKbbYVki7gYAoHUg6AYAoImqh5c3/rlkuwEAaB1YMgwAgCaq8DVteLkkOR2WKlxurb3uVnmclozLHeruAQCAKEDQDQBAEzW1kJpUmekuc3v0w/VTlZHgDHXXAABAlGB4OQAATVTexCXDpOq1ur1UMAcAIK6R6QYAoA45OTnavn17vfuNJJ/VXZK0+vsV8sgftH/16tX7PL7LkuT3K+WHVUpOcqq4d1/JwXfhAADEG4JuAAD2kpOTo379+qm4uLjeNgkpqbrz0w2SpOOzj5a3vKzOdoWFhXVudzgsuctKNOL0bEnSonV58ienNLPnAAAg2hB0AwCwl+3bt6u4uFi3/e059Ti4T51t/A6ndkqSMXrqvwtqLQG2ZOEHeu7+aSotLa3z+S6qlwMA0CoQdAMAUI8eB/dRn0GD69xX4vVr5/YyOR2W+tbRZuPaNfs8dmBONwAAiG9MHgMAoAmqaqipCYXLJbFONwAArQVBNwAATeAzlVF3UzPWTq7AAAC0ClzyAQBoAl9VprupGWuGlwMA0DoQdAMA0ATVw8ubmOkm5gYAoFWgkBoAAE1QPby8ac93Oiz5XG59PW6iOiW5ZFzuEPYOAABEC4JuAACaoLmF1FyW5Hd79MmUuzS0Y2LoOgYAAKIKw8sBAGiCZhdSq3pe4DgAACA+EXQDANAEvlAsGeb3K+XXHCVs2ij5/SHrGwAAiB4MLwcAoAn8dvXypi4ZZsldVqI/jB4qSVq0Lk/+5JRQdQ8AAEQJMt0AADRBYFh4szLdAAAg7hF0AwDQBP5mrtPtsCwRdwMAEP8IugEAaAJfM4eXVz43RJ0BAABRi6AbAIAm8PubN7xcal7ADgAAYgNBNwAATeBr5vDy5j4XAADEBoJuAACawC6k1oxUN5luAADiH0uGAQDQBM0tpCZJlselZeeNV7rHKePkkgwAQDziCg8AQBMEhpc7mpGtthISNW/qA+rVxq0uCVySAQCIRwwvBwCgCfxVw8tDMac7MFQdAADEH4JuAACaICSF1CQl7dou147tEoE3AABxibFsAAA0kjFGgRC5OcPLPWXFuu6UfpKkRevy5E9OCUHvAABANCHTDQBAI/lqJKWbN7yc6uUAAMQ7gm4AABqpZtDdnLDZRcwNAEDcI+gGAKCRahZRs5qRrW5OlhwAAMQGgm4AABqpermw5h3H2dwDAACAqEfQDQBAI1VnupsXNJPpBgAg/hF0AwDQSKFYLqzy+UTdAADEO5YMAwCgkfz28PLmBc2W26UVZ54vSTJOLskAAMQjrvAAADSSr0YhteZwJCbqnbv+JknK9ngYfgYAQBzi+g4AQCOFrJBajefXXIYMAADEDzLdAAA0UqgKqTkkJZQUyS/J5/fI7XA2v3MAACCqEHQDANBIocp0O0qKNfnYnpKkeau3SOltmndAAAAQdRheDgBAI/nt6uWhqz4emCcOAADiS0SD7jvvvFOWZQXd+vbta+8vLS3VxIkT1b59e6WmpmrMmDHKy8sLOkZOTo5Gjx6t5ORkderUSTfddJO8Xm9LvxQAQCsSqkJqNfmJuQEAiEsRH14+YMAAzZ8/337sclV3afLkyXrnnXf0+uuvKz09XZMmTdI555yjRYsWSZJ8Pp9Gjx6trKwsff7559qyZYsuueQSud1u3XvvvS3+WgAArYPfX/mzucPLa6KQGgAA8SniQbfL5VJWVlat7fn5+Xruuef06quv6uSTT5YkzZo1S/369dOSJUt09NFH64MPPtCqVas0f/58ZWZmavDgwbr77rt1yy236M4775TH42nplwMAaAV8ISqkVtcxAQBAfIn4nO61a9eqS5cuOvDAA3XRRRcpJydHkrRs2TJVVFRo+PDhdtu+ffuqe/fuWrx4sSRp8eLFGjhwoDIzM+02I0eOVEFBgVauXNmyLwQA0GqEqpBaTQwvBwAgPkU00z1s2DDNnj1bffr00ZYtW3TXXXfp+OOP1/fff6/c3Fx5PB5lZGQEPSczM1O5ubmSpNzc3KCAO7A/sK8+ZWVlKisrsx8XFBSE6BUBAFoDu5BaCKNuMt0AAMSniAbdo0aNsu8PGjRIw4YNU48ePfTaa68pKSkpbOedPn267rrrrrAdHwAQ30JVSM04nPp55G9V6jPyskY3AABxKeLDy2vKyMjQIYcconXr1ikrK0vl5eXavXt3UJu8vDx7DnhWVlatauaBx3XNEw+YOnWq8vPz7dumTZtC+0IAAHHNH6Lh5SYxUZ88/oLeeuB5eT2Jze8YAACIOlEVdBcWFmr9+vXq3Lmzhg4dKrfbrQULFtj716xZo5ycHGVnZ0uSsrOztWLFCm3dutVuM2/ePKWlpal///71nichIUFpaWlBNwAAGsoXwnW6A9lyH5O6AQCISxEdXn7jjTfqzDPPVI8ePbR582bdcccdcjqduvDCC5Wenq4JEyZoypQpateundLS0vTHP/5R2dnZOvrooyVJI0aMUP/+/XXxxRfrgQceUG5urm677TZNnDhRCQkJkXxpAIA4FhheHoop3U5H4JjNPxYAAIg+EQ26f/nlF1144YXasWOHOnbsqOOOO05LlixRx44dJUmPPvqoHA6HxowZo7KyMo0cOVJPPfWU/Xyn06m3335bV199tbKzs5WSkqJx48Zp2rRpkXpJAIBWwC6k1syg21FcpAt6VxYAnfVljpTRrpk9AwAA0SaiQfecOXP2uT8xMVEzZszQjBkz6m3To0cPvfvuu6HuGgAAdfIbo0BS2hHSdbpDdigAABBFompONwAA0a7m1OvmZrprIugGACA+EXQDANAIgeDYUqgz3UTdAADEI4JuAAAawR/CImrBxw3t8QAAQHQg6AYAoBF8ISqiVuu4IuoGACAeEXQDANAI1cuFhTbqJtMNAEB8imj1cgAAYk2olguTJONwavvJI7S73C+v5ZQxRlaIg3kAABBZBN0AADRC9fDy5gfHJjFR37/4Ly3ZWiqpMqAP9bB1AAAQWQwvBwCgEUJdSK3mcVg2DACA+EPQDQBAI4S6kJplWXbg7WfZMAAA4g5BNwAAjRDKQmqO4iIdc1AnTc7uIXdJEZluAADiEHO6AQBoBL+/8meoMt3OkmI5q+77yHQDABB3yHQDANAIgWx0qJcMk1g2DACAeETQDQBAIwTmXYejyjjDywEAiD8E3QAANIKd6Q7DFZTh5QAAxB+CbgAAGqE60x36VDeZbgAA4g9BNwAAjRDqJcNqYskwAADiD9XLAQBoBH8oC6lZDu3OPk6lXiNjOeTzN/+QAAAguhB0AwDQCL4QFlLzJyVpxb/m6uc9FfIWeRleDgBAHGJ4OQAAjVC9ZFjojhk4FsPLAQCIPwTdAAA0QjgKqQWy5mS6AQCIPwTdAAA0Qigz3Y7iIh19aA/97qiD5S4pYskwAADiEHO6AQBoBL9dvTw0mW73zh21jg0AAOIHmW4AABrIb4wCcXE4lgxjeDkAAPGHoBsAgAaqmYkOZSG1AIaXAwAQfwi6AQBooEAm2lKI1uneC8PLAQCIPwTdAAA0UCATHY4sd83jAwCA+EHQDQBAA1UXUQvP8ZnTDQBA/KF6OQAADVSd6Q5R1G05tOewITKSjOWQ30jGGFlhGLoOAAAig6AbAIAGCnWm25+UpG/e+0Q+Y+TNK7XPEa5MOgAAaHkMLwcAoIF8IV6jO6DmxZgh5gAAxBeCbgAAGsgfpkJqlmXZ2W2KqQEAEF8IugEAaCCfv/JnqIZ/O4qLdeRR/XXkUf3lKS2WxLJhAADEG+Z0AwDQQCEvpCajxF9yJEnOvc4BAADiA5luAAAaKJxLhlUPLw/9sQEAQOQQdAMA0ECBgDh0me5qgWMyvBwAgPhC0A0AQAMFCqk5w3D1pJAaAADxiaAbAIAG8jG8HAAANBJBNwAADRT6QmrVAsck0w0AQHyhejkAAA0U+kJqlooO6StJcjgtyUh+f6iODQAAogFBNwAADRTqQmr+5GR9/dFXlQ/2VEhFXoaXAwAQZxheDgBAA9mF1MIwp9tBITUAAOISQTcAAA1UnekO/bEDgTxLhgEAEF8IugEAaKDqTHdoom5HcbGGnHSEhpx0hDylJZLIdAMAEG+Y0w0AQAOFPtNtlPLjD5XHlAk6BwAAiA9kugEAaKDQVy+vFsie+8l0AwAQVwi6AQBoAL8xCoTD4Vin22kXUgv5oQEAQAQRdAMA0AA1C5yFM9NN0A0AQHwh6AYAoAFqBsNhiLnteeIMLwcAIL4QdAMA0AA11+i2wjC83F6n2x/yQwMAgAiiejkAAA0QnjW6LZV27S5Jcjorvwf3SzLGhCWwBwAALY+gGwCABgj1Gt2S5E9O1pdfrKp8YIy0p1RSZYDvIuYGACAuMLwcAIAG8Icl012t5gXZz7RuAADiBkE3AAAN4AvjGt1S5Tzx6mXDiLoBAIgXBN0AADRAIBAO5RrdjpISDR51ggaPOkGOkpLqYmrE3AAAxA3mdAMA0AD+cGS6jV9tvv3avu+0nKqQYdkwAADiCJluAAAaoHpOd/gqnDnJdAMAEHcIugEAaIDq4eXhO0egMjpBNwAA8YOgGwCABgjL8PK9BAJ6hpcDABA/CLoBAGgAXxjW6d6bPbzcH7ZTAACAFkbQDQBAA4R7nW6p5vByMt0AAMSLqAm677vvPlmWpeuvv97eVlpaqokTJ6p9+/ZKTU3VmDFjlJeXF/S8nJwcjR49WsnJyerUqZNuuukmeb3eFu49ACDeVa/THdqou6Jde1W0ay9JcjiCzwUAAGJfVCwZ9uWXX+qZZ57RoEGDgrZPnjxZ77zzjl5//XWlp6dr0qRJOuecc7Ro0SJJks/n0+jRo5WVlaXPP/9cW7Zs0SWXXCK326177703Ei8FABCn/GEopOZPTtGS7zfaj517KoLOBQAAYl+TMt0//fRTyDpQWFioiy66SM8++6zatm1rb8/Pz9dzzz2nRx55RCeffLKGDh2qWbNm6fPPP9eSJUskSR988IFWrVqll19+WYMHD9aoUaN09913a8aMGSovLw9ZHwEA8LXI8PLgcwEAgNjXpKD74IMP1m9+8xu9/PLLKi0tbVYHJk6cqNGjR2v48OFB25ctW6aKioqg7X379lX37t21ePFiSdLixYs1cOBAZWZm2m1GjhypgoICrVy5sln9AgCgJn8LFFJzsGQYAABxp0lB99dff61BgwZpypQpysrK0lVXXaUvvvii0ceZM2eOvv76a02fPr3WvtzcXHk8HmVkZARtz8zMVG5urt2mZsAd2B/YV5+ysjIVFBQE3QAA2BdfGJYMc5SUaOCY0zRwzGlylJTYx2Z4OQAA8aNJQffgwYP1+OOPa/PmzXr++ee1ZcsWHXfccTr00EP1yCOPaNu2bfs9xqZNm3TdddfplVdeUWJiYlO60WTTp09Xenq6fevWrVuLnh8AEHvCUr3c+JWx+DNlLP5MMn6GlwMAEIeaVb3c5XLpnHPO0euvv677779f69at04033qhu3brpkksu0ZYtW+p97rJly7R161YNGTJELpdLLpdLH3/8sZ544gm5XC5lZmaqvLxcu3fvDnpeXl6esrKyJElZWVm1qpkHHgfa1GXq1KnKz8+3b5s2bWribwAA0Fr47EJqLTG8nKgbAIB40ayg+6uvvtI111yjzp0765FHHtGNN96o9evXa968edq8ebPOOuusep97yimnaMWKFfrmm2/s2xFHHKGLLrrIvu92u7VgwQL7OWvWrFFOTo6ys7MlSdnZ2VqxYoW2bt1qt5k3b57S0tLUv3//es+dkJCgtLS0oBsAAPviD8Pw8r1VDy8P3zkAAEDLatKSYY888ohmzZqlNWvW6PTTT9eLL76o008/XY6qBUZ79eql2bNnq2fPnvUeo02bNjr00EODtqWkpKh9+/b29gkTJmjKlClq166d0tLS9Mc//lHZ2dk6+uijJUkjRoxQ//79dfHFF+uBBx5Qbm6ubrvtNk2cOFEJCQlNeWkAANRijKlRvTx8UXegSJvPH7ZTAACAFtakoPvpp5/WZZddpksvvVSdO3eus02nTp303HPPNatzjz76qBwOh8aMGaOysjKNHDlSTz31lL3f6XTq7bff1tVXX63s7GylpKRo3LhxmjZtWrPOCwBATTUTzy2R6WZ4OQAA8aNJQffatWv328bj8WjcuHGNOu5HH30U9DgxMVEzZszQjBkz6n1Ojx499O677zbqPAAANEbNwmbhXKe7asAYw8sBAIgjTZrTPWvWLL3++uu1tr/++ut64YUXmt0pAACiSWAJL0uhH17uS0qWLylZUvXwcr8qh7QDAIDY16Sge/r06erQoUOt7Z06ddK9997b7E4BABBNfOFYLkySPzlFn6/fqs/Xb5U/OSVo6DrLhgEAEB+aFHTn5OSoV69etbb36NFDOTk5ze4UAADRpCUql0uVmfQAgm4AAOJDk4LuTp066bvvvqu1/dtvv1X79u2b3SkAAKJJS6zRLUmWZdVYNoyoGwCAeNCkoPvCCy/Utddeq4ULF8rn88nn8+nDDz/UddddpwsuuCDUfQQAIKLClem2Sks14OIxGnDxGFmlpUHnINMNAEB8aFL18rvvvls///yzTjnlFLlclYfw+/265JJLmNMNAIg74Vqj2/L71G7B+/Z9Y5/DsGwYAABxoklBt8fj0T//+U/dfffd+vbbb5WUlKSBAweqR48eoe4fAAARFxjqHe453TXPwbJhAADEhyYF3QGHHHKIDjnkkFD1BQCAqBSu6uV1cdqZ7vCfCwAAhF+Tgm6fz6fZs2drwYIF2rp1q/x+f9D+Dz/8MCSdAwAgGlRnusMfddtzukl1AwAQF5oUdF933XWaPXu2Ro8erUMPPVRWC3wIAQAgUloy0+2oOgmZbgAA4kOTgu45c+botdde0+mnnx7q/gAAEHVaap3umuegkBoAAPGhSUuGeTweHXzwwaHuCwAAUcnfQut0SywZBgBAvGlS0H3DDTfo8ccfl+FbeABAK+ALU6bbn5yiTzcX6tPNhfInp1SdIzC8nGssAADxoEnDyz/77DMtXLhQ7733ngYMGCC32x20/8033wxJ5wAAiAbhWqe7LtWF1MJ+KgAA0AKaFHRnZGTod7/7Xaj7AgBAVGrRdbod1ZnuJg1HAwAAUaVJQfesWbNC3Q8AAKKWP0zVy63SUvW59nJJ0pon/p9MYmLQnG6CbgAAYl+Tr+der1fz58/XM888oz179kiSNm/erMLCwpB1DgCAaOALUyE1y+9Tx7ffUse335Ll90liTjcAAPGmSZnujRs36rTTTlNOTo7Kysp06qmnqk2bNrr//vtVVlammTNnhrqfAABETGSWDAv/uQAAQPg1KdN93XXX6YgjjtCuXbuUlJRkb//d736nBQsWhKxzAABEg+rq5S1RSK3yHH4KqQEAEBealOn+9NNP9fnnn8vj8QRt79mzp3799deQdAwAgGhRvU53+M/lrPo6nOHlAADEhyZluv1+v3w+X63tv/zyi9q0adPsTgEAEE18YSqkVpfqOd0SYTcAALGvSUH3iBEj9Nhjj9mPLctSYWGh7rjjDp1++umh6hsAABFnjKkxp7vl1umuPGULRPkAACCsmjS8/OGHH9bIkSPVv39/lZaW6v/+7/+0du1adejQQf/4xz9C3UcAACKm5tTqlsl0V983FouGAQAQ65oUdHft2lXffvut5syZo++++06FhYWaMGGCLrrooqDCagAAxDp/jTHeoa5e7k9K1qJ1efZ9qXL0mEOVwT5BNwAAsa9JQbckuVwujR07NpR9AQAg6gQKmlmqDIhDyrLkT06ptdnpqKxeTtANAEDsa1LQ/eKLL+5z/yWXXNKkzgAAEG1aco3uAKdlqUJGxkHQDQBArGtS0H3dddcFPa6oqFBxcbE8Ho+Sk5MJugEAcaO6cnnoo26rrEy9b7lWkrT2/idkEhIk1Sim1gKF2wAAQHg16Sv0Xbt2Bd0KCwu1Zs0aHXfccRRSAwDElcAa3eHIdFs+rzJfe0WZr70iy+e1tweqpDO8HACA2Beyq3nv3r1133331cqCAwAQy1pyje4AZ9XVmaAbAIDYF9Krucvl0ubNm0N5SAAAIqol1+gOcJDpBgAgbjRpTvd///vfoMfGGG3ZskV/+9vfdOyxx4akYwAARANfVdTdoplue043QTcAALGuSUH32WefHfTYsix17NhRJ598sh5++OFQ9AsAgKjgr/rZstXLK38SdAMAEPuaFHT7/f79NwIAIA4E1ukOR/Xy+lBIDQCA+MHVHACAfQh8z9yimW4KqQEAEDealOmeMmVKg9s+8sgjTTkFAABRIZzrdPuTkrVkxQb7foCd6XYQdAMAEOuaFHQvX75cy5cvV0VFhfr06SNJ+vHHH+V0OjVkyBC7ndWCQ/EAAAgHv8K3TrcsSxXtO9bazJxuAADiR5OC7jPPPFNt2rTRCy+8oLZt20qSdu3apfHjx+v444/XDTfcENJOAgAQKYHh5S1bvZw53QAAxIsmXc0ffvhhTZ8+3Q64Jalt27b661//SvVyAEBcCRRSC8c63VZZmQ6aOlkHTZ0sq6zM3k6mGwCA+NGkq3lBQYG2bdtWa/u2bdu0Z8+eZncKAIBo4bfndIf+2JbPqy4vPKsuLzwry+e1tzsdZLoBAIgXTbqa/+53v9P48eP15ptv6pdfftEvv/yif/3rX5owYYLOOeecUPcRAICICRRSY51uAADQFE2a0z1z5kzdeOON+r//+z9VVFRUHsjl0oQJE/Tggw+GtIMAAESSn3W6AQBAMzQp6E5OTtZTTz2lBx98UOvXr5ckHXTQQUpJSQlp5wAAiDRfGIeX18fOqluWXAmJLXdiAAAQcs36Cn3Lli3asmWLevfurZSUFJmqbAAAAPHCbw8vb8lMd/X9hCS+0AYAIJY1KejesWOHTjnlFB1yyCE6/fTTtWXLFknShAkTWC4MABBXqquXt9w5LcuyM+uelNSWOzEAAAi5JgXdkydPltvtVk5OjpKTk+3t559/vubOnRuyzgEAEGnhrF6+L4EgPyGZoBsAgFjWpDndH3zwgd5//3117do1aHvv3r21cePGkHQMAIBIM5L8VffDUUjNn5ikL5autO/X5LQsVcgogUw3AAAxrUlBd1FRUVCGO2Dnzp1KSEhodqcAAIgKNQLtsAwvdzhU1q1HnbvIdAMAEB+aNLz8+OOP14svvmg/tixLfr9fDzzwgH7zm9+ErHMAAESSqXGZbPnh5ZUnJNMNAEBsa1Km+4EHHtApp5yir776SuXl5br55pu1cuVK7dy5U4sWLQp1HwEAiIjAOtkOq/IL5lCzysvV8767JEk/33qHjMdj73NWxfueZKqXAwAQy5qU6T700EP1448/6rjjjtNZZ52loqIinXPOOVq+fLkOOuigUPcRAICIMFWBdrPW19wHy1uhrjMfV9eZj8vyVgTtszPdDC8HACCmNTrTXVFRodNOO00zZ87Un//853D0CQCAqBDIdLfkGt0BzOkGACA+NPrLe7fbre+++y4cfQEAIKrYw8vDlereBzvoTmF4OQAAsaxJHyPGjh2r5557LtR9AQAgulRluMNSuXw/HAwvBwAgLjSpkJrX69Xzzz+v+fPna+jQoUrZ61v4Rx55JCSdAwAgkuxMtyIwvLzqa3GqlwMAENsaFXT/9NNP6tmzp77//nsNGTJEkvTjjz8GtQlHdVcAACIhUEjNGZHh5ZXn9iQxvBwAgFjWqKC7d+/e2rJlixYuXChJOv/88/XEE08oMzMzLJ0DACCSqpcMi2AhNTLdAADEtEYF3caYoMfvvfeeioqKQtohAACiRXX18vAc35+YpGULv7Dv18SSYQAAxIcmzekO2DsIBwAgntjrdIcr0e1wqLhP/zp3BQJ9D5luAABiWqNmqVmWVWvONnO4AQDxKqLrdDvIdAMAEA8aPbz80ksvVUJCgiSptLRUf/jDH2pVL3/zzTdD10MAACLFntMdpsOXl6vbEw9KkjZde5OMx2Pvs+d0J6dIKghPBwAAQNg1KtM9btw4derUSenp6UpPT9fYsWPVpUsX+3Hg1lBPP/20Bg0apLS0NKWlpSk7O1vvvfeevb+0tFQTJ05U+/btlZqaqjFjxigvLy/oGDk5ORo9erSSk5PVqVMn3XTTTfJ6vY15WQAA1MmEeZ1uy1uhHo9MV49HpsvyVgTts6uXJ6eKyVwAAMSuRmW6Z82aFdKTd+3aVffdd5969+4tY4xeeOEFnXXWWVq+fLkGDBigyZMn65133tHrr7+u9PR0TZo0Seecc44WLVokSfL5fBo9erSysrL0+eefa8uWLbrkkkvkdrt17733hrSvAIDWxyjy1cudLpf8hqlcAADEqmYVUmuuM888M+jxPffco6efflpLlixR165d9dxzz+nVV1/VySefLKky6O/Xr5+WLFmio48+Wh988IFWrVql+fPnKzMzU4MHD9bdd9+tW265RXfeeac8NYbpAQDQWOGuXr4vNc/pFUE3AACxqlHDy8PJ5/Npzpw5KioqUnZ2tpYtW6aKigoNHz7cbtO3b191795dixcvliQtXrxYAwcODFonfOTIkSooKNDKlSvrPVdZWZkKCgqCbgAA7K26ennLB72WZUl+vyTJFz2XawAA0EgRv4qvWLFCqampSkhI0B/+8Af9+9//Vv/+/ZWbmyuPx6OMjIyg9pmZmcrNzZUk5ebmBgXcgf2BffWZPn160Bz0bt26hfZFAQDiQiQz3ZJkmcqgm0w3AACxK+JBd58+ffTNN99o6dKluvrqqzVu3DitWrUqrOecOnWq8vPz7dumTZvCej4AQIwK9zrd+zu9IdMNAECsi+icbknyeDw6+OCDJUlDhw7Vl19+qccff1znn3++ysvLtXv37qBsd15enrKysiRJWVlZ+uKLL4KOF6huHmhTl4SEBHvZMwAA6mOsyBVSk8h0AwAQD6Luq3O/36+ysjINHTpUbrdbCxYssPetWbNGOTk5ys7OliRlZ2drxYoV2rp1q91m3rx5SktLU//+/Vu87wCA+BLu4eX+hEQtf/djLX/3Y/kTEmvtJ9MNAEDsi2ime+rUqRo1apS6d++uPXv26NVXX9VHH32k999/X+np6ZowYYKmTJmidu3aKS0tTX/84x+VnZ2to48+WpI0YsQI9e/fXxdffLEeeOAB5ebm6rbbbtPEiRPJZAMAmi3c63TL6VTh4KH17ibTDQBA7Ito0L1161Zdcskl2rJli9LT0zVo0CC9//77OvXUUyVJjz76qBwOh8aMGaOysjKNHDlSTz31lP18p9Opt99+W1dffbWys7OVkpKicePGadq0aZF6SQCAOOF0eyQ70x3Z4eVkugEAiF0RDbqfe+65fe5PTEzUjBkzNGPGjHrb9OjRQ++++26ouwYAaOUSUlLt++HKdFvl5ery/yq/TN58+TUyHk/wfjLdAADEvIgXUgMAIBolJFcG3Q5VrZkdBpa3Qgf+9TZJ0pZLr6g36CbTDQBA7OIqDgBAHQKZbmcEr5RkugEAiH0E3QAA1CGQ6Y7UfG5JsvxkugEAiHVcxQEAqIOd6Y5gkplMNwAAsY+gGwCAOniiIdPNnG4AAGIeV3EAAOrAnG4AABAKBN0AANQhKuZ0k+kGACDmsWQYAAB1qA66w3cOf0KivnvjXfv+3sh0AwAQ+wi6AQCoQ0JqCxRSczqVf8wJ9e4m0w0AQOzjKg4AQB2iaXi5V5aMMRHrBwAAaDoy3QAA1KElCqlZFRXKevl5SVLu2Mtk3O7g/YFA27LkNZKbUeYAAMQcgm4AAOrQEpluq6JcB//5BklS3vlj6wi6/fb9cp+R20HUDQBArGF4OQAAdbAz3RGMcy1JZcVFkqRyP8PLAQCIRQTdAADUIRrmdEtSWVGhpMpMNwAAiD0E3QAA1MGTHP453Q1RXlwVdJPpBgAgJhF0AwBQh+rh5RHOdBeT6QYAIJYRdAMAUIfq4eWR7QdzugEAiG0E3QAA7MVI8iSnSIp8prucTDcAADGNJcMAANiLT5YcjsrvpcOZ6fZ7EvT9i2/Y9+tiF1Ij0w0AQEwi6AYAYC/ewEAwYxTWpbFdLu0afto+m5RRSA0AgJjG8HIAAPbiU2WkbRm/rEgXUqvKdJcxvBwAgJhEphsAgL0EMt2W8Yf1PFZFhTq++U9J0rZzzpdxu2u1Kd2TL0kq84W3LwAAIDwIugEA2EvNTHc4WRXl6jP5D5Kk7Wf+rs6gu6Qq6C4l0w0AQExieDkAAHtpqUx3Q9hBt5egGwCAWETQDQDAXloq090QJQWBTHfk+wIAABqPoBsAgL1EVaa7YLckCqkBABCrCLoBANiLN5Dp9kc+6C5lTjcAADGNoBsAgL34oinTbVcvNzKGwBsAgFhD0A0AwF680TSnuyroNpLK/ATdAADEGpYMAwBgLy2V6fZ7ErT6mRft+3XxlpXKYYz8lqVSr1GiM6xdAgAAIUbQDQDAXlos0+1yafuZ5+y/mfwql5NiagAAxCCGlwMAsJdoql4uSW5V9oNlwwAAiD1kugEA2EuLrdPt9arDe/+VJG0f9VvJVfdl2WUH3WS6AQCINQTdAADspaUy3Y7yMvW76hJJ0qJ1efLXE3S7CboBAIhZDC8HAGAvdiG1KFinW6qR6fZGR38AAEDDEXQDALCXaFoyTKrOdFNIDQCA2EPQDQDAXlpqybCGYk43AACxi6AbAIAafP7KNbGl6Am6mdMNAEDsIugGAKCGcn91YBttQXcZS4YBABBzCLoBAKghMG+6orSkamZ35DG8HACA2MWSYQAA1BDIdJcVF4b9XMbt0ZpHZ9r368PwcgAAYhdBNwAANZRXBbZlRYVSQnjPZdxubT1/7H7bsWQYAACxi+HlAADUUJ3pLopwT6qR6QYAIHYRdAMAUIOd6W6B4eXyetV2/ly1nT9X8nrrbRbIdPuM5PUTeAMAEEsYXg4AQA2BTHd5UaGktmE9l6O8TIdecq4kadG6PPlddV+WXaoOtEt9RqmOaCnxBgAA9odMNwAANbRopruBLEmJzspAm3ndAADEFoJuAABqsOd0F0VP0C3VCLqZ1w0AQEwh6AYAoIbq6uV7ItyTYAkE3QAAxCSCbgAAaihrwXW6GyPRWXnJLvMxvBwAgFhC0A0AQA1B63RHkUQXmW4AAGIRQTcAADWUR22mm6AbAIBYxJJhAADU0JKZbuP2aN09D9v39yUwvJzq5QAAxBaCbgAAamjJTLdxu7Vl/FUNakshNQAAYhPDywEAqCFq53QTdAMAEJPIdAMAUEOLzun2+ZS+dJEkKX/YsZLTWW/TRFegejlBNwAAsYSgGwCAGgKZ7vIWyHQ7yko16NzTJUmL1uXJn5xSb9vqTDdzugEAiCUMLwcAoIoxxs50lzK8HAAAhABBNwAAVSr8UiCkjb453VXDy70E3QAAxBKCbgAAqgSy3DJGFaXFke3MXgLVy8v8Rn5D4A0AQKwg6AYAoEpgPrdL0RfUBoaXSxRTAwAglkQ06J4+fbqOPPJItWnTRp06ddLZZ5+tNWvWBLUpLS3VxIkT1b59e6WmpmrMmDHKy8sLapOTk6PRo0crOTlZnTp10k033SSv19uSLwUAEAcCmW6noq9YmdNhyV111WZeNwAAsSOiQffHH3+siRMnasmSJZo3b54qKio0YsQIFRUV2W0mT56s//3vf3r99df18ccfa/PmzTrnnHPs/T6fT6NHj1Z5ebk+//xzvfDCC5o9e7Zuv/32SLwkAEAMK6uqDB6NmW6pel43FcwBAIgdEV0ybO7cuUGPZ8+erU6dOmnZsmU64YQTlJ+fr+eee06vvvqqTj75ZEnSrFmz1K9fPy1ZskRHH320PvjgA61atUrz589XZmamBg8erLvvvlu33HKL7rzzTnk8nki8NABADGrpTLdxufXTbX+17+9PotPSngqKqQEAEEuiak53fn6+JKldu3aSpGXLlqmiokLDhw+32/Tt21fdu3fX4sWLJUmLFy/WwIEDlZmZabcZOXKkCgoKtHLlyjrPU1ZWpoKCgqAbAAAtPafbeDz69Zrr9es118s04EviBJYNAwAg5kRN0O33+3X99dfr2GOP1aGHHipJys3NlcfjUUZGRlDbzMxM5ebm2m1qBtyB/YF9dZk+fbrS09PtW7du3UL8agAAsSia53RLNYeXE3QDABAroibonjhxor7//nvNmTMn7OeaOnWq8vPz7dumTZvCfk4AQPRr8erlPp9Sv1mm1G+WST7ffpsnugKZ7uj8UgAAANQW0TndAZMmTdLbb7+tTz75RF27drW3Z2Vlqby8XLt37w7Kdufl5SkrK8tu88UXXwQdL1DdPNBmbwkJCUpISAjxqwAAxLpAptvVQpluR1mpDj/9REnSonV58ien7LM9w8sBAIg9Ec10G2M0adIk/fvf/9aHH36oXr16Be0fOnSo3G63FixYYG9bs2aNcnJylJ2dLUnKzs7WihUrtHXrVrvNvHnzlJaWpv79+7fMCwEAxIVApjt6h5dXBt2s0w0AQOyIaKZ74sSJevXVV/Wf//xHbdq0sedgp6enKykpSenp6ZowYYKmTJmidu3aKS0tTX/84x+VnZ2to48+WpI0YsQI9e/fXxdffLEeeOAB5ebm6rbbbtPEiRPJZgMAGqXM38LDyxvJntPtjc4vBQAAQG0RDbqffvppSdJJJ50UtH3WrFm69NJLJUmPPvqoHA6HxowZo7KyMo0cOVJPPfWU3dbpdOrtt9/W1VdfrezsbKWkpGjcuHGaNm1aS70MAECciJVMN8PLAQCIHRENuo3Z/4eGxMREzZgxQzNmzKi3TY8ePfTuu++GsmsAgFaoPNoz3S6CbgAAYk3UVC8HACDSoj3TnWAvGRad/QMAALURdAMAUCXqM90UUgMAIOZExZJhAABEg+p1ulsmk2xcbm2cMtW+vz/2nG6vkTFGlmWFtX8AAKD5CLoBAKgSyHQ7WyjTbTwe5dz45wa3D1Qv90uq8EseZ5g6BgAAQobh5QAAVGnpTHdjuR3VF27mdQMAEBsIugEAkOQ3Rt6qBHeLzen2+5W8ZpWS16yS/PsPoi3LooI5AAAxhuHlAACoOssttVz1ckdpiYb+5ihJ0qJ1efInp+z3OQlOS8VeQ9ANAECMINMNAICkssB8biu6L46Bed1lDC8HACAmRPPnCgAAWkxp1djyQIXwaFWzgjkAAIh+BN0AAEgqqcocJ7mi+9JoB90MLwcAICZE9ycLAABaSEmsZLqrvhSgejkAALGBoBsAAEkl3sogNjnKM90JZLoBAIgp0f3JAgCAFlJSFcQmuaI8010VdJcRdAMAEBNYMgwAAFVnupOcLfd9tHG59csfrrPvN0SgejmF1AAAiA0E3QAAqHpOd0tmuo3How2339Oo5wT6V+xlTjcAALGA4eUAAKi6enlilM/pTnVX9q+QoBsAgJgQ3Z8sAABoIXamuyWrl/v9Sti0UQmbNkr+hgXRKVVfChRV+GUMQ8wBAIh2DC8HAEA15nS7HCpsoXM6Skt01LABkqRF6/LkT07Z73MCmW6fqSymlhjlhd8AAGjtyHQDAKDYqV7uclj2smGFFQwxBwAg2hF0AwBaPb8x9hJcyS1YvbypmNcNAEDsiP5PFgAAhFnN5bdiYbh2zXndAAAguhF0AwBavUDl8gSnJYcV/UG3nekm6AYAIOoRdAMAWr3iSFQub4aUqmx8kZfq5QAARDuCbgBAq1ezcnksCGS6GV4OAED0Y8kwAECrF6nK5cbp0uZxV9j3GyqF4eUAAMQMgm4AQKtXGsh0t3DlcpOQoPXTH23081IDhdSoXg4AQNSLjXF0AACEUYk3NtboDiDTDQBA7CDoBgC0eoHq5S0+p9sYuXdsk3vHNsk0vChaYE53qc/I66eYGgAA0YygGwDQ6pVEqHq5o6RYRw/spaMH9pKjpLjBz0t0WnJUdZUh5gAARDeCbgBAq1ccY9XLLcuqntfNEHMAAKJabHy6AAAgjEojVL28OZjXDQBAbCDoBgC0eiURql7eHIGgm+HlAABEt9j5dAEAQBgYY2KuerlUY9mwCgqpAQAQzQi6AQCtWrnfKJArjpU53ZKU4q78goDh5QAARLfY+XQBAEAYBLLcLktyO2Io083wcgAAYoIr0h0AACCSIrZGtyTjdCnv9xfZ9xsjxUUhNQAAYgFBNwCgVYvkfG6TkKAfH3umSc+1M90E3QAARDWGlwMAWrVYrFwuBVcvN4ZiagAARKvY+oQBAECIRbRyuTFyFBfJUVwkNTJwDgwv95nqdcYBAED0IegGALRqkZzT7Sgp1rEHZ+rYgzPlKClu1HNdDkuJzsovChhiDgBA9CLoBgC0anam2xk7lcsDAvO6C6lgDgBA1CLoBgC0avac7hhaozsgMMScTDcAANEr9j5hAAAQQiW+CM7pbiY7003QDQBA1CLoBgC0arFavVyqWcGcQmoAAESr2PuEAQBACEW0enkzpVT1mUw3AADRi6AbANCqRbJ6eXMFhpczpxsAgOjlinQHAACIFK/fKBCvRqJ6uXE4te2Ms+37jVU9vJygGwCAaEXQDQBotQJZbktSQiSC7sRE/fD3l5v8/FQXhdQAAIh2sTeWDgCAEKk5n9uyYnBOd1Wmu9Rn5PVTTA0AgGhE0A0AaLViuXK5JCU6LQUS9AwxBwAgOsXmpwwAAEIg0pXLHcVFOr5Lqo7vkipHcVGjn29ZllJcFFMDACCaEXQDAFqtwJzuxBisXB4QqGDOvG4AAKJT7H7KAACgmexMdwSKqIUKFcwBAIhuBN0AgFbLntMdw5nuFCqYAwAQ1WL3UwYAAM1U4ov9THdgeHlRBdXLAQCIRgTdAIBWKy4y3e7KLwwKGV4OAEBUit1PGQAANFOpL7LVy0OhOtNN0A0AQDRyRboDAABESvWSYZH5Dto4nNp5ykj7flMwpxsAgOhG0A0AaLWKA8PLIzSn2yQmauVL/2rWMdomVAbreyr8KvcZeWJ4fjoAAPEoosPLP/nkE5155pnq0qWLLMvSW2+9FbTfGKPbb79dnTt3VlJSkoYPH661a9cGtdm5c6cuuugipaWlKSMjQxMmTFBhYWELvgoAQCzyG1NjeHnszrZKcjns4fE7y3wR7g0AANhbRD9lFBUV6bDDDtOMGTPq3P/AAw/oiSee0MyZM7V06VKlpKRo5MiRKi0ttdtcdNFFWrlypebNm6e3335bn3zyia688sqWegkAgBhV5quu9h3L1cslqX1VtpugGwCA6BPR4eWjRo3SqFGj6txnjNFjjz2m2267TWeddZYk6cUXX1RmZqbeeustXXDBBVq9erXmzp2rL7/8UkcccYQk6cknn9Tpp5+uhx56SF26dGmx1wIAiC2B+dwehyWnIzJBt6O4SEcP7CVJWrJig/zJKU06TrtEp34p8mpHqVdSQgh7CAAAmitqx9Nt2LBBubm5Gj58uL0tPT1dw4YN0+LFiyVJixcvVkZGhh1wS9Lw4cPlcDi0dOnSFu8zACB2lPgCy4VFNsvtLCmWs6S4WcewM92lZLoBAIg2UVtILTc3V5KUmZkZtD0zM9Pel5ubq06dOgXtd7lcateund2mLmVlZSorK7MfFxQUhKrbAIAYUV1ELWq/f26w9omVl/MdDC8HACDqxP4njSaYPn260tPT7Vu3bt0i3SUAQAvbU14ZdLfxxP6lsF2NTLcxZj+tAQBAS4raTxpZWVmSpLy8vKDteXl59r6srCxt3bo1aL/X69XOnTvtNnWZOnWq8vPz7dumTZtC3HsAQLTLrwq60+Mg6M5IcMhhSV4jFbBeNwAAUSVqP2n06tVLWVlZWrBggb2toKBAS5cuVXZ2tiQpOztbu3fv1rJly+w2H374ofx+v4YNG1bvsRMSEpSWlhZ0AwC0LrvLK4dip3ucEe5J8zksKyjbDQAAokdE53QXFhZq3bp19uMNGzbom2++Ubt27dS9e3ddf/31+utf/6revXurV69e+stf/qIuXbro7LPPliT169dPp512mq644grNnDlTFRUVmjRpki644AIqlwMA9imeMt1S5RDz7aU+7Sj1qRffJQMAEDUiGnR/9dVX+s1vfmM/njJliiRp3Lhxmj17tm6++WYVFRXpyiuv1O7du3Xcccdp7ty5SkxMtJ/zyiuvaNKkSTrllFPkcDg0ZswYPfHEEy3+WgAAsSU/GjLdlkO7s4+z7zdH+0SnlE8xNQAAok1Eg+6TTjppnwVfLMvStGnTNG3atHrbtGvXTq+++mo4ugcAiFPlPmOv052eELlMtz8pSSv+NTckx2J4OQAA0Sk+xtQBANAIgSx3otNSYhwsGSZVZbpFphsAgGgTtet0AwAQLrE2n3v16tX7bVMhS7K6qbDCry++Xi6XKjP5HTp0UPfu3cPdRQAAUA+CbgBAqxMtlcsdxUU66qj+kqQvvlglf3JK0P4dW3Mly9LYsWMbdLw/fbBSbTp00jljx+vX1d9KkpKTk7V69WoCbwAAIoSgGwDQ6uSXBYLuyGe63Tt31LuvMD9fMkaT7n5Yhx1Z/1KYAbvTUuWVdOtTLymxrEAb163RXydN0Pbt2wm6AQCIEIJuAECrYw8vT4iNNboP6HWQ+gwavN926/LLlVfiU0aXburRxh3+jgEAgP2K/Ff8AAC0sOrlwuLrMpjkqnw9JV5/hHsCAAAC4uvTBgAADRDIdGdEeE53qCW7LElSia/+5TgBAEDLIugGALQqpT6/SquC0rR4y3Q7q4Jur5ExBN4AAESD+Pq0AQDAfhRUZbmTnJYS4mSN7oAEpyVLkpFURrYbAICoQCE1AECrsjtQuTwaiqhZDu05bIh9v9mHsywluSwVe42KCboBAIgKBN0AgFbFrlweBUPL/UlJ+ua9T0J6zCSXQ8VeH8XUAACIEpH/xAEAQAuqrlweBZnuMKg5rxsAAEQeQTcAoFWJpkx3OCS5CLoBAIgm8fmJAwCAegQy3dGwXJijuFhHHtVfRx7VX47i4pAcMzmwVreP4eUAAEQD5nQDAFqV6Mp0GyX+kmPfD4XEquHlFX7Jb0X+iwUAAFq7aPjEAQBAiyj1+u2ltNKiINMdDi6HpeSqIeYVnuQI9wYAABB0AwBajd1VWe5klyVPVUY4HgWGzpd7UiLcEwAAQNANAGg14r1yeUDbhMrLO5luAAAij6AbANBqRNd87vBp43HIkuR3utWxV+9IdwcAgFYtvj91AABQQzRVLg8np2XZXyz0Pvo3Ee4NAACtG9XLAQCtRn5ZVaY7IVq+c7ZUdEhf+34opSc4tLvcr95HnxjS4wIAgMYh6AYAtBrRNqfbn5ysrz/6KizHbutxaqO8OvCIY+XXjrCcAwAA7F+0fNUPAEBYGWNazZxuqbJCu+XzypOUot1KiHR3AABoteL/UwcAAJJKfUbl/vheo7smy7LkqSiWJO1QYoR7AwBA60XQDQBoFXZXDS1PcVlyO6JjjW5HcbGGnHSEhpx0hBzFxSE/vru8SBJBNwAAkcScbgBAqxAoopaREE1ZbqOUH3+w74daIOgukEclXr+SXHzXDgBAS+PqCwBoFXZHWRG1luD0+5S7dpVkWfp5T0WkuwMAQKtE0A0AaBW2FHslSR0SW0/QLUlrl3wkSfp5T3lkOwIAQCtF0A0AiHvGGP1SWJnp7ZbqjnBvWta6pR9LkjYUVMiY0A9hBwAA+0bQDQCIe7vL/SryGjktqXNy6ypnsuHrxbKMUUGFX9tLfZHuDgAArQ5BNwAg7m2qynJnJbvkipLK5S2lorREHVQiSfpia0mEewMAQOtD0A0AiHu/FFUG3V1Tom1ouaXSrt1V2rW7pPB9GdBLBZKk73eWaVcZ2W4AAFpS6xpjBwBolX4prCyi1jU1ui57/uRkffnFqrCfJ0PlOrCNWz/tqdDnucUa3aNN2M8JAAAqkekGAMS14gq/dlZld6Mv091yju2cLIlsNwAALY2gGwAQ1wJDyzskOpXkar2XvQNS3DqwjVtG0uLc4kh3BwCAVqP1fvoAALQKgSJq0ZjldpSUaPCoEzR41AlylIS/yFkg271iZ5l2k+0GAKBFEHQDAOLaL0XROZ9bkmT8avPt12rz7deS8Yf9dAekuNWrKtv9eR7ZbgAAWgJBNwAgbpX7jPKKq4LuKMx0R8JxgbndO5jbDQBASyDoBgDErS3FFfJLauN2KN3DJU+qznb7Jb35U4HKfOHPsAMA0JpF4Vg7AACaLycnR19sL5esDKWU79Hy5T83+LmrV68OX8eiwGndU/Ximt3aVurTvzfs0XkHpclphW+dcAAAWjOCbgBA3MnJyVG/fv10wYOz1Tv7N3rm/mla8trzjT5OYWFhGHrX8ur6EuFQefSlOunnPRV6dflG9ddO1Rd2d+jQQd27dw9vJwEAiFME3QCAuLN9+3aVlpXp4KOOlySNu/JqTbjssgY/f8nCD/Tc/dNUWloari62iB1bcyXL0tixY+vc3/f4U3XxIy/pV2eqZs14Ugufe6TOdsnJyVq9ejWBNwAATUDQDQCIS1m9B8hyuuS0pP79+spqxPDpjWvXhLFnwSratQ/bsQvz8yVjNOnuh3XYkcPqbFNSvF1FbTI1YuJU/e6Sy5RUsjto/8Z1a/TXSRO0fft2gm4AAJqAoBsAEJd6Dq4MMtu4HY0KuFuSPzlFS77fGPbzHNDrIPUZNLje/T/vqdCvRV4VtclUm8wu6tXGLUeU/s4AAIg1lHIFAMSlPscNlySlUbV8v3qkutSjah3z3GKfVu4qV4XfRLhXAADEBz6JAADizh65dcgxJ0vGqEOiM9LdiXqWZalrqlv9MjxyWFJBuV/f7ihTUQXLiQEA0FwE3QCAuLNRbSRJnrJCJbmi91LnKCnRwDGnaeCY0+QoKYl0d9Qu0anD2iUo0WmpzGf03Y4ylSamRbpbAADENOZ0AwDiyp4Kn7YoRZKUVLxTUqfIdmhfjF8Ziz+z70eDZLdDg9on6Mfd5dpd7ldhWmedd9ff5K13QTEAALAv0fv1PwAATbBsa6mMZWnD8iVye2N7ya9IcTss9W/rqZznbYyGnHm+lipL20q8ke4aAAAxh6AbABA3ynx+Ld9RGWh/+uKMCPcmtgXmeafv3qT8rVtUZLn1wprd+npbiYyhyBoAAA1F0A0AiBvf7ihTmc8o2VToh0/ej3R34oK7okRPXniy2psSeY30wS9F+teGPSr2RsdweAAAoh1BNwAgLviM0VdbK4uR9VQB2dgQKtq1XUO0TacckCKnJa3LL9dzq3dpQ0F5pLsGAEDUI+gGAMSFH3aVqaDCr2SXpc4qinR34o4l6chOSbrkkAy1T3SqyGv0z/UFemcjWW8AAPaFoBsAEPNKvH59llssSRraMUmxtDK3LylZvqTkSHejwTKTXbq0T4aGdEiUJK3YWaZnV+3SdztKGV0AAEAdWDIMABDTvH6jf/1UoF1lfqW5HRraIVGrNke6Vw3jT07R5+u3RrobjeZ2WBrRLVUD2iVobk6htpX69G5OoVbsLNVJXVJ0QIo70l0EACBqEHQDAGKWMUbvbNyjX4q8SnBYOu+gNCW6GMQVDqtXr65z+2GSNqqN1itdmwq9eunHfLUzJTpIBWqrMklShw4d1L179xbsLQAA0YOgGwAQsz7eUqzVu8vlkPS7A9uoYxKXtVDbsTVXsiyNHTt2n+0yOnfVyZffoCFnnK+d7iTtVJLWffGJlrw2SznLPtP3331L4A0AaJX4dAIAiElfbyvRkrzKauWjuqeqZxtPhHvUeFZpqfpfcZEkadWzr8gkJka4R7UV5udLxmjS3Q/rsCOH7be9L3+TilPaqSwxXQcfdYIOPuoEFefv0ifbfTqpXYUOSHHJsqwW6DkAANGBoBsAEFPyy32a/0uR1uZXLld1XFayBraPvmC1ISy/T+0WvG/fj+YyZAf0Okh9Bg1ucPtSn1+5xT5tKShRcnpb/SLp5bX5SnRa6pbqVrdUt7qnutUx0SmngyAcABC/CLoBADEhsA73Z7nFqvBXLr9xdGaSjs1KinTXUIdEp0M92zhUumGl7r99qv7y9Iva4WyjUp/R2vxy+0sTS1Kax6G2CU61TXAqw+NQG49TaW6H2ngcauN2yEFmHAAQw+Im6J4xY4YefPBB5ebm6rDDDtOTTz6po446KtLdAoCwMsZoT4W/8lbuV87WHdpZVCq/LPkl+WXJyJJTfrnll6vqZ4J8SpJPifLKtVd+NdqKXu0q8+mHXWVasbNMO8t8kqSuKS6N7JbKHO4YYEla/8Wncq1epBP69VOBPNqlBO1SonYrQV7Lofxyv/LL/fp5T0XtAxijBPmU6rbUITVJ6R6n2iZUBuntEpxq43YwXB0AENXi4tPKP//5T02ZMkUzZ87UsGHD9Nhjj2nkyJFas2aNOnXqFOnuAUCzVfiNdpb6tKPMpx2lXvv+zlKfvEExs0eyGje3uXDXdu3evEm7Nm/Sri05Ktqep/vu+LMOPiBL6R6nPM6WDWiKKvzaWuLVlmKv1uwuU16Jz96X5LT0mwNSNLBdAoFWjNhfIbbU9p3UofuBat+tl9p3P1Bts7oqPesApWd2UVqnznK5PSqTS2Veacfu8lrPd1mqDMATnXa2vI3boSSnpSSXQ0kuS66q4euBd4zPVC41V2HfKv+Pef1G5X4jn7+qoVX9w+Ow5HFaSnBa8jgsJbkqf8b7+9BnjMp8lbdSn1/lPiOHZclhSQ5LclqVv5Nkl0NupgkAQJ3iIuh+5JFHdMUVV2j8+PGSpJkzZ+qdd97R888/r1tvvTXCvQMQDsZUflAu8/lV5jPauDlXO/PzqzK8lTcp8JnZyKq6b9n3K386ZOSQUbuMDHXt0kVOR+WHSJclOR2WnJbCPrTVGKNSn1Gx16+ffs1VXn6hSuVSiVwqkVPFcqvUqv/PtVWVCfSX7NGXnyxU/0GHKS09XZapfO0yRsbhkLGcMpZDfodTfodLfqdbxuFUatsOSm3bQV0HHG4f8+M90sc/7JYkJbkspXucSvc47J9pHoeSnA4lVAUhCU5LLsuSZVX9ni1LxhgZVQY4PmPk9UvlPqMyf+UH9xKfUVGFX4VVtz1VwXZx8LcIsoxRO5UqU8XK9BbLu9Fo+cZ9/07rW94KLa+xhdiqlcrs2iDjcOrXzZv1rxef16Qbb1Fa5gEqllvFVf9HvLK0rdSnbaW+/R8yxJyWKgP7qqAz2VUZ6Ce7HEp0WnI7qm5O2f8/tm3dqvz8fPvvkKQ67gc/1l5/rzq1b6+e3bs1OeDPycnR9u3b5ZNUJqdK5VLpXj8rtztVYTkbfFxX4PfhspTkrPrpCv4CJNnlkMdhKS8vT/n5u+3n+qtecc2/4TW31fw9BX6mtWmjjh06yLIq/y1cliWno+rvt2XJFfh77mjZv+nRyFR9eVLiMyrx+lXirbzmFHv9KvUZ7cgvUFFJmXyy5JNlf0EV+F07ZeyRUnv/DNzPat9OvXpEzygpIJrEfNBdXl6uZcuWaerUqfY2h8Oh4cOHa/HixRHsWWi9ti5f24rK5Pd55VDlhdeS2et+9ePAzVnjvkNGbVJT1b5du8o/plaNi7tVnQGwLMverprXpToq/NRX9MfU8cDU07reYzTmfEbyGlP54d5v7A/5gWxGzfteIxUVl6i0vKLWhb2uAE113pf8fr+cjpoXJlP1L6EaPxW0zb/XY4fTIZfTtdfvX7KqLniBzwU19wVer5FUXlEhr9dn/25M1fOC3xOV74vgx5XbnDJKSUpU24y0yg8rluRyVGYwAn2o631iVW0Mep+Y6n8fo8oLfPX9Gttr/GNWPq7c4qvKNFUYowpf5b9TIAsVyD4Fsi2BW/D7IVGymlFMK19S/q46d1km+P9b4Lb3tgSPW6lJSXI6ZP8+HZYlnzHyG8lf9T4MvJbyqtdR7PXLb5+t/tdRvHuntm5Yq20/17yt067NOfL7qgOOR9+YqyFDDm3Qy/b6Axmsyp9b8vL01ZLPdXj2CTKJKfJaTpV4jUq8XuUWN/SXWfk7M1L1m7YxjNH2TT9p8w/fa+2Sj7Tqo3dVvHtn448jqbCwsEnPQ+g1thBbTbtyf9XKhe/q6g/fCdrucLnUtnM3deh+kNp3P1Adehyk9t16KbVtByWnt1VyRjt5kpLrPa63vEwVpSUqLymu/Fl131teKklVQa0lh9MpT1KyElPTlNnlgMovrSyHfEZVXxpJUkOD/mb+rZKknZK1c3tlMOmw5A4Elg7J7aj8AszlqPx7Hvjb4zeVX4DtKSnTz5t3KSmtvTxJKQ0+ZVlRoUr25Ku8pEiW5ZDL7VanzCxZTpcq5JCxLHmNqqa7SPv/fSRKVlZzfgtSoaTCPY1+mmWq/467nJYSXC65HNXXwL2/eK1vX/XPyv01PxPUpUGFEvfTyCj4M87en3l8/sq/5yU+o9Kq4LrEV/lz34d2S5a7IT2s307JuXObklxOJboqv4xNdFpKrPqCtuZnDFfVaInA79Rp1b5c1Pe7rPVbDjw0kl+V73VT4/7e/we8xshX9XnQ6w/+rOj1S0WlpSqv8MpX9RXP3l/U7/3l/d6ftVOSEtUuPc3+sicwMsRS5X3Lvl/7S2qp+jOese8Hvw5frft1byssLlZpWbn9udMf9NOqN3ZwVL2ulKQEZaSlVb63q/6mOPb6vxHoa9Wvv9Znu+07dqmgqKjqM3DNW/1fsNW8WU6njunSRkM6xn7tlpgPurdv3y6fz6fMzMyg7ZmZmfrhhx/qfE5ZWZnKysrsx/n5+ZKkgoKC8HW0mTZt3a49Pkcjn2WHRNWKyqS8LaHqFuJBUam0vTTSvWgyyxhZvgrt2LpFyckpcjqdkt8n46/8ikNVH5oty1H1rUH1ld1yWJLllM/nU0VFhVxujxwej9yeJn4gLqqQdjUiMt37tfgqtO3XTUpOcMlpfDKlxfKXlshXUih/yR6ZinIlSurmkbod0ks6pJekEfbzV3+3TB+8Pkerly+Ts4mZnB+WLdUr996uV6oee1JSlZF5gDKyuiqjc1elZ3ZR287dlJ7ZRYlt0pSYkqaElDZyuvf/Yc3v96u8eI/KiotUVlSosqI9KtyxTXt2bNWeHVtVuH2rtm74UVs3rJW3rETnXHa1jh16mI4delijX0dzfxcb1/8oSdqweqVSkpp2sW/IMVxlJRpYdf+7LxbLmxDcrrn9aKnXEe4+rPz6S8kYnXnxFTrwkEP23XjnRmnnRpVKKpUkh1OWw6E133+rhf99U6edf4l6HHiQ5PfW+nbXIam+//0/rVmt/738vP3YlZBYGdint1NyelulZLRTUkY7pVQF+4mpaXIlJsmTmCRPUpJc7kRZDocsh0PpbdvLlVA1DcT+G1Uj6rCqv/q1am5zOCr/ljVTQkqa/D6/Sgv3yPh88pdX/q3xlxfLlJbIX1Z5M2Ul8peXyHgrgn5Xe/8uJMmdlKzktLZKTm+rpPS2Sqn6mZyeoaT0dkpOy1BSWoZS0tvJnZwsy7KUkpYhl7vqo6jfX/l325jqv+F+v4zxVUYT9rfAlb+TkpJibc/LlcPhlMPpktPllNOdIKcnQS6PWy53olwej5wej1yeRDkczf+9xQOH8ctTlZn2yCe3/CrctUNz331bfQcNVmpyikzgS1xL9vvScrpkuTySyy3L5Zbl8lTe3C5ZTk/ltqr3alEEX19UiPHPVbaQvY76ws2gVEy91lfs0sEJnUPQj/AIxI/G7Pu1WGZ/LaLc5s2bdcABB+jzzz9Xdna2vf3mm2/Wxx9/rKVLl9Z6zp133qm77rqrJbsJAAAAAIhDmzZtUteuXevdH/OZ7g4dOsjpdCovLy9oe15enrKy6h62NHXqVE2ZMsV+7Pf7tXPnTrVv3z7uC6LEs4KCAnXr1k2bNm1SWlpapLuDOMP7C+HCewvhxPsL4cT7C+EUC+8vY4z27NmjLl267LNdzAfdHo9HQ4cO1YIFC3T22WdLqgyiFyxYoEmTJtX5nISEBCUkJARty8jICHNP0VLS0tKi9j8mYh/vL4QL7y2EE+8vhBPvL4RTtL+/0tPT99sm5oNuSZoyZYrGjRunI444QkcddZQee+wxFRUV2dXMAQAAAACIhLgIus8//3xt27ZNt99+u3JzczV48GDNnTu3VnE1AAAAAABaUlwE3ZI0adKkeoeTo3VISEjQHXfcUWvqABAKvL8QLry3EE68vxBOvL8QTvH0/or56uUAAAAAAEQrFi0EAAAAACBMCLoBAAAAAAgTgm4AAAAAAMKEoBsRdc899+iYY45RcnJyvWul5+TkaPTo0UpOTlanTp100003yev1BrX56KOPNGTIECUkJOjggw/W7Nmzax1nxowZ6tmzpxITEzVs2DB98cUXQftLS0s1ceJEtW/fXqmpqRozZozy8vIa3RdEt549e8qyrKDbfffdF9Tmu+++0/HHH6/ExER169ZNDzzwQK3jvP766+rbt68SExM1cOBAvfvuu0H7jTG6/fbb1blzZyUlJWn48OFau3ZtUJudO3fqoosuUlpamjIyMjRhwgQVFhaG/kUjqu3vbxNalzvvvLPW36i+ffva+0N1rQrFdRPR75NPPtGZZ56pLl26yLIsvfXWW0H7Q3WtaqnrJqLL/t5fl156aa2/Z6eddlpQm1bz/jJABN1+++3mkUceMVOmTDHp6em19nu9XnPooYea4cOHm+XLl5t3333XdOjQwUydOtVu89NPP5nk5GQzZcoUs2rVKvPkk08ap9Np5s6da7eZM2eO8Xg85vnnnzcrV640V1xxhcnIyDB5eXl2mz/84Q+mW7duZsGCBearr74yRx99tDnmmGMa1RdEvx49ephp06aZLVu22LfCwkJ7f35+vsnMzDQXXXSR+f77780//vEPk5SUZJ555hm7zaJFi4zT6TQPPPCAWbVqlbntttuM2+02K1assNvcd999Jj093bz11lvm22+/Nb/97W9Nr169TElJid3mtNNOM4cddphZsmSJ+fTTT83BBx9sLrzwwpb5RSAqNORvE1qXO+64wwwYMCDob9S2bdvs/aG4VoXquono9+6775o///nP5s033zSSzL///e+g/aG4VrXkdRPRZX/vr3HjxpnTTjst6O/Zzp07g9q0lvcXQTeiwqxZs+oMut99913jcDhMbm6uve3pp582aWlppqyszBhjzM0332wGDBgQ9Lzzzz/fjBw50n581FFHmYkTJ9qPfT6f6dKli5k+fboxxpjdu3cbt9ttXn/9dbvN6tWrjSSzePHiBvcF0a9Hjx7m0UcfrXf/U089Zdq2bRv0b3rLLbeYPn362I9///vfm9GjRwc9b9iwYeaqq64yxhjj9/tNVlaWefDBB+39u3fvNgkJCeYf//iHMcaYVatWGUnmyy+/tNu89957xrIs8+uvvzbrNSJ27O9vE1qfO+64wxx22GF17gvVtSoU103Enr2DolBdq1rquonoVl/QfdZZZ9X7nNb0/mJ4OaLa4sWLNXDgQGVmZtrbRo4cqYKCAq1cudJuM3z48KDnjRw5UosXL5YklZeXa9myZUFtHA6Hhg8fbrdZtmyZKioqgtr07dtX3bt3t9s0pC+IDffdd5/at2+vww8/XA8++GDQsMvFixfrhBNOkMfjsbeNHDlSa9as0a5du+w2+3rPbdiwQbm5uUFt0tPTNWzYsKD3U0ZGho444gi7zfDhw+VwOLR06dLQv2hEnYb8bULrtHbtWnXp0kUHHnigLrroIuXk5EgK3bUqFNdNxL5QXata6rqJ2PTRRx+pU6dO6tOnj66++mrt2LHD3tea3l8E3Yhqubm5QR8cJNmPc3Nz99mmoKBAJSUl2r59u3w+X51tah7D4/HUmle+d5v99QXR79prr9WcOXO0cOFCXXXVVbr33nt188032/ub856rub/m8+pr06lTp6D9LpdL7dq14/3USjTkbxNan2HDhmn27NmaO3eunn76aW3YsEHHH3+89uzZE7JrVSium4h9obpWtdR1E7HntNNO04svvqgFCxbo/vvv18cff6xRo0bJ5/NJal3vL1eLnAWtyq233qr7779/n21Wr14dVBgGaI7GvOemTJlibxs0aJA8Ho+uuuoqTZ8+XQkJCeHuKgDs06hRo+z7gwYN0rBhw9SjRw+99tprSkpKimDPAKBxLrjgAvv+wIEDNWjQIB100EH66KOPdMopp0SwZy2PoBshd8MNN+jSSy/dZ5sDDzywQcfKysqqVS01UKU1KyvL/rl35da8vDylpaUpKSlJTqdTTqezzjY1j1FeXq7du3cHZRD2brO/viAymvOeGzZsmLxer37++Wf16dOn3veTtP/3XM39gW2dO3cOajN48GC7zdatW4OO4fV6tXPnTt5PrUSHDh32+7cJyMjI0CGHHKJ169bp1FNPDcm1KhTXTcS+UF2rWuq6idh34IEHqkOHDlq3bp1OOeWUVvX+Yng5Qq5jx47q27fvPm8152XsS3Z2tlasWBH0H3LevHlKS0tT//797TYLFiwIet68efOUnZ0tSfJ4PBo6dGhQG7/frwULFththg4dKrfbHdRmzZo1ysnJsds0pC+IjOa857755hs5HA57eFN2drY++eQTVVRU2G3mzZunPn36qG3btnabfb3nevXqpaysrKA2BQUFWrp0adD7affu3Vq2bJnd5sMPP5Tf79ewYcNC8FtBtGvI3yagsLBQ69evV+fOnUN2rQrFdROxL1TXqpa6biL2/fLLL9qxY4cd+Laq91eLlGsD6rFx40azfPlyc9ddd5nU1FSzfPlys3z5crNnzx5jTPXSJyNGjDDffPONmTt3runYsWOdS5/cdNNNZvXq1WbGjBl1Ln2SkJBgZs+ebVatWmWuvPJKk5GREVTd9Q9/+IPp3r27+fDDD81XX31lsrOzTXZ2tr2/IX1BdPv888/No48+ar755huzfv168/LLL5uOHTuaSy65xG6ze/duk5mZaS6++GLz/fffmzlz5pjk5ORaS1O4XC7z0EMPmdWrV5s77rijzqUpMjIyzH/+8x/z3XffmbPOOqvOZVgOP/xws3TpUvPZZ5+Z3r17s2RYK9OQv01oXW644Qbz0UcfmQ0bNphFixaZ4cOHmw4dOpitW7caY0JzrQrVdRPRb8+ePfZnK0nmkUceMcuXLzcbN240xoTmWtWS101El329v/bs2WNuvPFGs3jxYrNhwwYzf/58M2TIENO7d29TWlpqH6O1vL8IuhFR48aNM5Jq3RYuXGi3+fnnn82oUaNMUlKS6dChg7nhhhtMRUVF0HEWLlxoBg8ebDwejznwwP/f3r0H5ZT/cQB/P6X7U09sqaQbXZRIlrUM0gW5NKNFDdFF27o1Blstu+zaWb+ixSoku1vJZWuyGUylVUst2dJmo9J2U7IzD0tkJUSd3x+NZzxKK9uTdrxfM88f53y/53u+59uZnj7nc77fhggJCQkdzrVr1y7B1NRUUFVVFd577z0hPz9frvzhw4fCihUrhP79+wuampqCp6enIJVK5eq8Sl+o7yoqKhLGjRsnSCQSQV1dXbC1tRXCw8PlfvkLgiBcunRJmDhxoqCmpiYYGxsLW7Zs6dBWSkqKYG1tLaiqqgrDhw8X0tPT5crb2tqEjRs3CgYGBoKamprg6uoqVFRUyNVpaGgQFixYIIjFYkFHR0cICAiQPXCit8c//W6it4u3t7dgZGQkqKqqCsbGxoK3t7dQXV0tK++p76qe+N6kvu/MmTOd/p3l5+cnCELPfVf11vcm9S1d3V/Nzc3CtGnTBH19fUFFRUUwMzMTgoKCOjy4e1vuL5EgCELv5NSJiIiIiIiI3i6c001ERERERESkIAy6iYiIiIiIiBSEQTcRERERERGRgjDoJiIiIiIiIlIQBt1ERERERERECsKgm4iIiIiIiEhBGHQTERERERERKQiDbiIiIiIiIiIFYdBNRERvlbq6OohEIhQXF7+0Tk5ODkQiERobG3v03CKRCMeOHXvt41taWmBpaYnz58/3XKcUaP/+/dDV1X3T3eiWKVOmYPXq1bJtc3Nz7Ny5s9f78eLYxcbGwsPDo9f7QURE/x6DbiIi6lP8/f0hEokgEomgoqICCwsLhIWF4dGjRz3SvomJCaRSKezt7Xukvd4UGxsLCwsLTJgwoUPZ0qVLoaysjCNHjnSrTUU9YOhJU6ZMkd0T6urqsLOzQ0xMTK+cu7CwEB999NEr1VXkQ4YlS5bg4sWLOHv2rELaJyIixWHQTUREfY67uzukUimuXr2Kb775Bvv27cMXX3zRI20rKyvD0NAQ/fr165H2eosgCNi9ezcCAwM7lDU3NyM5ORlhYWGIj49/A71TvKCgIEilUly5cgVeXl5YuXIlkpKSOq3b0tLSY+fV19eHpqZmj7X3ulRVVbFw4UJER0e/6a4QEVE3MegmIqI+R01NDYaGhjAxMcGcOXPg5uaGrKwsWXlbWxsiIiJgYWEBDQ0NODg44Mcff5SV3717Fz4+PtDX14eGhgasrKyQkJAAoPPXyzMyMmBtbQ0NDQ04Ozujrq5Orj+bNm3CqFGj5Pbt3LkT5ubmsu3CwkJMnToVenp6kEgkcHJywsWLF196jS0tLQgODoaRkRHU1dVhZmaGiIiIl9YvKipCTU0NZs2a1aHsyJEjsLOzw7p16/DLL7/g+vXrcuWPHz/GJ598AhMTE6ipqcHS0hJxcXGoq6uDs7MzAKB///4QiUTw9/cH0Plr1aNGjcKmTZtk2zt27MCIESOgpaUFExMTrFixAk1NTS+9hn9DU1MThoaGGDJkCDZt2gQrKyucOHECQHsmPDg4GKtXr4aenh6mT58OACgtLcWMGTMgFothYGCAxYsX4/bt27I2Hzx4AF9fX4jFYhgZGWH79u0dzvviODQ2NmLp0qUwMDCAuro67O3tkZaWhpycHAQEBODevXuyrPyzsXr8+DFCQkJgbGwMLS0tjBs3Djk5OXLn2b9/P0xNTaGpqQlPT080NDR06IuHhwdOnDiBhw8f/svRJCKi3sSgm4iI+rTS0lKcP38eqqqqsn0RERE4cOAAYmNjUVZWhjVr1mDRokXIzc0FAGzcuBFXrlzByZMnUV5ejr1790JPT6/T9q9fv44PPvgAHh4eKC4uxocffoh169Z1u5/379+Hn58fzp07h/z8fFhZWWHmzJm4f/9+p/Wjo6Nx4sQJpKSkoKKiAocPH5YL4l909uxZWFtbQ1tbu0NZXFwcFi1aBIlEghkzZmD//v1y5b6+vkhKSkJ0dDTKy8uxb98+iMVimJiYIDU1FQBQUVEBqVSKqKioV75mJSUlREdHo6ysDImJiTh9+jTCwsJe+fh/Q0NDQy6jnZiYCFVVVeTl5SE2NhaNjY1wcXGBo6MjfvvtN2RmZuLmzZvw8vKSHRMaGorc3FwcP34cp06dQk5OTpcPStra2jBjxgzk5eXh0KFDuHLlCrZs2QJlZWVMmDABO3fuhI6ODqRSKaRSKUJCQgAAwcHB+PXXX5GcnIzLly9j/vz5cHd3R1VVFQCgoKAAgYGBCA4ORnFxMZydnbF58+YO5x8zZgyePn2KgoKCnhpGIiLqBf+td+uIiOitkJaWBrFYjKdPn+Lx48dQUlLC7t27AbRnDcPDw5GdnY3x48cDAIYMGYJz585h3759cHJyQn19PRwdHTFmzBgA6DKY3bt3L4YOHSrLctrY2KCkpARbt27tVp9dXFzktr/99lvo6uoiNzcXs2fP7lC/vr4eVlZWmDhxIkQiEczMzLps/9q1axg0aFCH/VVVVcjPz8fRo0cBAIsWLcLatWuxYcMGiEQiVFZWIiUlBVlZWXBzcwPQPl7PDBgwAAAwcODAbs9HfnHBsc2bN2PZsmUKnW/d2tqKpKQkXL58WW6utZWVFSIjI2XbmzdvhqOjI8LDw2X74uPjYWJigsrKSgwaNAhxcXE4dOgQXF1dAbQH7oMHD37pubOzs3HhwgWUl5fD2toagPxYSiQSiEQiGBoayvbV19cjISEB9fX1sp9fSEgIMjMzkZCQgPDwcERFRcHd3V32wMLa2hrnz59HZmam3Pk1NTUhkUhw7dq1bo8bERG9Ocx0ExFRn+Ps7Izi4mIUFBTAz88PAQEBmDt3LgCguroazc3NmDp1KsRisexz4MAB1NTUAACWL1+O5ORkjBo1CmFhYV2u9l1eXo5x48bJ7XsWzHfHzZs3ERQUBCsrK0gkEujo6KCpqQn19fWd1vf390dxcTFsbGywatUqnDp1qsv2Hz58CHV19Q774+PjMX36dFkmf+bMmbh37x5Onz4NACguLoaysjKcnJy6fU3/JDs7G66urjA2Noa2tjYWL16MhoYGNDc3v9Lxz179FovFGD58eJd1Y2JiIBaLoaGhgaCgIKxZswbLly+Xlb/77rty9S9duoQzZ87I3SPDhg0DANTU1KCmpgYtLS1yP/sBAwbAxsbmpX0oLi7G4MGDZQH3qygpKUFrayusra3l+pKbmyu7X7tzD2poaLzy+BIRUd/ATDcREfU5WlpasLS0BNAeVDo4OCAuLg6BgYGyOcPp6ekwNjaWO05NTQ1AezB37do1ZGRkICsrC66urli5ciW2bdv2Wv1RUlKCIAhy+548eSK37efnh4aGBkRFRcHMzAxqamoYP378Sxf1Gj16NGpra3Hy5ElkZ2fDy8sLbm5ucnPTn6enp4eSkhK5fa2trUhMTMSNGzfkFoZrbW1FfHw8XF1doaGh8TqX/I/XXFdXh9mzZ2P58uX43//+hwEDBuDcuXMIDAxES0vLKy0+9v3338vmJ6uoqHRZ18fHB5999hk0NDRgZGQEJSX5vIGWlpbcdlNTEzw8PDp9Y8HIyAjV1dX/2L8Xvc5YNjU1QVlZGUVFRVBWVpYrE4vF3W7vzp070NfX7/ZxRET05jDoJiKiPk1JSQmffvop1q5di4ULF8LOzg5qamqor6/vMnurr68PPz8/+Pn5YdKkSQgNDe006La1tZUtyPVMfn5+h7Zu3LgBQRAgEokAoMP/+c7Ly0NMTAxmzpwJoH2u+POLdnVGR0cH3t7e8Pb2xrx58+Du7o47d+7IXvl+nqOjI/bu3SvXh4yMDNy/fx+///67XEBXWlqKgIAANDY2YsSIEWhra0Nubq7s9fLnPZsr39ra2uGapVKpbPvvv/9GbW2tbLuoqAhtbW3Yvn27LABOSUnp8npf9OJDk65IJBLZg5hXMXr0aKSmpsLc3LzTleqHDh0KFRUVFBQUwNTUFED7AnyVlZUvva9GjhyJP//8E5WVlZ1mu1VVVTuMo6OjI1pbW/HXX39h0qRJnbZra2vbYZ72i/cg0J6hf/ToERwdHTu/aCIi6pP4ejkREfV58+fPh7KyMvbs2QNtbW2EhIRgzZo1SExMRE1NDS5evIhdu3YhMTERAPD555/j+PHjqK6uRllZGdLS0mBra9tp28uWLUNVVRVCQ0NRUVGBH374ocNCZFOmTMGtW7cQGRmJmpoa7NmzBydPnpSrY2VlhYMHD6K8vBwFBQXw8fHpMjO6Y8cOJCUl4Y8//kBlZSWOHDkCQ0PDl86rdnZ2RlNTE8rKymT74uLiMGvWLDg4OMDe3l728fLygq6urmxxNj8/PyxZsgTHjh1DbW0tcnJyZAGymZkZRCIR0tLScOvWLdmbBC4uLjh48CDOnj2LkpIS+Pn5yQX2lpaWePLkCXbt2oWrV6/i4MGDiI2Nfen19raVK1fizp07WLBgAQoLC1FTU4OffvoJAQEBaG1thVgsRmBgIEJDQ3H69GmUlpbC39+/Qwb9eU5OTpg8eTLmzp2LrKws2ZsKz+Zem5ubo6mpCT///DNu376N5uZmWFtbw8fHB76+vjh69Chqa2tx4cIFREREID09HQCwatUqZGZmYtu2baiqqsLu3bs7zOcG2hfTGzJkCIYOHaqYQSMiIoVg0E1ERH1ev379EBwcjMjISDx48ABfffUVNm7ciIiICNja2sLd3R3p6emwsLAA0J5xXL9+PUaOHInJkydDWVkZycnJnbZtamqK1NRUHDt2DA4ODoiNjZVbfAtoz0TGxMRgz549cHBwwIULF2QrUz8TFxeHu3fvYvTo0Vi8eDFWrVqFgQMHvvSatLW1ERkZiTFjxmDs2LGoq6tDRkbGS4O+d955B56enjh8+DCA9jnk6enpsrnuz1NSUoKnpyfi4uIAtC8WN2/ePKxYsQLDhg1DUFAQHjx4AKA92/zll19i3bp1MDAwQHBwMABg/fr1cHJywuzZszFr1izMmTNHLthzcHDAjh07sHXrVtjb2+Pw4cNd/suz3jZo0CDk5eWhtbUV06ZNw4gRI7B69Wro6urKxvjrr7/GpEmT4OHhATc3N0ycOLHD3PAXpaamYuzYsViwYAHs7OwQFhYmy25PmDABy5Ytg7e3N/T19WULuyUkJMDX1xcff/wxbGxsMGfOHBQWFsoy7O+//z6+++47REVFwcHBAadOncKGDRs6nDspKQlBQUE9OUxERNQLRMKLE7aIiIioT7p8+TKmTp2Kmpqa15oPTP9dZWVlcHFxQWVlJSQSyZvuDhERdQMz3URERP8RI0eOxNatW+XmVtPbQSqV4sCBAwy4iYj+g5jpJiIiIiIiIlIQZrqJiIiIiIiIFIRBNxEREREREZGCMOgmIiIiIiIiUhAG3UREREREREQKwqCbiIiIiIiISEEYdBMREREREREpCINuIiIiIiIiIgVh0E1ERERERESkIAy6iYiIiIiIiBSEQTcRERERERGRgvwfgNL3q9bd41cAAAAASUVORK5CYII=\n" }, "metadata": {} } ] }, { "cell_type": "markdown", "source": [ "- Observation: The histogram of residuals is sharply peaked around zero, indicating that the majority of the errors are very small. The mean residual (red dashed line) is very close to zero, which is ideal. The distribution appears roughly symmetrical, but with longer tails, especially on the positive side, indicating the presence of some larger positive and negative errors (consistent with the outliers seen in the residuals plot).\n", "- Interpretation:\n", "The model's errors are predominantly small and centered around zero, confirming that it's not systematically over- or under-predicting.\n", "The non-perfect normal distribution (with longer tails than a pure bell curve) suggests that while most predictions are very accurate, there are occasional larger deviations. This is often fine, especially for complex real-world data." ], "metadata": { "id": "_WnTnl4bpJPg" } }, { "cell_type": "code", "source": [ "# --- Graph 4: Actual vs. Predicted Over Time (IMPORTANT for Time Series) ---\n", "\n", "sample_size = min(200, len(y_test_original_scale)) # Plot a manageable subset\n", "plt.figure(figsize=(14, 7))\n", "# Plotting based on a simple index for demonstration.\n", "# Replace `range(sample_size)` with your actual time index if available and un-shuffled.\n", "plt.plot(y_test_original_scale[:sample_size], label='Actual Total Emission', color='blue', alpha=0.8)\n", "plt.plot(y_pred_original_scale[:sample_size], label='Predicted Total Emission', color='orange', linestyle='--', alpha=0.8)\n", "plt.title(f'Actual vs. Predicted Total Emission Over Time (First {sample_size} Samples in Test Set)')\n", "plt.xlabel('Time Step / Sample Index') # Change to 'Year' or 'Date' if applicable\n", "plt.ylabel('Total Emission')\n", "plt.legend()\n", "plt.grid(True, linestyle='--', alpha=0.7)\n", "plt.tight_layout()\n", "plt.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 591 }, "id": "SKZ4DxzhoLwk", "outputId": "57e4a25a-fcf9-416d-c662-a51f39561b84" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABW4AAAKyCAYAAABFb0fEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd8FNX6BvBndjedkBBIaKGE0AJC6FxApBuQjgqKSlNExYsVu1K8YgMv+lMErwgWlCYqIqKAIAgIhCpKryIBQkkCIW1nzu+PZJcsKSRkz87uzPP9fNBkMtl9z+6TLe+eOaMIIQSIiIiIiIiIiIiIyGtY9C6AiIiIiIiIiIiIiFyxcUtERERERERERETkZdi4JSIiIiIiIiIiIvIybNwSEREREREREREReRk2bomIiIiIiIiIiIi8DBu3RERERERERERERF6GjVsiIiIiIiIiIiIiL8PGLREREREREREREZGXYeOWiIiIiIiIiIiIyMuwcUtERKanKAomTpyodxleaeLEiVAUxWVb7dq1MWLECH0KKkRhNXozb6xX1t+At2XFCObOnQtFUXDs2DG9S3Hx999/IzAwEBs2bCjx73jrWOjGHDt2DIqiYO7cuR67zrVr10JRFKxdu9Zj12kGzz33HNq2bat3GUREBDZuiYjIzWbMmAFFUcr0gv/UqVOYOHEidu7c6b7CfJSiKM5/FosF1apVw6233upzb1L1vE8db+xL8u96PDmOESNGFFlnYGCg9Os3gj///BP33nsvqlevjoCAAFSrVg333HMP/vzzT71Lc9G5c+cS5dObP2CaPHky2rZtiw4dOji3FZfhFStWuL2G0v59bt26FY8++igaN26MkJAQ1KxZE4MHD8aBAwcK3X/v3r3o2bMnypUrh4iICNx3331ITk4usJ+maXjrrbcQExODwMBANG3aFF999VWJx/Hbb7+hV69eqF69OgIDA1GzZk307dsXX375ZYkvg0rP8aHa9f517tzZLde3fPnyUv1Na5qGzz77DG3btkVERARCQ0NRv359DBs2DL///nupr//KlSuYOHFioa8nHn/8cezatQtLly4t9eUSEZF72fQugIiIjGXevHmoXbs2tmzZgkOHDqFu3bqlvoxTp05h0qRJqF27Npo1a+b+In1Mjx49MGzYMAghcPToUcyYMQNdu3bFDz/8gF69enm8nv3798NiKd1nv3rep3Fxcfj8889dtj3//PMoV64cXnzxxVJdlqfHERAQgI8//rjAdqvV6tbrycjIgM3m/peFN5IVd1myZAnuvvtuRERE4P7770dMTAyOHTuG2bNnY/HixZg/fz4GDhyoS23XevHFF/HAAw84v9+6dSvee+89vPDCC4iLi3Nub9q0KRo3boy77roLAQEBepRaqOTkZHz66af49NNPC/ysqAzHx8ejR48ebh1Laf8+33zzTWzYsAF33nknmjZtitOnT+P9999HixYt8Pvvv+Omm25y7nvy5EnccsstCAsLw5QpU3D58mVMnToVf/zxB7Zs2QJ/f3/nvi+++CLeeOMNjB49Gq1bt8Z3332HoUOHQlEU3HXXXcXWtGjRIgwZMgTNmjXDY489hgoVKuDo0aNYt24d/ve//2Ho0KE3fPsY0S233IKMjAyX2/9GDRo0yOU1y+XLl/Hwww9j4MCBGDRokHN75cqVy3xdQG7j9oMPPihx83bcuHH44IMP0L9/f9xzzz2w2WzYv38/fvzxR9SpUwf/+te/SnX9V65cwaRJkwCgQDO6SpUq6N+/P6ZOnYp+/fqV6nKJiMi92LglIiK3OXr0KDZu3IglS5ZgzJgxmDdvHiZMmKB3WT6vfv36uPfee53fDxw4EE2bNsX06dOLbNxmZmbC399fStPMmxpGJVG5cmWX2w8A3njjDVSqVKnAdm9js9k8UqOsGbx6ZeXw4cO47777UKdOHaxbtw6RkZHOnz322GPo2LEj7rvvPuzevRt16tTxWF3p6ekICQkpsL1Hjx4u3wcGBuK9995Djx49Cp3d5+7GfVl98cUXsNls6Nu3b4GfXS/D1xuLEAKZmZkICgoqc53XevLJJ/Hll1+6NP2GDBmCJk2a4I033sAXX3zh3D5lyhSkp6dj27ZtqFmzJgCgTZs26NGjB+bOnYsHH3wQAPDPP/9g2rRpGDt2LN5//30AwAMPPIBOnTph/PjxuPPOO4sd88SJE9GoUSP8/vvvBZqRZ8+eddvYjcJisbjt8atp06Zo2rSp8/tz587h4YcfRtOmTXV/rjhz5gxmzJiB0aNH46OPPnL52fTp0wud+V1WgwcPxp133okjR4549HGSiIhccakEIiJym3nz5qFChQro3bs37rjjDsybN6/Q/VJSUvDEE0+gdu3aCAgIQHR0NIYNG4Zz585h7dq1aN26NQBg5MiRzkMTHWvmFbVmZufOnV0aHNnZ2XjllVfQsmVLhIWFISQkBB07dsSaNWtKPa4zZ87AZrM5Z6bkt3//fiiK4nyDnpOTg0mTJqFevXoIDAxExYoVcfPNN2PlypWlvt6iNGnSBJUqVcLRo0cBXF0KYP78+XjppZdQvXp1BAcHIy0tDQCwefNm9OzZE2FhYQgODkanTp0KXYfyt99+Q+vWrREYGIjY2FjMmjWr0Osv7D4oy30qo8YbceTIEdx5552IiIhAcHAw/vWvf+GHH35w/vx641i/fj3uvPNO1KxZEwEBAahRowaeeOIJZGRkuK3GwjjWCf3tt98wbtw4REZGIjw8HGPGjEF2djZSUlIwbNgwVKhQARUqVMAzzzwDIYTLZVx7GP6lS5fw+OOPO+/PqKgo9OjRA9u3b3fuc/DgQdx+++2oUqUKAgMDER0djbvuugupqanOfQrLyvVuZ+BqphcuXIjXXnsN0dHRCAwMRLdu3XDo0KHr3iZvv/02rly5go8++silaQsAlSpVwqxZs5Ceno633noLALB48WIoioJff/21wGXNmjULiqJgz549zm379u3DHXfcgYiICAQGBqJVq1YFDil23C+//vorHnnkEURFRSE6Ovq6tV9PYevC1q5dG3369MHatWvRqlUrBAUFoUmTJs5DoJcsWYImTZogMDAQLVu2xI4dOwpcbknGVJRvv/0Wbdu2Rbly5dw2lp9++sk5Fsff+cqVK3HzzTcjPDwc5cqVQ4MGDfDCCy8AuP7fZ2Hat29foDlar149NG7cGHv37nXZ/vXXX6NPnz7Opi0AdO/eHfXr18fChQud27777jvk5OTgkUcecW5TFAUPP/wwTp48iU2bNhV7mxw+fBitW7cudAZpVFSUy/dTp05F+/btUbFiRQQFBaFly5ZYvHhxgd9TFAWPPvooFi1ahEaNGiEoKAjt2rXDH3/8ASA343Xr1kVgYCA6d+5cYM3hzp0746abbsK2bdvQvn17BAUFISYmBjNnzix2LA4lydaNPncWtsato96//voLXbp0QXBwMKpXr+78ey8rd4xnxIgR+OCDDwC4LolUlKNHj0II4bIUiYOiKAWykZKSgscffxw1atRAQEAA6tatizfffBOapgHIXY/Y8dg4adKkQpdj6d69O4DcTBMRkX4445aIiNxm3rx5GDRoEPz9/XH33Xfjww8/xNatW51vpoHcQw87duyIvXv3YtSoUWjRogXOnTuHpUuX4uTJk4iLi8PkyZPxyiuv4MEHH0THjh0B5L7BLo20tDR8/PHHuPvuuzF69GhcunQJs2fPRkJCArZs2VKqw9wrV66MTp06YeHChQVmEC9YsABWqxV33nkngNzZUq+//joeeOABtGnTBmlpaUhMTMT27dsLzKq7URcvXsTFixcLLEPx6quvwt/fH08//TSysrLg7++PX375Bb169ULLli0xYcIEWCwWzJkzB127dsX69evRpk0bAMAff/yBW2+9FZGRkZg4cSLsdjsmTJhQokNCy3qfeqLG6zlz5gzat2+PK1euYNy4cahYsSI+/fRT9OvXD4sXL8bAgQOvO45FixbhypUrePjhh1GxYkVs2bIF//d//4eTJ09i0aJFN1zbuXPnCmzz9/dH+fLlXbb9+9//RpUqVTBp0iT8/vvv+OijjxAeHo6NGzeiZs2amDJlCpYvX463334bN910E4YNG1bkdT700ENYvHgxHn30UTRq1Ajnz5/Hb7/9hr1796JFixbIzs5GQkICsrKynNf7zz//YNmyZUhJSUFYWFihl1uS2zm/N954AxaLBU8//TRSU1Px1ltv4Z577sHmzZuLvc2+//571K5d23kfXeuWW25B7dq1nQ3j3r17o1y5cli4cCE6derksu+CBQvQuHFj52Hzf/75Jzp06IDq1avjueeeQ0hICBYuXIgBAwbg66+/LjCGRx55BJGRkXjllVeQnp5ebN1lcejQIQwdOhRjxozBvffei6lTp6Jv376YOXMmXnjhBWcj8fXXX8fgwYNdlrEo7Zjyy8nJwdatW/Hwww8Xuc+1Gfbz8ysyI0DuB2J33303xowZg9GjR6NBgwb4888/0adPHzRt2hSTJ09GQEAADh065PyAx13PHUIInDlzBo0bN3Zu++eff3D27Fm0atWqwP5t2rTB8uXLnd/v2LEDISEhLktcOPZz/Pzmm28u8vpr1aqF1atX4+TJk9dt9L/77rvo168f7rnnHmRnZ2P+/Pm48847sWzZMvTu3dtl3/Xr12Pp0qUYO3YsgNwc9OnTB8888wxmzJiBRx55BBcvXsRbb72FUaNG4ZdffnH5/YsXL+K2227D4MGDcffdd2PhwoV4+OGH4e/vj1GjRhVZY0mz5e7nzosXL6Jnz54YNGgQBg8ejMWLF+PZZ59FkyZNyrTEkLvGM2bMGJw6dQorV64ssJRPYWrVqgUg93nmzjvvRHBwcJH7XrlyBZ06dcI///yDMWPGoGbNmti4cSOef/55JCUlYfr06YiMjMSHH35YYCmI/DOOw8LCEBsbiw0bNuCJJ5644duMiIjKSBAREblBYmKiACBWrlwphBBC0zQRHR0tHnvsMZf9XnnlFQFALFmypMBlaJomhBBi69atAoCYM2dOgX1q1aolhg8fXmB7p06dRKdOnZzf2+12kZWV5bLPxYsXReXKlcWoUaNctgMQEyZMKHZ8s2bNEgDEH3/84bK9UaNGomvXrs7v4+PjRe/evYu9rNIAIO6//36RnJwszp49KzZv3iy6desmAIhp06YJIYRYs2aNACDq1Kkjrly54vxdTdNEvXr1REJCgvO2FUKIK1euiJiYGNGjRw/ntgEDBojAwEBx/Phx57a//vpLWK1Wce3LhWvvg7Lcp7JqvJ7GjRu75OXxxx8XAMT69eud2y5duiRiYmJE7dq1haqqxY7DUfO1Xn/9daEoikvNEyZMKFG9w4cPFwAK/ZeQkODcb86cOc5t+W/Ddu3aCUVRxEMPPeTcZrfbRXR0tMvYhSj4NxAWFibGjh1bZG07duwQAMSiRYuKHcO1WSnp7ezIdFxcnMvf8bvvvlvo32F+KSkpAoDo379/sbX169dPABBpaWlCCCHuvvtuERUVJex2u3OfpKQkYbFYxOTJk53bunXrJpo0aSIyMzOd2zRNE+3btxf16tVzbnPcLzfffLPLZZbEokWLBACxZs2aAj9zXO7Ro0ed22rVqiUAiI0bNzq3/fTTTwKACAoKcsmf47Es/2WXdEyFOXTokAAg/u///q/Az4rKsCN/xY1lxYoVLpf13//+VwAQycnJRdZS3N9nSX3++ecCgJg9e3aBy/3ss88K7D9+/HgBwHnb9e7dW9SpU6fAfunp6QKAeO6554q9/tmzZwsAwt/fX3Tp0kW8/PLLYv369c6/jfyufczJzs4WN910k8tzkhC5f98BAQEut7MjB1WqVHH+DQghxPPPP1/gPunUqZPLc44QQmRlZYlmzZqJqKgokZ2dLYQQ4ujRowVu/5Jm60afOx2PFfnz7Kg3//2VlZUlqlSpIm6//fYSX3ZycnKBx0Z3jmfs2LGleu4aNmyYACAqVKggBg4cKKZOnSr27t1bYL9XX31VhISEiAMHDrhsf+6554TVahUnTpwocnzXuvXWW0VcXFyJayQiIvfjUglEROQW8+bNQ+XKldGlSxcAuYfuDRkyBPPnz4eqqs79vv76a8THxxc6g6u4wwRLy2q1Og811TQNFy5cgN1uR6tWrVwO9y6pQYMGwWazYcGCBc5te/bswV9//YUhQ4Y4t4WHh+PPP//EwYMHyz6IPLNnz0ZkZCSioqLQtm1bbNiwAU8++SQef/xxl/2GDx/usg7kzp07cfDgQQwdOhTnz5/HuXPncO7cOaSnp6Nbt25Yt24dNE2Dqqr46aefMGDAAJfDgOPi4pCQkHDd+spyn3qqxutZvnw52rRp4zITrly5cnjwwQdx7Ngx/PXXX9e9jPy3fXp6Os6dO4f27dtDCFHooeklERgYiJUrVxb498YbbxTY9/7773e5vdu2bQshBO6//37nNqvVilatWuHIkSPFXm94eDg2b96MU6dOFfpzx2zJn376CVeuXCnxeEp7O48cOdLlkHHHLMri6r906RIAIDQ0tNhaHD93LCkyZMgQnD171uWQ68WLF0PTNOff+IULF/DLL79g8ODBuHTpkjOv58+fR0JCAg4ePIh//vnH5XpGjx7tkTVpGzVqhHbt2jm/b9u2LQCga9euLn8zju2O2/BGxpTf+fPnAQAVKlQo9OeFZXjatGnFjiUmJqbA33V4eDiA3MO2HYd7u9u+ffswduxYtGvXDsOHD3dudyx3UtiazY71VR37ZGRklGi/oowaNQorVqxA586d8dtvv+HVV19Fx44dUa9ePWzcuNFl3/yPORcvXkRqaio6duxY6HNct27dULt2bef3jhzcfvvtLn8r1+bDwWazYcyYMc7v/f39MWbMGJw9exbbtm0rdCylyZa7nzvLlSvnsi6tv78/2rRpc93HvuLoOR4AmDNnDt5//33ExMTgm2++wdNPP424uDh069bN5W900aJF6NixIypUqOCs8dy5c+jevTtUVcW6detKfJ2OyyAiIv2YunG7bt069O3bF9WqVYOiKPj2229LfRlCCEydOhX169dHQEAAqlevjtdee839xRIReTFVVTF//nx06dIFR48exaFDh3Do0CG0bdsWZ86cwerVq537Hj582OVM3TJ9+umnaNq0qXN9ucjISPzwww8ua3CWVKVKldCtWzeXtQwXLFgAm83mcrbpyZMnIyUlBfXr10eTJk0wfvx47N69u0zj6N+/P1auXIlVq1Zh8+bNOHfuHKZNm1bgxGMxMTEu3zveMA4fPhyRkZEu/z7++GNkZWUhNTUVycnJyMjIQL169Qpcd4MGDa5bX1nuU0/VeD3Hjx8v9HIchzsfP378updx4sQJjBgxAhEREShXrhwiIyOdh93fSOaA3EZr9+7dC/wrbKmP/M054GpztUaNGgW2X7x4sdjrfeutt7Bnzx7UqFEDbdq0wcSJE10aHjExMXjyySfx8ccfo1KlSkhISMAHH3xw3XGW9na+dkyO5mBx9TuaUI4GblGubfA61ljO/+HMggUL0KxZM9SvXx9A7nIEQgi8/PLLBfLqWEbl2hNIXft3KUtp7n/g6m14I2MqjLhm3WSHwjLcsmXLYi+rsNtsyJAh6NChAx544AFUrlwZd911FxYuXOi2Ju7p06fRu3dvhIWFYfHixS7NdkeDNCsrq8DvZWZmuuwTFBRUov2Kk5CQgJ9++gkpKSlYt24dxo4di+PHj6NPnz4u98WyZcvwr3/9C4GBgYiIiHAe/l7Y3+GN5sOhWrVqBU6s5/i7uHZNXIfSZMvdz53R0dEFPjisUKHCdR/7iqPneIDcE7GNHTsW27Ztw7lz5/Ddd9+hV69e+OWXX3DXXXc59zt48CBWrFhRoEbHmrWlOcmdEMKtH6oTEVHpmXqN2/T0dMTHx2PUqFEub7pL47HHHsPPP/+MqVOnokmTJrhw4QIuXLjg5kqJiLzbL7/8gqSkJMyfPx/z588v8PN58+bh1ltvdct1FfUGQlVVlzfaX3zxBUaMGIEBAwZg/PjxiIqKgtVqxeuvv47Dhw/f0HXfddddGDlyJHbu3IlmzZph4cKF6NatGypVquTc55ZbbsHhw4fx3Xff4eeff8bHH3+M//73v5g5cyYeeOCBG7re6Oho5xuu4lzbEHA0NN5+++0i1/QtV65coU0GT/GFGktCVVX06NEDFy5cwLPPPouGDRsiJCQE//zzD0aMGCFthmB+Rc3qLGx7UU02h8GDB6Njx4745ptv8PPPP+Ptt9/Gm2++iSVLljjXh5w2bRpGjBjhzPq4cePw+uuv4/fff3fLSbiKqv169YeFhaFq1arXbZLs3r0b1atXd64VHBAQgAEDBuCbb77BjBkzcObMGWzYsAFTpkxx/o7jfnz66aeLnOl97drTJWnUuUNp7n/g6m14I2PKr2LFigCKb6aXVmG3WVBQENatW4c1a9bghx9+wIoVK7BgwQJ07doVP//8c5lmNaempqJXr15ISUnB+vXrUa1aNZefV61aFQCQlJRU4HeTkpIQERHhnGVbtWpVrFmzpkDDy/G71152cYKDg9GxY0d07NgRlSpVwqRJk/Djjz9i+PDhWL9+Pfr164dbbrkFM2bMQNWqVeHn54c5c+bgyy+/LHBZN5qPsihNttz93CljXHqO51oVK1ZEv3790K9fP3Tu3Bm//vorjh8/jlq1akHTNPTo0QPPPPNMob/raLiXxMWLF11e4xARkeeZunHbq1evYhenz8rKwosvvoivvvoKKSkpuOmmm/Dmm286z1q+d+9efPjhh9izZ49z9oinZlUQEXmTefPmISoqynmG5PyWLFmCb775BjNnzkRQUBBiY2Ndzs5emOJmd1SoUAEpKSkFth8/fhx16tRxfr948WLUqVMHS5Yscbm8a08uVhoDBgzAmDFjnDPyDhw4gOeff77AfhERERg5ciRGjhyJy5cv45ZbbsHEiRPd8matNGJjYwEA5cuXL7bxGxkZiaCgoEIP6dy/f3+JrudG71NP1Xg9tWrVKvRy9u3b5/w5UPQ4/vjjDxw4cACffvqpy0m/rndGdG9WtWpVPPLII3jkkUdw9uxZtGjRAq+99prLa6cmTZqgSZMmeOmll7Bx40Z06NABM2fOxH/+859CL7Okt3NZ9enTB//73//w22+/FXoiqPXr1+PYsWMuh34DubM6P/30U6xevRp79+6FEMJlKRTHY4yfn1+JPkzxBWUdU82aNREUFISjR4+6u7QCLBYLunXrhm7duuGdd97BlClT8OKLL2LNmjXo3r37Dc0MzMzMRN++fXHgwAGsWrUKjRo1KrBP9erVERkZicTExAI/u/Zkl82aNcPHH3+MvXv3ulyW44R6pTkxZn6OE6M5GsBff/01AgMD8dNPP7kszTBnzpwbuvzrOXXqFNLT011m3R44cAAAXJZgyK+02fKW586iuHs87prJ2qpVK/z6669ISkpCrVq1EBsbi8uXL1+3xpJc/9GjRxEfH++WOomI6MaYeqmE63n00UexadMmzJ8/H7t378add96Jnj17Ot80fv/996hTpw6WLVuGmJgY1K5dGw888ABn3BKRqWRkZGDJkiXo06cP7rjjjgL/Hn30UVy6dAlLly4FkLue3q5du/DNN98UuCzHTBjHG8PCGrSxsbH4/fffkZ2d7dy2bNky/P333y77OWbb5J9ds3nzZmzatOmGxxoeHo6EhAQsXLgQ8+fPh7+/PwYMGOCyj2O9R4dy5cqhbt26LjNGU1NTsW/fvhs+fL6kWrZsidjYWEydOhWXL18u8PPk5GQAubdVQkICvv32W5w4ccL587179+Knn3667vWU5T71VI3Xc9ttt2HLli0u+UhPT8dHH32E2rVrOxswRY2jsLwJIfDuu++WuTZPU1W1QDajoqJQrVo1Z47T0tJgt9td9mnSpAksFkuxs6NLejuX1fjx4xEUFIQxY8YU+Ju8cOECHnroIQQHB2P8+PEuP+vevTsiIiKwYMECLFiwAG3atHH5UD4qKgqdO3fGrFmzCp196cirLynrmPz8/NCqVatCm5ruVNjra0cT1JG54p47CqOqKoYMGYJNmzZh0aJFLmsEX+v2228v8FyzevVqHDhwAHfeeadzW//+/eHn54cZM2Y4twkhMHPmTFSvXh3t27cvtqb8Swvlt3z5cgBXl4axWq1QFMVlDfljx47d0NJvJWG32zFr1izn99nZ2Zg1axYiIyOLXPqiNNkqyXOn3tw9ntLk9fTp04WutZ6dnY3Vq1fDYrE4Z/sOHjwYmzZtKvS5MSUlxfnYHRwcXOz1p6am4vDhw9fNLBERyWXqGbfFOXHiBObMmYMTJ044D2l6+umnsWLFCsyZMwdTpkzBkSNHcPz4cSxatAifffYZVFXFE088gTvuuAO//PKLziMgIvKMpUuX4tKlS+jXr1+hP//Xv/6FyMhIzJs3D0OGDMH48eOxePFi3HnnnRg1ahRatmyJCxcuYOnSpZg5cybi4+MRGxuL8PBwzJw5E6GhoQgJCUHbtm0RExODBx54AIsXL0bPnj0xePBgHD58GF988YVz5qZDnz59sGTJEgwcOBC9e/fG0aNHMXPmTDRq1KjQBmFJDRkyBPfeey9mzJiBhIQE5wlzHBo1aoTOnTujZcuWiIiIQGJiIhYvXoxHH33Uuc8333yDkSNHYs6cORgxYsQN13I9FosFH3/8MXr16oXGjRtj5MiRqF69Ov755x+sWbMG5cuXx/fffw8AmDRpElasWIGOHTvikUcegd1ux//93/+hcePG1z3kvKz3qSdqvJ7nnnsOX331FXr16oVx48YhIiICn376KY4ePYqvv/7auZ5wUeNo2LAhYmNj8fTTT+Off/5B+fLl8fXXX5f58HG73Y4vvvii0J8NHDiwwJqT7nDp0iVER0fjjjvuQHx8PMqVK4dVq1Zh69atzpNK/fLLL3j00Udx5513on79+rDb7fj8889htVpx++23F3nZJb2dy6pevXr49NNPcc8996BJkya4//77ERMTg2PHjmH27Nk4d+4cvvrqqwKPG35+fhg0aBDmz5+P9PR0TJ06tcBlf/DBB7j55pvRpEkTjB49GnXq1MGZM2ewadMmnDx5Ert27XLLGDyprGPq378/XnzxRaSlpTmXnnC3yZMnY926dejduzdq1aqFs2fPYsaMGYiOjnbOqi7ucaYwTz31FJYuXYq+ffviwoULBf7W8p/c6oUXXsCiRYvQpUsXPPbYY7h8+TLefvttNGnSBCNHjnTuFx0djccffxxvv/02cnJy0Lp1a3z77bdYv3495s2bd90lHfr374+YmBj07dsXsbGxSE9Px6pVq/D999+jdevW6Nu3LwCgd+/eeOedd9CzZ08MHToUZ8+exQcffIC6deuW+fGwMNWqVcObb76JY8eOoX79+liwYAF27tyJjz76CH5+fkX+XkmzVZLnTm/gzvE4Gt7jxo1DQkICrFary1q1+Z08eRJt2rRB165d0a1bN1SpUgVnz57FV199hV27duHxxx93Lmkwfvx4LF26FH369MGIESPQsmVLpKen448//sDixYtx7NgxVKpUCUFBQWjUqBEWLFiA+vXrIyIiAjfddJNzzfpVq1ZBCIH+/fvLvEmJiOh6BAkhhAAgvvnmG+f3y5YtEwBESEiIyz+bzSYGDx4shBBi9OjRAoDYv3+/8/e2bdsmAIh9+/Z5eghERLro27evCAwMFOnp6UXuM2LECOHn5yfOnTsnhBDi/Pnz4tFHHxXVq1cX/v7+Ijo6WgwfPtz5cyGE+O6770SjRo2EzWYTAMScOXOcP5s2bZqoXr26CAgIEB06dBCJiYmiU6dOolOnTs59NE0TU6ZMEbVq1RIBAQGiefPmYtmyZWL48OGiVq1aLvUBEBMmTCjReNPS0kRQUJAAIL744osCP//Pf/4j2rRpI8LDw0VQUJBo2LCheO2110R2drZznzlz5hQYU1EAiLFjxxa7z5o1awQAsWjRokJ/vmPHDjFo0CBRsWJFERAQIGrVqiUGDx4sVq9e7bLfr7/+Klq2bCn8/f1FnTp1xMyZM8WECRPEtS8XatWqJYYPH+6yraz3qbtrvJ7GjRu75EUIIQ4fPizuuOMOER4eLgIDA0WbNm3EsmXLCvxuUeP466+/RPfu3UW5cuVEpUqVxOjRo8WuXbsKjLWk9Q4fPlwAKPLf0aNHhRBX87R161aX33dcT3JycoHLDQkJcdmW/28gKytLjB8/XsTHx4vQ0FAREhIi4uPjxYwZM5z7HzlyRIwaNUrExsaKwMBAERERIbp06SJWrVrlcrmFZaUkt3NRmT569GiJ/3aEEGL37t3i7rvvFlWrVhV+fn6iSpUq4u677xZ//PFHkb+zcuVKAUAoiiL+/vvvQvc5fPiwGDZsmKhSpYrw8/MT1atXF3369BGLFy927lPU/VISixYtEgDEmjVrCvzMcbmO+1+I3Nu5d+/eBfYt7PHDcRu+/fbbpR5TUc6cOSNsNpv4/PPPXbYXlrUbHcvq1atF//79RbVq1YS/v7+oVq2auPvuu8WBAwdc9ivuceZanTp1KvZv7Fp79uwRt956qwgODhbh4eHinnvuEadPny6wn6qqzucff39/0bhx40KfLwrz1VdfibvuukvExsaKoKAgERgYKBo1aiRefPFFkZaW5rLv7NmzRb169URAQIBo2LChmDNnTqGPL6XJQWF/e506dRKNGzcWiYmJol27diIwMFDUqlVLvP/++4Ve5rW3eUmyVZLnzsI46s3/t+Ko91qFPf8XJzk5udDXB+4aj91uF//+979FZGSkUBSl2OeFtLQ08e6774qEhAQRHR0t/Pz8RGhoqGjXrp343//+JzRNc9n/0qVL4vnnnxd169YV/v7+olKlSqJ9+/Zi6tSpLjVs3LjR+Zx67ViHDBkibr755hLfXkREJIcihBtWnjcARVHwzTffOA95XbBgAe655x78+eefBT4ZL1euHKpUqYIJEyZgypQpyMnJcf4sIyMDwcHB+Pnnn9GjRw9PDoGIiIiISBf3338/Dhw4gPXr1+tdCrlZ586dce7cueuuZU7Gcfr0acTExGD+/PmccUtEpDMulVCE5s2bQ1VVnD17Fh07dix0nw4dOsBut+Pw4cPOQ+0ci/S76+QaRERERETebsKECahfvz42bNiADh066F0OEZXB9OnT0aRJEzZtiYi8gKln3F6+fBmHDh0CkNuofeedd9ClSxdERESgZs2auPfee7FhwwZMmzYNzZs3R3JyMlavXo2mTZuid+/e0DQNrVu3Rrly5TB9+nRomoaxY8eifPny+Pnnn3UeHRERERERUdlwxi0REZF+3HMGCB+VmJiI5s2bo3nz5gCAJ598Es2bN8crr7wCAJgzZw6GDRuGp556Cg0aNMCAAQOwdetW1KxZE0DuSV++//57VKpUCbfccgt69+6NuLg4zJ8/X7cxERERERERERERke8z9YxbIiIiIiIiIiIiIm9k6hm3RERERERERERERN6IjVsiIiIiIiIiIiIiL2PTuwBP0zQNp06dQmhoKBRF0bscIiIiIiIiIiIiMgkhBC5duoRq1arBYil+Tq3pGrenTp1CjRo19C6DiIiIiIiIiIiITOrvv/9GdHR0sfuYrnEbGhoKIPfGKV++vM7VyGe327Fjxw40b94cNpvp7m6SiNkiGZgrkoXZIlmYLZKBuSJZmC2SgbkiWYyarbS0NNSoUcPZoyyOcUZdQo7lEcqXL2+axm1ISAjKly9vqJCT/pgtkoG5IlmYLZKF2SIZmCuShdkiGZgrksXo2SrJEq48ORkRERERERERERGRl2Hj1uAURUFQUBBPxEZux2yRDMwVycJskSzMFsnAXJEszBbJwFyRLMwWoAghhF5Xvm7dOrz99tvYtm0bkpKS8M0332DAgAFF7r9kyRJ8+OGH2LlzJ7KystC4cWNMnDgRCQkJJb7OtLQ0hIWFITU11RRLJRAREREREREREZF3KE1vUtcFItLT0xEfH49Ro0Zh0KBB191/3bp16NGjB6ZMmYLw8HDMmTMHffv2xebNm9G8eXMPVOx7NE3DuXPnUKlSJVgsnGBN7sNskQzMFcnCbJEszBbJwFyRLMwWXUtVVeTk5JTpMjRNw8WLF1GhQgXmitzKV7Pl5+cHq9XqlsvStXHbq1cv9OrVq8T7T58+3eX7KVOm4LvvvsP333/Pxm0RNE3DkSNHEBER4VMhJ+/HbJEMzBXJwmyRLMwWycBckSzMFjkIIXD69GmkpKS45bKys7ORmppq6kPayf18OVvh4eGoUqVKmev26VOyaZqGS5cuISIiQu9SiIiIiIiIiIh8gqNpGxUVheDg4DI1l4QQuHLlSpkvh+havpgtR81nz54FAFStWrVMl+fTjdupU6fi8uXLGDx4cJH7ZGVlISsry/l9WloaAMBut8NutwMALBYLLBYLNE2DpmnOfR3bVVVF/qWAi9putVqhKIrzcvNvB3IPQSjJdpvNBiGEy3ZFUWC1WgvUWNT2/GPKf1lGGZMR7ydfG5NjH03TXK7Xl8dkxPvJF8fk+L+RxnS92jkm+WMSQhSo3dfHZMT7yRfH5Ph5URnzxTFdr3aOSf6YABS4Xl8fkxHvJ18cU/56jTKm4mrnmAqvXVVVpKSkIDIyssBEOEVRXC63JNs1TYOqqggICHA2127kckqzvTRk18IxyRuT4+8rf7Y8VXtZxhQYGAghBJKTkxEZGVngckvDZxu3X375JSZNmoTvvvsOUVFRRe73+uuvY9KkSQW279ixAyEhIQCAyMhIxMbG4ujRo0hOTnbuEx0djejoaBw4cACpqanO7XXq1EFUVBT27NmDjIwM5/aGDRsiPDwcO3bscHlQbNq0Kfz9/ZGYmOhSQ6tWrZCdnY3du3c7t1mtVrRu3RqpqanYt2+fc3tQUBDi4+Nx7tw5HDlyxLk9LCwMcXFxOHXqFE6ePOnc7hjTiRMnkJ6eju3bt0NRFEOMyYj3ky+OqXz58ggLC8Pp06dx6tQpQ4zJiPeTr41p7969zses4OBgQ4zJiPeTL46pRYsWCAkJcT4fGmFMRryffHFMQgikp6cjKysLiqIYYkxGvJ98bUwVK1ZEVlaWy2OWr4/JiPeTL45JCAGLxQJFUQwzJsB495MnxlS+fHkEBgYiPT3duU1RFISEhEBVVWRmZjq3WywWBAcHw263u0yMs1qtCAoKQk5ODjRNw5UrVwDkNrQDAwORlZXl0kj29/eHv78/MjMzXWoMCAiAn58fMjIyXJrXgYGBsNlsuHLliksDLSgoCBaLxaV2AAgJCYGmaS63S1nGlJ2d7dzOMek3JqvVClVVfXJMAHDhwgWXx4KgoCDExMSgpBRR1pa4myiKgm+++QYDBgy47r7z58/HqFGjsGjRIvTu3bvYfQubcVujRg2cP3/eeeY2fmrHMXFMHBPHxDFxTBwTx8QxcUwcE8fEMXFMHJMZxpSZmYm///4btWvXRmBgoMv+3jZjk7NTC+dttXNMBWVmZuLYsWOoXbs2/Pz8XC43PT0dYWFhSE1NdfYmi+JzjduvvvoKo0aNwvz589G/f/9SX09aWlqJbxwj0DQNp06dQrVq1WCxcPF5ch9mi2RgrkgWZotkYbZIBuaKZGG2CMhtKB09ehQxMTEFGrc3QgiBnJwc+Pn5lfowcKLi+HK2ivs7K01vUtdH6suXL2Pnzp3YuXMnAODo0aPYuXMnTpw4AQB4/vnnMWzYMOf+X375JYYNG4Zp06ahbdu2OH36NE6fPu1y2AC50jQNJ0+edPnkjsgdmC2SgbkiWZgtkoXZIhmYK5KF2SJZ8h+ublaKouDbb7/VuwwXetU0ceJENGvWrMyXM3fu3GKXRzUDXRu3iYmJaN68OZo3bw4AePLJJ9G8eXO88sorAICkpCRnExcAPvroI9jtdowdOxZVq1Z1/nvsscd0qZ+IiIiIiIiIiDxn06ZNsFqt1106szC1a9fG9OnT3V/UdSiKUuy/iRMnFvm7x44dg6IozkmP7jRixIhC6+nZs2eZLvfpp5/G6tWry1zfkCFDsGPHjjJfji/T9eRknTt3Lna9iLlz57p8v3btWrkFERERERERERGR15o9ezb+/e9/Y/bs2c6lP7xdUlKS8+sFCxbglVdewf79+53bypUrp0dZAICePXtizpw5LtsCAgLKdJnlypVzy5iCgoIQGRlZ5svxZVzUxuAsFgsiIyO5fhG5HbNFMjBXJAuzRbIwWyQDc0WyMFski83mmXmBly9fxoIFC/Dwww+jd+/eBSb8AcD333+P1q1bIzAwEJUqVcLAgQMB5E4ePH78OJ544gnnzFKg8MP6p0+fjtq1azu/37p1K3r06IFKlSohLCwMnTp1wvbt20tcd5UqVZz/wsLCoCiK8/uoqCi88847iI6ORkBAAJo1a4YVK1Y4fzcmJgYA0Lx5cyiKgs6dO7ulJoeAgACX+qpUqYIKFSo4f64oCmbNmoU+ffogODgYcXFx2LRpEw4dOoTOnTsjJCQE7du3x+HDh52/c+1tunbtWrRp0wYhISEIDw9Hhw4dcPz4cQDArl270KVLF4SGhqJ8+fJo2bIlEhMTAeRO6IyOjnap98MPP0RsbCz8/f3RoEEDfP755y4/VxQFH3/8MQYOHIjg4GDUq1cPS5cuLfXt4i34aG1wFosFsbGxfGImt2O2SAbmimRhtkgWZotkYK5IFmaLCiMEkJFx4/8yMxUIEYjMTKXUv1vMQdiFWrhwIRo2bIgGDRrg3nvvxSeffOJyJPcPP/yAgQMH4rbbbsOOHTuwevVqtGnTBgCwZMkSREdHY/LkyUhKSnKZBXs9ly5dwvDhw/Hbb7/h999/R7169XDbbbfh0qVLpRtAId59911MmzYNU6dOxe7du5GQkIB+/frh4MGDAIAtW7YAAFatWoWkpCQsWbJEek3XevXVVzFs2DDs3LkTDRs2xNChQzFmzBg8//zzSExMhBACjz76aKG/a7fbMWDAAHTq1Am7d+/Gpk2b8OCDDzob5/fccw+io6OxdetWbNu2Dc899xz8/PwAwLmP4//ffPMNHnvsMTz11FPYs2cPxowZg5EjR2LNmjUu1zlp0iQMHjwYu3fvxm233YZ77rkHFy5ccPvt4gm6LpVA8mma5jyLHZ+cyZ2YLZKBuSJZmC2ShdkiGZgrkoXZosJkZgIdO5blEgSEEHnNNaVUv7l+PRAUVPL9Z8+ejXvvvRdA7iH+qamp+PXXX52zUF977TXcddddmDRpkvN34uPjAQARERGwWq0IDQ1FlSpVSlVn165dXb7/6KOPEB4ejl9//RV9+vQp1WVda+rUqXj22Wdx1113AQDefPNNrFmzBtOnT8cHH3zgXCqgYsWKLnW7q6Zly5YVWNbghRdewAsvvOD8fuTIkRg8eDAA4Nlnn0W7du3w8ssvIyEhAQDw2GOPYeTIkYVeflpaGlJTU9GnTx/ExsYCAOLi4pw/P3HiBMaPH4+GDRsCAOrVq+f8maMp78jX1KlTMWLECDzyyCMAcs+V9fvvv2Pq1Kno0qWL8/dGjBiBu+++GwAwZcoUvPfee9iyZUuZ1+7VAx+pDU7TNCQnJ/OsoeR2zBbJwFyRLMwWycJskQzMFcnCbJEsxZ2/yF3279+PLVu2OBtyNpsNQ4YMwezZs5377Ny5E926dXP7dZ85cwajR49GvXr1EBYWhvLly+Py5cs4ceJEmS43LS0Np06dQocOHVy2d+jQAXv37vVITV26dMHOnTtd/j300EMu+zRt2tT5deXKlQEATZo0cdmWmZmJtLS0ApcfERGBESNGICEhAX379sW7777rMtv5ySefxAMPPIDu3bvjjTfecFly4Vp79+4t0W2Vv96QkBCUL18eZ8+eLe5m8FqccUtEREREREREZFKBgbkzX2+UEEB6egZCQkKglG7CLQIDS77v7NmzYbfbXU5GJoRAQEAA3n//fYSFhSGoNNN381gslgKN55ycHJfvhw8fjvPnz+Pdd99FrVq1EBAQgHbt2iE7O7vU1+cu7qopJCQEdevWLXYfx9IFwNVlCwrbVtSHQnPmzMG4ceOwYsUKLFiwAC+99BJWrlyJf/3rX5g4cSKGDh2KH374AT/++CMmTJiA+fPnO9cmvhH5a3PU56sfWHHGLRERERERERGRSSlK7nIFevwraaPXbrfjs88+w7Rp01xmhu7atQvVqlXDV199BSB3puXq1auLvBx/f3+oquqyLTIyEqdPn3Zp3u7cudNlnw0bNmDcuHG47bbb0LhxYwQEBODcuXMlK74Y5cuXR7Vq1bBhw4YC19eoUSNnzQAK1C2rJlmaN2+O559/Hhs3bsRNN92EL7/80vmz+vXr44knnsDPP/+MQYMGYc6cOYVeRlxcXLG3lRFxxq3BWSwWREdHc/0icjtmi2RgrkgWZotkYbZIBuaKZGG2SBZHc1GWZcuW4eLFi7j//vsRFhbm8rPbb78ds2fPxkMPPYQJEyagW7duiI2NxV133QW73Y7ly5fj2WefBQDUrl0b69atw1133YWAgABUqlQJnTt3RnJyMt566y3ccccdWLFiBX788UeUL1/eeR316tXD559/jlatWiEtLQ3jx4+/odm9hRk/fjwmTJiA2NhYNGvWDHPmzMHOnTsxb948AEBUVBSCgoKwYsUKREdHIzAwEGFhYW6rKSsrC6dPn3bZZrPZUKlSJbeM7+jRo/joo4/Qr18/VKtWDfv378fBgwcxbNgwZGRkYPz48bjjjjsQExODkydPYuvWrbj99tsLvazx48dj8ODBaN68Obp3747vv/8eS5YswapVq9xSqzfio7XB8YmZZGG2SAbmimRhtkgWZotkYK5IFmaLZFAUBf7+/s7D5WWYPXs2unfvXqBpC+Q2bhMTE7F792507twZixYtwtKlS9GsWTN07doVW7Zsce47efJkHDt2DLGxsc6TfsXFxWHGjBn44IMPEB8fjy1btuDpp58ucP0XL15EixYtcN9992HcuHGIiopyy9jGjRuHJ598Ek899RSaNGmCFStWYOnSpc6TdNlsNrz33nuYNWsWqlWrhv79+7u1phUrVqBq1aou/26++Wa3jA0AgoODsW/fPtx+++2oX78+HnzwQYwdOxZjxoyB1WrF+fPnMWzYMNSvXx+DBw9Gr169nCeXc2TK8f8BAwbg3XffxdSpU9G4cWPMmjULc+bMcZ6czogU4YkVpL1IWloawsLCkJqa6vLpiVGpqooDBw6gfv36sFqtepdDBsJskQzMFcnCbJEszBbJwFyRLMwWAUBmZiaOHj2KmJgYBJZmkdkiCCGQmZmJwMBAqc1bMh9fzlZxf2el6U3yYzaDE0IgNTXVI2d4JHNhtkgG5opkYbZIFmaLZGCuSBZmi2S5dv1VIncxe7bYuCUiKgl7OpB1Qe8qiIiIiIiIiMgkeHIyIqKSWNUp9//d1gB+ofrWQkRERERERESGxxm3BmexWFCnTh0uPk9uZ9psXT6qdwWGZtpckXTMFsnCbJEMzBXJwmyRLAEBAXqXQAZl9mxxxq3BWSwWt53pkCg/ZotkYK5IFmaLZGG2SAbmimRhtkgGRVHg5+endxlkQMwWZ9wanqqq2LVrl+kXcyb3M1W2hHb1ax87k6WvMVWuyKOYLZKF2SIZmCuShdkiGYQQuHLlCk96R27HbLFxa3hCCGRkZJg65CSHqbKVv3EbUku/OkzAVLkij2K2SBZmi2RgrkgWZotk0TTt+jsR3QCzZ4tLJRARXY9iAVpMB6AB1mC9qyEiIiIiIiIiE2DjlojoehQLEHWz3lUQERERERERkYlwqQSDs1qtaNiwIaxWq96lkMGYLlt/vQXsfAG4ckrvSgzNdLkij2G2SBZmi2RgrkgWZotkCQwM1LsEtxoxYgQGDBjg/L5z5854/PHHPV7H2rVroSgKUlJSPH7dRfF0Tfmz5a774dr715uxcWtwiqIgPDwcCk+oRG5mqmyp2cCJhcDpn4GcFL2rMTRT5Yo8itkiWZgtkoG5IlmYLZJBURTYbDbpuRoxYgQURYGiKPD390fdunUxefJk2O12qdcLAEuWLMGrr75aon091dh0XE9x/9auXVvk78+dOxfh4eFSaqtdu3ah9bzxxhulupxrs1Wa+6E47777LubOnVvmy/EENm4Nzm63Y+vWrR55ICNzMVW27Jevfs0TOUhlqlyRRzFbJAuzRTIwVyQLs0UyCCGQnp7ukZPe9ezZE0lJSTh48CCeeuopTJw4EW+//Xah+2ZnZ7vteiMiIhAaGuq2y3OH9u3bIykpyflv8ODBztvH8a99+/a61Td58mSXWpKSkvDvf/+7VJdxbbbcdT+EhYVJa1q7Gxu3JqCqqt4lkEGZJlsi31kshUnGrCPT5Io8jtkiWZgtkoG5IlmYLZLBE01bAAgICECVKlVQq1YtPPzww+jevTuWLl0K4Orh76+99hqqVauGBg0aAAD+/vtvDB48GOHh4YiIiED//v1x7Ngx52Wqqoonn3wS4eHhqFixIp555pkC47n2EP2srCw8++yzqFGjBgICAlC3bl3Mnj0bx44dQ5cuXQAAFSpUgKIoGDFiBABA0zS8/vrriImJQVBQEOLj47F48WKX61m+fDnq16+PoKAgdOnSxaXOa/n7+6NKlSrOf0FBQc7bp0qVKggICMADDzyAChUqIDg4GL169cLBgwcB5M7WHTlyJFJTU52zYSdOnAgA+Pzzz9GqVSuEhoaiSpUqGDp0KM6ePVvau8r5+/n/hYSEOK9fURT89NNPaN68OYKCgtC1a1ecPXsWP/74I+Li4lC+fHncc889SE9PL/J+mDFjBurVq4fAwEBUrlwZd9xxh/NnixcvRpMmTRAUFISKFSuie/fuzsu6dqmErKwsjBs3DlFRUQgMDMTNN9+MrVu3On/uqHf16tVo1aoVgoOD0b59e+zfv7/Ut0tpsXFLRHRdWhFfExERERERGYQ9o+h/anbx+6r5v84q2eW6QVBQkMvM2tWrV2P//v1YuXIlli1bhpycHCQkJCA0NBTr16/Hhg0bUK5cOfTs2dP5e9OmTcPcuXPxySef4LfffsOFCxfwzTffFHu9w4YNw1dffYX33nsPe/fuxaxZs1CuXDnUqFEDX3/9NQBg//79SEpKwrvvvgsAeP311/HZZ59h5syZ+PPPP/HEE0/g3nvvxa+//gogt8E8aNAg9O3bFzt37sQDDzyA55577oZvmxEjRiAxMRFLly7Fpk2bIITAbbfdhpycHLRv3x7Tp09H+fLlnbNhn376aQBATk4OXn31VezatQvffvstjh075mw+u9vEiRPx/vvvY+PGjc4G+/Tp0/Hll1/ihx9+wM8//4yZM2cW+ruJiYkYN24cJk+ejP3792PFihW45ZZbAABJSUm4++67MWrUKOzduxdr167FoEGDivyA4ZlnnsHXX3+NTz/9FNu3b0fdunWRkJCACxcuuOz34osvYtq0aUhMTITNZsOoUaPce4MUwib9GoiIfF3+WbaCjVsiIiIiIjKgVR2L/lmlDkCrd69+v6YHoGY6vw1SNcCaNzewQgug7UdX9/21b+HnCumZeMOlCiGwevVq/PTTTy6H34eEhODjjz+Gv78/AOCLL76Apmn4+OOPneukzpkzB+Hh4Vi7di1uvfVWTJ8+Hc8//zwGDRoEAJg5cyZ++umnIq/7wIEDWLhwIVauXInu3bsDAOrUqeP8eUREBAAgKirKeTh+VlYWpkyZglWrVqFdu3bO3/ntt98wa9YsdOrUCR9++CFiY2Mxbdo0AECDBg3wxx9/4M033yz17XPw4EEsXboUGzZscC6XMG/ePNSoUQPffvst7rzzToSFhUFRFFSpUsXld/M3I+vUqYP33nsPrVu3xuXLl1GuXLkS1/Dss8/ipZdectn2448/omPHqzn7z3/+gw4dOgAA7r//fjz//PM4fPiw8/a8/fbbsX79+kIv/8SJEwgJCUGfPn0QGhqKWrVqoXnz5gByG7d2ux2DBg1CrVq1AABNmjQp9HLS09Px4YcfYu7cuejVqxcA4H//+x9WrlyJ2bNnY/z48c59X3vtNXTq1AkA8Nxzz6F3797IzMyUenI+Nm4Nzmq1omnTpjxrKLmdqbLl0rjloWUymSpX5FHMFsnCbJEMzBXJwmyRLBaLZw7oXrZsGcqVK4ecnBxomoahQ4c6D/EHcptzjqYtAOzatQuHDh0qsC5qZmYmDh8+jNTUVCQlJaFt27bOn9lsNrRq1arI2Zk7d+6E1Wp1NvBK4tChQ7hy5Qp69Ojhsj07O9vZbNy7d69LHQCcTd7S2rt3L2w2m8vlVaxYEQ0aNMDevXuL/d1t27Zh4sSJ2LVrFy5evAhNy528dOLECTRq1KjENYwfP77ATN3q1au7fN+0aVPn15UrV0ZwcLBLE7xy5couSxbk16NHD9SqVQt16tRBz5490bNnTwwcOBDBwcGIj49Ht27d0KRJEyQkJODWW2/FHXfcgQoVKhS4nMOHDyMnJ8fZQAYAPz8/tGnTpsBtlb/eqlWrAgDOnj2LmjVrXufWuHFs3JpA/gctIncyTbZc1rjlyclkM02uyOOYLZKF2SIZmCuShdmiInUvfGYjAEC5ptnfZeXVr/O/R1IUQLmmidvp+7LX5rjaLl3w4Ycfwt/fH9WqVYPN5trWcqyh6nD58mW0bNkS8+bNK3BZkZGRN1RDUFBQqX/n8uXcE17/8MMPBZqXAQEBN1SHDOnp6UhISEBCQgLmzZuHyMhInDhxAgkJCaU+2VulSpVQt27dYvfx8/Nzfq0oisv3jm2OxvG1QkNDsX37dqxduxY///wzXnnlFUycOBFbt25FeHg4Vq5ciY0bN+Lnn3/G//3f/+HFF1/E5s2bERMTU6pxFFcvgCLrcxeucWtwqqoiMTGRC9CT25kqW45ZtooNiGipby0GZ6pckUcxWyQLs0UyMFckC7NFxbIFFf3P6l/svulZWr59A0p2uTcgJCQEdevWRc2aNQs0bQvTokULHDx4EFFRUahbt67Lv7CwMISFhaFq1arYvHmz83fsdju2bdtW5GU2adIEmqY516a9luPDkfx/Z40aNUJAQABOnDhRoI4aNWoAAOLi4rBlyxaXy/r999+vO8bCxMXFwW63u4zr/Pnz2L9/v3PWrL+/f4HHgn379uH8+fN444030LFjRzRs2PCGTkzmTsU1Rm02G7p374633noLu3fvxrFjx/DLL78AyG2sdujQAZMmTcKOHTvg7+9f6NrFsbGx8Pf3x4YNG5zbcnJysHXr1lLNMJaFM26JiK4nMAqIfz33U2YLDysjIiIiIiLyBffccw/efvtt9O/fH5MnT0Z0dDSOHz+OJUuW4JlnnkF0dDQee+wxvPHGG6hXrx4aNmyId955BykpKUVeZu3atTF8+HCMGjUK7733HuLj43H8+HGcPXsWgwcPRq1ataAoCpYtW4bbbrsNQUFBCA0NxdNPP40nnngCmqbh5ptvRmpqKjZs2IDy5ctj+PDheOihhzBt2jSMHz8eDzzwALZt24a5c+fe0Ljr1auH/v37Y/To0Zg1axZCQ0Px3HPPoXr16ujfv79zHJcvX8bq1asRHx+P4OBg1KxZE/7+/vi///s/PPTQQ9izZw9effXVG6rh0qVLOH36tMu24OBglC9f/oYu71rLli3DkSNHcMstt6BChQpYvnw5NE1DgwYNsHnzZqxevRq33noroqKisHnzZiQnJyMuLq7A5YSEhODhhx/G+PHjERERgZo1a+Ktt97ClStXcP/997ul1rLgjFsiouuxhQBVewBVuupdCREREREREZVQcHAw1q1bh5o1a2LQoEGIi4vD/fffj8zMTGcD8amnnsJ9992H4cOHo127dggNDcXAgQOLvdwPP/wQd9xxBx555BE0bNgQo0ePRnp6OoDcdVwnTZqE5557DpUrV8ajjz4KAHj11Vfx8ssv4/XXX0dcXBx69uyJH374wXnofs2aNfH111/j22+/RXx8PGbOnIkpU6bc8NjnzJmDli1bok+fPmjXrh2EEFi+fLnzcP/27dvjoYcewpAhQxAZGYm33noLkZGRmDt3LhYtWoRGjRrhjTfewNSpU2/o+l955RVUrVrV5d8zzzxzw+O5Vnh4OJYsWYKuXbsiLi4OM2fOxFdffYXGjRujfPnyWLduHW677TbUr18fL730EqZNm+Y8+di13njjDdx+++2477770KJFCxw6dAg//fRToWviepoiilpt2aDS0tIQFhaG1NRUt3X5vZndbkdiYiJatWpVosMIiErKdNk68imQfhyoORgIa6h3NYZlulyRxzBbJAuzRTIwVyQLs0VA7om5jh49ipiYGAQGBpb58oQQSE9PR0hIiHPdTyJ38OVsFfd3VpreJBu3BieEgKqqsFqtPhdy8m6mylZ2KvBLt9yvm73FmbcSmSpX5FHMFsnCbJEMzBXJwmwRIKdx68BckTv5crbc1bjlUgkmUNoz/xGVlGmylX786teCJ3KQzTS5Io9jtkgWZotkYK5IFmaLZCjuBFJEZWH2bLFxa3CqqmL37t08ayi5namylb9ZK8z9pCGbqXJFHsVskSzMFsnAXJEszBbJkpGRoXcJZFBmzxYbt0RE15WvWcsZt0RERERERETkAWzcEhFdj5a/WcsZt0REREREREQkHxu3JmC1WvUugQzKNNniUgkeZZpckccxWyQLs0UyMFckC7NFDu5cO9TXThxFvsNXs+Wuvy9F5D9FmwmU5sxtREQAgOQNwLbHcr9u/CJQY6C+9RAREREREd0gTdNw8OBBWK1WREZGwt/f32ebY0TeRgiB7OxsJCcnQ1VV1KtXDxaL67zZ0vQmbTKLJf0JIZCamoqwsDA+EJNbmSpbQoWqAqp/ZfhX66V3NYZmqlyRRzFbJAuzRTIwVyQLs0UAYLFYEBMTg6SkJJw6dcotl6lpWoHmFJE7+Gq2goODUbNmzTLXzsatwamqin379qFVq1aw2Xh3k/uYKluhDTB1xSs4mRyOtzsGIpBHl0ljqlyRRzFbJAuzRTIwVyQLs0UO/v7+qFmzJux2O1S1bCdgttvt2LNnD2666SbmitzKV7NltVphs9nc8gGZ74yaiEgvQZXx9eZ+0DTg4kWgalW9CyIiIiIiIiobRVHg5+cHPz+/Ml2O3W4HAAQGBvpUc428H7PFxi0R0XUJAbSrtRx1Kv4Ja2oXoGorvUsiIiIiIiIiIoNj49bgFEVBUFAQ1y8itzNTtkTGWdzTchrK+afCcrkqADZuZTFTrsizmC2ShdkiGZgrkoXZIhmYK5KF2QIUIYTQuwhPKs2Z24iIAMB+YjkOLH4FABB58zhEthmmc0VERERERERE5ItK05v0vdOyUalomoazZ89C0zS9SyGDMVO2tLx1dQBAaGVbuJ+KZ6ZckWcxWyQLs0UyMFckC7NFMjBXJAuzxcat4WmahiNHjpg65CSHmbIl8o1RmGC8ejJTrsizmC2ShdkiGZgrkoXZIhmYK5KF2WLjlojoulQ1f+OWM26JiIiIiIiISD42bomIriN/s5YzbomIiIiIiIjIE9i4NThFURAWFmbqM/CRHGbKlqZebdya+RANTzBTrsizmC2ShdkiGZgrkoXZIhmYK5KF2QIUIYTQuwhPKs2Z24iIACB195f4Z9U7OHz+JtS+/T00acHHDiIiIiIiIiIqvdL0Jjnj1uA0TcPJkyc5S5DczkzZyi7XCp8lPoMlu8cgB2zaymSmXJFnMVskC7NFMjBXJAuzRTIwVyQLs8XGreEx5CSLmbKVHVAfqw4Mxh9J7WCC4erKTLkiz2K2SBZmi2RgrkgWZotkYK5IFmYLsOldABGRt1NVoHGVzbipyhaEpMcDuEXvkoiIiIiIiIjI4Ni4JSK6noxTGNDkYzSI3IHgK4PBxi0RERERERERycalEgzOYrEgMjISFgvvanIvM2Ur6Pz3aBC5AwAghHkP0fAEM+WKPIvZIlmYLZKBuSJZmC2SgbkiWZgtzrg1PIvFgtjYWL3LIAMyU7Y0TXV+LUy8to4nmClX5FnMFsnCbJEMzBXJwmyRDMwVycJsccat4WmahsOHD5t6IWeSw0zZEvkatxBq0TtSmZkpV+RZzBbJwmyRDN6Wqy1bgIcfBv7+W+9KqKy8LVtkDMwVycJssXFreJqmITk52dQhJznMlK38s2y5VIJcZsoVeRazRbIwWySDt+Vq2TJg61Zg/Xq9K6Gy8rZskTEwVyQLs8XGLRHRdbnMuNU445aIiIjMxW53/T8RERF5Bhu3RETXkb9xyxm3REREZDZq3kshNm6JiIg8i41bg7NYLIiOjjb1GfhIDjNly7FUwraTnXHU7986V2NsZsoVeRazRbIwWySDt+XKcYSqygOPfJ63ZYuMgbkiWZgtwKZ3ASSXI+RE7mambKUGdsHCHVVx8FxTDO1aWe9yDM1MuSLPYrZIFmaLZPC2XDkatiZeYtAwvC1bZAzMFcnCbHHGreGpqoq9e/dC5cfj5GZmylaaXxv8sHcYDiQ34xsWycyUK/IsZotkYbZIBm/LFWfcGoe3ZYuMgbkiWZgtzrg1PCEEUlNTIYTQuxQyGDNlS1WBmuEH0Dx6HSpm1wRwq94lGZaZckWexWyRLMwWyeBtuXK8Xzbx+2bD8LZskTEwVyQLs8XGLRHRddmyT6Jrva/Rtd7X8FNvBhu3REREZCZs3BIREemDjVsiouuocmkmutZbkfsN10ogIiIik3G8/OHLICIiIs/iGrcGZ7FYUKdOHVOfgY/kMFO2hNAK/Zrcz0y5Is9itkgWZotk8LZcORq2dru+dVDZeVu2yBiYK5KF2eKMW8OzWCyIiorSuwwyIFNlS8v3LoWNW6lMlSvyKGaLZGG2SAZvy5VjiQTOuPV93pYtMgbmimRhtjjj1vBUVcWuXbtMfQY+ksNM2XKZZSuMP149mSlX5FnMFsnCbJEM3pYrR8PWS8qhMvC2bJExMFckC7PFxq3hCSGQkZFh6jPwkRymypZL45ZTTWQyVa7Io5gtkoXZIhm8LVc8OZlxeFu2yBiYK5KF2WLjlojouoSW710KZ9wSERGRyXDGLRERkT64xi0R0fXkNWtXH7wDkeUHo77O5RARERF5Ehu3RERE+mDj1uCsVisaNmwIq9WqdylkMGbK1incht/23IStJ7oioVkdvcsxNDPlijyL2SJZmC2SwdtyZc87TytPTub7vC1bZAzMFcnCbLFxa3iKoiA8PFzvMsiAzJStU7gNX+/O/ZozTeQyU67Is5gtkoXZIhm8LVeOhq2jgUu+y9uyRcbAXJEszBbXuDU8u92OrVu3ws5XWeRmZsqWqgIVg0+jZ8N5qGldpnc5hmamXJFnMVskC7NFMnhbrhyNW8649X3eli0yBuaKZGG2OOPWFFROESRJzJKtAPUkmkdvxNAW/4Wffx0AffQuydDMkivyPGaLZGG2SAZvypWjFC8qicrAm7JFxsFckSxmzxYbt0RE1xGvvIi4Vn/mfiM41YSIiIjMhScnIyIi0geXSiAiuh6XZi0bt0RERGQunHFLRESkDzZuDc5qtaJp06amPgMfyWGqbIl871I441YqU+WKPIrZIlmYLZLB23LFGbfG4W3ZImNgrkgWZouNW1Pw9/fXuwQyKNNki41bjzJNrsjjmC2ShdkiGbwpVzw5mbF4U7bIOJgrksXs2WLj1uBUVUViYqLpF3Mm9zNVtvI1axWYYLw6MlWuyKOYLZKF2SIZvC1XjjJMfFJvw/C2bJExMFckC7PFxi0R0XUp+Wfcco1bIiIiMhnOuCUiItKHTe8CiIi8X27jdskfY1CpfhvU1bkaIiIiIk/yVy4jvtou2LW24FtIIiIiz9F1xu26devQt29fVKtWDYqi4Ntvv73u76xduxYtWrRAQEAA6tati7lz50qvk4jM7WDmQPy4916sP9IHpzLi9S6HiIiIyKP+3WEcnur8GDpV/5/epRAREZmKro3b9PR0xMfH44MPPijR/kePHkXv3r3RpUsX7Ny5E48//jgeeOAB/PTTT5Ir9V1WqxWtWrUy9Rn4SA4zZWv3pRH4asfjOJ9elYcISmamXJFnMVskC7NFMnhbrrJygnL/bw/QuRIqK2/LFhkDc0WyMFs6H+fSq1cv9OrVq8T7z5w5EzExMZg2bRoAIC4uDr/99hv++9//IiEhQVaZPi87OxtBQUF6l0EGZJZsaRoQaEtHu9o/oUGIBcAAvUsyNLPkijyP2SJZmC2SwZtydTkrFACQkVNO50rIHbwpW2QczBXJYvZs+dTJyTZt2oTu3bu7bEtISMCmTZt0qsj7qaqK3bt3m/oMfCSHmbIVhCTEVNyLkW2m4OaK0/Qux9DMlCvyLGaLZGG2SAZvy5WSd3JWu2reGU9G4W3ZImNgrkgWZsvHVpY/ffo0Kleu7LKtcuXKSEtLQ0ZGRqEd+KysLGRlZTm/T0tLAwDY7XbY7XYAgMVigcVigaZp0PIdB+3YrqoqhBDX3W61WqEoivNy828HUCBoRW232WwQQrhsVxQFVqu1QI1Fbc8/pvyXZZQxGfF+8rUxOfbRNM3len15TEVt71fpHvToluYYeYHHDl8ckzffT47/G2lM16udY5I/JiFEgdp9fUxGvJ98cUyOnxeVMV8c0/Vq55jkjwlAgevVa0yKYkWrGr8AAOpV2AC7vT/vJx8eU/56jTKm4mrnmDw3psL6Dr4+JiPeT742pqL6Dr48JkVRUBo+1bi9Ea+//jomTZpUYPuOHTsQEhICAIiMjERsbCyOHj2K5ORk5z7R0dGIjo7GgQMHkJqa6txep04dREVFYc+ePcjIyHBub9iwIcLDw7Fjxw6XO6Vp06bw9/dHYmKiSw2tWrVCdnY2du/e7dxmtVrRunVrpKamYt++fc7tQUFBiI+Px7lz53DkyBHn9rCwMMTFxeHUqVM4efKkc7tjTMePH0dKSgq2b98ORVEMMSYj3k++OKbQ0NxD5pKSkpCUlGSIMRV1P1W0ZwPIfQNlz8lyXrcvj8lb76e9e/c6H7OCg4MNMSYj3k++OKbmzZtD0zTn86ERxmTE+8kXxySEQEpKCjIzMxEUFGSIMRnxfvK1MUVERODSpUsuj1l6jalevTjnBxNVg3YhMTGR95MPj0kIgczMTAAwzJgA491PvjampKQkl76DEcZkxPvJF8cUEJC7tvr58+dx/PhxQ4wpKCgIMTExKClF5G8p60hRFHzzzTcYMGBAkfvccsstaNGiBaZPn+7cNmfOHDz++OMuN3x+hc24rVGjBs6fP4/y5csD8J2O/I18cpKdnY0dO3agWbNmsFqthhiTEe8nXxyTquYeshAfH++cGeLrYypq+8k5XXHl0hUAQEg5C6qP2ujzY/LW+yk7Oxs7d+5Es2bNYLPZDDEmI95PvjgmIQR27NiB+Ph45z6+PiYj3k++OCZVVbFz5060aNECNpvNEGO6Xu0ck/wxOT5oyv+YpdeYVNWKQ++3AgBkaBGIf3w57ycfHpOqqti1axdatGgBRVEMMabiaueYPDOmovoOvjwmI95PvjimovoOvjwmRVGQnp6OsLAwpKamOnuTRfGpxu2zzz6L5cuX448//nBuGzp0KC5cuIAVK1aU6HrS0tJKfOMQEQHA8Y/bIz0td9ZtuXJAzdFbgVIe3kBERETkizIygKMf5jZu03Kq4l/Pfq9zRURERL6tNL1JXU9OdvnyZezcuRM7d+4EABw9ehQ7d+7EiRMnAADPP/88hg0b5tz/oYcewpEjR/DMM89g3759mDFjBhYuXIgnnnhCj/J9guPwPS/pz5OBmClbirj6SV3ucI0/Zr2YKVfkWcwWycJskQzelCtVBb7/cyQAYOepzvoWQ2XmTdki42CuSBZmS+fGbWJiIpo3b47mzZsDAJ588kk0b94cr7zyCoDctTMdTVwAiImJwQ8//ICVK1ciPj4e06ZNw8cff4yEhARd6vcFqqpi3759BaZrE5WVubKluX4rzDBmfZgrV+RJzBbJwmyRDN6UK00DNJF7CKgC/euhsvGmbJFxMFckC7Ol88nJOnfuXGzXfO7cuYX+zo4dOyRWRUSUjxBQ8hq3sze/hMo1K+IZxXqdXyIiIiIyBlUFVOF47WPeN85ERER60LVxS0Tk/QS2nx+Mv4+r+P34rWhYLhjg8rZERERkEpoGDGoyCwBQr+J2nashIiIyFzZuDU5RFAQFBUHhiZTIzUyTLcWCVf88g01bc7/VtOJ3p7IxTa7I45gtkoXZIhm8KVeqCpxLr4ZKIaewfO8wdNW7ICoTb8oWGQdzRbIwW2zcGp7VakV8fLzeZZABmSlbqgoo0NA+ZgVqRWiAeitg9de7LEMyU67Is5gtkoXZIhm8KVeaBqRnh6JSCHAxvaLe5VAZeVO2yDiYK5KF2dL55GQkn6ZpOHv2LDROEyQ3M022hIYA5QJCA1Mwpt0rGFB3IqBe0bsqwzJNrsjjmC2ShdkiGbwpV5oGWJXctW3tmo1HH/k4b8oWGQdzRbIwW2zcGp6maThy5IipQ05ymCZb9st4rMmteH/QrbnfCwDC4GPWkWlyRR7HbJEszBbJ4E25UlUgOvwQAKBd7RVs3Po4b8oWGQdzRbIwW2zcEhEVL1+TVkCBAADBMyoTERGROeR/r9y8+jo2bomIiDyIjVsiouIIDULkfqkJK2fcEhERkamo+T6vVhQBu12/WoiIiMyGjVuDUxQFYWFhpj4DH8lhmmwJOwRym7aasOQ2cTnjVhrT5Io8jtkiWZgtksGbcpW/cSuEwhm3Ps6bskXGwVyRLMwWG7eGZ7VaERcXB6vVqncpZDCmyZbQAAGowgpNc4yV71hkMU2uyOOYLZKF2SIZvClXmgbM2jQZAHD8YkOXRi75Hm/KFhkHc0WyMFts3Bqepmk4efKkqRdyJjlMk628pRKEsECDJW+NW4OPWUemyRV5HLNFsjBbJIM35UpVATXvw2uLorJx6+O8KVtkHMwVycJssXFreAw5yWKabOUti6AJC2b//jI+3TEFCKioc1HGZZpckccxWyQLs0UyeFOuNC1vnX+wcWsE3pQtMg7mimRhtgCb3gUQEXk1WzC2nOqLCxf9sOVEd1S6Aj5yEhERkWloGjD25ucBAJVDT7JxS0RE5EGccUtEVJyAivjqjwmYs+UFAOAJOYiIiMhU8jdqP9n8Il8LEREReRDnjRmcxWJBZGQkLBb26Mm9zJQtxxuUplU3IiIsA8hpDfiV17cogzJTrsizmC2ShdkiGbwpV5oGZNmDEGi7gtNpNWG3610RlYU3ZYuMg7kiWZgtNm4Nz2KxIDY2Vu8yyIBMky2hwYZM2Cw23P+v/6BSubPAlc+AsEZ6V2ZIpskVeRyzRbIwWySDN+VKVYEAJXfarSqsnHHr47wpW2QczBXJwmxxqQTD0zQNhw8fNvVCziSHabKVtg9v3XoL3u43CKpmhRAAhMHHrCPT5Io8jtkiWZgtksGbcqWqgJ81CwDQue63XOPWx3lTtsg4mCuShdli49bwNE1DcnKyqUNOcpgmW0KFEIAQFgiR95DJxq00pskVeRyzRbIwWySDN+Uqfwk9Gixg49bHeVO2yDiYK5KF2eJSCURExctr0qrCCiEUCAAQfMdCRERE5qDahfNrBYKNWyIiIg9i45aIqDh5M241zZr3PQCY99M+IiIiMhdNE9d8r1MhREREJsSlEgzOYrEgOjra1GfgIzlMk6282bWasEATlry+LaeayGKaXJHHMVskC7NFMnhTrjRhwSsrPgcAZOSU44xbH+dN2SLjYK5IFmaLM24NzxFyInczTbaEljvjVlydcSuEgKJvVYZlmlyRxzFbJAuzRTJ4U65U9eqRR4qiwW7XuSAqE2/KFhkHc0WyMFuccWt4qqpi7969UPnROLmZabKVb8btkj8exMe/vwItOEbnoozLNLkij2O2SBZmi2TwplxpGqCK3Pk+VkXlUgk+zpuyRcbBXJEszBZn3BqeEAKpqakQQlx/Z6JSMEu2hH9FbD7eHcnp1bDt7y4AANUPsOpcl1GZJVfkecwWycJskQzelCthv4LHbnkaAOBnzUKOed87G4I3ZYuMg7kiWZgtNm6JiIqllWuA9397w3UbZ5oQERGRWWjZqBJ6AgDw5uoZeOxmneshIiIyETZuiYiKkf+IjDoV/0RoQAq0jAZAYCX9iiIiIiLyEJHvE+vD5xvz5GREREQexMatwVksFtSpU8fUZ+AjOcySLU11HJKhYGiL/6J+5E7g4ptAhW56lmVYZskVeR6zRbIwWySDN+VKted2agUsABQeeeTjvClbZBzMFcnCbLFxa3gWiwVRUVF6l0EGZJpsnf4Znw19EX+ebgNN5D5ZCI1TTWQxTa7I45gtkoXZIhm8KVeOGbcKNPSK+wKqeq/OFVFZeFO2yDiYK5KF2QLM27I2CVVVsWvXLlOfgY/kMEu2NOcsEwWayD0lmaZyqoksZskVeR6zRbIwWySDN+Uq/wfWdzefDtXO10G+zJuyRcbBXJEszBZn3BqeEAIZGRmmPgMfyWGWbGl5s0w0YYVyzTZyP7PkijyP2SJZmC2SwZtyJa55s5z7ATbn//gqb8oWGQdzRbIwW3zGJSIqlqNJK4QFArkzbrlUAhEREZmFEK4fWGsmnvVERETkaWzcEhEVQ6h2AIAGa95JOQBVNe+nfURERGQuaWpNPLjwV+f3bNwSERF5DpdKMDir1YqGDRvCarXqXQoZjFmy5VjPVsAKKLkNW864lccsuSLPY7ZIFmaLZPCmXGmaghw14Or3bNz6NG/KFhkHc0WyMFuccWt4iqIgPDwciqJcf2eiUjBLtoRzPVsLfjs2EJ8njkdWcLyuNRmZWXJFnsdskSzMFsngTbnSNEATV9828gNs3+ZN2SLjYK5IFmaLjVvDs9vt2Lp1K+x2u96lkMGYJVs5tirYdaoD/k5tiD+TO2LlgSHI9qujd1mGZZZckecxWyQLs0UyeFOuArWTeLjDy87vOePWt3lTtsg4mCuShdniUgmmoPLFFUlihmxdKXcLpq29BeXLA5a8j7o0rfjfobIxQ65IH8wWycJskQzekiubdhH/qvUTAOCN1R+i9z2hOldEZeUt2SJjYa5IFrNnizNuiYiK4XiOsFqByqEn0CBqO5B5Rt+iiIiIiDzEsWzUmcs18NeZ1sjR/HWuiIiIyDw445aIqBiO2bVWK9C7wcdoFrUcQSmPAbhP17qIiIiIPMGxpq3IW+eWRx4RERF5DmfcGpzVakXTpk1NfQY+ksMs2Sp3dg5m39Ued970NjTkjlUIvmORxSy5Is9jtkgWZotk8KpcidzGbZXQ4+hWbzEUe5rOBVFZeFW2yDCYK5KF2WLj1hT8/Xk4E8lhhmwJNQd+lmzYLCoUxZK3zdxr7MhmhlyRPpgtkoXZIhm8JVdavim2w1u/AT/tnI7VkDt4S7bIWJgrksXs2WLj1uBUVUViYqLpF3Mm9zNLthyHB0KxQHDGrXRmyRV5HrNFsjBbJINX5Uq7pgbNvGf2NgKvyhYZBnNFsjBbbNwSERXLMcskt2lrcdlGREREZHjC9c2yuLaRS0RERNKwcUtEVBzHmxOLFchbKoFn5SAiIiKzOJHRDg8tWoP07PIA+AE2ERGRJ7FxS0RUjKuzSizOxi2XSiAiIiKzUDUbruSE4nJ2GACu9U9ERORJNr0LILmsVitatWpl6jPwkRxmyZZwzCpRrNh/8RYc+rsSBrVoqm9RBmaWXJHnMVskC7NFMnhTrhx9Wk3Lq0VwjVtf5k3ZIuNgrkgWZoszbk0hOztb7xLIoMyQrUxLDew72xIp2dVx7FIbLPtrBC75tdC7LEMzQ65IH8wWycJskQzekquK1j9wf9tXUS38GABA44xbn+ct2SJjYa5IFrNni41bg1NVFbt37zb1GfhIDrNk60zgYExZNQs7zw2AJe8R0+BD1pVZckWex2yRLMwWyeBNuQq1/o1Osd8BsOC/v76D89l19S6JysCbskXGwVyRLMwWl0ogIiqW4/nBagXK2ZIRE5EMW04FAFV1rYuIiIjII0Tui6F9yf/Cjn9uQW2ulEBEROQxbNwSERUjf+O2VeWv0bLBx/BPHwzgGV3rIiIiIvIIx0lZLbnrC5p40hMREZHHcakEEzDzIs4klxmyVSv9Tcy4oxtaV14IKLkPmULwHYtMZsgV6YPZIlmYLZLBa3KV97qnfqVEdIhZjiAk6VwQlZXXZIsMhbkiWcyeLTZuDc5ms6F169aw2Ti5mtzLLNlS1Mso558KP2sOoOQ+YQhN07kq4zJLrsjzmC2ShdkiGbwpV47XPYG2DIxp9woq+f2pc0VUFt6ULTIO5opkYbbYuDU8IQRSUlIghNC7FDIY02TLMbtWsThn3IIzbqUxTa7I45gtkoXZIhm8K1e5r3sUJe9bvg7yad6VLTIK5opkYbbYuDU8VVWxb98+U5+Bj+QwTbby1nVTFCsUx1IJnHErjWlyRR7HbJEszBbJ4FW50lwbt8IbaqIb5lXZIsNgrkgWZouNWyKiYjmbtC4zbtm4JSIiInPYeX4gxn3zI5Ku3JS3xbxvnomIiDyNjVsiomI4T0RmseZb45ZvWIiIiMgcMnOCkJIRiQwtAgBfBxEREXkSG7cGpygKgoKCoDgXpSJyD9Nky3l4oBVns27Cd3sewFmlq85FGZdpckUex2yRLMwWyeBNuXIenZr3ATbXuPVt3pQtMg7mimRhtgDznpbNJKxWK+Lj4/UugwzILNlKR00kXWiE7OBwnMluitW7myK2p95VGZdZckWex2yRLMwWyeBNuYoptxGNWm5E/bA1uHQJzg+1yTd5U7bIOJgrkoXZ4oxbw9M0DWfPnoXGkymRm5klW3+qT2LCis9wIvMWWPMmmph4XXTpzJIr8jxmi2RhtkgGb8pVtZA9uLXBfFzIqYcPNkzBodR/6V0SlYE3ZYuMg7kiWZgtNm4NT9M0HDlyxNQhJznMki1Hk9ZqBYJsl1G1/DH4a6f1LcrAzJIr8jxmi2RhtkgGr8qVsAMATme3wObjt+J8Rk2dC6Ky8KpskWEwVyQLs8XGLRFRsRzPD1YrEFvuF7zZ5w7EiTf0LYqIiIjIU0TuiyFL3qFHdruexRAREZkLG7dERMVoaRmP/w7ogxpBm6BY8h4yhXk/7SMiIiKTyXvdUyngEFrV+AUVA47oXBAREZF5sHFrcIqiICwszNRn4CM5zJKtAJxDxeDT8LPmAEruQ6bCsylLY5ZckecxWyQLs0UyeFOuFOS+7qkWsAXjOj6DhuGrda6IysKbskXGwVyRLMwWYNO7AJLLarUiLi5O7zLIgEyTrbwmrWKxAFruIYKCM26lMU2uyOOYLZKF2SIZvClXjsat8z0zP8D2ad6ULTIO5opkYbY449bwNE3DyZMnTb2QM8lhmmzla9xaLJxxK5tpckUex2yRLMwWyeBNuRJ5NVyd7MTXQb7Mm7JFxsFckSzMFhu3hseQkyxmyZaCvDcrFiugcMatbGbJFXkes0WyMFskgzfl6qfDozH++yU4KfoA4AfYvs6bskXGwVyRLMwWl0ogIiqeY8atYgWslrxJJuZ90iAiIiJzuZRVAWcuVYDdEoEAAJxxS0RE5DmccUtEVJx8SyWkixr4ad9QHM9K0LkoIiIiIs9Q8/q0FlvenB+NjVsiIiJP4Yxbg7NYLIiMjHSuzUnkLmbJVqq9JlJTrdBCg3FJxGLe9idxTxzQS+/CDMosuSLPY7ZIFmaLZPCmXMVXXomwKgdQQdmDTFw9WRn5Jm/KFhkHc0WyMFts3BqexWJBbGys3mWQAZklWyvP/xff/AA8/DBgzV3iFiZeXkc6s+SKPI/ZIlmYLZLBm3LVOHIdmlf+EXZrL8ze/DKuWGIwUu+i6IZ5U7bIOJgrkoXZ4lIJhqdpGg4fPmzqhZxJDrNky3l4oAWwWbJRMfg0AsRZfYsyMLPkijyP2SJZmC2SwZty5ZhhmxnQGL8e7o/D55vqXBGVhTdli4yDuSJZmC02bg1P0zQkJyebOuQkh1my5WjcWq1AlN8u/HdAH3QLe1TfogzMLLkiz2O2SBZmi2Twplw5GrcWa+5bR5UrJfg0b8oWGQdzRbIwW1wqgYioWP0q34+OfdJwyToNUHLXSuDabkRERGQeuW+WgyzJaFp1I3KslQDU17ckIiIik+CMWyKiYoTZjqNa+aOwKnYoeQuiCyF0roqIiIjIMxSR+4F1ePY6PN1lHG6tO1ffgoiIiEyEM24NzmKxIDo62tRn4CM5TJMtkTvLxGK15i50C864lck0uSKPY7ZIFmaLZPCmXFmU3Nc9ijUg9/98HeTTvClbZBzMFcnCbLFxa3iOkBO5m1myZYE99/9WCzSLY6kE866vI5tZckWex2yRLMwWyeBNuXI0ahWLn8v35Ju8KVtkHMwVycJscakEw1NVFXv37oXKswiQm5knW3kzbi1W50k5IIw+Zv2YJ1fkacwWycJskQzelKtPNr+Al5Z/iczwzgDYuPV13pQtMg7mimRhtjjj1vCEEEhNTeWanOR2ZsmWY3atYrFAUTjjVjaz5Io8j9kiWZgtksFbciUEkHy5GgBA8T8AIHfpBE1zriBFPsZbskXGwlyRLMwWG7dERMVyzCqxWK1QreFYc2gQqtcO5bmUiYiIyPC0fJ9V2/xyP8Bm45aIiMhz2LglIipGanZVpF2xQ7HaYLdVwJwtL6BzMDBA78KIiIiIJFNV4JY6SxEedA7+am4X15rXuCUiIiL52Lg1OIvFgjp16pj6DHwkh1my9cEf32L7dmBKm6szS/hmRR6z5Io8j9kiWZgtksFbcqVpQNd6X6NOxT9h9XscX2x7GuevVEYvO+Dvr2tpdIO8JVtkLMwVycJssXFreBaLBVFRUXqXQQZklmw5mrQ2G2BRNIT4X4I/BIBwPcsyLLPkijyP2SJZmC2SwVtypWm5r38AwFI+Bj/v7+DcTr7JW7JFxsJckSzMFmDelrVJqKqKXbt2mfoMfCSHWbLlGJ7FAgRbkvDhHd0wun4ffYsyMLPkijyP2SJZmC2SwVtyZbcDFktuDTa/q28dGXff5S3ZImNhrkgWZoszbg1PCIGMjAxTn4GP5DBFttRMjG58Py5Wt8Jm+Rha3uEZCjjNRBZT5Ip0wWyRLMwWyeAtucqdcZv7ZtmKDDSI3IFsNQCq2kjXuujGeUu2yFiYK5KF2WLjloioaJodVUL2I9wCpFoBi9Xq+IGuZRERERF5Qv6lEpRL+/DSrZ/gxMV6UNWvdK6MiIjIHHRfKuGDDz5A7dq1ERgYiLZt22LLli3F7j99+nQ0aNAAQUFBqFGjBp544glkZmZ6qFoiMhcNyPtgT7HYoHDGLREREZmIqubOuFUUQLH4A0ru9yY+YpWIiMijdG3cLliwAE8++SQmTJiA7du3Iz4+HgkJCTh79myh+3/55Zd47rnnMGHCBOzduxezZ8/GggUL8MILL3i4ct9htVrRsGFDWJ0zBYncwxTZ0uxwHJFhtSqujVsTH6ohkylyRbpgtkgWZotk8JZcaRpgVRwL/vtDAWC12HlyMh/mLdkiY2GuSBZmS+fG7TvvvIPRo0dj5MiRaNSoEWbOnIng4GB88sknhe6/ceNGdOjQAUOHDkXt2rVx66234u67777uLF0zUxQF4eHhUBRF71LIYEyRLaFBABCwwGpTnEsliHz/JfcyRa5IF8wWycJskQzekitVBd5b/xZe/2U2UL4+oOQ2cu12XcuiMvCWbJGxMFckC7Ol4xq32dnZ2LZtG55//nnnNovFgu7du2PTpk2F/k779u3xxRdfYMuWLWjTpg2OHDmC5cuX47777ivyerKyspCVleX8Pi0tDQBgt9thz3vFYbFYYLFYoGkatHwfHzu2q6rqshByUdutVisURXFebv7tAAqcBa+o7TabDUIIl+2KosBqtRaosajtjhqzs7OxY8cONGvWDFar1RBjMuL95ItjUlUVu3fvRnx8PCyWq58B+fKYCmy3ZwMC0IQF+T/gEwKw52TBYgvwvTFdU6O33U/Z2dnYuXMnmjVrBpvNZogxGfF+8sUxCSGwY8cOxMfHu3xi78tjMuL95ItjUlUVO3fuRIsWLWCz2QwxpuvVzjHJH5Omac4jEh216TGmnBwFxy82QFCQgF35Awpyl0qw2zUAvJ98cUyOM7S3aNECiqIYYkzF1c4xeWZMRfUdfHlMRryffHFMRfUdfHlMpW1C69a4PXfuHFRVReXKlV22V65cGfv27Sv0d4YOHYpz587h5ptvhhACdrsdDz30ULFLJbz++uuYNGlSge07duxASEgIACAyMhKxsbE4evQokpOTnftER0cjOjoaBw4cQGpqqnN7nTp1EBUVhT179iAjI8O5vWHDhggPD8eOHTtc7pSmTZvC398fiYmJLjW0atUK2dnZ2L17t3Ob1WpF69atkZqa6nI7BAUFIT4+HufOncORI0ec28PCwhAXF4dTp07h5MmTzu2OMR0/fhwXLlzA9u3boSiKIcZkxPvJF8cUGhoKVVWRlJSEpKQkQ4zp2vvJz34OIXY7VNUGqwU4k3wOuw90R2h5DWe3bUN0jdo+NyZvv5/27t2LlJQUbN++HcHBwYYYkxHvJ18cU/PmzZGTk+N8PjTCmIx4P/nimIQQSElJQWZmJoKCggwxJiPeT742poiICOfzoeMxS48xpadXBFAPdns29vy5FwGaCqHl4Nixv1GnTi3T30++OCYhhPMcMUYZE2C8+8nXxpSUlOTSdzDCmIx4P/nimAICAqCqKs6fP4/jx48bYkxBQUGIiYlBSSkif0vZg06dOoXq1atj48aNaNeunXP7M888g19//RWbN28u8Dtr167FXXfdhf/85z9o27YtDh06hMceewyjR4/Gyy+/XOj1FDbjtkaNGjh//jzKly8PwHc68jfyyYljZnOLFi1cPvny5TEZ8X7yxTGpqoodO3agRYsWLp98+fKYCmzPSMLuWaNwOSMQlW7/HikpGv79bwX16gl88YXmm2O6pkZvu5+ys7Oxfft258w1I4zJiPeTL45JCIHExETn86ERxmTE+8kXx6SqKrZv345WrVpxxi3H5LYxaZqGrVu3ujxm6TGmY8cU/O/lbxBaLgvPvVYXR+aPxYXLEQgftAING/J+8sUxOR6zWrduzRm3HJPbxlRU38GXx2TE+8kXx1RU38GXx6QoCtLT0xEWFobU1FRnb7Ious24rVSpEqxWK86cOeOy/cyZM6hSpUqhv/Pyyy/jvvvuwwMPPAAAaNKkCdLT0/Hggw/ixRdfdLkTHQICAhAQEFBgu81mg83mOnzHHXat/G/wSrL92su9ke2KohS6vagai9vuCHT+y/P1MRnxfvLlMZVmf18Zk8ViAUJr4MXVK5GcDMwbDNhsFigKoGkKbLarv+dTYyrhdr3G5HiCtFqtzuvy9TEZ8X7yxTHZ7fZCnw8B3x1Tcds5Js+OSVEU5z+jjOlGt3NM7hmTpmlFPmZ5ckyKAtwRPwNhwWmw2f6HHw6OxZnzIRg+0FLqMRW33Vfvp+K2e/OY8h95UhhfHJMDx6TfmAp7zPL1MRnxfvLlMbljrN40ppLS7eRk/v7+aNmyJVavXu3cpmkaVq9e7TIDN78rV64UuOEdN65OE4e9ntVqRdOmTYsMIdGNMku2HB+MWSyA1SJgs2TDhozchW7J7cySK/I8ZotkYbZIBm/JlaoCFiVvxlJARaw5PhKrDgxGvklM5GO8JVtkLMwVycJs6TjjFgCefPJJDB8+HK1atUKbNm0wffp0pKenY+TIkQCAYcOGoXr16nj99dcBAH379sU777yD5s2bO5dKePnll9G3b19T34nX4+/vr3cJZFBmyJajcWu15jZvP7mrPfz9AeSsAvzD9SzNsMyQK9IHs0WyMFskgzfkKrdxq0JRAChWON5yXXMkKPkYb8gWGQ9zRbKYPVu6zbgFgCFDhmDq1Kl45ZVX0KxZM+zcuRMrVqxwnrDsxIkTLic9eumll/DUU0/hpZdeQqNGjXD//fcjISEBs2bN0msIXk9VVSQmJhZYZ4OorEyRrfQTeLLD/RjX8RlYrYDVlu/sj4JTTWQwRa5IF8wWycJskQzekitNAyyWvBqEhhph+xAT8ReuWfKPfIi3ZIuMhbkiWZgtnWfcAsCjjz6KRx99tNCfrV271uV7m82GCRMmYMKECR6ojIhMz56O2IhdCA+Ics64FbBACA0Q5n3iICIiInNQVcCqqIACICcNj7UejoxMKzK1gieSJiIiIvfTdcYtEZFXy5tVq2rW3DVurblf5/8ZERERkVFpGqAoGhQAsPhBUXKXTlDtXOufiIjIE9i4JSIqilAhBKCJ3DXdrFZACEvueck445aIiIgMTlM1KBC5M24t/rn/B6CqbNwSERF5gu5LJZBcVqsVrVq14snbyO1Mka285qwmLM6lElThGC9n3MpgilyRLpgtkoXZIhm8JVeqquDNX2YgurqG1/zDHH1baKodgLlPFuOrvCVbZCzMFcnCbHHGrSlkZ2frXQIZlNGzJYTmnHFrseStceucccvGrSxGzxXph9kiWZgtksEbcqUJBX+eboMjaf8CLIFQ8jq3msbXQb7MG7JFxsNckSxmzxYbtwanqip2795t6jPwkRxmyJamXp1xa7PlLpWw7WQnbD/VDbAG6lydMZkhV6QPZotkYbZIBm/JlePqLRYAytXZTpqdefdV3pItMhbmimRhtrhUAhFRkTRNQaY9GJk5wc4Ztx9tmoTgYOBu9m2JiIjI4DR7NrrVW4rq1SyA0vfqjFsTv4EmIiLyJDZuiYiKYA9rjQcXrgMA9Hg5d8YtkHuGZSIiIiLDUzMxvPUbCAoCgH7YdGYUDh+1oXWcn96VERERmQIbtyZg5kWcSS6jZyt/g9ZxcrLc7QIQgHPaCbmV0XNF+mG2SBZmi2Twhlw5ZtYqCgDFgg3Jj2DTH0CzO/Sti8rGG7JFxsNckSxmzxYbtwZns9nQunVrvcsgAzJDtvIfBehYKuGd/v0QWe4UkPYZENZIv+IMygy5In0wWyQLs0UyeEuuhPNTbAVQLM6jj7hSgu/ylmyRsTBXJAuzxZOTGZ4QAikpKRBC6F0KGYwpsnVhB8Z3+TeGNH8PFsvVpRIEAAiulyCDKXJFumC2SBZmi2TwllwJLbdDK/LeNkYEnkD1sCPQ7OY+w7cv85ZskbEwVyQLs8XGreGpqop9+/aZ+gx8JIcZsiUyk9Gk6ibEVvzTOeNWExZA5J+BQu5khlyRPpgtkoXZIhm8JVeOpRIEcj+9vrfOfXi992D4a6f1LIvKwFuyRcbCXJEszBYbt0RERXI0Zx1vVqzWvMYtAE0z7xMHERERmYN2zWsh5/9N/AaaiIjIk9i4JSIqwtU3K7kPlbkzbnPfsGgqZ9wSERGRsQnVdakELe8UKRobt0RERB7Bk5MZnKIoCAoKgqIoepdCBmOGbGmqPfcLJbdZ61wqAYBqV+GnV2EGZoZckT6YLZKF2SIZvCVXmaIS/vvrO2gab8G/ASBvxq3GJaN8lrdki4yFuSJZmC02bg3ParUiPj5e7zLIgMyQLcdSCY5ZtrlLJVhdfkbuZYZckT6YLZKF2SIZvCVX2VowdvxzC8Lq5X4v8j7MhmbXrygqE2/JFhkLc0WyMFtcKsHwNE3D2bNn+ak4uZ0ZsqU6l0O4ulTCweR47E5qD9USpl9hBmaGXJE+mC2ShdkiGbwlV44VESzOd415SyZwqQSf5S3ZImNhrkgWZouNW8PTNA1HjhwxdchJDjNkS2gCAgqg5D5UWq3Ap1ufxdQ178EeEqdzdcZkhlyRPpgtkoXZIhm8JVdWNRUdYpajbvm1AADhWOOWJ2n1Wd6SLTIW5opkYba4VAIRUZHSwm7H8C9vR6VKAoMB5F9Wx8TPG0RERGQSgeIkxrR7BZaQqgA643BWP/y1NxWVW0fqXRoREZEpsHFLRFQEx1GAVmtux1ZR8k5Qpl39GREREZFROZZEEHkHav6VOQLzdwCjmutZFRERkXlwqQSDUxQFYWFhpj4DH8lhhmw5ZtVarVe3Pd1lHGYP6QDruV/0KcrgzJAr0gezRbIwWySDt+Tq6slYr56oFeAH2L7MW7JFxsJckSzMFmfcGp7VakVcHNfiJPczQ7aCUn/BuFt+RFJ2WwB3AAD8bVnws2ZBqDybsgxmyBXpg9kiWZgtksFbcuVo3Aolt2MbbLuASiGZgFoBQJCOldGN8pZskbEwVyQLs8UZt4anaRpOnjxp6oWcSQ4zZMuWdQytotegRtg+5zaRN+PEyOPWkxlyRfpgtkgWZotk8JpcibwPqvNO1HpLuafwTv9+qGzdomNRVBZeky0yFOaKZGG22Lg1PIacZDFDthxnTFaU/A+VuV8LA49bT2bIFemD2SJZmC2SwVty5Zxxm/fBtaOB63iNRL7HW7JFxsJckSzMFhu3RERFu/bNCq6enEPj4m5ERERkcFffKOe9bcxbMsE5E5eIiIikYuOWiKgIIm82iWNdN+BqE5czbomIiMjoLuTUwwcbpmB3xiO5G5TcU6TwdRAREZFn8ORkBmexWBAZGQmLhT16ci8zZEsUu1QCZ9zKYIZckT6YLZKF2SIZvCVXV9RIbD5+K+o6XvY4Pszm6yCf5S3ZImNhrkgWZouNW8OzWCyIjY3VuwwyIDNkSwjHbJKrM25Pp8dCUS+hpaWSPkUZnBlyRfpgtkgWZotk8JZcOVaGsjpeCin8ANvXeUu2yFiYK5KF2eJSCYanaRoOHz5s6oWcSQ4zZOvqUglXHyp/PPQIpqz6COkht+hVlqGZIVekD2aLZGG2SAZvyVUgzqBVjV8Q5bcTAKBYuMatr/OWbJGxMFckC7PFxq3haZqG5ORkU4ec5DBDto4FPIZR8zfit9MPObc5jtDgucnkMEOuSB/MFsnCbJEM3pKrSpYdGNfxGdwU+BEA4LylPVYfvAPns2J0rYtunLdki4yFuSJZmC0ulUBEVCRVs8KuWV0+4nIcKmji5w0iIiIyCeeyUXlHH52y3oFPtwJdu+pYFBERkYlwxi0RUREczVnr1SVuMbDh2/jg9h4IvbhQn6KIiIiIPEW4nqiVH2ATERF5FmfcGpzFYkF0dLSpz8BHcpghW5GZ32JM++1ID+0BoCMAINB2BaEBFwH1ir7FGZQZckX6YLZIFmaLZPCaXGkqoABCye3Y+lszEBqQCYsWCCBI39rohnhNtshQmCuShdnijFvDY8hJFjNkq5y6Cx1qL0dU8JGrGx0nKuNUEynMkCvSB7NFsjBbJIO35MqxVIKS17itZ8898qhphQV6lkVl4C3ZImNhrkgWZouNW8NTVRV79+6FyjMpkZuZIlta3tiUqw+VArlvXDTNwOPWkSlyRbpgtkgWZotk8JpcCdfXQo4GLvg6yGd5TbbIUJgrkoXZYuPW8IQQSE1NhRBC71LIYMyQLeGcVZtvkVvOuJXKDLkifTBbJAuzRTJ4S66Eo0Frsbr+X5j3DbSv85ZskbEwVyQLs8XGLRFR0fIOD7RY8z9U5n7tPMsyERERkUGdSG+D2Ztfxj/KQACAkte4VWDXsywiIiLT4MnJiIiKInLflAiXGbe5XwvOuCUiIiKDO5dZB78eroO2eS+FFL4OIiIi8ijOuDU4i8WCOnXqmHohZ5LDDNlynpDDcrVxm5ZTBccuxCFLidSrLEMzQ65IH8wWycJskQzekitHf9bqeCnknHHLpRJ8lbdki4yFuSJZmC02bg3PYrEgKirK1CEnOUyRLWfj9uoYE8/dg1dWfI4kv8F6VWVopsgV6YLZIlmYLZLBW3JV3vo3mlbdiHI4AiDfh9lc49ZneUu2yFiYK5KF2WLj1vBUVcWuXbtMfQY+ksMM2dqa/R888vUqHMno5dzmmHHCIwTlMEOuSB/MFsnCbJEM3pKr+qEr8HSXcagp5gMAsgIa4rejvXEyLU7XuujGeUu2yFiYK5KF2eIat4YnhEBGRoapz8BHcpghW9lqMC5nBSP/EreOD/rYuJXDDLkifTBbJAuzRTJ4T67y3ijnzbRND+2OjzZ1R2ysjiVRmXhPtshImCuShdnijFsioiI5PtSz5mvctor8Cu/074vojBn6FEVERETkKXmfVDtOSsYjj4iIiDyLM26JiIpQ1/YFRrY5geCAgQByDwkMsl1GpaAkQEvRtTYiIiIi6fLWsnWs92+1aPCz5kDRFAD+OhZGRERkDpxxa3BWqxUNGzaENf+UQSI3MEO2qlp/RZe6SxBqTbq6MW/GiRCcaiKDGXJF+mC2SBZmi2Twnlzlvd7Je/0TkTYPs4d0wKAG/9GxJioL78kWGQlzRbIwW5xxa3iKoiA8PFzvMsiATJEtxywTa77PuByL3LJxK4UpckW6YLZIFmaLZPCaXOW9FnI0bhXnG2e+DvJVXpMtMhTmimRhtjjj1vDsdju2bt0Ku92udylkMGbIlnLN4YEAoIBnJ5PJDLkifTBbJAuzRTJ4S66UvJOTWfJeC1ksNpft5Hu8JVtkLMwVycJsccatKagqX1iRHIbPlnA9IUfuN7lvXLhUgjyGzxXphtkiWZgtksEbcrXnXDfsOlgDt8c3AnB1xq3jw23yTd6QLTIe5opkMXu22LglIiqSY8bt1catc/Yt37AQERGRwR252AL797dAn6Dc7x2vgyyKeWc+EREReRKXSiAiKkohSyVkiXCcSotBhhapV1VEREREHuFYGcqxtK3j5DBcKoGIiMgz2Lg1OKvViqZNm5r6DHwkhxmypeSdeMOSb4xHMm/Dc8sW4U/1cZ2qMjYz5Ir0wWyRLMwWyeAtuYoIOIYGkTvgr50FACjWvAM2uWSUz/KWbJGxMFckC7PFpRJMwd/fX+8SyKCMnq2lSbOwZnU27nsgwrnNMfnW5MvsSGX0XJF+mC2ShdkiGbwhV51rfILGTZcjOPMxAPdBBFZB4t9d8c+lBnqXRmXgDdki42GuSBazZ4szbg1OVVUkJiaafjFncj8zZOtyTgTOX6kCi+3qEwUbt3KZIVekD2aLZGG2SAZvyZVzSYS89f5FeAu8t/4tfLfnfh2rorLwlmyRsTBXJAuzdYMzblNSUrBlyxacPXsWmuZ6mMywYcPcUhgRkd4cD2/5lrhF7eBf8XrvD1De1gzAC3qURUREROQZeUsiOE7U6jhS1cTvn4mIiDyq1I3b77//Hvfccw8uX76M8uXLQ1EU588URWHjlogMo2XYR6jUIh1Byj0AogAAAZbLqB52BHalsr7FEREREUnmmHFryfsU27nEoNCgaRaXD7eJiIjI/Ur9VPvUU09h1KhRuHz5MlJSUnDx4kXnvwsXLsiokYhIF43LL0HPhvMQZE1xblMc71AEp5oQERGRsTkat44Zt34pG/HZ0FaY1HM4NJ6fjIiISLpSN27/+ecfjBs3DsHBwTLqITezWq1o1aqVqc/AR3KYIVvXruvm8rUQni/IBMyQK9IHs0WyMFskg/fk6pqlEmy5bx8tFpWNWx/lPdkiI2GuSBZm6wYatwkJCUhMTJRRC0mSnZ2tdwlkUEbPlvPwQOvVh0qLJW95GM64lcbouSL9MFskC7NFMnhDrq7OuLXk/T/3jbNFUWG361YWlZE3ZIuMh7kiWcyerVI3bnv37o3x48dj4sSJ+Prrr7F06VKXf+RdVFXF7t27TX0GPpLDDNlS8maZWPJ9uqc4Z9xymokMZsgV6YPZIlmYLZLBW3K18XhfLNo1FmpIHADAYsubeatwxq2v8pZskbEwVyQLs3UDJycbPXo0AGDy5MkFfqYoiqlvTCIyGsfhgVc/41IUi8vPiIiIiIxq6989cPkyMLJc7veOQ1UtFhV820dERCRfqRu3Gj9aJSKTsCD3GEBLvjVuVSUYF65Uhl9QhF5lEREREXmE462f4zNsx1FIVoWNWyIiIk8odeOWfI+ZF3EmuYyfrYJLJVxQ2uC1b3/AwIFAW73KMjjj54r0wmyRLMwWyeANuYoMPgYEZMKqVQcQCihWKEruGrds3Poub8gWGQ9zRbKYPVulXuMWAH799Vf07dsXdevWRd26ddGvXz+sX7/e3bWRG9hsNrRu3Ro2G3v05F5myNaM3Qvx/A8LofldnV3rmHHCNytymCFXpA9mi2RhtkgGb8nVyFaT8GqvexFwZVvuBr9Q7DndHn+dacXXQj7KW7JFxsJckSzM1g00br/44gt0794dwcHBGDduHMaNG4egoCB069YNX375pYwaqQyEEEhJSYEQQu9SyGDMkK3k9Jr4J7UOLNarTxKOD/u4aowcZsgV6YPZIlmYLZLBW3JlQW531rlsVHA03tv4Hj7aNImvhXyUt2SLjIW5IlmYrRto3L722mt46623sGDBAmfjdsGCBXjjjTfw6quvyqiRykBVVezbt48njSO3M0O2HEPLf2RGuGUfJvUchm4Vn9OnKIMzQ65IH8wWycJskQzekCshAEXJa9zmezHkOPrIbtejKiorb8gWGQ9zRbIwWzfQuD1y5Aj69u1bYHu/fv1w9OhRtxRFRKQ7TUW3GjNwe9OZsFmynZv9LFcQE/EXKvgd1LE4IiIiIrmEACxK7rRaJV/jlkcfEREReU6pF4moUaMGVq9ejbp167psX7VqFWrUqOG2woiIdCVy0KnGJ8iKAjKUYQD8AVw9VFARfLdCRERExqWquSchAwDFMc024zTe7XMnMrP9oKq/6FgdERGROZS6cfvUU09h3Lhx2LlzJ9q3bw8A2LBhA+bOnYt3333X7QVS2SiKgqCgICiKoncpZDCGz5bQ4FhFx5JvIXTFkjteBeY9VEMmw+eKdMNskSzMFsngDbnStKszbp1n9FYsCLBlQGh2npzMR3lDtsh4mCuShdm6gcbtww8/jCpVqmDatGlYuHAhACAuLg4LFixA//793V4glY3VakV8fLzeZZABGT5bwg5H59ZivbqqjOI4OQc441YGw+eKdMNskSzMFsngDblSVcBiuWaNW8UKRQGsFpWNWx/lDdki42GuSBZm6wYatwAwcOBADBw40N21kASapuHcuXOoVKkSLJZSL2lMVCTDZyvfjFurS+M292uFjVspDJ8r0g2zRbIwWySDN+RK04BVB+5EaEAKngyunLtRsQBK7usgTRUAzDsDyld5Q7bIeJgrkoXZuoGTk5Fv0TQNR44cgcazB5CbGT5bQit+xq3gNBMZDJ8r0g2zRbIwWySDN+RK04Cf9g3F4l2PwBpSJXejYnW2alWVmfdF3pAtMh7mimRhtko44zYiIgIHDhxApUqVUKFChWLXlrhw4YLbiiMi0o1QIQSgCSv88z1SKlYbLmeHwWYL0682IiIiIsns9qtfOyc5KTbnJFvVrgKwXvtrRERE5EYlatz+97//RWhoqPNrMy8KTEQmkTejVhVW5D8iI8tWB88sXo02bYAZOpVGREREJJumAZVDT8CiCChaVcDq7zLjVqh2AP56lkhERGR4JWrcDh8+3Pn1iBEjZNVCEiiKgrCwMDbbye0Mn62AinhtzTxcvizw9qCrmx3n5uAJOeQwfK5IN8wWycJskQzekCtNA165dRTKB6YAGQuBcnUAxYrjac2RkmpBDb4W8knekC0yHuaKZGG2bmCN2+3bt+OPP/5wfv/dd99hwIABeOGFF5Cdne3W4qjsrFYr4uLiYLXyMCZyL8Nny+KH4xcb4PjFhrDl+4jLMfvWxEvsSGX4XJFumC2ShdkiGbwhV6oKWBQtb2mEvBdAFhs++fN/mLJqFnJEsG610Y3zhmyR8TBXJAuzdQON2zFjxuDAgQMAgCNHjmDIkCEIDg7GokWL8Mwzz7i9QCobTdNw8uRJUy/kTHKYIVuOoeVfKsEf5/FC9zG4u+5YfYoyODPkivTBbJEszBbJ4A250jTAarHn9m2Vq2+YHa+LePSRb/KGbJHxMFckC7N1A43bAwcOoFmzZgCARYsWoVOnTvjyyy8xd+5cfP311+6uj8qIISdZDJ+t7ItIqPcJetRfgPwf7vlZc9AwahtqhO7QrzYDM3yuSDfMFsnCbJEM3pAr54xbwKVx6zgSiZH3Td6QLTIe5opkYbZKuMZtfkII5w22atUq9OnTBwBQo0YNnDt3zr3VEZF57X8PCKwM1Bqiz/VnnsOgm2YgNSMCVuvVGix500ws4DQTIiIiMi5NAxRFg6IAUK7O93msWV9k1b+C7Ox5AKroVh8REZEZlLpx26pVK/znP/9B9+7d8euvv+LDDz8EABw9ehSVK1d2e4FEZEJpB4Cjn+V+rVfjFhoEAFVYXZZKUCxW58+JiIiIjErTAKui5q5xm69xG2xLhZ//FZxT7foVR0REZBKlXiph+vTp2L59Ox599FG8+OKLqFu3LgBg8eLFaN++vdsLpLKxWCyIjIx0zhIkchep2bKVc/9llpKmqoAANGF1WSrBYs0drwIBCKFTdcbFxyyShdkiWZgtksEbcpW7VIKat8bt1fk+ArkvjDQucuuTvCFbZDzMFcnCbN3AjNumTZvijz/+KLD97bffNvVZ3ryVxWJBbGys3mWQAUnNli3k6tdCc5nl4SmONyNCWFwat44Zt0I4auPjnjvxMYtkYbZIFmaLZPCGXKl2gR/33ovQUA31rYHO7c7GrcbGrS/yhmyR8TBXJAuzdQMzbv/++2+cPHnS+f2WLVvw+OOP47PPPoOfn59bi6Oy0zQNhw8fNvVCziSH1GxZ8j2WaPochifyxqVeM+PWasv3sCn4hsXd+JhFsjBbJAuzRTJ4Q640oeCrHY/ju/1PArZg53aR96G14Ixbn+QN2SLjYa5IFmbrBhq3Q4cOxZo1awAAp0+fRo8ePbBlyxa8+OKLmDx5stsLpLLRNA3JycmmDjnJITVb2SlXvxY57r/8ElDzzbh1XePWghzNH9lqILjOrfvxMYtkYbZIFmaLZPCGXDn6stceVMmlEnybN2SLjIe5IlmYrRto3O7Zswdt2rQBACxcuBA33XQTNm7ciHnz5mHu3LmlLuCDDz5A7dq1ERgYiLZt22LLli3F7p+SkoKxY8eiatWqCAgIQP369bF8+fJSXy8RebHM01e/1mnGrWbPfTOiaq4zbhVbMO6fvxHPrf4NyHfYIBEREZGRaKqGSiGnUCHojMu6/o7GreBSCURERNKVeo3bnJwcBAQEAABWrVqFfv36AQAaNmyIpKSkUl3WggUL8OSTT2LmzJlo27Ytpk+fjoSEBOzfvx9RUVEF9s/OzkaPHj0QFRWFxYsXo3r16jh+/DjCw8NLOwwi8mYi36dpmj4zbu0hDfGflR8jR/VH1/xLJeR9beIP/IiIiMgEhP0K3unfD/7+ALSNgNUfAHA+ux5Sz0fAUj1A3wKJiIhMoNSN28aNG2PmzJno3bs3Vq5ciVdffRUAcOrUKVSsWLFUl/XOO+9g9OjRGDlyJABg5syZ+OGHH/DJJ5/gueeeK7D/J598ggsXLmDjxo3O9XRr165d2iGYisViQXR0tKnPwEdySM2Wo1kbXBMIKN3jirvYEYoDyc0AwGWpBMfXPDpQDj5mkSzMFsnCbJEM3pArTc39lFpR4HIy1hVn38FPPwFP3aRTYVQm3pAtMh7mimRhtm5gqYQ333wTs2bNQufOnXH33XcjPj4eALB06VLnEgolkZ2djW3btqF79+5Xi7FY0L17d2zatKnQ31m6dCnatWuHsWPHonLlyrjpppswZcoU51qUVBBDTrJIzZbIWx7BVi7v3YLnOWbUWiyuJVgtAk92fhxjWo4Dci7pUpuR8TGLZGG2SBZmi2TwhlwJx3JVCgDlah2Oo4/4Fsw3eUO2yHiYK5KF2bqBGbedO3fGuXPnkJaWhgoVKji3P/jggwgODi7mN12dO3cOqqr+P3t3HiZHVbYN/K6q7p59zSzZ94QkhJCEhH3fZRMjAoKCgCAiLwr6qqCsr7K6i7ggCH6KbCogIPtOWBISEkISsk0ymZlMZt97uruqzvdHdffMZHqbmTq9VN+/6/IKqa7uOsd+crrqqVPPQXV19ZDt1dXV2Lx5c8T37NixA6+99houvPBCPP/889i2bRuuuuoqBAIB3HzzzRHf4/P54PP5wn/v6uoCAOi6Dl23TkZUVYWqqjBNc0jB49B2wzAgBtV1irZd0zQoihL+3MHbAQxLMEfb7nK5IIQYsl1RFGiaNqyN0baH2hgIBLBlyxbMmTMnvC3T++TE7ykT+xRa3XH27NlQBmU27eiTEuiHCkBR3Sn7ngJdtTh5v5Xo9FXBNI8f6JMwceDEd+F2CZh6P1R3UVp/T5kWe4FAAFu3bsWcOXOgaZoj+uTE7ykT+wQAW7ZswezZs4ec+GVyn5z4PWVin0zTxNatW7HffvtB0zRH9Cle29kn+X0SQmDz5s3hc/hU9Mnv8yPPahFMIcKLkVnnfSpMU8n67ykT+2SaJrZt24b99tsPABzRp1htZ5+S06doeYdM7pMTv6dM7FO0vEMm92lwPxIx4sRtqEGDk7ZAckoWmKaJqqoq/OlPf4KmaTjooINQX1+Pe+65J2ri9o477sCtt946bPvatWtRUFAAAKisrMSsWbNQU1OD5ubm8D6TJ0/G5MmTsWXLFnR2doa3z5w5E1VVVdiwYQO8Xm94+7x581BaWoq1a9cO+VIWLVoEj8eD1atXD2nDsmXL4Pf7sX79+vA2TdOwfPlydHZ2Dklg5+Xl4cADD0RLSwt27NgR3l5SUoL58+ejoaEBdXV14e2hPu3cuRO1tbXo6uqCoiiO6JMTv6dM7FNRURG6u7vR0NAwpL61HX0q6duIOboBV8c6bFj1MvqVgfEmWd9T7boXcMGSP2FL80LU1MwI9+nTT7sw2wAUGGjcU4+JMyvT+nvKtNjbtGkTOjo60NXVhfz8fEf0yYnfUyb2acmSJWhvb8dHH30UPlnK9D458XvKxD4JIdDR0YGpU6ciLy/PEX1y4veUaX0qLy9HfX19+Bw+FX3assWHZcKEgGtIn44qeAAnnFWHduP/UFNTltXfUyb2SQiB/v5+zJ07F1u3bnVEnwDnfU+Z2KfBeQen9MmJ31Om9SknJwc+nw8tLS3YtWuXI/qUl5eHGTNmIFGKGJxSjmLp0qV49dVXUVZWhiVLlsTMDq9ZsyahA/v9fuTn5+PJJ5/E2WefHd5+8cUXo6OjA08//fSw9xxzzDFwu9145ZVXwtv++9//4rTTToPP54PH4xn2nkgzbqdMmYLW1lYUFxcDyJyM/GjunIRKUixduhSapjmiT078njKxT4ZhYO3atVi6dOmQ2Wt29EnZ81+on94KBYC+/EGgZEFS+jR4e9P6l9H22o+wrW0Jzrjtj+E+1dSY6Pn30chx+zH3689ALZiY1t9TpsWe3+/HmjVrsHTpUrhcLkf0yYnfUyb2SQiB1atXh38PndAnJ35PmdgnwzCwZs0aLFu2DC6XyxF9itd29kl+n0zTxKpVq4aMWcnu0wdvNKBs/Qq4czyY9c13wts3PnAJXL2bsL3klzj9kiOy+nvKxD6Fxqzly5dDURRH9ClW29mn5PQpWt4hk/vkxO8pE/sULe+QyX1SFAW9vb0oKSlBZ2dnODcZTUIzbj//+c8jJ8daNXRwknUsPB4PDjroILz66qvhzzRNE6+++iquvvrqiO854ogj8Mgjj8A0zfAXtmXLFkyYMCFi0hawsvOhtg/mcrngcg3tfugL29fgC7xEtu/7uaPZrihKxO3R2hhreyigB39epvfJid9TJvdpJPsn1KfKQwfaqAKI8Pmy+6TAukEl4Arvo6oqPB4VQqiAAFRlBH0aZdujbXdq7IV+IDVNCx8r0/vkxO8pE/uk63rE30Mgc/sUazv7lNw+KYoS/p9T+jTa7eyTPX0yTTPqmJWsPinB5VDM4LlQuO2qtUi0EEbWf0+xtqdznwY/eRJJJvYphH1KXZ8ijVmZ3icnfk+Z3Cc7+ppOfUpUQu8cXIYgWkmC0bjuuutw8cUXY9myZTj44IPxq1/9Cr29vbjkkksAABdddBEmTZqEO+64AwDwzW9+E/feey++/e1v43/+53+wdetW3H777bjmmmtsa5PTqKqKmTNnRgxYorGQGlu5lUDBdKB358BCZUlmGqHjDu2fpgGmCG4TQ++m0dhxzCJZGFskC2OLZEiHuAqIfLy29YuoGu/GfkNesS5uhcnzoEyUDrFFzsO4IlkYW6OscRvS09MzZOoxgLhTfAc777zz0NzcjJtuugmNjY1YvHgxXnjhhfCCZbW1tUO+nClTpuDFF1/Etddei0WLFmHSpEn49re/jR/84Adj6YajqaqKqqqqVDeDHEh6bCnB4clMTeJWBMc2gaF33lQVEEKF9RSFOfyNNCYcs0gWxhbJwtgiGdIhrnyiHA+tuh5LlwLnDn5BYeI2k6VDbJHzMK5IFsbWvlPJElBTU4PTTz8dBQUFKCkpQVlZGcrKylBaWjpswbJEXH311di1axd8Ph8++OADHHLIIeHX3njjDTz00END9j/ssMPw/vvvo7+/H9u3b8cNN9wQdUozWfU11q1bN6zOBtFYSY2trq3oadwGrxeACNj/+QkI35RShg6TqsoZtzJxzCJZGFskC2OLZEiHuAqdCg271AomblN1c53GJh1ii5yHcUWyMLZGMeP2K1/5CoQQePDBB1FdXR1zoTJKPSEEvF7vkCLLRHaQGVt9te9g927rQmFuqmbcBn8YzH1m3LpcwFVPvgIBFauvTUXLnI1jFsnC2CJZGFskQzrElTB0FOV0I8/tAlA08EJoxq3gk0eZKB1ii5yHcUWyMLZGkbhdt24dPvroI+y3337xdyYiGoX+Ph1CAIaBlM247c47Ave8/lvkFpdhxaDtqgqI0GIdpvV3IiIiIqfJDWzB7754EUROFYDnw9v7MAHdnTPhK89PXeOIiIiyxIhTDsuXL8fu3btltIWICABg6lay9r2dp8CsOCYlbQioVfhkz2Fo7Js3ZPvgRK3JiSZERETkUOEZtcrQp4/W69fj+ucex07v8SloFRERUXYZ8YzbP//5z7jyyitRX1+PhQsXwu12D3l90aJFtjWOxk7TNMybN491gMl2MmPLNKzyCB3eCuimGx7bjxBfqITOvt3TNOCiZXejNK8FZs/VQOnU5DfOwThmkSyMLZKFsUUypENcmUbkhVpdwSvILC43mNHSIbbIeRhXJAtjaxSJ2+bmZmzfvh2XXHJJeJuiKBBCQFGUrC4YnI4URUFpaWmqm0EOJDO2Qolb3XRD1wFPCjK3Lu8WHDv7U2hF0wAsDW9XVWDxpHdQUdAAs/+ryW+Yw3HMIlkYWyQLY4tkSIu4Cq4zIDB8oVaAidtMlRaxRY7DuCJZGFujKJVw6aWXYsmSJXjvvfewY8cO1NTUDPmT0ouu61i1ahV0nau+kr1kxlaoVMIZCx6C2bza9s9PRH7f+7j04J9i+cRnhmzXNMAQwUU5WCvBdhyzSBbGFsnC2CIZ0iGuTDM043boXJ8Frntx1xnnYHbuM5HeRmkuHWKLnIdxRbIwtkYx43bXrl145plnMHv2bBntIQk4C5pkkRVboRm3ACC6tgBYJuU4cRph/akMn2UihLWN/7bk4P+vJAtji2RhbJEMqY6rgRvUQ8+F8tQWFBbvRLvRkfQ2kT1SHVvkTIwrkiXbY2vEM26PP/54rFu3TkZbiIgAAE255yBg5AAAjBTdWRuYZTK0lo6qAoYZnHFrcMYtEREROZOIchM7vFiZyO4LaSIiomQY8YzbM888E9deey0++eQTHHDAAcMWJzvrrLNsaxwRZaceZT98uvNUHDPraZgpStyGLlYUZXjiNjTj1mSpBCIiInIor1mBd2pOx8SZ1Riy/HTo3Mhk4paIiEi2ESdur7zySgDAbbfdNuw1Lk6WfjRNw6JFi7J6BT6SQ2Zs6TpgmNbwlKoZt+FZJPvOMsHAIh0mxzvbccwiWRhbJAtji2RIh7jqMObgT+/dirMqgTMGv6CGLiF5HpSJ0iG2yHkYVyQLY2sUiVvOMMs8Ho8n1U0gh5IVW7neNVg25XUAQ+vdJpNpRC6VYG2zErfCFEltU7bgmEWyMLZIFsYWyZDquApd9qn7VkoIbeCM24yV6tgiZ2JckSzZHlsjrnFLmcUwDKxevZozocl2MmNrgvchFOe2AQBEihK3oRm3yr5XKwDueuPP+Ppj76C/8NBkt8rxOGaRLIwtkoWxRTKkQ1yZhgGP1g+XNvRcbKCMVPau8J3J0iG2yHkYVyQLY2sEidvTTjsNnZ2d4b/feeed6OjoCP+9tbUVCxYssLVxRJSdBidrTT2QkjY0qqfjN2/fjU87zhj2moFc+I1cmIL3voiIiMiZJiiv4s/nHYlTx109ZLuplaCldwK8gaIUtYyIiCh7JJx1ePHFF+Hz+cJ/v/3229HW1hb+u67r+Oyzz+xtHRFlJWFaidvH1l6DvUWXp6QN3ZiF1buPR1tgzrDXwk8IsnIMEREROVWUev978i/FdU//B+/uuSQFjSIiIsouCde4FULE/DsRkW2Elbjd0z0NPrM4JU0IJWUj1UA/db+HMS5nO5SucwEsTGq7iIiIiJIhWr3/0LkRb2ATERHJx+d8HU7TNCxbtiyrV+AjOaTGlmmVRzBMFwKpqZSA/MCnOHTai6jM2zHstYXV7+GI6c9D9TWkoGXOxjGLZGFskSyMLZIhLeIqPON2aBtCTx7pLHGbkdIitshxGFckC2NrBIlbRVGgKMqwbZT+/H5/qptADiUttoKlEr60+Hco7nlezjHimGA8hauO+BHmFL8+7DURHDoFV1OWgmMWycLYIlkYWyRDyuMqSqmESv+zuPXUi3DUhPtT0CiyQ8pjixyJcUWyZHtsJZy4FULga1/7GlasWIEVK1agv78fV155Zfjvl156qcx20igZhoH169dn9Qp8JIfU2BLWNNuppVtQ3P+m/Z+fSBPMyBcrwMAjg8LgM4J245hFsjC2SBbGFsmQDnE1cC40dJaTB22YUb4RJZ76FLSKxiodYouch3FFsjC2RlDj9uKLLx7y96985SvD9rnooovG3iIiynof910Dd8tDmF2xPrxQWdIJKymrqBEeyVA445aIiIgcLngutO9N7PC5keANbCIiItkSTtz+5S9/kdkOIqKwXd6jsXtbp5W4NVKTuBUi8oIcg7eZXJWDiIiIHKojMBmr647H5NIDhmwPJW4VsMgtERGRbAknbilzZXMRZ5JLVmzpurUwGYDwQmVJF5zpq6gRKsqEZ9wycSsDxyyShbFFsjC2SIZUx9Vu7+F46u3DcdXQvC1UzToPUsAnjzJVqmOLnIlxRbJke2wxcetwLpcLy5cvT3UzyIFkxla1+g5KJ3xg/SUNSyVwcTJ5OGaRLIwtkoWxRTKkQ1yF7k/vew9b1axLSCZuM1M6xBY5D+OKZGFsjWBxMspMQgh0dHRACJHqppDDyIytY0tvwJEznrWOk+rEbYTFyf615UZ8658voy3/88luleNxzCJZGFskC2OLZEiHuDIM69jDHj4K3tTmk0eZKR1ii5yHcUWyMLaYuHU8wzCwefPmrF6Bj+SQG1uDkrUiNYnbLb7z8cf3bsNeffjdvYAoQrevDIbwpKBlzsYxi2RhbJEsjC2SIR3ianHRA/jrBcuwSLt9yHZFy0O3rwz9en6KWkZjkQ6xRc7DuCJZGFsslUBEaUgJJmvveu0+nPT5yZidgjbsDSzFuzXA1EOHvxaaeZLFvx1ERETkdOGnj5Qhm/vLTsa3/nkyKiuB81PRLiIioiySUOL2mWeeSfgDzzrrrFE3hogIwoQC60JhZ9t+6AqUpKQZoaf/ItVBX1L9PA4rXocC73EAImR2iYiIiDKdCN6h3qfef+jciDewiYiI5EsocXv22Wcn9GGKomT19OV0pCgK8vLyht0pJxorabFlBhAqX6ObbgQC9n58osqVj7F0cicKtPkAqoa8NrN0NeZNfgaafwKYuLUXxyyShbFFsjC2SIa0iKvgjFsoQxO3fPIos6VFbJHjMK5IFsZWgolbk4XnM5amaTjwwANT3QxyIGmxJfRw4vbzCx/EXHcxgIvsP04cC3P/gKVHr8b2nNsBnDz0xeCCZRwb7ccxi2RhbJEsjC2SIS3iKjjjdt+FWvP61+GGE3+HNt90ADckv100JmkRW+Q4jCuShbHFxckczzRNNDU1McFEtpMWW4Nm3J6x4CHsl/OIvZ+fICU8y2T4MBm+gDE51cRuHLNIFsYWycLYIhnSIq5Cidt9SyWILsyrWoPJxZ+lolU0RmkRW+Q4jCuShbE1ysXJent78eabb6K2thZ+v3/Ia9dcc40tDSN7mKaJHTt2oLy8HKrKPD3ZR1psaXl4ZvuPgO6tOHHu41BEamoliPDFyvC+CVgXMCKLfzxk4ZhFsjC2SBbGFsmQHnEVPM/ZJ3GrBovcKuAN7EyUHrFFTsO4IlkYW6NI3K5duxannXYa+vr60Nvbi/LycrS0tCA/Px9VVVVM3BLR2Gg5eL/+C+jcU2slbqGnpBmhBdJUNcLqZMEZt6HkLhEREZHTNPfNgK/tcMyeNXXIdlWzLiGZuCUiIpJvxOnqa6+9FmeeeSba29uRl5eH999/H7t27cJBBx2En/3sZzLaSERZRtethckAQEGKVieLspIygIHyCYIzbomIiMiZ1raswM9e/w1ac88csl3VrPMgRWHiloiISLYRJ24//vhjfPe734WqqtA0DT6fD1OmTMHdd9+NG25gcfp0oygKSkpKsnoFPpJDWmzpfZhe9AFmlm+0jiNSM+M2lLiN/DhGcMYtSyXYjmMWycLYIlkYWyRDOsSVEbqHvc+pkBYslaApBngqlHnSIbbIeRhXJAtjaxSlEtxudziRUVVVhdraWsyfPx8lJSXYvXu37Q2ksdE0DfPnz091M8iBpMVWXx0uX/wt+Pyh+mmmNbM1wiJhMoVKJSja8Bm3q9ouxZ9WnYerv1OIhUltlfNxzCJZGFskC2OLZEiHuAolbvc9FQqdG6nBxG2WlhzMWOkQW+Q8jCuShbE1ihm3S5YswapVqwAAxxxzDG666Sb8/e9/x3e+8x0sXMgURroxTRN1dXVZvQIfySEttoQOIQCfnmf9VQAwkz/r9oPWy/GXD2+AV50x7DW/KEFL70T4RXHS2+V0HLNIFsYWycLYIhnSIa5Om/ZT3H/uURjf/48h2zWXC34jFwHDwxm3GSgdYouch3FFsjC2RpG4vf322zFhwgQAwE9/+lOUlZXhm9/8Jpqbm/HHP/7R9gbS2DDISRZpsWUGIATQ6y/GrS8+hAc2/Q1QR/xwwJht7Toer29bgYBWNey10MwTg6XdbMcxi2RhbJEsjC2SIR3iyoV+5Li8UNWhbVBKF+Drj72D6597HHqKKlrR6KVDbJHzMK5IFsbWKEolLFu2LPzfVVVVeOGFF2xtEBFlueCMW7+Rg+2tC1HYBSAF5WyiPR4IANMKPsCXl7yHCmMRgOOT2i4iIiKiZFBgnQwp+9RCGHxulMXX0UREREkx4hm3xx9/PDo6OoZt7+rqwvHHM4FBRGNkBiAA6KYbAFI2k2NC7lrsP/5DeNTeYa9NLFiPz83/G8rM91PQMiIiIqJkCNb7V4bexR6cuOXTR0RERHKNeMbtG2+8Ab/fP2x7f38/3n77bVsaRfZRVRWVlZXhBeWI7CIrtoRpzbg1TBdOmfcIpo7vBwLnAu5CW48Tz6kTb8Rp4xqxF38FsGDoi6ELGE4zsR3HLJKFsUWyMLZIhrSIKxF5oVbF14TvHvtTBIwcGMbdqWgZjUFaxBY5DuOKZGFsjSBxu379+vB/b9y4EY2NjeG/G4aBF154AZMmTbK3dTRmqqpi1qxZqW4GOZCs2DL1ABBM3J6z6PcoLvACgVOSnrgNPR6oRqiVoCjBHw3BxK3dOGaRLIwtkoWxRTKkQ1ypih5uy2CK8GPxpHfhDeRzxm0GSofYIudhXJEsjK0RJG4XL14MRVGgKErEkgh5eXn47W9/a2vjaOxM00RNTQ1mzJiR1XcoyH6yYiuQOxt/X3MdOr3j8LWD74QQAMyAbZ+fqIHEbYS+KSogACF4tWI3jlkkC2OLZGFskQxpEVehG9TqPjexFQ1QAE3VmbjNQGkRW+Q4jCuShbE1ghq3NTU12L59O4QQ+PDDD1FTUxP+X319Pbq6unDppZfKbCuNgmmaaG5uzuoV+EgOWbEVcE/Bi5svwPu7ToFuuK3ErUh+oVslWNct0ozbcKkEzri1HccskoWxRbIwtkiGdIirPd2z8FnzEghPxdAXFA0KAE0xWDUqA6VDbJHzMK5IFsbWCGbcTps2DQCy+v8sIpIvMGhyrSFcwRm3KVihLFTXbd9ZJhhcKoHTTIiIiMiZnvnsf7BnD/DQhfu8oLgABVAVI2WLyBIREWWLES9OBgDbt2/Hr371K2zatAkAsGDBAnz729/O+roTRDR2Rl8zZlfsQXd/GQzTBQEAIvmlElRFh4Hhdd2sFzXAAGfcEhERkWOFyiAMOxUKzrgFANMwMYKHOImIiGiERvwr++KLL2LBggX48MMPsWjRIixatAgffPAB9t9/f7z88ssy2khjoKoqJk+enLW1QEgeWbGlNb+Gm06+FOcsvg+6mboZt7FKJezyn4Lrn3scH/dfl+xmOR7HLJKFsUWyMLZIhnSIq9CDlsNOhRQNSjBza+h8+ijTpENskfMwrkgWxtYoZtz+8Ic/xLXXXos777xz2PYf/OAHOOmkk2xrHI1dKMiJ7CYrtszgM3eG6bJm3KZocbIXaq5B814/Tj+4ZNhrulKC+s4S9PDxQNtxzCJZGFskC2OLZEiHuLpi2XcwMX8j8ntvAXD4wAvBklECKkzDAOBORfNolNIhtsh5GFckC2NrFDNuN23ahMsuu2zY9ksvvRQbN260pVFkH8MwsGnTJhhc8pVsJiu2DN1K0uqmG/e/fzN++vL9QMl8W4+RiJV15+K/m74C1VMw7LXQzBOW/LYfxyyShbFFsjC2SIZ0iKsCVweKc9ugqfvcqdby8J0XVuHiRz6ELnJT0zgatXSILXIexhXJwtgaxYzbyspKfPzxx5gzZ86Q7R9//DGqqqpsaxjZQwiBzs5OCCFS3RRyGFmxZQYTt4rqwo7W/a1tWvKrp4WSspGeyCh3bcGKA17HVNdkAKcntV1OxzGLZGFskSyMLZIhHeJKUUILtar7vgBX8CqSN7EzTzrEFjkP44pkYWyNIHF722234Xvf+x4uv/xyXHHFFdixYwcOP9x6ZObdd9/FXXfdheuuY71HIhobI1gqQdUGhiddBzyeJDZCCEwuWAe1QoWq7A9gaHG3cvdWHHTA/fB5DgUTt0RERORECqzZTZHq/Yc2ZfEEKCIioqRIOHF766234sorr8SNN96IoqIi/PznP8f1118PAJg4cSJuueUWXHPNNdIaSkTZQRjWjFvV5cKSSW+hsrABeueh8FROT2YjcNVBX4ffD5jqawCKh74emnkiOM2EiIiInClW4vYrB9yA3hkBmL4bMew8iYiIiGyTcOI2NC1ZURRce+21uPbaa9Hd3Q0AKCoqktM6GjNVVTFz5sysXoGP5JAVW6YRmnHrxkn7PY6F49+HaL8VSHLiNvQghqJFGCYVLbwf2YtjFsnC2CJZGFskQzrElYIopRIAHFD1OvTSAPzG/4KJ28ySDrFFzsO4IlkYWyOscasoypC/M2Gb/lRVZe1hkkJWbLW7jsB/1pfAKDoA++XsADBQPiFphIFQ5lbThv9AhH80srjOjiwcs0gWxhbJwtgiGdIhrsIzbtXhM25FcPWB0A13yhzpEFvkPIwrkoWxNcL1fubOnYvy8vKY/6P0YhgG1q1bl9Ur8JEcsmKrXT0ET2+4DLW9B8MM3lsyAgFbjxGXMMM5WTVC4lZRQtv478puHLNIFsYWycLYIhnSIa7qOmZhZ/s8KJ6CYa+JYP1/k3GfcdIhtsh5GFckC2NrhDNub731VpSUlMhqC0kghIDX683qFfhIDlmxFcrRut2AUIKJ22TPuMVA7VrNNXyWiRKaecIat7bjmEWyMLZIFsYWyZDquDJN4Ddv3w0AeDnC+tOmsM7RmLjNPKmOLXImxhXJwtgaYeL2/PPPz/opykQkl+ZvwNTSHhTlVkPADQAwU1AqITzjNlItneA2hTVuiYiIyIHMQfemI6xNBgENCgBh8lyIiIhIpoQTt/vWtyUikmGq9zf4yWmvYFXP9yF6QrM5kpy4Na3FyQRUaK7hY1+nuhgPvPgwlh+aj8XJbRkRERGRdIMTt5HuYYcSt5xxS0REJFfCidtsnpacyTRNw7x586BFulVONAayYkuYVpJW0VxAsFSCqSe5xq0rH//ecBUCfuCy8yK9XoQdrftjpi+5zcoGHLNIFsYWycLYIhlSHVeGAdx26ldRmNMJzfsboHD6kNdDi5MJLk6WcVIdW+RMjCuShbE1gsStabKWYyZSFAWlpaWpbgY5kKzYEkYwSau68F79eXhj47H43tFTMdH2I8Xgysd/Pr0Ufj9wefRKCeCwaD+OWSQLY4tkYWyRDKmOK9MEKgobUOjphKYNP+G5f/O/8OEqFbfcOqLKe5QGUh1b5EyMK5KFsQVESEmQk+i6jlWrVkFP+uJO5HTSYis849aNVv8srN9zOPow2d5jJCD05F+kG3t5yl6cPv+vmF/07+Q2KgtwzCJZGFskC2OLZEh1XBkGoCnWyZAa4WRIqLnQTQ8Mk5eTmSbVsUXOxLgiWRhbI1ycjDKTwdpTJImU2DKtGbeq5oIrOEIFklwpAYYfU0pqEDDc0LSZw14uUBpw3pLfQM+ZCuALSW6c83HMIlkYWyQLY4tkSGVcmSagKNZM20iJ29Amhn5m4phFMjCuSJZsjy0mbokovYjgjFvVjcklWzBh1ibk9E0DkrgMmNlbj9tOvRC9/mJo2mvDd1CDVyuCtRKIiIjIeUxz0IzbCKuTHVl9HxYevge5ga8BmJXcxhEREWURJm6JKK2EFidTNRcWVLyFg+f8ATm9K5DUxG2weK1huiKupKxpCgBAARO3RERE5Dy6bs24VRQAyvAZt7OK30FOzhbsNU8HE7dERETysCiRw2mahkWLFmX1Cnwkh6zY2t5/Jp7d+DV41SlQVOveUiiZmyymbs0wMaFGrHEbnnHLxK3tOGaRLIwtkoWxRTKkOq5ME9DU4KOpERK3Alpwv+x+fDUTpTq2yJkYVyQLY4szbrOCx+NJdRPIoWTE1saeL+Hxj4FLlwIFqhsAIIzkFrkN1dARInLiVlGC97xYKkEKjlkkC2OLZGFskQypjCvTBBo6p8PtMjA/eD42lHWCJLK87mCm4phFMjCuSJZsjy3OuHU4wzCwevXqrC/mTPaTFVuhxSLdbgApmnErjFCpBC1iqQRVszaqCv9d2Y1jFsnC2CJZGFskQ6rjyjCA6597HDe9/E/AUzLsdRGchSs44zbjpDq2yJkYVyQLY4szbokozeSJ3aguBHLc1UBohkeKZtyaQoMrwiipcHEyIiIicrBguf+IN7ABDJRPENl7IU1ERJQMTNwSUVo5veJynHxWC7a5H0FHqmrchhO3qrUoxz4Mz0Tc/sofMX2mGz9JasuIiIiI5AtNbIpWUjBc4zaLZ0ARERElAxO3RJRWFFizazWXK2WLk+laNZ759FL0BYpxfITELbQ8bG46CGpFUptFRERElBRC9+KuM74Kl1sFjL8B2j71BVkqgYiIKCmYuHU4TdOwbNmyrF6Bj+SQFVuqsBK3qsuNZmMpfvP+3TjlrArMs/UosemeiXhy3VVwu4HbIrUx+NggJ5nYj2MWycLYIlkYWyRDquPKNHRMKN5plYyK8PjRO9134N//FvjKxXnJbxyNSapji5yJcUWyMLa4OFlW8Pv9qW4COZSM2FJgza5VNRf86nis3n08mgOLbD9OLKGEbLS6bm6lDyfOfRzLq59IXqOyCMcskoWxRbIwtkiGVMaVqVsnQ4qCgXq2g+hKEXr9xQgY7iS3jOzAMYtkYFyRLNkeW0zcOpxhGFi/fn1Wr8BHcsiKrVDiVnO74Q5eC+jJrZQA09+H6qJajCtoivi6C924aNndOG3mL5LbsCzAMYtkYWyRLIwtkiHVcWUagxZgVYZfMoYmPjHsM0+qY4uciXFFsjC2WCqBiNKJMAFYFwqa240CdxsOmbYalcgDcFTSmuHqWo17zrwOu7v2B/DwsNc1zbqAUZC9Px5ERETkXKZpQAEgoszzmZ33DC45eAPKlZMALE9q24iIiLIJE7dElD5MHUJY/+lyuzAuZyu+dcQN0HJmIpmJ29Ask9CKyftS1FDi1oz4OhEREVEmMw0DGqKfC01wf4BZs1/ETnU6mLglIiKSh4nbLJDNRZxJLhmxtbL+QrQ2B7D8EA9ULThEieTWSjBNKyFrRrlYUYMzbgVgzRKO8AghjR7HLJKFsUWyMLZIhlTGlQidC4kobQjWvTVNPn2UiThmkQyMK5Il22OLiVuHc7lcWL6cd8HJflJiS/PgP1uvxbZtwKGXAopmFblVkp24NULHi5yQ1VyaNddWgIlbm3HMIlkYWyQLY4tkSHVcGQbQ0TsBntycyDsooZvrfPoo06Q6tsiZGFckC2OLi5M5nhACHR0dEKHnz4lsIiu2AgHrT7cb0FzWRYEiArYeI57QLJN4pRKCOyejSVmDYxbJwtgiWRhbJEOq48qnTsR1T/8Hv1n7ZOQd1OA5EmfcZpxUxxY5E+OKZGFsMXHreIZhYPPmzVm9Ah/JISW2TB0FWiNKclvhdgOqyx18IbkzbkV4JeXIQ6QaTNwKAUDw35adOGaRLIwtkoWxRTKkOq6C97ChRrlaVEJPGyX5qSgau1THFjkT44pkYWyxVAIRpRPvHtx41BfQ7c2H2/0W1OCMWxXJnXEbqtcmlCg1bt25+Pkbv0JhkYpfX+1JZtOIiIiIpAtdH0dL3IZn3PIGNhERkVRM3BJR+hABCAEYpgsul1XPBkh+jdt+1wy8+NmXoefMwBkRXlc1FesajkRxMfjcAhERETmO278Tt516I7SCCgC/HPa6olrnaKHyUkRERCQHE7cOpygK8vLyoChKqptCDiMltkwdQgC66YbbDQhPGf703i2YPdeDq+07Slw92kL8/aOFmDUr8uuhRS15rWI/jlkkC2OLZGFskQwpjyujD9PLN0F3VUd8uUb9Ov701AU47OhCnJnkptHYpDy2yJEYVyQLY4uJW8fTNA0HHnhgqptBDiQltoQ+ZMat6s7DOzVnoH+cvYeJJ5SQ1SJXSoCqAkfOeBb5eQZgnApoUVZcphHjmEWyMLZIFsYWyZDquBLBWgnRFmo1tWK09hWjz5/MVpEdUh1b5EyMK5KFscWHfB3PNE00NTXB5NRAspmU2Npnxm2wUgICyS1xCxHoQ1leE/Ld3RFfV1Xg8sNuw0VL/w8IRN6HRodjFsnC2CJZGFskQ6rjSpixE7d8+ihzpTq2yJkYVyQLY4uJW8czTRM7duzI6iAnOWTElmkMzLh1uwG3y8SSSW9hdtFrgJm8OrelvU/h1184DWfNvivi65oGCKFACADgvy07ccwiWRhbJAtji2RIdVyZhnVcM0ridhw+xAVLf4lZBa8ks1lkg1THFjkT44pkYWylSeL2d7/7HaZPn47c3Fwccsgh+PDDDxN636OPPgpFUXD22WfLbSARJYURnFobmnHrcRu49pjrcN7c7wOGN3kNCc4ygRJ5iFRVwBBcTZmIiIicSYTPbyKfC5XiE5w67++YkvdB8hpFRESUhVKeuH3sscdw3XXX4eabb8aaNWtw4IEH4pRTTkFTU1PM9+3cuRPf+973cNRRRyWppUQkm+6qxOvbVmDV7uPhdgNasFaCEADM5NVLCN3NE0rkMuDWjFvVapfI3jt/RERE5EwiNLNJiVLwP7ydN7CJiIhkSnni9he/+AUuv/xyXHLJJViwYAH+8Ic/ID8/Hw8++GDU9xiGgQsvvBC33norZs6cmcTWZh5FUVBSUpLVK/CRHDJiy++Zib98eAOe+uRyuFyA26PAFFowQZq8Ugmhum7RhkhVBUxhvWYavGCxE8cskoWxRbIwtkiGVMeVYaro9pXBZxZHfF3V+ORRpkp1bJEzMa5IFsYWEHk6WZL4/X589NFHuP7668PbVFXFiSeeiPfeey/q+2677TZUVVXhsssuw9tvvx3zGD6fDz6fL/z3rq4uAICu69B1PXxMVVVhmuaQuhmh7YZhQFjFLGNu1zQNiqKEP3fwdsBKOCey3eVyQQgxZLuiKNA0bVgbo20PtVFRFMyZMwdCCOi67og+OfF7ytQ+zZ8/H6ZpDjnuWPrk9QoIoUFVAUUB3G4FftMFIQzogX7ApSfnezICUAEIKEP+3YT2N03ANK3jmaYJkebfUybFnhAiPGYZhuGIPjnxe8rUPs2bNw+GYQx5T6b3KdJ29in5fZozZw5UVR3WxkzuU6y2s0/y+6RpGubOnRs+h092n5qNpbjryZdw7LEChwHD2o7gBbQi9IjngdnyPWVqn/bbbz/H9cmJ31Mm9Sla3iGT++TE7ylT+xQp75DpfRqJlCZuW1paYBgGqqurh2yvrq7G5s2bI77nnXfewQMPPICPP/44oWPccccduPXWW4dtX7t2LQoKCgAAlZWVmDVrFmpqatDc3BzeZ/LkyZg8eTK2bNmCzs7O8PaZM2eiqqoKGzZsgNc7UHdz3rx5KC0txdq1a4d8KYsWLYLH48Hq1auHtGHZsmXw+/1Yv359eJumaVi+fDk6OzuH/H+Ql5eHAw88EC0tLdixY0d4e0lJCebPn4+GhgbU1dWFt4f6tGPHDtTV1SE3N9cxfXLi95SJfSouLkZxcTFM00RDQ4Mtfaqr9ULRp0KobnR2uuFylaInoCLHZWD9ujXwuxqS8j319vSgyDTR0+vF6tWrh/XJ61WRa1hJRtMwsT2Nv6dMjL3+/n7k5uY6qk9O/J4yrU9Lly5FXV3dkFJMmd4nJ35Pmdqn/v5+LFu2DLm5uY7pE+C87ymT+lRRUYEPPvgAqjrw9E8y+7RlSzn6+iais7MfQMWwPgU6uzEOgN/nHXLcbPueMrVP+fn5WLhwoaP65MTvKZP6VFdXhx07doTzDk7okxO/p0zsU25uLioqKuByubBz505H9CkvLw8zZsxAohQxOKWcZA0NDZg0aRJWrlyJww47LLz9+9//Pt5880188MHQYvfd3d1YtGgR7rvvPnzuc58DAHzta19DR0cHnnrqqYjHiDTjdsqUKWhtbUVxsfXoT6Zk5Edz5yQ0q3np0qXQNM0RfXLi95SJfTIMA2vXrsXSpUuHXFSMpU/Na59B21s/xcbmw/HF23+NmhoFzY+diNL8Dsy6+O9A4aykfE/rnvgd3Lv/gi2+c3HG/143rE9eL3Dthe/Cpen45V8PgSc/L22/p0yLPb/fjzVr1mDp0qVwuVyO6JMTv6dM7JMQAqtXrw7/HjqhT078njKxT4ZhYM2aNVi2bBlcLpcj+hSv7eyT/D6ZpolVq1YNGbOS2adHH1Xwy1+qOOkkgTvvHN72z17+F5RNd6PGexxO+cEdCfXJid9TJvYpNGYtX74ciqI4ok+x2s4+JadP0fIOmdwnJ35PmdinaHmHTO6Toijo7e1FSUkJOjs7w7nJaFI647aiogKapmHv3r1Dtu/duxfjx48ftv/27duxc+dOnHnmmeFtoS/C5XLhs88+w6xZs4a8JycnBzk5OcM+y+VyweUa2v3QF7avwRd4iWzf93NHs11RlIjbo7Ux1vZQQA/+vEzvkxO/p0zu00j2j90na6A04YGiKHC7AUO4IATgUgEMOo7MPnUpC7Bh+9lQKhcPeV9o/5wc4OOGY6y2qkCULqXd95QJsRf6gdQ0LXysTO+TE7+nTOyTrusRfw+BzO1TrO3sU3L7pChK+H9O6dNot7NP9vTJNM2oY1Yy+jROWY0fnfQn5FbNA3DdsLarLjcEAAVmxM/Jlu8p1vZ07lPoMV0n9SmEfUpdnyKNWZneJyd+T5ncJzv6mk59SlRKE7cejwcHHXQQXn31VZx99tkArJOUV199FVdfffWw/efNm4dPPvlkyLYf//jH6O7uxq9//WtMmTIlGc0mIknMQPBulmINTS4X8Njaa5CX48OdV1XHeKe9mpTj8MAHx+G44yK/Pnj83+eGGhEREVHGc5utmFa1Bj05kS9kewpOwG3PLsHEqQU4LcltIyIiyiYpTdwCwHXXXYeLL74Yy5Ytw8EHH4xf/epX6O3txSWXXAIAuOiiizBp0iTccccdyM3NxcKFC4e8v7S0FACGbSeLqqqorKyMeKeBaCxkxJahBwAAQnEDANxu4N2a06xEqce2w8RvRzAZG20mraoCB058B3nuXpj9hwDFpUlrm9NxzCJZGFskC2OLZEh1XAnTOhlSlMjHF65i7OkqRr434suUxlIdW+RMjCuShbGVBonb8847D83NzbjpppvQ2NiIxYsX44UXXggvWFZbW5vVX9BYqao6rHwEkR1kxJZpWDNuRXBocruD203rf0kbCnQv8t063FoOImWMVRW4ePndqChoAPoeBFCapIY5H8cskoWxRbIwtkiGlMeVsMrRCUR7dNT6c1D5QMoQKY8tciTGFcnC2ALSIiN69dVXY9euXfD5fPjggw9wyCGHhF9744038NBDD0V970MPPRR1YTKySk9s3759SFFmIjvIiC0zOOMW6kDidkb5Rhww4T0EetttO048s83f4A9fOg7Lyv8SdR9TWBcypsF/W3bimEWyMLZIFsYWyZDquArNuIUSOXGbq+/AFxf9Hsuq/53EVpEdUh1b5EyMK5KFsZUmiVuSxzRNNDc3Z3WQkxwyYssMrtgYKpXgcgFfO/hO/O9x/wOzfYNtx4lLBB8PjDHFVwQfHeS/LXtxzCJZGFskC2OLZEh5XAXPhaI97pRr7MTnFz6AJdXPJbFRZIeUxxY5EuOKZGFspUGpBCKikF51Dj7c+Tn05CwAYCVuDdMapozQwmXJIEI/ClGK3AIQwRm3gquTERERkcMMXCBHPhdSgwsBKOB5EBERkUxM3BJR2mjWTsAfVp6ApUutv6sqYAhrmNIDgaS1QwQvVhQ1RuI2+MACSyUQERGR05imioCRA1OJvDosE7dERETJwVIJDqeqKiZPnswF3sh2MmIrlJt1DbqlZAqrbEKojEJyBI8VZSVli/VauAYc2YJjFsnC2CJZGFskQ6rjaptvBS577F283/eTiK+rwZvbqpLM8zOyQ6pji5yJcUWyMLY449bxQkFOZDcZsaX7/XCpgNvlQjgxqiS/VEIiM27N4KODhimS0qZswTGLZGFskSyMLZIh1XEVul8e7TpZ4YzbjJXq2CJnYlyRLIwtzrh1PMMwsGnTJhisw0k2kxFbM/vvxIPnH47Dxv81vM2EO3i85Ne4jbU42X+3XIE/vncr/J45yWpVVuCYRbIwtkgWxhbJkOq4CpW41aLcw1aDj0cpYMmoTJPq2CJnYlyRLIwtzrh1PCEEOjs7IQRnBZK9ZMSWMHQoAKC6B7YFZ9wms1RCc+BA7NmloGDOtKj7bGw5Ci0twLeiT8qlUeCYRbIwtkgWxhbJkOq4mup+Cd877lmU5xwB4Lxhr4dLJXDGbcZJdWyRMzGuSBbGFhO3RJROhFXkVlEHhqY1jadjfe0ifO3YxUlrxqa+8/DIu+fh4tnR9wlNxs3iG39ERETkUIVqLaZPWIkebXzE183CObjphf8HRcvB0UluGxERUTZh4paI0ocRTNxqAzNut3Ychdpa4EtJLOwS7/FAAJhZ/gkmuduh+OYBqEpKu4iIiIiSIlg2CkrkkyHNk4+dbfOHLChLRERE9uNPrcOpqoqZM2dm9Qp8JIeM2BKmVSph8Izb0AVBIGDbYeK3wwhAUwFN0xCtFPgZc3+HqYWr4en9KYBTktc4h+OYRbIwtkgWxhbJkPK4Mq0SVdHq/YdubvPJo8yT8tgiR2JckSyMLSZuHU9VVVRVcTYg2U9KbJmhGbcDQ1NFQQNclU1Q+qsATLT3eFEcV3ItTj//fdS6bwNwWuSdFOuHQ5i8YrETxyyShbFFsjC2SIbUx1XsGbcuswOnL3gauumGaV6ALL6ezjipjy1yIsYVycLYijaVjBzDMAysW7cuq1fgIzlkxJYIzu5QB5VKOHLKo/jxSV9Hafe/bDtOAg0BEH2WCQCYsC5khOBqynbimEWyMLZIFsYWyZDquBJxSiWoRjvOW/xbnL3wz+ESU5QZUh1b5EyMK5KFscUZt44nhIDX683qFfhIDhmxtde/BHvqiuCaUx3eFiqbYBq6bceJRwmukBz7cYzgjFuDVyt24phFsjC2SBbGFsmQ6rhSROxSCS6XldBVVYOJ2wyT6tgiZ2JckSyMLSZuiSiNfNR1JZ54C7h8v0EbleAwZSSvyO3ALJPoQ6QIzbhlqQQiIiJyGGEKQAWUKDNulWCRW00xoOuAx5PM1hEREWUPlkogorQRWoDM7R60MRUzboWVjFW0GENksMatyWkmRERE5DBvNn0XFz2yCju0KyO+roVm3CqccUtERCQTE7cOp2ka5s2bB02LfLecaLRkxFYgYD3+4Bo80VW1srjCTN6M2xGVSuDViq04ZpEsjC2ShbFFMqQ6rqxSggo0V+RzoVC7NNVAFpcdzEipji1yJsYVycLYYuLW8RRFQWlpKRRFSXVTyGFkxNZ5E1bg4QsORqVr/cBxgjNuRRJn3Irw4mTRfxzWNH8BD6/6IbpcS5PVrKzAMYtkYWyRLIwtkiHVcRW6Lx3tHnboHEmBCUPP3rqDmSjVsUXOxLgiWRhbTNw6nq7rWLVqFXQ9eUkvyg5SYkvoUGCGH78DMGjGbfJieHfvQVhTdwwC6rio+9R0H4ZXt56DXmVW0tqVDThmkSyMLZKFsUUypDquFpU8jv856geoEG9FfF3RXAhdQxtcqDWjpDq2yJkYVyQLY4uLk2UFg88vkSR2x5aKAEwA6qAity36Ijy58SocUjkT+9t6tOje2PMdvPMOcOMx0fcJlXNgpQT7ccwiWRhbJAtji2RIZVyNz9uAacWvwq8sjLyDVoC73vgTfD4Nv/xy9s6CylQcs0gGxhXJku2xxcQtEaUNRVh30bRBRW7bzQV45tMFmBwjiWq3UDI2Vhmdyryd2H98E9yByQAmJqVdREREREkRKhulRDkZUjVsb1sKrxcwWSmBiIhIGiZuiShtKLAWIBucuA1Nvk3mkxGhG3qx1iY7dPxfMWvaM9B93wJwSVLaRURERJQcoXr/0U+GQi9l8dOrRERE0jFx63CapmHRokVZvQIfySEjthQEZ9wOKpWQ7+nB1NIG5BoeANNtO1YsX99vBa6c2YBu3A/ggMg7hWagCNZKsBPHLJKFsUWyMLZIhlTHlSKsu9hRF2oVAifMeRy+fgOm/kUAOclrHI1JqmOLnIlxRbIwtpi4zQoejyfVTSCHsju21AgzbifnfYifnPZ9mJ7FAP5s6/FitUNT9JizTKBYrwkzu+vtyMAxi2RhbJEsjC2SIbVxFTy/iVYqAcD5i+6BrgMicCqYuM0sHLNIBsYVyZLtsRUjK0FOYBgGVq9enfXFnMl+tseWENjafhg2NB4C1ZMb3qyowSSuSN5zeErwYkWNmbi1LmQEVyezFccskoWxRbIwtkiGlMdV8IkiVYtyLqQoMIV1LmTqjP1MkvLYIkdiXJEsjC3OuCWidKEoeODjX6OmBvjjeQObVc0aphQRSF5TELpYifU4RvBChqUSiIiIyGFCN7EVJfpNbBMaACOrL6aJiIhkY+KWiNJGIJibHVTiFmqobIKZzJUvQgtyxEjcBi9kTM64JSIiIof526c/w47tOu45xB11HwENClg2ioiISCYmbokobYRWJR5U4haKFrpgSF7iVg0eK+rjgRg0A4UzbomIiMhhAoYbPt0NLcbVohBW4palEoiIiORh4tbhNE3DsmXLsnoFPpLD9tjyteGuE8+E1+eB2/UaAMU6TjCLq6ZZqYRd3qPwwZYKHD5+QbKalRU4ZpEsjC2ShbFFMqQ6rkIPFMU6vAkNKgBDT+ZTUTRWqY4tcibGFcnC2OLiZFnB7/enugnkULbGlhmAS/HBo/XD7VHCmzVXcMZtEhcn29a+DJ82HgzFlRd1n72Bg/DfTV9Bq7k0ae3KFhyzSBbGFsnC2CIZUhlXx055AFccdgvyA5ui7iMQWqiVM24zDccskoFxRbJke2wxcetwhmFg/fr1XDSAbGd7bAkdQgC66R5S49ZwV+A/n16CNS3n23OcBDy07me467X7YHoqo+6jBkdPlri1F8cskoWxRbIwtkiGVMfVfuXv4sgZz8Ij9kbd5/HNP8Vdr/0O/cqkJLaMxirVsUXOxLgiWRhbLJVAROnCDEAIwDBdQxK3wlOBJ9Z9C4fmARcmqSmh34RYT2MUupswq2IvcoxyALxgISIiIudQYJ0MKWr0eT67epZjcyMQEMlqFRERUfbhjFsiSgtiUOJ28OJkof8OJK/EbUJ13eYXPoObT74Es9SHk9MoIiIioqQJ1vtXo58MhXK6WTwJioiISDrOuM0C2VzEmeSyM7ZCC1vopntI4tbtMlBdVI8SzQAww7bjRSUE7jj+GPj8KlzmUwBKI++nWFcrrOtmP45ZJAtji2RhbJEMqYyrRGbcLqx8DdWzO6AGjgZQkaSWkR04ZpEMjCuSJdtji4lbh3O5XFi+fHmqm0EOZHds6X5rSu2+pRJy1U7cc+YK5OYpgPgQUJQon2ATYcKj9UF1A5orxkMJoRkogkVu7cQxi2RhbJEsjC2SIdVxFUrcxppxe9zkP6Bg0g70BqaBidvMkerYImdiXJEsjC2WSnA8IQQ6OjogBItPkb3sjq2AyMfmpqXY3rr/kMSty+MKHTA5SVIxMINW1aIPkUpwxu3g/WnsOGaRLIwtkoWxRTKkOq7U0IxbV4xZTsFzIZO1EjJKqmOLnIlxRbIwtpi4dTzDMLB58+asXoGP5LA7tgI5s3H7K3/Cfe/ePqS2rOa2ErdCABC6LceKzUToN0GLkbgNl0rgjFtbccwiWRhbJAtji2RIdVwpSqjGbfRzIQHrhE0YyTg/I7ukOrbImRhXJAtji6USiChNBEvcwu0eWg3B5RqUuDUDgJYjtyHCROhenhKjlk74QoaJWyIiInKY2197CL5+HQ+tKIq+k2KdJ5kmz4WIiIhkYeKWiNJCwCpxO6RMAjBQKiFpM26FjlDmVov1eGCw5pvCUglERETkMD2+Ynj7Ac0dfR8RvJTkQq1ERETysFSCwymKgry8PCiyF3SirGN3bKktb+J3XzwRVx3+/SHbXW4VAurAjFvZBs24jVUqod1ciH998g3s6D9ZfpuyCMcskoWxRbIwtkiGVMdV6InUGJUSIMAat5ko1bFFzsS4IlkYW5xx63iapuHAAw9MdTPIgeyOLdPfh6KcDhR4eoZsd7kAr+mCS/iTM+NWUbGlaTEUmDg0RuK2S1mApz5ZgC/Nk9+kbMIxi2RhbJEsjC2SIdVxdc4Bv4Fb9cJlXAKgKvJOwVIJyVmDgOyS6tgiZ2JckSyMLc64dTzTNNHU1MTaU2Q7u2PLCBa5FfvcT3K7gZc/Ow8vbfkKoOXbcqyY3MX4v5f+jNteehCuGLe2QjNQOMnEXhyzSBbGFsnC2CIZUh1XR0z/D06Y8wQ0szvqPh+2fwO/fvsetJmLk9cwGrNUxxY5E+OKZGFsMXHreKZpYseOHVkd5CSH3bFlBlckFsrQYmpuN/Do2m/jH2u/A3hKbDlWzHYM6k6sxwNztG5MLt2GAqVeepuyCccskoWxRbIwtkiGVMaVEICqWHem1RgnQ3v9S/HR7uPQZ0aZkUtpiWMWycC4IlkYW0zcElGaMIOrkwll6DTX0KzXQBLK2wJDZ9BqMdYmm6C9jdtPOx+Hldwhv1FERERESWKagKoGE7cxFmoNnSfx6SMiIiJ5WOOWiNKCEWPGbXFuG9yaD2ZgHFS3R2o7zN4G3Lvia+gLFEHT/hl1PyU0A0Vk750/IiIich7DAFRY5zeqGj1xOzFvHQ6bvgd55gIAU5PUOiIiouzCxK3DKYqCkpKSrF6Bj+SwO7ZEsMYtlOE1bm8++RJUFtZDb38QnqpFthwvGlMPoDi3DZqqxyyVEErcKuA0EztxzCJZGFskC2OLZEhlXA2dcRv9ZGhR8SM4+vBX0Wj+AEzcZg6OWSQD44pkYWwxcet4mqZh/vz5qW4GOZDdsdUvyrG7bQG6lElDtrtcgG5as3B1fwBy59sChm5dqJhCjVkqQQmvpMwZt3bimEWyMLZIFsYWxWX4gfpngNwqYNwhgJYT9y2pjCvTBLRwjdvoJ0MieC4kTN7EziQcs0gGxhXJwthijVvHM00TdXV1WV3ImeSwO7YatTNw8wt/xXvNlw/Z7nIBhmndYzJCs3IlCl18iHiJW864lYJjFsnC2CJZGFsUl7cO/WvuRMdr10HUP5vQW1IZV4YBKIp1XC1GjVvexM5MHLNIBsYVycLYYuLW8RjkJIvdsRXKybqHlriFqgK6CM64DchP3Bq61R9DaIj1NIYSnoHCf1t24phFsjC2SBbGFsXVV4f6BqChAajf2Z3QW1IZV6YJXPfUf3Dd089AyyuLvmPoXMiUf35G9uGYRTIwrkgWxhZLJRBRmggErD/3TdwCgAgOVUYSEremEZpxGy9xy8XJiIiIKL5AZx38Puu/+zq7UtuYBBgG0No3HgCgxJrmEyqVIPj0ERERkSyccUtEaWFK/x/wi8+fhWUVjwx7zYSVzTX0gPR2hBO3cYZHnzYZz226CJ+2nyG9TURERJS5OhrqIIT134avJ7WNSUBoUpOqIuZNbLDGLRERkXSccetwqqqisrISqsocPdnL7tjSjHZUFDSgxegd9lpoxq2ZhBq3BnKwq30/dPsrY+7nc03HY2uvweF5wMXSW5U9OGaRLIwtkoWxRfH0NteF/9vwJTbjNpVxZQT8uHDpvdbiY+ZVgBrhcSggnLjl00eZhWMWycC4IlkYW0zcOp6qqpg1a1aqm0EOZHdsCcOaTauow4elTS1HorZlCk4/frJtx4vGnzMXN/7378jPB86NsV9o4bIsLrUjBccskoWxRbIwtigevXsgcQt/4onbVMWVqQdwyrxHrDIJ4ptR96s1zsCjKxfhgMNnJ69xNGYcs0gGxhXJwthiqQTHM00T27dvz+pCziSH3bElhDWbVtWGJ27fqbsAD626Hr2uhbYcK5ZgpQS44tzW0hQ/KgvrUajtkd6mbMIxi2RhbJEsjC2KSZhwBRoG/q4nViohlXEVKhulAAOzaiPoUvbHyp2fQ6t/TnIaRrbgmEUyMK5IFsYWE7eOZ5ommpubszrISQ7bY8uwErdKhMfxQguWJaFSwpC6brEUi0/x87M+j3Nnfkt+o7IIxyyShbFFsjC2KJ5fvP17vLD5QnzccCR2di1L6D2pjCszVLNWQczVyUJPHxkscZtROGaRDIwrkoWxxVIJRJQuRLBUQoQZt3mefhTm9EP35QDIk9oMrXMNfn7WrWj2zQHws6j7qap1taKAVytEREQUWW+fipWblmAllgAADj8cSPdlTU09dHGsxFydrETbiaWTd6FEnQBgblLaRkRElG0445aI0oIwgzNuteEzbr847w7c98UTUdL5hPyGGH2oLKxHWV5TzN1ULTR8CvltIiIiooy0ffvQv3clVuI2pURwxq2Ic6k4WXsB3zn6u5ib/1QSWkVERJSdmLh1OFVVMXny5KxegY/ksDu2egJV2NM1HYZaPOw1oVjJXNOQXyshdLFiiug13QBACfabM27txTGLZGFskSyMLYqlbctKHDf7X5hZvRMA0NfjA0T8xz1TGVeGHkzcxjsXCq/UynOhTMIxi2RgXJEsjC2WSnC8UJAT2c3u2Hqn/Xr861ngyisjHcwaqkQSErehi5VYNd0AQNVCpRKyt9aODByzSBbGFsnC2KJY8lqfxiUHv4oPu67DAXlfQ1FeD9D/HyBvQsz3pTKuRLCOoIk4iVuFZaMyEccskoFxRbIwtjjj1vEMw8CmTZtgcNUAspndsRVaeMw9vFJCkmfcWhcrIt7FCmfcSsExi2RhbJEsjC2KRfHWAQAqp01GwPDAMADh7477vlTGlV+rwg+ffQK/fO/h2DuGbqxzxm1G4ZhFMjCuSBbGFhO3jieEQGdnJ4RgHU6yl92xFbDWJoMr0nMASvDCQA/YcqxYwqtVcsZtSnDMIlkYWyQLY4uiEgK5ppW4nTpvMnr9xRAC8PXGL3SbyrgyTDcaumag2Tsz5n68iZ2ZOGaRDIwrkoWxxcQtEaWJkyq+hztOPxcVrvXDXlPCMzqSMOM2OKs33oxb01WCV7aciw8bzpbeJiIiIso87U2dcKEXUIA5iyahL1AEAPB2xZ9xm0qhSU1a7FMhKGpwByH//IyIiChbscYtEaWFYq0WnpIdaNT8w19UQ6US5M+41UUB9nZPRZdZHXM/4R6Hv67+PqZNAy6T3ioiIiLKNPVb66AC8JpVyC3IgY5g4ra7G2WpbVpMir8FX1z0BPKLiwB8Jfp+4cQtnz4iIiKShYlbh1NVFTNnzszqFfhIDrtjS4E1W0OLUCuhXZ+Dd+tPw9zx+9tyrFg6co7B9/9zDObPB74UY7/wQsq8VrEVxyyShbFFsjC2KJqW2jpUAQi4rUVVdLUYAODriT/jNpVxpQZa8PmFD6AfVYiVuO1yLcOjH96AymmTcVLymkdjxDGLZGBckSyMLSZuHU9VVVRVVaW6GeRAdseWIkKJ2+Grk+32H4fnVh6Ha5bZdrioQo8HxvtdUBUTJbntKHCZACqltytbcMwiWRhbJAtji6LpabYSt1qhlbg1NWvGbaAvfo3bVMZVaLGxeGWjAjkz8fq2mVhWmoRGkW04ZpEMjCuShbHFGreOZxgG1q1bl9Ur8JEcdseWCqsMguYefj/JHczl6kkooZZoXTePaMZvV5yCHx91pvxGZRGOWSQLY4tkYWxRNM9vOAc/feVP8E84HwDQac7D2vqj0e6fFve9qYwrM3zMOAu1Bl/m00eZhWMWycC4IlkYW5xx63hCCHi93qxegY/ksDu2lHDidviMW5fLhFsLwCpxm2PL8aIp9b6A20//C1qVIwBcE3U/VVVhAFDAqxU7ccwiWRhbJAtjiyIRAtjwWSn6+pZiwn7Wtp365/HSm5/HdQcBh8R9f+riSgQzsfFm3OYordh//DZU5RQBWJCElpEdOGaRDIwrkoWxxRm3RJQm1GCNWzVCjdv5hU/jgfOOwHL39dLboRntmFyyHaW5jTH3U4JTcpm4JSIion01NgJ9fYDLBUydam0rtkrcojt+iduUSrRUQqmxGj84/ls4YfJvktEsIiKirMQZt0SUFjr6q2D4ClDg9gx7TXW5AD8gTPm1EoQRmmUSe3jUtEH3vYQJKLwPRkRERJYd2/px3uL7oRZOhkv7PAA1nLjt6QoAGP6EUboIlUoQceb4KGowsSt4E5uIiEgWJm4dTtM0zJs3D1q8gp1EI2R3bN3z3uOorQX+fEaEF9XgxU0SErdmcJZJvESsEizsJgSYuLURxyyShbFFsjC2KJK9O+px+oKHkVNYDChfAABMKVyHB87/JrTCSQCeiPn+VMZVuFSCEvvYavjpoyQsQkC24ZhFMjCuSBbGFhO3jqcoCkpLS1PdDHIgu2MrtPBYhEoJULXgRpGECwNhJW6VOIlYzTXoh4MzTWzDMYtkYWyRLIwtiqS9oQ7IAUTe5PC23MI8uFv8UEVX3PenMq661ANw1wv/D/vN98SsxauoGgQABdm7YEwm4phFMjCuSBbGFmvcOp6u61i1ahV0nXfCyV52x1bAWpsMEdYmg6JZGxURsOVYsSQ6y2TojFtesNiFYxbJwtgiWRhbFEl/Wx0AwFM6Kbwtr6gQAOAS8YvcpjKu/GYBdrbNR3tgVsz9QjfWmbjNLByzSAbGFcnC2OKM26xgGDyZIjlsiy2jH987/DJ4+11wa/cDGFrnVnMlb8atCJdKiPd4oAtv7zgTqqZiXpx9aWQ4ZpEsjC2ShbFFgxkGgD4rcVs8fmDGbV6wyK0i/IDhB7Thdf2Hfk5q4ip4DxtqnCk+4Rq3XKg143DMIhkYVyRLtscWE7dElHqmH5OLP4NRALjcw68SBmbcyk/cBkQ++r1V8HuKY+6nud24//2b4XIBlzNvS0REREG7dwMV+XVQVaC4eiBxW1iSDx0qDMMEAl2AVpHCVkbnCezEGQveQFXZRAAnR90vVONWZY1bIiIiaVgqgYhSz9StkgMA3O7hWVDTPQ6r645Dbc9y6U3ZYX4F3/7381jVcVXM/UK10U1OMiEiIqJBtm8HqorqkJMDqIUDiduiYhV9/kIYJgA9frmEVMk3tuDcxfdi8bh/xtzPyJ2CR9Zci1d2fC05DSMiIspCnHHrcJqmYdGiRVm9Ah/JYWtsCStxq5tuuD3KsJf9nln4zVv34MgjgTPHfrSYQonYeN1SVSDH1QdVMSHM/HDNWxobjlkkC2OLZGFs0b52bDdwWEEDcnIADFqcrLgY2OovQoGnC/6+bngKo39GSuMqdDIUrxRUbjVe2HwhKivlN4nswzGLZGBckSyMLSZus4LHE7t+FtFo2RVbph6AEIBhuiIuThYqcRuQvzZZwnXdNA3407nHQoEJ0f9fKPm8arELxyyShbFFsjC2aLCt21Q8+f7TuPbKOkzMHTg/yM8HNjUtR13nLIz35qI8zuekKq7MYL1/gdgXyaFr6CwvPZiROGaRDIwrkiXbY4tTxBzOMAysXr0664s5k/3sjC09YNVG0013zMStocuvSzDVfAQ3nXwJ9i/+V8z9VBUwhTWEGoaQ3q5swTGLZGFskSyMLdrX9u0KWvvGo2zWMkAZuNxSVeDxjT/GL9/8BTqMuTE/I6VxJUILtca+VNTgxeyK9Zhc9GkSGkV24ZhFMjCuSBbGFmfcElEa0P3WVFrDdIWTtIMVKTvx8AXnQvUUAnhNalvyUYeqik9Q6z445n6aZiVuNQUws/hHhIiIiAb4fNbiZAAwa9bw14uKgK4uoDt9S9xCBB8/ijfjNsfYjZtOvhQ9gQoALyShZURERNmHiVsiSjldB7r6y9HlK4uYuNXcGhSYUJKwarEQidV1U1XANDVABUyDK5QRERERsHMncMjUFzB7/A6M044CcMCQ14uLgfp6oKvTRLo+/Bg6r1HizLhVVFdwP97AJiIikoWJWyJKOZ9nNq7+10tQVeDkW4e/rgWzuWoSErcwQ48HJpC4DV5wccYtERERAcD27cDyKa/h6HmvQekaB5QNTdyeOvt+fO/Av8Dd8iUA16amkfEESyWIOOdCmst6XQXPg4iIiGRh4tbhNE3DsmXLsnoFPpLDztgKLToWqb4tAGjBF5KRuBXBixUlzupkmhaccQvANDnj1i4cs0gWxhbJwtiiwbZtA+YW1SE3B0D+5GGv5+RqcKt+GL7YtRJSGVcN+rG4/5VZOOTIUhwZYz9Vs86VVCUJN9bJNhyzSAbGFcnC2ErX53PIVn6/P9VNIIeyK7b04Pl+tMStyxO6x2QCQnKSdCSlEkRoxi0Tt3bimEWyMLZIFsYWhWzfLlBVWIecKIlbNacYAGDGSdwCqYurPrMSnzUtRbeYGXM/NXgRrbJUQsbhmEUyMK5IlmyPrbRI3P7ud7/D9OnTkZubi0MOOQQffvhh1H3vv/9+HHXUUSgrK0NZWRlOPPHEmPtnO8MwsH79+qxegY/ksDO21M71+PFJX8dFB90e8fVQqQQhAJiSZ3WIBOu6KcBHdcfh/V0nw1Dy5bYpi3DMIlkYWyQLY4sGa2loR66rD54cBcidMOx1NddK3CLQFfNzUhlXoQeJ4jx8BFULlrJSDPDho8zBMYtkYFyRLIytNEjcPvbYY7juuutw8803Y82aNTjwwANxyimnoKmpKeL+b7zxBr785S/j9ddfx3vvvYcpU6bg5JNPRn19fZJbTkR2MX3tmFv5MaaUbon4uis4FVcIAEJu4jZg5KAvUARTzY2778Orf4T73r0dumu81DYRERFR+hMCcPnrAABqfhWgeYbt48kvtF434s+4TZVisREnzX0Mk3JXx9wvXOOWiVsiIiJpUp64/cUvfoHLL78cl1xyCRYsWIA//OEPyM/Px4MPPhhx/7///e+46qqrsHjxYsybNw9//vOfYZomXn311SS3nIjsYgSsZKyJyLUSXB43NjQeik8aY1Vas8fKrh/hyidexy7znLj7hsrs8GKFiIiIvF6g1GMlbl3Fw8skAIAn35pxq5rpm7itUt/HV5fdg5n5L8TcT8vJxz/XfxNPrrsKpiGS1DoiIqLsktLFyfx+Pz766CNcf/314W2qquLEE0/Ee++9l9Bn9PX1IRAIoLy8XFYzM142F3EmueyKLUMPrk6mRB6SXG4Vd792L/LzgS9KHrVCT2Ak0jVNNaEpJkxDRRrcB3MMjlkkC2OLZGFsEQC0tgKVhfVQVcBdFDlxm1NkJW5diF0qAUhdXAkz9Dhq7HMb1Z2HpzdcBgD4XwMYPr+Y0hXHLJKBcUWyZHtspTRx29LSAsMwUF1dPWR7dXU1Nm/enNBn/OAHP8DEiRNx4oknRnzd5/PB5/OF/97VZZ0k6boOPbgikqqqUFUVpmkOWR0+tN0wDAgh4m7XNA2KooQ/d/B2AMNqckTb7nK5IIQYsl1RFGiaNqyN0baH2qiqKpYsWRLusxP65MTvKVP7tHz5cpimOeS4o+mTqYdm3LrCnzW4T4oCCKEhEAiWS5DYJ8PQAAgIYULXRcw+3f65czAurw6i437o1QfE7StjL36fAITHLMMwHNEnJ35PmdqnZcuWwTCMIe/J9D5F2s4+Jb9PS5YsgaZpw9qYyX2K1Xb2KXLbm5oUPP3JZdjedxruv8wMr746uE/u/AJ81rQY7vwizDEMqJoWsU8ulwtLly6FECLiuZHcPlk31AXUqL/FqqpC01RY50yA32/A48mM78mJsTfSPh100EGO65MTv6dM6lO0vEMm98mJ31Om9ilS3iHT+zQSKU3cjtWdd96JRx99FG+88QZycyPXo7zjjjtw6623Dtu+du1aFBQUAAAqKysxa9Ys1NTUoLm5ObzP5MmTMXnyZGzZsgWdnZ3h7TNnzkRVVRU2bNgAr9cb3j5v3jyUlpZi7dq1Q76URYsWwePxYPXqoXWili1bBr/fj/Xr14e3aZqG5cuXo7Ozc0jyOi8vDwceeCBaWlqwY8eO8PaSkhLMnz8fDQ0NqKurC28f3KeGhga4gzVCndInJ35PmdinCRMmoLu7e0iN6dH0ydQDMIUJb38g3NbBfWprU9DXNw9eL9DXpyInR16flha+hv2OXYfO5pOwevWUmH0yTGtgr6utxe7ugRtE6fY9ZVrsBQIBuN1uR/XJid9TpvXpoIMOQmtrK3bu3OmYPjnxe8rUPgUCASxduhQ5OTmO6RPgvO9Jdp82bZoAgWnoQylWf/oJgPphfaqp68FtT/8KZWUBLL50T9Q+VVZWYs2aNUPanqw+tbe1YUKOiY7OLmzZsiXq9zRj+gyML/gUpuHH6lU6CotERnxPToy9kfaprKwMc+fOdVSfnPg9ZVKf6uvrsXPnznDewQl9cuL3lKl9mjZtGnw+H2pqahzTpxkzZiBRihicUk4yv9+P/Px8PPnkkzj77LPD2y+++GJ0dHTg6aefjvren/3sZ/jJT36CV155BcuWLYu6X6QZt1OmTEFrayuKi4M1pjIkIz+aOyehchRLly4N3wnL9D458XvKxD4ZhoG1a9di6dKlUNWBR+lG06dNL/0Tysa7UOM9Dqf84I5hferqAj793dkozmvD/pf/HVrxdGnf06rfX4ti/0rsqbgRx1xwesw+rbzrfFTk7UTh8fdh4sKlcfvK2IvfJ7/fjzVr1mDp0qVwuVyO6JMTv6dM7JMQAqtXrw7/HjqhT078njKxT4ZhYM2aNVi2bBlcLpcj+hSv7exT5LY/+aSKn/1MxXHHCdxxx8D+g/tUW2vii1/UkJsLvP22iNon0zSxatWqIWNWsvr06n2/xST//0Nr0fk4/NJro35PijCx6deHAgAqz38ZZVVFGfE9OTH2RtKn0Ji1fPlyKIriiD7Fajv7lJw+Rcs7ZHKfnPg9ZWKfouUdMrlPiqKgt7cXJSUl6OzsDOcmo0npjFuPx4ODDjoIr776ajhxa5rWQmNXX3111Pfdfffd+OlPf4oXX3wxZtIWAHJycpCTkzNsu8vlgss1tPuhL2xfgy/wEtm+7+eOZruiKBG3R2tjrO2hgB78eZneJyd+T5ncp5HsH6nthq5C1/MhlLxhn+VyuZCbC7g1P9yqH0ZAhytKG+3pkzWgai533DFCBGu/KVGOm27fUybEXugHUtO08LEyvU9O/J4ysU9W2ZXhv4dA5vYp1nb2Kbl9UhQl/D+n9Gm027O5Tx0dJq447GbMmFYBl3I5oOUO27+8XIWiAD4fYOiA6oncdtM0o45ZsvukKMFSUZo79m+xABTFKmOlYOjnpfP3NNrtTupT6DFdJ/UphH1KXZ8ijVmZ3icnfk+Z3Cc7+ppOfUpUylfTue6663D//ffj4YcfxqZNm/DNb34Tvb29uOSSSwAAF1100ZDFy+666y7ceOONePDBBzF9+nQ0NjaisbERPT09qeoCEY1RvfZFXPH4W3i+7raIr7tcgCGsgU4P6BH3sY2w7sopavyBVUALvoUrKRMREWW7vvZ2HDnjOSwu+SuguCPuU1gI3HDiN/DA+Yejr25Vkls4oK8PWLcOGDQZaUDwXAhK5IvYMEWFdft6+AwjIiIiskdKZ9wCwHnnnYfm5mbcdNNNaGxsxOLFi/HCCy+EFyyrra0dkiX//e9/D7/fj3POOWfI59x888245ZZbktn0jKAoCvLy8kZc/JgoHjtjK/T0gTvyNY6VuDWTk7hVhHXhoUS4O7ev0IxbXqzYh2MWycLYIlkYWxTi62oBKgHTXQ6okZOeqgrkeAy4VT/6u7tQEuWzZMfVz34GPPMM8POfA8ccM/S1jd0r8MjKQ3HqiolxP8cUGhToEDwXyhgcs0gGxhXJwthKg8QtAFx99dVRSyO88cYbQ/4+eFERik/TNBx44IGpbgY5kJ2xFbAWL46auFXVgRm3hj9gyzGjGlHiNjTjNtJ0FRoNjlkkC2OLZGFsUYjRF1wEJaci5n4BWLXs+ru7ou4jO64++MD6s7Z2+Gvt/ulYv2c6jkng2UwTGjTo0HUmbjMFxyySgXFFsjC20qBUAsllmiaampqGFGUmsoOdsVXlfxrfO+4aHDjuqejHE1ZW19All0qA1R81So2bwWo6l2Bt/dEIKOWS25Q9OGaRLIwtkoWxRSGKrwUAoOVXxtzP1AoBAP6+6KXeZMZVczOwd6/1310RcsehybMJ3MOGEMGb2JxxmzE4ZpEMjCuShbHFxK3jmaaJHTt2ZHWQkxx2xlauUYNFE1aiPDfCtI/Q8YIPCMhO3JpCs2b3xqvrBuC5bdfil2/+An3uBVLblE04ZpEsjC2ShbFFgLVAl6pbiVtPUewZt0KzZtwG+qLPuJUZVxs2DPx3pMRttWcNjp75DEq0bXE/yww+fWQycZsxOGaRDIwrkoWxlSalEogouwnDSsYqSvQhaXfXAnR7C7FcFEpty//b8md8+CHwf/8Xf9/QpNws/g0hIiIiAL29QJHbKpWQVxZ7xi3cVuLW6I+euJXJStwKKBDo6ho+j2de4TM47tBn0aX8D4DZMT/rjZoL4e0L4EunFklpKxERUbZj4paIUk6YVt1aRYs+JD2x8Udobgb+fonctoSSsAlUSgg/QshJJkRERNmttRUozWuBqgHugtgzblVPISAAwxe9VIJMGzYAZyx4GF9Y9Cf8u+EhAHOHvB6q3a8o8R/OfGnH19HUBJydvWvGEBERScVSCQ6nKApKSkqyegU+ksPO2ArNuIUaPXEbWrgsIHltslASNpHE7SWLrsFfvnwoinpektuoLMIxi2RhbJEsjC0CrMTtb9+5E3e//yww4aSY++o5k/FZ8xK0eKdH3UdWXJkmsHEjcO7ie+FW/VhY/GiEvUILtcY/GXK5Bj6XMgPHLJKBcUWyMLY449bxNE3D/PnzU90MciBbY0uEZty6o+4SujCQnbg9dcrtOLa4Bfnm1QBmxtxXUw1oig5hyl4wLXtwzCJZGFskC2OLACtxa5huaIXjgeinMwCA7tyjcd/LR+Oss4ATo+wjK662bwe8XuCVLefixLmPo6Vr3LB9FGEAChKq9z8ufw/MIj/MwHgAOba3l+zHMYtkYFyRLIwtzrh1PNM0UVdXl9WFnEkOW2MrmPhUY8y4/fLCm3HfOScgv+P5sR8vhulFq7Bk0lvwKN1x9xXBBTkE/33ZhmMWycLYIlkYWwQAbW3Wn+Xl8fcttkrcRlwYLERWXIUXJvOUAgA0s3P4TiJYKiGBx4+uPOgq3H3mF+Hq+8ymFpJsHLNIBsYVycLYYuLW8RjkJIudsWWaAkDsGrd5bi8KPZ2A3jfm48WiBB8PVLVEhkdrHyZu7cMxi2RhbJEsjC0CgK7WLnzj8Jtw4tR7ASFi7htK3HbHuEcsK64++URgQfUqTJ1pLfbqUTqH1eoPnQslUuN24CY2nz7KFByzSAbGFcnC2GLilojSwKstd+CiR1Zht/LFqPsIxUrqmobsC4PgLJME6roheEFjmlydjIiIKJv5uxpxxPTnsaD4GSBOHb6y/Dbcu+JkfGfh0XGTvHZr37UJPzzhmzh+4i8AAEU5HcMSyEKM4lyIK7USERFJwRq3RJRyVt1aBW53jAudUOJWl1vkdmDGbfyLldAsE67IQURElN30nmagHDA9FXH3LSjJA3LbrAsxwwu48qW3DwB6e4EJyusAgLyiAqhaLwo9nejqAkpLB/Zb2XgJGnacgfMTqCloBi8ns3kmFBERkUyccetwqqqisrISqsqvmuxlZ2yFFhxzx1rMQ03OjFt1JKUSgrNMhOAsE7twzCJZGFskC2OLAED0twAA1Lz4idvC4lyYQrNKFOg9EfeREVefbhBYNuVVuD2Ae9a5aPHORGP31GG1dnd3L8Kq3Scg4J4Y9zOFsG5ic8Zt5uCYRTIwrkgWxhZn3DqeqqqYNWtWqptBDmRnbB1cei/mHVWLcu1iAPtH3kmxsroiSaUSEplx29w/B91tXZgyu0pym7IHxyyShbFFsjC2CAAUfzMAwF1YGXffomIFe/zFKMpph9HfBS13+HmEjLjatbEG+xfVIifXDcz8Gn7/ybfw2WfAb740dL9QDjaRa2ShhJ4+Yo3bTMExi2RgXJEsjC3OuHU80zSxfft2Pr5EtrMztibmrsayKa8h39UafadwjVvZpRJCdd3iD48ftHwdd776e7Rox0ptUzbhmEWyMLZIFsYWCQG4TWvGbU5JAonbIqDXXwQA6OvsiriPjLgy97xmHTP/EMBVgJISa3tn59D9phV+iEOmvYRcNCXwqaxxm2k4ZpEMSYkrwy/vsyltccxi4tbxTNNEc3NzVgc5yWFnbCnCSsaqWvSHAHrMiahpWwCvGf+CaCx+9OoruOQf70PkTYu7byi3y2sV+3DMIlkYWyQLY4u6u4FijzXjNr8sfqkElwvwm8HEbVfkUgl2x5UQQKVpJW5zpx4PACgutl7bt1TCMZP+iG8dcQMKjQ1xP3dzx0l4cfMF8GKyLe0k+ThmkQzS46rlfeDlI4Cav8n5fEpbHLOYuCWiNDCQuI1e5HZDz4W4+YW/osb4UtR97GCYKgzhgqrFXhEaADSuTUZERJT1WluB0rwWaBrgLkjsBnMAVta0vyfyjFu77d3ZgPH5WyCgYuLiowEAX5p+FX674hQo3ZuH7iwSLxu1pu3L+Pua69CtzLG9zUREYf1NAATw2a+AQOQbXpQaus7rYdmYuCWilFNg1UXT3NFn3LqCL+mSS6iNpK7bceN/jj986ThMCvDOLxERUbZqawP+7+U/4+4PngXGLU/oPa2BOfiseQl6+oslt86yfssE/Pj5R/BS/Y/hKSwFABTltKMktxV6X/uQfZXgQq2KEv9kKJTb5dNHRCTVpDOAwpnWf9c+kdq2UJhhAOedB1xwAZO3MjFx63CqqmLy5MlZvQIfyWFnbIUTt67oM27dwZcCckvc4uLFN+CqI26AG/FnwLi1fuS7u6GY/XIblUU4ZpEsjC2ShbFFra2AYbqhFY4HXPkJvWdlyzX46cv3oz5wdMTX7Y6rDZ8qqO2Yi0D1WeFtwl0KANC9Q4vcDtT7jz/jNs/dhbK8JkDvs6WdJB/HLJJBdlztaVTx0FtfQ18fgF3/AAyflOPQyLS0ALt2Adu2AY2Nco7BMYuJW8djkJMsdsaWGp5xGz1xu3/xv/CLz5+J+covxny8qITAQRNfwqHTXoKmxJ/aG5qJInh70TYcs0gWxhbJwtii1uDaquPGJf6eUH3Z7u7Ir9sdV598Yv25cOGgY+RYq5MJX8eQfcMzbhMolXDa5Fvw6y+chnGBl2xpJ8nHMYtkkB1Xbz+/FU+8vBAbtlVB97YBdU9LOQ6NTFubdbNvfNEu1GyXM5mJYxYTt45nGAY2bdoEg88vkc3sjC0V1jTaWKUSclz9qCjYA7doj7rPmOndEML6T8VTGHd3oVgXNELw35ddOGaRLIwtkoWxRf1tdfjG4TfhmMkPJvyeaAuDhdgZV/quZ3FUyU3Yr2rN0MRtrpW4RWDfGbfWMVUt/qViaFauMBn/mYJjFskgO64OwjW458wVWFN7qDWzs+b/AabkGnqjYfiBjfcALR+muiVJ0d4O3H76+bj7zC+io+YTKcfgmMXEreMJIdDZ2QkRykYR2cTO2Lrlzf/i64+9AzNvRtR9FDWY1DUl1krwWVNm+gJF0NyeuLtzxq39OGaRLIwtkiWdYksI4B//ANavT3VLsovorcUR05/HnOJXEn7PgvKX8dsVp+AA4weRP9PGuOra/BwOnfo8Fk7+FFOmDGx35ZUCAFQ9cqkENYFSCQJM3GaadBqzyDmkxpUw4Tat67T/bLgEdXvL0dm0B2h81f5jjVXt40DtY8Dqq1LdkqToaNPR1DMZANDfslXKMThmAdGntxERJYnP74LfcCFWrlTRQolbiXdWfS0QADq8FZicyG2t0KIdgolbIiJKvfXrgZ//HJg9G3j00VS3JnvovS1ACaDkViT8nvx8BSX+Vvj0NoktA+DvgGj9CADQV3Q8FGXgpZzCEvQCcImOIW955rNr0N/dhStPmBb/84NPH4GJWyKSJdAFw7CutyqnTcDjH1+N/C3AtccdjxFUqEmOvtpUtyCpctpfwZJJbwEAlJ5tKW6Nc3HGLRGlXGjBsRglbgcSt0LyjFsBdHrHIYGybuGLFc64JSKidFBfb/3Z0JDadmQdXwsAQMtPPHHrKbBqJahG/MVQx6TpLfR7TdR2zMWU/SYNeSmndDzqO2dib0cFBk9kWt94NN6pOQPCk0BKROGMWyKSzNcKXQd6/cW45tsu7HWfhRc2nIWf3O5G+k3CVAfaZPhT2pJkCPQN3HwsMLem4ffhDEzcOpyqqpg5c2ZWF3ImOWyLLSFw0eIf4YrDboZbib4isZqEGbdmfyuEADr7E0vc9pkTsK3lAPSZ46W1KdtwzCJZGFskSzrFVlOT9Wdfn/U/Sg6X3gwA8BRVJvweT0ERAEATkVcnsy2umt+B1wus3n3ckPq2AJA3/Xhc/9zj+Nvq6+D1DmwPlREc2U3sNKw1SRGl05hFziEzrkQwcdvhrcD48cBtt1kTft5+G3j2PwbSKVvY1aljyxZg716Eb+o5meltDf/3+MLtaNpr/008jllM3DqeqqqoqqrK6iAnOWyLLWFg2cQXceSM5+B2RR/oFc2ajqtA3oxbb5dV462zf1x40ZBYPus/F7e99BdsC5wnrU3ZhmMWycLYIlnSKbZCiVsAaHH+9WJaME0gR1iJ2/yyxGfc5hVZiVs3oidu7Ygrf8cu+P3A9paFwxK3OTkDTzsNXiRtv3HvYfGkt6GJ3rifL9zWAmdGf8eY2knJk05jFjmHzLjq72yFMIGu/nKUlwOzZgFXXgkcPfMZlG/4Alq2fmT7MUfro9YL8NdV1+Enr/0NyJ+Y6ubI5xuYcetW/ajfstv2Q3DMYuLW8QzDwLp167J6BT6Sw7bYMgPhm6QuT/Sy28JVjIauGej0TRjb8WKoz78Klz32Ll7f/Q24EqgAHvrt4D8v+3DMIlkYWyRLOsUWE7fJ19UFFOda/2cXlCc+4zYveIdYhTfi00S2xJUQ8LZZdTM8JROH3ZRWFIS3DU7cXrT4Zlx3zLVw6/FrbhjFS/Dm9rOxtXnR6NtJSZVOYxY5h8y46m2zkoNesxy5uda2r34VOGz/TSjLbcCnz/wF6VK5rq5jJl7cfAHWbJuXThOBhzMNYPW3gU0/G9PHuAxrxm3ourijzv4FyjhmMXHreEIIeL3erF6Bj+SwK7aEqQ8kbmMUue1yH4IfPvsE/lt/65iOF0tLCxAwclBYWpDQ/qFHCNPlRMEJOGaRLIwtkiWdYouJ2+RrawNK81qgaYCrIPEZt4WlhQCCa3oFhte5tSWuDC9ae6oQMHIwcWaEG99GP2458Vzcu+JkdLX7wpsVWCc2mit+rQSl+hg88MGPsXL78aNvJyVVOo1Z5Bwy46o5sBDPfHoptvccG96mqsDhF3wVUFRUqh/g5X9usv24o9EarBzg8wHdkR+oSA8d64GWd4Fdj45pcUm3sJLqe4wj8e9PrsCm2pl2tTCMYxYTt0SUYkZgoPSB2xP9AiGU0w1IXJus2XrSERUJXnfNy3sMv/7CaVjo/rW8RtGoGAbw6aeAzpJ7RJRFBiduQ79pJFdLC/C9p5/CPaueB4rmJvy+4hIV21oOwKbGJTBlzSJy5ePXa/6Jyx57B/MXeoa/ruagunAXinPbwuWiAEBRrMStosZP3I4PlvlvbLSlxUREw+zuORBPrrsK9cbJQ7ZPmjMRZvWpAAD/+l+hvS3Fs2mEwHj/47jskJ/gqiN+hJ6NT6a2PbHog7LKvtGdMAgB5ChW4rZj3BX49ydX4KMts+xoHe2DiVsiSqlAwMqsGcIFt0eJul+odIHMRNyMjh/gisNuwZTqtvg7A/BofSjLa4IHnfF3pqR67DHg4ouBf/wj1S0ZPZ8v/j5ERCG6PjDTB+CM22Rpa7POYVyFVYAWITkaRWEhcNtLf8FPXr4fPXriJRZGatcuAFAwM9IkKEVBAFaN2v6ujvBmVbFOtlQt/qVidTWQ4/LC7d8JQ+cjSERkv9Bv27hxw19bcNYV0Dy5mFX2Ed54+NHkNmxfgS4cVnI3jpn1FA6d9iLM5lWpbU8MBnKxqxbY0wigf3R33rxeYMOeg/Fp48GYu8j6HaupSau14hyDiVuH0zQN8+bNg5bQsrBEibMrtnR/MHFruhCjUgKKlS244/Rz8aXpV43peFGZAVSar+LIGc9i3LgEh0Yl1HdeqNjFrrjauNH6c6v9ZZaSYts24NhjgV9zMrdt+HtIsqRLbLW2Dr1Y4ozb5IiVUIjF47EWBwMiP05rR1zpOtAQLFM7dWqUfdRSAIC/tyO8bSSlEsrLBH7/pRNwx2nnoK2B024zQbqMWeQsMuPKaN+CqsI6VIwbPoNHLbCkc5UAAOF6SURBVJyMnAOvBQDMMu7F1rU7bD9+wvytQyYZ6b1J/CFuXw+s/T6w56WEdt/ReTA+2rEUHe2A3jO6sbutDfjTe7fgN+/dhzkLK1FRuBczi95Ba5N3VJ8XDccsJm4dT1EUlJaWQlGiz2QkGg27YitUKkE33Yi1UKRbC2BSyQ6UeuxfqRIA4G+HrgOm0FBSURx/fwCKYjVYsMitbeyKq9CF6uDHhjPJypVWWZD33091S5yDv4ckS7rE1r7jHWfcJofo2IgrD78RR0x6ZMTvjbQwWIgdcdW1+l7ccvJXcfScF6KWgTK0UgCAv3dQqQQkXipB1RT0GVUAgPaGvaNuKyVPuoxZ5Cwy4+pQ9zX42VlnY0bFtoivTz9yBbo8h8Ol+vHKox+kbv2R/pYhiVvFl8QxsekNYO9rQPM7Ce3e2Ai09o2HEEDX3tG1M7hmHMrKrJuRPz3zEnz32O+gceuWUX1eNByzmLh1PF3XsWrVKugs9Eg2syu2fNoUfOOJN3DDf/+NWGOxy23VSlAhqcitz/qh7ewfh4rKxIZGJZRpFkzc2sWuuKqvt/7M1MTttuB56SjPoygC/h6SLOkSW6HxLvTTxBm3yaH2bsPh0/+LGUUjv9N24ZK78dsVp0Db89Sw1+yIq/6mLZhevgkTq/uj3xx3lwIAzP6O8CZNtY6puRI7H/Kr1QCAnhbOuM0E6TJmkbNIiythhhfAyi+L8miDomDOihvx65X34YFXv4xnn7W3CYkK9LbCMIDG7mkAAE1vTt51YvO71p8VRyS0+95GE0998nX88NknsF0/b1SHbG/ToSoGysqsv/eqcwAAXXX2PvLIMYuJ26xgyFrwgLKeHbEV0FV4A4XoN0tj7qcF6ygokDRgBxO3Hd4KVCZaai4045aJW1uNNa76+4EKbQ3uOP1clGN1RtZZCiVuu7qAvr7UtsVJ+HtIsqRDbIUSt7NnW38ycZscot+a2qzkJbiy6SCF+f0oyW2F3hu5tv5Y40rvsR4/ySmdGHUfJceqcSt81oxb0wQe+vCHeHjVD6C4ixI6juG2Erfedt5tzBTpMGaR80iJq0BnuH52cUVZ1N3GTazE0V84GADw299GLkEjW2+bVTtnZ9t+EFCtdvsSWztlTLx7gZ7tMAwg0N8N9NXHfcvi3vNww4nfgMfVj/rG3FEdVmt5HX/58qG4NFiqAkVW4tbfZn+tumwfs5i4JaKUClZKCC8+Fo3qkjvj1uy3ahJ1esdFfZxwWJuC01cUZPcPSbppaAC+f/zVmFSyA1cf9h309KS6RSOj61Zh/xDOuiWiRDQ1AROLa3D84jWYVLId3j6TN36SQAlYiVtP4cgTtwgmRvV+CRkGIaD5rMRtQWX0xC3yJqG+cyY6egsBAIYBvL5tBV7d+iWo7sQu5tWC8QCAQA9/sIjIZj7rGq3HX4JxFbEvGM87D5gxA3AF6rHhkZsA3d5aq/F4O63EbYe3Eh3eCus615eEx/9a3kUgYE38aHj5TqD1g9j7CwG33oCyvGb0+YvCJeZGKtDTBgUCrhxrYc7cSitx6/Zm6CIjaYyJWyJKKdGzC5cd8hOcteBPMfcLl0pQ5My49ba3QgirVEKiC4z4lTLUdcxGd2C8lDbR6DQ0AF395QCAxz++OuNmndXWDtzQAJi4JaLENDUBx835F74w6QrcdeZ5GFfQyDq3SeAyrP+Tc0tGnrgNzWg1ZCRu/W3QA34IqKiYVB11t56qr+H65x7Ha9vPB4AhtSETXQfGXWydBymjXJmciCgas78NhmFNrol3jeZyAf/7PRPfPfY7KO17Hi0rf5OcRgb5uqzEbUAdh7a+KgT0gacypGpeic4u68ZbXx9g9sYZi/VuCMMHADhq5n8w03fPqA5reIOrc+ZYX8y46VbitkjZxlKCNmPi1uE0TcOiRYuyegU+ksO22Orfi2NmPYWDJr0S+3jhGbdyEre9ndbKIAF1XMIXKnuVk3DD849iZdu1UtqUjeyIq4YGwKVamc+tzYsyrs7ttvC6C1aNByZu7cHfQ5IlXWKrqQmoKqyHy21dvFYWNjBxK5lpAnmKdXewoHzkiVs1x1qdTPiHr0425rjyNsDvB9r7KjF5qjvqbiVWpYTwAmmGbmL/8R9iQfUqqEpiF9755Vbi1q3zBysTpMuYFY9oeBFi91OpbgYlSFZc9ba1hCfXlEWvlBB28CEqNivfgxBAz6YnIJrjzD610Wb/1/Drt+9BX+Ex+OWbv8Alj6xEZ87Rcg9qBoDWD9HVBXxYeyKEAHpb4yRuvY0IBICA6cHnFz6AeXmPAfrIH9ER/VYZCFe+NWFm4uyp0E03XOhDR6N9N/IyZcySiYnbLODxeFLdBHIoO2LLNKxErInoFxUAoLk9aO0bj9a+CZBRtHSrdh0ufXQl1nZcnPB7Qr8dKVu51KHGGld763tRkmvdAW7snpqRiduJxTX407nH4IuLfs/ErY34e0gJ8e4Z8UyRdIitpiagsrAebhfgcgOVBUzcytbRAZTktgAKUFiRaIH8Aa7cYA3ZQOQZt2OJq0BXA/QA0NQzCVOnRt+vKNiEUOLWDPTjB8dfhR+e8E1oSmLlqYonTMeb28/GG1tPH3V7KbnSYcyKReh+1D77I+x89icwejPsRC6LyYirnjYrOehHecKTa875xiF4s+Yc9PUCu9550vY2RVPbNhMf7T4OOeXT4Movh2565J/H+1rRq87GnrZKfFR3rLWpI3bS1PQ2QQ8ADZ0z0Bcogj8AYBRPTKi69d24C6zEbV6BC+2BGQCApu32lktI9zFLNiZuHc4wDKxevTrrizmT/eyKLSMQnEGrxK5ZpOWV4tqnnsWPX3oKUJQxHTOS5mZANz0oGZef8HtCJw/852UfO+Kqv7UWgBUmXzjgfrQ3pWB1gjHYtg346rJ7UJjbh88vfAA23rDOavw9pIQ0vgK8eSaw5d6E35IOsSUE0NwsUFnQAJcLcLuAioI9GVcqJtO0tgiU5LXCpQFa/shn3LrzraypYgz/nYoWV3v3Aq++Gv8edmsrsKdrKlr7p8V8vLjUtQN3nH4uvn/UxQgEANMcOJ7mSuxSsWLKRDzwwY/xrzUXwudL6C2UQukwZsXT1d6L3h7A6wWaankilAlkxVWT7wA88+ml2Ok9JuH3jB8PTDjgCABAW338hbrsErpZWlEBVAcr1EhP3OaNxxO7H8R3n34azT1WPXO9Z0/Mt/S07IUQQFtfNVp7x0MPAIGukf87c5nWRJnckoEfmU+9X8Mf37sNnzXuP+LPiyYTxizZmLglopQy9MRm3LqDL+tyKiWEL24rRzBhpkp5C3efuQLHVdwipU00Okb3LgBAbi5w6ry/o7+9LsUtGplt24B8Tw8KC4GP649yVuK2cyNq17yPuprMSqZTFtl4l/VnzV9T244R6uwEctV25Li84VIJFSyVIF1bu4IrHnsL96x6HsiNXkc2GnfBONR1zkJTT4wpsfu4/XbgBz8AVq6Mvd+W7lPw/f/8C683/Sjm/e6CQhcmle7AxJIadHcjvHo7AKgJTm8rKgLy8qz/5lMiifP5pDxE5gj1zWXY3LQUANDpqBOh1OnoAF57Td61lCy7ew7Ek+uuQoN58ojeN2WulcTMMZMUP6aOycZjOHjqK6gYZ2DBlK244rBbUNzwS+mHfvllawKSV1hla1T/3phPDvW0WAO1T6lGp896z2hKG+TAmnGbXzpQwyIw7mS8W3MaNteMYsFOioqJWyJKKSO4CpOIk7gNlrgdsmiTbYTAYuM7uOKwWzChYniduWg8qhfji2pRqPEqJV0IAdTUl2P17uORF5w8rXdnzgl/Xx/Q0CBQUdCAwkLg6Q2XOeoiuHfj4+h962p4nz0OomV1qptDNFzxPOvP+f+b2naMUKhMgssFqEowccsZt9K1tgKGcMFdVAUoI7+sUkrn44bnHsPfP7094ffU1Fh/rlsXe79a6+GTmGUSAEDNLYWmArmuPnS2ByBCM5oUQEnwCSdFAaZO9GJC8U4013cm9J5sV1sLHH88cOedqW5JempoAFp6JwAAeltGueQ9DfGb3wDf/z7w4oupbsnItAbXv0p08eiQ8klW/LhE16jqt46Yvw1HVdyDbx15A8aNUzCxshtHzngWxf1vyTum3ofdO7rx2WeAqgLHnFIBU2jQAybQH/0EoKVnPDY3LUWfNge627rp2N08susl0wQ+3n0wPm08GIUVAzcuZ1iVEsK/VWQPJm5piL//HTj3XHCGhl28jcDa7wNta1LdkrRlBm/7ijilEtwugVtOuRg3n3QBhM/miwK9F+O1d3DkjGdRXjGC+jnhi7TsfWwj3XR3Ax/tPBi/eftu+EpPtDZ6Yz8ulE62b7cWFyor6EBOnhu72udi717nzMjp3L0BwrRuwPBCjNKSr9X695Y3KdUtGZHwwmQuAIqLi5MlyWgTCiHF1tpk4fqy8ZgmwnXbN2+OvW+iiVu4CqGo1vlMX2cXDMOapSWEOqLSVJcf/APcdcY5MPa8kfB7stnatdaM2/feS3VL0lNjgx+twcRtoIvnC3bYvt36c2AR3MxgdGxBdeFuVI4b2eyd6kn5aOyehm3NC9DXlYQnvXyt0HWgwzsOFZUq8sdZyUyXLvFEvuG/yF15Ai5adjcOPhhYsEDFgx/8CH/f9AvAXRT1bRs6V+D2V/6EBm0FkGvNuI1XF3df3d3An9+/EXe9dh9KqgcStzNnCMyvXo2p5j8Ao390/aJhYmdKKONpmoZly5YlvALfv/8N7Npp4v33VZxxhuTGZYNP7wBa3gX2vgac6qzZZSONrWhMIzjjVolTKsGjYHr5ZqiKAVP3QcsZ02GH8ls/tF69AOWVuQm/TVWDfR/hIjYU3VjjKlTGatw4IK98PHq3A1ogc2bcbtsGzKrYgJxcwJ3jwfKpr6G+Yya6u+eGL/AzVqAb6NkZ/mvn3gYUzkve4e0as8jBhEB3Ux3qdwHbuibjjPMSe1s6xFZTE7C9ZSHebLkeM0834N34IT7cNRnNbQKA/XXhyeLpeg/fPPw5VE5YBuDsEb8/NK53R8gpRIqrtraBx5w3bbJyARFzq8LE54tPw+JTK6FMvhdASfRGKCoCohgKOtDX2QFRUWh9BEYWz6ZnPBAAfJ0OekxEotD5SmOj9Z26knhVng5jVjyz+36MpQtfAwCIDLoBn84agvlvWSVfZcXVUXlX49Cz2rC94hEAcxN+X34+8JM3/4muLmDeJcCsclubNYwIJm47+8dh1jiguLISaAFMww8EugBPjHF4tJrfRXeXiQ5vBU5aAUycCLy14yxM8AL/G2NMCVVFqK4G3Mp4QAeM3pGN3cE141BcPFDSEABmzFTwrSNuQHFuG3oaD0ThpAUj7NRwmTBmycYZt1nA7/cntJ9pAoeN+y3uO+dEtDckr4i3o1UnXkQ9EyUaW7E0Kqfi2/9+Hi/v+XHM/VwuQDetX4WA3+biTL4WBHSg01uBihGU41FU62pJwQgStxt+Arz9peQ8spOhxhJX9XUCZXlNmDRJoGCcNVMjX2mEDaGaFNu2AROLa5CbA6hmL/7n6B9j+dRXHVHnVnR8it7egb/3tyV/Bk3E2DL8/PdIlkAHvN19ME2gpP5uoGdHwm+14/dwLJqbgaaeyWh0fxGYdi78+/8M/1j7HbS0MGkrk6d/Ew6b/gKmFsWpWxBFURHwf5+7ED898WSIvuHJqX3janDpnPZ2RC+F0d8Mj2jB1LItmDg1+qyrkIBiJRT6uzth6NZTRKYY2WWiq9CacWX2OuAHKwlCyTPTREp+41M9ZsXj8g9ci9a2TE9dQxzC67XGDEBe4haQEFfChMvsAAAUlI088zremkyalH9jfe3WEzud3nEoLweqxnvQ7SuFHgDQ32T/AQ0/+hs+RH8/8EnjETj2WCtxC1i/FVFrGQuBpkbrxepqwBx3OK5/7nE8sX1ktXjb23Roio6ysqHbCwqAFt9sAEBLzdYRfWYs6T5mycbErcMZhoH169cntAJfUxPwuf0eRoGnCxO8DyehdVmgfLn1p5rjnGedg0YSW7H49Fy0e6sQUGL/GLtcgGFatw51v72Fbk1vK4zgoy0jWZwMoRm3iZZKECZQ9xTQWwPsfWNkjcwSY42r1j1t+PUXTsONhx2L/LIKKCowrqAxYx4X3rYN+Of6b+Lj0v8C086Hyw1UF9Ul76Iu0AVs/QPQ8F/bx6yOXRsQCAAieOphdCf3BmHE2BICeO+rwFufB3RvUttDaaivHqGfl4k5HwK9tQm9za7fw7EIJfSqqqw/Qzche3ut2tkkic/6cXEVjOTkYUBxMVCS14rinDZ495l2Gymu9q15Hq1cQqCrAQEdaO0djylT41/u6WopAMDf0wFdKcYja67FU59+a0R9ySmxEreqn4nbRAxOniVx0XsA6TFmxZMrrJu71z/3OB764Lspbk3m2zPovpCseJMSV/4OmIYJAQXFFWXx999HKHG7JwmTtvvardo5XrMCHo+VFG33ViGgA0JG4rZ9Lbo7+9HRX4EJ+81FSQlQXg5MKN2D5VNeQvu2DyK/L9CJK2Ychl9/4TSMrzZQNbEY9Z0zsbMuf0SHF3vfwl++fCiuOuSaYa/5PHMAAD177EncZsKYJRsTtxRWv3vgLkZ/D8/ybZE3AYAKmL7wyT0NFVpsLN4jYoNn3BoBe2fc9ra1WHdI+ytQPoKbuWqwJpySaKmE/kFXXAEu3iFDb/Mu6z88pVAKJsPlAsblN2bEAj1CDNQdmzq3EihbCrcLqCqsS+4CZbVPAutvBFZ9M+HEVSLadnwCAFi581QAgOpLg5p1/U1Az3bA3w50xSkYSc5XOAt/WPMg+vV86yaDN3MSUM3NwMFTX8Gs8nWA4Ud+nkBVaTsKPJ0Zc+MqE2m69X+up3h0q2fn5ADegFUvoa8j/nnBvjfxoiVuW+oaAAG0+yYNmw0ViVeZhvrOmejtc8FQCvHC5gvxes0F8d84SGGFlSFxGyyVkIg9DTpWHPBHzKlYh7q6VLcmvQh/NzRh3cho6Z2A5mZkzJNT6Wpw4rKnJ/G62ikXLD/Q4yvFuIqRPyZ/yLTXcM9ZX8C0zhslNG4ob6f1e2C6raLnlZVAe18VhAn0tEgYF5vfRVcXsL7hcJx4ovV0jaoCR857H9864gaYO/4R+X39TdADApqio3q8Fp6lO9Lktq/LSlS7PMPXh1FLrcSt2WnfjNtsx8QthdXvDqDHbz0qFfD2pLg1DuDvAHb9Awg9Rt/Hs7JISgLv4cKDfo79Sl+NuZ+qWis3A4Buc+I2dIc0oI7DSErnCDUfzT2T0OmvSvAdCnQd6O8H0Ld7xO2k+IxOK9Eo8qcBBTPwt60P44bnH01u4nOUWlqAzk4r1mfOBJA/GW43UFUkOXHbvm5gdq27GJj+Zeu/21YD754PbH8QMMf4b04IoHMDAGBbz8nWocxmq0xBKnVvGfhvbxokkim1XHl4/7NFeHPb2TBNwNuWOYnbliY/vnXk9VhmXgboPcDGu/Cbs0/Cyfs9xsStRB5h/Z+bVzq6xC0A9BrWbF1fZ/yr5tBvQX5wYtSmTZH362q0xjPdPSGh9cU+wU24/rnHsbntaJjB01Z1hFeJpROsGbcFWiOE6aynzOzW1wcsqfgXzj7gftx48mVJn3Gb7jr2NECYQJevHNDyoMBE457snWlnh/p64JR5j+DUeX9Hef7ejIm5QG8bDAPo7C8f1SKQZeUqqgt3w+XbZX/j9hHoCf7Y5li/B2430A/rGrGn3f4JO7273oWvH9gQLJMQohVapeL0nsi/KXpPI3QDaOurRnU1MGECcOLcx/H52bejv2VnwsfX+6wit8I9fNZT4XgrcZsb2Oq4p45ThYnbLJBoEedd9QW49+07AQAl7lr4fDJblQW6tkD/9NfYsyeUqHNe4taOAuFFxic4Zb9/YFrBqrj7msHErRG1aM/oeLutGxXCPbILr77cpfjuM0/j8a0/T+wNeePxq1dvQk0N0Nu0c4StzB5jiSul30rcukumApoHgYL90dVfnhEzbrdtA46Z9TRuPuMa5LS9BORPhssNFHo60d5k/8202o07setf16D1+cvw5O9exw03AFdcAaz438vwf28+hUb9EAjDD2y9D1j5FaBjw6iPJQRw5yu/x18+vAHzjjgYdZ2z8GnjwVaCKYmGxVbfoCuXXvkn9SSPzwe8/vrYygL09gIdHUBLnzVzsK8t8TsmqV4ww+xthAIBlycX8JQBuVVwuYHKwgYmbiUxDKBAs35cikdUZ2moLn0qAEDvGn5Dd9+4Cs24PeII689oM269wRriSv6khNpQElwzp6sLMANezK5Yj2llnyX03pBxk6zErQYfutszZTpfatTXAz2+gYWK6uuSv8htqsesWNqCWcVufRKuO/FG/Pn8I9G345UUtyqz7dkDnDb/b7hg6S9Rnr83vFCZ3eyOq+5Wa3JNt28ciuKX6x6msNKaTuox5NdK+KTvCvz67XvQrh0e3ray9Rpc+uhKbNEvsfdgfQ3oa94FARX5Uw4esoBxXrl1DqP0R7753NW0FxBAp68KZWVWyZ6j57yA42b/C227tyfcBNNrfTdq3vCMevXMGRBQoehdgM+ei7B0HrOSgYlbh3O5XFi+fDlcCSxVWlcH7OmaBsCqt9VQzzubY9K7Ex0dViH4rQ1Toyz7m7lGEluxiNBMPjX+5/QEytHZPw66bu//l2v91+PSR1diWyDBJcSDQrNRzATPt30+YPWm6RAC6Gvl7L5IxhJXpgnkCyv5VlhtXQiH6j02SSgtZbdt24D9x3+AAyeutG70uPKheKxnXP2d9t74qf2sES3PXoTenSvR0OjC+g/q8dJLwJo1QG0t8PTLk3HGLffip/+5DY1tJTA6twEfXgH42kZ1vN11CtZun4t3dq3AKZ/z4IbnHsMtz92HgCp5id9BIsbW9POB2d+w/rt3Z9LaQvb772Ofof3FK/Cfv45ukSgA6PzkCZww58lwPfVAd2IzbiPGVqALWPu/QPO7o25PorxeIF+xEh2uoknW+UbeRLhcQEUBE7eydLQLlOS2QFGAopGsbLoPv2sKAEDvGFqaJlJc7d0LnLX/g/jSIY+jKLcDzc1AMK8xhNlrnWPklk9IqA2hi/6uLkDt342bTr4UVx3y7RH1Izffgzd3XYB/rr8Szc3OOue1W3098GHtieESYD0tyZ3db9c5vCy9zdZ4FnBNREGBCrfqR28Lz5vHonlPH8ryrJPh5p6JUmbcyoirwU9FjuZSunSClcT0oB0w+m1rVyQ1LbPx0e7j4CmdPHD8ikLopsf+J+fcRXh49Q149tOLcfQJQzPaxVVWn0WgFwgMnyDR02rFgV+rDv9/GlCt93Q3Jd5QJWBdE7jyh5/LT5/lQUPndAQCQH/ztoQ/M5p0H7OSgYlbhxNCoKOjAyKBKerelp1QFRPXPvUsrnz8ddQ3ZPddjTHr3QmfD3hu48W47fV/AZPOSHWLbDWS2Ir5OYZV5FbR3HH3/fm7D+N//vUivJ4FYzrmvpqbAd30oKwid0TvCyVuE62T3rC9EXu6puO7zzyNf7f+a4StzA5jiauWFqCqoBaKApRMtG5CLax6Excu/QVyej60u6m227YNmF2xATk5AEoWAgCUguDJn80z9uvWrUSuqw+tvul4sedxjFv2VVx3HXD77cC99wLnngvk5yt46sPTcP7v/omHXzkdz2/+GnY3jS7Runq19ecBB1iPZOXmJn8l7Wix1VV4Crpm3A7MuSp5jSHbzfX+EPOq1uBg5Zuj/oyc+r/g4uV3hv8u+hIL0EixFdjwKzSuex19b48s+TUazc1AVWE9VDWYuAWAvIlwu4CKgsyo8Z2J2pu7oak6NA1Qc0fxDG+Qq9hK3Jq9Q2fcRoqrpr0mPn/AnzFf3I25M3oBAJ9FmBjb0DYejd1TUVQ9JaE2TMl9G3ecfi5OqLwJpmHdUBcY+XXAOy3X4ekNX8eeluL4O2ex+nrAFBr6YH0/omdnUp8mtuscXpaG9vFY13AEet2LgHxrxmSgKwmrSzmYP3hjKDcXuPvMc1BXZ/93LyOuGn2L8PSGy7DLe8yo3l89qQhevQC6DujdcmModBNtcEmHautBBNsTtzt2F+HRd1fg359+C8fs839N9cRcdPtKrXVkvMP77OuwGmN6xoe3iVzrv73tiZ+Ya4aVuM0pHv77V1wM/Gfb93DrS39BTefShD8zmnQfs5KBiVuHMwwDmzdvjrsCnxDAyRN/gl+efQaOPGA9BNSMqX2TtoKJ2/rOGdi9O/HkXqZINLbiGcmM29BNttCCZnYJzUYa6YSZAnML/u9zF+L8udcltv+mq/H7c47HuPxG7NjB4TeSscRVfZ2B6qLdcLsBtdCacTu94F2cMu8RFAXW2N1U2+3Z1YaKggbk5CpASfDmxOwr8PM3foX3txyU8MzuRPibrLIHZuXx+N7NU/HtbwMXXACcfDJw6KHA978PvPAC8MMfAlWTSnHf27fipr9ejmuvHd3xlO1/wglznsRhyzqhKMCkYG4pmY+HRoot0wS+dtVUfOGqk9EtpietLWS/li7rwsEIjLJusuG3FqsDsGnvsuAmL2DGH4sixVb9ZzvR1hac7Z/oApaj1NQEVBbWw+UGkB+82ZM3wVqcsaARLc0OOwFJE80dxbjkH+/jZx/9F9CGL86SqLyKaWjsnoY9ndOHbN83rnTdWjDPrfrhyvFgzmwDCsyIdW7ve+dWfP8//0LZ9IUJtaEgz8Ckkh0o0nZDBH9szFEkbkNJimTelMtE9fUCM8o3IrfEeiyozLMzqYtF2XUOL8vqupPw8zd+jfbi8+ApCc4aZx36MVH6rCfS8guAPHcPOpsSeIKq/nng1eOB9vUJHUNGXNV2HYh/rv8m9ionjur9ZeUK2vsmQAigfaSrb42E4cN05VEcMvVljCsf+M2fVNWBKw67GUuR2LViol4JVg457DAMKyExYQLQ2jfeul6OUC7B7LMSt+7CgTVaXEVW4lbvSXzw9ggrU51fGnlSR6D4YGxvOQDbd45sYlQk6T5mJQMzBwTAepy/Iq8WUIAJs6yEBxO3YyN6rMTtnq7p0HVIqyWU8UIzbtX4M27dwV1sTdyaBo7OvxpXHHYzqsaN7BEal9KPaWWfoTIvgXpAwgS81j+qlt4J2LFjNI2lWBob/Hhh8wWo6TseyLWuHnNKrRN+l57eV5GGAbh6rGSqq2QG4C4EAJTMOgyfNB6J9t4ytI2uSkFEef2fAAAKJx8QdZ/8fOCcc4DHHgPuuw8AFOzcaT2WPRJC92Oe50FcvPxOHHSgNUPs+Pkv4t4VJ6O09kej64AdOjei9/VvYEnxA+jsjL7ID2WGv3zwQwBAZ28RDH0UMzK89fAHgH49H91iBr7xxBv41YY3AHV0Tx/1dlsJZJ8PEH1yZ/k0NVkzbt0uAKGapjnjoLncUGDC15UBtWIyUGurNWvSUzT6+rYAUDZ5Kr7/n3/ioY9vj7lfczMwoWgnFAVwKX5cMnsFppdvHlbntr9/oDzQ1KmJtSEvWOTWg45w4nY0l4mTxvdjYnENeptq4++cxToam3HrqRdhWtH7cLmBicU7ed01SOiaaeJEoKDCmnHr1nkhNVp9fUCJthMAUBBc2FDvTKCu/yc3WWV/Pv6hvMbFEZrFOtpqNKoK9MGKoe4midcCvmYcN/5nuPywW1FRMVDTobLagyNnPIdJnrcAfQxF+AcRPbXo3PBvTCndipNOGv76xInWtaauR16gbHfXAmxuWgpXycAPRF6Zdd0UrS5uJJ80HIxPGw9GwbjqiK/PmGH9yWteezBxSwCAhl3dKM5tg9sFzJrUhGuO+j6m+P6U6mZlLr0P/q4mCAE09UzCLadcjKIPT4hYZybbCTOUuI0/4/aLC+7BjSdfBnf3R/Y1wN+KiTnv44gZ/8W4ypHNmFGDF/QKEphN5W2E7g9AN92YWrYVn5v4I+g1LJdgp90NeXhs7TX4wH83oFg/bwXjrDvIediT1oua7t4NTC3ZAFUFcscPzJDStIGTVbtmMPl7u1Gs1QAAJi2IPxtLUYCDDwZO2P8VXHn4jWj65LURHa9+82YIQ0ePvwzzFluJ9NJxOSjObYPoTeGVauenMFs+wuyK9divci0CWx8Benh2mYn6+4HNu6dAQEGeuxt7ajtG/iF99Qj4gaaeyVi2TIE3UIixTM75z2dW6Q3DANpqE1/sYzSamoCqojprxm1eMHGrqBB51r83s5ePGMsQuplWPsZS3ZODk6Tr4lTEaWwEJhTvgtttjcu5ecD86o+GJW5311o/dsXFA4uOxZMf3DFX6wwvACtGcZl4yIQncOcZX8J0/Y8jfm82Mbp2AgA8biCglCNgeOJ+/1lDCLQ3WdOPJ04EyiZaSbc8NEp/esGp9uwBxhfvgqZZpRIAwOXblfiTXLMuk9a2eETnZ6guqkXluNHP2ulV56CmbQFa2vNsbNk+fK3QdaDTOw7jBidux+ejX8+3Jh3ZtEhXy+Z3cfr0n+JLS/6Ao48e/np5OfDatgvwizd+gWbl2GGvP7v127j9lT/BUzlQejBUF9djJnaxEQgAv3/rR7jrtftQXB25lvrMGQaOnf1vzPDebT3VRGPCxK3DKYqCvLw8KHGqebfVWXfG/UoFqir6sWzKa6jAB8loojMFyyR09o9Dt68MlYUNMPo7ba9TmUqJxlZcwrpAULT4idtJxdswp2Id4N9nJQ7DD/TUjO6EztcKPQB0eMehsmpkQ6KiWn1XkMBjG3274fcDzT2TML6oFodMfRHdu1bHf5+pA/6OEbUrk40lrkKzVSYNWkS7KHgyUZbbiI4OGxooybZtwKxxVn1btWxQMlXvwwkLXsLJ+z1qW32sHdsDeH7jV7Bu74monlKW8PuWzNqIw6f/F311I7txUv+pNZO4Sz0Anhzrey0MzqBxBZI3g2ZYbHVvhdcL7GrfD6fMfwTTfb8AWtK/FjIN11BvQAgFrb3WhUfLrgRmEu3LWw+/H2jqnoxlVqWEhBO3kcatVz4+HP/+5Aq8teMs7NojdxG+pibgkY+uxSfGD4HieeHtZvWpeHHzBajbWyr1+NmqoOtFXHXEj7B0wktj+pzQb1Zbm0Bfjx7evm9c7d1rJV9cbgCqB7k5wPzq1dizB+jsHPg877Zn8Lsvnogrjron4TYUlpcCAPLc3ejrsRIkphj5IjC5pdbMKzVg90o8zmGagNu3EwAgKo/G480v4W8ffS+pM25tO4eXwPS24KYjjsd955yASRNNVE6ptm4imH74e2x89CiL1NcDE0t2wu0BXEUToShAVcGu2Av3BrrQ0wvU1AA7/acmdBwZcXVs4f/gnjNXYEp5zag/Yyu+iZtf+Cs+af2cbe3aV6C3FYYBdPRXDJkdXFUFtPVVQw8AZp89T7+0126xjpm7HwoLh7+uKECPZwnW1h+N3c1Vw14PXU+MHyhxi3GTgolb0ZZQkjV0TaWqA4tb7mvGDBUXLP0l5hc8DnjHlgNJ5zErWZi4dThN03DggQdC02I/6tfbZF3k+FxTUTrRmjZfpO1K6xlqaa1wNl7o+hv+sPI2AMDe7snw+zHmQSudJBpb8axs/Tb+9z//QoP6+bj7ClgXEaauD32h+zPgnS8Bb68Y8fHNfuuHtrN/3Igfw1FGMuO2rxY+H9DYPRXtfmvhLF/rzvjvW3Md8PqpQOPIZjlmqrHElbe1DiW5rZg0cWDgcheOh8sFlBfsRXNT+s7U2LYN8Bu50Dx54YXJAACGF+fNuwEXHvQLNO21p0bIxm3l+Mfa7+CdnjtHtEKvu2Q6ACDQsXNEx+vbYyVuPZUD/SoNzqDRjA7bHh2LZ1hsdX0GrxfY3T4HjV3T4OsH0DeKhB+lXOeudXjg/CNQUWBlWrsbR/49mr11CASAvT1W4vaIGc/j8qXXon/b03Hfu29stbVZFzX//uQK/Pn9m/4/e2cdZlW5tvHf2jXd3cHQHaIComCgHruOcdRjx6fYfew8tthdx0LFAhQUkO6GAYbp7tida31/vHuK2TXDgIrc14XgXr33u964n/u5H7aVB+Yz2lfU10N+3REYos+D4M6BLGTktXy26XYKa3MxH5zX7G+FMMc2jspaQGrE3v06T0QEnDf+Y946fzrGLW91fL5vu6qrcytuNUDGOajVMCpjMyrJ1U11a2qsJiKolbiYfeZKPqALjUKlAgkFq77V/Wnvl4kRbtVWkHyYuPUGUUhVWF6EJmR3KK4PJnHbX3P4A4GW6moUBeyuUBISVUTHqNlRN5kNFdP7bR70d0NNDTyx8F3mVH+ClHE2Wq3oS3y2OUMRzc1Q0ZjCnB/DArpOv7crRUajtAIQFtv3ApDtBOWBtLg1NomCKQZ7XDfP2YQEaLUkoChgauof4lZpFRUpdXGDve7jnmb3fGbZSUO9GBu6ErfJGZHcN282V36xDJPVfwZqS7MTtcpBdHRnse59kZMrUavPwu4Ae8v+za//zH3WwcJh4vYQhyzL1NfXI/vJhXC0ub2owrJIyMoECUI1rbQ2HESn/EMJah2bi4aws/ZIBg0SqZc2O2A+dAysAm1b/mCwxVJnyASt/3w+RRImt+0VjzvQ5janDM3q9fWNTY0oCrRZ43ud7qhSiy40EOLW0lSBywV1hgzSh2SLD81lvlXCLhs0rRWq5K33Q/3y3t3gXxD7066mxj3Fq+fMYHDEvM4PgxJQa1SoJSfNNU3eD/6DUVgILy19kZUhv0NEXucGXSySNgQJGWN9/8w4271chw7t3XHhydkAaKylAR+jKBBsFcRt8pBO8iolIxyTPRK748D7f7ajW9tSZGR9IVYrlLYMpkafhc0GsuEwcftXhLG+EgkFp6zl+SWz2FTpIXfQDyxNVSgKNJnTyM6GrIQKxqQtx1S90++x+/ZbNbu2Mj5jCdEhIi2ysLDXt9MrtKumkvaxmQsNFX+gswjnYfQfVHbx+2oj+mi+2AVR0VpCtQaszRUdn+3brjqIWy2QfCJoIogKN/fwuXXoRSaDJjKNgKFSY5MF29BiCOfbbTewtvb8Xj9HTIpgAsLUdciuP2+w9I9EZSWkRJaKQqoR2R2K68rKg6eW6a85/IFAS7VYKxnlNBFMkODbkpeYtfxZqpo8p2Qfhm9UV4PVGYY6dhhEDUenE+p9n8StsVAEtJEIavwpICupfm9X9hZcLhkFFVHxgWeI7YsUd7OpqTlw75i5RQyyDlV8N1GERgMWxOBsaOiHgJbLjs4h7JeiswZ53S0j1cyRWQsJaZjd7XNr5Upe+cck7pw2s9ucITRMwkguNmdoQHV5nDUr+fDCo7nz2Bu97hMTA022LFCgpXL/5td/5j7rYOEwcXuIQ5ZliouL/TZylUUQt0ExWehCQzE5hay+saz0QN/iIYsit6Xd9Oki9dJu45CySgi0bflDu3hWE0BGniJ5Vtwq+t3U18OqnUN6bStgbBZknkOK8xox9AaVO+onSf6tEoz1YjFmUWWQPjANl6LBabOB1ccgrt8DivvcihPKvuJQl8H3tV3Z7RClFf1YdFqXaiwqNVZEf2Zs/PP6PLYTOwPy1B3+vABIEk6tWNU52vqh/1AUbNUbCNKYe03cJmaLwIhOrgtYJVta0EyUrhpJJZEzptNLKzUVGkypyC4wNx2cgFa3tmUqx2a2YXWEYFOl0+rIQlHA0niYuP0rwt4i3o21VWewrWYSheW9X+AVBv+Hxxe+T41zqhgLggUBZW317/e2b78llX/NLcfcxfTB81CrHBhr9grbmwMElbmYyTnzSY3chyFWFLJSWkiJLD1M3B4AqF3iSw2J2n/iVhUhxi2XoTtx27Vd1dbC/fO+YGvIBxA5GGLGEhwMQxM3diuuqLKKVXd4Qu9IrmZ7DpVtA6jXJ/HDjqvY1HBur58jLjUeBRUSMi21hxudJ3RNWycsm9Ehb/DSWaeRxk8H7R76aw7vDYsWwYoVfTvW1Cjar0OT2vFZO/H2dy30/OGHcNJJUN7Hmn/t31taGhCeQ7MylvzaI6iq8r6msDQU4XBAfFg1JyQ9ilK31O91+rtdKdYmXE4wWKOJi+87bZWaaOLZ08/h5iGTD5jXqt0g1pOKtqcyWNaKdYildf89bhVjCQ6bC5M9kqxByV73S0+x8n+T72e49BzInUp1fV2dEBypggjbR0jtVaXrAdY28bxqXbDXfSQJHFqxdjA17D9xeyD7rL8CDhO3hwHA4l0nMy//ckLTxwFgQrxkfUk3PAxw7nmHQUFfEh7UyvTpIvXS6ewn4uUQw6DQHzhv9BvEqAv87tuhuHV2T5Uy1+6msRGim97HtvSKXl2/feDxNND6g6TWoLfGYrD6l+qWmo9lWfEZOMOGkZOrps6Qgc0GmHy8Y21CqUj8JBh4A4x9jl7ltv+NUFttIy60VngtJXcvo73MNIub5yygsPHApiv3FRYL1NaINp2X13O7FCbyKBXT/vcfDn0FF+Vdz+vnnsTQIQF4M3dB1sAoDLaYXqU8FW4uREHCospBG9JpxBUcDCaXmCG21vwBKzFDgbBJaM1j2HAV4YlizHMa68BpOfj3cxj7BcUdFI1KEe9KXxa3ZTWx7G0cTURCAgCacLEgkk19qApoFARqfM4AZp19KteNuAhnW2nvzxMAnE7ICVvGdUc/RKr1k+4bW7fz+PQTuWvazMPEbX+idSfl399BSvA2JAkSMhL2+5QhcRkAaOwVXgO0dXVgskcRkjIK1MEQN4GQYBiavKGb4jZIFn1qTFovFLfAF8UfcP+8ryhtEgNRb4PZAGqNqkP80VJzACu4/4VRV2UmJqQenRYIzyY6wkxcaC2hcokoYPQXR0MD3Hsv3HUXfbJocbSJYK4U2tl+BaGk0FDz9/R8+fFHYcGzZEnfjo+0LuXyI/7L4NgVEJzAtpB3+Wj9fVRVeV9T7HTM5NGFH7K06CxcLjDV7J8lTF9g1Tcjy6C3xu5XEcik1FDiQuvAZUexHJh+yWkW60kpqOd6UgoRfaLVaNrv6+gr9+B0QkXrIAbkef/94lNicMg6HA4FrJ0WDaZmIRhyqJN6HHN03gqunPgkcuUvfu/DYRJ+07LG9w+jihDza5f+MKe0vzhM3B4GJhMs2z2Vr7bcTOJAoYhy6twenM2HX7JeQ3bh3PMBF499nphICzk5YNeIxaS15TBxuy8GRfzCGcM/6Khy7xPtituuVgkuO47mzord1uYKsLcEfH2b0Sj+Edx7xYwSkslNcxby5LKv/e67vuYs3lvzELr4YQwYADX6LOx2fC/mW3dQWwuvfDqGdU1XgaZLNVRr//gkHSpoKhcqJacUiaTrbruhi82lzRpHff2fc8grLoZHZlzOS+ecS6x6V4/tuijRf2gd+99/1O7egaJAjXEQKam984mKiYEGSw4oUF9aGtAxCzdO5LrZv1MU8d8e2/TScPLrjqCu5cAWbvIIp5kWUwzlLYMYMQIyBkRhtEdhtQLmCr+HH8afCzqneDfS81I4KmsBR8a9g8PWO4XrvsUNQ+PcRZbstb3LdJCdBDtLARgwOo9GcyaKAvXFB8YvoakJEsKqkCQIjk3vvjEkBY0G4sJqaWrsXaDmMLzAVIFr5eVYy5eiIGGOmkFczjD/x/lBdEoqCioUhwVsnm19at18Q0d6a/zRqHIvYuHuC6msBIMBzEY7YRqh6krK6p3itr3AjLnNQGZ0AXGhfcuGsEn9mBZ8CKK6WuGzTbdTqbkYtJGEJmSjUkFKZEnHb/xXxq5dost0OBR27+p9poFkEe1OF9WpuB2bupj3L5zMKPnufrvPvwrMZqhwT0u6Bmh6g0T1Wo4f+DWpIZuBznHOl4J5d2EoRY0jWV8+XdxHwwH2/PEAQ5PoC03OOEJC/OzsA4lJksjyksHQcGBesg1tN/HKsucxBk/ssa0p+HSu/HIVixoe2+/rtJQLf1s9gwkK8r5fapoo2OpwANbOZ7a3udePwT2Llg1K3sVxed+hNaz3ex9OsyBupWDfc/iQ+GwANO6CjIfRd/w5V7GH0W+QJImoqCifFfgq3VxATAwdknlVRBYOWYexzXoQ7vLPB6dDZvuqPVjbSb3ewFKFzerE4QoiJjnJvZjKoN6YTpM155BJdQ+kbQUERUzqVAF4JbgIweoMxeXq0nUZ9mK1ujDYYqhqcxdgad0e8OWXtz3GlV+uokZ9Vi9vvFON4gpgPdxe5DwrS1QYbbJk45LVtNR795F2JJ/N/1ZdyfJdR3PTTfD556DICux9SxRja8vv9T3/2dHXdmWoExI7s5TZQ5Wc6J6b+Kye+weiZK+ZjOhCMuPKIKhnACEsUZAxYarK/VbjtJWJd8OkHdlr8bYkgV2bjYKKpmr/lZ1lGTZuFL5qQybk9Nhepr6cZxa9yfbGk3p3I31Et7aVcRZ3/7KQ/228g+HDYeBAqNVnYbUBptKDcj+HKpxOCJDX7xcoCoRJYqGfNSyTayc9zlkj3qG2tBdKbmMxGZZZHJm1sGNBG5EgyCfFYQan77lA17almMpx2J1YnaGk5yVj0Qr1YlvFgVn01tdDQngVGg2owvZRWAbFoVJrhUd2PxVF+dsjLIO1JceypOB0Xt8ym5H/ehJUAXg9+UFahpZGY4ooZGsW41nXdmW1wtDoBVwy/gVSgjaKg8JzCBl7B43SJAD27IGaErFAdxFCRGx0r+6hnbiNYy1PnHoxZw14pE/PUuo8nW+3XU9FS26fjj/UUVoZxoLdF6NPvR0AKSIHrQ5SI0sPWoGyfpvDe0DZnjounfAcb5x3Am35vbd/0LpE3x0a39mfRcVHoVXZ0Tr/fl4JBQUQpDGTGlnSJ+LWaIRYXSkAkclCmJWWBhqVnea6Np/XBahsc6eCGUv92gz0d7syt7jt7FR9L0wGoNOBySUCWa21B8Y2raQxj42VxxEUndpjW0KSDqeso64fYlkraq/lv4vfoDHYd1HvlBQEcesEh77zmWWzuIn2rKKuCIoSnymWAG7UHWBUh/j+bWLSRRak5NT32s6wKw5kn/VXwWHi9hCHWq1m6NChPivw1ZXXMyRxI4NzOiP8tqRzufrLFXybf+fBuM0/HVbN/g71mkuo+Gg6rQuvheJPwFAUGOlqKsVmgxpDFrkDxCuWkBbLnT9+z/z6WYdMqnsgbSsQqBTBRKk1Wr/7Lm28n2tnL6NEuajzQ/0urBYobR5CYeMoQdy2bAv4+g0N4JR1xCX4r6C5L9of3a/djq0Za2MxGpWdrCzRBPJtV3LVlyvZYrzW62E7ao7gy003UtYyFFmGF1+ERx524mrcDE4TrP8/r8qcvyr62q7szaUAuIIye2zLiCniknEvMiz4w/64xX5HS9kuJGRkXSIE90y5DYtPR1JBYnglDftrj+UOaqjjRvbp8GLNTVz15QpWVl3id9/CQtDrISTEcyG0g11Ju2vbMhigrEzCKesYNgwGDYLPN93K479+AgnHHJwbOkTx6bv1vPefz1j0q+2gXK+10UiIpg0kSMhMxyCLPqC5vDTwk7TlMzz0E44b8H1Hu0xMCcFoj3KrVXwvYrq1repCXC6x2M3OkVBFikWvvfnAEbdJEZWiYFXoPsStpMKpFQsxe9uf1+P7Tw1Fgd0vQ81CcNlZvRpu+eg53lv7MNffmYOu91MHj0hLgzpjBg4HyEYhr+varurrYVz6Mk4Z+gVhzu4F84YMEX/v3g01VU521B5JrX18r+ebExJn88xp5zMl+R0AFPo2v2sOPYsfdlxNYe2APh1/qKNdMNPhZBGWjU4LCeHVVFceGP/NfdFfc3hPSDO8wImDviJc14azIfD5OACKwobyY9lWM4mY1M4MgphUQbqFSjW+i/oegtizB66Y+DTPnHY+Efb1mHqZbV9dLYoaqjUQFJsNQKb8Ge9fOJkZ2bNEptG+aMtnsPwsR2QsIm9EAiZ7JDarDCbf2ZH93a5qrKP5YcfVVNiP3e9zOTSiDVmaDgz5325HFO8hgbM9S6I/iNv8vVHsrJ1IQo7vwFhMDLTZkkHprjJW2cVNhMT0VNxGJor5gtblX5WscgoBhzbct+I2PSuYRxd+yJ3zFgZUiNwbDmSf9VfBYeL2EIcsy1RWVvo0cnZVL+f+E67jklGPd3yWmq5DQXXQFtR/Nii1vwPgsMvU5G+iec0slJX/hKoAIsfGUuw2qG7LJtfdp2Zni7/LDiHniUDaVkBoV9yq/StWtG5ut2ttMlfkKL7aeC2rSk9hb8MoRL2v3hG3AAl9sKjTyC08eNJV3DbpGp/7yTWLuGHkBdx8zL1kunnF9OxQXIqGYh9FWjeLjCamT4c77xQK33k/a7nmzZewqnPAaYCGlb2/8a5oWAXbH/3T+Hr2tV0pJqFQUkVk99iWEFHHjCGfMzhyYX/cYr9DbhZexs5wz2SqKmYYn+54kVnLn92/NEqXlRCnkFDE5vaNuE3LjsQp6ygJwNlk14YS/nPi1fzfjLc9Fh9sL4JQW2U7KJkIHW3L5eoo5JOaKia3AwZAcfMotpQMo6ltP/LxDoNBhlu5eNxLuHa+clCuV1tlZ0XJPyhonoIuNBR7eyGM+l4MuOYqHHaoN6Z3kCntahWjJRQc3lVJ0L3fai4XBK1BHkBQEISnCOJWYy3ydYo+o6HORVxYrXjHQjx4mga70+XNfz+lWr/AVAKl/4Mdj2G2qHjySVBQceGFMGpU/10mMREKm8aytXoSzUZRXK9ru6qtheSIcrRakMK6BChddiYP3cCUnLns3g0F1bk8u/h1Vlhe7vU9RIYYSY0sISao3S6mb8vEdpLiUEj7729YLBCn2kpmdAFpKW6SVhcLmggkZPQ1faw+1Uv02xzeAyJcOzr+HebY2qtjnS6Jt5bexfNLZpGU2UkIJWQkCSsRlwO78dASLPjDnj0yk7J/BuDsUe+wZ0/vjq+rthAbWic8lcPE+BgaHY9GrZASWebRLsFZv5FxcbM5MutXTjtNoqJ1oCB4Db59bvu7XZW1jebbbdfToDp+v8+luMdCu/4ABDGdZvK0X3Bk5q9eidsrJz7JORk37LfVXfvvP2iQ7/0kCZw68czmJndnrMhoZXH98PieHrfRKYK4DaFWZHj6gFYW72FIlG/FbUYGFDWOpLQ6FrOl7+K1A9ln/VVwmLg9xBFII3e2m0V3mQi2L1zq6rqTZH8HyE4X0YiJxvflL/LxurtZsGkyZeU6DLoj/J/AVIbVCjX67I5CQ1linBTE7SESKe6vDlSFUNwGYpXgibgtqh/E15uvZUv9qdhDxSrKWrczsAreTjOnJd3IdZMeIj6u9/5/KsnFwPit5Mb6npga6yuQZag3ZXSQVQPcQhSvxG3TBloKVhKm0zN+PFx4Ibz5JkRHw7b8UN776VhMZqBlS6/vuxs2zhQBiZJP/O97ENDXdrWubBq/7L4ETeK4Htuik8VEJDqoBsufg5/ugKJAiF0sckJTvBRP00bSpJ5KjT57v6L1zuZd2O0yLZYEBgzrGWkPBO3BKF8Bh3Y0Fm5jUMIWxmVv9Lg9LdXBrHNOZubQySIIcYDR0bYaV5Oy51QuP+IZRri/8uBgMbmEzvTAw+g9TEaFGK34AjcXHhy1XXldLO+sfpT5dS8DoAoXA66jLXDi1tFWidMJ9YbuxO1jCz/gis+XYQ8f7/P4rv2WtUEQtHKYeP7EXPG3zlUjMiX6GaZmUSFapdGBh6Io6ggx6KjtfyBxW/kT1P3+x11/f9A+xkaN5LU3NNTWioDPDTf072VUKtjYehXPL5lFiWkq0L1d1dUqJEeWiXmQm3wBwFzO8RHXc/kR/6Vgj7OjMF9mz+QTv1CHRIt7cc/LFPpmAZGc6CA1sgSdqZdqy78BqqvhiiOf4unTLybCvkF8KEk4g7MBsLeUHpT7OFAkSEtNPWHqepAACaK15bTUBV53oq5OZLHpdBDXpTuLjlHTahVEU1Pl3yt7oD17RKWCMK2h13YJbdWiU3CqoqG9BkRYFlqtUOJWeiif0FpRhKJAk20AxxwD5S0DcTjA2nBwiVu3xW23ttBXaCPFWKiYD0D7sdRwYvoLXD7xGY/3mpQEI1LWkhO5HtnU97HYVruZo+NmMSJljV/iFkAVuk/GjWxnY9UJ7K4fR0xKT4Y5KUu8YxrJiqHFu5UfQH7tEeyoPYqQ2J6WC10RESHWrtDp1dwXHCZuDxO3hwGoLKJDD4rpnAjGxcElE2bx2MkX01Sw7o+6tT8ExUVOvth4E+sqT+We56cw6rQLeGXFK1z43u/8898pHSpIb3AZSnE4oFrfqbjNyoIZg7/gjrEnIO96+YA/w18JEoJgDcQqYWjkT9w9/SbSXN90fJbvtnkdOhSyhmdiskdiNdnAEAD7YmskM2wd49N/JyGx96kXKrXK/QyyT8WgucE9adJmdtgr5ObCJeNf4NSYy0Df817loo/4R/ItHJW1kHFuLnL8ePj0Uxg8GLaUjaa8DMzVvVMzdIOly+TlL+7ruWj7sXy+6Taissf02BYam4xKBSFaI421ffCtPoBoblJIj9gOEsTneVfB9keaVcPe7SgylOtHkpbet6h3Tg5cfsQz/HvIFdjbvE8+ZRmUFkFIR2R4fq60dC0SCg4HuIwHL71DMuwFaz3hQW0MH975+bDBVk4YNBtN4YuHjBf5wcbereWggEPW8d2602ltPfDXbM8Mag+KBceJuYzaGjhxa2kWJzEqaYSHi88iI0GjE5U/eqMc/K3iFl5f8TRy3BQAcgdH0mJJxOEAc33/q27trWLV7dCmgtRzWt/ut6eT/yCyQ78HdjwKm+8Ex4EP0PQ7msWkr8I0lq/ddUj/8x8IDe3/S7UHDTwSKXWNBGvMqDUqCO1ShC48l6DwKII0FtTGfPYWiDlVeyCqN9CF7ZPG6qE9BYKMmGKeOe18zs75e9qt+UJVpSyU0zogLLvjcyVqJHsbR1Nb30/eG38QanYJsr7RNphWh1gEVWwPnMCvqdATojWSmtrd6UOSwIJQD7bV/n2yBxwO0Dc0oqAiMhLSoosp3tO7eay1qRSgIxsFgLBMdDqICGqhvqonQWdpFGOVKmoAERGwy3Amzy15lV22y/v8LH2BpN9FUkQ58XH7WeABCIrNoKR5GBUtef1wZ92h2JpwOqHNEudRcRsfD83mJBQFDA19V9w27VnNqUM+4djBiwIis23hE3lp6YusbBF9saIK5uXFj/PUb++QlNxz3R0cqsPiEkr3xkrfC453V93Hs4tfIzKpp6fvvhg/uJgLx76Cc88H/m/6MLziMHF7GIQoYnETkdwZnpckyE2pJDO6AEP1wa8i+Udiy/Ygfiu4gHXWx1BrVFx8MXz0kbCPqK+Hj57+marvroX6ZR6PtzWVio7Zld3RqaamAioNYdpWzI37Xxn+UEK7skOt9a/siNZVMiJ5DWGKW+5nrcdQtIzokAaGDYNx41T8XnQWvxRcBtpIv+dzmRtxuqDVEt8nqwSVm4VVuvzXE5x6EWLURneupHJzITt2N4lB+Tjb9pEvKgqWmp3IMtRaR3QEAECowN5/H7QJo1AUsDSV9d3svalLUMb01/XxMBqFlyp0kjddIWlDcSDaQ2vNnyt3s3RPPdHBjWi1KoIShnjdb0TaJs4Y/gFyc9+J+h31x/Hx+nuoVM7os9V2QgIMS9nKgLjtNBR7J6H27IGMiB2o1JA40LOSOD4emi2pKAq0+Cpt3N8w7MVigfKWQd2I2wF5Ki6d8Dyp9s/B1njw7ucQQtPeTQAUNY7AKevYscPPAf2AxppW1CpHB+kVlepOBVUC79OcBjEuayI6rQYkSfS3ADW94Dw3F2SytvxEknIEuRYZCWuqL+CbrTdSWuNhRbef2FU1hOeXzKIu+haP28PSx7Bgz0WsKznmj8k4qFlIayvUmQeANuIPuIH9RMtmZAVe+2wMigJnnAETexYN7xe0+yvXVel7BI/sLaI9OzSpoOqy4JZUaJPGo9XC0MQNXJhzNa+feyKD4vxXBd8XQRHR3T/oI3EbmyoijSHqZhy2g+PZ+ldBU1U1GpUDtUYHIZ1KNdWw23l84fss2j71Lx03NFQKH32zbiSWIJEFZ6gIfN6irfiEt88/jovHvdxjm0MjJnjmxr8PcVtSAtuqJnLTT+sIjooDFAzVvfNKcBrEAKaEZnd+qAnFqRELH2P9PvYciozKLNYl4cmC5IxMG8j2mqPZVeTbz7S/MT1qJs+dfg6ZsaX7fa6wlKE8/MsnfLH1nv2/sX1gbmlEUcR6MtbDV6RWg00S37ehse/ErblWyK1dYYMD2j8qKYnNVVPZUykKBOv1YHOXH0j0knhnlUS/1FLjnbi1WOiYT3h63n2Rl17PqUM/JbRtfkD3fRiecZi4PcShUqlISEhApfL8U9utDqK0QmkSn5XVbZvDHZmzNv91CZ2+YKt7fjFmTOdnQ4bA//4HJ54I2dG7sNdtgppfPR6/Qv09jy74iNDE7A5yRKWiQyFhbT40iFt/bStQvL1xFg/+/D/kMP8R0HYfXKXdBqFhBZNDbufaox9h+HAYOxa+2jyT13+did6Z7uNMAobGRlBAb43rSOPoDdRuxS0KoHixWpBdqGziHQtL6AyOJCZCoyVbkFYVpd2PMVdgMRpwyDoSc/PY9ysODoajp0ZRo8/GbAJa+5iOaO6icrRUBWYvcYDRl3ZVW97MwPitpCe1elVBtSs1jI1/LuJ2z24Xy4rPoMp5PKiDve43POYXzhv9BpG2VX2+1qY9mSzaez66tCl9PockgVWdDUBLZan3a603kx5dRFgoqGM9E7cqFVglsRBrqznwC7H2tmVv2ovTCRWtgxjcZe47YKCOBmOq8HH7Cwcy/kg4G4Q6scGUxVFZC6jdufaAX/Oo4Pv44MLJjEpcBEBijpi7BKuasZsCUHg6zSg2UWQjOLb7uDEmZxe3H3crUWWP+DxFe9uSJFWHjUjXgFup6t/8uPNKdpf5V6b0FmXVkWyrmYQuzXNRvZDUcczJv4MNFdM7iqccNCgKpqKFVFfDY59f2xFg+8vAUgPWWhoaVKzYMYL4eLjttgN3ufR0mdfOOYnTgqeDrbHbeKi4+yQ5JKvngbETCA6GIUkbSQirJiKohaR0/8HrfRES2V1xK/fRKiE6IQqnEgQKNFXtn5/joQZLQykANk1WN2K8PehsMnFQ3pP+msP3OK9eELfahFHokkaLz9oCJ25dBjEv1YT3VFNYgkezoWI6lS198AH5i6Kbn+n4V7nxm0Us2Trec0ExL/hxx7+54ZvFmFJv7Pa5K9htK9S6z3zHXInDZsMh60jNS++8fpf78YZ+bVeyCy2tAITH7r9XQl8CsYHC6PZ0sCpxHbZ++8KlEQEtS0vf+0SVUWRohiQG4JNAZ7/Sro2oq7aglpzExuK1sObvbc9zzexl7G7yXqi3pcmJWuVApxMFiP0hLFG0Na29EuTeWxPCgeuz/kr4+z753wQqlYoBAwZ4beR1pdVIyDiVYKKTug+SUoR4yRTj32gBq8gEN/5ASmQpo0Z2D3mHhsIdd8C6ihOwmMFetRRcPZUEe0siKGoaQVZO9x4xNF4Mfoq58pDwufXXtgJFVWs2ZS1D0AQF0PO7VSbtxK2zeTc2G5Q2D2X4cBH1y84WQhV/lhYAxmYx0Nql+B7kaCCQula29PabWmtx2p04ZB3x6Z3hTUkCxb0AM9Tt84617sBihrLmIYwZ53nhNH48fL31Rl5Y8iJyVE9f14Aw6EY4fjFMfBumLwZV3xZp/Ym+tCtz2WoePOkqZh5zn9d9HBoRQba1/rm80ZauS+W9NQ/RmP60z/20UaL/0Nj7HvhpL8g1dGifTwGAEiYi95bGUq/71OZvFr6bYakQ7F3OLgcJhaOl+eAQtwOy03G4lWvqmEHdJpyDBkGNPgu7vXf+qIchoCgQ6RId75ihddw4+QFi9V8c8OsGy5VIyEQnCzVrTEIYr62ZxV0/zqGyNsz/CSzVOOxgskeSkBLebVNSooMxqSsItmzweYr2fqutZAvHpH/KgPj8jqKkQIfffWE/JzApSmeBTW/qGegsvtm+70FD63bMTTVYnaFsqpjCmjUH+fr7i2ahtt1cNASbM5S77xZ+fQcK6ekqbM4Q7A7AXNFtPFS7A8CaSE/E7XiCg2FE8loig5vRaCAkNqXX1w+L7iRu5+26jFLTcX16DkklYXYJkuLPluXyR8OlLwX2UT8iSJTERNCo7FRW9FJya2uGFRfAntcCPqS/5vDdIDuIkIUiMC53BImDx7CnYSxr9k4MWEUsWUU7D4rpGeQyRp/NrOXPsq78hH675T87CgpkQGHwYIjJGkRQeCSyDHt9W812Q3W1GN8SM7qTn5oo0ZeozN3nO4qhCJsVqtpyGThItI/Bg2FUyioybW8I+xsv6Nd2ZW/B5VRQUBGVEL3fp3OXu0DfJmMx9a9QxaoX60mXxjvBLIWKQdph6CNxa2tG5WhEQSIhd2BAh6Smwpi05QwL+QTM1ahK3uODi47mkiPe8HpMZGIiNmeozwL1tqrVfHjh0Tw447qAMvgSMpJwuIJwOpxCKNQHHJA+6y+Gv++T/00gyzJFRUVejZybK0RnbZAzkVTd37x2nzit/eBUOP0zoLmimLMHPs7jp1zKyBE9I0Lx8aKAUIslEWOrGZp6rkKK3NnD7cWn2hGTmoKCCqfNfkik4fprW4HC4bYtCqA2GVI7segmbg1Vu1AUaHQM7fAAHTdOeJlWb18DDt+yBWub/4HWF9oHD0UBxVsE0VyB3S6K3mRld+9ydbHZ4nHcE/l2yK07MJtFuvHYsZ5PO2QI5DdNZ0XBVArLwj3vFACKyiP5/JfxyPTe4/dAoC/tqj0rwKHzocJwV5N1Gv48i0ibDbYLcQpH+Kl7GJYgiNsQpW/Eras5n2TndyRFlDPEuyNDQAhJyBb/8OKLbLdDsFEog0MyjvJ5Lk2E+F3kg+BxK8sy5flLsJhlDLYYMgd2T1tPTIQWexaK0jk2HkbgqCptQycZQFKRMFH44MVIW5BdBy5Q6bQ7CFOLdL74DPGOSBIYgiZRZ8ikvCKAaW54Lq9un88zi97osFvo2BQvVnoaZ71PlUh7v9W2dwkXjn2FU0b/3E3NkjdAJimiHFXD0n71T9br4eiM75mU/TPxUW1e98tIbiUnNp/mBnO/XTsg1C5Eb4CNlccxOnUloXvu3v+CmgcTxkIsZsivGUtsLBx33IG9XHo61BoycdgBU3m38fDDVTdz05yFSAM8eEyG56IJje74X0UdHpBdVI/TxEbRYkmgsjWP77dfTYHp1D4/i00l3h1D434Ysx+C0NhKgc75XwcUhcdOOp/3L5xCQ2Uv5ykV34gMqpDAyfr+msN3hUHv4oPVd7Ck8BxyR2SQMzyD/y55l8/WXhewyjHIJYK4EQlpPbbtqx78O0CpW8ab5x3PKdnPIUl0zN8CLVCm1ws7MehUnLYjJHUCK0pOY0vJ0G7DUmt1BS4XVOsHkCPi9AweDMfm/cCkpA9w1nm3YenPdiVbm3G5wGCNJi5+/ymriAj4v6mP8N6FU2jb/fN+n68r7AZ3FTWd9/WkJlwQt4qlb8St3LYbqxXqDJnkDQ5A7IR4Z84c8T6nDpiFo3k39rY6JBR0Yd4jkO3zIF/vrLlNZCmptUEB3UdmlooagxBG9DWj7UD0WX81HCZuD3HIskxDQ4PXRl7cMIgP193PHuu/emyLdvvE6ZR6cB7kyf4fhKrtwp+v3jGKsAjPTOK06SrWl0/HYABqf+u+seI7RmmeY1DClh7EbWaWhiZTsui0zH99uwR/bStQHJ/zEacP/xCdyr/ZvqTuoriVHbhahXwpJHFIR8Rv3Dh44MRrOVJ9EzT5VknZDYJAl4L7RtyqNSqszlAsjnAUL4txuyaVLzfewO+FZ/eo8hydJt4xjb2sm2LXWLkDlwsqjSO6pXJ3u7YaRossNDZt6sPNKzKKAvffDy++CL/80odzHAD0pV21ZwVI4R6USG40RFzBzXMWsLD0/7yc5OCbyu3aVE1m5DYS4mW/FcCjUgQpFRNc2asUuXY05y/ksnFPcsbIzzt8FPuKmPRsAIJdpR63b98OZlsQNiWKmIGTfJ4rNF7MECXbgVdCy7KMpX4rFquokDx8ePdgpSSByp1pYqo/TNz2Ftt2RXH914v5cO/XZI8Zg0MOJUhlpCL/wPnkN1bUICHjkIOJTe40WmsvzFQeSNxZUrGnLJGyliE9iNuY5HhkRY3TIfsMuLb3W/Ym97NGdLf+GTjAwbOnn8fp6XegWPsvcFtXB/8c+yo3TX0QnexdTnvdqH/z6MmX4WjqnTfifkGRsZT8is0Ka0pPYlz6MhKUxcg1iw/ePewvBs/ki5p5/LzrEo46ij5l5vQGqalQZ8jA5QJLc0VHu9LrZcxmCb01loR0D/MVSUKXPL7jf+2avllyhEXouO2Hn7l//pfYnKH79byyrj3L5TBx2w5ZhjClFICI5OzuGyWJkBAJCRlDTWngJ1VkqJoLsg3UgZE54l76Zw7fFQVFwSzeey4LKu8nMkpCp+tMsd+5M4ATOM1olFYAYtJ6tmFB3CoiLf0QyFz0B1kGnWkbYTo9Ce7iXKeN/IL7T7gWfYnv9U076ssbuGvazVw5+RWC93Hjih56Iu+ueYTVxdNoaen8fKv+Mv7v21/Z0PZ/HWn/iYnQYB0ofFwrvMt9vbYrczXkPwumwMVgxia3b6w1npiYgA/zidAwDVqVHVNj/845ZYsgbtWh3teTobGCuLXb+lZoraW8AFmGirbBZHlf7nRDVBS02dqL+tUiW0R/rI1I8npMdnwJV0x8ijHBL3rdp52odqoDWz9nZIiMNqfTXZulDzgQfdZfDYeJ27859lYms6TwHEzRPaPqSemRGGwxHZH/vwMsVYIBc0V6Tz2fNg3WlZ+A2QzO6mXd7BKc1b8zMeUr0qKKu/nbAWRlQZ0h/ZAhbvsLpw99m/NHv45O5T840O5xKykOMBZjszgw2SNJG9g5wRs3DvY2jMJmBVudb18tu1k4q6tD+1YwRqXRce3sZVz39e+4JM8puVUtmXy//SqWV1zUowJoUnYqTlmLy24Hi1th4bJjb3J7GKWMQO1DCDtuHAxJ3EhQ2Rtg6GW18o23ov/1apTWncSF1RBW/DBsvL135/iToD0rIDjWO/sZnRRHmzWOunoPw54iw+rLIP85sHtXrfU39Pnf89BJV3LnKU/4TTUKi09HpYJwXRv11b2rKAxgqRHSXnvoyP0mH1LzxPeskdtwmlt7bF+3TnhNf9f6K1Kid48sgMjkDHbVTSC/dsL+3VSAcBLCzsqR7G0Y3a0wWTvCk8RsWDYcJm57i+3bQUFFSl4WKo2aZmUMAPW7Nx6wazZXirHUJKd1yxoallXOGcM/ILx5tt9zyHKngmvfoEZyiopmc5LIDLH6J6DUFtEPhyR0j9xmDwjqIORaK3vZV/tAU52RcF2byFgJ8U7WtRf1sbcdRKsYax31zWGY7JEEpR3JrqapuJxgLF7+hwTK+orFq5JosSRy9NEH/lrBwWBC9K+mhoqOz2vd04PISHqQL+0IHXEV66vPBEDy0RZ8QZLENcJ0epLCKwjTtvg/yAtUYYIYcJn+PFkufzSammDOtquZvXUm0dkje2x3BWcD4Gwt6cVJ14GlGjQRkHy8mM84AvD2PgBoV4F2zeoZNgxCtQaqd/sPGtlbq3A6RVp/SkbPTLKUZJl3LjiWR46d0SG8OJRRUwPZUVuQJIjJEYXeBibuYkjiJlStgRUfbK0qYWTKao7I7llQu92eA+iWFl9QAAZbDMnZ3e3d1FEiPd/a0AufBjcMa5+kZu1sTMtuEtYeAcDYLPazKbEBZWUGAjlIkJi2fh4LVzXfxsvLXsAS4n0uG5QwjCu/XMWrGz7t0zX0VaUAWHWDfa4Nu0KSOq3ijI21qO1iHhMc4524TUkwMS1vDoMif/M6VLvM7t8wKLBidaGhYHC57QFrDs+v+4rDxO3fHO41j0cFVmoqVLTmUdmSjUn/N1DcKgohVkHcRmZ7J27T0kCKGUWLJR5jqxGaOwdPS0MpKGAku0d0MCsL9jaMZkvFRKxy9wIQf1soCmpJRB41Wv+jsqTWoCAhywq07cJihdLmId2Uc4mJ0KqMElHasu0+zze36r9c8eVqDOEz+nT7XQdObwHAdsVXVhY9yLkBeWpq9NlUNqdjN7sJQ5WG9/I/5+3VjzJghO+0t/Hj4ZShnzEs+APkhtWB37jLBs0bsNZuweYMweEKIo150LD8r6euV2RCEV9yZIp34rZ9curR47F5I+h3QfU88SMdpMCKrm0FAKHp/klLSRuKDTFBaq3u5f3JTtRGYXAbktJzsdhbJKUG02JNpcGYSm15U4/t69aJvyccoQKV79llQmYKTy96i3dW9H+VX0/Y3XoMD83/gJ8Lr+uRFQGdRTrV9mqPHuaH4R3tth8j3U1MjhHjqKM+AMPxPsJQL94Fm7r7JGZASjnnjX6DDOb4PYdx6wecPXwWadGlHZY77UhJgUZTMk4nuMy+CSi1y4DaKRYzcdndI7c6HehlocJtLO0/BbKhTjDODikWNF4qMwKK2ypGMe9/jrGiwMcfw4IFfnYMSeHBhd9y/7wvOeFELeFZR+GUtdhaKv4yxf+amwWJAXDkkQfpoqFCLu5o7RRMtFZVcNuxt3PxxHe8HiZFDSIuRaS/Rib1vQheZCRMH/gtz51xNkfHvdrn8zijjuTbbdezserv40fqD1VVsKPmKDa1XIYmoudvpI7MBkAylwZ+0orvxN+ppwrv0ZUXw/ZH9/9m+wBXxXwyovcyeHDnhPjIIbt58/zpHCHd7Ddg0+yOoDVb04jysEyKjlFhdkQD0FT556pXcCBQsNtOduwugoJBHSdS7KLc69MYNndYzflCey0Cm9qzRDMz3UFKZCk1lZ1z//Y+r10t3Y7wVEHcSuaSXhUzVpq30FSwlpYWqNpbTeuGtwI6ztwqxlOnKjByMBC023Mppv5tP4V1A9lUeSxhcd7N5pOS1ThlHfV9tLj9pfphbvvhJ/QRp/fqOClUPLO9rVpkUQMRCd6J27h0QfRGBjXS2uLZIkq2it9GFRJ4xqoSKtqgpeXQf3cPFA4Tt4c4VCoV6enpXo2cE5w/MyhhCxlpPXv/0FB4Z/Mb3DP3GyrNfSx+9BeCtaUcjasZh6wjZ4wHKVYXTJuuYm3pSWyrmQxq92LJZcdlFJOOkPjsHsdERsKSyuv47+I3KDEd29+3f9Dhr20FAtkld8zj1AEQt3WaM7j88/XMrXoeW+Nu7DYobRnCsGHd9wvPEJFpuWWXT/KloQFcspa4BC+lNf2g66O7vNgfGsvWkxxRRlZmzx0SEuDppZ9xxw/fU94qKkYpqFi0NpeVJf9g/HjfMsxhw6CkdQwuF+jLAq/aS8tWFJedyvoEqtpy0FtjqW1NwuFQQB+gcdYBQm/blWJpAJcNWVETn9nTE60dCXF2Lhn3IhcNuRuXY58JZ9VPOBxQUBqJ5ZfTYdtD+/MIAcHcXEeUVICCiuwJvu0EOo5BkFPG+l4St4a9OGx2tzo9o7e32gOSBO/umcPtP/xIQXV39tNkgpqSOkBh4kT/52r3rGtr6/RhO1BQqVTo9RlIkijQ5qmJZQ+K57GFHzDzu19RVH3rF/6OsOpbuHbwGVx79COMHCEW7dE5Yt4Q7tjUN4Vl227Y+oBIr/QCR5t4F5SQ7sRtbLpYIIRR7jelVq6cyz+GfsKA9KYeKpa4OGi1JqMoYKj3TtyqVCoyYhzY7NBoSiUnryeJKoeJd8Vc13/Era1VPL9V5b3vA1C7SSKVbf+J2/Xr4dVX4cEHfXvg1dZCfr5EqzWR446DIyeHsrt+PAYjUN9T/fWnQ+G7tC2+lZEpqxkyRBQ/PRgIihF9tMpagUqSSE9Px9ZUzNi0ZYxJW+7z2BPOyCB5+EQyRvTdyPy8ES9z/ujXxf9Iffe+D0kdww87rmZ9cQADwd8E7apGb3ZFoYnZgHcboh6wNUP977hc8OA7Z/Px5xFgLIL630Ff4PPQ/pjD73svkyMe4olTL2bYoE4SMGtELi5Zg8rZjGz0PXepaU5k0d7zKDZN85iFJElgoT3t+9A3uq0v3I1G5QBtDIS67bIGjEOthpzYHRQX+g8ut9fQcIVke9z+f+Mu5b+nnYet1r2GMJZwbPhMzhr5bg+rtrQByVidoThsDjB7zsT11K7qV76N2QRbqyezpOB0rnz2toDIy2rLaL7ffg2VjuP87xwggqNF+1Hb+7f9NLk1DPtmVnZFe2C4vt672McX9u6VaDKlkJnXu8FIFymI2CBrPrLTiYJEbIr3TFNdeCwqtQYJmfoKzxZMkl08sDY08Hsxh0/llu/ms6CpbwHBfu+z/oL4+z753wS+GrlsN3HewAf5z4lXk5Hq2TQxLU2MnL4qCx4qqNq+CUWBatMIUtJ8L9inT4fPNt3GPbNfwRTkrh5lLsdmUzA7IkjO9GzG0+5JU/bXEJv4RH90oA57Z8BAq/NP3Gp1oj06nbDLeilvr36MYtNJPdTNA0elYbDFYLU4fBKR7erLBO9F731CpYLbj7uVe6bfiGxr7bmD7GKM8yaePf1cBmf3HPwkCXIHiO+vuFh8VloKLS0QFCTIJV/QaECKFVF4a+3WwMmRpjVYLLCx7EhCQyUGDIDi5mGYzUBbIEZkHlDxHSw/Fwz7R0r0tl3pa8qQZag3ppOc4n2RGRev4fhB3zA+fTEttV1mjE4T1C6ivh5emHcbddUWaN0GxtL9eg5/KN+4AkWBKtNIUrKiAzpmi+1u7pv3FfmNU3t1LbllO1YrFDWNYOiwAMq/BoDsHPG+trfbdmza4ODpU8/j7Yv+QXKU/9Ty0FCIiQGt2kZNxYFVe6sUJ4114YDk0SYBIHeARHHzKGqaojyrsw/DIyq2bSY+rJohKfkkJYt3N3fMUByuIDRyK8b6Cj9n8ADZCjULoGahV/K1oG4EK0tPRYke3e3zlAGpuBQNyHYsvjw2FblDhaqL6kl+qlQizdDqDKWtxfsiWaVSEew0Irugsi3Po2d1ULzb97a3tjY+4DSIyZkS7FthGRwlFqtB8v4rXebOVZiWN4fRKcv41FvGp62JpYvF9zVmjCA9J02CTZVTsVrAWuGbgPxToGEFurYVRAa3HBSbhHZEJqeyveZotjefiQon6enpON0BCrvGt7Fh8MBziZ3xBlJa34uKxYV3TUHvO3HbXsG97hC0uLVa4Z13YO8uc6+ylIzVBUzIWMzgTM+kUUyGqAQVrS0NSE1J1VxQXOypG8nPK/J49cMcii0nim1F7/k8tL9JEFv9dmx2qG7LYdCwTpuD7FwdFfqhyDLU7dnm8xxFjUP5eP297HVd6XUfp1b0deamQ1+156zfAoAjbHRHyp4UloFLE4dWZadm1w6/51DbxIJTG5XtcbscLAJF9haxn7luDwMiVzEieS0DB3bfd8hQFZWteVitILd5tkvYt10pTZswVa7HpWiojLyXBdUPU14Vwo030s1X1xNKW0czZ/t1NGmm+33OQBHhzkbQKXX955Ps0DM05HOOyFhEvA/nvfh4OHvUu9w97QZai9b1+jJ73G4j+yqh/SHMXWRV7ajH6YRWSzxJyT7W3JIKC4Jlbq72HLBWu4TiNigycOI2JSOMFksiFRV9W4ccJm4PE7eHPFwuF7t27cLlQQ7YWFYuVCT2WBJSPVcXbFdDVR6czOE/FPoykc5pDRnr128yJwcyMyUcDli50v2hqRSbDarbssnL83yC7Gzxd2WZpX9u+g+Er7YVKLoStxqd1u/+7R5HDgdsLUhjZcmpRGX2VJaMGy+xt2EUVgvYG7zYJdiauSjvRq49+hHi4/rmt6dWw4jktQxPXofitPXcwVqDw+7CIetISPecPtPuhdxOgBnWvciJg77iiDHGjqIAvpA2dChOWYvT1AyWACMsTevQ62Fn7USmTYOjjoKSpnbidldg59gXNQtF+mv+M3073o3etquq1kw+2XA3a2ov8emBpVKrMDjF5KWttstEpHYRDruNgqosNlYcx6q9k7E7gKof9+Mp/MNSLogLS7hvD9iu0MQOoaptADV1vVOCtpXtEAUN9CP8FkELFPu223aUbtlKkMZCbLQTggOLiFw9+Tne/+dknEVf9s/NeYGrbilnhk1m5jF3eSVudbrOfrrAt2DpMLqgrUSMn0bduI7xMyZOy/92vcQt381nR0kvG56pDCKHiYwWR6tX9djve07i7VWPoU7tvrCLjFLTbBEL0oYSH5FSax1OuxOnrCUyyXMfvc18HdfOXsYOy9VeT+NyuSjdIWyTTKo8j313bKYgbkPkot4tGBUFpW65x1oDaqvo81XhvhW3YQliMhem2j+VkdkMVds3csXEp7jt2NspXLOKZk92hXteYWzrCUzOmc+0aeKj2FgwhYn+zlKz9aD6ifcaTgtK225MJthdP/agErepaRqeW/IqX++8Gxcadu3aBe7UeSUswIo0+wFFG935P1Lfl4lJSZAaWUJm2BrMxkPIdkZR+PhjWD9vGfr55+IqeDfgQyOMPzPzmLuZlPq5x+1RKVmoVBAZ1Exthd7/Cdt24nTCx4vP7vjogQ+uErU06hb7DKT3xxy+KxoLt4MC1eZR3VSHKhUY1CKw1lrqOzOs3Ws81Uccqj3t26E/9BW3wVZBdIekjur8UJIwBYlsFku1fxuiUHcxvLBEz32HOlJ8LpnFONlYKgKLba4BREZ23zcrC6oMA5FlaPPi1b5vuype+QtWC6wqO5OrbkrhjTeEdVlpqcK3z76HpXSR13tvdMeQfJGhvUVsSgKyosblcIG1n6Lz5kpOzn6Rf014wafiVqWCwal7GZa0HmNdaa8uYSr8hX8Oupsjsxb2INT9IdodRbNYYH35dLZWT/X7nTo1grg1NXombnc3HMGO2qMIjvFt6dcV7euPgIrGekB/91l/RRwmbg9xKIpCW1ubx4r3LZXizTG4Mr0Wq8lNb+LRky9jsuPUv1Qxib7gi8138cLvL6NK969UkCQ4/njx73XLaqFxDRgFcVujz+5RmKwdOVl2Xj1nBidrjgHHAc4LPsDw1bYCRdeU9UA8bqOk3cw85m6OSXipo0LtvjYJIHwJ6+3C57ap0PNE0WlqYEDMOkamrCY+oa/RP1AU8fK4nB4GElMFdjvUG9LJzPL8kg3Preahk67kaNcFYG8lzvg5l054jtGjA1vYjxmno7R5KGYzKM0B2CXYW1Ha9qDXw46aI5kxQ3jlFjcNw7Q/itthbo/Sli37Vcywt+2qrD6Z3wouoEw+x+++VqnToL8DVT/R2gJLC08HJJYWnUFbK1A1D+QDNDlwWQm3imh7VF7gxG17mlVvFUy2OqHKcIbvf2GydgzJKOeBE6/h5KjLu33uqHF7LccfFfCiPyhcmNnZWg/sQszVUoDdrmC2h3slbgEmj8jnkvEv4Cz0vLg+jJ5QtYkFpDapu61ScNpEWiyJbPMttOoO2QFrr4ZlZ0KQe3XR5Fmd0p4NlOaBtzSrxIK0zVchDHMldjs0mlJIS/PcXpOSherQly2Aoij8tPffPPjzp9Rpz/K4T8bgdByuIFwOOy5D4NHwkkIT382aQ9En/6RuzSfdSF+dS3wBQTFecq/diHYzIdFBtVjMfVcZLV4MWyvG0+bMJiQErjvyfuZ+tU9/77LhqPodp81MnSGd6V049ZFHpFDeOoiixmFg+xMXF2rdjtXqol6fhEVJ6fBtPhhoT6OvrOwcD4OcpQDoog88cYuui7moH49yXwgLg0dOuYq7p91EU8Who/5w7HqTiOL7SYqoIERqQL/t84A9mzW2UgB0sdket0vaUIoNU1hZeiq11Z4zIbth7H/5rPhTVhSeyLBhMGoU7K0ZwKIdx4slW9H7Xg/t9RxedvicE1lrhUjCEdbzZdEmCuJWafE9R7U0lBKiNfokbrVR7o2WQ5u4bW6GbeWj2NMwjoTB3cdVbaL4/yCT78KfisNCqCQmjDEZ2R73CU0QfUqwq11x6yZkI/J67KtWwy7r5dzx4w9sMlzv+Zpd2pUsw32f3sus5c8SNOxKYmOFEv+NN2DGyJ+ZlPAWVT8/hL0h3+O5VMZ8kiPKiI8LRH4eGJJTVGytnsyakun9RgA6jI2i8Kgl3idxCyBrhaDB0tI7o9vWovVMyFjMiKxCwnvW7fOJxNQIXlr6Ivf88DmvrXian8vv878WCBHrJWuLZ+L20w138+zi1whLCNx+LTMTjh3wA6ck34VS13u7pP7gHf7qOEzc/o1hahCdtF3rfSKYmBpJduxutK56sB26eaOyDOu3RLC1egoDxwQ2MZ42DXLjdnJe/GnIm+/H3laFwwHVPojbjCwdEgp2GwetANKfGe2KWxk1KrV/8jRE3cyEjMVMSPiMBNPnZEYXeCRgJAlImsqH6+5nccUNHs+lb2wCBfS2OKKj+3b/kgRWp/AylAw9LRmszRU4nVBnyOiwydgXadmR5MVvI4xilMZ1mM1Qa8hk5LhIzwfsg2HDoLh5NE4ntJQEQNw2rcdkUihtzEMKjmPiRJHKWtYyFLvNnXrrCEDpsQ/aXNmUW6eKxULpZ70+vh2KAm1tAZaPVZSObABPxM2+cLkrq9pa3QyMqQK5eTNNzSpWlpzK1KmwpWoKVQ0xKLYmaFzVhyfwD3PFepx2O42mFIZN9NJZeEBaQhunDfuIcWGzenW9rys/4rklrxKaOtr/zgEiPSecwQmbSdDl47ILNVVTE6TqVoMEicMC8+0F0EaKH082HdiFWGvFXlCg0TGoI43XE4blVDJj8BeEG3/rl+vW10O+53XJIQHFYSJMForYlKFjum1rJ7x2+M/o7ETDCrC3YLcrLNp7Lk4n0LSmx24mg50gVyVqyenx/ZdDRKdrbfJF3Ipxu96Y7rUPSXELSnwRtwDllZGUNg8hMcsz65CapuKbHbfy2rKnqWwIPL3wjXfCWZB/BhazTPPqWez88FoszYKwfX/NPbzw+ysEpR3l8xyh0fEsLr6ILzbfQmND4EVl9sW8eQASe+I/Jzh5FCFaI5lNd2BqM3Xu1LACY6uZRmMKusSR3d61KVPgkV8+4o6vP8IZ4qE64J8FrVswGWFP/VgmTCCg7Jf+Qjtxa2gxYjeIeXeEJKxG2kmWAwl1cCdxK+2H4hbAoohoY2ut58X/Xw4OPW1bv2RM0kIaTBlsrZ5MY4ML184XAjo8jFIAIpKzve6zqPVl3l71GGW13osctaOxEd7+cig2ZwjXXw9PPCEI83cWXy3UirW/gbHY73n8wtYES8+ANZd7rhshu9CaxSDnqQBq3AChGA12FIPD4PkaisJZSZfy9vnHkZPoPfgfHi/6V63z0LZKKCiAebsu49M97xCSPKLbtoRB4zDZI6moi/FaXwPA0NSAwRqJ0R5FcobnotjRaaJPidKU4nSCZBIq7bAkz/1zUnYqDcY09hT47xt+/hmKS1QUtE3n3Es6i2FlZ8Nl95zMroZJ2C02ir6+A6expyJhRtxMnj39XNKj+89fMD4eXl35Iq8se5YGY9+LOHaFoVH4vRrscUR4TmDuRLD4HuyG3hG39iYxx5Iie+9fnpYusblqKuWtg5AVdY8irJ7Q7otrN/b0s1CUTpuL3ni/p6dDTmw+o5KWYKntzaTwMNpxmLj9G8PZ5u4IfaRepaZrqTOki7Sbv0gV4L6gtBQMBggODtw7ZuhQsGiH0GaJxtSqp9x5Mjd++xs7Ws/ukV7SjuxssUC020E2HSZu7UoMjy74iOeXeq+U3BVqjVg9OR3wjwEvMiV3vlcf2JwROSwpPIelG3M8bje6c3BsSvx+qRCXlZwFQHDZq0KR0AVtNW5Vu5xJWJjn47PzwmmzxuGwg373PBwOKGkeEbDCR6cDJVpMivVVAfjLBsWytfY4NlRM48QThf1EZCSkZEZSa8ik0Zbbu/Sh8m9RWvO54w64751/CYP+qp/A7se8al/ITlwFH/DQ/VZuvXUIX33lh8hXZJyrrsGw9SM0KjtDApjLKMFiIuJqryarDmKX9TKWFZ6CNiKRxx+H4BAti3efKmwjDpBdwoayyTyy4EMWVtxFYlLgau+kRCcXjHmNo5L/h+IKXIGwNT+S7TVHM3Co96rzvUVyRgxWZwSKolBXItr5lrWNZEYXEBwkEZYVeAn28ATBjGkcnq0+tm+H3ftbM09RcLgnvrq4QT7tcOKzssV+zv0f86qr4dJ/yVx2Gaxdu9+n+1OiuXgrLqdMoymNvBHdyYaRI+HkIZ9xXMRMZGOAVi6VPwDww4bTeOWzScJruGULuLrb0TQU7eL5M87ipXPOJdRD09ZEuec2Rv+K23qDd+I2NdnB7cfexsmRF/n0s6yqCgbwGrhVqaBMOZ+15SeytyQwyUxBASxZApsqj2O1/n4sjlCk1i0Uf3IhW376jpLaNLZWTyY+zQ/JI6lYXH0HC3ZfTENTd6sVlwu+/x6/qujaWti2WagAZ5yiI+nk57CSSGJoCaU/PtipBK5ZgMEAa8tPZPr07i/akCEQEaXDZIKtvainedDRvBmjCfY0HFybBBCe3zOGzeGt847DvuV5VC4TOqlVbEvvJ68bH9CERHf+z34UJwOwq8WYa246NIhbueRLWpvMVLQO5OgzpzCv+A6sdg36olVQv8LnsVaznWid6AMT2v14PKC9H/JpUec0g9PEhx+C3S6UtkcfLSwG7r0XKloH8svmaZjNClT/3Mun7Aml4A1aahswVO327J1rLMJps2BxhpE6MLvH5sEjY6kzZmCzKTi82Zc5WkG2oCB1VLX3hOi0DDZUTGdN6fF9e5i/CNr9TPctEAaQMjCXO+f/xqvLnvRZM6WqJZMbvlnEUyt+QOfFYSs6NQtJBTEh9dRVNKN1igB6Qq5n4rZ9jdx+f97g0Ffz4XvCFvDyy+lBaA4eoiLvvKepMeSiWBso+vwqFEOXIIPsRIuw0wmP67/KkCqVsGoAMab1B8ytgrh1qOL8Wi3qIoTiVmUpDzyTWXaisYj1XURaLw1uEd99aCiE6dpQS86AiFtH+mVcM3sZn2+6rcc2o94Jsgjg7FtjxheCg8EsiXlZb60iDkPgMHF7iEOlUpGbm+vRyFltE4vt4FjvE8HUVKjVZ+FwgOxr8fNngaLQVtN7QrR54yecP/p1po4r9emT2RWSBMdNU7OhYjoGA9jLF2G0RZOc4V0pmZoKDaZ0ZBkMdX8i4tbeRkNlfWDFENzw1bYCxSf/01LUNAK9OjAloMr947gFfpi1Qz0u2EGk/4NQetk9CAQsrYK4dWr2zzxp/u4r0FtjkawVUDa7+zWa3AV5Qr2nkiQkQIMlG0UBS4UwTLaHjiAoKPB7iBpwJPfNm82723wXowCwhY3nvtnPM2f7dcyY0fn5uHFw39zZfFw4GyICVEKZq2DXsxgWXkZDSTF76seyqWgYLocdyr8O/AHsrcjrbqRm2RsMcT5GUFAQS77ZQMu6t70fU/k9zUVbOCb9E3IyLZx1lv/LaN0RZJVNzNaUoET++91M3ln9KOedJ5QqM2bA0qIzaG0F6pd7V4fsBzZsVFHUOJLQ7N4VGYtPjcXmDAFFxtjoR21iqYP1NyGbajsm2IGQ24FCpZYwKNkANJaWAFCfL1SRtuChoAt8NhedKlaqwdT28P7cuhWuugquvLLvvliAKHJlrcelBBGf43vimzlEvK9apQ2roe8+nEaDwlfPfcX/TbgajcrOU0+JojaHGup3C5uERnkcwcHdtw0cCEdmL2ZI3CoaC3yndQJgrYeGVZgt8NFvZ1Ctz6a8PhHFZRfkbRfo3WO9VfKsmtGkHMt982bz3uaXvF7OaajG6YR6Y5pX4jY5VcvgxM3EqPeC1fNKT2rbwRkD3uKo7IVeiVuAPHf2aWEgNRyrf6H0p4cJ07Vx4okS1zx6Jo6JX1JuHIckW9DtfZI7jruVhOg2r4HBrmj3tGvs4lBgNsncdptQ6t18k4PGCu/9ytqfN/HSWf/gxlM+JSUFVCFx6Ac8j0PWoW1ZhmPX2+A04axdgckEq0tO7maTAGLRPMktxl+70iCUfH82yE5czduxmIXi9mATt5IE6nAxVjlaK4gPD8fqCKHFkkhiSsgBv74uPLrj303y/mVpyO5K9qG1H6FYD7I1hqufO1unCf32L7HbYWHRlVxwgYrT/5nJL7svprER5PwXPatR3agvrURCxi6HER7rPZ86PR3UkpPWOh+KvIrvsC+YgW3XhwBcf31H7SpOOQVOPhm+2XoDj859GVPqjR5PEfAcXr8Hw+4fqakRZLJt98eg716YytG4HZsNihuHM2Roz/MlJ8PvZZfzwdr72Vvn2aDT0lyFywmtlgRS0737+CdmJDBr+bN8sOImj3P7QwX1xcWE6fQeiVuVWiJvoPiefQW1hWewRGyi90ChFBSFUxJqXEPh79is0GqNJ2+oZ4Xu4MEwfeC3TAq7D1p7WqupVCpyc3KoWfAId008g6MHreeCCzxfe/T4MCKmzaLOmInLWEvVnKugeZPYaG/B5VRQUBGdEO39IfsAkUWjUFfdPwVxbXoxjilaPz4JgCp6KAoSUcoOKAxMtISpFIfNgcUZRlpe71XCkgRHDMrnzfOO58OLjmJ8+u9+j0nNDMfmDKWysvucAcBUsY4PLpzEI6dc7TUg4PVewgVx2yEe7AX6g3f4q+Pv++R/E6hUKhITE3s2ckUhVBEvTWSKd+I2KQnqjFkoCpjq/vzE7dqPX6Tqi7NY/9VHvTourPl7Th/+IROG945MnTYN1pUfj8EAoYYlqCQXA3xwXhoNOLQiD07/ZyFuLbXUz72Kre/dxPVX6bF5qLHlCV7bViCwNlL6/d0snCuqmtx9d2CHqfdh1UOTvTNRGRkwIK2WKVnfUr5mfo/tNoN7wajzP9D6glMJZfaWm4T1V9G73Yg+xSiIW12Md+JWksDhtitpaxWfRWWO8Lq/J4wZH0pVWy4bNqr8BnBXrBAFZpKThUqjHePHg0vRsDEAbqUDhe8gyy6W7zqKqrZcVCqJH7b9i+YWBIntCqAxGYpQVl1G9Y5N1DeHsrr8dCaNruW2Y25Gv/ldlIbVPY9xGLBue4OmJvhu+7XcMDMqoMlDcLRQdqodQlG8Y4dIYdfp4Gx3bY8zz4SqtgG8ufRujGO/Aa2/vKfeY72oYcQRR/TuuOAQiVa7YJdaq3z0H/oCWPNvaFpD09LHsVhEpNuHyKdPcAYLNbuhthRFAXWLsJYISusd05GUmYBL0eByuJDNnYtVoxEefFBY2YxNWcjqj19Hkfvgz+nQo+x6AYsFftx5NUNH+v5N4xJDMDiSUBSo3NO3cc9lbmbDO7cwI+M5hiRv4x9j5lNVJSqRH2ooqYqhsjUPJWZcj20aDejVIorWUrzJ/8mq5gEyW8vGUGfIBCQ2VxxFk3MoKN1zQi1N4h1wBnn2d03JiqKqLZeSMu+dQ3nME9z6/Ty21J/mNVMmJQWaTMk4nCCbPRtMG8q2MjXnB47IXOqzAOCgPBujUlYR3DjH+04A9lZMG58nXZrHtIHfc8014uMjj0vl2DvfojLsViQJgjQWJgzY5lflA5CaaCQ7dheWxlJw2TFsep3fX7qLVasU4sJquHvqVdTOuwmcPYunKgoEVb5HuK6No0d39j1T/jGM7wr+g8OpYvP2cKhbilFvp0afhTZuoMfvYsoU+MfQTzhRdQIUf+T/xvsKRREL451PgaUX0ip7C/W2YTSbE1FFZHdYFxxMaKPEnEGyVGHTHsE1s5fxwpovAhYW7A904TG0WBLIrzuCGtex+3WugSdeSoM5HbW9mtp5Mw9abQdT/ldUf34yVQX9YBPQjvJvaG3UU2vIIvuo4wkNFfOGVbVX0WSIpbW6HMq8F9hsrSoFQC9nI6m8v7ADE7bz/oWT+UfCdZ53UBSo/I6meitt5ijGjes5l7j3XlDCclm0bQr/fVYC2QmlnwuiTRZWKYHO4Z3lc6mvU1hTdhIbKo6jvs4Fu7tbQxSZZ/Dfxa+xqPRKjzZEkgRtEWexpPActhd4LlraUiWUnq22NJ8entHRdAQIDxUHDk+YHHYvb543nXGZPW2CoDMQX7Kn1es52ou9tdv9eEO+8Z/M2X4dBXucmO3h1BkHeD0mLw9Gp65iZPyvGKt6qqdVKhVRrlKcDdsI1po44Uzhh+4NE6cmYx3zAYWNo9A3GWhYcCvYW7GbmnG5QG+NIT6hf+mqSbmLeP/CyWQ23tUv53OaxHpSCvK/ngxPzubj9fditYJc+G5ABaGdLXuw2aCseTCDBvftu5iQ05nyFRaAv0FKisiYCtM08cHb3e3zzC1i7a7SBns61CeC48R6V2Wp6F2RVvaTdzhE8Pd98r8JXC4XW7du7WHArSgKL/3+PB+vv5eELO+zUpUK7Fox87b48onzB2s97HxaEDkuG+yZBQ396x9ZtXUlkS1fABBS9TYtFQFO2KyNaB3lKEikDu+dumDMGKi1j8flApuhhduOvd0ncQugjhDft73lT0DcGoux/H4lzRWiIEBtRSsvvohQDfjpUL21Lb8wV2FZehXWssVcc9Sj/PvfcJRve74OqLsYzVmdoaQP8k2Izpi4lX8f8TRK6Rc9798sQojq0P1T3I4cCcuLT2P53hNRRj0Bms4Z55LKG/hu+7VevaLaoYrIFvfkAqesJXd0z6IAvjBihCAfm5qgosLHjsZiVi8WqXonnUQ3i4ixY8XfxcXQ2hLAYGoshuqfaWmGj1beSHw83H8/rC8/nrmbzsA06FlQ+WFT65airLmC6qJqiqrTeOK3j7jw5kmccZGBJYXnYTJBw5LHe6helcL3qK9qpbotG3PceRwTYH2v4JTR3DxnAU8v+wLKv2XlD2uQkDn55M50n2HDRKrzL/kXsGB5/6/YTbtmc0zMk+TG7exQhffqeEXck6nBS//RuE4UdrI1UGvM5YoXHwLgyCPpt8Jk7dBGZQPgbCulshJ+2Hwev+69mNSx03p1nsQkFU3mFOGb1b7SAJ59VqG6GgZn1XH9pEcYGfYhxT883MOSxC+qf0Hf2EJJQy7fbTmXIUP891k2jZhcNpSW9u5aAA0rKf/yQhKlVbjQETrhbo695EwAFv9YzN7dAUbH/iL4ev3F3D//S0LzTvO4XZskOhep1Q9xqyhQ9SNmM8xedSYqlRgb3l/zH97Z/ikkdPdNdrmtF1Thnt/TdtKwuRlMJo+7UFmlotmcRHSiZ3URiLTKJksyiuy9wnJb1V5kRcaszvVJrg3KMXDntJlMinrGd2Br94s017ZS2TYAOeNicro4/oSEqjjpun8RetJsElKjOfv0wLICJqV9xWMnX0qu5WkMv15G7coPyQ5dysS8Tdx0SyjRIY2ozGVUL36+x7GFG7aRGbYORVKTNf3fHZ9rNDD0+FO556eveeKzS5GrF2DQw+rSGT1sEtpx1FEi88hhd2EpX3bgCt+2bofCd6FiDqw4D4o+8KmI7EBwAp/sfodbv5vLUUf/McukyKQUFFQ47TY2rhKRvohY7220PxEUP5BbvvuZZxa9iXr/nBLIHBhLVfJr6K2xGKoKsG14qH9u0geU+hU0Ln+OueuO45Y7o6nvnZWkZ7isGHf8D7MJ5uZfyT//KdqFTgf/+ncYX225mcZGcOq9p4VYGksBsGmyfV4qPiMFleQiXFWF4vTQXlu2YG8ppb4pmNWlM7qpbdsRHg6PPy7G/PnzYfb7BZg2vohj+eUovx0La69F3v0au9bP8zuH/3LL7by0+GnmF83kfxvvZkn+dLbT/XfctTecHTVHoYqf4DWI1F5IeGdPkSYAhnrRn9tUvhWFkgSpqQqRwc3UV/Y9I+bPDIveQLRWrGEzhnnOEBo9qJaXzjqNE4PO9LpeG2y+i9uPvY0h6b7Xw+W6a/l++zW8Nf8Crvt6Cb82Pud1vhgaCgZJqKZbyvf22O5yOtn10ws4nbCx7lxOPcczUd8Vp5wRTdOAN9lQOY0nv7uHJSujO3xj9bYAfGN7ifCYKLQqOypb//gkK+5Cm+ow/+vJceNgQ925fL7+RuYWPwBRXvz+uqClbA+KAnXmQX5JeG/QRnT6I0Qm+vdKkCS494adPHbKv8hq/Q+FezvbmFUviFunqvcWFtGpqThlLU6HvXcBVfaDdziEcJi4PcShKAoWi6VHBb7mFhWbyiaypOg8UtJ8kytKWDYALr0H4laR/acjOfSw4Wao+Jb8b5/h40f/h3XXJ7DjCXB6WU21w9YMVfM9KkC6QrY007r8UZFu7ghHhYPSeU8EFM3Rl2/GbheeUMNG9W50UKlg6rEaag2ZuFyQF7/dZ5okQGi8e5G5v8XJ9l3suKy9WwC1bMO1+mpqSuqpbMnhg/wPqTdm8v0cJxU/3Q3bH+mIzHu+vOe25ROGQuTVV1JbXEVdWxrrTXdzvefCpB7RVXFb2jyE4SN8d2EJA4WkVGfZBav/DdW/dJA+dotYNAdF7p/i9u67QatTcd9XTzNv3ZRuM+jFu07ku+3Xkprte3ALS8ru+Hd562BGjeld7olOB8dNKOaGSf/BvMb7wsi+8y3OTTiTGUM+5+STu2+LiYEBuTL3n3At/DYV/KU17n0Lp1Pm123TKGkexo03whlnQHaOmteXPcRnP4/ruZpoh6JA8Scom++kutzMmoIJPPrrJ9zyQC5TpihER+sJG3cjdcYMWmrqsWzuQiSYyjHs+BKjEb7aeju336kJSG0GEJ+oo80aR2uzFceOlzg27CZy4/L55z8795EkOmwXfvihy/16gyIHpix2Q79rHsflfccRQwp7ZerfDqdbsW9r3af/MBRB+Tew8WYUp5mdNeO54IX3qW1NYtIkeOSR3l/LHyJSsgFRKXv9ethTP46drtsJTuydJ4NKBcWGY1lefDq1TSLwsXL+To6ULychvIa7H0qiNvZeZEWNq+Jn7Ktv7pWFRX3w+Tzyw7O8t+YBTj61iYgI/31WezClV5kmLhvkP0fzr7dgaW2mqm0AxpGfkj7pAqYeK3HjWb/w6Mn/YsuXz9MX4fCfEXZ7Z6rmyFGeX8TEwaNRUKGxV/ueqLftBHMF1fWhrCs/ntNOg8suAwUVixfTowiLyiregZBYzx4H4eFw0oifueaoR2nYvd7jPlVu211fxQ01GrBJYqGjr/d8/87WIlBAFek76JY9KA6jPQqnU8baVOJ5p4ZVWIrnozdIfLDuQa682nNlrKzhuRwz81nGnXaqz2u2Qx0uVnxhto1U7Smk2RjDl3ue44EXxnP6OVEUBD+GgoS18AdcVb92O7Ztk7DhqVWdRmhs95XjmWeKQEd1NSwov4PP1l7HqtKTmeYlfhMRAarEo3DKWlFkzVQa0P33Fq7IUczOv5+yMmhtsuLa8was/GdAooFVq0S7O9g2Ce1ITdNQb0zD7gBrcxWKQkC+hP2ByEgI0+mJCm5Eq/I99w4E512Wzhd7X6WyJZP3fveiIu0vGIpoWnQ/JhM4XVpKq2O49VYwG/tekA+Ayh9obWih0ZRK5OAZHR6ZIOY9RZZ/8MDcT/hq53+8nmJT7anMWv4sDUHn+LxUUkYcFkc4iixjqPewTqj8jsYmWFUyg1HjwhjXM9EBgNGj4eqrxb+//hp+WHUMW3ZGsnunjcINm6hc9hGROx9CafRuvt7aCu+9J7G2/EQuuzaZY2ckMmv5s7zwRmq3aVH7GODLjmnECEiLKiay9Wsw9VQY2FpF0FYJ8V9p9vLxT/LaOSehqvrW7779DkXxuTbqD1TlbwcFWuwZxCR7nijmDE0kVGdAdpiQ2wo83KdMPKsZk7achETfEZj28U8EOSSy83zXQ9BEC+LW3rQPcavIWPd+i860F4esI+2YywMu7PjvK4OojH+WFcX/4IEHYMdGt2+sFBPwHD9QtNdV0Mk97bn6giW19/LS0hdxho/yu290tJiP/7jzSh778GyWLXNv8LHOaKq34pB1uMIG9/m7iInv9N+LSw1MsDR4iIb0xDZGpqxi01dvdXzuMIrfRg7AGmJfZGWpqDNkuGsnlfbq2D7xDocYDhO3f1O0q/KSkvCbYqyLyabemE69eYDo4Oxtwux+639g8Qnw6zGw9UHhd7kvXDbYeBuKsYjy+gRue/1a3ll4MZv3pOEw1gvlrTdY63GtugLT2keQm7f4vMdVv+zCaTVSYxyAafSnWJ2haEz5FG70X8q7YY/w56t3jveaKukL06bBc0teZVvNJF5a+qJf4jY2PYP8uiPYUTc5cKJVkaF+mVCPbLkfVl4Ev5/S/fidT8GvU2D5+bDxVsh/Diq+F4TOvgNTw0qU9TdQV6FnR+VIXlv/Hs+8nMTll8OA+B0YS1dhL50Pm+/uFSnlEy3bYO01NFQ2sbcmj5dWv8/dD6f1KvWvK3Fb0TaEgZ6tsjowbHwKC3ZfjN6opWb3Duwb/gO/nwaF7/Dd3oe44os1OGL2LxUwOxuuc69FXnjB7QXkMKLISocnp6/UWRDFkJrMyeyqm8CvdU969e31hREj4OjsXwjRL/I8qVRk9KXrUWSw6EZ5/O7GjlMREdSK1WQFvY93p2031C2moVHiiw03MGgQnHaaIOCuvVbs8tlnoNfjuY072lBK/kdNtcKcDefz/O+v8Z9Hozi2y09x0b+C+bnyUZwuFc3b54n2Dzh3vkRdnYttNZMYfcIkv99tV7QvtkYn/kZTvZUafRaRmcN7eIidcgqo1WCu3UXL4jtg13OdG5s3gqmLqqZpnXgXd7/iuQ/sClsz6IXcJCRzcuA33hVhgrhNsX3e/fO1V0L+M7icLn7Ln8FVb76K2RHBZZfByy/3LAzRH0jMyabFkkhFQxJr3Nl8Eyf27VybzLfy7pqHKaofRH1pJUE7biUnNp/HL3+b0aPh2EvO4H+7X8FoDaV57wZYe5Xw8fUDWYZHHpVYXjAdXeJI/vGPwArvhSWKhmVr80E0uuzdFXxlX2HI/4q6Oli450LqBnzK0Sd2qu3PuSiWII2D4ZHfsezL/S8Ys19w2UQ7btoAsgNFEf67dpvcq8KChTvrUVx2oqO9k5/DR4VS2jwEmw2sNT5Ut1HD2RP7KbN+uw+nEspVVwkLl+hoQSBsXm/u5okarAhSIzLZuzJ+4oB1HJP7E6YqD5WwjCXk6u/jH8M+9psOrwSJ/F9ri4f2ILvQ2UsBCEvyPQGIjZNosOSBAnVFHoxunWbY+RSNDbBw90UMnDCi3yxOgtyWPVYrrCudzmdls7nj2Wkdv9s5V0/g16IrsFqhaemTYBZEir0xnwjrKhRUxE64osd5g4PhoovEvx9/IZNvtlyDNirT5/h8xNGh5NcdgdGA8BLvZygK/Pe/8OznZ3Puu+t58Jsn2LAtnurCCszLZ6JsvN1z2r4iU1mip6pKjAETJvT7rQWE9HSoM2TgsMOMmEe4ZepdDEzdH5PvwBEZCReNe5lXzzmZgTrvqf+BQqeDK28dzL1zv+bDbwezYUM/3KQn2FuwrrqNxjozu+vHIw+5m9hYCUdjPsUfn4Pc4kXqGQBqVKfz3rKZzN7yf1z8r+6TVq0WrrpaRUnzMD76CCwWxFi/D/ZWJLOhYjpByb4z+3RBEs32bACayroEd1x2qP4FW/lvtLXC74Vn+xU+XHUV/N//QfLgYXxT8hIzv/+Ne+fO5q3lD7CxeAwtjQr6JXeAsbTnwc0b+fBdI0YjHXO8666DkBBhM/XbbwhbptYdZJhnMTx5nU/idtgw0a5Ozf4vloqewRPZJOZPmgj/Hp7qMBHFcOire250mj1+//uFdhHRtodgyQxYOEmstbY+AMWf+Bc69DhfE2x7CHn5BZ2erl3QVirGK73KOxGYk6uiqGkMsgtaijyMq9YGFKcVWVET4ysyCaSlyiRFlDM4QayH/RXpjkoXnbvG0mV92bIF65J/0bjsOWRZYmPDBZx4WuAZjZIE99wjMXWqCAjP/VGIbBRNHxbmfhCTkoiCCtlp730hZQ/YWzeIzVVTCY8L7HmnToWLLxb/fuQRqKtogXXX9vDxb8fP5fdzzVfLscXO8Lg9EGiTjsRgi2Z3/XiSkgNMpYgcTNiRDyJJMCL0A3YuXgyAyyLeLym49+qTjAyoMWRhsgSh2Ft7ffzfHYeJ278DFGcP8sRUuoopOXMZnuu/ynN8aix3/vg93xS/KPybFp8I2x6Eml+EmhYFan6G5ed0V5HKLthyH0rrViprI5j5yas0mVIIjQjhjWUPUlEJctm3ggjZF9YG7Cuuo2xXFVt3x3Lf8xO9Fs5qbYWHX5vMg/M/Q5/zNFNPzmCr/Cj/mf8Zj786wq+yydUgrq+OH+v3u/CEI44As5LG80tmoVeP8VskJDU7hmcWvcm7q+7zrkjsioZVgqjddDsUvg21C8GwF2yNYO8yObFUg2wDUwk0rIDyr2DnE0Jhsmhap2q5bilsvI3WZhvLdk3iuSVv8J9Ho0hIEAUOgpLH8MKSFyiv1KHULxNqaft+pCO57MImY921GFoMrN0ziid/e4fb7o336IXlE2GZlDaLtBJ78FC/QYecHKiJvp1bvpvHe0uvZ+OOeCqLm7Bsfwe1tRiXoiEuIcBwsA/8618wdCgYDDD/rdkoS0/DuP1j8qJWERdW71PNBZAxKJXbvp/L04veIme4f7WBJwwam43ZEYHdYkPRe4i+t+VjajNgdkQwfPIwj01v3DgoaR6G2Sz294q9b2CzwbxNp1DVlsutt3am4U+fLjywVM4Wtn39sggi7AOXOpo31r7Mq7/dxacb7+GxJzQ9ithoNHDZzFH8vOtftLVB68onoHUHzXtWYbOp+aX0dq7oySH4RHAwnDHmK64+6jFaWmBZ0elceGHPLyImBo49FoI1ZmwVS6FqLjSshLXXwrrroPBtfvxRELwrv/0V2a6H0k9h2VnieRtWeY7iN6zAbBLf8YjxfbPocEWOQ1bUFDePZNs2YW1RXw9OXRpmKYN3f7+e+794HJVGx2OPwcyZ/W+R0I7kAZncOXc+zy9+kaDaLxmevI6JR/TSxsCNDsVHZQtVP9xMqKaFVnkIYy8WBtg6HZx33VE8sfA9SqrjsTQUCx9fT229HbWL+eHrFtatg6AgeOQROeDU34gh/+CmOQt5dsETYgxRZDCVQc1C2POqaAuLjoO6JR3HlBvHkF8Yz3OLZ2FIv5NLLu3eQUUPmIglVUigYmqeoqGktOeFnSao/El4c9avcI+x/QSnCSq+p/LbKyl7bzLFn5xD4RfXc9FZNRx1FEyZovD+nc9T//2lnhfyHqDZ9RhvX3Ac50xe7HU4S0iAKst4FAWa9m72fjJJYtbHQ1lVegqnnSbahFot+pQTBs0mJX86FLwBgGw3EySJ8S8+wwfrGiYsL+wtHpTTxiJSVb8yPn2p3z5aHSYGK6fJQ7DAXI7D7sDqDCY5x38eo10nyHxb5UpoWt99fC14HUtLLSW1KczZcX2HYq4/EJoygq82z2TW8mfZHfJfnp8VQ1SX7PuoKEg/9lqKmkbQ0mDEtuE/ILuoXfEeLhdsrT+Z0Ud7/q7PP1+k0LYXC5o+3ff0ZsoU2Fx5DCYzuGoWi/lif8BaDxtmMuezGubMEffwz39KVMknc8f33/L56kspLlGzdGETs+eE9pwfmkoJXT2dR2ZczujRSp+CqP2BduLW7gCnU2JCxu/EJx4Eg1sEcTs190cAotVF/XLO0aPhnHNF5/vkk2Cv3wYl/+uXcwPgsqNsuou60mpq9en83vosN96k5aWX4MyRH6OyVVP+/W0dwYgekJ3CWsPk2Xfxi69DmbvzMuSkGR5JrX/8Q/xmLS3w0+xqWHIyrLtekH3urMRK9/LIX18DYFEJbxRTfWnnh+Vfw7b/0FRvp7BxBEmDh3erU+AJajVccQW8+irMmQMrV6l463+5/POOs9kV/iobyifxyZJzWbU1q/uBtiYsK2/jaOc5JIVXcPvtYh4RFweXXip2qfr1OeSVFyPveIrxcZ8wOWeeT+I2OhoaHIK0binpEkhzv/uba05i8d5z0cb5z9jRRrnJXUv339NYtZP6r06i/quTMC84H3a9KOZjfrI2u8FlB2NJ97G37EvY/hBUzwd7M4oii7VWzQIomAXOLhlA1kZBHvuAtXEvFWvns3dTMfpFNwiRTRdIre7vJ9o7ya/RQIsk/LYM5T2JW8VUhsMB9cZ0UlJ99x1ZCWU8d/o5PHDiNcw85m4GDfS9cE4bmI7DFYTTbutY969dZaVsewGNrWF8veVKhp5xXa/nnmo1PPWUEKI0mZKpbM2j2HZG704SAJJTtbRa4nE4QPHWJ/QC7cW74nsxrb/5ZhHM0Oth6QfvojRvFuuHkv/B3jdhx5Ow8XYoeJ2CApAVNQMH97ISWBckZ4Rz2/dzeWnFm70SqcWPOoW6EMEyq3Y8gqwvRrKLALo6pPeK27Q0eG/NI1z5+XKagwPLFjqMThycWcBh/GHYsEFNRu17KAvuQAkORVKHgCaUbH0z1x6tZ7fqHuB8n+don2RUVQHhAwAZIgaixE9hU8VkCkt0HJ/5JnFxElKoe1KvKLDjMZT6ZVTW6Lj36xepbM3jzjvhmGPg8ssn8PP2czhTO4e07Y8jTfkS1G6Ta2sj1uXXUbmnguqWVJ789R2azGqc98Izj9Sj1amhiwH4rFnQ1gaJA3M43a36OP3qaXw4H6p2wrx5cPrpXh7O3obOXoQTiB/UN+JWqxXRs59/xq/aFiDLPT+qrRXKl32rcHdD0fuw902cTmjSR6IPmkpMZi6xGTmoInO7V24/4k0aK+vYub6K0l1VmBoqGJ6xi9FZO4lKSkDSuN3ho4ZhdCbx3ZqxvL3yIa6/UdOhKtFoxKT64ouP4eG5r/HsP28jTdoEi48HbRSknQFDbgFArVYzLNWJWrYAPuR8Ki0Y9uKwO/l507G8suQJzj4vpJu6MlBotCqe+PVdMmL2cuRx3v1tOy6tEqqbTZti+eSTq7n1+8uZkLGE0akrWbBeTHgS/Nsv+YVaDQ8/LAjcurJa9IOMaPSvcec0WFlzGVrtTJ/Hx8cLRaTBgNe0N38YOUrF91+PYqR2Jc3FW4kbN6zbdmP5OswmyK89gpMu9jybGj8eFn80DKttLraGfII8KaYUBRKPoXBdMXO2XcvUqd1VliqVUGU8+ZCTGP2XOGudaFq3Q0gqGEuwhU/gvvtg2bJhqFTDeOwxOPHEzuPVajVDhgxBrVYzYgQsHHw9VW0r0FYVY9+7nes+/Zqc6C1cfE12nxbVxw2c2/EYBcZTefA4z/udcQbctngsxdVpJCZWodoo2r0iaVmxNorH3lEAiVvffYCzpxzLLWd/TZhltQiaNKyAoERIPRkG3ggqMdSay1dgs8HW6inc1MffOSIll/97+1c0Kjtt3da9nQrchASh/h42rMfh/Qq1WvRnNeV6LhzzImqVTN6AeUDvc3rT0kR67gj9JQTp6mm2ppJz4Suogzp/5AkTYMSkQTzyy0c8qpvJkcOLkQwFEOlhJW0sxrbufjLKwogN/Zyrb0oiN1dNXJxoW/6QNSACqwwJQcWseflxxg3cS7DWgy1Q207s8TP44gv44P0RWCzzGDdezb33eiauRp97Dcte2EKiZj2Vc+8h/oaPkTTuQcDeAr+fhtNhQ5FxpxhKYtyNHQsJx3T6vCqyIBtUWv8BQP1eKP0fcs0i6musuO3JsLuCaTYnYbdYcLkgTGdgcPwaGqtqUc27ivgZL0P0SO/nlV3oTFtxquwkZPuWvivRY3G4ZlNX58Ijb6EobN0msXataFdXXdW56YQT4K3V6RgNTuTGtagUhaZGF99vu5qY0EauSfNeyUYXmwXNIJn3IW4tdVD4DnY7VOuzGedHcRsck4y1LRTZ1HPhJNevxm6DGv0ARgz0P61WRw8EG0QYf4X1v8K4FyFxqiAwghNpbIQP1j3AtBNCO+YL/YGRoyTmZF3GkQPg8ss9B3TOOU/DTT8/RWrURTQXbSMl9mloWIGChC39Sq8L8YgIOO88+OQT8f/7BuL2RW4uVNqnIsvPYanZQfjqS2HiO6D1UZXIH5wW2HQ7+srdKNsfA97kttuEsklRYOvWMH744RYe/e0M7HaZqjYVy5bDEw/ria5/HXIuhebNmEzCQ//oo/s5P7cXSE6G/LqJJEeUMTZzNQ5ZR2RibyPdfYNGI9qGLEOQav/VaO246SZYuhTMzTU0/XIDKYk2aFwNySdA0jTQRXs+UFEEQWcqhbBsMZfo2ucpCuQ/TUvJFhpbw3lt9cu89E4UKhUMHw71pzxM+bIKMimg4odbyTjv/Z5FR3c8DtXzxL9VOgjLgYgBEJaDKeRIvv9eDKb/+pfnW9Ro4JprxDxw65KNnHu+jLp5AzRvgPxnUOImcna2wm/Wc0hL859tI4dkAxCj/wq4CrMZVu86haTSr/lxw6ks2P1P3ni39+1TpRJFh1JSYNy4YB647xl+WxXKNzsl3n4bhg9TxHe7900aasw0mbIZOj6tm/L8X/+Cb7+FivpYWlogzF6AIkOFYaTfzAUpVhCRmqYlsOQUQXjKDjhpDb/uOouCgrN4+RL/zxEenwINoHVWg7WBBkMCn30GP3w/iCdPCic62EpjYwnhZSXExn5OWIQWKWYMDLwBYtxst6kCqn4S/3YaRQaKudxt5yPD6Kcg5SSxPWESjpqVbKs+mtmLj2LzngwGpxUxNG0PuQmFrFqZSWyc6NdOy3gFVdNyyDwfsi6CILcq0WkGTSgGA9zy4FHkKteRGVPAEfISlNVPEGUsgsG3iudz7cAJRGaN8f17xol1q1q/WcwJpM4O2lRfiixDjT6LKX66jsSsNErd/x6dtpIBeb4Z18FDVKz5eQA5mnxaKvby/KeZLFhwJMcPvIeW4BP5v7tUjBrV+8JVINbEL70EV101ifvnT+K88/p0Gp9ISoJNxlRiQuoxN9UQFuNjnrMvKr6D4CQIzxV/21sYEf4LoRnJxMf7Gfi6QKuFZ54R49PL82cyPGMPw1O3wp6Xu+2nONoocOsT/GWZ+kJeHpx5TjA5OYFpxrpi3EW38PvzBeTFbKD25zsJke3IQFBE7xW3Oh1Ex4dhrobychEMChRd14d/Vxwmbg9xvP66xCU5djKjXahUBoKCDOh0YHNnv6tjh/s9RztxW1kJxI6D4+azpyyRl16iI+XpOV5l+BArp58lVGhhcjFK1Twqq1Q8Pvdp9jaN5eGHOwnU556D22fOZEzaCnS6ShKT3oIht4KtGfPSG6gqKKe2LZn3tr3Fdbcm8/zzsGVtE7s+uZ4Rw0F15JsQFEvdr/8hf9UlwCjuu4+OtPv4eOHtNGsWfP/JLo4f1UhoVs8KRo62ChrbImm1xDF8TEyP7YHi0kthzx4491z/+0ZHC0WDzWyhssRB3lDvoS9j+Ino6z/i27Xn8M3mqzDZxb7h4YKUGT5cdOR798LKlVoKCtKB7jMnCZmBmY2cWCQq4KpUCdzw0UcUlMYw5RgVl1/e/ZqpqfCf/8C9947jls/e4Z3/u4/YoHJwtHVU9W5pgYKdekbW34oSDFJ4BkQOhsghYjCrXw6DbwZtJM0tErubb+fnBXZ+XjOOIUOECrAv0GoF2VDUOJJLAiSlJEkQkuPHQ3Gxlk8/PYkPfj6pY3tXr7L9QV4eXHklfPrhlUwf9BNZKWLB0xHM8HOPM2eK9LO+euoFBYE5aDSwkuaircSNc0cxDEVQ8jHWHb+iKNCmnUiGF847Lg6sumGggLkmnyBF6TnCSxLr687nxg/ORVKpPP6Wxx0H72UmsKLoFOLjfiJpz6tgrcVpbubJX95h2cph6HRi0jJ16r6nl4iOju74/+tv1HH7VY+g2VHBjm9OwmiUSMzJ7Eb29gZ2VQogqrjOODPRqwLz6KMhLl7Fgl3nMGLAq0RG67AnnsVj//s3v/wuGs2ZZ8KSJSrmrJjKb9um8uwj5UxI+EYsBmz10LgGBru/IJcdR4VIM2rVHtMnWxaAyZPhyCmRVFZCmBGM7j/tyrFRo+DZZ3sX+d8f5OZCrH0dEjJWTS6a8L4ZMQ5K3sWb5wkpj8keiWXYLNJye87obr0Vzl2ezD1z3uPVtNcYlXJK58amDWIiHZqGvP0Jqquc7KkbTd6IRM47r2fb8gWtVlTmfuuVSKLZTkkhRMUEkThgIJrYQRA5BCV6HEvWZfHyPe3Vm1WMHCm+f2++biq1ipyznqB2zkVEUETjd+dhOmIu27bBli0xTNEOQrEZKG4exsRBO8hLKSeUQiRjobA3aCdurfWw9DRAAnUQqILdfweJIGjKDMh1d+7WGpzl86ishOK6LJYWnknmUSczZHQC8ZESz10qxpSwsEjeee19LE23APmofrme2On/hcQpnh/GsAeH1YLJHkn2cN9Ry8gBk7j25d+ZPEXLuMs87LDh/yj/LZm40Gs55qRkUrtky44fDzX2cdgcWszNtYSbK6isy+TbbdeTmgrX+5jDR6UI4jZELhUEjyQJlfbGW1BsDTTo45m783JO96OC08SP4dp3lzFlCuybPd9qCMIlS2ypOYFTM/2viDQZJ7Bu8Vrim2qIb7Kg10dz9CkQEaGmojac7zZeQH7dUTzWj2pbEG3yiSd876NSwdU3p/LBk/dzytDPSBl4OY999S8GJ6znuiezfR57ySXw008icOQvaCRJMGJCEm+vepQ7op8jPCd5/0hbRYbtD2Op282ekmjeW/MgF1zQaeEgSaKY7JgxYDLl8NNPQoW4Zg188viXXH3ct4RWfIesjcVkgj31Yzm3lxkd/QmtFmpcx7Jgt5aRKWuoM2SQmnzwkiTVajGm6CQPdhJ9RHi4qAlw110pfPj7v7n9jLcJbloLTWtFVlbcBEHiJh4HQbG4XGDa+Tnqsg9RbC24ZAgLBU1oHMSMgZjRkHIy6KJptcRRW6vi1RXPcMEV2d3mONNOCOXLypeJqLocqbaY2l/uIXnIKEj9B4S5d0yaBg3LhTpWtoNhj/gDNDTOJy/qNkwpk3zOz045BT74ABbsOB17+AROHzeXoZE/EamtRmX9ndHJkBxeQnKyf+JWE5MLLaBvczLrHli+HOz2WOA7QOKcc8T8f3+gVks8/mQ4xtvEe3DHbXZm338vkWkDMe75AaMRvthyB0+90b3dhYaK7Lxnnr6MKXkLGZ0rVNlK5Ei/Csu43OGYKiOJsOqRLQ3Y7WCzwzfvWCgrE0Harn2/N0SnpuLaBWGqSgo+vYp/f/A9docK0PJJwSdExgZjKN3AiOQ1jExZTWpsDbEx61GHnojeOEoUq2ysIq3mg465k04n/qjVgDpUkLlAQQF8880Y5s//DGuX2O3qvUms3tu9YKZa5SDpn3sYk2ckqPhDKP0M0k4TwpeKObQO/4L/uyORPXugJOIaxsYolG19n3N5C0X+gmhTKc7My3A5rJgdEWQOzfb5PcTnDsVeHIxsaxPXynHLoc2VyCVfAWCQs/1mJ4aG69BowOkEjU5LUJDv/ePioM4ylBRHKdffmUtRLahUErnHnc9VV9ErCzxPiImBN94Q3szn+LaE7hOCgsDoSgW2oK+vISzQetAum+ircDcadShKUAKnDyyjJimzV8QtiLb+0ENw993B3PDuy3zy0JtkJzdBUByKNoaa5jjW70ynrU2Mzf6Kn/uCSgX33NO3YyOj1NiGPk1T8aVo6soJ0sK6mqNJGdq3SmkZGWLOXFHRWRi7A04z9TuWEDHoVEJCu8+nejOHP1TxpyBuX3/9dZ577jlqa2sZPXo0r776KhN9GOV9/fXXPPjgg5SWljJw4ED++9//cuqph+XWnpCRIfPyqudw2bUEqS0Ea80Ea8wEa80YbVFce7d/9qt9EG1uhooqLR9+mMhPP4k1kE4nrALWr4edu4PZ+Qy88grcc97vjAxRMWvRA2yrPZann4bjj+8859ixcMc94Xzwzv3cEXIr6m0/EJdxLoZld1Czt4QGQyKf7Hqb515LJSlJpCA98YCV1mYHlQU1pCtXo8QegbFwEbdO3cxS6cce0b2LLoLtSzfw7+E30rQknNCLvhGRT0UWXpRhGeysGsENX/9GZkoL3zzc9+950CCYPTvw/S+f/A5HxLxD5M400CeJCYLTKFJZE47BnPcIX34Jn36aics6H7MjgkGDRCRy925B1KxbJ/50hSSJFJPJk4Vyc906+PZbFQXliRS8Du++KyLtZWVxpKbCo496Vt2ccIIYLOfMGcyFr8/hqceM1JVUs2N1GKu2CPV1RnQtt0xJIDGqgeCgCoJDKggJ/o3gYDH4r16WwAfLrqWwEGAEICZ8Tz/t31fZG7qSIX2ZtObmCkXEDTfAd9+JhUTXVNH9xRVXwKJF4Xy58QauPPIpAELiAjNhPfts8Wd/EJY+BkxAy1ZQFBQkdm8oI7xwPgYj7KqbQOIY331l0sBByIoau7EVrLUQ4h6YZQdY65CD03npJVG45fzz8Oi/KElCdfvCo//i2LyfiGsQaVybCzLYuDWCsDARUfekLnY6nWzevJmxY8ei0WgIDYVLbhzGbbeJvkqlEou/vhr0b3fcRklFML/suYIPfLyzarXwdPv4o0uJy8rhgquGcss9CRQVifb7yCNw0klCGXjvvZCfD9ffnsmVV97O9dfchKp5JUhdGCVjMSYztFrjSR062Ot1/SEsTBCDXaEowlfPahUT3v4u5OALx+X9QHr84wC4YvteyScuPQ3zNh1alZ0Vlhe59cxsj/vFxooUs6eeiuSmN+/nm+PdwRfZIQoqWusheiRNhdtoMYTyTf49vP2xhErVs235wxlnwITxcfz03jPMXZpHrT6TuHgVt90mlMYvPg6b3BmKCQnivk4+2b81RdagODbGP8Vg/Y3Uljdy00v6jqDcIt0rmOwRSJLE26sgMriZEyds4dzpW8hLnNjpbyW3e48rgmxwWaGrS0Xs+I5/bq+dzNolF/LbzpOosYzkiSckjukZxwTg1rtjeOHZtzBU3wusQlp8OzFT/gPpXdIV3bYRpt3f4XDA3sYxnOWnUOSIkRpcMmzfDkr5HKTmDRAUL/6odJgr1pGjUyNzE1de2f1YtRqOOTaYvQ2jiY/bQHjjGqqrRb/qT+GVkJWOY6dKqJ3szWAohM13gcuMXZvLwz/PosWa7LfwU0qqeKlqPBSh3lB3Lu8vyKNVSUVRnPibWh93QgT/3fgM7/zaaS0Q9IoYd6uqzmHLFolTT/XvjX6gMG4cfDtkBo8uOAHtEjU2myhE6C+jKC4Ovv++U7HpD5Mnw+3fnkLJV0dxhtnJOETgSSs3Q/3vkHwSGIvBWCjsoQx7ARUc+U7nSXa/LCxMZBv2mnWUlGl56ffnGTwmlTvu8NwXhoXBhRcKBf/dd8PKPZNICt7BCWNWERzUKFRq1jF+fR4PNNLSIEZfiizL1OgzGXuQipMBtNgzCZfKqZeOZT+4gh6YNk38mbPkGhq0M7j94kWoGxehs+zGUbsOx5Z1zCvQ893Wf9PSAtPygvj3ES24FA11hgySIyuIi2kizrgIXd0iSJiCrI3l7vduonrv6aQNyvKo0Pvn5Ym88czLTHJcTWvROrT6dTRESZB3HampEBF/DNK0X0WDMVfh0hdhaSjG2VLI3pIagjQWzrrE99iqUgk/2XvugSVrUliy5hokrmJQ4haOy/uRkcmr2Np4OtMCcOfSJE/mxxVXYrGHs2iXyO7JyIATT5Q46aT9I3Da4XQ62bJlM089NZb/+z8Nqc4fqNuxjBDDMupqYU3ZSYybPtpjP3TGGfDFF1reWv4gj4RficEWRWyWf/Zr8LAQ7nvnc1KiyjHaIjHZIzDbIzDZRUZgaGhgxG1iRgIlzlCCMWNvbSY5rJDY7EFccQVMmpSIJEFFxXS+/no6D/6gEK6qYGTKGko+GUiRO609JTKZEwaJyrQ2Zwi1+kzqDBkYySI6MYaMDImaGtjaxdUhN1fYwkydKtZhTU0iTb6pCRoaYO5cLTd98SUTc5Zx+1kfkxu7HaliDgAOB3z23Hz27Pk3MTHw+uuQlyfxzDNX8+qyHK6f9BCyvBqXfRjvr3mAqDAzD6T7Ub4O1bBtzTjGBq1CcVrpaJ4Og+gXAbMmsGKxWq1Yu1nVAaSOAoXKVZTtSKWpLZzMTHj8cbEuczqdrF8f+DzLG5KTxZzqQKFZGc2GCiujhmfglX7UFwirtCG3iZffaYLk6WJcMpWBy4xLX4aiQKMplZg+6L+mT4cLLoDZsyO4+oW7mTlTzCtXrxbtqh3Dh/d97dwfOPO8GG698nkmxH3K+2sfwOYM5c0L+naurEwnR2j/w5CmMnC+Dxp3Zp0iI299GMOaJcz5pIipV8/sFgTu7Rz+UMQf/tRfffUVt99+O2+99RZHHnkkL7/8MjNmzGDPnj0kepDCrVq1iosuuoinn36a0047jc8//5yzzjqLTZs2MWLEiD/gCf7ceOwxmQ0bKhg9egK1tRpKS+n4o9UKnzF/iIzsTOM+/3zRsYNYoP7f/wkiUK+HuXNF+kxZGTz66RWEaC/ApYrgxRdh0qSe5z3tNCgpmcJna29n89zjuUKOQdqaSkq4gS+L3+bZ19I6OsGJE+HBp9J47P53uf2YG4AKQkJ+xGaDb3ffy4Ov9UzJ0Grh7CvHULEgjyypgLbVzxCVMwHKvsRhMfJt01y+/U6HgorcIXEHlezQRIrVpkNfhaFcVAxu/+OomcftD1/GrgoxeObmRnDDDULFKEni+y8uFurM/HwRDc7IEIugo4+m28AxbpxQgf76K3z5JezaJX4frVZYCPhS/d1xh5iwFBXB9TeFA91XMVLkQO795QuCJMiOKyA7ZjdZsbvJiC6k1pDJjzumUOJOyR00SCySzjwTr2rPQBAZKcjr8HDhX9tXJCZ2FhTrT2i1ghi+8oozOTr7F5IjywkdOLT/L+QFOaOHwSrA1sCPs2v5eHYKFeXHcsn4f7Ki+B9kjBjGk37I4dFjdVSsziMsdI/wuQ1JcVufPA71y/m99QUKCsYRHt5ZiMwTjjkG3ksbwKbKKURErGB37UiemP8i2rAY3n3Nd/ED1z7l4485RpCkCxeKBff+LFqSslN4cc5jnHuuf9L+jDPgo49U/G/BVH5cLfy04+LgxRc7AwepqfDee6IA2OzZQnGzbZuOq6+eRl4eRLefzN6M2QRL9p7DcVf3r3JKksSC54/wY0xM1kKr+9/DPHT0ASIjN5Kb170H6mCefyvXZ3981llC2bd9u1gkT54MaQl6xmjyiHXW4qreSmMjfLP1Rq6dmdRNVb9v2/KH1DSJ6x4+gZGrBGFeWQkPPNC5XacTaeeXXSaKtgSK0y6bwAt3PEK0vJGoMCODR0QyahSMHi3+NhhEgb8ffojl2xXT+XbFdDIyOrNWTKYMHJbfsVtsOGxW1NhISbSSnGglOd5GtDOJJDP88gs8+6wap/NOcnPh03d8E4KSBHfcHcrzz72IvvgJpjAXacVjRE9shVy3VHbDTGhag8tt69fMeL9tb/Bg0T+2tIChfAuRxoXdtjc0wOaqY5h2cqzHhfsJJ8DPrx/JiNQNyA3raKs+kvgwLelpSYB3yW16po71xhQSwqswVW0nrOghcJkhZhwF2udpMkeSmupfIdR+TzU1buGuqRh0cRSURvH006DXj+Loo8sB/yu30FARNL39dpg/XwQRi4uFrROIIEN/etv2BbfcAsuWqUWhJYSHZyDw5/HfFRMnikBMTVMMb38EfCS+mwfOmMXEtLkEBz+FWi0IMbXaTZpJWrdFiPsHa94E+nxcLqHeeXvlgxAzhqefxq+fdV4e/O9/8PjjI3ju11l8syWfc8d/gtmsIi5v3AHzBg8U6emQULsbgDZrYq9SSvcXX5a8j7V6I1PPO5a+h+M84667hKhg+cZMlm+8AriCxPBKjshYzMSs35i7/nia3ULfzVXHYWAQZs1gLDYdFWU2cuN2MjhhK1PG7CUhNYP8XYLoCAnJ4u2HPAcNJAmuvXMwL93/DJOjn2Rz5UB+KxjOVre9ZViYmqQkkY3Y1paB0ZgBHNdxfFycWPP4w/Tp8PHHsGULFBZCYaGK4uJxvL1qXMf2QDDhCBUvvnQjwcFifDnxRNGH9vc6xeVyERoqBDdXXXkuC3YWcqLrW6wOHfMLb+b/27vvsKiu9A/g3ztDZygiXUFUUDEKdtQkatRYY1mNGCsal8QaS0wxa41JzJq4pmwsyRpbys9N1mjU1awx0VjQSLFFRcGCShMVEBCBuef3xw0jIx25DIzfz/PwKGcuw/vOfTlz75lzz/1yack/p9UqV4nNmtUK83dtQp7eBpNfLf/y5cBAIN/CE2eSlGv3HR2Bpi2U4/nGjYHOnctZPu5PzvW02HR6BSzzr0Hy7o2FHzqiTRvjbXx8lD528mQJO3f6YssWX1xNU/oYnQ6wsfdDTO5rsLcH8vTA9bvK+xAA3LgJ/PHHg1x79lTOf9u2fbAPPDyKH4uOGwcsXarBkSM9MHJldwx++gTmDN0E7f1reO/HKdgd0xPu7sps0sJJD/PmAStX9sLbuxuiW9Mfce7Ay4iM06BNm/I/APP3B+ZGzsO55L14uXcbeBVeJGfriZj7b+D/DrrArdUz5b+gAH7NXAm3zHWQn5iP9uVvjk7d3PH++2EYNkyphaL7rbLHWaZwXRqOTQeH49VOQBtAuVm60CvLFjk0U5YqvPINABlwbI5EaSC+/NIFsvw+fHwAnwYF8PNIgJR9CVtiEnEhowdCq3jLlFmzlD7jwgXg7bcftNvaKpPjOndWzoFMycoKGD6xBd54411DW1UGqgGgoY8FmspRsNPfUZYocfrzw4W4z3En9ldk37NEVEIPjC7hg/m6UFtqkoSo6G3t1RESEoKOHTvin//8JwBAlmX4+PhgxowZePPNN4ttP3LkSGRnZ2Pnzp2Gts6dO6NNmzZYs2ZNub8vMzMTTk5OyMjIgGNVr1WtQwoKChAZGYkOHTo80qcTY8cqMz0BZUbE7NlA6xKWhBECiIkBvv9eORF5/fWy1+yUZWWb/fuV77WafDzVIQ1LlntBV8JVc9HRwMI30jCz61Q0cLqE3y4Nhu+AhShrwvWyeecx2G08HHQynJ2V9XBT7+jw/s+rcPl2S8Mg5sOXbKtp08YCHN/xM6y093Ev377Ilw45eTrcuecGHx8JL7+sdNbVcQIhhDLQsWePMpBekUH7S5ceDM61aqXs81atlMsgbW0LcPx4JBo16oDYWAucPasc6MTGKgNiHTooJ2bt21e9cy9JQoJymUt5M6RM6dNPgc2b9BBCwmerNCjjAoJqde8esGvJVHg5XMac7T9CL1vCzk4Z7BkxouTZsQ9LSQHWv7UKvvXi8JdZL8C2YSflRklxnyM9Q4NXv/kYJ290wcyZD25SUZojR4DX5uSgldcxnErsCndPa3z2Wdmz5Errs/LylKVZQkLKPyEvS16ecllg584V+/T6r39VDqgA5cRp5crSl9f43/+UWQeFgx2AMjDh76/kvO0HPSBpsX+/aQZZ1ZB64RRu7XoRFpaA/+QjkCyqPiWg8HWryADohQvK+9LDNxfyczmHAYGbcS9fh+uOb+K9ZRrDidajvh/m5QGbNyuD8/fvKyfy06ej8jdZ/FNWlnK5WOPGpS+tcOeO8oHAli3KB6RV1bOnMku8onUnBPDBBwK48BkGttyEVO/lcAzogRs3ANe0lWgof4/Y5JaIutwWGv8JeH1e+U88YYLygeOTgZFo4R2LenZpcLFPg4NVGm4m38fm6Dfxyfpm8Cph+oteD7w08ixe7ToeDf3sEZscCPvcSCTWX4jeYWXfvGT7glfgXy8Cui5L0KixDZDyK1LcF2DDJit8953yPrVqVdmx378PfDL9EwR5ReDpUYNgl7QB2fnOCPv0M1xJdkOrVjImTIjEU0+1q3RtCaG8Lj/8oKwBOnSoujONKmrDBuCf/1T62z17qvd9vFBmpvI+ceSI0i/fvq3ciG5Em89ga5GNO/fccC09ANfS/ZGSHYDbBQG4fb+JYS3HZi5HUc82CRZyBuKSG+Ha/WewYUPllkASQrkk9x//eDAx4e23UeZxZU3YuBHoeKsDZFlGRPI4hH84u8Z+9/z5yj5fuFD5ALO6/fe/ylJJzs5K//nwl5ubMljq7Pzg+FcI5Rxg0ybg8OEHz1W4Hu+bb6Lc9TCzspRJDJcuKX1vYqJSc6VxcFDqfvLkqg+cyLLye27cUAYuK3PqWdJqVdXl4ffD69eBF18UCND9jLQcTwyb2BojR5Yd25QpD5bM27KlYh+qJyYq9/jw83u0K4Ru3QJycio3GUSWyz6fundP+XD22jXlS6tV3ucrs/SUEMqVBytXKvHZ2irvu7duKbPoV68uPqtYCGDNGmDdugdtoaHK+XF5Ro1SlssDlOMIZ2c8ONdNVa4KmzKl/OdJTgZ++UV5/6nocUJBQfEPPatr3EFtK1cqH46PGQPMnlkA/NLbsDwGIAH4c3jMoycic+bi9QXuZR6DNW2q/A1UVUKCMoBrZaWco3fpotzU0ZSzbB8mhFJPp04p3//vf8o5TmUdPgzc3PlXBPmcQJOh7wLefYGkvSiImoe4eGDNocXoNuq5Ystk1JXaqqzKjE2aNOu8vDxERUVh3rx5hjaNRoPevXsjIiKixJ+JiIjAnDlzjNr69u2Lbdu2lbj9/fv3cb9wQVcoLw6g7PyCP4/QNBoNNBoNZFmGXOQssLBdr9ej6Ph2ae1arRaSJBmet2g7UPxTgtLaLSwsIIQwapckCVqttliMpbUXzanoc1U1p+ef12PbNgkvvCDQq5eAhYUWQpScU9u2QFDQg3alYy89p8WLZYSHAxcuSOjYSYu3/+4Oe3uUmFO7dhosed8Fb879Eg11J2Hp2QnhfWUApec06uUAbHlnIga1XIe4JF/8dP4FHLr8HBr72+DViXr06SPg5AQIUXP7qVdv4EhEH6RnS7C0l2ChFXDWCtTXKp10t24CgwZJkCQ9ZFkYBicetfZatlS+tNqS99/DOfn6Anv2SH9ub5yTXq+HJAGurjLc3QsMl96W9PdUUFB9f08+Pto/n9M0f08V6SPCwzU4elSLxEQBf/8Cw8mg2n2Era0WkXnv4Nqhy/D1AYY9r8fAgYCjo5JTQUH5Obm5aXDk5lR8f1Kg4WA9npS3QXNxLe7ckfDu9rdw8kZn9O8vIzRURkFB2Tl17gz4N7dB5JkeCAgQ+OijAnh4lF97hf8W3R8ajYxOnfDnz1Z9P2k0wnAFgCyXX3sjR0qIidGgZ0+BJUsk2NqWXns9e+rRpAmwdq0GsbFAYqIGt28LHDsGHDsGABq0aiXDzq54jNVVezX9/uTSOBC57abD1sUXQmMBfZHnr2xO1tYVz6lJE2DDBi0OHZKQnKxHaqqElBQgNbUFVh1+F15ewPr1euj1D55fCFHs76aknEqLXaMBJkyQMGSIFhkZMho1Kt6/VWY/6XQaNG2qtJfWRzg4KAfKY8dqsWMHcPKkgI2NMMyw1uk0sLMD9HoZSUlAYqKExEQgKUmDzEwBSQImT5YxfryARiMBqHi/9+qrGqxcOR1v7eqH6+lNUXgiY2sZjjz9K5CFBkIAy0fLKCgoKLf2nnxSj9OnNTh0tj0OnW1vOGEv3PQvf5Hh5lZQ6ntx03YtkJ3niKz0TLhpIpEDwNZFGeUtK6dfbi7Asp8c8KLOEtqzEg4c6ImzZ4UhxsaNZciyVGbtWVjo0dAlCT7OFyGdX4E8rYTjp12RnGaDgAAZH36Yj4sX9aXWWFl/T4BAYKAegYHAW28psVdmP6nVR4SGAklJEvz9NXB2Vuc9195eQr9+WvTpo7w/XbgAREQMx+e/D0FaSi5S7zgip8gN2pWaUU6qhQCuXQsxtOt0Elav1sPFpfS/p9JiHzZMuQpk/nwtsrOBTp30KPojpjiO8PLS4Ju9M9G10XacyhxryKEmzjUmTZLh4yPQvbvyWlZ37fXtqxx7F42xpJwkyfh4IThYufHm1atafPWVMgBcUAB06CAweLAMoOz9ZGMjY8IE4/acHBmJiTJSU5VJAfXqaVCvngY6nQxJepBTaccL5f09yXKBYUAaqNlzjbL2U9F49Xo9PD0FVqwAZszohQYNJAwfjnL7iGnTgIkTtXB0VJYPqkgf4e4OeHs/ek716mlQv3719nuWlg9m/xaNvWhZVmQ/DRqkTFpZulSDmBgN7t0T8PMT+OQTGe7uJR/Dhocrx0CrVmkACAQEyCgoEOXm9PzzGqxcKXDvnvLhcmpq4cxhCUII+Pk9eJ6y+ggPDyA0VGkvzLe82gNkw7ZF20sad6htx7AeHjKE0GDrVsClnozRvRfC4tZ+iJuHIOVnQNh6Q27xGr7a0w2ffSYgywItWwo8+aRAYqIGN25ISEgQhg9+WrYs/ziirJy8vR8sufgotVfSfqrO96fp04HwcC3s7QEnJ6lK+8nLCziV6YvmeScgZ12BlHsLOL0YqanAzjNjkGo5AEOHolhOhf9Xzmerfq5h6tp7eD9VhkkHbtPS0qDX6+Hx0NQ5Dw8PnC+c3vmQ5OTkErdPTk4ucftly5ZhyZIlxdpjYmJg/+c1XW5ubmjatCkuX76Mm4XXSQBo2LAhGjZsiAsXLiAjI8PQ3qRJE7i7u+PMmTO4V2RqVYsWLeDs7IyYmBijnRIUFAQrKytEFn4s+acOHTogLy8Ppwo/uoCyszt27IiMjAyj18DW1hbBwcFIS0vDpUuXDO1OTk4IDAxEYmIirl+/bmgvzOnatWuQZRkxMTGPlFODBtGYPFnJKSqqenPKyUnDSy9dwcWLdmjZMhsJCY5l5uTsfBmTXr6LiIgG6Nv3JJKSPMvMKSPjDO649sHkb59FgYULhv7FBl+9Z4e0tOPQ6/WGTyprej9NmPAgp/j4S8Vqz8KiIc6dqz21d/Nm8ZyCgoKQkpKCGzduFNtP5vj3VJmc1q93x8mTp3HhwoOzzprI6eUZBYiM1KBhwyhIEnDjhhMcHSuXU/v2DXHpUi6i9/6Etm3+hox0DTYdfAkH4oeiW7dE9O+fgD+7lHJzGj06BtHRTggJSceVKzJcXcvPqbDPqon9VF7tOTjo8cEHGtjZyQCCoNeXv5+GD1dyatWqI06evIuDB5Nw/bo1bt2yQv/+WQCamTSnaq8957bwbR2M1NTUGs/ppZeccfx4tFFO/v5B0OmscOKEcU7t27dHs2bNDO+HZeZUTu3l5iYiMrJm99Pzz1vBz6/0/VQ4o74wpxs3MnDhwgXY2sqIiqpav/fqq02Rne2EGzsyodPp4eqah6ZNbdGypRYFBQlwcroFe/v7iIwsP6fg4Gi89ZYFsrK0yM3VwsurKfLzLXHmjBLLU0/dQWSkXGrtPftsR/z48TjI0GNs+88gyxLS/1wktqyc7skCGXdtsXJlASwsLGBtbYO8vPvw88tE+/YZ6NjxDhITvcvdT+l5DpBlGenpebic0hRv7/4nrO3zMXFiFOLi9JBlGXl5eZAkqda/P1W09p55Rqm9ivR71ZVT69ZAz56Fx0bxSE6+iXv3tMjJ0cDRsQFcXDxx6dJlZGU9uHFWgwYN0KFDfVy6dAaRkVXv977/vgOysvIQF2f6/WRvH4A958dia/QwhITcMcRaE8cR9vZpCA6+hHPnqjen6nx/eu21PHTqdBZ//KFDu3aZOHlSqtJ+un07EWlp16HRKOuQCuGGevWaIj6+Fr/nVlPtubu7Q6vV4vz584acFi/WICDADxYW7jh5svycZs2yQ+vWAQAsa0VOtWk/TZ1qi7i4YERHZ+OZZ84hIUGPhITSc+re3Q3u7k2xa1c6nJ0vIjJSLjen4cPd4e9/CunpucjKssDdu1q4uDSFXu+AS5cuwMnpjmFWdE3UXkpKitG4Q23dTy4ucXB3b4QrV2yx/AMNtv7QE+PHt4W3Vz9Yy6m4m++GTX9rgZMngby8fHTpkoKxYxNhaSnw7LMPzt2vXbuF9HQLuLvnITGx9tSemn9PL7+sQ5Mm3tBqXSrURzycU0EBcDXNE/rGMrJTL0Pb0BYRaeNxJfocvjw0CfMXnIVG0wrp6cVzCgoKwp07d3D58uVqzcmU+6lxJdZ+NOlSCYmJiWjQoAGOHDmCLkVu1fn666/jwIEDOKZMUTJiZWWFjRs3YlThrWIBrFq1CkuWLEFKSkqx7Uuacevj44Nbt24ZpiPXlRH5qnxyonxao8yEkSTJLHKqyn6SZYEbN5TLUywtzSMnU++noo+XFGNdzMkc91NVctq1S4PPV17GJyNGwNYW2BXdB2uOLEX4S1q8+KIehkuIVMipoKDgzxm2SnzcT8ypunIqfI7C2MwhJ3PcT6W1S5IF+vUT0ObdwD+GDEW+bIWGEw6gvqtlmTnt3CmwZIkGFhbKsgg9e0p4+mkZzs6Vy2nTezsQYv8O0u+54e3//QvWzg2wZk0B3NyUmSGyLMPS0hKSJD3W+4k5VU9O2dka9OqlHF+NGycwffqDWXN1NSdz3E91NafCqwMsLS0NsyTrek5lxc6caian0sYdamNOsgzs3i1h1SoNbt1SruRo00Zg9GgZq1drcPmyBAsLCXPnyhg61Lz2k6lrb+HkQxjbci48AprDecBXCAsTOHdOwoABAosWySXmVDSHor+ztuRUXntp+yk7O7tuLJXg6uoKrVZbbMA1JSUFnqUsGufp6Vmp7a2trWFtbV2s3cLCotj6GIU77GGFO6Ci7aWtu1GZdkmSSmwvLcbS2oUQiImJKbYeSF3OqSr7Sastvr5nXc+pojFWtr2iOZW31kxdzKmq7eaWU/v2wKi2n+DePeDqzYb44uhizHlVC+XzMnVzkiTJ0GcVvn7cT8yprPaKxl5QUICoqKgS+6y6mlNZ7eaYU8+eEs4fVq7wuHPPG0H1LcuN/bnngBYtlA9uH6ydr/nzq2Kxa7Va3HUYgI3H8nEi8Slo7b2wejXg5aXEWHi348Laetz3E3N69JycnAAHBxnJyTnw9LQt9rvrYk7ltTOnmsuprPfDQnUtp6LMZT8VVRdyKm3cobbmNGSIcvO/TZuATZsknDgh4cQJJU43N+WmtK1bl3y8UFtzqkiMpq49S2dllqkmKxa7dgLnz2tgbw/MmiXBwkJTYk5VHXeoC/upoqrhlkdVZ2Vlhfbt22Pfvn2GNlmWsW/fPqMZuEV16dLFaHsA2Lt3b6nbExFR5Xh5AQeT/opdZ8Ow5H+bMH+hFYpc5EBEZBK9ewOBHlEAABeHu6jI8mAajbJ+aUk3PK0Mn0ZW2HdxBIS1V4k3mCGqbk2aKP/6+Jjs4kgiIrNmZ6fcgHDrVuVmdADQti3w1Vcl34idHp2jZwNk5zkiI8cRX6xRliV46SXlppRUOpPOuAWAOXPmICwsDB06dECnTp3w0UcfITs7GxMnTgQAjB8/Hg0aNMCyZcsAADNnzkT37t2xYsUKDBw4EP/3f/+HyMhIfP7556ZMg4jIbEgS0KHXE/jmmyewcKmyziERkam1awekNzoKAEgXLWv0d/fvD9y/Dzz1FNCwYY3+anpMvfmmjK1bb6Bjx6amDoWIyKx5egLvvAO89hrg6IgKfTBMVePja4Gla9bBUpuPpDt28PMDRo40dVS1n8kHbkeOHImbN29i4cKFSE5ORps2bbBnzx7DDcgSEhKMpjd37doV33zzDebPn4+33noLAQEB2LZtG1q1amWqFIiIzM6kScCLL/LAhYhqD60WOGv7CY6f3gLPkBHoVoO/28YGeOGFGvyF9Nhr3Bjo3v0OSrjKk4iIVODkZOoIzJ+vL5CY+eCmXHPnApaWJgyojjDpzclMITMzs8ILAJuDwkWQCxdWJqourC1SA+uK1MLaMg85OcDu3UDfvo++/EF1YW2RGlhXpBbWFqmBdUUVkZgIDB6s/L9HD+DDD8v/GXOtrcqMTfIz3MdAXl6eqUMgM8XaIjWwrkgtrK26z84OGD689gzaFmJtkRpYV6QW1hapgXVF5fH0BNzdleO5OXMq/nOPe21x4NbM6fV6nDp1Cnq93tShkJlhbZEaWFekFtYWqYW1RWpgXZFaWFukBtYVVYRGA2zeDHz3XcVv9MraqgVr3BIREREREREREZF5q1/f1BHUPZxxS0RERERERERERFTLcOD2MaDVak0dApkp1hapgXVFamFtkVpYW6QG1hWphbVFamBdkVoe99qShBDC1EHUpMrcuY2IiIiIiIiIiIioulRmbJIzbs2cEALp6el4zMbnqQawtkgNrCtSC2uL1MLaIjWwrkgtrC1SA+uK1MLa4sCt2dPr9Th//vxjfQc+Ugdri9TAuiK1sLZILawtUgPritTC2iI1sK5ILawtDtwSERERERERERER1TocuCUiIiIiIiIiIiKqZThwa+YkSYKtrS0kSTJ1KGRmWFukBtYVqYW1RWphbZEaWFekFtYWqYF1RWphbQGSeMxW+K3MnduIiIiIiIiIiIiIqktlxiY549bMybKM1NRUyLJs6lDIzLC2SA2sK1ILa4vUwtoiNbCuSC2sLVID64rUwtriwK3Zk2UZly5deqyLnNTB2iI1sK5ILawtUgtri9TAuiK1sLZIDawrUgtriwO3RERERERERERERLUOB26JiIiIiIiIiIiIahkO3Jo5SZLg5OT0WN+Bj9TB2iI1sK5ILawtUgtri9TAuiK1sLZIDawrUgtrC5CEEMLUQdSkyty5jYiIiIiIiIiIiKi6VGZskjNuzZwsy7h+/fpjvZAzqYO1RWpgXZFaWFukFtYWqYF1RWphbZEaWFekFtYWB27NHouc1MLaIjWwrkgtrC1SC2uL1MC6IrWwtkgNrCtSC2uLA7dEREREREREREREtQ4HbomIiIiIiIiIiIhqGQ7cmjmNRgM3NzdoNNzVVL1YW6QG1hWphbVFamFtkRpYV6QW1hapgXVFamFtAZIQQpg6iJpUmTu3EREREREREREREVWXyoxNPr5D1o8JWZYRHx//WC/kTOpgbZEaWFekFtYWqYW1RWpgXZFaWFukBtYVqYW1xYFbsyfLMm7evPlYFzmpg7VFamBdkVpYW6QW1hapgXVFamFtkRpYV6QW1hYHbomIiIiIiIiIiIhqHQtTB1DTCpf0zczMNHEkNaOgoADZ2dnIzMyEhcVjt7tJRawtUgPritTC2iK1sLZIDawrUgtri9TAuiK1mGttFY5JVuS2Y+aTdQXdvXsXAODj42PiSIiIiIiIiIiIiOhxdPfuXTg5OZW5jSQqMrxrRmRZRmJiIhwcHCBJkqnDUV1mZiZ8fHxw7dq1cu9UR1QZrC1SA+uK1MLaIrWwtkgNrCtSC2uL1MC6IrWYa20JIXD37l14e3tDoyl7FdvHbsatRqNBw4YNTR1GjXN0dDSrIqfag7VFamBdkVpYW6QW1hapgXVFamFtkRpYV6QWc6yt8mbaFuLNyYiIiIiIiIiIiIhqGQ7cEhEREREREREREdUyHLg1c9bW1li0aBGsra1NHQqZGdYWqYF1RWphbZFaWFukBtYVqYW1RWpgXZFaWFuP4c3JiIiIiIiIiIiIiGo7zrglIiIiIiIiIiIiqmU4cEtERERERERERERUy3DgloiIiIiIiIiIiKiW4cCtmfvss8/g5+cHGxsbhISE4Pfffzd1SFSHLFu2DB07doSDgwPc3d0xdOhQxMbGGm3To0cPSJJk9DV58mQTRUx1xeLFi4vVTYsWLQyP5+bmYtq0aahfvz50Oh2GDx+OlJQUE0ZMdYGfn1+xupIkCdOmTQPA/ooq7rfffsOgQYPg7e0NSZKwbds2o8eFEFi4cCG8vLxga2uL3r174+LFi0bb3L59G2PGjIGjoyOcnZ0xadIkZGVl1WAWVBuVVVv5+fl444030Lp1a9jb28Pb2xvjx49HYmKi0XOU1Ne9//77NZwJ1Sbl9VkTJkwoVjP9+vUz2oZ9FpWkvNoq6bhLkiR88MEHhm3YZ9HDKjLOUJHzwYSEBAwcOBB2dnZwd3fHa6+9hoKCgppMpUZw4NaMbdmyBXPmzMGiRYsQHR2N4OBg9O3bF6mpqaYOjeqIAwcOYNq0aTh69Cj27t2L/Px89OnTB9nZ2UbbhYeHIykpyfC1fPlyE0VMdckTTzxhVDeHDh0yPDZ79mzs2LED3333HQ4cOIDExEQMGzbMhNFSXXD8+HGjmtq7dy8AYMSIEYZt2F9RRWRnZyM4OBifffZZiY8vX74cn3zyCdasWYNjx47B3t4effv2RW5urmGbMWPG4I8//sDevXuxc+dO/Pbbb3jppZdqKgWqpcqqrZycHERHR2PBggWIjo7G1q1bERsbi8GDBxfb9u233zbqy2bMmFET4VMtVV6fBQD9+vUzqplvv/3W6HH2WVSS8mqraE0lJSXhyy+/hCRJGD58uNF27LOoqIqMM5R3PqjX6zFw4EDk5eXhyJEj2LhxIzZs2ICFCxeaIiV1CTJbnTp1EtOmTTN8r9frhbe3t1i2bJkJo6K6LDU1VQAQBw4cMLR1795dzJw503RBUZ20aNEiERwcXOJj6enpwtLSUnz33XeGtnPnzgkAIiIiooYiJHMwc+ZM0bRpUyHLshCC/RVVDQDxww8/GL6XZVl4enqKDz74wNCWnp4urK2txbfffiuEEOLs2bMCgDh+/Lhhm927dwtJksSNGzdqLHaq3R6urZL8/vvvAoC4evWqoa1Ro0Zi5cqV6gZHdVZJdRUWFiaGDBlS6s+wz6KKqEifNWTIENGzZ0+jNvZZVJ6Hxxkqcj743//+V2g0GpGcnGzYZvXq1cLR0VHcv3+/ZhNQGWfcmqm8vDxERUWhd+/ehjaNRoPevXsjIiLChJFRXZaRkQEAcHFxMWr/+uuv4erqilatWmHevHnIyckxRXhUx1y8eBHe3t5o0qQJxowZg4SEBABAVFQU8vPzjfqvFi1awNfXl/0XVVheXh6++uorvPjii5AkydDO/ooe1eXLl5GcnGzURzk5OSEkJMTQR0VERMDZ2RkdOnQwbNO7d29oNBocO3asxmOmuisjIwOSJMHZ2dmo/f3330f9+vXRtm1bfPDBB2Z5aShVr/3798Pd3R3NmzfHlClTcOvWLcNj7LOoOqSkpGDXrl2YNGlSscfYZ1FZHh5nqMj5YEREBFq3bg0PDw/DNn379kVmZib++OOPGoxefRamDoDUkZaWBr1eb1TEAODh4YHz58+bKCqqy2RZxqxZs/Dkk0+iVatWhvbRo0ejUaNG8Pb2xqlTp/DGG28gNjYWW7duNWG0VNuFhIRgw4YNaN68OZKSkrBkyRI8/fTTOHPmDJKTk2FlZVXsJNXDwwPJycmmCZjqnG3btiE9PR0TJkwwtLG/oupQ2A+VdIxV+FhycjLc3d2NHrewsICLiwv7Maqw3NxcvPHGGxg1ahQcHR0N7a+88gratWsHFxcXHDlyBPPmzUNSUhL+8Y9/mDBaqs369euHYcOGoXHjxoiPj8dbb72F/v37IyIiAlqtln0WVYuNGzfCwcGh2PJm7LOoLCWNM1TkfDA5ObnEY7HCx8wJB26JqEKmTZuGM2fOGK1DCsBo7avWrVvDy8sLvXr1Qnx8PJo2bVrTYVId0b9/f8P/g4KCEBISgkaNGuHf//43bG1tTRgZmYt169ahf//+8Pb2NrSxvyKiuiI/Px+hoaEQQmD16tVGj82ZM8fw/6CgIFhZWeHll1/GsmXLYG1tXdOhUh3wwgsvGP7funVrBAUFoWnTpti/fz969eplwsjInHz55ZcYM2YMbGxsjNrZZ1FZShtnoAe4VIKZcnV1hVarLXbXvZSUFHh6epooKqqrpk+fjp07d+LXX39Fw4YNy9w2JCQEABAXF1cToZGZcHZ2RrNmzRAXFwdPT0/k5eUhPT3daBv2X1RRV69exc8//4y//vWvZW7H/oqqorAfKusYy9PTs9jNYAsKCnD79m32Y1SuwkHbq1evYu/evUazbUsSEhKCgoICXLlypWYCpDqvSZMmcHV1Nbz/sc+iR3Xw4EHExsaWe+wFsM+iB0obZ6jI+aCnp2eJx2KFj5kTDtyaKSsrK7Rv3x779u0ztMmyjH379qFLly4mjIzqEiEEpk+fjh9++AG//PILGjduXO7PnDhxAgDg5eWlcnRkTrKyshAfHw8vLy+0b98elpaWRv1XbGwsEhIS2H9Rhaxfvx7u7u4YOHBgmduxv6KqaNy4MTw9PY36qMzMTBw7dszQR3Xp0gXp6emIiooybPPLL79AlmXDBwZEJSkctL148SJ+/vln1K9fv9yfOXHiBDQaTbFL3YlKc/36ddy6dcvw/sc+ix7VunXr0L59ewQHB5e7LfssKm+coSLng126dMHp06eNPnQq/LCzZcuWNZNIDeFSCWZszpw5CAsLQ4cOHdCpUyd89NFHyM7OxsSJE00dGtUR06ZNwzfffIPt27fDwcHBsFaMk5MTbG1tER8fj2+++QYDBgxA/fr1cerUKcyePRvdunVDUFCQiaOn2mzu3LkYNGgQGjVqhMTERCxatAharRajRo2Ck5MTJk2ahDlz5sDFxQWOjo6YMWMGunTpgs6dO5s6dKrlZFnG+vXrERYWBguLB4c57K+oMrKysoxmYl++fBknTpyAi4sLfH19MWvWLLzzzjsICAhA48aNsWDBAnh7e2Po0KEAgMDAQPTr1w/h4eFYs2YN8vPzMX36dLzwwgtGy3fQ46es2vLy8sLzzz+P6Oho7Ny5E3q93nDs5eLiAisrK0RERODYsWN45pln4ODggIiICMyePRtjx45FvXr1TJUWmVhZdeXi4oIlS5Zg+PDh8PT0RHx8PF5//XX4+/ujb9++ANhnUenKez8ElA8vv/vuO6xYsaLYz7PPopKUN85QkfPBPn36oGXLlhg3bhyWL1+O5ORkzJ8/H9OmTTO/JTgEmbVPP/1U+Pr6CisrK9GpUydx9OhRU4dEdQiAEr/Wr18vhBAiISFBdOvWTbi4uAhra2vh7+8vXnvtNZGRkWHawKnWGzlypPDy8hJWVlaiQYMGYuTIkSIuLs7w+L1798TUqVNFvXr1hJ2dnfjLX/4ikpKSTBgx1RU//fSTACBiY2ON2tlfUWX8+uuvJb7/hYWFCSGEkGVZLFiwQHh4eAhra2vRq1evYjV369YtMWrUKKHT6YSjo6OYOHGiuHv3rgmyodqkrNq6fPlyqcdev/76qxBCiKioKBESEiKcnJyEjY2NCAwMFO+9957Izc01bWJkUmXVVU5OjujTp49wc3MTlpaWolGjRiI8PFwkJycbPQf7LCpJee+HQgixdu1aYWtrK9LT04v9PPssKkl54wxCVOx88MqVK6J///7C1tZWuLq6ildffVXk5+fXcDbqk4QQQsVxYSIiIiIiIiIiIiKqJK5xS0RERERERERERFTLcOCWiIiIiIiIiIiIqJbhwC0RERERERERERFRLcOBWyIiIiIiIiIiIqJahgO3RERERERERERERLUMB26JiIiIiIiIiIiIahkO3BIRERERERERERHVMhy4JSIiIiIiIiIiIqplOHBLRERE9BiaMGEChg4dauowqBrUln155coVSJKEEydOmDoUIiIiIrPAgVsiIiIiMyNJUplfixcvxscff4wNGzaYJL4vvvgCwcHB0Ol0cHZ2Rtu2bbFs2TLD46YYiDxw4AB8fHxKfby8mOu6Hj16YNasWaYOg4iIiIiKsDB1AERERERUvZKSkgz/37JlCxYuXIjY2FhDm06ng06nM0Vo+PLLLzFr1ix88skn6N69O+7fv49Tp07hzJkzJomn0Pbt2zFo0KASH6utMRMRERGReeOMWyIiIiIz4+npafhycnKCJElGbTqdrtis1h49emDGjBmYNWsW6tWrBw8PD3zxxRfIzs7GxIkT4eDgAH9/f+zevdvod505cwb9+/eHTqeDh4cHxo0bh7S0tFJj+/HHHxEaGopJkybB398fTzzxBEaNGoV3330XALB48WJs3LgR27dvN8wQ3r9/PwDg2rVrCA0NhbOzM1xcXDBkyBBcuXLF8NyFOS1ZsgRubm5wdHTE5MmTkZeXV+5r9uOPP2Lw4MFVihkAjh8/jmeffRaurq5wcnJC9+7dER0dbfQ8kiRh7dq1eO6552BnZ4fAwEBEREQgLi4OPXr0gL29Pbp27Yr4+HjDzyxevBht2rTB2rVr4ePjAzs7O4SGhiIjI6PUXGRZxrJly9C4cWPY2toiODgY33//fbmvQVF+fn5477338OKLL8LBwQG+vr74/PPPjbb5/fff0bZtW9jY2KBDhw6IiYkp9jxl1cf+/fthZWWFgwcPGrZfvnw53N3dkZKSUql4iYiIiMwRB26JiIiICACwceNGuLq64vfff8eMGTMwZcoUjBgxAl27dkV0dDT69OmDcePGIScnBwCQnp6Onj17om3btoiMjMSePXuQkpKC0NDQUn+Hp6cnjh49iqtXr5b4+Ny5cxEaGop+/fohKSkJSUlJ6Nq1K/Lz89G3b184ODjg4MGDOHz4MHQ6Hfr162c0MLtv3z6cO3cO+/fvx7fffoutW7diyZIlZeb9xx9/IDU1FT179qxSzABw9+5dhIWF4dChQzh69CgCAgIwYMAA3L1712i7pUuXYvz48Thx4gRatGiB0aNH4+WXX8a8efMQGRkJIQSmT59u9DNxcXH497//jR07dmDPnj2IiYnB1KlTS41l2bJl2LRpE9asWYM//vgDs2fPxtixY3HgwIEyX4eHrVixwjAgO3XqVEyZMsUwczsrKwvPPfccWrZsiaioKCxevBhz5841+vny6qNweYZx48YhIyMDMTExWLBgAf71r3/Bw8OjUrESERERmSVBRERERGZr/fr1wsnJqVh7WFiYGDJkiOH77t27i6eeesrwfUFBgbC3txfjxo0ztCUlJQkAIiIiQgghxNKlS0WfPn2MnvfatWsCgIiNjS0xnsTERNG5c2cBQDRr1kyEhYWJLVu2CL1eX2psQgixefNm0bx5cyHLsqHt/v37wtbWVvz000+Gn3NxcRHZ2dmGbVavXi10Op3R8z/s3XffFc8//3ypj1ck5ofp9Xrh4OAgduzYYWgDIObPn2/4PiIiQgAQ69atM7R9++23wsbGxvD9okWLhFarFdevXze07d69W2g0GpGUlGTIu/D1ys3NFXZ2duLIkSNG8UyaNEmMGjWq1Hi7d+8uZs6cafi+UaNGYuzYsYbvZVkW7u7uYvXq1UIIIdauXSvq168v7t27Z9hm9erVAoCIiYkRQlSsPu7fvy/atGkjQkNDRcuWLUV4eHipMRIRERE9bjjjloiIiIgAAEFBQYb/a7Va1K9fH61btza0Fc6CTE1NBQCcPHkSv/76q2HNXJ1OhxYtWgCA0eX+RXl5eSEiIgKnT5/GzJkzUVBQgLCwMPTr1w+yLJca28mTJxEXFwcHBwfD73JxcUFubq7R7woODoadnZ3h+y5duiArKwvXrl0r9bm3b99e6jIJFY05JSUF4eHhCAgIgJOTExwdHZGVlYWEhASj5yr6Ghe+ng+/xrm5ucjMzDS0+fr6okGDBkY5ybJstG5xobi4OOTk5ODZZ5812i+bNm0qdZ+UpmishcttFO77c+fOISgoCDY2NkZxFVWR+rCyssLXX3+N//znP8jNzcXKlSsrFSMRERGROePNyYiIiIgIAGBpaWn0vSRJRm2SJAGAYbAyKysLgwYNwt///vdiz+Xl5VXm72rVqhVatWqFqVOnYvLkyXj66adx4MABPPPMMyVun5WVhfbt2+Prr78u9pibm1vZiZUhKSkJMTExGDhwYLnblhVzWFgYbt26hY8//hiNGjWCtbU1unTpUmx93ZJez7Je48rKysoCAOzatctosBcArK2tK/VcJdVDZeKqaH0cOXIEAHD79m3cvn0b9vb2lYqTiIiIyFxx4JaIiIiIqqRdu3b4z3/+Az8/P1hYVP2wsmXLlgCA7OxsAMosTL1eX+x3bdmyBe7u7nB0dCz1uU6ePIl79+7B1tYWAHD06FHodDr4+PiUuP2OHTvQtWtXuLi4PFLMhw8fxqpVqzBgwAAAyo3UyrpJW2UkJCQgMTER3t7eAJScNBoNmjdvXmJc1tbWSEhIQPfu3avl95ckMDAQmzdvRm5urmHW7dGjR422qUh9xMfHY/bs2fjiiy+wZcsWhIWF4eeff4ZGwwsDiYiIiHhERERERERVMm3aNNy+fRujRo3C8ePHER8fj59++gkTJ04sNvBaaMqUKVi6dCkOHz6Mq1ev4ujRoxg/fjzc3NwMl9r7+fnh1KlTiI2NRVpaGvLz8zFmzBi4urpiyJAhOHjwIC5fvoz9+/fjlVdewfXr1w3Pn5eXh0mTJuHs2bP473//i0WLFmH69OmlDgT++OOPZS6TUNGYAwICsHnzZpw7dw7Hjh3DmDFjDIPHj8rGxgZhYWE4efIkDh48iFdeeQWhoaHw9PQstq2DgwPmzp2L2bNnY+PGjYiPj0d0dDQ+/fRTbNy4sVriAYDRo0dDkiSEh4cbXusPP/zQaJvy6kOv12Ps2LHo27cvJk6ciPXr1+PUqVNYsWJFtcVJREREVJdx4JaIiIiIqsTb2xuHDx+GXq9Hnz590Lp1a8yaNQvOzs6lDpT27t0bR48exYgRI9CsWTMMHz4cNjY22LdvH+rXrw8ACA8PR/PmzdGhQwe4ubnh8OHDsLOzw2+//QZfX18MGzYMgYGBmDRpEnJzc41m4Pbq1QsBAQHo1q0bRo4cicGDB2Px4sUlxpKdnY19+/aVO3BbkZjXrVuHO3fuoF27dhg3bhxeeeUVuLu7V+FVLc7f3x/Dhg3DgAED0KdPHwQFBWHVqlWlbr906VIsWLAAy5YtQ2BgIPr164ddu3ahcePG1RIPAOh0OuzYsQOnT59G27Zt8be//a3Ykgjl1ce7776Lq1evYu3atQCU5RM+//xzzJ8/HydPnqy2WImIiIjqKkkIIUwdBBERERHRo5owYQLS09Oxbdu2Cm2/detWzJ8/H2fPnlU3sEewePFibNu2DSdOnDB1KERERERUwzjjloiIiIgeSzqdrsQbZxERERER1Qa8ORkRERERPZb69Olj6hCIiIiIiErFpRKIiIiIiIiIiIiIahkulUBERERERERERERUy3DgloiIiIiIiIiIiKiW4cAtERERERERERERUS3DgVsiIiIiIiIiIiKiWoYDt0RERERERERERES1DAduiYiIiIiIiIiIiGoZDtwSERERERERERER1TIcuCUiIiIiIiIiIiKqZThwS0RERERERERERFTL/D+IRN4darRBMwAAAABJRU5ErkJggg==\n" }, "metadata": {} } ] }, { "cell_type": "markdown", "source": [ "- Observation: The orange dashed line (predicted values) very closely tracks the blue line (actual values). The model captures the peaks, troughs, and general trends remarkably well within this 200-sample window.\n", "- Interpretation: This is excellent performance for a time series model. It demonstrates that your model is highly effective at capturing the temporal dynamics of your total_emission data. The ability to follow sudden spikes and dips so accurately suggests that the LSTM architecture, combined with your data preprocessing, is working effectively to learn the sequence dependencies." ], "metadata": { "id": "L2uQ6u5ApOdF" } }, { "cell_type": "markdown", "source": [ "Result: The model is very accurate" ], "metadata": { "id": "8pq5HCo3oZxg" } }, { "cell_type": "code", "source": [ "save_path = '/content/drive/MyDrive/AuraClima/Agri_Slider_Model.keras'\n", "model.save(save_path)\n", "print(f\"Model successfully saved to: {save_path}\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "bhyvokhYoS5i", "outputId": "f3f0a8e3-d477-488c-9aa1-e39d4cef1929" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Model successfully saved to: /content/drive/MyDrive/AuraClima/Agri_Slider_Model.keras\n" ] } ] }, { "cell_type": "markdown", "source": [ "____________________________________________________________________________________________________________________________________________" ], "metadata": { "id": "d9mjldgGjF7j" } }, { "cell_type": "markdown", "source": [ "### CO2 Model" ], "metadata": { "id": "bo8JKPk1E1B7" } }, { "cell_type": "code", "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')" ], "metadata": { "id": "0ibbVJCmpsRk", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "69d29998-2546-46a0-a90c-4d9691322f76" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Mounted at /content/drive\n" ] } ] }, { "cell_type": "code", "source": [ "import pandas as pd\n", "file_path = '/content/drive/My Drive/AuraClima/CO2_Emissions_MinMaxScaled.csv'\n", "\n", "# Load the CSV\n", "df = pd.read_csv(file_path)" ], "metadata": { "id": "w1-npB5rjXas" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "df.head()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 359 }, "id": "2-9ch-vXlqXB", "outputId": "bf77cf73-016c-432f-eede-d23879a7a42d" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Country Name 1960 1961 1962 1963 \\\n", "0 Afghanistan 0.010176 0.012215 0.016912 0.015899 \n", "1 Africa Eastern and Southern 0.240022 0.244291 0.238947 0.228401 \n", "2 Africa Western and Central 0.022155 0.023351 0.022843 0.025272 \n", "3 Albania 0.334134 0.364941 0.370842 0.287538 \n", "4 Algeria 0.146764 0.140804 0.124205 0.109448 \n", "\n", " 1964 1965 1966 1967 1968 ... 2009 2010 \\\n", "0 0.017065 0.018785 0.018251 0.019424 0.020448 ... 0.013644 0.020950 \n", "1 0.225235 0.217482 0.197850 0.181053 0.166294 ... 0.065989 0.073970 \n", "2 0.027837 0.036327 0.034975 0.030891 0.024810 ... 0.027557 0.033345 \n", "3 0.251709 0.242438 0.255838 0.235268 0.232796 ... 0.095285 0.110880 \n", "4 0.103134 0.107911 0.124088 0.108606 0.103309 ... 0.206084 0.221777 \n", "\n", " 2011 2012 2013 2014 2015 2016 2017 \\\n", "0 0.027829 0.020922 0.015206 0.014384 0.015044 0.013834 0.013368 \n", "1 0.068729 0.068761 0.068117 0.074097 0.073525 0.071541 0.071064 \n", "2 0.033979 0.031762 0.031803 0.034629 0.034292 0.033831 0.034193 \n", "3 0.118600 0.107618 0.111011 0.130743 0.133352 0.127806 0.146469 \n", "4 0.220302 0.233679 0.231670 0.260912 0.281584 0.265675 0.265183 \n", "\n", " 2018 \n", "0 0.013643 \n", "1 0.071154 \n", "2 0.038376 \n", "3 0.150057 \n", "4 0.279596 \n", "\n", "[5 rows x 60 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Country Name196019611962196319641965196619671968...2009201020112012201320142015201620172018
0Afghanistan0.0101760.0122150.0169120.0158990.0170650.0187850.0182510.0194240.020448...0.0136440.0209500.0278290.0209220.0152060.0143840.0150440.0138340.0133680.013643
1Africa Eastern and Southern0.2400220.2442910.2389470.2284010.2252350.2174820.1978500.1810530.166294...0.0659890.0739700.0687290.0687610.0681170.0740970.0735250.0715410.0710640.071154
2Africa Western and Central0.0221550.0233510.0228430.0252720.0278370.0363270.0349750.0308910.024810...0.0275570.0333450.0339790.0317620.0318030.0346290.0342920.0338310.0341930.038376
3Albania0.3341340.3649410.3708420.2875380.2517090.2424380.2558380.2352680.232796...0.0952850.1108800.1186000.1076180.1110110.1307430.1333520.1278060.1464690.150057
4Algeria0.1467640.1408040.1242050.1094480.1031340.1079110.1240880.1086060.103309...0.2060840.2217770.2203020.2336790.2316700.2609120.2815840.2656750.2651830.279596
\n", "

5 rows × 60 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "df" } }, "metadata": {}, "execution_count": 63 } ] }, { "cell_type": "code", "source": [ "df.columns" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "GlRp2USgmDpx", "outputId": "09a1cb66-fbd8-409a-de3f-2ddeb437dc84" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Index(['Country Name', '1960', '1961', '1962', '1963', '1964', '1965', '1966',\n", " '1967', '1968', '1969', '1970', '1971', '1972', '1973', '1974', '1975',\n", " '1976', '1977', '1978', '1979', '1980', '1981', '1982', '1983', '1984',\n", " '1985', '1986', '1987', '1988', '1989', '1990', '1991', '1992', '1993',\n", " '1994', '1995', '1996', '1997', '1998', '1999', '2000', '2001', '2002',\n", " '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010', '2011',\n", " '2012', '2013', '2014', '2015', '2016', '2017', '2018'],\n", " dtype='object')" ] }, "metadata": {}, "execution_count": 6 } ] }, { "cell_type": "code", "source": [ "import pandas as pd\n", "import numpy as np\n", "import tensorflow as tf\n", "from tensorflow.keras.models import Sequential\n", "from tensorflow.keras.layers import LSTM, Dense\n", "from sklearn.model_selection import train_test_split" ], "metadata": { "id": "sii2ffL0mKmd" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# One-hot encode country names\n", "country_dummies = pd.get_dummies(df['Country Name'], prefix='Country')\n", "country_features = country_dummies.columns.tolist()\n", "df_ohe = pd.concat([df, country_dummies], axis=1)" ], "metadata": { "id": "5aSSsXogrSMT" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "window_size = 45 # number of past years as input\n", "forecast_horizon = 10 # number of future years to predict\n", "year_cols = [str(year) for year in range(1960, 2019)]" ], "metadata": { "id": "k8HMD8CjmyZU" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Final sequence storage\n", "X_seq_list = []\n", "y_list = []" ], "metadata": { "id": "gAAEQMHarVR4" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "for idx in range(len(df_ohe)):\n", " row = df_ohe.iloc[idx]\n", " series = row[year_cols].values.astype(float)\n", " country_vec = row[country_features].values.astype(float)\n", "\n", " n = len(series)\n", " for start in range(0, n - window_size - forecast_horizon + 1):\n", " end = start + window_size\n", " horizon_end = end + forecast_horizon\n", "\n", " seq_x_vals = series[start:end]\n", " seq_y = series[end:horizon_end]\n", "\n", " if np.isnan(seq_x_vals).any() or np.isnan(seq_y).any():\n", " continue\n", "\n", " # Create (window_size, 1 + n_country) matrix\n", " co2_col = seq_x_vals.reshape(window_size, 1)\n", " country_mat = np.tile(country_vec, (window_size, 1)) # Repeat for each timestep\n", " seq_x = np.concatenate([co2_col, country_mat], axis=1) # (window_size, features)\n", "\n", " X_seq_list.append(seq_x)\n", " y_list.append(seq_y)" ], "metadata": { "id": "ZSXZUc4CrVoA" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Convert to arrays\n", "X_seq = np.array(X_seq_list) # (samples, timesteps, features)\n", "y = np.array(y_list) # (samples, forecast_horizon)\n", "\n", "print(\"X_seq shape:\", X_seq.shape)\n", "print(\"y shape:\", y.shape)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "78adxSnXraI-", "outputId": "6a4aaa55-3013-473a-b136-39a7ad049075" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "X_seq shape: (1330, 45, 267)\n", "y shape: (1330, 10)\n" ] } ] }, { "cell_type": "code", "source": [ "from sklearn.model_selection import train_test_split\n", "\n", "X_train, X_test, y_train, y_test = train_test_split(\n", " X_seq, y, test_size=0.2, random_state=42\n", ")" ], "metadata": { "id": "zKNP7PlprcMm" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "from tensorflow.keras.models import Sequential\n", "from tensorflow.keras.layers import LSTM, Dense\n", "\n", "model = Sequential([\n", " LSTM(128, input_shape=(X_seq.shape[1], X_seq.shape[2])),\n", " Dense(y.shape[1])\n", "])" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "ACOq2KH3rfSU", "outputId": "2bb0afd2-3334-41ab-8f90-7f193b00fd9f" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "/usr/local/lib/python3.11/dist-packages/keras/src/layers/rnn/rnn.py:200: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", " super().__init__(**kwargs)\n" ] } ] }, { "cell_type": "code", "source": [ "model.compile(optimizer='adam', loss='mse', metrics=['mae'])\n", "model.summary()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 193 }, "id": "gwvkuy6tr4Ou", "outputId": "b0dea532-c92d-4c95-a9ef-05d6fa49fc92" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1mModel: \"sequential\"\u001b[0m\n" ], "text/html": [ "
Model: \"sequential\"\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "│ lstm (\u001b[38;5;33mLSTM\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m202,752\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,290\u001b[0m │\n", "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" ], "text/html": [ "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
              "│ lstm (LSTM)                     │ (None, 128)            │       202,752 │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ dense (Dense)                   │ (None, 10)             │         1,290 │\n",
              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m204,042\u001b[0m (797.04 KB)\n" ], "text/html": [ "
 Total params: 204,042 (797.04 KB)\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m204,042\u001b[0m (797.04 KB)\n" ], "text/html": [ "
 Trainable params: 204,042 (797.04 KB)\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ], "text/html": [ "
 Non-trainable params: 0 (0.00 B)\n",
              "
\n" ] }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "history = model.fit(\n", " X_train, y_train,\n", " validation_data=(X_test, y_test),\n", " epochs=50,\n", " batch_size=32\n", ")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "u5VZ4IaKr6V6", "outputId": "49923e02-83c2-4079-d3f0-f840d84d88f3" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Epoch 1/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 149ms/step - loss: 0.0025 - mae: 0.0207 - val_loss: 0.0024 - val_mae: 0.0218\n", "Epoch 2/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 183ms/step - loss: 0.0022 - mae: 0.0199 - val_loss: 0.0024 - val_mae: 0.0217\n", "Epoch 3/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 91ms/step - loss: 0.0021 - mae: 0.0200 - val_loss: 0.0024 - val_mae: 0.0224\n", "Epoch 4/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 128ms/step - loss: 0.0022 - mae: 0.0210 - val_loss: 0.0024 - val_mae: 0.0217\n", "Epoch 5/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 79ms/step - loss: 0.0025 - mae: 0.0202 - val_loss: 0.0026 - val_mae: 0.0233\n", "Epoch 6/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 81ms/step - loss: 0.0019 - mae: 0.0197 - val_loss: 0.0024 - val_mae: 0.0216\n", "Epoch 7/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 98ms/step - loss: 0.0024 - mae: 0.0203 - val_loss: 0.0023 - val_mae: 0.0222\n", "Epoch 8/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 81ms/step - loss: 0.0022 - mae: 0.0196 - val_loss: 0.0024 - val_mae: 0.0220\n", "Epoch 9/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 81ms/step - loss: 0.0026 - mae: 0.0232 - val_loss: 0.0024 - val_mae: 0.0226\n", "Epoch 10/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 89ms/step - loss: 0.0019 - mae: 0.0198 - val_loss: 0.0023 - val_mae: 0.0209\n", "Epoch 11/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 83ms/step - loss: 0.0019 - mae: 0.0183 - val_loss: 0.0025 - val_mae: 0.0230\n", "Epoch 12/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 93ms/step - loss: 0.0027 - mae: 0.0214 - val_loss: 0.0023 - val_mae: 0.0211\n", "Epoch 13/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 83ms/step - loss: 0.0021 - mae: 0.0194 - val_loss: 0.0023 - val_mae: 0.0209\n", "Epoch 14/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 81ms/step - loss: 0.0021 - mae: 0.0194 - val_loss: 0.0024 - val_mae: 0.0210\n", "Epoch 15/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 134ms/step - loss: 0.0021 - mae: 0.0189 - val_loss: 0.0024 - val_mae: 0.0208\n", "Epoch 16/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 81ms/step - loss: 0.0025 - mae: 0.0199 - val_loss: 0.0024 - val_mae: 0.0216\n", "Epoch 17/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 80ms/step - loss: 0.0028 - mae: 0.0211 - val_loss: 0.0024 - val_mae: 0.0215\n", "Epoch 18/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 111ms/step - loss: 0.0026 - mae: 0.0198 - val_loss: 0.0024 - val_mae: 0.0215\n", "Epoch 19/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 105ms/step - loss: 0.0017 - mae: 0.0178 - val_loss: 0.0024 - val_mae: 0.0220\n", "Epoch 20/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 82ms/step - loss: 0.0026 - mae: 0.0214 - val_loss: 0.0025 - val_mae: 0.0230\n", "Epoch 21/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 81ms/step - loss: 0.0022 - mae: 0.0206 - val_loss: 0.0023 - val_mae: 0.0210\n", "Epoch 22/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 130ms/step - loss: 0.0022 - mae: 0.0190 - val_loss: 0.0024 - val_mae: 0.0210\n", "Epoch 23/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 87ms/step - loss: 0.0016 - mae: 0.0178 - val_loss: 0.0024 - val_mae: 0.0206\n", "Epoch 24/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 80ms/step - loss: 0.0024 - mae: 0.0199 - val_loss: 0.0024 - val_mae: 0.0213\n", "Epoch 25/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 78ms/step - loss: 0.0021 - mae: 0.0194 - val_loss: 0.0024 - val_mae: 0.0214\n", "Epoch 26/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 91ms/step - loss: 0.0024 - mae: 0.0203 - val_loss: 0.0024 - val_mae: 0.0219\n", "Epoch 27/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 80ms/step - loss: 0.0017 - mae: 0.0191 - val_loss: 0.0025 - val_mae: 0.0234\n", "Epoch 28/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 81ms/step - loss: 0.0020 - mae: 0.0205 - val_loss: 0.0025 - val_mae: 0.0227\n", "Epoch 29/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 135ms/step - loss: 0.0021 - mae: 0.0197 - val_loss: 0.0024 - val_mae: 0.0221\n", "Epoch 30/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 85ms/step - loss: 0.0018 - mae: 0.0192 - val_loss: 0.0024 - val_mae: 0.0210\n", "Epoch 31/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 84ms/step - loss: 0.0022 - mae: 0.0194 - val_loss: 0.0024 - val_mae: 0.0212\n", "Epoch 32/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 128ms/step - loss: 0.0021 - mae: 0.0189 - val_loss: 0.0024 - val_mae: 0.0211\n", "Epoch 33/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 90ms/step - loss: 0.0023 - mae: 0.0196 - val_loss: 0.0024 - val_mae: 0.0216\n", "Epoch 34/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 84ms/step - loss: 0.0021 - mae: 0.0194 - val_loss: 0.0023 - val_mae: 0.0203\n", "Epoch 35/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 136ms/step - loss: 0.0019 - mae: 0.0174 - val_loss: 0.0023 - val_mae: 0.0211\n", "Epoch 36/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 83ms/step - loss: 0.0022 - mae: 0.0192 - val_loss: 0.0024 - val_mae: 0.0211\n", "Epoch 37/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 82ms/step - loss: 0.0025 - mae: 0.0197 - val_loss: 0.0024 - val_mae: 0.0211\n", "Epoch 38/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 123ms/step - loss: 0.0023 - mae: 0.0189 - val_loss: 0.0023 - val_mae: 0.0207\n", "Epoch 39/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 83ms/step - loss: 0.0020 - mae: 0.0182 - val_loss: 0.0024 - val_mae: 0.0210\n", "Epoch 40/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 82ms/step - loss: 0.0016 - mae: 0.0173 - val_loss: 0.0023 - val_mae: 0.0207\n", "Epoch 41/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 142ms/step - loss: 0.0022 - mae: 0.0187 - val_loss: 0.0024 - val_mae: 0.0206\n", "Epoch 42/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 81ms/step - loss: 0.0019 - mae: 0.0178 - val_loss: 0.0023 - val_mae: 0.0204\n", "Epoch 43/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 82ms/step - loss: 0.0021 - mae: 0.0180 - val_loss: 0.0023 - val_mae: 0.0204\n", "Epoch 44/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 121ms/step - loss: 0.0020 - mae: 0.0181 - val_loss: 0.0024 - val_mae: 0.0202\n", "Epoch 45/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 81ms/step - loss: 0.0018 - mae: 0.0178 - val_loss: 0.0023 - val_mae: 0.0210\n", "Epoch 46/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 82ms/step - loss: 0.0021 - mae: 0.0195 - val_loss: 0.0024 - val_mae: 0.0206\n", "Epoch 47/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 86ms/step - loss: 0.0019 - mae: 0.0186 - val_loss: 0.0025 - val_mae: 0.0230\n", "Epoch 48/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 131ms/step - loss: 0.0022 - mae: 0.0197 - val_loss: 0.0024 - val_mae: 0.0221\n", "Epoch 49/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 82ms/step - loss: 0.0016 - mae: 0.0176 - val_loss: 0.0024 - val_mae: 0.0219\n", "Epoch 50/50\n", "\u001b[1m34/34\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 80ms/step - loss: 0.0025 - mae: 0.0204 - val_loss: 0.0023 - val_mae: 0.0209\n" ] } ] }, { "cell_type": "code", "source": [ "final_val_loss = history.history['val_loss'][-1]\n", "final_val_mae = history.history['val_mae'][-1]\n", "print(f\"Final Validation Loss (MSE): {final_val_loss:.4f}\")\n", "print(f\"Final Validation MAE: {final_val_mae:.4f}\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "e7wt-q1rr8TY", "outputId": "800cb563-2801-4b22-d988-aa263ea96a54" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Final Validation Loss (MSE): 0.0023\n", "Final Validation MAE: 0.0209\n" ] } ] }, { "cell_type": "markdown", "source": [ "- MAE of 0.0209: That’s ~2.1% absolute error on the normalized scale.\n", "- Validation MSE = 0.0023: That's a very low mean squared error, especially for normalized values (0–1 range)." ], "metadata": { "id": "bIrffBUvv3ui" } }, { "cell_type": "code", "source": [ "model.save(\"co2_lstm_forecast_model\")\n", "# Plot Loss\n", "plt.figure(figsize=(12, 5))\n", "\n", "plt.subplot(1, 2, 1)\n", "plt.plot(history.history['loss'], label='Train Loss', color='blue')\n", "plt.plot(history.history['val_loss'], label='Val Loss', color='orange')\n", "plt.title('Loss over Epochs')\n", "plt.xlabel('Epoch')\n", "plt.ylabel('MSE Loss')\n", "plt.legend()\n", "plt.grid(True)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 487 }, "id": "s51M_gdttOEZ", "outputId": "66077a31-3181-46a0-9508-05251314b496" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAHWCAYAAAASIHGhAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAApR1JREFUeJzsnXd8FGX+x9+7yaYXOkmooQlIr4IIKBEQFLAAtkOU0zvbiZx64k9B0TsUUTnLieVE8U6lqFgOkYgUS0SKqIBU6SQh1IT07M7vj2dnS7Kb7G52s9nk+3698prZmWdmnzwp+5lvNWiapiEIgiAIguCAMdgTEARBEASh9iECQRAEQRCECohAEARBEAShAiIQBEEQBEGogAgEQRAEQRAqIAJBEARBEIQKiEAQBEEQBKECIhAEQRAEQaiACARBEARBECogAkEQBCFIHDx4EIPBwPz584M9FUGogAgEQahFvP322xgMBjZv3hzsqdQJ9A9gd19PP/10sKcoCLWW8GBPQBAEIdDccMMNjBkzpsLx3r17B2E2ghAaiEAQBCGkyc/PJzY2ttIxffr04eabb66hGQlC3UBcDIIQgvz0009cccUVJCQkEBcXx4gRI/jhhx+cxpSWlvLEE0/QsWNHoqKiaNy4MUOGDCE9Pd02Jisri1tvvZWWLVsSGRlJcnIy48eP5+DBg1XO4euvv+aSSy4hNjaWBg0aMH78eH777Tfb+eXLl2MwGFi/fn2Fa1977TUMBgPbt2+3Hdu1axfXXXcdjRo1Iioqin79+vHpp586Xae7YNavX89dd91Fs2bNaNmypafLVilt27blyiuvZPXq1fTq1YuoqCi6du3KRx99VGHs77//zsSJE2nUqBExMTFcdNFF/O9//6swrqioiMcff5xOnToRFRVFcnIy11xzDfv3768w9vXXX6d9+/ZERkbSv39/Nm3a5HS+Oj8rQfAFsSAIQoixY8cOLrnkEhISEnjooYcwmUy89tprDB8+nPXr1zNw4EAAHn/8cebOncsf//hHBgwYQG5uLps3b2br1q1cfvnlAFx77bXs2LGDe++9l7Zt23LixAnS09M5fPgwbdu2dTuHr776iiuuuIJ27drx+OOPU1hYyEsvvcTFF1/M1q1badu2LWPHjiUuLo6lS5cybNgwp+uXLFnChRdeSLdu3Wzf08UXX0yLFi14+OGHiY2NZenSpUyYMIEPP/yQq6++2un6u+66i6ZNmzJr1izy8/OrXLOCggJOnjxZ4XiDBg0ID7f/G9y7dy+TJ0/mz3/+M7fccguLFi1i4sSJrFq1yrZm2dnZDB48mIKCAv7yl7/QuHFj3nnnHcaNG8fy5cttczWbzVx55ZWsWbOG66+/nvvuu4+8vDzS09PZvn077du3t73ve++9R15eHn/6058wGAzMmzePa665ht9//x2TyVStn5Ug+IwmCEKtYdGiRRqgbdq0ye2YCRMmaBEREdr+/fttx44fP67Fx8drQ4cOtR3r2bOnNnbsWLf3OXPmjAZozz77rNfz7NWrl9asWTPt1KlTtmM///yzZjQatSlTptiO3XDDDVqzZs20srIy27HMzEzNaDRqc+bMsR0bMWKE1r17d62oqMh2zGKxaIMHD9Y6duxoO6avz5AhQ5zu6Y4DBw5ogNuvjIwM29g2bdpogPbhhx/ajp07d05LTk7WevfubTs2ffp0DdC++eYb27G8vDwtNTVVa9u2rWY2mzVN07S33npLA7Tnn3++wrwsFovT/Bo3bqydPn3adv6TTz7RAO2zzz7TNK16PytB8BVxMQhCCGE2m1m9ejUTJkygXbt2tuPJycnceOONfPvtt+Tm5gLq6XjHjh3s3bvX5b2io6OJiIhg3bp1nDlzxuM5ZGZmsm3bNqZOnUqjRo1sx3v06MHll1/OypUrbccmT57MiRMnWLdune3Y8uXLsVgsTJ48GYDTp0/z9ddfM2nSJPLy8jh58iQnT57k1KlTjBo1ir1793Ls2DGnOdx+++2EhYV5POc77riD9PT0Cl9du3Z1GpeSkuJkrUhISGDKlCn89NNPZGVlAbBy5UoGDBjAkCFDbOPi4uK44447OHjwIDt37gTgww8/pEmTJtx7770V5mMwGJxeT548mYYNG9peX3LJJYByZYDvPytBqA4iEAQhhMjJyaGgoIALLrigwrkuXbpgsVg4cuQIAHPmzOHs2bN06tSJ7t278+CDD/LLL7/YxkdGRvLMM8/wxRdf0Lx5c4YOHcq8efNsH4TuOHToEIDbOZw8edJm9h89ejSJiYksWbLENmbJkiX06tWLTp06AbBv3z40TeOxxx6jadOmTl+zZ88G4MSJE07vk5qaWuVaOdKxY0fS0tIqfCUkJDiN69ChQ4UPb32euq//0KFDbr93/TzA/v37ueCCC5xcGO5o3bq102tdLOhiwNeflSBUBxEIglBHGTp0KPv37+ett96iW7duvPnmm/Tp04c333zTNmb69Ons2bOHuXPnEhUVxWOPPUaXLl346aef/DKHyMhIJkyYwMcff0xZWRnHjh3ju+++s1kPACwWCwAPPPCAy6f89PR0OnTo4HTf6Ohov8yvtuDOGqJpmm0/0D8rQSiPCARBCCGaNm1KTEwMu3fvrnBu165dGI1GWrVqZTvWqFEjbr31Vt5//32OHDlCjx49ePzxx52ua9++PX/9619ZvXo127dvp6SkhOeee87tHNq0aQPgdg5NmjRxSjucPHkyJ0+eZM2aNSxbtgxN05wEgu4qMZlMLp/y09LSiI+P92yBqoluzXBkz549ALZAwDZt2rj93vXzoNZ19+7dlJaW+m1+3v6sBKE6iEAQhBAiLCyMkSNH8sknnzilt2VnZ/Pee+8xZMgQm9n81KlTTtfGxcXRoUMHiouLARXZX1RU5DSmffv2xMfH28a4Ijk5mV69evHOO+9w9uxZ2/Ht27ezevXqCgWJ0tLSaNSoEUuWLGHJkiUMGDDAyUXQrFkzhg8fzmuvvUZmZmaF98vJyal8UfzI8ePH+fjjj22vc3NzWbx4Mb169SIpKQmAMWPG8OOPP5KRkWEbl5+fz+uvv07btm1tcQ3XXnstJ0+e5OWXX67wPuVFSFX4+rMShOogaY6CUAt56623WLVqVYXj9913H0899RTp6ekMGTKEu+66i/DwcF577TWKi4uZN2+ebWzXrl0ZPnw4ffv2pVGjRmzevJnly5dzzz33AOrJeMSIEUyaNImuXbsSHh7Oxx9/THZ2Ntdff32l83v22We54oorGDRoENOmTbOlOSYmJlawUJhMJq655ho++OAD8vPzXfYdeOWVVxgyZAjdu3fn9ttvp127dmRnZ5ORkcHRo0f5+eeffVhFO1u3buU///lPhePt27dn0KBBttedOnVi2rRpbNq0iebNm/PWW2+RnZ3NokWLbGMefvhh3n//fa644gr+8pe/0KhRI9555x0OHDjAhx9+iNGonrumTJnC4sWLmTFjBj/++COXXHIJ+fn5fPXVV9x1112MHz/e4/lX52clCD4T1BwKQRCc0NP43H0dOXJE0zRN27p1qzZq1CgtLi5Oi4mJ0S699FLt+++/d7rXU089pQ0YMEBr0KCBFh0drXXu3Fn7+9//rpWUlGiapmknT57U7r77bq1z585abGyslpiYqA0cOFBbunSpR3P96quvtIsvvliLjo7WEhIStKuuukrbuXOny7Hp6ekaoBkMBtv3UJ79+/drU6ZM0ZKSkjSTyaS1aNFCu/LKK7Xly5dXWJ/K0kAdqSrN8ZZbbrGNbdOmjTZ27Fjtyy+/1Hr06KFFRkZqnTt31pYtW+Zyrtddd53WoEEDLSoqShswYID2+eefVxhXUFCg/d///Z+WmpqqmUwmLSkpSbvuuutsKar6/FylLwLa7NmzNU2r/s9KEHzBoGle2roEQRDqIG3btqVbt258/vnnwZ6KINQKJAZBEARBEIQKiEAQBEEQBKECIhAEQRAEQaiAxCAIgiAIglABsSAIgiAIglABEQiCIAiCIFRACiUFEIvFwvHjx4mPj6/QAEYQBEEQahpN08jLyyMlJcVW1MsdIhACyPHjx53q4guCIAhCbeDIkSO0bNmy0jEiEAKI3mDmyJEjFdrKektpaSmrV69m5MiRmEwmf0yvXiDr5juydr4h6+Ybsm6+483a5ebm0qpVK48aoIlACCC6WyEhIcEvAiEmJoaEhAT54/ECWTffkbXzDVk335B18x1f1s4Tt7cEKQqCIAiCUAERCIIgCIIgVEAEgiAIgiAIFZAYBEEQhHqOpmmUlZVhNpuDNofS0lLCw8MpKioK6jxCkfJrZzKZCAsLq/Z9RSAIgiDUY0pKSsjMzKSgoCCo89A0jaSkJI4cOSJ1Y7yk/NoZDAZatmxJXFxcte4rAkEQBKGeYrFYOHDgAGFhYaSkpBARERG0D2eLxcL58+eJi4ursoCP4Izj2hkMBnJycjh69CgdO3asliVBBIIgCEI9paSkBIvFQqtWrYiJiQnqXCwWCyUlJURFRYlA8JLya9e0aVMOHjxIaWlptQSC/BQEQRDqOfKBXLfwlxVIfisEQRAEQaiACARBEARBECogAkEQBEEQgLZt27JgwYJgT6PWEHSB8Morr9C2bVuioqIYOHAgP/74Y6Xjly1bRufOnYmKiqJ79+6sXLnS6bymacyaNYvk5GSio6NJS0tj7969tvMHDx5k2rRppKamEh0dTfv27Zk9ezYlJSUV7jN//nw6depEZGQkLVq04O9//7v/vnFBEATBJ/RUPndfjz/+uE/33bRpE3fccUe15jZ8+HCmT59erXvUFoIqEJYsWcKMGTOYPXs2W7dupWfPnowaNYoTJ064HP/9999zww03MG3aNH766ScmTJjAhAkT2L59u23MvHnzePHFF1m4cCEbN24kNjaWUaNGUVRUBMCuXbuwWCy89tpr7NixgxdeeIGFCxfyyCOPOL3Xfffdx5tvvsn8+fPZtWsXn376KQMGDAjcYgiCIAgekZmZaftasGABCQkJTsceeOAB21i9CJQnNG3aNOjZHLUKLYgMGDBAu/vuu22vzWazlpKSos2dO9fl+EmTJmljx451OjZw4EDtT3/6k6ZpmmaxWLSkpCTt2WeftZ0/e/asFhkZqb3//vtu5zFv3jwtNTXV9nrnzp1aeHi4tmvXLp++L51z585pgHbu3Llq3UfTNK2kpERbsWKFVlJSUu17ec2OpzXtu5s1zWKu+feuJkFdtxBH1s43QmndCgsLtZ07d2qFhYW2YxaLpp0/X/Nfublm7fTpM5rZ7N3/mUWLFmmJiYm212vXrtUAbeXKlVqfPn00k8mkrV27Vtu3b582btw4rVmzZlpsbKzWr18/LT093elebdq00V544QXba0B74403tAkTJmjR0dFahw4dtE8++aTS+QwbNky777773J5fvny51rVrVy0iIkJr06aNNn/+fKfzr7zyitahQwctMjJSa9asmXbttdfazi1btkzr1q2bFhUVpTVq1EgbMWKEdv78ec1sNmtnztjXztXPVcebz6Wg1UEoKSlhy5YtzJw503bMaDSSlpZGRkaGy2syMjKYMWOG07FRo0axYsUKAA4cOEBWVhZpaWm284mJiQwcOJCMjAyuv/56l/c9d+4cjRo1sr3+7LPPaNeuHZ9//jmjR49G0zTS0tKYN2+e07jyFBcXU1xcbHudm5sLqDKYpaWlbq/zBP366t7HF8J3zMVQeo7SCx6AhK41/v7VIZjrFurI2vlGKK1baWkpmqZhsViwWCwA5OdDQkIwjMtGjh6FhATNNhdP0MeW3z788MPMmzePdu3a0bBhQ44cOcLo0aN58skniYyM5N133+Wqq67it99+o3Xr1rb76euh88QTT/D000/zzDPP8PLLL3PTTTdx4MCBSj8Lyt9DZ8uWLUyaNInZs2czadIkvv/+e+655x4aNmzI1KlT2bx5M3/5y1945513GDx4MKdPn+bbb7/FYrGQmZnJDTfcwDPPPMOECRPIy8vj22+/xWw2o7QMTj9LTdNc1kHw5vcyaALh5MmTmM1mmjdv7nS8efPm7Nq1y+U1WVlZLsdnZWXZzuvH3I0pz759+3jppZeYP3++7djvv//OoUOHWLZsGYsXL8ZsNnP//fdz3XXX8fXXX7v9nubOncsTTzxR4fjq1av9ZrZKT0/3y308RtMYV6qETsb6VZwJO1iz7+8nanzd6hCydr4RCusWHh5OUlIS58+ft8Vh5ecDNAjanPLy8rwaX1RUhKZptgcyvWT03/72NwYOHGgbl5qaSmpqqu31Aw88wIcffsjSpUttcQcWi4WioiLbvQCuv/56xo4da7vnSy+9xLp165weRB0pKyujpKTE6R468+bNY9iwYfzlL38B4JprrmHbtm08++yzXHPNNezevZuYmBiGDh1KfHw8DRs2pH379uTm5rJv3z7KyspIS0ujUaNGNGrUiDZt2mCxWGxrpm9LSkooLCxkw4YNFdwr3pTUrteVFI8dO8bo0aOZOHEit99+u+24xWKhuLiYxYsX06lTJwD+/e9/07dvX3bv3s0FF1zg8n4zZ850snDk5ubSqlUrRo4cSUJCQrXmWlpaSnp6Opdffjkmk6la9/KKsvMYPlbqdHD/7mhJl9fce/uBoK1bHUDWzjdCad2Kioo4cuQIcXFxREVFARAfD7m5nj/B+wtN0zCbIT4+3qtCP1FRURgMBtv/WP1h7JJLLnH6v3v+/HmeeOIJVq5cSWZmJmVlZRQWFpKTk2MbZzQaiYqKcrquX79+ttcJCQkkJCRw/vx5t//Tw8PDiYiIcHl+//79jBs3zuncpZdeysKFC4mNjWXcuHE8++yz9OnTh1GjRjFq1CiuvvpqYmJiGDx4MCNGjGDIkCGMHDmSyy+/nOuuu46GDRuiaRp5eXm2tSsqKiI6OpqhQ4fafq46roSLO4ImEJo0aUJYWBjZ2dlOx7Ozs0lKSnJ5TVJSUqXj9W12djbJyclOY3r16uV03fHjx7n00ksZPHgwr7/+utO55ORkwsPDbeIAoEuXLgAcPnzYrUCIjIwkMjKywnGTyeS3fxT+vJdHlBbadsO1Qqjl//DcUePrVoeQtfONUFg3s9mMwWDAaDQ6VVOMj6/5uVgsFnJzsc3HU/Sx5bfx8fFO93nooYdIT09n/vz5dOjQgejoaK677jpKS0udxpV//8jIyArnHd/HFZV9D+XPOc47MTGRrVu3sm7dOlavXs3jjz/OnDlz2LRpEw0aNCA9PZ3vv/+e1atX88orr/DYY4+xceNG2rRp43Rvo9GIwWBw+Tvoze9k0LIYIiIi6Nu3L2vWrLEds1gsrFmzhkGDBrm8ZtCgQU7jQZnx9PGpqakkJSU5jcnNzWXjxo1O9zx27BjDhw+nb9++LFq0qMIP8uKLL6asrIz9+/fbju3ZswfA9oOoN5Q5mPtKPVeegiAItYnvvvuOqVOncvXVV9O9e3eSkpI4ePBgjc6hS5cufPfddxXm1alTJ1usQHh4uC3m7ZdffuHgwYM217bBYODiiy/miSee4KeffiIiIoKPP/44YPMNqothxowZ3HLLLfTr148BAwawYMEC8vPzufXWWwGYMmUKLVq0YO7cuYBKPRw2bBjPPfccY8eO5YMPPmDz5s02C4DBYGD69Ok89dRTdOzYkdTUVB577DFSUlKYMGECYBcHbdq0Yf78+eTk5Njmo1sg0tLS6NOnD7fddhsLFizAYrFw9913c/nllztZFeoFpQ4Cocw736AgCEJtoWPHjnz00UdcddVVGAwGHnvsMa+CIb0hJyeHbdu2OR1LTk7mr3/9K/379+fJJ59k8uTJZGRk8PLLL/Ovf/0LgM8//5zff/+doUOH0rBhQ1auXInFYuGCCy5g48aNrFmzhpEjR9KsWTM2btxITk6OzbodCIIqECZPnkxOTg6zZs0iKyuLXr16sWrVKluQ4eHDh52e7gcPHsx7773Ho48+yiOPPELHjh1ZsWIF3bp1s4156KGHyM/P54477uDs2bMMGTKEVatW2fww6enp7Nu3j3379tGyZUun+eiRoEajkc8++4x7772XoUOHEhsbyxVXXMFzzz0X6CWpfYgFQRCEOsDzzz/PbbfdxuDBg2nSpAl/+9vfvPLHe8N7773He++953TsySef5NFHH2Xp0qXMmjWLJ598kuTkZObMmcPUqVMBaNCgAR999BGPP/44RUVFdOzYkffff58LL7yQ3377jQ0bNrBgwQJyc3Np06YNzz33HFdccUXAhI5B0z8VBb+Tm5tLYmIi586d80uQ4sqVKxkzZkzN+jWPfgobxqv9Lg9B72dq7r39QNDWrQ4ga+cbobRuRUVFHDhwgNTU1ArBbDWNikHIJSEhQbpLekn5tavs5+rN55L8FITKEReDIAhCvUQEglA54mIQBEGol4hAECrH0YJQKhYEQRCE+oIIBKFyysTFIAiCUB8RgSBUTqm4GARBEOojIhCEyikTF4MgCEJ9RASCUDliQRAEQaiXiEAQKkfSHAVBEOolIhCEynEKUswHizl4cxEEQRBqDBEIQuWUjzsoOx+ceQiCIPiZ4cOHM3369GBPo9YiAkGonPJuBXEzCIIQZK666ipGjx7t8tw333yDwWDgl19+qfb7vP322zRo0KDa9wlVRCAIlVM+MFECFQVBCDLTpk0jPT2do0ePVji3aNEi+vXrR48ePYIws7qFCAShcnQXgyHM+bUgCHUTTVPxRsH48rB34JVXXknTpk15++23nY6fP3+eZcuWMW3aNE6dOsUNN9xAixYtiImJoXv37rz//vt+XarDhw8zfvx44uLiSEhIYNKkSWRnZ9vO//zzz1x66aXEx8eTkJBA37592bx5MwCHDh3iqquuomHDhsTGxnLhhReycuVKv86vugS13bNQy7GUgqVY7UclQeExcTEIQl3HXABL42r8bY0AI48CiVWODQ8PZ8qUKbz99tv83//9HwaDAYBly5ZhNpu54YYbOH/+PH379uVvf/sbCQkJ/O9//+MPf/gD7du3Z8CAAdWer8VisYmD9evXU1ZWxt13383kyZNZt24dADfddBO9e/fm1VdfJSwsjG3bttk6fN59992UlJSwYcMGYmNj2blzJ3FxNb/ulSECQXCPo7UgOkUJBHExCIJQC7jtttt49tlnWb9+PcOHDweUe+Haa68lMTGRxMREHnjgAdv4e++9ly+//JKlS5f6RSCsWbOGX3/9lQMHDtCqVSsAFi9ezIUXXsimTZvo378/hw8f5sEHH6Rz584AdOzY0Xb94cOHufbaa+nevTsA7dq1q/ac/I0IBME9urXAGAmRjdS+uBgEoW4TFgOTaj5byWKxQH6Zx+M7d+7M4MGDeeuttxg+fDj79u3jm2++Yc6cOQCYzWb+8Y9/sHTpUo4dO0ZJSQnFxcXExMT4Zb6//fYbrVq1sokDgK5du9KgQQN+++03+vfvz4wZM/jjH//Iu+++S1paGhMnTqR9+/YA/OUvf+HOO+9k9erVpKWlce2119a6uAmJQRDco4sBUzyYEpyPCYJQNzEYIDw2OF9WV4GnTJs2jQ8//JC8vDwWLVpE+/btGTZsGADPPvss//znP/nb3/7G2rVr2bZtG6NGjaKkpCQQq+aSxx9/nB07djB27Fi+/vprunbtyscffwzAH//4R37//Xf+8Ic/8Ouvv9KvXz9eeumlGpubJ4hAENyji4HwePUFUCYuBkEQageTJk3CaDTy3nvvsXjxYm677TZbPMJ3333H+PHjufnmm+nZsyft2rVjz549fnvvLl26cOTIEY4cOWI7tnPnTs6ePUvXrl1txzp16sT999/P6tWrueaaa1i0aJHtXKtWrfjzn//MRx99xF//+lfeeOMNv83PH4iLQXBPmVgQBEGovcTFxTF58mRmzpxJbm4uU6dOtZ3r2LEjy5cv5/vvv6dhw4Y8//zzZGdnO314e4LZbGbbtm1OxyIjI0lLS6N79+7cdNNNLFiwgLKyMu666y6GDRtGv379KCws5MEHH+S6664jNTWVo0ePsmnTJq699loApk+fzhVXXEGnTp04c+YMa9eupUuXLtVdEr8iAkFwj5OLwWpBkCBFQRBqEdOmTePf//43Y8aMISUlxXb80Ucf5ffff2fUqFHExMRwxx13MGHCBM6dO+fV/c+fP0/v3r2djrVv3559+/bxySefcO+99zJ06FCMRiOjR4+2uQnCwsI4deoUU6ZMITs7myZNmnDNNdfwxBNPAEp43H333Rw9epSEhARGjx7NCy+8UM3V8C8iEAT36BaE8AS7i0EsCIIg1CIGDRqE5qJ+QqNGjVixYkWl1+rpiO6YOnWqk1WiPK1bt+aTTz5xeS4iIqLSugu1Ld7AFRKDILjHVZCi1EEQBEGoF4hAENxTJi4GQRCE+ooIBME9jlkMEqQoCIJQrxCBILjH0cUgaY6CIAj1ChEIgnvKHC0IEqQoCHUVV0F+Qujir5+nCATBPXq8gdRBEIQ6id44qKCgIMgzEfyJXi0yLCysWveRNEfBPS4rKeaBZgGDaEtBCHXCwsJo0KABJ06cACAmJsZWibCmsVgslJSUUFRUhNEo/1+8wXHtAHJycoiJiSE8vHof8SIQBPe4ymIA1bfd8bUgCCFLUlISgE0kBAtN0ygsLCQ6OjpoIiVUKb92RqOR1q1bV3sdRSAI7nEMUgyLBkMYaGZ1XASCINQJDAYDycnJNGvWjNLS0qDNo7S0lA0bNjB06FCb60PwjPJrFxER4RcrjAgEwT2OQYoGg9qWnrXGJqRUdqUgCCFGWFhYtX3W1X3/srIyoqKiRCB4SaDWThw9gnscLQgg1RQFQRDqESIQBNdomrMFAaSaoiAIQj1CBILgGnOhylYAuzCQhk2CIAj1BhEIgmscRUB4rNqKi0EQBKHeIAJBcI3NvRBnr3kgLgZBEIR6gwgEwTXlAxQhKNUUs7Lg6achyCnagiAI9Q4RCIJrbEWSEuzHHKsp1hD//CfMnAkLF9bYWwqCIAiIQBDcUVougwGC4mLIzlbbrKwae0tBEAQBEQiCO2qJiyHXqkXOnauxtxQEQRAQgSC4o3wNBAiKBUEXCGfP1thbCoIgCIhAENzh2OpZJ7zm0xzFgiAIghAcRCAIrqk0BkEEgiAIQl1HBILgmjJXMQjBczGIQBAEQahZRCAIrnFpQRAXgyAIQn1BBILgGlcWhPCatSBYLJBnnUZennotCIIg1AwiEATXuExz1AslnVfdHgPM+fP2fU2ziwVBEAQh8IhAEFzjMs3R6mLQLGAuCPgUcssZKsTNIAiCUHOIQBBc48qCEBZjb9xUA26G8gJBaiEIgiDUHCIQBNe4ClI0GBziEAJv7xcLgiAIQvAQgSC4xlWQouPrGshkEIEgCIIQPEQgCK5x5WKAGs1kEIEgCIIQPEQgCBWxmO1BiOHlLQg117BJBIIgCELwEIEgVKTMIb/QnYtBLAiCIAh1GhEIQkX0+AJDOBgjnc/VYDVFEQiCIAjBQwSCUBFb/EGCylxwJIhZDJLmKAiCUHOIQBAq4i5A0fFYDboYGjVSW7EgCB5jKa2Rap+CUJcRgSBUpMz6yVw+QBGCEqTYurXaikAQPOLMNlgSDb8+EeyZCEJIIwJBqEhlFgRdNJTVnAWhVSu1FYHgZ7K+hsKsYM/C/2SvA80Me18GS1mwZyMIIYsIBKEirqoo6phqPgZBBEIAOPkDfD0Cfpga7Jn4n+KT1u0pyPk2uHMRhBBGBIJQEXdVFCEoLgYRCAHg3A61zdsf3HkEguIc+/6Rj4M3D0EIcUQgCBXxxMVQg0GKIhACQMExtS09E9x5BALdggBw9GMJVhQEHxGBIFTEVatnnSDUQdAFQl4emM0Bf9v6QcFRtS05W/c+QB0FQsEROL0leHMRhBCmVgiEV155hbZt2xIVFcXAgQP58ccfKx2/bNkyOnfuTFRUFN27d2flypVO5zVNY9asWSQnJxMdHU1aWhp79+61nT948CDTpk0jNTWV6Oho2rdvz+zZsykpKXEaYzAYKnz98MMP/v3mayMepTkGViBoWkWBABVrIwg+ogsEzexcObMuUGR1MUQ1V9sjHwVvLoIQwgRdICxZsoQZM2Ywe/Zstm7dSs+ePRk1ahQnTpxwOf7777/nhhtuYNq0afz0009MmDCBCRMmsH37dtuYefPm8eKLL7Jw4UI2btxIbGwso0aNoqioCIBdu3ZhsVh47bXX2LFjBy+88AILFy7kkUceqfB+X331FZmZmbavvn37BmYhahOVWRBqyMVQWGi3FjRtCpHWgo7iZvAThcfs+yV1zM2gWxDa3aa2RyUOQRB8IegC4fnnn+f222/n1ltvpWvXrixcuJCYmBjeeustl+P/+c9/Mnr0aB588EG6dOnCk08+SZ8+fXj55ZcBZT1YsGABjz76KOPHj6dHjx4sXryY48ePs2LFCgBGjx7NokWLGDlyJO3atWPcuHE88MADfPRRxSeNxo0bk5SUZPsymUwBW4taQ6UWBAcXQwBN07qlwGCA2Fho0EC9FoHgJ3QLAtQtgaBZoOSU2k+dAkYT5O6Cc78Fd16CEIKEB/PNS0pK2LJlCzNnzrQdMxqNpKWlkZGR4fKajIwMZsyY4XRs1KhRtg//AwcOkJWVRVpamu18YmIiAwcOJCMjg+uvv97lfc+dO0cjvWSfA+PGjaOoqIhOnTrx0EMPMW7cOLffT3FxMcXFxbbXudZPudLSUkpLS91e5wn69dW9jyeEleRiBMoM0WgV3i8KE4BmprQoF8JjAjKHU6cATCQkaJSVlZGQEE52toFTp8ooLfVcmNTkuoUM5kJMJadtL8sKctDiKq5PSK5d8SlMmgWA0qhWhDUbgTFrFeZDy7F0ebhGphCS61YLkHXzHW/Wzpv1DapAOHnyJGazmebNmzsdb968Obt27XJ5TVZWlsvxWVlZtvP6MXdjyrNv3z5eeukl5s+fbzsWFxfHc889x8UXX4zRaOTDDz9kwoQJrFixwq1ImDt3Lk88UbF62+rVq4mJ8c8HaXp6ul/uUxmXFB6mEbD1l71k7nSO70CzMA4DBjTWfLmCYkODgMxh374GwDBMpkJWrkwHhgINWbNmM3l52V7frybWLVSItWSS5vB6yw9ryArPdzs+lNYuznKMEUApMaxc9RVtStvRC8jduZgNB3rU6FxCad1qE7JuvuPJ2hUUFHh8v6AKhNrAsWPHGD16NBMnTuT222+3HW/SpImTpaJ///4cP36cZ5991q1AmDlzptM1ubm5tGrVipEjR5KQkFCteZaWlpKens7ll18ecDdH+Jf/B7nQZ+AwtOYjKg74OA7K8hgxbADEdQjIHNauVU2imjWLZsyYMbz0Uhh790LHjv0YM8Y7C0JNrVuoYMjZAOvsr/t2b4+WOqbCuFBcO8PJ72EthMcmM2bMGCjqi/bZqzS07GPM8G4Q0zrgcwjFdasNyLr5jjdrl+tFpHdQBUKTJk0ICwsjO9v5iTA7O5ukpCSX1yQlJVU6Xt9mZ2eTnJzsNKZXr15O1x0/fpxLL72UwYMH8/rrr1c534EDB1aq0CIjI4mMjKxw3GQy+e0X3p/3cotZRbWHRzUEV+9lioeyPExaoevzfkAXuYmJBkwmky0GIT8/3Ke3rJF1CxWKnS1p4ebcSn+OIbV2ZSqewhDVRM3Z1BKaDoGcbzBl/Q8u+EuNTSWk1q0WIevmO56snTdrG9QgxYiICPr27cuaNWtsxywWC2vWrGHQoEEurxk0aJDTeFBmFX18amoqSUlJTmNyc3PZuHGj0z2PHTvG8OHD6du3L4sWLcJorHoptm3b5iQ66iyVBSlCjVRT1EWubnhJTFRbCVL0A44ZDFC3ghT1DIbIpvZjra5WW6mqKAheEXQXw4wZM7jlllvo168fAwYMYMGCBeTn53PrrbcCMGXKFFq0aMHcuXMBuO+++xg2bBjPPfccY8eO5YMPPmDz5s02C4DBYGD69Ok89dRTdOzYkdTUVB577DFSUlKYMGECYBcHbdq0Yf78+eTk2Euz6haId955h4iICHr37g3ARx99xFtvvcWbb75ZU0sTHDSt8jRHx+MBTHV0JxDOng3YW9YfHDMYAErPBmUaAUEXCFFN7MdaXg1bZ0DOBlUjIaqp62sFQXAi6AJh8uTJ5OTkMGvWLLKysujVqxerVq2yBRkePnzY6el+8ODBvPfeezz66KM88sgjdOzYkRUrVtCtWzfbmIceeoj8/HzuuOMOzp49y5AhQ1i1ahVRUVGAsjjs27ePffv20bJlS6f5aA6pe08++SSHDh0iPDyczp07s2TJEq677rpALkfwsRSDxRrlWpUFIYDVFMWCEEB0gRDbFvIP1lELgoNAiGsLDXvDmZ/g2GfQ/ragTE0QQo2gCwSAe+65h3vuucfluXXr1lU4NnHiRCZOnOj2fgaDgTlz5jBnzhyX56dOncrUqVMrndMtt9zCLbfcUumYOomj28CdBaEGqimWFwhSB8GP6C6GxG51UCBYrYGOAgGUFeHMT6qqoggEQfCIoBdKEmoZulUgLAaMYa7HBNHFIALBD+gWhAbd1bZOCQQXMQgAra5R26z0GulEKgh1AREIgjNVBSiCuBhCGUsZFFmzGBpY3XIlZ4M2Hb/jysUAkNgV4juCpQSOf1Hz8xKEEEQEguBMaRUBihAUF4MIBD9RlKXKERvCIOECdawuWRCK3LgYDAblZgBp3iQIHiICQXCmzBMLgrgYQpYCa/xBdApENFb7dUkguHMxgN3NcPx/YC6quTkJdR9LGZz+SYnvOoQIBMEZT1wM4eJiCFn0+IPoFhDRUO1biqGsMHhz8hfmYvvvZFSTiucb91fCqOw8ZK2peF4QfGX/v2FVH/htftVjQwgRCIIzVdVAgKBaEM6fh7KygL1t3UfPYIhpqX6OBuu/gLpQC0G3HhjCwJRY8bzBCC0nqH1pAS34kzNb1fbQ+8Gdh58RgSA4402QYhBiEBzPCT6gWxBiWqoPTFMD9bouuBkcAxQNbv616W6Go5+AxVwz8xLqPnrsy5ltUJgZ1Kn4ExEIgjPeBCnWoIshIgKio9W+uBmqgR6DENNCbSMaqG1dEwjuaDZUuVaKT0LOtzUzL6Huo//uARxfFbx5+BkRCIIzngQpBrgOQnGx+gK7QACJQ/ALhXoMgrWCqB6HUBcEgrsMBkeMJmhxldrPlHRHwU8U28v116XfKxEIgjMeWRAC62LIc7htvMM0RCD4AZuLQbcg6ALhbFCm41c8sSAANBmstmd+Dux8hPqDowUhM11lNdQBRCAIznib5ujQu8Jf6O6F2FgIcyjmKAKhmmiag4uhDloQKktxdESvIHn2l8DOR6gfWMxQfErtGyNVwO/JH4I6JX8hAkFwxpsgRa1Mpcj5mfLxBzoiEKpJ8Sn7zys6RW3rapBiZegVJAuPQ/HpwM5JqPuUnAasD0p1zH0lAkFwxpM0x/A4+34A3AwiEAKEnuIY2RTCItV+nbIgeBCDAErgxrZV+2d/DeiUhHqALkxNDaDlOLVfR8p5i0AQnNEDDyuzIBiMEB7rPN6PVCUQzp71+1vWDxxTHHV0gVCX6iBEVeFiAHEzCP5DF6ZRTSF5lNo/8xMUZgVvTn5CBILgjCdBihDQhk26QEgsV+tGLAjVRLcgRLewH6tTFgQPXQwADXqorVgQhOri+HsX1Qwa9VOvM0M/3VEEguCMJ0GK4JDqWHMuhgYN1FYEgo+4tCA0UNs6IRA8dDGAgwVBBIJQTWzptVbLVcoValsH3AwiEARnPLYgBK4Wgi4AJAbBz5QvkgR1J81R0zzPYgC7BeHcr3WuwY5Qw5QXpslWgZC5OuTTHUUgCHY0i2pkA3YXgjsCWAtBghQDRGUxCKFuQSjLA0up2o9sXPX4+I4qJa0sH/IPBnRqQh2nfOxL4wEQ0UjF9ZzaGLRp+QMRCIKdsnz7vqcuhrKaD1L0RiAYTm+idal07gMcqijWwRgE3cwbFgPhMVWPN4ZDYhe1f0YCFYVqUL6CpzEMkkeq/RB3M4hAEOzo1gCDEcKiKx8bIhaEsB+n0bvkJYlWh4pFksBeB6HsvP0JPBTxJoNBRwIVBX/gyrWVPFptRSAIdQbHGggGQ+VjTTUfpOiTi8EauW8oOFL9iYUypeeh1LpwTjEIDez7JSHsu/Emg0FHD1Q8JwJBqAbF5YIUwS4QzmwN6XRHEQiCHU+qKOoEsGGT3+ogWEox6KLHsZlKfURPcQyPd44vMYbbf5ah7GbwJoNBJ1FqIQh+wJU4jW4ODfuo/cwva35OfkIEgmDHkyqKOjVQB8GdQCgogFJPrOEOH3iG4hP+mVyo4ipAUacuxCH4YkFoaHUx5O2FskL/z0mo+2iac6EkR+pAuqMIBMGONxaEILoYHMdUimOd/aJ6bkFwleKoUxdqIXiT4qgTlaQyHjQL5P4WmHkJdZuyfDAXqf3y4lQXCFmhm+4oAkGw42kNBHAIUqw5F4PJBDHWAHWP4hBK7AKh3lsQCj2wIIRyuWVfLAgGg7gZhOqh/94ZI5171AA0HqiCgEvOwKkfa3xq/kAEgmDH0yqK4JDmWHMWBPAyUNFBINT7GIQCF2WWdeqCi6F8qpmnSCaDUB0c3QvlA7uN4SGf7igCQbDjlQUhMEGKZWUqxgD8IBAcXAyGonpuQagvMQjepDmClFwWqkdVlivdzRCi7Z9FIAh2vLEgBKgOQp7D7eJdTEMsCD5S4KJIko5eC6EuCASvLQjiYhCqQfk+DOXR0x1Pb4HC7JqZkx8RgSDY8SXN0c8uBt29EBUFEREVz1dLINTnmvuFLook6dSFfgy+pDkCJF4IGKAoWwJZBe+pSphGJ0HD3mo/a3XNzMmPiEAQ7OjugiAGKVYWfwBe1kJwdDFoZaH9AVgdzCXqAxDqpovBUmafuzdZDACmOIhrp/bFzSB4i6siSeUJ4XRHEQiCHa9cDNYxlhIwF/ttCp4KBM8sCKecX9fXOISiTLU1Rrh+0gl1gWCzFBns34s3iJtB8BVPLFe27o5fgsUc+Dn5EREIgh1vghQdU3r8GIdQlUBo0EBtvQ1SVK/rqQnZMf7AVQntUK+DoLsGIhqqyHFvkUwGwVc8CY5tchGYEpWQPb2pZublJ0QgCHa8sSAYw1XnPMfr/IB/LQjlBEJ9tSBUViQJQr8Ogq8BijqSySD4SlVBiuCc7njss8DPyY+IQBDseGNBgIBUUwyEQCgyWD8A62uxpMpSHCH0XQy+pjjq2Jo2bQ85E7AQZDwVpy0nqO2RjwM6HX8jAkGwY8ticPPpXJ4ANGzyq0CwuhjyDNYn5/pqQSispEgSOLgYzoZmpoevGQw6cR0gLArMhXD+d//NS6j7uOvDUJ6UsWA0qZLeubsDPy8/IQKhPlByBg6+D5YqOhx542KAgDRsqiAQSs7B74tt4sVjgWAx20zm543WJ+f6KhA8tSCgBaR0dsCprovBGGZNd0RaPwue45Q9U8XvXkQiNLtU7YeQFUEEQn3g1yfg+xthz8uVj/OmDoLjuEC6GHbOhR9ugT0vAV4IBAd/+nljitqprwKhsIoYhLAo9QWhmQrqS6Om8uhuhjOSySB4SLGeJWWAiEZVj291tdoeFYEg1CbO/KS2WV+7H2MpBYs1XdHjGAT/10KoIBByvlfb8wcAL+ogWN0LWngCRQbrH299j0GIdmNBgNCOQ/C1D4MjeiaDWBAETyn2Mnum5XjAoBo36YHDtRwRCPWBvL1qe+oH1b/cFY5WAE8tCAGopugkEDSLXdxYn/49tiDoGQwRjSg2JDrdo16hWRyyGCoRCKFcbrm6LgaQTAbBe7wNjo1OVimPAEc/Ccyc/IwIhLpOWT4UWgvlFJ+EvH1uxlk/5I2RKpjGEwLQsMlJIOTugbLz6oBVret1EAoLobSykAqbQGhIicF6UX0UCEU5oJUBBlX21R2hbEHwh4tBb/uct0/9zQhCVXhSRbE8LUPLzSACoa5TXhCc+sH1OG/jDyAgDZucBMKZrfYTVjOyY3ZDpVYE3cXgaEEoOV11oGZdo1B3LyRVLvxCuRaCPywI0c0hqhmgwbmdfpmWUMfx5fdOT3fMXhcSYlwEQl2nvEA4meF6nLc1EBzHBsrFcHqL/YQ1fiA8HGJj1aFKBYKjBYE4NP1XXf+jri8UVJHiqBPSFgQ91awaAgHsVgRxMwie4EmRpPIkdFQZM1oZHPs8MPPyIyIQ6jrnrQLBZH2KdicQvE1xhMAHKZ52sCCU5tp6PngUh2CNMNYiGoHBaFf59c3NUFWKo06ollsuK1D1C6B6LgaQngyCd/haf8PmZljh1+kEAhEIdR09QLH1JLU9+wuUnq84zicXQwDTHOMtzi4GsD39eyQQHCwIgP3Do74JhKqKJOmEqgVBtwgZI5z7g/iC9GQQvMHXCp56uuPxVVBW6N85+RkRCHUd3cXQfLh6itQscHpzxXHetHrW8XOQosUCeVat0dC0X93XGFnh6d87gaBSHLWoZk73qDd4bEHQBcLZgE7H7zg+xblqROUNjhYEd9k+gqDji4sBoGFviG0D5gLIWu3/efkREQh1HV0gxHWAJoPUvis3gy8uhnD/VlLMz7f/X04os1oPGvZU6UFg+zDwqBaCHqQY2Vi91v+I61tHR09SHCF0LQhFfghQ1EnsChjUk2FRdvXvJ9RtfA2ONRhCpjeDCIS6TFmB3cQcX4VA8CVI0c8uBt29EB4OpjxrgGKjvhDp/PTvi4tBi6ynFgQ9i8FdFUWdUK2D4I8UR53wGIjvqPbFzSBUhad9GFyhC4Rjn6mSzbUUEQh1mfP71TaiEUQ2chYI5U2oPgUp+tfF4BigaDhjFQgN+9j/AMvVQvDGxWC/Rz0SCJrmWRVFCF0LQnUbNZVHCiYJnqBp1UuvbToEIhur/1M53/h3bn5EBEJdRncvxHdQ24a9VTBX8cmKXet8siD418VgFwiaPYPByYLg7GLwRCBo9dmCUJprL/pTlQUhVOsg+KMGgiO2QEXJZBAqoSwPLCVq3xfrlTEcWoxT+7XYzSACoS6jZzDEWQVCWKR6IoeKbgZfshh0MWEu8ksBIl0gdGl1QH1QGSNUznC5p/8qBYJmsT8J6xaE+pjFoFsPIhoq83llOFoQQilAz9dIcneIBUHwBD1AMSy66r8tdzimO9bSvzkRCHUZmwWho/2YuziE6rgYwC9xCLpA6JtqtR406A5hEQ4f7h5aEEpzlUgAMFk/+OpjFoOnKY5gr4NgKVXR1aFCoFwMuTtrtW9YCDL+iH1JSoPwWCg44lwUrhYhAqEuc76ciwGgqRuB4IuLwWiytwn2g5tBFwjdWzoEKIL9w73YQ4Ggxx+ExyqrCaBF1sMYBE9THEHVEDCEqf1QikPwt4shrh2ExSirmLu+JYJQnQBFnfBoSB6t9mtpbwYRCHUZ3cXgKBAaW7uJnf3FuSmNzYLg0OzAE8L9F6ioC4TOzRwCFKGCe6BKgVBcLkAR7HEMZfn1pxmPLcXRAwuCwRCatRD8mcUAqupmg25qX1o/C+7wlzCt5VUVRSDUVcoK7U+Qji6G2FbK5KyZ4ZRDwSRfYhDArw2blEDQaNfAIUARKmQxVFkHoXwGA6gnZN3aUVRPaiEUepjBoBOKmQz+tiCAinsBadokuMfXIknlaTEWDOHqdy13T/Xn5WdEINRV9BRHUwPnD0pwHYdQ5oOLAfxaCyE3F1o3OUyc6ZT6o9H9wbqLwdqPoWoLgurDQKTD920wVKinUOfxtEiSTqjVQtAsDj9rPwqEhC5qe+43/91TqFv4S5hGNIDml6n9WuhmEIFQV3FMcSxfgtaVQKiuBaHMPy6GPm31AMVutvgBTA2UYAAozqm6DoIrCwI4xDLUF4HgYZEknVCzIJScVZYw8LMFwSoQckUgCG7wRwyCjt6boRamO4pAqKucd5HBoFO+YJKm+W5BCPevBaFvarkARbA+/ev9GHJsFoSiIigpcXEjVzEIUP8yGQq9CFKE0ItB0J/iTAkq28Vf6BaE3N1gMfvvvkLdociP2TN6PYRTG6HgePXv50dEINRVXAUo6jTqrTIQinMg/4Bql2tLC/TNxXB4v38sCDaBoAco6jh8uCc4xFG6tCLoFoTIcgKhPtVCMBfZze+epDlC6FkQ/J3iqBPbVjUJsxRD/kH/3luoG/gzODYmBRKtgbG1rECXCIS6imOTpvKERdk/gHMynJ/+w2O9epvCMvVp/c6/8zjvoou0N+TmavRt68KCAE7NlsLCIM7a2bdSgRDR2Pl4fbEgaBpse1jtmxLtH/xVoddCCBmBEIAARQBjGCRcoPZzd/n33kLdoNhPQYo6uhuwKMs/9/MTIhDqKq6KJDni6GawtXqOU2leXpB1SlkQIsPy+OorXyZqJ0o7RrPEHCyE2Uve2k56UQuh2I0FoT7EIGgW2Hw37P6net3nec/bIIecBcHPKY6OJHRWW4lDEFzhb3Gqd6wtzPTP/fyECIS6iLlIVecC1y4GcBYIvlRRtHIsW1kQEqJz+d//vL7cibbxKkCxKKKrKiLiiDe1ENwFKZbr6VDn0Czw459g76uAAQa+Be1v8/z6UOvH4E8/cHkkk0Fwh7kESq3/ePxV4jsqSW0LxYIgBJrzvwOaCt5y989TFwhnf4aibLXvbYAicOCYuiY+Ko+VK6tXUrxjE+VeKInrW/GkN7UQ6mMWg8UMP9wG+99UVqBBi6H9rd7dI2QtCAEQCJLJILhD/70zGD1331WFbkEoEguCEGgc3QvuzMsxLSE6BTQzx7etA0DzQSDsO2AXCMePw7ZtPswXJSwuTHYTfwAO8QMeuBjcBSnW1RgESxlkTIED76hyyYPfg9Sbvb9PqMYg+OspzhFHC0ItbaQjBAn99y6isdcuWbfUFQtCYWEhBQX2Zi6HDh1iwYIFrF692q8TE6pB+S6OrjAY0KxWhOyf1c/u5DnvBEJREew+oFwMLZqpOAZf3QxFRdC7jXIxmJr3qTignIvBbS0ETfMszbGu/NO3lML3N8Kh91StiIuXQJvJvt0r5CwIgXQxdFL//EvP2i1sggD+rYGgU1diEMaPH8/ixYsBOHv2LAMHDuS5555j/PjxvPrqqz5N4pVXXqFt27ZERUUxcOBAfvzxx0rHL1u2jM6dOxMVFUX37t1ZuXKl03lN05g1axbJyclER0eTlpbG3r17becPHjzItGnTSE1NJTo6mvbt2zN79mxKXCbVw759+4iPj6eB/qlU23EskuSGc+fgnf8pgdC7zTYAcs54JxB27IBzBeqa1ikqjsFXgXA+J5OUhpmYLUaik3tWHBDp2sVQQSCUnQfN2oWvQgyC9R5aWej42SvDXALfToLDy1Ta6iUfQutrfb9fqNZBCIRACIuC2FS1L24GwZFA/N7pFoRQz2LYunUrl1xyCQDLly+nefPmHDp0iMWLF/Piiy96PYElS5YwY8YMZs+ezdatW+nZsyejRo3ixAnXZuDvv/+eG264gWnTpvHTTz8xYcIEJkyYwPbt221j5s2bx4svvsjChQvZuHEjsbGxjBo1iqKiIgB27dqFxWLhtddeY8eOHbzwwgssXLiQRx55pML7lZaWcsMNN9i+55CgsiJJwK+/Qv/+8PpHg5yOHzvhnUD4+WfIK1TXNIhVFoSNGyHHhxjA0mzlXtiT1RljhItUy3LuAbcCQXcvhEVVDHQMi1Rpfw73CUnKCuHg+7BmuGryYoyES1ZAy3HVu68uEMwFSnzUdgKZxQASqCi4xl99GBzRLQhl56G0mvnifsRrgVBQUEB8vPpQWL16Nddccw1Go5GLLrqIQ4cOeT2B559/nttvv51bb72Vrl27snDhQmJiYnjrrbdcjv/nP//J6NGjefDBB+nSpQtPPvkkffr04eWXXwaU9WDBggU8+uijjB8/nh49erB48WKOHz/OihUrABg9ejSLFi1i5MiRtGvXjnHjxvHAAw/w0UcfVXi/Rx99lM6dOzNp0iSvv7egUUmRpHffhYEDYe9eOGnugwWT7dzh4/GYvSgc9/PPkFuoXAwm8ujZU1nuV63yYc6nlXthR6aL+AOwm/PK8irvx+DOvWC7T4jGIWga5HwPG++Aj5OUW+FkBoRFw7BPocWY6r9HuEMFqlBwMwTSggASqCi4JhC/d6Y4ew2aWmRFCPf2gg4dOrBixQquvvpqvvzyS+6//34ATpw4QYJjiTsPKCkpYcuWLcycOdN2zGg0kpaWRkZGhstrMjIymDFjhtOxUaNG2T78Dxw4QFZWFmlpabbziYmJDBw4kIyMDK6//nqX9z137hyNGjl/qHz99dcsW7aMbdu2uRQP5SkuLqa4uNj2Otfav7i0tJTS0tIqr68M/foq72MuJjz/MAagNKoNWMcXF8Nf/2rk9dfDABg50sLbb4fBz73g9CYATufF8+uvpVx4oWdz2rYtjLwiJRa10jxGjzbz889hfPaZheuv965EbXie6iy552QfN99jLOGGcAxaGaXnjxMX1xoI48wZC6Wl9vcyFGQTDmimhpQ5rLu+DYtoipG9lOUfR6vmz6RGKDiC8dB/MR5cjEG3DAFaTFssbW/C0vYWVfnPT99LuCkRQ+k5SgtOUBqtfrbV/d31Gs1MWMb1YDBhvug/rgPBzMWYrPU7SsMS/fb9O2KI7UQ4YDm7E7MX9/f4b1VwIlTWzViYTRhgNjXC4se5hkclYzi/j7K8I2hRbby61pu182Z9vRYIs2bN4sYbb+T+++9nxIgRDBqkzNSrV6+md+/eXt3r5MmTmM1mmjdv7nS8efPm7NrluoJZVlaWy/FZWVm28/oxd2PKs2/fPl566SXmz59vO3bq1CmmTp3Kf/7zH4+Fz9y5c3niiScqHF+9ejUxMTEe3aMq0tPTKz0fZznCCDRKiWblms1gMHD6dBT/+McA9u1riMGgMXnybiZO3M2PP0K34ua0t16bVxTPW2/9yogRR6qch6bBli1XYDArFW0wF5Dc+AvgSlauLOOzz1YRFuZ5IOCw/I1ggh2ZHSvElOiMIp4ozvDdmo85cGAY0Jfffz/JypV2MZlS9i39gVPn4TuH++jr1r/IQgqwY8taDv4S5fH8apqG5l10Kl1Oc/MWDKh1LCOK4+GDOBx+Gae4EA4Z4dBOwH9tidPKIokFMtZ/wZkwVU2wqt85f9PI/BuXFH0CwE+fteRo+PAKY6IspxkFWDCyMv17/0WTO9DQfIqhQHHOz6x28ztZGTW9bnWF2r5u/Yp+oQWwc/8Jfj/s/e+FO4YUmmgM/JTxBcfDfStd78naOSYZVIXXAuG6665jyJAhZGZm0rOnPZhsxIgRXH311d7eLugcO3aM0aNHM3HiRG6//Xbb8dtvv50bb7yRoUOHenyvmTNnOlk3cnNzadWqFSNHjvTaulKe0tJS0tPTufzyyzGZTG7HGY5/Dt9BeIMLGHP5WABuuCGMffuMNGqk8c47ZkaNag9WWWA4ch5++BxQ8QSlpT0ZM6Z7lfM5dAjy802YTCYssR0w5u/jzklGnnxG49SpCBo0GMMll3goEIpOYPrsBBaLgfPhQxgzxrWYCl/dEs6dYUj/Czhj6MmCBRAe3oQxY+zmdeP+o7AVGiW1Z8zFYyqsm3HL/+D3H+jWoRldL/SDWd6faBqG7K8w7noGY84G22FL02FY2v4BreU1JIfHkRzAKYSnJ8PZEwzu14WSJiM8+p3zN8ZfvwPr80GfsBX0GPWkvbOnztlfIB0MkU0YM/bKwEykZDB88jDR2inGXD7E3rm0Cir9Wy05Q/iai9ESumAevNzzKpf1AE//xwWbsHULIAe69B5K59b++x8SlvEuHP2NPl2S6dXRu/t6s3a6ZdsTvBYIAElJSSQlJdne7Ouvv+aCCy6gc+fOXt2nSZMmhIWFkZ3tnEaUnZ1tu7+r965svL7Nzs4mOTnZaUyvXr2crjt+/DiXXnopgwcP5vXXX3c69/XXX/Ppp5/arAqapmGxWAgPD+f111/nttsqVqiLjIwkMjKywnGTyeSXX3iDZq76XoUH1diEjphMJnJy4NNP1anVqw307VvuR97cHnyZW5jAL5vDMJnCqpzLTutDa5cuBoxN+kP+PiLyfmL06DH897/w5ZfhXHaZh99YjmpQsierExGxibj99qKbw7lfCS87Q+PG6vvIzTViMjk8PZpVUIIxqglGhxvZ1i1G/X6ElZ4irLb8E9IsqtXrzrlw2loLwmiC1Fugy4MYEzrVXMESa+2IcEsemnV9/PX76zGZX1h3DBgKDmI6tAguuNd5jPmsGhHVJHBzMzVV0eVFWZgK9kOTAd5d7mrdDn0K5/dhOL8P4+lvIGmEHydcN6jx3zdvKVExCOExybj/Z+UDMSkAhJXk+Py/yZO182Ztvf6/M2nSJFtAYGFhIf369WPSpEn06NGDDz/80Kt7RURE0LdvX9asWWM7ZrFYWLNmjc11UZ5BgwY5jQdlVtHHp6amkpSU5DQmNzeXjRs3Ot3z2LFjDB8+nL59+7Jo0SKMRuelyMjIYNu2bbavOXPmEB8fz7Zt22reUpK9lrCvh3FhydtVj7UFKKoMhnffVe7Z/v2hr6v4v5hWtgjavKJ4fv5ZxStUxc8/q23PnkDj/urF6U2MVUYL79IdrQGKWw70pVJDi0MtBLd1EGx9GMo1arLdw49BipoGRz/zPXfZYobf34H/XQjfXqfEQVgMXDAdxv0OA99Q+fg1SbBrIeQfgnPblcug59/Vse1PVmwnHugARR1/ByoecfgfuWOuf+4p1CyB+t2rhdUUvRYIGzZssKX8ffzxx2iaxtmzZ3nxxRd56qmnvJ7AjBkzeOONN3jnnXf47bffuPPOO8nPz+fWW1WZ2ClTpjgFMd53332sWrWK5557jl27dvH444+zefNm7rnnHgAMBgPTp0/nqaee4tNPP+XXX39lypQppKSkMGHCBMAuDlq3bs38+fPJyckhKyvLKUahS5cudOvWzfbVokULjEYj3bp1o2FDP5XX9JSyQoynMmhVtlb1WagMhy6Omgb//rd6OW2am/EGA3S8Gy2uHb+dHExpKfziQcdRJ4HQyCoQTm1i1CgwGlWNBI+TWqxPzR4LhOKcqtMc3WYx6Pfwg0DIXAUbxsEP7ha3CrY/AT9MVR0DTQ2g22Mw/hD0fUFVugwGwa6FcMyqLJtcDF0eUEK3OAd2Pe88LtApjjoJfhQIJWch2/rgYjCq/VObqn9foebQtMBV8KyF1RS9FgiO0f6rVq3i2muvJSYmhrFjxzoVI/KUyZMnM3/+fGbNmkWvXr3Ytm0bq1atsgUZHj58mMxMu6IaPHgw7733Hq+//jo9e/Zk+fLlrFixgm7dutnGPPTQQ9x7773ccccd9O/fn/Pnz7Nq1SqiolRQWnp6Ovv27WPNmjW0bNmS5ORk21etJHkUWkxrIjiP4WgVVhqHIkk//KBcAdHR4CZ5Q9Ht/zCM20/LjupDqYo6VUB5gdBb/cMrPE6jqOMMHqzOeWxFOKMsCFsP9qlcIDh0dNQFQnFxOYuHuzLL5e/hDwuC7g44sRbMHphdynPoA7Xt8gBMOAQ95kBUgJ+Iq8LUQG2DZUE4puJhaDFWuVl6WB86fpvv/DMLZKMmR/xZC+HY56ryZWJXaHOTOlabrAiaBt9eD+mXVP0gUl8pPWcvxBYoC0ItqqbotUBo1aoVGRkZ5Ofns2rVKkaOHAnAmTNnbB/A3nLPPfdw6NAhiouL2bhxIwMHDrSdW7duHW+//bbT+IkTJ7J7926Ki4vZvn27U5AaKCvCnDlzyMrKoqioiK+++opOneym2qlTp6Jpmssvd0ydOpWzLjsD1QDGMCypKubB+Pub7seZS6DA+tge39FmPZg0yV5YqDIGWF2sm6p4qMnLg/371X7Pnqj83URrbqS3bobiU8qsDPx0sHcVAsHuYoh3qOnkZEWoqg6CP10MujvHXOT9k2BhprreYIQLH/U4AC7gBNPFUJYP2V+r/RRr4GHr61RvjrLzsOMf9rGh6GLQ3QutroWuf1P7Rz+uPYWYcr6Bw0sg51s4+UOwZ1M70YVpeJwqxuZPomtfNUWvBcL06dO56aabaNmyJSkpKQwfPhxQrofu3auOfhd8w5I6FQtGjCe/g7M7XA/KP6AC3sJjySttzgfWB1S37oVy9Ld6CqqyIPz6q3rYSEmBprqVzcHNoAuEr7+GKjNqrE/hx/I6kluY6GEMQg5hYdhEgpNAqNLF0Mw+zlJWxeSqIM/BYnZivXfXZlvHN+gFER6ot5oimAIh62uwFKu6Dold1TGDEXo9rfb3vgrnD6r9mnYxnN/vm5VIp/S8ckmBEggNLoSW49Xrnc9Ub47+Yvc/7fsnvw/ePGozgez/EaXHIJyo/v8mP+G1QLjrrrvIyMjgrbfe4ttvv7UF97Vr186nGATBQ6JTyA6zfgjvf8P1GIf4g6XLDOTnQ6dOMGSIZ2+hC4Rdu5SVwB1O7gWdxnaB0K0btGqlGjCtXVvFm+aof0S7svsBeOhiqKTcclUuhohG9px5/UPGV/T1Bjixwf04V+iCotmw6s3B3+gCIRi9Ko5b3QspY53T/5LSoPkIsJTAL7PUsUD+o3YkOllZdzSLsyD0lswvlKUprj006KGOdbXGVh38L+Qfrv5cq0P+IVW2WydHBIJLAilMI5tY/zdp9t/vIONT9lS/fv24+uqriY2NtZnlx44dy8UXX+zXyQnOHAwfpXZ+f0fV4y+PQwaD7l647TbPU62bN4fWrfUiSO7HVSoQTm/GgOa5m8EatJXx+6VAFQLBwYIAdoFg8/xU1slRxxhm/1Cpjpuh5JzzH/HJ75R/2VN0gdC8tgmEBmpb0xYETbMHKLZwUddAtyIc/A+c/bXmXAwGg0OgouvibR5xxFqJtdU19j/IJgOh+WXKp/3bfPfX1gR7XlEiSA+OPZlRdzqe+pNAdHLUMYZBlLXAXy2JQ/BJICxevJju3bsTHR1NdHQ0PXr04N133/X33IRynAjriRbTRj3dHV5WcYD1ifZkSQcyMiAsDG65xbv38MTN4FIgJHYHY4R6gj//u5NAcPt/pvS8zdf59U6VD+5RDEJZHpiLKloQzIXKRA3uBQLY4xCqk8mgi7GoZuqpuywfTv/k2bVFJ6w+bQM0rWVNwILlYjj7MxQeU2mezYdXPN+4H7SeCGiw7ZHARZK7IsFa38XXWAFzkT34slW5bpsXWq0I+9+0+7drmrJ82Ge1SvZZoHzrJachb09w5lObCbQwrWWZDF4LhOeff54777yTMWPGsHTpUpYuXcro0aP585//zAsvvBCIOQo6hjAs7awFmva/XvG8tVb/1z+qJk1XXglu6k25papARbNZxSAAONWdCouAhtYDpzZx2WUQFQWHD6uUR5ec2KCenmLbsv1gO6AKgWBqAAZroaeinIq1EIpPqa3RZG984gp/ZDLYrDWd7B/ynsYh6O6IBt3du0KCRbAEgv4BmpTmPvirx1NgCFOuiMLj6ligLQhQ/UDFzHQVZBnT0m5p02k+Ahr1U+LWMQagJjnwH/XQEdcOWk6wxxOJm6Eigejk6Egtq4XgtUB46aWXePXVV3nmmWcYN24c48aNY968efzrX//yqd2z4B2WtlPVP8kcF8GK1g+t/3yiiiR5GpzoiG5BcCcQ9u+H/HyVOtmxfDdp/R/L6U3ExMClymvg3s2g54QnpaFX/6xUIBgMDnUMXNRCcAxQrMyv4heB4NBSW48j8DQOobbGH4BDDEIuaN413KoWlbkXdBI6Qftyv9Q1IRCqWwtBz15oeXXFnhEGg92KsOdlte41iabBHuv/7U73KjN3U2uesgQqVkQsCJWTmZnJYD3R3YHBgwc71SsQAkR0MrQYp/b3vWY/bi6B/IMAbN7dgeRkuOIK72/ft6/6n3XoEJxw8fmpuxe6dVMuDCccAhWBquMQspRAKG08wlbLoMqWFQ5xCJUKhErv4T8LwqLlHUn/xdqvI+cbVR2xKmqzQNDrIIDK+a4Jik7AqY1qP6WKGvTdZqsW16C24f5pglYpNoGwW/npvcFSCsestc7Luxd0Wk5QbozSc7B3oc/T9InsNXBup7K4tVPF6WhirTgrAqEigYxBgFpXC8FrgdChQweWLl1a4fiSJUvoWOGRUggIHf6ktgfehTJrHmH+QdAsFJXFkHk2mVtugXAfOm0kJIDeUsOVFcFl/IGOLhDObAWL2SYQvv8ezpS3WBflKL8zkBttb9rgWN/AJQ6ZDBUEQnEVGQwu7uEzVoGw8psOPPHPXhAer/7Bn62iDGXRSRVkB9DM80ZgNUZYhIoDgJpzMxz/AtCgYW+IaVH52JgUuOA+tR/oFEeduFQVX2MutNXs8JjsdWodo5pBUzfpRAajvS7CrhdqtkjRbqv1IHWqPd1WFwjndgavomZtJdAuhqjaVQvBa4HwxBNPMGvWLEaPHs2TTz7Jk08+yejRo3niiSeYM2dOIOYolCf5cpUr7hisaDV57z7eATDgopeUx1TmZqhUIMRfoAqIlOVD7m+0bQtdu6q4hdWry43NtuY/NujOuWL1gR0T44Go8YcFwSoQLAUnGDIELr5Y9avwCmu8x97sjhw9Hg5NrRk8VbkZcr5R28SuNRNg5wtWN4Ohpj4cjnvgXnCk68MqYPHCRwI3J0eM4SrWBLwPVLS5FyYo87072tyo+qIUZcHvb/syS+/J22+P/XBshhXVDOJUHJMUTCpHoF0MoW5BuPbaa9m4cSNNmjRhxYoVrFixgiZNmvDjjz+GZLvnkMRghA7W1tS6m8H6gbUvqwPDhrmID/CCyjIZdIFQrjGmwhimqt5B1W4GPf6g+QjP4g90XJRbriAQ3DVqKnePU8dO8N13ysLx7bcevLdOyVnbP4p9WR3IzATNFodQRaBibXYv6NRkLQRzCWR+qfZTPBQIEYkwZCl0/FPg5lUeXwIVNbOqlAjQ8prKx4ZFqJLbADvn1UyhnD0vAxokj4aEC5zPSRyCa4oDHaQY4hYEgL59+/Kf//yHLVu2sGXLFv7zn//QokUL/vGPf1R9seAf2t2mIvpPZsDZX9Fylcl7X3YHn4ITHXHMZHBMUTx9Go4cUfs9eri52KGzI6hMCoDPPlOFk2xkfaW2SV4KBIeOjhXqIFRVA8F2DyUQis7ZXQwrVnjw3jpW90LmmSTyi+MoKYHcSD0OYUPl+eMhIRAaqG1NuBhyvlWBeVHNVCpjbcWHQEXDyQwVX2FqAM0vrfqC9n9UT6b5B1ynMfuT0jz4/S21r7tsHNHdDJLJYMdcpLJRIHA9UxwtCLWgDoXf2sxnZmby2GOP+et2QlVEJ0FLPVjxdU4dUhaEo+c6cq2bWChP6dlTtTk/eRIOHrQf160HqamVfJg3cg5UHDJEVVU8exY+t1ozOX8Qzv+usjGaDfXSguBhFkOl91ACoWG0XSB88okXf495dveCzpH8fiporviU8t26ouQMnLEuYq0WCDVoQdBN3CljKkb41yZ8aNpkOKZbD8YpC0FVhMfYP6z3vurlBL3k93eUMIvvBMkjK55vYrUgnNroWeBtfUB3LxjCnIN5/Ykeg2AurPmMFhfU4r9IoUocghUN57YD0K5nB2KqGdgdGWm3EDjGIVQaf6CjWxDO/gzmYoxGuPlmdWjxYusY3b3QeCCYEry0INgzECrUQaiqzLIVzWqFiIvK56EZ+cTEqKwN/furCovVWrM3qyMmkzp2LCvC4anLTRzCiW8BTf1TjvayQEVNYotBqAELgh5/4Kl7IVgkWiN3c3/zTElqGka9dHGrKtwLjrS5QW1P/WAPQPY3mgX2vKT2L/iLa2GWeKEKvC07D9b/LfUexw6inpan9ZbwGHvjtlrgZhCBEMokpUFsKpSeo3H0UQBGjO/gl1u7KpjkkUCIbatiACyltoj+P/xBnfriC2vqZJZe/0BVT/SbBcFDF8O6b+MpKokE4IF7c7A2JPXYzXDqgBIIR852ZKjVs5CZid0qkO0mDiEU3AtQcxaE3D2qWp/RpAJvazPxFwAGZQXyoE5+A8teDIVHVPpgkosndHfEtYPoFurvJ1ABgplfqnU3JUDqFNdjjGHQ5CK1L3EIippqEGarhRD8QEURCCGGxQI7d8K//w1/vN3Igs9vt50rLI2m+4AUv7yPq0BFjwSCwVDBzdCli7pfWRl88IHmFKAIXgoEP2QxzH3awIlcZYloGneCCRPU8U8+8eD9gaKTSiAkpHSgdWt17Phx7B/87uIQQkUg6ObTQGcx6NaDpkNrT7trd4RHK/ELHrkZUszWD/eUsepaTzEY7KWmve0Q6il6amO7aWCqJK9Y4hCcCXQNBB1bHELwLQgeZ8rPmDGj0vM5ObWj+1Rd5Lff4L33jHz++SBuuSXcqXth88RbufuSWZjCyyiLao/B6B/Np1sQtmxRaYoWi71ksssMBkca91etbU/bzQ9/+IOyRny3cjt/mXJC+eutTyg+ZTGU5ZEYVwREUVKiAiCjPHAxbNkC6elwYlgzWjc5AsU5XHklGI2wbZuKuWjbtvIpxKNiEDr07sgpa7n6zEyg8QCVL1+YqeIUEhxSSUpzVX0IqH0NmspTUy4GT6on1iYSu6gAwtzfKv8ZahrJZRlq311xpMpoNkx1eDyxzqdpVsq5Xda20wa44J7Kx+pxCCcz/D+PUKSmGoTZaiEE34LgsUD46aeqG9EM1e2tgl/Zvh2eeioMsNcL6N8fBg2Ciy5Kwhw7AdOJ5cQn+8e9AKpYUmysKqu8a5cSCCUl6kO8qg/Q8hYEgOuvhxkzINlgtR40vQTClJnfK4FgSlQmaUsp8aYcDIZWaJqyIkTpvRgqsSA8bW0KGB5rj2Vo3AIuuQTWr1dWhPtcBHXrZB0+Q1K0ep+LRnbgiDWo+fhx1JNi44Gq1sGJ9c4CIec75fuNa2fvmFdbqQkXQ2mu/Qk5VARCQhc4vrJqC8K5X4nTMtGMkRhSfChnqluYTm5UkfPuelP4wp6X1bbFVep3sTKaDAQMcH4/FGZDdHP/zSMUCXSRJJ1QtCCsXbs2kPMQKmHwYLjxRgtxcb8ybVpX+vQxORcUOvckbDoJnap4IvCCsDBVdnnDBuVm0IPxevTwID5HD1TM/U11bDTF0bQpjBkDIzo6xx+AlwLBYFAKvjATY2kO8fGtyM2F3DOFNDdbW2C7EQh79sCH1ro1bTo1g7PYqilOmOCZQPhxzV7GRULO+WSaJceSYvXoHLf2DqLZUKtA2AAd/mi/MFTcC+DQsOls4N4jc7Vq1BXfCeL9J2wDioe1EIzW7AUt6XIMlZnw3RHfUX1IFGaqOARX3S19oeQM/L5I7V/wl6rHRzRQwYrntisrQqsJ/plHqFJTFoRoiUEQvKBFC3j7bTNjxhykd28X1QYTO0PaWqcPXX/gGKjoUfyBTnSSekrWLHazOnDLH8oY1kV9UJqb+igQwCmTQY9DOH/aag43hLn1Z8+bp0IDrrwSGiY792MYP1693LABTp1y/9a//6zcC/lGZR1Itop9WxsSdwWTskNJIDQAwBBIC4K31RNrA57UQrCUYjyyXO228LFwnMHg/veoOux7HcwF0KAHNL+s6vHg0JehBtwMmoU4y5Fakf/vkkAXSdKJ0js6Bt+CIAJBcItjoKJXAgFcuhmuHLyJhOg8Tp9vyNptvWzHvRYILjIZCs/pAYoNXZo4jh61p1nOnEmFjo6pqco6Yja7by5VWgoF2SpAMSZJCQTdgpCp1zVpMkiJlILD9rr9ZflwerPaDwmBEOCWz0c/hUMfqP2UsYF5j0CgWxAKjqpCQ+Uxl8C3kzDk7aaMSLTqpG42G6622et8v4cj5hJ7cGLnGZ6n6dVgRUXjb/9gROG9GA4urnpwMKixIEWxIAghgC4QfvkFtloNAVUGKOo0rigQIk4r98LXOy9j8bv2uvTVsSDotRCO7q88g+HFF42UlsLQocpl46qjY1XZDN99B60bKoHQpK0yiydZ/5ZLSlSlSUxx0MhaEVC3GuR8r8zpMa0hrq2H32QQcYxB8PfT3L7X4ZurlW+9xTj/mc9rgoiGEGX1w+fucj5nLoZvr4OjK9CMkWyKfNC+jr6gC8lTP6h7V5fDy6DwuAqAa3O959fZCiZtUiIjUFjMGPe/DthdNLWOGnMxiAVBCAHatoUmTdST86lTKtK/WzcPLy5XchmwlVdes30EH34I560BftWxIKSmqt333lYCocBcUSDk5pp44w31q/7ww/o9KnZ01AXCqlVQWFjxbf/3P+iQpFwMRmsAYkSEWiNwjENwSHeE0Io/AHsWg2YmHD91FtQ0+PUJ+PFPyvXU7ja45MPaXT3RFTY3g4NAMBfBhqvh2GcQFoX54o84EV7NstEJFygxYi6CUy6aoniDpsGu59V+p3tswcEeEd/RWtekGM5UHajuM9lfY7B+IBpyvq2ZXhTeUlNBinoWQ/HJwIoyDwixv06hJjEY7FYEgE6dINrTlG79Kfr876r8cFmBzY+57/wICgrgo4/UEF0g6O6CKnGohfDSSzB9OjRNUAJh7feNuesua0EmK198kUp+voGePWH0aOvBqIoWhF69oHVrKCiANWsqvu3KldCxubIgEG/PUNDjEJwCFcFuQdAFQm1Pb9QJi1aZIoBJO1/9+1nKlDD49XH1uttjMPBN1SUx1EiwVlTUMxnKCmH9eMj8Qq3bsM/RkvxQ9MkxDqG6boYTG1QsUFi0vfqqN/No7GEcQmEmrL0Cdr/s/RwP/sf+lmW5cGab9/cIJJoFSqzBSYG2IEQ2Vn12oHot6f2AxwJh3rx5FDo8Vn333XcUF9tNX3l5edx1113+nZ0QdBwFgsfxB6AC3fQP0VObVVMeSwnEtGToWHVcjwnw3oLgHKT4wgvwj8eVQDiV14hXX1XdLJ95Rlk+Pv9cpXM9/LCD69VRIFjN6AaDPVixfFXFgwch89BpGsdbXRnx7W3nHOMQAGg6BJUetk+11NWfAEPFgmAw2KwI1RYIZQXwzbWw/w3AAP3/BT3mBK5UbaBxzGQoK4D1V0HWalUxcfhK/wYK+ytQUbcepN7iW5MhT+IQLGb4/iZVY2HbQ/aqpp5Qlg9H1NNCgcEq/gNRA6I6lJxRIgECLxAMRrsrK8hxCB4LhJkzZ5KXZw/MueKKKzh27JjtdUFBAa+99pp/ZycEHT2TAbwUCGAPVDy9yV5eufkIbr5ZfTh8/bX64M3PV6c8j0Gwuxh0dAvCZaMb0aePEh0PPwwdO4aTlxdJ+/Ya113n4h5amVO+vy4QPv1UBSzqfPEFdEyyWg+iU9QHgpUKqY4RidCwl9r/7VkljKJTIM4uKmo9ukCgGgKh+DR8fTkc+xSMkXDJcuh4p58mGCR0F8OZn2HdWFUVNDwOhn/h/3gK/X4nv/fd1Jy7R7k+ADpP9+0eehxCznfuY1J2/B2yranw5kLY/2/P73/0Uyg7jxbbjt9N1qBVfwVn+gs9/sCU4FnjrepSS2oheCwQtHK/GOVfC3UTRwuCxwGKOo6Bitn2+gepqSpYUNNg4UL78HhPU8ajKgoEvcxyy3aN2LRJWSdatIDz55UYmTHD4pweGhapii6Bk5th6FBo0ABycuAHh1L4//sfdGi+zzpRhwJIuEh1BPvTn95St9mw0HpqNukWhHzvr9U0ZSJOH6I+3EwN4LJ075oW1VZ0C0L+AfWUGx4Pl34JzS7x/3sldFFC1lzoHMvjDbv/CWiqGVbCBb7do3E/lZlTeBwKjlQ8n70etj+h9vXMjb2veN4F8sC7AFja3MBJY3d1LOeb2tVFsqbiD3RqSTVFiUEQKqVZM/Wh2awZXHSRlxfrAiHnGzitlxlWJtgp1h4xb76ptpGR6ssjXGQgOPZhMBpVaec9e+Dvfzdz9dV7ueUWS8X7uIhDMJlUnQSwuxkKC5W1w2ZBKCcQKlgQwB6HYCm1vg4R94KOtRZChKcCoaxAtW7+8U74pC180VuZ4WNawuXfBuYDNBhEt1CiAJTAvCzdboL3NwaDQzzLOu+vLz5tL4zU+X7f5xEea7eIlY9DKDoJ39+ozO+pU2DIUuVDzz9kt1xURmG2ctEAltY3cM7YFs2UqCptnt3m+5z9TVG22taUQAg1C4JQf1m9Gg4cgIbeZm017K2ePErOAJp6IopRn6bXXQdRUfaiRB67F8BuQSg7r6K8we7zdOjDEBMDDz5o4ZZbdhLhyiroQiCAcxyCpqkKi4WF0LOdLhCcK/9VCFIEVUrakZATCB64GM4fUAFpa8fAh42VP37fQlUDIiwKWo6Hy7+HBhfW0KRrAINBfRDGtoHLvrKWIw4gej0EX+IQ9r2mrA8NekLzS6s3D5ubwSEOQdPgh6nKspBwAfR7RZUbb2+tIKq3lK6Mw0tAM6s+JvGdwBCG1uRida62uBny9sNWay+icg8HAaOW1ELwKoz4zTffJC4uDoCysjLefvttmlhzvBzjE4S6hcdP9uUJj1GlWq1tnx0DuBITVVrhB9Z6OV4JBId+DBTlQGwre4RxFZ0cnbDFMjgLhFGj1Pe8b59qlKUXTurV3rWLoUKQIqhgsMRuqkxtVHPfzbvBonyQYmGmCjY9vUV9ndlS8Z9XTGtoMVYVP2p+qfr510X6vwzaSzXjMtIzX3K+U7/v1uySKjGX2D+gvSmM5I4mg9X9HAMVd72gKmIaI+HiJaoGCEDHu1TsTfbXcHZH5QLxgDV7oe0fbIe0psMgc6USCF3+Wr1561jKYM1lKh7oordV9VlPyN2tris8rgRMr7n+mU9V1JJaCB4LhNatW/PGG2/YXiclJfHuu+9WGCMITjTubxcIzZ0jvKdM8VEgGAzqw73wuPpwj21ltyB4IxDcWBDi4yEtTQmDjz9W6Y0ALRJcuxgcYxA0zeF/cbOhSiA0Gxpa8QdgczG0Lvua8M/auPaFGsKg6cWQMkaJgsQLQ+/79JWa+j4TL1Qm++JTSqA1HeTZdYeXKAEXnexdYSR36O97ZptyJ53bAT9bi4r0eR4aOkQwx7aGlhNUZsKel2HAq67vmbtbxVYYwqDNZNthS7NhhIGqI2IxgzHM9fXekL1WuToBvuwH/V+D1Jsqv+bsDvh6hHIvJHaFy9bYn+wDjV5uOVQsCAcPHgzgNIQ6S6P+KqLZYKwQ5X355dC8OWRneykQwC4Q9OAhD1o9V7yHLhAqtiofP14JhH/9S7kOkhqeIgJr6eFy2Qjlqyk2bmw90fVhKD0HFz7i+ZxqCbmlKSQA0dopKEL9/BK6QKO+9q+GvZyyOYQAYDBC06Fw9GPlZvBEIFQojOSHqPuY1ioTp/C4ykjaOl1ZNFpd6zozpdO9SiAcWAy9/uG6quTB/6pt8mjlNiy1xus06KmyBfQ4hEZ9qz//w0vVNjxWpVVm3KzWs+8/lVukPGd+hq/TVPZCg54q1iTQJZYd0YVIkC0IEoMgBJbkkRAWo6KbrU+lOuHhcJNVxDdoUOHKynF8+jeXqHgE8M2C4KIYyVVXqYdEPa5g4hV6imOLCqbzyEgX1RRBWTYG/0c9fYQQZWVw3UNTeGzZHP757ROUXboeJubC2O0w6B3VCbDpxSIOagpbPYR1no0/sU496ftSGMkdBoM9DiFjiiqAFttGFbxyZU1pNky52MwFsH9RxfOa5uBeuLnce4UpUQT2YmPVwVJqq7PAJR9Dt1mAQdXmWD1QWTIcOb0F1lyqxEGjvjDi65oVB+AQpJgZ1OZVHguEjIwMPv/8c6djixcvJjU1lWbNmnHHHXc4FU4SBADiUuHqozBkicvTDz8Mt9wCDzzg5X0dayHYmgoZ7KmLnuDGxQDKKjDI4WFtzBDX8Qc6LgMVQ5Q5cyB9bTxPrXiMV7++B63JIBEDwUS3vOV851kJ4t+s1oN2U5V7wl/o2RqlZ1Wlv4s/qCD6bRgMcMG9at9VyuPJDJUqGh4HLcdVvF7/nv1RMClrjbIwRjVTXSx7PAGXrVavz/4Kq/rBwfet8/oB1oxQ/1MaX6QCUb2xSvoLvVCSpcSpTktN47FAmDNnDjt27LC9/vXXX5k2bRppaWk8/PDDfPbZZ8ydW0MBHEJoEdFQRbW7oGlTePttGDLEy3s61kKwpTg28M5fWYlAAHs2A0D/zq7jD3RcBiqGIGvXwlNP2V+fPOlpbW0hYDTorv6Gys7b04Xdkbsbjlsf5C6Y7t95NHFQzD3/Dk2qyHtue5Oa9/nfVSlqR6y1D2h1retgVpvVZEP16yHo7oVW19n/PySlweif1PuUnVepmt9OVoW9Ss+paqiXrXYvgAJNWJTdLRPEOASPBcK2bdsYMcIeZPbBBx8wcOBA3njjDWbMmMGLL77I0qVLAzJJQaiA44e7TSB4+bQU6d7FADBxokqV7NcPGkW4TnHUqQsWhJwc5fLRNBhnfag7fTrK5hoWgoTBaK+HUNkTtaXMno7X4ipI6OTfeTTqD21uUFkKXTww+YXHQvtpal9vNQ3KJXjYalFMvbnidaDiW0wJ6sP67M++z9lcAkes3SFbT3I+F5OiLATdHgMMSkiUnVdWhktXgcnTym0BQi+WFMRaCB4LhDNnztC8eXPb6/Xr13PFFVfYXvfv358jR1xU2RKEQODQsMlVDQSPsMUgnHLZUjc1FXbvhvR0MORV7mIIdQuCpsHUqWr+XbrAf/8LkZEammbAoaK6ECyq6sugWeCH2+D4SpV22G2W/+dgDIOL34P+r3jehbPjXYABstLhnLUDZuYXyoQfnQzN3NRnMIbba4lUpx5CVroy0UcnW3ukuHifHnNUNcy4dsrKMOzz2uFSiw5+JoPHAqF58+YcOHAAgJKSErZu3cpFDqX18vLyMJk8zNEVhOoS6crF4KVAiGxsV+mH3nc5pGVLaJCoQZ5nLoZQtSAsWKDSOSMjYckSiIuDVq3UuSNH6knqYm3GJhC+qRiHoGmwZTocfFcF+A1Zpsoj1wbiUpU1A1TKI9iDE9vcWLlL0B9xCK7cC65IvhzG7YdLlrnOaggGUcHPZPBYIIwZM4aHH36Yb775hpkzZxITE8Mll9irxf3yyy+0bx9CzWiE0Mali8FLgWAwqiIyADv+4d7XWXzKHigU187lEJf9GEKEzZvhb39T+wsWQHdrOfxWrVT09OHDwZmX4ECDnioAtyyvYivkXx+3F0W66G1oeVUNT64K9GDFA+9A/mF7CWZ37gUdWxVJH+MQzMVwdIXaL+9eCAVCyYLw5JNPEh4ezrBhw3jjjTd44403iHCoX/vWW28xcuTIgExSECrgaEHw1cUA0PHPSljk7YUjy12POW91L8S0dFsdMFQtCLm5cP31KgX92mvhTw5ZcWJBqEUYw+wmd8cn6l0LYPsctd/v5ao/dINB8xGqhkbZedX621KsUiAbVNEe1ikO4Rfv3zfzS1VLIbpF4PplBJJaUAvBY4HQpEkTNmzYwJkzZzhz5gxXX3210/lly5Yxe/Zsv09QEFzi2I+h0Ook99aCACoQ6YL71P72p+w93x2pwr0AFasphgKaBnfeCfv3Q5s28MYbzintugVBQotqCbrJXa8NsH8RbLU2YerxJHS6OyjTqhLHlMfTm9U29eaqq1Eaw+1xA764GXT3QuuJnsdM1CZqQTVFr1ctMTGRsLCKvpxGjRo5WRQEIaDo/RjAXujEF4EA6p9XeLwqi+yqA50uEOJcZzBAxWqKocA778B770FYGLz/fsVmXK1b6wJBLAi1Aj0OIecbOLwMfrQ2Rer8V7jw/4I3L09o+wfnGiVtbvTsOt3N4G2gYlkhHP1E7YeiewFqhQXB41LLt912m0fj3nrrLZ8nIwge49iPIdcaHe1rQZOIhqok7c65sP3v0GKc89ONBxaEyEhVYvnUKeVmaOxlxmVNc/Qo3G194HzySeeiUDotW6qtCIRaQsNeSsiWnlM5+2gqjbD3s7W/B4YpDtrdCrsXqA/92FaeXWcLVPSyL0PmKmVdjGlddb2G2kooxSC8/fbbrF27lrNnz9rcDK6+BKHG0OMQfA1SdKTz/ao07elNKjXKkSpSHHVCKdVxzRooKIDeve0BiuURF0MtwxgOzfTAcE1F5vd/rfaLA50eT8CFj8KAhZ5f07C3VRSd9S4Owcm9ECLrUx49i6HkjMs07JrAYwvCnXfeyfvvv8+BAwe49dZbufnmm2nUKAglKAVBR89k0KmOQIhqqurW716gYhGSrQG3WtUpjjopKfDrr6ERqLhzp9pefDEY3Twm6EGKubkGzp1TLbqFINNinKp1kDRS9fnwR6fDmsKUAD2f9O4aXRQdX6niEBr1rvqasgK7qzBU3QugLJvGCFVuuShL9b6oYTy2ILzyyitkZmby0EMP8dlnn9GqVSsmTZrEl19+iRYqUVlC3UK3INheV1OwdnlA/UHmfKNMmqAatpSeU/tuUhx1Qqmaoi4QunRxPyY2FuLj1ZOLpDrWEtr/EUZvhuH/g7DIYM+mZrClO3rYuOn4StWxMbatajcfqhgMQa+m6FWQYmRkJDfccAPp6ens3LmTCy+8kLvuuou2bdty/vz5QM1REFzjTwsCQEwL5ScFFYsAdvdCTKsqC6iEkotBFwhdq2g02bRpISACodZgDFMdBo0eG39DH8e+DK6yjMpjcy9MCl33gk6Q4xB8zv0wGo0YDAY0TcNsrmYzDUHwhfItWF31nPeWrn9T1eiyVsOpTR67FyB0LAgFBWAtilqlQGjSRASCEGQa9VFdH0vOVB2HUJYPx6zNqtqEsHtBx5bJEAICobi4mPfff5/LL7+cTp068euvv/Lyyy9z+PBh4uLiAjVHQXCNo4vBlOifp6q4VHt/+h1/dxAI7lMcdULFgrB7twqtaNxYddOsDLEgCEHHm74Mxz4HcyHEtYeGfQI+tYBjq4VQy10Md911F8nJyTz99NNceeWVHDlyhGXLljFmzBiM7qKcBCGQOLoYqutecOTCmYBB5VEf+1Qd88CCECrVFB3dC1VZYJs2LQBEIAhBxtO+DHXJvQB2C0KQXAweP3ItXLiQ1q1b065dO9avX8/69a4DRj766CO/TU4QKsXRglDdAEVHEi5Q6VGHl9pNml64GPRqirX1/5On8QcgLgahluDYl0GzuK6MWJqnAhShbrgXwB6DEKRiSR4LhClTpmCorf/xhPqJo0DwpwUBVGU6/WkEKq2iqFO+mmJtLZb0229q64lAEBeDUCtwjEP45lpI7KrcCHHtIb49RKeo1EZzEcR3qrrPQ6gQFSIWhLfffjuA0xAEHwiUiwGgYQ/VpvbYZ4BB/ROqglCppuiLBeHYMTCbVVnmQFNWBuPHq5bTH3xQey0xQg1iDIfk0aqh2tEV9i6NOmFRKkUZ6o57AYJuQZDgASF0MSXY+zH408Wg0+0xldHQsKf6B+QBtT1QsbgY9lkzNz0RCA0aFBEermE219z39MsvsHIlLF0KJ07UzHsKIcCgt2HoCug9HzreqYpFxbVXf6PmItW50RAGbW8I9kz9h2MdBE9SPP1MPUqmFeocjv0Y/G1BAFVk5YqfIMJzU0Bycu2uprh3r7IEJCTYYyYqIyxM9WQ4eFC5GfT+DIHkhx/s+7t2QfPmgX9PIQQIj4WW4yset5RBwWHI268eFBI9UL6hQpT1l18rU23to5rU6NuLBUEIbXQ3QyAEAkCD7hCT4vHw2p7J4E0Gg47ek6Gm4hAcBcLu3TXznkIIYwxXVU6TL1dFpOoSYREQaX1ACUItBBEIQmgTbX2kjfbgcbgGqO0uBm/iD3T0ngw1JRAyMuz7u3bVzHsKQq0liLUQxMUghDa9/gGNB7g2PQaB2l5N0TeBUHMWhJMn7TESIAJBEIhOgnPbg5LJIAJBCG0adFdftYS6aEFo3Vpta0IgbNyotkYjWCziYhAEmwUhCJkM4mIQBD9Smy0IpaWwZ4/ar60WBN29MGqU2h44AEVFgX9fQai1BLGaoggEQfAjjhaE2tYFff9+JRJiY+1xBZ5QkwJBD1CcMAESE9UaOrocBKHeEcRaCCIQBMGPlK+mWJvQ3QtduigTvqfoYuLMGQhkV3ezGX78Ue0PGgQXXKD2JQ5BqNcEsZqiCARB8CN6NUWofW4Gb0osO5KQAA0aqP0jR/w6JSd27oS8PFVBsWtX6NxZHZc4BKFeIxYEQag71NZARV8CFHVqItVRdy8MGKAKNIkFQRAQC8Irr7xC27ZtiYqKYuDAgfyo2xndsGzZMjp37kxUVBTdu3dn5cqVTuc1TWPWrFkkJycTHR1NWloae/futZ0/ePAg06ZNIzU1lejoaNq3b8/s2bMpKSmxjdm9ezeXXnopzZs3Jyoqinbt2vHoo49SWlrq329eqHPU1kBFRxeDt9REJoMuEAYNUluxIAgCdgtCaS6UFdToWwddICxZsoQZM2Ywe/Zstm7dSs+ePRk1ahQn3BRh//7777nhhhuYNm0aP/30ExMmTGDChAls377dNmbevHm8+OKLLFy4kI0bNxIbG8uoUaMosoZD79q1C4vFwmuvvcaOHTt44YUXWLhwIY888ojtHiaTiSlTprB69Wp2797NggULeOONN5g9e3ZgF0QIeWpjNUWz2f4k7osFoSYEgp7BcNFFautoQahtAZ+CUGOYEuy9YIpquDmJFmQGDBig3X333bbXZrNZS0lJ0ebOnety/KRJk7SxY8c6HRs4cKD2pz/9SdM0TbNYLFpSUpL27LPP2s6fPXtWi4yM1N5//32385g3b56Wmppa6Vzvv/9+bciQIVV+Tzrnzp3TAO3cuXMeX+OOkpISbcWKFVpJSUm171WfCMa6zZypaaBp99xTY29ZJfv2qTlFRmpaWZln1ziu3dy56vopUwIzvzNn1P1B006cUMeKijTNaFTHjh0LzPsGAvlb9Q1Zt0ooOK5pZvfr4s3aefO5FNRCSSUlJWzZsoWZM2fajhmNRtLS0shwrLfqQEZGBjNmzHA6NmrUKFasWAHAgQMHyMrKIi0tzXY+MTGRgQMHkpGRwfXXX+/yvufOnaNRI/f1/Pft28eqVau45ppr3I4pLi6muLjY9jo3NxeA0tLSarsm9OvFxeEdwVi35s2NQBhHj1ooLTXX2PtWxi+/GIBwLrhAw2Ipw+JBYzjHtUtJUdcfOhSY7+n779X9O3TQaNCgjNJSlWnRrl04+/YZ2LGjjKZNQ8OMIH+rviHrVgnhTcAMmF2vjTdr5836BlUgnDx5ErPZTPNy7dqaN2/OLjeRSVlZWS7HZ2Vl2c7rx9yNKc++fft46aWXmD9/foVzgwcPZuvWrRQXF3PHHXcwZ84ct9/P3LlzeeKJJyocX716NTExMW6v84b09HS/3Ke+UZPrlpmZDAzgt9/OsnLlNzX2vpWxYkUH4EISE4+xcuUWr65NT0/n2LFGwCXs2lXIypVf+X1+H3xwAdCZFi2OsnLlVtvxBg0GAkl8+OEOCgoO+v19A4n8rfqGrJvveLJ2BQWexzHU+1LLx44dY/To0UycOJHbb7+9wvklS5aQl5fHzz//zIMPPsj8+fN56KGHXN5r5syZTtaN3NxcWrVqxciRI0lISKjWPEtLS0lPT+fyyy/HZDJV6171iWCsW6NGBp55BoqKGjJmzJgaec+qWL48DIARI5I9npPj2nXrZuKRR+D06RhGjx7jVR0FT3j1VTW/a65JYcyYJNvx9euNbN4MERHdGDMmNNr4yt+qb8i6+Y43a6dbtj0hqAKhSZMmhIWFkZ2d7XQ8OzubpKQkl9ckJSVVOl7fZmdnk+zQ8D47O5tevXo5XXf8+HEuvfRSBg8ezOuvv+7y/VpZ87u6du2K2Wzmjjvu4K9//SthYWEVxkZGRhIZGVnhuMlk8tsvvD/vVZ+oyXXTA/oyMw2Eh5s8bqscSHSDXPfuYZhMFX93K8NkMtGmjQmjEUpLDZw+bSLZj80zLRZ7gaQhQ5znp2dc7Nnj/byDjfyt+oasm+94snberG1QsxgiIiLo27cva9assR2zWCysWbOGQXquUzkGDRrkNB6UWUUfn5qaSlJSktOY3NxcNm7c6HTPY8eOMXz4cPr27cuiRYswevBIZLFYKC0txeKJA1eot/irmmJGBvzrX1BWVr35WCy+F0nSCQ+HFi3Uvr8zGfbsUVUao6Ohe7m+W5LqKAjBI+guhhkzZnDLLbfQr18/BgwYwIIFC8jPz+fWW28FYMqUKbRo0YK5c+cCcN999zFs2DCee+45xo4dywcffMDmzZttFgCDwcD06dN56qmn6NixI6mpqTz22GOkpKQwYcIEwC4O2rRpw/z588nJybHNR7dA/Pe//8VkMtG9e3ciIyPZvHkzM2fOZPLkyaJuhUrRqymeOqVSHfXKit7w/vswZYoSB7m58PDDvs/n6FHIzweTCdq39/0+rVurSoqHD8PAgb7fpzx6/YN+/dQcHdEFwqFDUFioRIQgCDVD0AXC5MmTycnJYdasWWRlZdGrVy9WrVplCzI8fPiw09P94MGDee+993j00Ud55JFH6NixIytWrKBbt262MQ899BD5+fnccccdnD17liFDhrBq1SqiolQuaXp6Ovv27WPfvn20bNnSaT6aNeE6PDycZ555hj179qBpGm3atOGee+7h/vvvD/SSCHWAlBQlEDIzKz4VV8XChXDXXfbc/zlzYPJkSE31bS56gaROnSp+AHuDXk3R3+WWyxdIcqRJE2jYUFkY9u6FHj38+96CILgn6AIB4J577uGee+5xeW7dunUVjk2cOJGJEye6vZ/BYGDOnDluMw6mTp3K1KlTK53T5MmTmTx5cqVjBMEdycnw66/eF0t65hm7teDuu9WH+9q1cM898Pnn+BTPUJ0Kio4EqlhS+QJJjhgMyoqQkaHiKEQgCELNEfRKioJQF/G2mqKmwcyZdnHwyCPw0kvw6qsQEQErV8LHH/s2l+r0YHAkEAIhLw/0IqiuBALYKypKHIIg1CwiEAQhAOhR/p40bLJYlLXg6afV62eegb//XT09X3AB/O1v6vhf/qI+UL2lNguEzZvV99+mDW4zI/Q4BGnaJAg1iwgEQQgAnloQSktVMOKrrypB8NprUL7MxsyZKrjw2DGYNcu7eWha7RYIevyBO+sBSFdHQQgWIhAEIQB4YkEoKoLrroP//lelEb73HtxxR8Vx0dHwyitq/8UX4aefPJ9HZiacO6fKFnfq5Pl1rtAFQk6OyijwB5XFH+g4pjpK0yZBqDlEIAhCAKjKgnD6NIwaBZ9+ClFRsGIFuGkTAqixkycrc/yf/qS6M3qCbj3o0EGlX1aHBg0gLk7t+yOTQdMqz2DQad9eCaj8fGVFEQShZhCBIAgBQBcImZkVn3p//x0GD4YNGyAhAb74AsaOrfqezz+vxm/aBG4Kf1bAX+4FUC4Qf7oZDhxQ1oiICChX5NQJkwnatVP7EqgoCDWHCARBCADuqin+8IMyp+/erT5sv/sOhg/37J4pKSp4EVRcgpveY074UyCAfwWC7l7o06dq64YEKgpCzSMCQRACgF5NEexuhg8/hEsvVU/NffooseBQ38sj7rwT+vZVcQV//WvV46tbYrk8/hQInrgXdCTVURBqHhEIghAg9EDF48eVe2DiRBWYOHYsrF/vPq2vMsLCVKaD0aiCGr+qovNyoCwI/ohB8CSDQUcsCIJQ84hAEIQAocchPPCAetrXNFVCecUKe7CfL/Ttq+omgApY/P131+NycuDkSXs9BX+gl1uurgWhsBC2bVP7nggEby0I+/dDcbFPUxMEwYoIBEEIELpA2L5dfUg/9xy8/LKKyK8uTz4JLVsqcdC7NyxfXnGMbj1o2xZiYqr/nuA/F8OWLaoRVUqKXXRUhm5BOHxYZTNUxscfq6yNv/ylenMUhPqOCARBCBD6B19UFCxbBjNm+NZLwRWJiSrAcfBg1e1x4kRlnSgqso/xt3sBnAVCdWoSOLoXPFmTxo1V4yZQTZvcoWnwj3+o/f/+13/1GgShPiICQRACxO23q6DC9evh2mv9f//WrWHdOnv/hldfVR+4e/ao14EQCC1aqA/0oiLlvvAVTwoklceTiooZGap8MyhLwxdf+DY/QRBEIAhCwGjVCv71LxgwIHDvYTLB3LmwahU0bQo//6wyJP7738AIhMhIewqnr24GTfNNIHgSqPjPf6qtnja5bJn38xMEQSECQRDqAKNGqaC/4cPVk/PNNyvrAvhXIED14xB+/10VkDKZoF8/z6+rKlDxyBGVSgoq1gPgs8/EzSAIviICQRDqCCkpKu3x8ceVG8BiUce7dPHv+1RXIHzzjdoOGKD6THhKVRaEV15RJaiHD4dp01SHSHEzCILviEAQhDpEWBjMng1r1qjshSuvhPh4/76HvwTCJZd4d51uQdizxy5+dAoK7OWnp09XAum669RrcTMIgm+IQBCEOsillypT/qef+v/e1RUIGzaorbcCITVVuSUKCuDoUedz774LZ86oMVdeqY5NnKi24mYQBN8QgSAIdRSDwX9plY5Up5piVhbs26fmdfHF3l1rMqn6BuAch6Bpqg02wL33KisKKBdG69bKzbBqlfdzFYT6jggEQRC8ojrVFHX3Qs+eqpaDt7hKdfzqK5WxERcHt91mP24w2K0I4mYQBO8RgSAIglfoFoTMTO/LGfvqXtDRAxUdLQgLFqjtrbdWFB3iZhAE3xGBIAiCVzRpoqpDAhw75t21ugVh6FDf3ru8BWHPHli5UlkL7r234njdzXD+vLgZBMFbRCAIguAVBoNvgYpnz8Ivv6j96loQdIHw0ktqO3YsdOxYcbxkMwiC74hAEATBa3wRCN99pwIKO3aE5s19e1/dgnDsmMpkWLRIvb7vPvfXiJtBEHxDBIIgCF7Ttq3a6hYBT6iuewGgYUNo1kztP/ywylC48EIYMcL9NQMH2t0MX37p+3sLQn1DBIIgCF5zxRVqu2RJxaJF7vC1QFJ5dDfDf/+rtvfdV3k6p7gZBME3RCAIguA1Y8ZAgwbKzK9nJlRGYSFs2qT2qysQdDcDQKNGcNNNVV/j6GZwbIktCIJ7RCAIguA1UVH2p/L//Kfq8Rs3Qmmp6heRmlq999YtCAB/+hPExFR9zcCBqn5DXp64GQTBU0QgCILgEzffrLbLl1f9VO4Yf1Dd6o66BSEsDO66y7NrHN0MS5dW7/0Fob4gAkEQBJ+45BL1VH7uHPzvf5WPrW6BJEcuuwzGjYOnn4aWLT2/TtwMguAdIhAEQfAJoxFuvFHtV+ZmKCuDjAy17w+BEB0Nn3wCDzzg3XUDBypBIW4GQfAMEQiCIPiM7mZYuRJOn3Y95qefVDpiw4YqJTFYGI3Sm0EQvEEEgiAIPtOtG/ToASUlKhbBFbp7YcgQ9SEdTHSB8Omn4mYQhKoQgSAIQrXQrQh6XYLy+Kv+gT9wdDM8/jjs3RvsGQlC7UUEgiAI1eKGG1SWwIYNcOiQ8zmLBb79Vu1Xp4KivzAa4frr1f4zz0CnTtChg2r0tHIlFBQEd36CUJsQgSAIQrVo2RKGD1f7773nfO633+DUKVWroE+fGp+aS2bPhueeU9kQJhPs3w8vv6waPjVuDKNHwyuveN/KWhDqGiIQBEGoNrqb4T//UQ2ZdHT3wkUXqQ/j2kBcHMyYAWvWKPGyYoUquNS6tYpL+PJLuOceJXqOHw/2bAUheIhAEASh2lx7LURGws6d8PPP9uP+aNAUSOLjYfx4WLgQDh6EHTtg3jxVRvqHH6BvX/j++2DPUhCCgwgEQRCqTWIiXHWV2teDFTXNvwWSAo3BAF27woMPqr4R3bpBVpayJLz2WrBnJwg1jwgEQRD8gu5meO89MJtVwOLRoxAerlwMoUSHDqq403XXqR4Sf/4z3HGHxCUI9QsRCIIg+IUrrlDFkI4fh3Xr7O6Ffv08a6hU24iLU30b5s5V1oU33oBLL3Ufl2CxKDdFerqBo0fjanSughAIwoM9AUEQ6gYRETBpkjLH//e/qpkShIZ7wR0GAzz8MPTqpdI5MzJUXMKLL6qUyN27Yc8etd27V7cwhBMVNYzrrtNo3jzI34AgVAMRCIIg+I2bblICYflyaNJEHQtlgaAzerSKS5gwQQUyTprkepzJBEajRlFROF9+WcaUKTU6TUHwK+JiEATBb1x8MbRpoyoVHjhgP1YX6NBBZTbcdhu0awcjRsCdd8KCBarI0v79yqpw330WAFaulH+vQmgjFgRBEPyG0aisCP/4h3rdvTs0ahTcOfmTuDj4978rHzN2rMa8efDllwbKylSQpiCEIiJxBUHwKzfdZN+vC+4FbxkwQCMhoZizZw18912wZyMIviMCQRAEv9K1q8pcAEhLC+5cgkFYGPTtmw3A558HeTKCUA1EIAiC4HeWLVOZDBMmBHsmwaFfPyUQPvssyBMpR1ERnDgR7FkIoYIIBEEQ/E7btnDjjSpNsD7Su/cJwsM1W/pjbeG226BVK9VESxCqQgSCIAiCn4mJKWPoUNW1qra4GTQN/vc/KCmB9PRgz0YIBUQgCIIgBIAxY2qXQDh8GHJz1f6WLcGdixAaiEAQBEEIAGPHqnoIGzbAuXNBngzw66/2/a1bgzcPIXQQgSAIghAA2reHzp2hrAy+/DLYs4FffrHv79ypijoJQmWIQBAEQQgQegvs2uBmcLQgWCzOrwXBFSIQBEEQAsSVV6rtypWqBXYw0S0IsbFqK24GoSpEIAiCIASIwYNVC+xTp1Qfh2BRXKw6TgJcd53aikAQqkIEgiAIQoAID4crrlD7nhRN2r5d9a9YsMC/8/jtN2XBaNjQ7vYQgSBUhQgEQRCEAKK7GaqKQygogMmTlUh47jlVt8Bf6O6FHj2gb1+1/+uvqiaCILhDBIIgCEIAGT1a9WfYscPeAtsVf/2ryi4AOHoUDh3y3xx0gdC9u2rH3bAhlJaqOQmCO0QgCIIgBJCGDWHIELXvzoqwYgUsXKj2mzdX2w0b/DcHPWOhRw9V/rpPH/Va3AxCZYhAEARBCDCVuRmOHoVp09T+gw/CLbeofX8KBEcXA4hAEDxDBIIgCEKA0QMD162DvDz7cbMZpkyB06dVbMBTT8HQoeqcvwRCTg5kZan9Cy9UWxEIgieIQBAEQQgwnTpBhw4VGyXNmwdr16raBO+9BxERcPHFyg2wdy9kZlb/vXX3Qvv2EBen9nWB8PPPqtKjILiiVgiEV155hbZt2xIVFcXAgQP58ccfKx2/bNkyOnfuTFRUFN27d2flypVO5zVNY9asWSQnJxMdHU1aWhp7HXquHjx4kGnTppGamkp0dDTt27dn9uzZlDiE9K5bt47x48eTnJxMbGwsvXr14r///a9/v3FBEOoFBoPdiqCnO27cCI89pvZfekmJCIAGDaBXL7XvDytCefcCKLESFweFhfb6CIJQnqALhCVLljBjxgxmz57N1q1b6dmzJ6NGjeLEiRMux3///ffccMMNTJs2jZ9++okJEyYwYcIEtm/fbhszb948XnzxRRYuXMjGjRuJjY1l1KhRFBUVAbBr1y4sFguvvfYaO3bs4IUXXmDhwoU88sgjTu/To0cPPvzwQ3755RduvfVWpkyZwue1oWaqIAghhx6H8L//wdmzcOONysUwaRJMneo81p9uBt2C0L27/ZjRCL17q31xMwhu0YLMgAEDtLvvvtv22mw2aykpKdrcuXNdjp80aZI2duxYp2MDBw7U/vSnP2mapmkWi0VLSkrSnn32Wdv5s2fPapGRkdr777/vdh7z5s3TUlNTK53rmDFjtFtvvbXK70nn3LlzGqCdO3fO42vcUVJSoq1YsUIrKSmp9r3qE7JuviNr5xvu1q24WNMSEjQNNK1/f7Vt3VrTzpypeI8PP1Tnu3Wr/nz69VP3Wr7c+fh996nj06dX/z38gfy++Y43a+fN51J4MMVJSUkJW7ZsYebMmbZjRqORtLQ0MjIyXF6TkZHBjBkznI6NGjWKFStWAHDgwAGysrJIS0uznU9MTGTgwIFkZGRw/fXXu7zvuXPnaNSoUaXzPXfuHF26dHF7vri4mOLiYtvrXGvz9dLSUkpLSyu9d1Xo11f3PvUNWTffkbXzDXfrZjDAyJFhLF9uZNMmMBo1Fi82ExurUX6JL7oIwMT27ZCVVUrjxr7NxWyG7dvDAQNdupQ6vU+PHgYgnC1bLJSWBrlRBPL7Vh28WTtv1jeoAuHkyZOYzWaa64m/Vpo3b86uXbtcXpOVleVyfJY1TFffVjamPPv27eOll15i/vz5bue6dOlSNm3axGuvveZ2zNy5c3niiScqHF+9ejUxMTFur/OGdMcIJ8FjZN18R9bON1ytW4sWLQFVynDSpN2cPbubciFUNlq2vIyjR+N58cWtDBzo+n9XVRw7FktRURoREWXs2rUSh1Aszp+PBy5j82Yzn3++EmPQHc4K+X3zHU/WrsCLPt9BFQi1gWPHjjF69GgmTpzI7bff7nLM2rVrufXWW3njjTe4UM8TcsHMmTOdrBu5ubm0atWKkSNHkpCQUK15lpaWkp6ezuWXX47JZKrWveoTsm6+I2vnG5Wt28UXw5dfarRvr/HWW+0JD2/v9j5XXGHkjTegsLAfY8ZYfJrLhx8aAOjRw8hVV41xOldWBn/7m0ZhoYkLLhhDx44+vYXfkN833/Fm7XTLticEVSA0adKEsLAwsrOznY5nZ2eTlJTk8pqkpKRKx+vb7OxskpOTncb00kODrRw/fpxLL72UwYMH8/rrr7t8v/Xr13PVVVfxwgsvMGXKlEq/n8jISCIjIyscN5lMfvuF9+e96hOybr4ja+cbrtatSRPVOAkMVBUjPnw4vPEGfPttGCZTmE9zUO8FPXsaMZmc389kgp49VTbFr7+a6NrVp7fwO/L75juerJ03axtUo1JERAR9+/ZlzZo1tmMWi4U1a9YwaNAgl9cMGjTIaTwos4o+PjU1laSkJKcxubm5bNy40emex44dY/jw4fTt25dFixZhdGFfW7duHWPHjuWZZ57hjjvuqNb3KgiC4A2XXKK2W7c6F1fyBsceDK6QgklCZQTdxTBjxgxuueUW+vXrx4ABA1iwYAH5+fnceuutAEyZMoUWLVowd+5cAO677z6GDRvGc889x9ixY/nggw/YvHmzzQJgMBiYPn06Tz31FB07diQ1NZXHHnuMlJQUJkyYANjFQZs2bZg/fz45OTm2+egWiLVr13LllVdy3333ce2119riFyIiIqoMZhQEQagurVpBaqpq8PTdd6rpk7e4qoHgiAgEoTKCLhAmT55MTk4Os2bNIisri169erFq1SpbkOHhw4ednu4HDx7Me++9x6OPPsojjzxCx44dWbFiBd26dbONeeihh8jPz+eOO+7g7NmzDBkyhFWrVhEVFQUoi8O+ffvYt28fLVu2dJqPZu2x+s4771BQUMDcuXNt4gRg2LBhrFu3LlDLIQiCYGPYMCUQNmzwXiCcPw+//672PbEgaJrKtBAEnaALBIB77rmHe+65x+U5Vx/GEydOZOLEiW7vZzAYmDNnDnPmzHF5furUqUwtX5mkHG+//TZvv/12pWMEQRACydCh8PbbvhVM0mvHJSer2AdXXHihikU4fRoOH1atoAVBp5YktgiCIAjl0Ssq/vijKovsDVW5FwAiI0E3voqbQSiPCARBEIRaSrt2kJICpaUq28AbXJVYdoXEIQjuEIEgCIJQSzEYfO/L4IkFAUQgCO4RgSAIglCL8UUgaJoIBKH6iEAQBEGoxegC4fvvwaEjfaUcO6Y6RoaFQefOlY/t0UN1d8zKgsxMz+6vaWpsejo8/zzceiv0769aVTu01hFCnFqRxSAIgiC4pksXaNwYTp1ST/mqkVPl6NaDzp1VIGJlxMSo99ixQ91/7FjX4ywWmD8fVq5UGRKnTrke9/LLMGeOyo4QQhuxIAiCINRijEa7FWH9es+u0QMUq3Iv6FTlZtA0uP9++Nvf1BxOnVLz6tQJrr0WHn8cli+Hpk1V/YUffvDsfYXajQgEQRCEWo63cQhVlVguT1UC4e9/hxdfVPtPPw1btighsHu3EgazZyuhMGKEGvPVV569r1C7EYEgCIJQy9EFwrffgtlc9XhPAxR1KhMICxfCY4+p/RdfVFaEPn0gOrri2MsvV1vp2Fw3EIEgCIJQy+nZE+LjITfX/uHvjpIS2LVL7XsqEPRGt4cPw8mT9uPLlsFdd6n9xx6De++t/D5paWr7449w7pxn7y3UXkQgCIIg1HLCwmDIELVflZth1y4oK4PERCjXasYtCQnQsaPa160IX30FN92k4g/+/Gd44omq79O6tYpLMJth7VrP3luovYhAEARBCAE8jUNwdC9403zJ0c2waRNMmKAqOE6apDITPL2XuBnqDiIQBEEQQgBHgWBtOusSbzMYdHSBsGIFXHEF5Ocrl8HixcqC4Sm6QJBAxdBHBIIgCEII0K+fCgw8edIeY+AKbzMYdHSBsHGjSmPs3x8+/rjqOgrlGT5cCYo9e1RMgxC6iEAQBEEIASIiYNAgtf/ee+6zGXy1IPTubd/v3FkVRIqL836eiYkwcKDaFzdDaCMCQRAEIUQYNUptn3oKOnSA555TJZV1Tp1SZZbB3sbZUxo3hokTleXhyy+hSRPf56lnM4hACG1EIAiCIIQI998P//d/6sP84EF44AGVqXD33apokW49SE1VaZHesnSpclG0bl29eepxCGvWqBLNQmgiAkEQBCFEMJmU9eDIEXjjDWUlyM+Hf/1LuQVuvVWN89a94G8GDlQC5eRJ+Pnn4M5F8B0RCIIgCCFGdDT88Y/qaX/NGhg3TqUhHjyoznsboOhvTCYVrAjiZghlRCAIgiCEKAYDXHYZfPIJ7N0L06er13/8Y7BnJnEIdQFp9ywIglAHaN8eXngh2LOwo8chfPMNFBa67t0g1G7EgiAIgiD4nc6doUULKC6G774L9mwEXxCBIAiCIPgdg0HKLoc6IhAEQRCEgCACIbSRGARBEAQhIIwYobY//QQ5OdC0aXDnU5vQNOV+yctTXxERyiXjTYOtQCMWBEEQBCEgNG9ur8mwZk1w5xJMvvgCLrlE1a1o0wYaNVKCIDoamjVTAaatWkFyMowfD3//u2p2de5ccOctFgRBEAQhYFx+uarX8NVXcP31wZ5NzVNcDHfcAUePuh8THQ0lJZCdDZ9+qr5AWRM6d1aFpwYOVK23GzWqmXmDWBAEQRCEAOIYh1BZm+q6yuLFShykpCiRtHEj7NypqmGePQulpVBQoNwM330Hzz+vhFRqqlqv336Dt9+GO++E8+drdu5iQRAEQRACxiWXKHP64cOqmFOnTsGeUc1RVgZPP632H3zQHpPhiuhoGDxYfemcOAE//qhExe7dyg1Rk4hAEARBEAJGTAxcfDGsXausCJUJhLrW2GnJEvj9d9UZ8/bbvb++WTO48kr1FQzExSAIgiAElMrSHUtLYdkyuPzyMCZNuoq5c411whVhscA//qH2Z8yA2NjgzscXRCAIgiAIAUUXCGvXKrM7KL/87Nkqqn/SJFi/3khZmZHZs8O47TYVtBfKrFihYg0SE+Guu4I9G98QF4MgCIIQUHr3VtH3p0/Diy/Ct9+qSH2zWZ1v3hxuu81MZuZvvPvuhbz9toFDh+DDD6Fhw+DO3Rc0TaUqAtx7rxIJoYhYEARBEISAEhamukwC/PWv8PHHShwMG6b89IcPwxNPWJgwYT8rVpiJj1fWhsGDlQ+/JjhwAE6d8s+9vvwStm5V8Rf33eefewYDEQiCIAhCwJk8WW3j4+Huu2H7dli3TrkXIiLs40aN0vj2W2jZEnbtgosugoyMwM7t88+hY0f1nnfdBfv3+34vTYOnnlL7d96pAhRDFREIgiAIQsC57jrYsQOOHYOXX4YLL3Q/tkcPldrXp48q0XzppbB0aWDmtXMn3HijsmgUFcGrr6pMi8mTYcsW7++3YYOqZxAZqawloYwIBEEQBKFG6NpVWRA8ISVFfdiOG6eqEU6eDHPn+rfY0unT6v55ecrd8dVXMHq0ykBYuhT69YO0NO+KPOmxB7fdpkonhzIiEARBEIRaSWwsfPQRTJ+uXj/yCNx/v39EQlmZEh3796tMimXLVCGjL76An3+Gm25SsRNr1sDIkdC3r5pLZe/9449KTISHw0MPVX+OwUYEgiAIglBrCQuDF15Q2Q8A//yn6m2gZ0D4ygMPKItBbKzKqHDsNNmjB/znP0o8/OUvKtjwp5/g2mtVT4SvvnJ9T916cPPN0LZt9eZXGxCBIAiCINR67r1X9SQwGuHNN2HKFHtNBW956y0lNED1StA7TpanTRs17vBhePRRJSY2bVJ1HUaMUHESOr/8ooSGwQAPP+zbvGobIhAEQRCEkOCWW+D995UJ/733YOJEFZ/gDd9/D3/+s9p//HG45pqqr2ncGJ580m5RiIiAr79WGRZXX62CL/WqiRMnwgUXeDen2ooIBEEQBCFkmDRJ1VGIjFTVCsePV90QPeHIESUISkuVu+Cxx7x77+bNlUVhzx6YOlVZM1asgO7d7VkW//d/3t2zNiMCQRAEQQgprrxS1S6IiVFFia64QmUiVEZBAUyYANnZyqWguyt8oU0bWLQIfv1VCQ5NU19XXeXeXRGKSKllQRAEIeRIS1PiYOxYlQ6ZlgarVqmyxidPqnoLR4+qr2PHYP16Vd2wSRP45BOIi6v+HLp2VeWgN22Czz4L3Z4L7hCBIAiCIIQkQ4aoNMRRo1SKYdu2qtiRu0ZP4eGwfLn/Mwz691dfdQ0RCIIgCELI0q+fsg6kpSn3AahMgubNVenkFi3UtmVLJSR69w7ufEMJEQiCIAhCSNOtG+zbp/o7JCerL8f+DoJviEAQBEEQQp64OJV2KPgPyWIQBEEQBKECIhAEQRAEQaiACARBEARBECogAkEQBEEQhAqIQBAEQRAEoQIiEARBEARBqIAIBEEQBEEQKiACQRAEQRCECohAEARBEAShAiIQBEEQBEGogAgEQRAEQRAqIAJBEARBEIQKiEAQBEEQBKECIhAEQRAEQaiAtHsOIJqmAZCbm1vte5WWllJQUEBubi4mk6na96svyLr5jqydb8i6+Yasm+94s3b655H++VQZIhACSF5eHgCtWrUK8kwEQRAEwU5eXh6JiYmVjjFonsgIwScsFgvHjx8nPj4eg8FQrXvl5ubSqlUrjhw5QkJCgp9mWPeRdfMdWTvfkHXzDVk33/Fm7TRNIy8vj5SUFIzGyqMMxIIQQIxGIy1btvTrPRMSEuSPxwdk3XxH1s43ZN18Q9bNdzxdu6osBzoSpCgIgiAIQgVEIAiCIAiCUAERCCFCZGQks2fPJjIyMthTCSlk3XxH1s43ZN18Q9bNdwK1dhKkKAiCIAhCBcSCIAiCIAhCBUQgCIIgCIJQAREIgiAIgiBUQASCIAiCIAgVEIEQArzyyiu0bduWqKgoBg4cyI8//hjsKdU6NmzYwFVXXUVKSgoGg4EVK1Y4ndc0jVmzZpGcnEx0dDRpaWns3bs3OJOtRcydO5f+/fsTHx9Ps2bNmDBhArt373YaU1RUxN13303jxo2Ji4vj2muvJTs7O0gzrh28+uqr9OjRw1aYZtCgQXzxxRe287JmnvH0009jMBiYPn267ZisnWsef/xxDAaD01fnzp1t5wOxbiIQajlLlixhxowZzJ49m61bt9KzZ09GjRrFiRMngj21WkV+fj49e/bklVdecXl+3rx5vPjiiyxcuJCNGzcSGxvLqFGjKCoqquGZ1i7Wr1/P3XffzQ8//EB6ejqlpaWMHDmS/Px825j777+fzz77jGXLlrF+/XqOHz/ONddcE8RZB5+WLVvy9NNPs2XLFjZv3sxll13G+PHj2bFjByBr5gmbNm3itddeo0ePHk7HZe3cc+GFF5KZmWn7+vbbb23nArJumlCrGTBggHb33XfbXpvNZi0lJUWbO3duEGdVuwG0jz/+2PbaYrFoSUlJ2rPPPms7dvbsWS0yMlJ7//33gzDD2suJEyc0QFu/fr2maWqdTCaTtmzZMtuY3377TQO0jIyMYE2zVtKwYUPtzTfflDXzgLy8PK1jx45aenq6NmzYMO2+++7TNE1+3ypj9uzZWs+ePV2eC9S6iQWhFlNSUsKWLVtIS0uzHTMajaSlpZGRkRHEmYUWBw4cICsry2kdE/+/vbsLaer/4wD+ns6tuR6cWdsMNMUyLRTSGsO6qAVpXZQYGYxYdCE+YlAXQkl6EXVlVBdCUHoTjRQsKXr06UKwzHwklQzJIJdJZGpq4T6/C/+/8V+n+tfv/1tTe7/gwDnne+Y+5825+HjOd5wVK2CxWJjjV8bGxgAAoaGhAIC2tjZ8+fLFK7sNGzYgIiKC2f3H7OwsnE4nJicnYbVamdlPyMvLw969e70yAni9/S8vXrxAeHg4oqOjYbfbMTQ0BMB3ufFlTfPY6OgoZmdnYTQavfYbjUb09fX5qaqFx+VyAcA3c/x7jObePnrs2DGkpKRg06ZNAOay02g0CAkJ8TqW2QHd3d2wWq2Ynp7G0qVLUVNTg/j4eHR0dDCzH3A6nXj27BlaW1sVY7zevs9isaCyshKxsbEYHh5GaWkptm/fjp6eHp/lxgaBiADM/VfX09Pj9VyTvi82NhYdHR0YGxtDdXU1HA4Hmpqa/F3WvPb69WsUFhbi4cOHWLJkib/LWVDS0tI86wkJCbBYLIiMjMSNGzeg0+l88p18xDCPhYWFITAwUDET9e3btzCZTH6qauH5Oyvm+H35+fm4ffs2GhoavF5RbjKZ8PnzZ3z48MHreGYHaDQaxMTEICkpCWfPnkViYiIuXLjAzH6gra0NIyMj2Lx5M9RqNdRqNZqamnDx4kWo1WoYjUZm95NCQkKwfv16DAwM+OyaY4Mwj2k0GiQlJaGurs6zz+12o66uDlar1Y+VLSxRUVEwmUxeOX78+BGPHz/+43MUEeTn56Ompgb19fWIioryGk9KSkJQUJBXdv39/RgaGvrjs/ua2+3GzMwMM/sBm82G7u5udHR0eJbk5GTY7XbPOrP7ORMTE3j58iXMZrPvrrl/PL2Rfgun0ylarVYqKyvl+fPnkpWVJSEhIeJyufxd2rwyPj4u7e3t0t7eLgCkrKxM2tvb5dWrVyIicu7cOQkJCZFbt25JV1eX7Nu3T6KiomRqasrPlftXTk6OrFixQhobG2V4eNizfPr0yXNMdna2RERESH19vTx9+lSsVqtYrVY/Vu1/RUVF0tTUJIODg9LV1SVFRUWiUqnkwYMHIsLMfsV//4pBhNl9z/Hjx6WxsVEGBwelublZdu3aJWFhYTIyMiIivsmNDcICcOnSJYmIiBCNRiNbt26VlpYWf5c07zQ0NAgAxeJwOERk7qeOxcXFYjQaRavVis1mk/7+fv8WPQ98KzMAUlFR4TlmampKcnNzxWAwSHBwsKSnp8vw8LD/ip4Hjh49KpGRkaLRaGTVqlVis9k8zYEIM/sVXzcIzO7bMjMzxWw2i0ajkTVr1khmZqYMDAx4xn2RG1/3TERERAqcg0BEREQKbBCIiIhIgQ0CERERKbBBICIiIgU2CERERKTABoGIiIgU2CAQERGRAhsEIiIiUmCDQESLlkqlws2bN/1dBtGCxAaBiHziyJEjUKlUiiU1NdXfpRHRT1D7uwAiWrxSU1NRUVHhtU+r1fqpGiL6FbyDQEQ+o9VqYTKZvBaDwQBg7vZ/eXk50tLSoNPpEB0djerqaq/Pd3d3Y+fOndDpdFi5ciWysrIwMTHhdczVq1exceNGaLVamM1m5Ofne42Pjo4iPT0dwcHBWLduHWpra3170kSLBBsEIvKb4uJiZGRkoLOzE3a7HYcOHUJvby8AYHJyErt374bBYEBrayuqqqrw6NEjrwagvLwceXl5yMrKQnd3N2praxETE+P1HaWlpTh48CC6urqwZ88e2O12vH///reeJ9GC9P+9gJKI6NscDocEBgaKXq/3Ws6cOSMic6+azs7O9vqMxWKRnJwcERG5fPmyGAwGmZiY8IzfuXNHAgICxOVyiYhIeHi4nDx58rs1AJBTp055ticmJgSA3L179187T6LFinMQiMhnduzYgfLycq99oaGhnnWr1eo1ZrVa0dHRAQDo7e1FYmIi9Hq9ZzwlJQVutxv9/f1QqVR48+YNbDbbD2tISEjwrOv1eixfvhwjIyP/9JSI/hhsEIjIZ/R6veKW/79Fp9P91HFBQUFe2yqVCm632xclES0qnINARH7T0tKi2I6LiwMAxMXFobOzE5OTk57x5uZmBAQEIDY2FsuWLcPatWtRV1f3W2sm+lPwDgIR+czMzAxcLpfXPrVajbCwMABAVVUVkpOTsW3bNly7dg1PnjzBlStXAAB2ux2nT5+Gw+FASUkJ3r17h4KCAhw+fBhGoxEAUFJSguzsbKxevRppaWkYHx9Hc3MzCgoKfu+JEi1CbBCIyGfu3bsHs9nstS82NhZ9fX0A5n5h4HQ6kZubC7PZjOvXryM+Ph4AEBwcjPv376OwsBBbtmxBcHAwMjIyUFZW5vlbDocD09PTOH/+PE6cOIGwsDAcOHDg950g0SKmEhHxdxFE9OdRqVSoqanB/v37/V0KEX0D5yAQERGRAhsEIiIiUuAcBCLyCz7dJJrfeAeBiIiIFNggEBERkQIbBCIiIlJgg0BEREQKbBCIiIhIgQ0CERERKbBBICIiIgU2CERERKTwF1EacOIDaIy1AAAAAElFTkSuQmCC\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "# Plot MAE\n", "plt.subplot(1, 2, 2)\n", "plt.plot(history.history['mae'], label='Train MAE', color='green')\n", "plt.plot(history.history['val_mae'], label='Val MAE', color='red')\n", "plt.title('MAE over Epochs')\n", "plt.xlabel('Epoch')\n", "plt.ylabel('Mean Absolute Error')\n", "plt.legend()\n", "plt.grid(True)\n", "\n", "plt.tight_layout()\n", "plt.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 487 }, "id": "df3ee76Avbmv", "outputId": "01a1d56e-a641-493f-cb8d-a541fcdd5c34" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWEAAAHWCAYAAACmMDgaAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAngZJREFUeJztnXl8U1X6/9836b4XCm1ZC4jslEVAXFHZVcSRRURBQFRGFGXc0FFwnBmc3yiKojIogvMVUVFkUAGtgCCbsgrIjuzQFijdtzS5vz9ub/akSZq1Pe/XK68kNyc35za3nzz3c57zHEmWZRmBQCAQBARNoDsgEAgE9RkhwgKBQBBAhAgLBAJBABEiLBAIBAFEiLBAIBAEECHCAoFAEECECAsEAkEAESIsEAgEAUSIsEAgEAQQIcICgcAhDz74IHFxcYHuRp1GiLDALRYvXowkSUiSxKZNm2xel2WZ5s2bI0kSd9xxh9195OfnExUVhSRJHDx40G6bBx980Pg51reoqCivHlMgqS/HKXBMWKA7IAhNoqKi+PTTT7nhhhsstm/YsIGzZ88SGRnp8L3Lli1DkiTS0tJYsmQJf//73+22i4yM5MMPP7TZrtVqa9f5IKO+HKfAPkKEBR4xdOhQli1bxttvv01YmOk0+vTTT+nZsyeXLl1y+N5PPvmEoUOH0rJlSz799FOHIhwWFsb999/v9b77E1mWKS8vJzo62mGbunCcAs8RdoTAI8aMGcPly5fJysoybqusrOTLL7/kvvvuc/i+06dP8/PPP3Pvvfdy7733cuLECbZs2eL1/pWUlPCXv/yF5s2bExkZSbt27Xj99dcxLxrYuXNnbrnlFpv3GgwGmjZtyogRIyy2vfXWW3Tq1ImoqChSU1N55JFHuHLlisV7MzIyuOOOO/j++++55ppriI6O5j//+U+tj0e1gTZu3MgjjzxCw4YNSUhIYNy4cTZ9AHjvvffo1KkTkZGRNGnShMcee4z8/Hybdr/88gtDhw4lOTmZ2NhYunbtyty5c23anTt3juHDhxMXF0ejRo14+umn0ev1Fm0+++wzevbsSXx8PAkJCXTp0sXuvgSWCBEWeERGRgZ9+/Zl6dKlxm2rV6+moKCAe++91+H7li5dSmxsLHfccQe9e/emTZs2LFmyxGH7S5cu2dwKCwud9k2WZYYNG8abb77J4MGDmTNnDu3ateOZZ55h+vTpxnajR49m48aNZGdnW7x/06ZNnD9/3uI4HnnkEZ555hmuv/565s6dy4QJE1iyZAmDBg1Cp9NZvP/w4cOMGTOGAQMGMHfuXLp16+a0v+4c59SpUzl48CCzZs1i3LhxLFmyhOHDh1v8uMyaNYvHHnuMJk2a8MYbb3DPPffwn//8h4EDB1r0NSsri5tuuokDBw4wbdo03njjDW655Ra+/fZbi8/U6/UMGjSIhg0b8vrrr3PzzTfzxhtvsGDBAot9jRkzhuTkZP71r3/x2muv0a9fPzZv3lzjsdd7ZIHADRYtWiQD8vbt2+V58+bJ8fHxcmlpqSzLsjxy5Ej5lltukWVZllu2bCnffvvtNu/v0qWLPHbsWOPzF154QU5JSZF1Op1Fu/Hjx8uA3dugQYOc9nHFihUyIP/973+32D5ixAhZkiT52LFjsizL8uHDh2VAfueddyza/fnPf5bj4uKMx/Xzzz/LgLxkyRKLdmvWrLHZ3rJlSxmQ16xZ47SP7h6n+nfv2bOnXFlZadz+//7f/5MB+X//+58sy7Kcm5srR0REyAMHDpT1er2x3bx582RA/uijj2RZluWqqiq5VatWcsuWLeUrV65Y9MlgMNj0729/+5tFm+7du8s9e/Y0Pp82bZqckJAgV1VVuXTcAhMiEhZ4zKhRoygrK+Pbb7+lqKiIb7/91qkVsXfvXvbt28eYMWOM28aMGcOlS5f4/vvvbdpHRUWRlZVlc3vttdec9mvVqlVotVqeeOIJi+1/+ctfkGWZ1atXA3D11VfTrVs3Pv/8c2MbvV7Pl19+yZ133mn0cZctW0ZiYiIDBgywiFR79uxJXFwc69evt/icVq1aMWjQIKd99PQ4H374YcLDw43Pp0yZQlhYGKtWrQLgxx9/pLKykieffBKNxvTvPXnyZBISEvjuu+8A2L17NydOnODJJ58kKSnJ4jMkSbL53EcffdTi+Y033sgff/xhfJ6UlERJSYmFPSVwDTEwJ/CYRo0a0b9/fz799FNKS0vR6/UWPqo1n3zyCbGxsbRu3Zpjx44BigBlZGSwZMkSbr/9dov2Wq2W/v37u92vU6dO0aRJE+Lj4y22d+jQwfi6yujRo3nhhRc4d+4cTZs25aeffiI3N5fRo0cb2xw9epSCggIaN25s9/Nyc3Mtnrdq1cqt/rpznG3btrV4HhcXR3p6OidPngRMx9auXTuLdhEREbRu3dr4+vHjxwHFF6+JqKgoGjVqZLEtOTnZwov+85//zBdffMGQIUNo2rQpAwcOZNSoUQwePNil46rPCBEW1Ir77ruPyZMnk52dzZAhQ2yiKhVZllm6dCklJSV07NjR5vXc3FyKi4v9PjFg9OjRzJgxg2XLlvHkk0/yxRdfkJiYaCEeBoOBxo0bO/SurQXKWSZEKOJKqlzjxo3Zs2cP33//PatXr2b16tUsWrSIcePG8fHHH/uhl6GLsCMEteLuu+9Go9Gwbds2p1aEmj/8t7/9jWXLllncFixYQGlpKStWrPBKn1q2bMn58+cpKiqy2H7o0CHj6yqtWrWid+/efP7551RVVbF8+XKGDx9ukefcpk0bLl++zPXXX0///v1tbpmZmV7ptyscPXrU4nlxcTEXLlwgIyMDMB3b4cOHLdpVVlZy4sQJ4+tt2rQBYP/+/V7rW0REBHfeeSfvvfcex48f55FHHuG///2v8apHYB8hwoJaERcXx/vvv8+sWbO48847HbZTrYhnnnmGESNGWNwmT55M27ZtnWZJuMPQoUPR6/XMmzfPYvubb76JJEkMGTLEYvvo0aPZtm0bH330EZcuXbKwIkDxvvV6Pa+++qrNZ1VVVdlN/fIVCxYssMhweP/996mqqjIeU//+/YmIiODtt9+2yJhYuHAhBQUFRsunR48etGrVirfeesum/7IHa/9evnzZ4rlGo6Fr164AVFRUuL2/+oSwIwS1Zvz48U5fr6io4KuvvmLAgAEOp+IOGzaMuXPnkpuba/Req6qq+OSTT+y2v/vuu4mNjbX72p133sktt9zCiy++yMmTJ8nMzOSHH37gf//7H08++aQxClQZNWoUTz/9NE8//TQNGjSw8WdvvvlmHnnkEWbPns2ePXsYOHAg4eHhHD16lGXLljF37lynXnhNuHOclZWV3HbbbYwaNYrDhw/z3nvvccMNNzBs2DBAsUZmzJjBK6+8wuDBgxk2bJixXa9evYyTQjQaDe+//z533nkn3bp1Y8KECaSnp3Po0CF+//13uwOlznjooYfIy8vj1ltvpVmzZpw6dYp33nmHbt26Gb14gQMCm5whCDXMU9ScYZ6i9tVXX8mAvHDhQoftf/rpJxmQ586dK8uy89QtQD5x4oTTzy8qKpKfeuopuUmTJnJ4eLjctm1b+d///rdF+pU5119/vQzIDz30kMN9LliwQO7Zs6ccHR0tx8fHy126dJGfffZZ+fz583aP2xVcPU71775hwwb54YcflpOTk+W4uDh57Nix8uXLl232O2/ePLl9+/ZyeHi4nJqaKk+ZMsUmFU2WZXnTpk3ygAED5Pj4eDk2Nlbu2rWrRcre+PHj5djYWJv3zZw5UzaXjy+//FIeOHCg3LhxYzkiIkJu0aKF/Mgjj8gXLlxw+W9RX5Fk2YNrD4FA4FcWL17MhAkT2L59O9dcc02guyPwIsITFggEggAiRFggEAgCiBBhgUAgCCDCExYIBIIAIiJhgUAgCCBChAUCgSCAiMkaHmIwGDh//jzx8fF2q04JBIL6iSzLFBUV0aRJE4tKdo4QIuwh58+fp3nz5oHuhkAgCFLOnDlDs2bNamwnRNhD1DKJZ86cISEhocb2Op2OH374wTjlNRQJ9WMI9f6DOIZgwdkxFBYW0rx5c5tSqo4QIuwhqgWRkJDgsgjHxMSQkJAQ0ideKB9DqPcfxDEEC64cg6s2pRiYEwgEggAiRFggEAgCiBBhgUAgCCBChAUCgSCACBEWCASCACJEWCAQCAKIEGGBQCAIIEKEBQKBIIAIERYIBIIAIkRYIBAIAogQYYFAIAggQoQFAoEggAgRFggEggAiRFgg8DWnT0NFRaB7IQhShAgLBL7k99+hZUt44IFA90QQpAgRFgh8ycGDyv3OnYHthyBoESIsEPiS4mLl/vx5kOXA9kUQlAgRFgh8iSrC5eVQUBDYvgiCEiHCoci5c/Dhh1BWFuieCGpCFWGACxcC1w9B0CJEOBSZORMmT4Yvvgh0TwQ1YS7C588Hrh+CoEWIcCiSna3c5+YGth+CmikpMT0WkbDADkKEQ5HSUst7QfAiImFBDQgRDkXU6EqIcPAjPGFBDQgRDkVEJBw6iEhYUANChEMRIcKhg4iEBTUgRDgUESIcOohIWFADQoRDEeEJhw7W2RFi1pzACiHCoYYsi0g4lDCPhEtLoagocH0RBCVChEMNnQ70euWxEOHgx1yEQVgSAhuECIca5pe3QoSDH1WE4+KUezE4J7BCiHCoYS68QoSDm8pK5coFoG1b5V5EwgIrhAiHGkKEQwdzK+Kqq5R7EQkLrBAiHGoIOyJ0UL+riAhldQ0QkbDABiHCoYaIhEMHcz+4SRPlsYiEBVYIEQ41zIW3vBwMhsD1ReAccxFOT1cei0hYYIUQ4VDD3I4AUdg9mFFFODZWRMIChwgRDjWsLQgvWBKymMXlG0QkLHCBoBDhd999l4yMDKKioujTpw+//vqr0/bLli2jffv2REVF0aVLF1atWmV8TafT8dxzz9GlSxdiY2Np0qQJ48aN47zVyT9s2DBatGhBVFQU6enpPPDAAzZtghIvi3BFVQUd3+vIyGUja7UfgR3siXBJiZg1J7Ag4CL8+eefM336dGbOnMmuXbvIzMxk0KBB5DpYNWLLli2MGTOGSZMmsXv3boYPH87w4cPZv38/AKWlpezatYuXXnqJXbt2sXz5cg4fPsywYcMs9nPLLbfwxRdfcPjwYb766iuOHz/OiBEjfH68tcbLInwi/wSHLh1i1dFVNTcWuIdqHcXFKbf4eOW5sCQEZgRchOfMmcPkyZOZMGECHTt2ZP78+cTExPDRRx/ZbT937lwGDx7MM888Q4cOHXj11Vfp0aMH8+bNAyAxMZGsrCxGjRpFu3btuPbaa5k3bx47d+7k9OnTxv089dRTXHvttbRs2ZLrrruO559/nm3btqFTk+uDFWtPuJYirNMrx1tRVeG8oSwjbduGVnjQrmM9W05YEgI7hAXywysrK9m5cyczZswwbtNoNPTv35+tW7fafc/WrVuZPn26xbZBgwaxYsUKh59TUFCAJEkkJSXZfT0vL48lS5Zw3XXXER4ebrdNRUUFFRUmoSosLAQU+8MV4Vbb1FbkNUVFaM2eVxUWItdin6UViojrZT3lFeVoNVq77aTvvyfszjvpPGAAOqurilDBW9+Bq2gKCtAChpgY9Dod2vR0NEeOUHXmjMffmb+PwRcE4hikjRvRfPgh+tdfh8aNa70/Z8fg7nEFVIQvXbqEXq8nNTXVYntqaiqHDh2y+57s7Gy77bPVxS+tKC8v57nnnmPMmDEkJCRYvPbcc88xb948SktLufbaa/n2228d9nX27Nm88sorNtt/+OEHYmJiHL7PmqysLJfb2qPT779zldnzXzds4GL1D4InHCox/Z1XrlpJpCbSbruMNWvIBGJyc2t9DP5A0ulI3b2bS506URUba/Gav/rfce9e2gIncnPZv2oVPQ0GmgGH1q3juNW56C6h8B3UhD+Poffs2aT/8gt7k5M5NWiQ1/Zr7xhK3bw6DagI+xqdTseoUaOQZZn333/f5vVnnnmGSZMmcerUKV555RXGjRvHt99+iyRJNm1nzJhhEYEXFhbSvHlzBg4caCPujvqSlZXFgAEDHEbbrqBZZend9u7UCXnoUI/3F3cqDo4qj2++7WYaRDew/7nHjgGgrays9TH4A2nxYsL++U/0Tz6J4f/9P8B734GraL7/HoCMzp1pMXQomg0b4Oef6ZCcTDsPvzN/H4MvCMQxaN99F4Auqal0qsX/i4qzYyh0MygKqAinpKSg1WrJycmx2J6Tk0NaWprd96SlpbnUXhXgU6dOsW7dOrtCmZKSQkpKCldffTUdOnSgefPmbNu2jb59+9q0jYyMJDLSNkoMDw9360Ryt70N5eUWT8MqK6EW+zNIBovHDvtWVQUoIlzrY/AHp04BoM3ORmvVV7/1v9o/1yYmKn1o2tRhn9wlJL6DGvDrMVRWAqDNz6/1394ce8fg7jEFdGAuIiKCnj17snbtWuM2g8HA2rVr7QohQN++fS3ag3JJYN5eFeCjR4/y448/0rBhwxr7YqieeWbu+wYlXs6OqNRXGh9X6J0ce7X4ayorHbcJJvLzlftADiRaD8yJCRuBQ/2/vnw5sP2wQ8DtiOnTpzN+/HiuueYaevfuzVtvvUVJSQkTJkwAYNy4cTRt2pTZs2cDMG3aNG6++WbeeOMNbr/9dj777DN27NjBggULAEWAR4wYwa5du/j222/R6/VGv7hBgwZERETwyy+/sH37dm644QaSk5M5fvw4L730Em3atHEo/kGDt7MjDKZBBKcZEtUirA01Eba6cvArIjsieBAi7JjRo0dz8eJFXn75ZbKzs+nWrRtr1qwxDr6dPn0ajcYUsF933XV8+umn/PWvf+WFF16gbdu2rFixgs6dOwNw7tw5Vq5cCUC3bt0sPmv9+vX069ePmJgYli9fzsyZMykpKSE9PZ3Bgwfz17/+1a7lEFSoohsXp/yT+ysSrj6JhQi7gSMRFpGw/xEi7JypU6cydepUu6/99NNPNttGjhzJyJH2Z3hlZGTUOA23S5curFu3zu1+BgWq6KakeF2Ey6ucCJZqR4RKatSVK8p9MNgRanaGakcUFSmvqeIs8D1q8BCEIhzwyRoCN1HtiEaNlHtvRsLCjvAu1pFwfLxJkEU07F+COBIWIhxqmEfC5s89xCM7IhQK/gTDwJz5tGUVMTgXGFQRzs83LZQbJAgRDjV8KcIuRMJKwyDPIIHgjIRBDM4FCvWclWWTVRUkCBEONVTR9YEd4YonDAR/DePKStPfJVAiLMv2RVhEwoHBPHAIMktCiHAoIcumS1wvRcJqAR9wLU/Y5nEwokbBELgfjLIyk20jIuHAIstChAVeoqLC9I/tbzvC/CQO9kjYXIQD9YNhvtKyeW0REQn7H73echxDiLDAY8wF198Dc6EaCVdVGadc+xVVhGNiwCzPXUTCAcB6DEOIsMBjzJdQV2thBMITDnYRth54CUR/7WVGgJiwEQiECAu8hiq4MTGmS9wA2BFSKNkREBgRtjcoByY7QkTC/kOIsMBr+FqE66IdAYHxsB2JsBoJFxZ6ZZFWgQsIERZ4DfUSNzbWayLsbgEfILQG5iC4IuGEBNN3JywJ/2A9y1OIsMBjAhkJm0cTwR4JW3vCgYyErVb1QJLE4Jy/EZGwwGvYE+GqKqhFUZ06OVkjGCJhRwNzINLU/I0QYYHXsGdHQK2iYZcG5gwGC6GXgj0SDgYRdmRHgIiE/Y0QYYHXMI+EIyJM+afeEmFHdoT1SRxqIhxMA3Mg0tT8jXr+qtbQ5ctBVYRKiHAoYS7CkuQVX9glEbYW3WC3I4IhT9iZCIs0Nf+iirD6d6+oCKrMFCHCoYR64qi/6F4QYfPsCIeesLWIhUokHFa9ZkEwDcyB8IT9jZod0bChaVHcILIkhAiHEqonrIqvtyNhR55wqEXCqgirK3AHWyQsPGH/okbCkZGKEIMQYYGHmNsR5vf+9oSDuZ6wLJtEWBW7YM2OECLsH4QIC7yGr0XYxUg4qKctl5ebLj/VSDjYBuZUES4oCCpvss6iinBEhBBhQS0xT1EDMTBnD3VQTqs1VZoLNjsiIQGio5XHwhf2PSISFngNH0fCDgfmQilFTbUikpJMf59gi4QlSVgS/kS9MhIiLKg1PhBhi5U1XB2YCxURjopSHgcyEraXHQEiQ8Kf2IuE8/IC1x8rwgLdAYEb+MiOSC+E4gg37IhQEWH1kj/Y7AgQGRL+RNgRAq/hg0g4uqicI+/Az4ucRMLWdkQoeMLmkXAg+ussOwKEHeFPhAgLvIYPRLhNdgVxOmh3qebJGrIkAUGeHaFGwsnJgYuE9XqT8NckwsKO8D0iO0LgNXxgR6TnKZ5wlB4qdTXMmFOXVAoVOyJQkbD6PYGwI4IBEQkLvIaXI2FZlknP1xufayt0yPYKm6gncVKSch9qIuzv/qp+sFar/OPbQ9gR/kNkRwi8hpdFWGfQ0aLA9DxGZ5myZkQVsVAQYXNPWLUj/B0Jm2dGVFs4Ngg7wn/Yi4Tz8xXbKAgQIhwqyLL3RVivo3mh6Xm0zkGGhOoJqyIcCp5wICPhmgblwHLWnLl9IfA+5iKcnKw8lmXbansBQohwqGAufF7yhCv1lTaRsN3BOVXEEhMtnwcjwTAwV1N6GkB8vFhrzl+YD8yFh5vGNoLEkhAiHCqYC60qLl4Q4eZmIhxd5SBNTT2Jq6MIqaJCWW0jGAmGgTlXRFjMmvMf5pEwBJ0vLEQ4VFCFNjJSGfCB2tsRRQWkmOlTjKt2hNm2oMNennAwRsIgfGF/YT4wB0KEBR5inZ4GtRZhw+lTFs9jdA4iYWs7wnxbsGFvxlwwRsIg0tT8hYiEBV7BelDO/LGnecKnT1s8jXbkCasncVwcBjUKD8bBOfNawsnJgY+EHdWNUBF2hH8QIizwCj4QYensGYvnNdkRREZiUJeHCcZIuLjY5FUHsnaEK9kRIOwIfyFEWOAVfGBHaM9aRmAOB+ZUTzgqCr16IgdjJKz6wRERShRsHgn7c3VdYUcEF+bZESBEWOAhNUXCHoiMtQg7jITNIgm9GgkHowib+8GSZBJh8O+STO4OzAkR9i0iEhZ4BWciDB5dcoefywZAV30WOPSEze0INZoIRjvC3A8Gkx0B/v3RENkRwYXIjhC4TGUlLF0Kubm2r1mvtAyWIuOBJRF5PgeAs42Uk7PG7IioKPSqCAd7JAzKkvea6lPcnz8arg7MqXZEYaHpPQLvIyJhgct89hncdx+8+KLta6rImv9jh4WZfC53RViWibqgiP3pNEXMa7QjzEU4GCNh8xxhUCyJQAzOuRoJx8ebvk8RDfsOIcIClzl6VLk/dsz2NXt2hPlzd0X48mW05cpl2vlUZR81DcwRGRlakTAEZtacq9kR5rPmhAj7DmcDc/4csHWAEOFgIjvb8t4cb4twdY5wdiyUxJnZEc5S1KKiTJ5wMIuw6glDYHKFXY2EQWRI+BqDAXTV6yhaR8IVFbWqxe0thAgHE85E2F6KGnguwmeUHOHTiaCPUjIeahqYk80j4WC0I+xFwoGYNeeOCIsMCd+iMy1kaxThuDilkA8EhSUhRDiYUMU3P99W5HwUCZ9JhKqoGgbmzDw1QzCnqFl7whD8kbCwI3yLeWqiKsKSFFS+sBDhYMI8As7JsXzN2yJsEQkr0a0rdkTIRsLBmB0BIhL2NeYirJ67IERYYAeDwVJ4rS0Jeylq5s89jIRPJ4KhOhK2OzAny5bZEcE8Yy7UBuZAeMK+Rj13zdMVQYiwwA5Xrlj6V9YibC9FDWodCZ9JAEO0IlR2i7qrie6gDMwFc+2IYBiYq6w0fY/CEw481ulpKkKEBTZYi64jEfZBJCxXC5Xd5Y3MxSsUU9T8PTBnPunCHTtCeMK+QYiwwGVqEmFv2hFVVcbI60wi6KOdpKiZi3BERHCnqAXDwJwqwpGRphF4Z6h2RFGRchN4F+spyypChAU2uBoJe8OOOH8eDAaqwjTkxIIcYzZjztoTNvODkaTgHZjT65XpvxDYgTl3MiNAmTWnthXRsPcRkbDAZayzIXxpR1RbEQUp8cgakKLNZsw5ioSrT+KgraKmCjAEdmDOncwIFWFJ+A4hwgKXUUW3VSvL5yretCOqB+XyGikRmBxtioRtBubM0tMADOrJHGyRsOoHx8RYpiL5245wJzNCRWRI+A7rKcsqDRoo90KEBUZU0c3MtHyu4k07ojoSvpyivFeq3ke4AarKrSJGczsCgndgzp4fDIEbmHNHhEWGhO8QkbDAZVTR7dbN9FwtLmIwmCI5L0bClxoqAiXFmAm7tQiHih1hLzMCAjcw54kICzvC+9Q0MJeX59/+2EGIcLBgHQmXl5t8TnPBc0eEH34YunSBS5cst1dHwrkNFYHSREUjSxIAUplzO0If7HaEeY4wBP/AHAg7wpfUFAnn5yuDugFEiHCwoIpw69aQkGC5TfUZwbKQOzgWYVmG//4X9u+H996zfK06Es5poJyYEWGRGKqnLkulDiJh1RMO1UhY2BH1E0cirHrCsmyysgKEEOFgQKczRatpacoNTCKsCmx0tOXUS3Aswrm5phPwvfcs59CrZSwbKIIaoY0wzprTWEeMVidx0KaoOfKEA2VHiOyI4MDRwFx4uCnYCbAvLEQ4GLh4UflF1mqVyyRHImxtRZhvsxbhU6dMj3NylGWTQImqq32w80laoFqEq8VKU+YgRS3YB+YcRcL+HpjzJDtCRMK+w1EkDEEzOCdEOBhQxbZxY0WIrUXYUXqa+TZnIgzw5puK0FdbESQkkB+pDPxFaCOMaWph5ZWW77O2I4I1EnbkCYfCwJzqCRcXi1lz3saZCLdsqdzv3Om//thBiHAwoE7UUMXXUSRs7xK3JhEeNEhps3cvrF9vtCJo0QKdXik0E6GNMEaM2gorEQ6VFLWaIuFgFuG4OGXmHIho2Ns4yo4AuOMO5f7rr/3XHzsIEQ4GVLGtSYQ9iYS7dYMJE5THb75pioSbN6dSr5yg4dpw434cRsLVJ7ExEtbpAj6qbEFNnnAwD8yB8IV9hbNI+O67lfuNG20ziPyIEOFgwJEIqxGyJ3aEGvG2bAnTpimrCXz7Lfz4o7K9RQujCEdoI5BiqydsVOgs9+PIEzZ/LRgItjxhdwbmQKSp+QpnIty6tRKk6PXwzTd+7ZY5QoSDAVWEU1OVe0/siMpKpTqaihoJt2wJbduaLr0++0y5N4uEI7QRSNHKviMrZaoMZvuxtiPMK4MFkyURLANztY2EhQh7F0fZESp/+pNyv3y5f/pjh6AQ4XfffZeMjAyioqLo06cPv/76q9P2y5Yto3379kRFRdGlSxdWrVplfE2n0/Hcc8/RpUsXYmNjadKkCePGjeO82cl98uRJJk2aRKtWrYiOjqZNmzbMnDmTyspKex/ne7xhR4Cl0JiLMMBTT1m+zyoS1lQLvE0lNSs7Aq0WORgLuwfLwJwn2RFgioTtLfIq8BxnkTCYRPiHHwI2KBpwEf7888+ZPn06M2fOZNeuXWRmZjJo0CByc3Pttt+yZQtjxoxh0qRJ7N69m+HDhzN8+HD2798PQGlpKbt27eKll15i165dLF++nMOHDzNs2DDjPg4dOoTBYOA///kPv//+O2+++Sbz58/nhRde8Msx2+BIhHNzlUslZ3aEKjJgEuvCQpMotWih3PfrZ5qNBzaRsKZ66nJ0lVURHys7QmkUgBWMa6Km2hHBPDAHpskD6vcm8A7OBuYAOnZUrhQrK8EsmPMnARfhOXPmMHnyZCZMmEDHjh2ZP38+MTExfPTRR3bbz507l8GDB/PMM8/QoUMHXn31VXr06MG8efMASExMJCsri1GjRtGuXTuuvfZa5s2bx86dOzld7ZMOHjyYRYsWMXDgQFq3bs2wYcN4+umnWR6oSxJrEW7USPFw9Xolh9FZJCxJtr6wGgUnJ5tG3SXJMhpu0QKdwZQdoYlVRMOmsLuVHWHxOFhEuLLSdOyhOjCn9luIsHepKRKWJFM0HKAsiYCKcGVlJTt37qR///7GbRqNhv79+7N161a779m6datFe4BBgwY5bA9QUFCAJEkkWf+DWrVpoEYj/sZahMPCFCFWX3PmCYOtCJsPyplz771KNNypk4UdEa4xZUfUaEdAYFYwdkZBgelxYqLla6oI6/WWnrmvECIcXNQkwmAS4e++C8g5Heb3TzTj0qVL6PV6UtUBqWpSU1M5dOiQ3fdkZ2fbbZ/twEsrLy/nueeeY8yYMSSo0xStOHbsGO+88w6vv/66w75WVFRQYTb1t7C6uI5Op0On0zl6mxG1jU3b0lLC1X01bGhcJDIsNRUpN5eqs2eRiovRohTPMdj5rLCYGCSgqrAQWadD88cfaAFD8+bozdtrNLB1qzIhRJaNIizJyooZWpR15orLi4391JaWokEZkFO3yZGRyucVFSG7cOw+5+JFwgE5IYEqg0GpOqcSFoY6lKgz+858giwTVlKCBOgiIiwXbq0BKS6OMMBw5Yrld2aFw/MohPDnMWjLytAAVVqt43M1M5OwZs2Qzp6las0a5Ntvr3G/zo7B3eMKqAj7Gp1Ox6hRo5Blmffff99um3PnzjF48GBGjhzJ5MmTHe5r9uzZvPLKKzbbf/jhB2Ls2QQOyMrKsngek5PDAJTUr1WbNimXR0BfrZbGwN4ffqDhoUO0BI6cPcsRO77VrQYD8cC2deu4nJtLx/XraQuckGX2O/G5yiqVS/QtG7egOXOGjiiR8I8//cgfMX8A0Pv0adKBfUePcqq674U6HUnArz//zEXzhS0DRNKRI9wMlEVGkmV9vAYDd1U/3PD991BtV/kCbUUFd1SXH/1+82b01sWWnJB86BA3AaXnz7PWBW/SV8fgT/xxDH3PnVP+jw4d4oyTv2uXzExanz3LuXnz2FP9P+gK9o6h1M1FdwMqwikpKWi1WnKslvbJyckhTb00tyItLc2l9qoAnzp1inXr1tmNgs+fP88tt9zCddddx4IFC5z2dcaMGUyfPt34vLCwkObNmzNw4ECHEbZ1f7KyshgwYADhZmle0i+/AKBp0oShZr/A2i+/hD17yExNRaqO8q/u3p2rhg612XdYo0Zw9izXdu2KPHgw2iVLAMi46SZa2Gmvot+rTLYY2H8gzc8Ww//9H9FV0K5vb3o37a30o7oCW+eePbl6wACysrKIb9wYTpygd+fOyE727y+k6r9ndFoaQ+30R46MRKqooN+11/LDwYM234HXMBtMHnT33bbFlpyRkQHPP0+sTmf3GFQcnUehhD+PQTtnDgBde/Wii5O/qxQTA999R4s9e2gycKBiCTrB2TEUmi+15QJuibBer2fz5s107drVqb/qKhEREfTs2ZO1a9cyfPhwAAwGA2vXrmXq1Kl239O3b1/Wrl3Lk08+adyWlZVF3759jc9VAT569Cjr16+noVqow4xz585xyy230LNnTxYtWoSmhn+YyMhIIu34SuHh4W6dSDbtq2fqSGlpltur80a1Fy8afSptfDxae59V7RWHVVYq1aGqZ8VpW7Wy3x4wyAZjPnBsZCza6gG8GB3oJb2pL9UWTFhcnDE1TVLrTFRVubaisK+p9oSlBg3sfxdRUVBRQVj1ZaK735nLqHZVbCzhzjxIe1SPAUj5+YSHhRmviBzhs2PwI345BtXei411fq7ecgs0bIh0+TLh27Ypz13A3jG4e0xuDcxptVoGDhzIFS/W35w+fToffPABH3/8MQcPHmTKlCmUlJQwoXqq7bhx45gxY4ax/bRp01izZg1vvPEGhw4dYtasWezYscMo2jqdjhEjRrBjxw6WLFmCXq8nOzub7OxsYx7wuXPn6NevHy1atOD111/n4sWLxjZ+x3pQTsU8V9hZipr5duvsCOuBOTPUuhFQXTuieh/RjgbmgjlF7Q/FOiEjw/7r/hpIVAfV1IwUd1CDGvOUREHtcWVgDpTI965q48rPWVJu2xGdO3fmjz/+oJW6IGUtGT16NBcvXuTll18mOzubbt26sWbNGuPg2+nTpy2i1Ouuu45PP/2Uv/71r7zwwgu0bduWFStW0LlzZ0AR2JUrVwLQTV0qqJr169fTr18/srKyOHbsGMeOHaNZs2YWbWR1SSF/YT1bTsVchM0iLLuYi3BFhan+gDMRNliJsNlin/n2UtTMT2L1cbCI8LFjyv1VV9l/vfoHRPK1CJ89q9w3ber+e6OjlUhNp1PE3N3sCoF9XBVhULIkPvpISVWbO9c9O6kWuC3Cf//733n66ad59dVX6dmzJ7FWwuCKP2rN1KlTHdoPP/30k822kSNHMnLkSLvtMzIyahTSBx98kAcffNDdbvoGVyJh9QRyJRJWhSA62pTmZgc1MwIsC/jE6CDb1ckawZKi5qII+7y/anEkdYKMO0iSEg1fvKiIsFVwIPCQmqYtm9O/v3JunzunnFNXX+3bvlXjtgirgwbDhg1DMvOtZFlGkiT0wVRZKxRwRYRTUpTHroiwakW0aOHUVzSmpyGhlbRGYY2ucsGOCLbJGjWJsL9+NMzKhHpEYqJJhAXewZ1IODJSuSI9edKvC4C6LcLr16/3RT/qL45EWLUnrlxR8nrBPRF2YkUAlsV7zGbduTJjTg6mSLi42PQ3bNPGfhvzHw1fDgSpIty8uWfvFxM2vE9N05atCcB34LYI33zzzb7oR/3FkQgnJ5s8QrXWqSuesHkk7ARzEQZMkbArM+aCKRI+fly5b9jQtniPivmPhi9FuDZ2BAgR9gXuRMJg+g7MZ2H6GI/yhPPz81m4cCEHDx4EoFOnTkycOJFE6ymjAufIsmMRliRlm/qPDa5FwurJ40YkbL6PGJ0LBXyCSYRVK6JtW8dtzD1hTzIXXEVEwsGHpyLsx+/A7eG/HTt20KZNG958803y8vLIy8tjzpw5tGnThl27dvmij3WXggLTSWKdHQG2wuxFO8JiaSOzfSi1I6qFV5btF/AJJjuiJj8Y/JMdUVVlqgUsIuHgwZ2BOQgNO+Kpp55i2LBhfPDBB4RVzyqpqqrioYce4sknn2Tjxo1e72SdQJYJs57OqM78S0w0CZs51iLsjh3hYiQcrq2+PK/+fA1QVVbdz6oqUx2GYLUjjh5V7p2JsD9+NC5cUHJ8w8NtvzdXESLsXRydv85Qr+aDWYR37NhhIcAAYWFhPPvss1xzzTVe7Vyd4ddfCXv0UXqEhcGIEabtjqwIFevt5tGoOaoIFxeb7AsP7QgAQ2l1PQhz0aoDkbBPfzRUK6JpU8/zS4UIexezglvB7Am7fbYkJCQY6/Kac+bMGeJ96beFMomJsGcP6du3Q7WPDrgnwjExjlPOVAH94w9lNFirrXHCgI0Ih4ej1yj7l9WI3VxkzU5iOZgiYVdE2B8/GrUdlAMhwt7GfKWcuuQJjx49mkmTJvH5559z5swZzpw5w2effcZDDz3EmDFjfNHH0KddO+TqNd60b71l2u6uCDvCXIRBEeAaCpDYiDCgi1KsCVmdNqtGEuHhltGdv5cMckRpqZJYD65Fwr7sb21zhEGIsLdRz19JqvH/wUgoeMKvv/46kiQxbtw4qqqLZIeHhzNlyhRee+01r3ewrmD4y1/QfPMN0pIl8I9/KGuKOZqyrGIuws5W71VFWPW/XBACeyJcFRUBpZVQZhUJW9sgwVI7Qv3RSUoyLQ9kD3+KsKeZESBE2NuYZ0a4Wp4yAJ6wW5GwXq9n27ZtzJo1iytXrrBnzx727NlDXl4eb775pt0qYwIF+brryGvXDqmyEt55R9no7UhYpQY/GLBY2khFH1k9SKeKqyMRDhY7wjw9zdk/WfWPhk+zI4QdEXy4mxkBwe8Jq1XU8vPziYmJoUuXLnTp0sWtoub1maN33608eP99ZWXXAIqwxdJG1VRFKT+iUmm1uDrKsQyWgTlX/GDw78CciISDB3dzhCE0PGG1iprAfbJ790Zu21b5ghcurFmEzW0KV+wIFTdE2DwSNkRZVUcLdjvClfQ0CM2BOX9X86uLuDtlGUJDhNUqat9++y0XLlygsLDQ4iZwgkaDXl3x+M03TYNKjkQ4NtY0w8tHkbCFCEcrJ6tGFSsHIiyrJ3WoRcK+6m9JibIqNnhHhEVNYe/gSSSsesKlpW6tEVgbRBU1PyPffz/MmmW6fAXnyf1paYp14RcRViJGbVn1yVuTHRHoSDhYRFiNguPjbVd7doeYGGUUv6pK1BT2Bp6IsHkp3oICUwVDHyKqqPmbqCh4/HF46SXluSQ5rftLWppy2e2OHeGCL2lPhFWx0lZUX8YF88BceblJ/AJtR3jDigBTTeFLl0RNYW/gycBcWJjyY1pUpHwHwSbCOp2Ov/3tb8yfP5+2zgqmCJwzZQrMnq1c8jRq5DyHUY2SnUXC4eGmCColxblgV2NPhOWY6rXjymoQYVXU9HrlM13NwfQmJ04ovml8vPMfMTDVjvDVj4Y3coRVzEVYUDs8iYRB+Q5UEfYDbnnC4eHh7N2711d9qT80bAiTJimPHeUIq6SnK/c1Casq0i5YEWCngA9AtLIPYyRsr3iP9fNARcOupqeB7yNhb2RGqIgMCe/hqQj7OVfY7YG5+++/n4ULF/qiL/WLGTOUFV0ff9x5uwkTYMgQeOAB5+3cFGF7KWpS9T7CK6oHJOzVEgZLEQ7U4JyrfjD4zxP2ViQMQoS9gSfZEeD3XGG3ryOrqqr46KOP+PHHH+2uMTdnzhyvda5Ok54O69bV3K5bN1i1quZ2HoqweSQsVX+XYRXKTEiHdoRGo5zYFRWBj4SDQYR9EQn7cbJAnaU2dgT47YfQbRHev38/PXr0AODIkSMWr0muTg0UeB8viLAmRhHhiJpEWN1WURG4SNjVHGHwnx0hIuHgoq6KsMiOCFIaNlTuXRwwtSvCsUpKVKQqws5O4uhoJVoLpUjYF32VZWFHBCueZEeA3z1hrw5r5+bm0rhxY2/uUuAqb76p2BuDBrnU3J4Ia2MUEY6orM71rikShsCIcGWlqXi9G5GwVFHh/Zloly6Z/k41lA91CSHC3iNEImGXB+ZiYmK4ePGi8fntt9/OhQsXjM9zcnJIV0fyBf6ne3f4y19MKzPXgL0CPmFxSqJ6VKWMQTY4F+FA1o84eVKpGBcb69oqFmb915jXmPUGahSclub+P7s9hAh7jxAZmHNZhMvLy5HNooiNGzdSZhUFyWK+e8hgs7wRoI1VpkhHV1W/XpMdAYGJhM2tCFfGIcxEWOvtqaje9INBiLA3qWuRsCuIgbnQwZ4dEV4dCRtXXHbFjvBmJFxYCLm5Nbdzxw8GZTJL9RWC1yNhb2ZGgBBhb1IfRVgQOtgT4TAzEa6oqnDNjvBmJNyrF7RqBZs3O2/nrgiDaUq2r+yIYIuE//c/WLq0tr0JbUJkYM5lEZYkySLStX4uCC3s5glXp7lF66BCX+E8kvD2wFxJCRw5okzlvvNOy7X4rHEnPU1FLU7kKzsimCLhkhIYORLuv1+5uqiv1DYSDrbJGrIsc/XVVxuFt7i4mO7du6OpXntM+MGhhd0CPtUiHKODMlcjYW/ZEeY2xJUrSpbH1q32Mw5qEQlrzFfg9Qa+9IRl2fVlecw5csRUhjEvz7IyWH0iROwIl0V40aJFvuyHwM/Yy45QhTW6CvL1NYiwtyNhNfOmUSNlvbjDh2HwYPj5Z9M/BSjicvKk8tgTO8LbkbCv7IiqKuWqwIViTDaYX0UUFXmlWyFJbbMjCguVIlUuZhx5issiPH78eF/2Q+Bn7NWOMI+Ey6vKXcuO8HYk3LIlfPkl9O0L+/fDXXcp07b/+EOJjDdsUAQqKgqaNHF9/9X99erAnE4H588rj71lR1jXFBYi7Dm1LeADihAnJ3uvT3YIQA1CQTDgzI6IroKKyjL/DsypIty4sSLEq1fDTTfBxo1KZFK9sreR665Tali4ii8G5s6fVyyDiAil397AuqawJxNAzEVYeMLuD8xFRCjnd1mZ4gsLERb4ArsirAoroCst8m+KmrkIA2RmwooViiVRWamsMtG7txIhX3st3Hqre/tXI2Fv2hHmg3Lu/CDURG1rCh86ZHosImHPJtEkJSki7AdfWIhwPaUmEa4qKgxMJGxeoP2WW5SorqQEOnasnTdnXDXEiwNz3s6MUKnNwFBVlTIwpyJE2HMRvnBBiLDAd9gVYa2WyjCJiCqZqpIi/6aoWUfCKq1be2f/vhiY8/agnEptRPiPPywXqKzPIuzpwBz4NVfY42uoyspKDh8+TJW1VycICeyurAFURCjRpr6kBjvCVwNzvioA5YuBuWCMhM2tCKjfIlzbSBj8kivstgiXlpYyadIkYmJi6NSpE6erT8THH3+c1157zesdFPgGu5EwUBFZLcKlxf61I9QUNV+JsC8G5rydI6xSmyjMepKLEOHaiXAwRsIzZszgt99+46effiLK7J+zf//+fP75517tnMB32CvgA6CLUBwquaTENTsi1CLhum5HqCKsfmciO8L97AgIbhFesWIF8+bN44YbbrCYttypUyeOHz/u1c4JfIejSLgysnqYoKjIlBbm60hYln0vwr6MhIPJjlBFuHt35V5EwnXPE7548aLdwu0lJSWilkQI4UiEq6pFWJNv5oX5esZcfr5J8Gtavt5TvC3Cy5Yp/Zak4ImEZdnkCffqpdwLEa57nvA111zDd999Z3yuCu+HH35I3759vdczgc/QG/ToZWX1DGsR1kUqz7UFZv+8vp4xp0bBCQneKYxuD2/aEWvWwNixyuOpUyE+vvb7NMdTEb5wQbEfNBqoXgeyXotwbbIj/GhHuJ2i9s9//pMhQ4Zw4MABqqqqmDt3LgcOHGDLli1s2LDBF30UeBm1bgTYirA+SnkeroqwVqtMo7XGm5Gwr60I8F6e8KZN8Kc/KWlg996rLCvlbTwVANWKaN0aUlKUx/VZhOvqwNwNN9zAnj17qKqqokuXLvzwww80btyYrVu30rNnT1/0UeBl1PQ0cCzCEYXFygZ7VgT4JhL2pQh7IxLevRtuv1354Rk6FP77X98Ud/FUAFQrokMHU+W0+irCsmyKhD0ZmPOjJ+zRZI02bdrwwQcfeLsvAj+h+sFgVcAH0EcpUUNEYamywVEU4c2BOX9Gwp56wocPK+U1CwuVmhbLlikrdviC2kbCHTqYLJL6KsLm33Nd84S1Wi25dpaguXz5Mlofl3wTeAdVhDWSBq3G8jszRCsnbJQqwo4iYW/aEb7OEQZTUXdPRXjMGKWfPXrAN98Yix35BOuawq6iinD79iYRrq8paua2U12zIxwVb6+oqCDCk7Bf4HccZUYAyGpN4aJqcXXFjqhtQX8/RsIe2REGA/z2m/J42TLfF0m3rinsKvYi4eJipf/1DW9Fwu7+EHqAy3bE22+/DSjZEB9++CFxcXHG1/R6PRs3bqR9+/be76HA6zgV4Wqxii6ujiRqioQNBmWQqjY/wPaK93ib2tgReXkmIfN2TrA9YmMVr1mvd72mcEGBkh0BSiRs/n2UlHg/gyPYUSPhsDDPKtypImwwKD9kPvz7uSzCb1aPAsuyzPz58y2sh4iICDIyMpg/f773eyjwOk5FOEaJcGOKaxhZNqu4Rnm5d0TYHwNznoiw2r8GDXznA5uj1hS+fNn1msLqoFxamvJeWVbEx2BQfOH6KsKepjxGRSnftU6nfAfBIMInTpwA4JZbbmH58uUk+7jQscB32F3aSKXa64wrrhYrR5Gw+cldVla7S/RgH5gzX3rJX6gi7OrAkLkVAYqQx8cr76+Pg3O1mbIMph/CixeVv6EPr4DcjtPXr18vBDjEsbu0kUp09eoaFcpkDociLEneqx/hx0jYIxH2R/+scXdgyDw9TaU+p6nVNhIGvw3OuZ2iNnHiRKevf/TRRx53RuAfnNkRGmv/0dlJHB2tCHBtMiSqqpSID4J3YC4URNg8M0KlPqep1WURvnLlisVznU7H/v37yc/P51Z3l5wReI1Dlw6x+fRmJnSfgEZyfoHjVISjrUTYUSRs/lptRFgVYEmChg09309NmNkRbo91B8qOAPdF2DwSrs9parWZsqzipwkbbovw119/bbPNYDAwZcoU2rRp45VOCdznsVWPse7EOtLj0xnadqjTtk5F2CzrBXAuwt6YNadGmSkpvl1a3GxgTu/ue4MtErZOOauoALWCoT0RFpGwZ/hpwoZXVifUaDRMnz7dmEEh8D8XipT0pB3nd9TY1rkdYSXCzk5ib0TC/khPA5MdoabUuUMQRcKa555jyLhxSMuXmzYeO6YIc3w8NGli2i5EuHZZO36yI7y2ROzx48fFUkcBpKBC+bX+Lee3Gts6WtoIICzWKhXHX5Gwr6NM65Q6dwiWSLiwEM377xNRXEzYvffC//t/SiqauR9sXk5WiHDd9ISnT59u8VyWZS5cuMB3333H+PHjvdYxgXsUVii+396cvTW2dRYJh8VZpZq5IsLeiIR9LXDm/4yeinCgI+Gvv0YqL0cfEaFkeTz3nLKyshr9mlsRILIjoG56wrt377Z4rtFoaNSoEW+88UaNmRMC36A36CmuVKqeHc87TnFlMXERcQ7bO1raCOxEwv6yI3wtwpKEHBmJVFHhfn/9UdvCGnsivGQJAEdGjODqXr3Q/uUvsHChyUu3FuH6HAl7Y2DOT56w2yK8fv16X/RDUAtUAQaQkdmfu59rm13rsL2zSDg8LtFyQ12xI0Dpb0WFe/31VwqdNdYinJ0Na9cCcPamm7hq4kS0bdsqNY2Lq79/67IBrmRHyLKlhWGPFStgzhz429+gXz83DiKAhJAd4TVPWBA4VD9Y5bds576wUxGOdcOO8EYk7M8o05P+mqfQNWjg/T45wloAPvsMDAYM115LaVqasu3225Ui882aKcfWp4/lPmqKhHNzlff26wf79tm+XlUFzz8Pd98NP/8M//lPLQ/Kj4SQCLsUCXfv3t3l9eN27dpVqw4J3Ef1g1Vq8oWdiXBkgtVsyJoma0BoRcKgWBKu4q8UOmusBaDaipDvvdeyXWam4gsXFdn+DWsS4V9/hfPnlVv37vDkkzBzpvK+3FylfOe6dab2hw/X5oj8izeyI4LJEx4+fLhPOyGoHdYiXFOGhLPaEZGe2BGhkKIGph8Ud340AjEoB5YifPgw7NgBWi2GESOUx+ZER1tmf6jUJMJqlB8VpfxN3nhDibifflp5fPasUsFtxgz4618VsXfFvggGQihP2CURnjlzpk87IagdBeXKSRITHkOprpS9OXuRZdnh1YsxEtbYEeGwKErDIEbNNnTFjgiVSNgTOyIQg3JgEgCdDj78UHk8cKB7/ahJhC9dUu7/9Ce4/35l0dI//oCnnlK2t2sHy5dD27Ywa5ZSEvPcOcXCCHa8bUf48MfHY094586dfPLJJ3zyySc2GRMC/6JGwt3TuhOuCaeosoiT+ScdtneWHaHVaCk112ZfRsJlZSaB8IPIyZ7YJ4GKhNWawgBqPRZ1hWdXqSlFTRXhlBQYMgT274eXXlIq6Y0apdgVHTsqJR1bt1bahool4c3siMpK76yl6AC3RTg3N5dbb72VXr168cQTT/DEE0/Qs2dPbrvtNi6qUYPAr6gi3DCmIR0bdQSc+8LOPGGA8nCzX3xnJ7EqnJ7+Y6rnS3i4yX/zJaEUCaulFEEpKh8TA3fd5d4+XLUj1JWZo6OVDIiiIvj8c8vypO3aKfdqtbZgxxuRcFycqSC8D31ht0X48ccfp6ioiN9//528vDzy8vLYv38/hYWFPPHEE77oo6AG1OyIxMhEMtMyAee+sFsi7CwSHjBAuV+/3r1leFTMrQh/+IxqJOzJwJy/I2EwiTDA8OGKKLhDTSlqaiRsXTjJ3koUqgiHSiTsjYE5STIFBz70hd0W4TVr1vDee+/RwSwxvGPHjrz77rusXr3ao068++67ZGRkEBUVRZ8+ffj111+dtl+2bBnt27cnKiqKLl26sGrVKuNrOp2O5557ji5duhAbG0uTJk0YN24c58+ft9jHP/7xD6677jpiYmJIMj/ZQxA1Ek6ITKBr465ALSPhCLPTwpkId+oELVool2qe5I/7O8qsjookdy4tAxUJg6UIu2tFgEmEdTr7PzzmdkRNhKoI1yYSBr+kqbktwgaDgXA7S7yEh4dj8GBBwc8//5zp06czc+ZMdu3aRWZmJoMGDbK7ojPAli1bGDNmDJMmTWL37t0MHz6c4cOHs3//fgBKS0vZtWsXL730Ert27WL58uUcPnyYYcOGWeynsrKSkSNHMmXKFLf7HGyYi7A3IuGKCLNULGcnsSQpuaoA333nRo+r8XdNBvUHpbRUEZOPP4YpUxSBsyrRGrA+mqMKQEqK6arDHcwjZ3uWhLUd4QwhwrXbjxPcFuFbb72VadOmWUSW586d46mnnuK2225zuwNz5sxh8uTJTJgwgY4dOzJ//nxiYmIcFoefO3cugwcP5plnnqFDhw68+uqr9OjRg3nz5gGQmJhIVlYWo0aNol27dlx77bXMmzePnTt3cvr0aeN+XnnlFZ566im6dOnidp+DDVWEEyMT6ZqqRMLq9GV7OF3eCCsRdhYJAwytLpu5apX7q9L6+1JfLWc5Y4Yyu+zBB2H+fPj0U2MebsD7aI46OWT0aM/WtgsLM1kw9kTYkR1hD1WET5+uXUqiv/DGwBz4RYTdnrY8b948hg0bRkZGBs2r1106c+YMnTt35pNPPnFrX5WVlezcuZMZM2YYt2k0Gvr378/WrVvtvmfr1q02RYQGDRrEihUrHH5OQUEBkiTVynaoqKigwuySrrDaZ9PpdOhcKI2otnGlrbtcKVOiuNiwWJIjkkmLTSO7JJs95/fQp2kfm/blOuVyXIPGbn90ZiKs02qNpR/tHsONNxIWFYV06hS6335TLAoX0WRnowX0KSkYfPB3sUZu2pQIQDIYkKOikHv0QCotRdqzB/2RI3b7EHbxIhKgS052vwRmLZGmTkUD6J95xvl34ISwhASksjJ0eXmWqWUGA2GXLyvHlphY87ElJRGWnIx05Qq6Awega1cPjgiLvnvlf2H/fsImTUL/4ovIZle72rIyNEBVWBhyLT5HGx+vfAeXL1ucH86Owd3jcluEmzdvzq5du/jxxx85VD1S2qFDB/r37+/urrh06RJ6vZ7U1FSL7ampqcZ9W5OdnW23fXZ2tt325eXlPPfcc4wZM4aEWixGOXv2bF555RWb7T/88AMx1YtjukJWVpbHfXDEiXPKIqx/HPyDVTmrSNOkkU02n679lMspl23anz6rXBEcPXiUVZdW2bwerjFFtBu2baPE7AoCbI/h2o4dSd21iyNvvsmxP/3JZn9Xf/EFLX/4ga2vvEKx2crB3XfvpgVwKC+PY6ts++FttB070uj55ylLSaEwIwM5LIyMNWvI3LOHi1u38otVHySdjmHVEVDWnj3o/vjD5320YexY2LNHuZnh6nl0m0ZDHLAtK4u8s2eN28OLixmqV8rbr9m+HcNvNZdAvbFxYxpcucKezz/nvNm+VJps2kTLrCx2Tp9OpQvZLt74X7j6iy/osHs3l157jV/CTHJ27blzpAJ7Dx3iTC3Ore7Fxco5+uuvHLOTH23vGErdHKR2W4QBJEliwIABDKj2qfJ9PK3PU3Q6HaNGjUKWZd5///1a7WvGjBkWEXhhYSHNmzdn4MCBLom7TqcjKyuLAQMG2PXUa8M/Fv8DiuGmPjcxtO1QNq7byJ5teyAVhg6yXWXjw2UfQgF079qdod1tX8/6dwygWBk3DxpkXGnW0TFoTp2CXbvocOIEVw+12t+ZM4SNHImk09Hv4EEMkycbX9JWfyftbrzR9n0+QKfTkRUdbdF/KTIS5s8ntaiIodZ9qLbcZK2WAaNG2c8a8DPunkdhqalw4QJ9O3dGHjTI9MKxYwDIsbEMdnFGrParr+DwYXrExNDNzvcV9uyzSEeOMPDSJQxjxnjtGJyh+fFHAFLz8y2+P231AhNdr7mGLrU4tzTr1sG6dbRPTbU4R50dQ6Gby0m5LcL/+te/yMjIYPTo0QCMGjWKr776irS0NFatWkVmZqbL+0pJSUGr1ZKTk2OxPScnhzS1SIkVaWlpLrVXBfjUqVOsW7euVlEwQGRkJJF2/KXw8HC3TiR327uC6gk3iG1AeHg43dO7A7Dv4j67n1UlK9PhoiOi7b8eafKKw+PjbfxIm2O4806YNg3Nli1oiovBfDXuN94wXupqly1D+9ZbpkkI1ZkHYenpnnmeHmLR/2qvUzp5knCt1lJoqwfrpJQUwmvrLXoZl8+j6vM+rLTU8m9cnXIlpaS4fj5WZ0Rpjx1Da/2enBxlWjOg/e0329ft4JX/herBRenECcJl2ZSSVu0Jh8XG1u7cqvbltUVFdo/J3jG4e0xu/7TPnz/f6AVnZWWRlZXF6tWrGTJkCM8884xb+4qIiKBnz56srS7RB0r2xdq1a+nbt6/d9/Tt29eivdoP8/aqAB89epQff/yRhr5cQDIIMM+OAMhMVX4I1enL1tSUHaGPNtvuivi0aqX8g+r18MMPpu3nzpmm3EZGKv+o5qlsgUz/UmneXBnAqqhQ+mtOIDMjvIWjCRvupKepOMuQ2LjR9NifRbzUc0ivhxMnTNu9lR3hhyI+botwdna2UYS//fZbRo0axcCBA3n22WfZvn272x2YPn06H3zwAR9//DEHDx5kypQplJSUMGHCBADGjRtnMXA3bdo01qxZwxtvvMGhQ4eYNWsWO3bsYOrUqYAiwCNGjGDHjh0sWbIEvV5PdnY22dnZVKojpsDp06fZs2cPp0+fRq/Xs2fPHvbs2UNxsf2MgmDGWoTbpbQjXBNOYUUhpwpO2bR3trwRgN4sEq4xO0JFTVUz99/+9S8lIrnxRiUTAZRMBFAyKQKZeaASFgYZGcpjdbFMlWD4kagtjkTYnfQ0FXMRtv5x37DB9PjAAc8m73iC+mOi9kvF29kRwTRZIzk5mTNnzgDKxA11QE6WZfR6t9exZfTo0bz++uu8/PLLdOvWjT179rBmzRrj4Nvp06e5cOGCsf11113Hp59+yoIFC8jMzOTLL79kxYoVdO7cGVDS5VauXMnZs2fp1q0b6enpxtuWLVuM+3n55Zfp3r07M2fOpLi4mO7du9O9e3d2WFeoCnKqDFWU6EoAJUUNFHF1Nn3ZWe0IAH20cuLKkuT6pZwqwqtXK4tOnj8PCxYo22bOhPvuUx4vX65M7igqMkUrgRRhgKuuUu6rfVIjwfAjUVtqioTduUq86irFrikqUorMm2MeCRsM9usT+wLzUgnVdggQUnnCbnvCf/rTn7jvvvto27Ytly9fZsiQIYCy7NFV6snsJlOnTjVGstb89NNPNttGjhzJyJEj7bbPyMiwewluzeLFi1m8eLE73QxKiipM/1zxkaalibqmduW3nN/4Lfs3hrWzmqhSgx1hqD5xq8K1hLs6nfj66xX/8eJF2L5dKYlYUQHXXQe33qpETs2aKeURV68GNT87Nla5BZI2bZT7uhgJOyri44kdERmpWE/HjytRZ3q6sv3yZZPo9uwJO3cqloR1kXlvI8uWImweCXtj2jIE52SNN998k6lTp9KxY0eysrKIq56Vc+HCBf785z97vYP1nUp9JTvO70BvsH+VoVoRUWFRFqJq9IVzHUfCDkU4WrEgqiLc+I0OD1dKLYJS9Wv+fOXxzJnKzDqNRlmKB2Dp0uDyWx2JcF2OhD2xI8C+L/zzz8p9hw6gZmD4wxcuKjLZDuCbSDgYPeHw8HCefvpp5s6dS/fu3Y3bn3rqKR566CGvdq6+s+bYGrq834VeH/Ti7V/ettvGfLacOerMOXtLHdUkwnKMMsvKfNKGS6iWxIIFiuXQp4/ldFvVkvjmG9OlfyiIcDD00VMcFfHxxI4A+yKsWhE33ww9eiiP/SHC1lUb7UXCIeAJe5QnfPjwYd555x0OHjwIKJM1Hn/8cdqpX5CgVhzLO8b076fzzZFvjNsOXjpot61aQU0dlFNRRfhY3jFKKkuIjTBd8tckwupUV124myJcbU0ZUaNglW7dlH/iw4fhgw+UbcEgcKqNdvy4ZfFu9Z+8LkbCntgRYL+kpTooZy7C+/YpUWpt7QBnqN9PgwZKuc+cHEUsExO9PzBXWuqz43E7Ev7qq6/o3LkzO3fuJDMzk8zMTHbt2kXnzp356quvvN7B+oTeoOeFtS/Q6b1OfHPkG8I0YfRM7wnApdJLdt9jnRmhkhqXSqOYRsjIHL5smVJUU+0I2SjCbp4eqanQq5fy+JprYPBgy9clyRQNb9qk3AeDCLdqpdwXFJgu06FuRcK+siMKCkyz+W66Sck0SUpScsN//92DDruB+kPSqhWo8wRUS8JbkXBCglLYvm9fn9XMcFuEn332WWbMmMHWrVuZM2cOc+bMYcuWLbzwwgs8++yzvuhjveGTvZ8we9NsKvWVDGoziH1T9vH8Dc8D7oswQPNEJZXwfJFlGc+aIuGCNk2p0MLpjGS7rzvl6aeVVRjmzrVfI9h6JlUwRJnR0aBOpza3JOrCwJw3syPAJMInTypCt3mzkg1x1VXQpInynfvLkjC/Urn6auXx4cNKzrCaqVVbEdZqlR+TLVt8tvCA2yJ84cIFxo0bZ7P9/vvvt0glE7jP1rNK0aLHej3G6rGraZ/SnpQYJVJxJMLq+nKJUbYnSHqcMnp9ocjyezGmqGnsp59VNksn7Wl454lr3T+IUaMUIbvuOvuvt22rRMkqfhS4/PJ8NlzZQEllie2L1r6wmkYHwfFD4Sn2RFiWPY+E09KU6NBgUHx9cytCJRAirP44HDliWTvZl3aIl3BbhPv168fP6mioGZs2beLGG2/0SqfqK/tzlZrI1ze/3rhIpyrCF0vtLx3lLBI2inCxfRF2FAlHaiPJj4ZyfFQ1TLUkwK8iPHvzbN489SYLdi+wfdFahP299JKvsJeiVlBgihTdjYQlydKSUEX4pptMbQIdCZuLcJBNN7eHSwNzK1euND4eNmwYzz33HDt37uTaa5VIadu2bSxbtsxulTGBa8iybBThzo07G7erIpxXlofeoEersRwsM4pwhB0RjnceCTsU4TDlxC2v8tHihqNHw1/+okRkfhThLWeVyTrWfw/AdsKGeXpaKCzx7gh7kbBqRcTGuj4j0px27ZRc8F27lJxgsB8J//YbVFUpsxJ9gSuRsB9rkniKS3+d4XaqLL333nu89957Ftsee+wxHn30Ua90rL5xtvAsBRUFhGnCaJdiyjJpGK1EKgbZQH55Pg1jLCMX4/pyduyIJvFNADhfbPKE9QY9BllZAcVZJAxQUeXGWmzu0KQJPPoorFsHvXv75jOsqDJUGWcP2i12bx0J14VBOTCJcHGxYiFoNJ5nRqiogvff/yoi27KlclNp21ZZ1aO4WIlM3agx7RaORFhdvioyMiR+QF2yIwwGg0s3T6YtCxTUKLhdw3YW4hiuDTfmANvzhV2yI8wiPzUKhpoj4Qq9j0QY4L33lDQnP13qH7x4kLIqZXS7qNLOKhOO7IhQ9oPBJMKgiCJ47gerqIJXXb7AwooARei7dVMe+9KSMP8xadVKibhLS02FfELAigAPPGFH5OfnG5cYEriPPStCxdngnFMRjrf1hNX0NHAswlFhyiWqzyLhALDzwk7j42Kdk0g4OxtKSupOJBwVZSodqloSnmZGqFjPBzC3IlT84Qub/1CGhytZOWCaQh0Cg3LgBRFeu3Yt9913H+np6cycOdMbfaqX7MtVThx3Rdh8uXtr1Eg4uzjbaEGYR8KOCviodoTPPOEAsPO8SYTtZkckJ5vWdPvjj7oTCUuSrS9cWzuibVvLy/xgEGEwDc7trZ6qX5cj4TNnzvC3v/2NVq1aMXDgQCRJ4uuvv3a4xJCgZtRIuEtj24VHPY2E0+KUBPYqQxWXS5VLUFWEtZIWjWT/61f3pQp8XcAiEnawAKoxGj52rO5EwmCbIVFbOyI62uQBp6eb/m7mqCK8e7fiRXub8nKTvaKKsBqhq5FwXRNhnU7HsmXLGDRoEO3atWPPnj38+9//RqPR8OKLLzJ48GCvrxhRX9Ab9By4eACwHwk3ilVOMndFOFwbTqMY5b3qhI0apywDjWMV4ckpznGpIl2wU2WoYk/2HuPzGkX4+PG6JcLejoTBJHg332x/8KtDB8UKKSqyrcnhDdQoOCzMNK6gRsL7lYCmzolw06ZNeeedd7jnnns4d+4cy5cvZ8SIEb7sW73h+JXjVOgriA6LplVyK5vXU6Id5wo7E2Gw9YVdEeHUOKWWc1lVmWPBCiEOXzpsHJQDjPWXbTAX4bpiR4BjEa7NijN33KHc33+//dfDwkwrMvvCkjD/IVF/BNQfBrWgfF0T4aqqKiRJQpIktFptzW8QuMy+HOXyqVPjTnYtAqeesJMZc2CbIeGKCMdFxBEbrhT8ySnJcdguVFCtiMYxSlRrNzsCLAv51MVIWK2kVls7AuCxxxRRVyvn2UOtsrh7t+ef4wh7P5JqJKxS1wbmzp8/z8MPP8zSpUtJS0vjnnvu4euvvzbO7BJ4jjM/GByLsE6vM0Z4jiJhNVdYjYRrWtpIRY2Gc4rrgAhXD8rd0OIGQLEj7Nos5p5wfYiEayPCkqTkAjvDl4Nz9r6ftDTLlLy6FglHRUUxduxY1q1bx759++jQoQNPPPEEVVVV/OMf/yArK0vkCXvI/ouO09PAsQibR3TxEfHYQ42ErT1hR5kRKqmx1SJchyLhm1oo+axVhiqLLBEjqgifPGm6pPVCJLz93HaulF2p9X48xhd2hCuYi7C3xxbsibAkWUbDdU2EzWnTpg1///vfOXXqFN999x0VFRXccccdxnXhBO7hLEcYHIuwakXEhMc4FFVPPGGoO5Gw3qBnd7ZyOXxjC1NtE7ted3q6MvKvCkZkZM3RXg1sP7ed3h/25v6vHXin/sBchGtTvMddOndWvGHz5Y+8haMrFfMc5roswsY3azQMGTKEL7/8krNnz/LCCy94q1/1hvKqco5ePgq4L8I1DcqBZ54w1J1I+PDlw5TqSokNj6VjSkciJOW47YqwJFmmWzVuXOtpr2pWxi9nf6nVfmqFeYpabYr3uEtUlLLSNigrrHjTlhAibEujRo2YPn26t3ZXbzh06RB6WU+D6AZGwbRGFeGCigKjpwuuibC1J+y2CId4JKz6wd3SuqHVaInSKLMBHQ7OWYuwE3KKc8gtyXXa5nTBaQAul1025mr7HfNIuLbFe9xlyRLIzFQGOm++Gdau9c5+Hfna9cWOEHgPcyvC0SBncnSyMWvicpnpH9nZbDkV80pqsiy7b0eEeCSs+sHqCiVRWkV4aswVBqeDcpX6Srq834Vu87tRZahy2O504WnjY+sVTvyGeXaEv6wIlfR0pdxlv37K5IohQ5C++KL2+3UlEq5r2REC36Cmp3VuZN+KANBIGmM1NXNLwpVIWJ01V6Gv4Er5lRqXNlJRI+Hs4tCeBWkU4SbVIqxxQ4SdRMK5JblcLL3IheILnC0867DdqfxTxseHLh1y2M6n2IuE/SXCoEymWLMGRowAnQ7tAw/Q6rvvardPRyLctq3psYiEBa5QU2aEirG4e4lpwoYrIhwVFkVylLJM0YWiC/UqEjbIBnZfUAbl1Eg4WqOsn+dQhNVcYXAaCZtnO5y4csJhO9WOAGXSSECwJ8K+9oOtiYyEzz6Dxx5DkmW6fPhh7WbSORLhuDjTUlVChAWuYMwRTrWfI6xib3DOFREGS1+4pqWNVOqCJ3zk8hFKdCVEh0XTPqU94L1IOK8sz/j4RL59EdYb9BZRcsDtiEBFwipaLbzzDoabb0aSZTQrVni2n6oqZXVlsP9DqfrCISLCbpe81+v1LF68mLVr15Kbm4vBqjjHunXrvNa5uk5hRaExUurUyHnha3sibJwt58QTBsUX/v3i7x5FwiW6EkoqS4iNiHXaPhixHpQz6A1Ea5VIuKjCwcBcixaKWOj1ziPhclMkfDL/pN02OSU5FqVDA2ZHmGdH+NsTtkaSkP/0J9iwAel//4Pnn3d/H+oxSJKp8p05nTvD+vWm5eqDHLdFeNq0aSxevJjbb7+dzp0dDyYJakaNgpvGNyU52vnKxrWJhM0nbKhiWpMIx0fEExUWRXlVOTklObSOaO20fTBiPSgHLkTC4eHKsu3Hj4OTvHdXImH1BzY6LJqyqjKOXzmOTq+rcaKM1wkGO8IMw7BhaKdNQ7NtG1y4oAzeuYN6DMnJ9pdOeu455bubPLn2nfUDbovwZ599xhdffMHQoUN90Z96RU2TNMyxK8KV7onwheILtEhsAdQswpIkkRqbyqmCU+QU59A6OYRFuIkbIgwwcyasXKmM6DvA3BN2FAmrItwjvQe7s3dTqivlRP4Jrm54td32PiNY7AiVpk3Ju/pqGhw5Av/7n7LUlTvUNKW8aVN48cXa9dGPuO0JR0REcJX54IXAY2qqGWGOUYTL7NgRDor3qJjPmnO1dgSE9uCcvUE5cCFFDeCBB2DZMoiJcdjEIhJ2MDCnZkZkJGUYhTcgg3OqCOt0cO6c8jiQIgxcqF4kmOXL3X9zXarrgQci/Je//IW5c+fWiTqzgabWkbC7A3NueMIQ2oNzRy8fpaiyiOiwaDo06mDcXmN2hIuYi/D5ovN2l4JSI+EWiS1o11DJXw2IL2w+9Vpdfy3QItynj/Jg/Xq44mZdjTomwm7bEZs2bWL9+vWsXr2aTp062RRyX+7JL1s9RJZlp0saWeMtT9jV7Ajw3tTlbw5/w5J9S3jv9vdoEG1nIMUHqFZEZlomYRrTaW4UYXvrzLmB+cCcjMzpgtO0bdjWoo06UaNFYgvjj15AMiS0WiWqLy01CVgAPWGAkqZNkTt2RDpwAL77znFdYnvUMRF2OxJOSkri7rvv5uabbyYlJYXExESLm6Bm9AY9By8d5FLpJSQki0jNEeoKGRbZEdUz5moUYTM7Ql1B2S07opaR8PNrn+fz3z9n1dFVtdqPO/xx5Q8AOqRY/m1VO8JhdoSLmEfCYH9wzl4kHPA0NZUAR8IAhrvuUh58/bV7b1RFOAiOwRu4HQkvWrTIF/2o0xy4eIDpa6Zz5MIRHj36KLmlucaFN69qcBUx4Y69RxVnkzVqTFGrjoRLdaXG+gVu2RG1iISzi7ONSzf509bIL88HMM40VHFpYM4F1Eg4QhtBpb7Sri+sinDLxJZUxCk/fgFNU8sx+/sHOBIGMAwfjnb2bFi9WonSnXjwFqiDi/U1Eha4j0E28P0f33Oi7ATZJcrKxxISaXFpPHntky7tQxXhsqoySnVKrVtX7YjYiFhjm1MFymCRvwbm1p0w5Y3bW57JV6jZC9apf94SYTUSVq0k6wyJ4spiY5vmic2NA3OXSi/ZRNF+wTwS9lfxnpro1k1ZMLSsDH74wfX31TE7wu1IGODLL7/kiy++4PTp01RWWhbH3uXLJa5DlIykDBbcvoAzB89wR787aJ7UnEaxjSy8ypqIi4gzRl2XSi+RFpdmXJK+JhEGJRourCh0T4S9MDBnIcIl/hPh/Ip8AJKikiy2e3tgrkdaD3Zd2GVjR6hRcFJUkvH7aZbQjLOFZzl86TB9m/et1ee7jbkIB8tlvCTB3XfDW28plsTw4a69r46JsNuR8Ntvv82ECRNITU1l9+7d9O7dm4YNG/LHH38wZMgQX/Qx5ImLiOPBzAfpmdCT7mndSY9Pd0uAQcnbNR+cU6NgcFGEq31hVRz8FQmvPWEqXZhb6rzsozcxRsJRlpGwOmOuNiKsN+iN6YFqDrJ1JGzuB6sE1BcORhEGRYQBvvlGSaFzhfouwu+99x4LFizgnXfeISIigmeffZasrCyeeOIJCgoKfNFHQTX2RDg2PBatpuaFV1Vf2NXljcAUCRdWFBqjbnc4ceWEhTj5MxJWPVtHdoTDesIuUFBRgIySotkjXVnCx1EkbC7Cav2KgPjC5iIcBH6wkeuvV8T0yhWl5GVNyLLwhE+fPs11110HQHR0NEXV61Y98MADLF261Lu9E1hgT4RdiYLBlCus4koknBSVZGzniSWhRsHqys3+9ITVgTlrO8LcE/Y0112NsuMi4mjbQElLyy3JpaSyxNjGKMIJIhJ2ilYL7mRJFBQoBXwguI6jFrgtwmlpaeRVVzBq0aIF27ZtA+DEiRNiAoePMRdhV2fLqViv2uGKCEuSRONYpZKYPUuiTFfGf3/7r8N0L9UPvqu98k9W0yoU3sSRHaGKsMPFPl1A9YOTo5JJjk42Zqeofrv545ZJLY3b2qVUi3AgZs0lmP1YB5t4/elPyv3ChXDHHfDOO3DkiP3FQVUrIi4uOAYXvYDbInzrrbeycuVKACZMmMBTTz3FgAEDGD16NHer/o7AJ6REex4Jq56wiisiDM4H597+5W3GrxjPw98+bPOaLMtGER7daTSgRJ+e2BruojfojTnU1naE6gmr/fEEVYTViScZSRmA5fRlZ57wsbxjTlfj8AnBakcA3HYbdO0KFRXKxI0nnlBWyGjVCv7zH8u2dcwPBg9EeMGCBbxYXRzjscce46OPPqJDhw787W9/4/333/d6BwUmzHOF3RZhDyJhcD44t/XsVgC++P0LjudZFug+cPEAOSU5RIdFM6jNIOMMPX/4wuaDltZ2hFbSEhVWuzQ11W9WRbhVcivAcnDOngg3T2xOdFg0OoPOaSF4nxCsdgQoyxDt3q3c/vUvuPVWZdupU/Dkk4oFoSJEWFlhOcysfNy9997L22+/zeOPP05EiKzpFKo0iq2eNVd2yeXZciqeeMLgPBL+Lec3QMmDfmPrGxavqX7wjS1vJDIs0th3f/jCqkjGhMfYPc64cKWWQm0jYTXKzkjMAEyDc+bF3M1FWCNpTIV8/O0LB7MIA2g0St7ws88qi4Hm5UHHjlBerqzIoSJEWOHnn3/m/vvvp2/fvpyrrsr0f//3f2zatMmrnRNYYm9grqbZciq1tiOsIuGC8gKLyG/RnkUWnq9qRdyacStgmnbtD1/YkR+sEhehiLCnGRLq/htEWUbCqghnF2dTZahCK2ltrkAC5gsHuwhbExsLEycqj81n6QoRhq+++opBgwYRHR3N7t27qahQpmMWFBTwz3/+0+sdFJioTXZEfES8xfRoVwr4gGM7Qi0+1CyhGb2b9qa8qpy3f3kbUAa9fjr5EwC3tb4NwDjA5w87wlFmhIpa2N5bkXCrJEs7QrUimiU0s0kfbN8wQGlqwewJO+L++5XsiV9+gYMHlW3BUA/Zy7gtwn//+9+ZP38+H3zwgUUFteuvv17MlvMx9rIjXBVhSZIsorLa2hG/ZStWRGZqJs9d/xwA725/l6KKInZf2E1BRQFJUUl0T+sOEBA7wtFqJWok7LEIlzsfmLOXGaFijISFHVEzqalw++3KYzUaFpEwHD58mJtuuslme2JiIvn5+d7ok8ABFiJc4dr6cuaY+8K1HZhT/eDM1EzuancXVze8mvzyfD7Y9YHRD+6X0c8YCfrTjqgpEq6tJ2y0I6xE+Er5FQrKC+wOyqkELFfYPEUtVCJhMFkS//2vMqNOiLCSJ3zs2DGb7Zs2baJ169BbAieUUCuCVRmqjAM/rkbCYOkL1zoSVkU4LROtRssz1z0DwJytc1hzbA1g8oPBv3aEq55wre2I6v3HR8Ybv5uT+SftTtRQUSPh3JJciyWSfE5qqlKroVGj0MqvHTpUWfU6JwfWrBEiDDB58mSmTZvGL7/8giRJnD9/niVLlvD0008zZcoUX/RRUE10eLRx9plaL9ctEfbAjkiLSwOUKE+d3KA36I2rgnRN7QrAA10fID0unXNF59hwSpl+qvrBYIqE/WpH1DQw52FNYesUNbAcnHMWCcdFxNE0ving52g4LQ2++MKz5YQCSXi4qeD7okVChAGef/557rvvPm677TaKi4u56aabeOihh3jkkUd4/PHHfdFHgRmqJeFRJOyBCCdHJxuLDalWwvErxynVlRIdFm2cthsZFmlRljMtLs2ioLrqCQeFHeGtSNjMczYfnHMmwhDADIkRI+CGG/z7md5gwgTl/ptvlNWZIXR8bRdwW4QlSeLFF18kLy+P/fv3s23bNi5evMirr77qi/4JrFBFWC0g4+q0ZbD0hF1ddl0jaYxWgiqge3P3AkotXfPR/0d6PmL8Ubi11a1IkmR8LSCRsIOBudpmR1h7wmA5OOdsYA4CXEMiFOncGa65RqkZoVZaq8+RsEpERAQdO3akd+/exJkvJCjwKWpEqeJrTxhsc4X35iginJmaadEuMSqRl256CYBxXcdZvBZUnnAtBubKdGWUVZXZ7F+NhPfm7jVG4s0Tmtvdh1pNTbV0BC6gDtCBMpvOermmEMblorYTzf8ITvjoo4887oygZtRIWMXXdgSYMiRyS3JpRCNjJJyZlmnT9unrnubx3o8TGRZpsV398SiqLKK8qtw4ddgX1GRHxEcq/8CeLPapRtlaSWvxt1cj4W1nlYJWyVHJxs+xpleTXsa2sixbXDEIHHDvvfDUU0p9iUaNlEHGOoLLkfDixYtZv349+fn5XLlyxeFN4FvUIj4q7qSomUfCrk7WANtIWI3grCNhFWsBVvvpr/oRNeYJh3s+MGe+bJK5eKoDc2qBIkd+MCg1iCO0EVwsvcjxK8cdthOYkZxsKgBfh6wIcCMSnjJlCkuXLuXEiRNMmDCB+++/nwYN/LN8ucCEdSSsDjK5QnJUMqM7jaZEV+LW0vOqCOeW5FJcVWxcyr1LaheX9yFJEo1iG3G+6DwXSy/SPNH+pbo3qMmOqI0nbJ2eptIy0dL/dSbCkWGR9EzvydazW9l6ZitXNbjK7X7US554QsnuqK5nXldwORJ+9913uXDhAs8++yzffPMNzZs3Z9SoUXz//feijrAfMRfhuIg4l1bVUJEkic9GfMY3Y75x6xJYtSOyS7I5WX4SUETH0eW+I4yDcz6MhGVZ9ml2hL30NFDSB9V0PnAuwgDXNVeERK1EJ3CBvn3h/Hl4++1A98SruDUwFxkZyZgxY8jKyuLAgQN06tSJP//5z2RkZFBcXLuFEwWuYS7C7lgRtcE8Ej5ZdhKw7wfXhD/S1Ep1pegMygh6TXZErSJhO/tWB+fANjK2pm8zZaHPLWe2uN2Hek3Dhko9iTqEx9kRGo0GSZKQZRm9Xu/NPgmcYC7C7gzK1QbzqcsnypT6CI78YGf4I01NjYK1ktY4scUa48BcLUTYnp2jDs5BzZGwutryvtx9Hk8aEdQN3BLhiooKli5dyoABA7j66qvZt28f8+bN4/Tp0yJNzU8ERITNIuFTZUoOrCci7I80NfNBOUeWiyrOHtkRVmUszTGPhGsS4SbxTWiZ2BKDbODXc7+63Q9B3cHlgbk///nPfPbZZzRv3pyJEyeydOlSUurQrJVQIZCR8OWyyxRJStSmTld2B38U8alpUA4s6wm7myLmzI5wJxIGxRc+VXCKrWe3WkzxFtQvXBbh+fPn06JFC1q3bs2GDRvY4GB56uWhNjc9xGgYY6qA5c5suVp9ZnRDNJIGg2ygUq4kNjyWNg3auL0ff5SzrGlQDkwirC72aS+lzhGOBubAlKYWpgmzGKRzRN9mfVm6f6nwhes5LovwuHHjRFJ5EBCmCSM5Kpkr5VdIiPBPJKzVaGkU08iYJ9y5cWc0kvvDCUY7wociXFOOMFim9RVXFrslwo5S1AC6p3UnMTKRHuk9XMpaUTMktp3dhkE2ePQ3FYQ+Lovw4sWLfdgNgTukxKQoIuwnOwIUS0IV4a6N3bciIHjsiDBNGFFhUZRXlVNcWWxxdVETzgbmGsY05MxTZ4gOj7Z5zR5dU7sSHRbNlfIrHL50mA6NOtT8JkGdQ/z0hiCqL+wvOwJMg3NQCxGO9X2esCt2BHieK+zMjgAl80KtOlcT4dpwejVVpjCLfOH6ixDhEEQV4fgI/xUxUQfnALo0dn2mnDlqJFxUWURFVYVX+mVNTbWEVTxd7NPZwJwnXNdMsSSEL1x/CQoRfvfdd8nIyCAqKoo+ffrw66/OU3aWLVtG+/btiYqKokuXLqxatcr4mk6n47nnnqNLly7ExsbSpEkTxo0bx/nz5y32kZeXx9ixY0lISCApKYlJkyaFzISTsV3G0qlRJ4a0HeK3zzSPhD0V4aSoJGOU6Ctf2BVPGDyLhA2ywRhpuzPt2xlqvrCIhOsvARfhzz//nOnTpzNz5kx27dpFZmYmgwYNIjfXvm+4ZcsWxowZw6RJk9i9ezfDhw9n+PDh7N+vFJUpLS1l165dvPTSS+zatYvly5dz+PBhhg0bZrGfsWPH8vvvv5OVlcW3337Lxo0befjhh31+vN5gdOfR7P/zfjo26ui3z1RFODUi1WF1sJqQJMnnvrAv7YjCikIMsgGoOdJ2FXXm3IGLB/y73JEgaAi4CM+ZM4fJkyczYcIEOnbsyPz584mJiXFYEnPu3LkMHjyYZ555hg4dOvDqq6/So0cP5s2bBygLjmZlZTFq1CjatWvHtddey7x589i5cyenTyuFZw4ePMiaNWv48MMP6dOnDzfccAPvvPMOn332mU3ELFDo1LiTch/XqVb78bUv7MrAHHgmwqoVERMe41ZGhTMaxTYyFvD55dwvXtmnILQIqAhXVlayc+dO+vfvb9ym0Wjo378/W7favzzbunWrRXuAQYMGOWwPUFBQgCRJJCUlGfeRlJTENddcY2zTv39/NBoNv/wi/hHsMeSqIWx+cDOTm06u1X58nabmaiSs+unuiLCrAu8uaqqa8IXrJy6nqPmCS5cuodfrSU1NtdiemprKoUOH7L4nOzvbbvvs7Gy77cvLy3nuuecYM2YMCdXLfmdnZ9O4cWOLdmFhYTRo0MDhfioqKqioMA0mFRYWAooHrVOXXHGC2saVtsFKt0bduKi9WKtjaBilpINdKLzgk7+FKpTx4fE2+zf/DmLCYgAoKCtwuR+5xYqFkhyV7NW+907vzX9/+y9bTm+pcb914Tyq68fg7nEFVIR9jU6nY9SoUciyzPvvv1+rfc2ePZtXXnnFZvsPP/xATEyMy/vJysqqVT+CgdocQ0luCQC/7PuFVZdX1dDafS6VXAJgz7Y95ETm2G2TlZXF5QuXAdj9+25W5bnWj01XNgEgl8oWg8G1paqsCoAtp7fwzXffoJVqnuhR38+jYMHeMZSWlrq1j4CKcEpKClqtlpwcy3+WnJwc0tLsT/tMS0tzqb0qwKdOnWLdunXGKFjdh/XAX1VVFXl5eQ4/d8aMGUyfPt34vLCwkObNmzNw4ECLfTtCp9ORlZXFgAEDCA93fVWLYMIbx/Db5t/4dsO3JKQnMHToUO/2T6+jfI+yssXwQcNtJmGY93/jzxtZc3kN6S3TGdrftX6c3XUWTkGbpm282ne9Qc9Lc16iqLKIlr1aOs3DFudRcODsGNSrZFcJqAhHRETQs2dP1q5dy/DhwwEwGAysXbuWqVOn2n1P3759Wbt2LU8++aRxW1ZWFn379jU+VwX46NGjrF+/noYNG9rsIz8/n507d9KzZ08A1q1bh8FgoE+fPnY/NzIykshI28GY8PBwt04kd9sHI7U5hrR45UfuUtklr/8d8ivzjY8bxTdyOHU4PDzcONGltKrU5X4UVBYASp62N/seTjh9mvXhxz9+ZPuF7fRs2rPm99Tz8yhYsHcM7h5TwLMjpk+fzgcffMDHH3/MwYMHmTJlCiUlJUyYMAFQalbMmDHD2H7atGmsWbOGN954g0OHDjFr1ix27NhhFG2dTseIESPYsWMHS5YsQa/Xk52dTXZ2NpWVlQB06NCBwYMHM3nyZH799Vc2b97M1KlTuffee2nSpIltJwVew5c1hdUc4YTIhBprNxgH5txY7NN8fTlvc0PzGwD4/vj3Xt+3ILgJuAiPHj2a119/nZdffplu3bqxZ88e1qxZYxx8O336NBcuXDC2v+666/j0009ZsGABmZmZfPnll6xYsYLOnTsDcO7cOVauXMnZs2fp1q0b6enpxtuWLabR5yVLltC+fXtuu+02hg4dyg033MCCBQv8e/D1EF+mqLmaGQG1S1Hz1kQNc+7uoCxiufroalHkvZ4RFANzU6dOdWg//PTTTzbbRo4cyciRI+22z8jIcGnNuwYNGvDpp5+61U9B7fFlipo7KWTGactuCF5NdSNqQ5fGXWjboC1H847y3dHvuLfzvV7/DEFwEvBIWFC/UO2IwopCr9ePUEXS15Gwt/OEQZlNOLKjElgsO7DM6/sXeM7UVVN5fcvrPpvRKERY4Fd8WT9CtSNc8Ww9EWFfRsIAIzqOAGDV0VUeLb0k8D6XSi/x7vZ3eSbrGZ99hhBhgV8xrx/hii+87sQ6l9dgc8eO8GSxT29XULOmW1o32iS3obyqnFVHvZ9DLXCfned3AnBVg6t89r0LERb4HXVwrqYiPocvHWbA/w3g1o9vdcm7DeWBOVB+oNRo+MsDX/rkMwTusf38dgB6Nenls88QIizwO66mqX20+yMMsoESXYlLqVuu1hIG90W4oqqCUp0yE8pXIgwYfeHvjn5n/DxB4BAiLKiTuJKmptPr+Pi3j43Pvz70dY37dbWWMJhEWGfQuTRAqO5bQvLpslI90nuQkZRBqa6U1UdX++xzBK6x/Vy1CDcVIiyoQzSOUdLUnNkRq4+tJqckh3CNMvvouyPfUamvdLpfT+wIcC0aNp+o4csFOUWWRPBwrvAcF4ovoJE0dE/r7rPPESIs8DvGSNiJHbFw90IAHu/9OKmxqRRUFPDTyZ+c7tedgTl1sU9wTYR9mZ5mjeoLf3vkW8p0ZT7/PIF9VCuiU6NOxEbE+uxzhAgL/E5NnvCFogt8d+Q7AB7q8RDD2imroqw4tMLpft2xI8A9X9jXg3Lm9GrSixaJLSjRlbDm2Bqff57APjvO7wB86weDEGFBADDOmnPgCf/f3v9DL+vp26wvHRp14O72ypTeFYdWGJcXsoc7dgS4J8K+zhE2R5IkRnSozpI4KLIkAoUaCV/T5JoaWtYOIcICv+MsRU2WZaMVMan7JABubXUr8RHxXCi+YBwoscZ8EU5XLQN3Vlz2dY6wNSM7Kb7wN4e/obyq3C+fKTAhy7IpEvbhoBwIERYEAGd2xJYzWzhy+Qix4bGM6jQKgMiwSIa2Ver3OsqSKKooMkbJPomEq/3mBlG+j4QBejftTbOEZhRVFglLIgD8ceUP8sryiNBG0DXVcX1nbyBEWOB31EjYXv0INQoe1WmUxarO5paEPdQoOFIbSXR4tEv98MQT9lckrJE03NtJKeKzYKf/qvtlF2czdMlQVh5e6bfPDEZUKyIzNZMIbYRPP0uIsMDvOKofUVRRxBe/fwGYrAiVIW2HEKGN4PDlwxy8eNBmn+4OyoHjxT6XH1zOQysf4nTBaeO2vHL/DcypPHLNIwCsObaG43nH/fKZ3xz+htXHVvPmtjf98nnBijE/2MeDciBEWBAANJKGlJgUAO749A6e//F5so5n8fFvH1OiK6Fdw3bGFYhVEiITuK3VbYD9aNjdQTmwHwnLsszjqx9n4e6FZM7PNE4f9tVKy864qsFVDL5qMDIy7++o3RqJrqL+KJr/ANVHdlzwjx8MQoQFAWJUR8Xv/S3nN/61+V8M/GQgj69+HICJ3SciSZLNe1RLwp4v7IlI2qspfPzKcc4XnQcUYR+5bCSTV07mXNE5wL+RMMDUXkqd7YW7F/plGvOlUmWh1DMFZ5xmotRl9Aa9sXCPiIQFdZa5Q+Zybvo5/u/u/2N85niaxjcFlIh3XOY4u+8Z1m4YEhLbz2/nbOFZi9c8sSPsRcIbTm4A4Npm1/LCDS8gIfHh7g/Zm7MX8L8ID75qMK2SWpFfns/SfUt9/nlqJKwz6Mgptr9adV3n0KVDlOhKiA2PpX1Ke59/nhBhQcBoEt+E+7vez+Lhiznz1BkOTz3M/in7SYuzv+J1alyq0ab436H/WbzmLTtiwylFhPu36s8/bvsH68avM/5AgP8G5lS0Gi1TrpkCwLvb33Vp1ZjaoEbCUH8tCXVQrkd6jxrXKvQGQoQFQYEkSVzd8GqaJzZ32m54++EALD+03GK7J3aE9WKfsiwbp0bfnHEzAP0y+rF3yl4e7PYgd159Jx1SOri8f28xsftEosKi2J29m1/O/eLTzzIX4TOFZ3z6WcGKPwflQIiwIMS4p8M9AKw/sZ6T+SeN290pY6liHQmfzD/JmcIzhGnC6Nusr7Fdg+gGLLprESvHrPRLZGRNw5iGxjXn3t/p2wE681mM9T0S9segHAgRFoQYrZJb0b91f2RkPtz1oXG7N+wI1Yro1aSXTwu2eMJjvR4D4KtDX5Gvy/fZ59R3O6JSX8lvOb8BIhIWCBzySE8lf3bh7oXo9DqgdgNzanaEKsI3t7zZa331Ftc0uYY+TftQqa8kKy/LJ59RpiujRFdifF4fRXhfzj4q9ZU0iG5A6+TWfvlMIcKCkGNYu2E0jm1MdnE23xz5BjB5wrWKhKszI/pl9PNeZ72IGg2vubSGKkOV1/d/ueyyxfP6KMLmRXvspUn6AiHCgpAjQhvBxG4TAdOUXneL94DlYp9nCs5wIv8EWklrM1EkWBjZaSQp0Slc1l1mzXHn9SQMssHtTArrqnb1UoT9PCgHQoQFIcpDPR4C4IfjP3Diyola5wmrVkTPJj0talYEE1FhUYztMhaAz37/zGG7KkMVvT7oRcf3Orq0dJOK6gc3S2gGKDnD9amofHlVOT+f/hkQIiwQ1EibBm0Y0HoAMjIf7Pqg1gNzxtS0IPSDzRndcTQA3x791mHhodVHV7Prwi4OXTrEljNbXN63KsJtG7QlNlwZmLSeFFNXKaooYuiSoRzNO0pseCzXt7jeb58tRFgQsqgDdB/s+sBYc9eTFDWdQUfWH8pgV7CLcM/0nqRFpFGqK3VY6eyjPR8ZH687sc7lfauz5RrFNqJFYgugflgSeWV5DPi/Aaw/uZ64iDi+ve9bY20TfyBEWBCyDGs3jNTYVGMEp5E0blkJ5ot9ni44jUbScEOLG7zeT28iSRI3Jd8EwNL9ttOYc4pz+PbIt8bna0+sdXnf6t8xJTql3ohwdnE2/Rb345dzv9AgugFrx631+8CsEGFByBKuDWdi94nG54mRiW6thGy+2CdA97TuJEYlerWPvuDG5BsBpcTl5VLLjIZP9n5ClaHKmF7167lfKawodGm/RhGOqR8ifDL/JDd8dAP7cveRFpfGhgc30Ltpb7/3Q4iwIKSZ3GOy8bEndR3Mo+FgtyJUmkc1p2vjrlQZqvjq4FfG7bIsG62I569/ntbJrdHLejae2ujSfuuTCBtkA8M/G87xK8fJSMpg04RNdG7cOSB9ESIsCGlaJbdiYJuBgGe1fi1EOCM0RBgwrrphbkn8cu4XDlw8QHRYNKM7jzbWX177h2uWhLkn3DxBqeHhTv2IgxcP8ubWN6nUV7r8nkCxdN9Sfsv5jYTIBDY+uJE2DdoErC9ChAUhz5N9ngSgS2oXt9+rirCExI0tbvRmt3yKWo95w8kNnCtUah1/tFuJgkd2GmlRBN9VX7i2kfC0NdOY/sN0vj5ofx3AYKFSX8lL618C4Lnrn6uxaJSvESIsCHmGtB3CwccOMm/IPLffq4pw19Sufi9TWRtaJLbg+ubXIyPz+e+fU1JZwmf7ldxhdSLLra1uBWBf7j67K1tb40iEXZ30odZcPnjJdvmpYOKDnR9wIv8EqbGpTOszLdDdESIsqBu0T2nvUdEdVYSDdaqyM+7rch+gWBJfHfyKosoi2iS34aaWSvZEo9hGxpWC159Y73RfsixbiLA6YaOsqsxmOrM9rpRdIadEKQJ/LO+YZwfkB4ori/nbxr8B8PLNLwdFoSYhwoJ6TZ+mfZCQGNFxRKC74jYjO45EK2nZcX4Hf9/4d8B2aahbM5RouCZLoqCiwFiPIiUmhciwSGNxfVcsCfPo9/gV/yxK6glvbXuL3JJcWie3Ns66DDRChAX1mldveZX85/ODPj/YHo1iG9G/dX8AjuYdRSNpbJaGuq21a76wGgXHRcQZ0/bc8YXNV8AO1kj4Uukl/r3l3wD8/Za/+3wpe1cRIiyo10iSREJkQqC74TGqJQEwqM0go42gclPLm9BKWv648odFEXxrzK0IFWOGREHNGRKHLh2y2FdBeYFL/fcnr216jcKKQjJTMxndeXSgu2NEiLBAEMIMbz/cGLmaT1xRSYhMME5AcJaqplZQMxdhtyJhq8G4YLMkzhScYd6vysDt7NtmuzWpx9cET08EAoHbJEQmsHDYQp6//nnj+nvWuJKqpkbCjWIaGbcZRbjQdREO14QDcDwveES4qKKICf+bQIW+gpta3sTgqwYHuksWCBEWCEKc+7rcx+z+swnThNl9XfWF151Y5zDdzJ4d4WokXF5VzokrJwBTlkmw+MJnC89y46IbWXtiLdFh0bwx8A2/FWt3FSHCAkEdp2+zvkSFRZFTksOBiwfstlFny3kiwkcuH0FGJikqyVgQPxjsiD3Ze+jzYR9+y/mNxrGN2fDgBq5pck2gu2WDEGGBoI4TGRZpzP5wZEk4syMuFF1wOhVZzYzokNKBqxpcBQRehFcfXc2Ni27kfNF5OjbqyC8P/eK31ZPdRYiwQFAPqMkXtmdHNIppRKQ2EhmZ80XnHe5b9YM7pHSgTbJSgyGQdsSKQyu4c+mdFFcWc2urW9k8cTMZSRkB609NCBEWCOoBqghvPLXRri9sT4QlSTLWVXBmSajpae1T2hsj4bOFZwOyNFJ5VTlPrH4Cvazn/q73s3rsardWWwkEQoQFgnpA19SuaCQN+eX5ZBdn27xuzxMG13xhYyTcqAMpMSnERyiF9U/kn/BK393h3V/f5UzhGZolNGPBHQuCZkKGM4QICwT1gMiwSGOhd/OJFSpGTzi2kcX2mkRYb9Bz+NJhQLEjJEky+cJ+TlPLL8/nHz//A4BX+r1CdHi0Xz/fU4QICwT1hPYp7QFbEdbpdcaFUm0i4QTnInyq4BQV+goitZFG31WtzetvX/hfm/7FlfIrdGzU0Wb6djAjRFggqCe0b2hfhNUqaRKSTWF8NRJ2VNxdzYy4uuHVaDVaAK5K9n+GxLnCc7z1y1uAMiPOUc50MCJEWCCoJxgj4cuWIqxaEQ2iGxiFVKWmgTlzP1glEJHwrJ9mUV5VzvXNr+fOq+/02+d6AyHCAkE9wZEd4cgPhpo9YWNmRHWUDfg9V/jgxYPGtfX+1f9fQTcjriaECAsE9QRVhE8XnKakssS43V56mopaSa2wotBuZTS7kXB1rvDJ/JPGGsW+5IV1L2CQDdzV7i6ub3G9zz/P2wgRFgjqCQ1jGhqF9sjlI8bt9iqoqcRGxNIwuiFgGw3LsmwxW06laUJTIrWRVBmqfL5a8y9nf2HFoRVoJA3/vO2fPv0sXyFEWCCoR9izJOxNWTbHkSWRW5LLlfIrSEhc3fBq43aNpDGmw/k6Te27o98ByiojHRt19Oln+QohwgJBPcJehoQzOwJMg3PWGRLqPjKSMmxyclVf2NeDc0fzjgIEZWEeVwmdPI4QRa/Xo9Pp0Ol0hIWFUV5ejl6vD3S3PCLUj6E2/Q8PD0er1dbcMMixlyFxqcy5CKu5wtaCas8PVlF9YV8Pzqm2StsGbX36Ob5EiLCPkGWZ7Oxs8vPzjc/T0tI4c+ZMyI3eqoT6MdS2/0lJSaSlpYXksavYsyOcecKAUn1sO/xn5394rNdjtEpuBZhyhM0zI1T8kaYmyzJHLyuRsLkdEmoIEfYRqgA3btyYmJgYZFmmuLiYuLg4NJrQdIEMBkNIH4On/ZdlmdLSUnJzcwFIT0/3VRd9jirCRy4fQW/Qo9Voa/SEx3YZy4e7PuTn0z8zfsV41o9fj1ajNUbT9iJhf6Sp5ZTkUFRZZOFBhyJChH2AXq83CnDDhsrIssFgoLKykqioqJAUMAj9Y6hN/6OjFc8zNzeXxo0bh6w1kZGUQYQ2gvKqck4XnKZVcqsaPWGtRsvHwz+m6/yu/Hz6Z+ZsncMz1z9jNzNCxWhH5B1HlmWfXD2oUXDLxJZEhkV6ff/+IvT+k0IAnU4HQExMTIB7IvAm6vepfr+hiFajNV66H7p0CFmWHVZQM6dVcivmDp4LwF/X/5WtZ7YaB+rU6Nqclkkt0UpayqrKuFB8wduHAZj5wQ1D1w8GIcI+JZS9Q4EtdeX7NPeFS3WllFeVA85FGGBCtwncefWdVOorueuzuwDFwmgY09CmbYQ2wpja5qs0NTUz4uoGoesHgxBhgY/JyMjgrbfeCnQ3BGaYp6mpVkSkNpK4iDin75MkiQ/u/IBGMY2M0bM9P1jF12lqIhIW1CkkSXJ6mzVrlkf73b59Ow8//HCt+tavXz8kSeK1116zee3222932L+lS5ei1Wp57LHHbF776aefHB5rdrZt0fO6hHmamrkf7EqknxqXyoI7Fxif2/ODVXydpqZGwqGcngZChAXVXLhwwXh76623SEhIsNj29NNPG9vKskxVlWs1ARo1auQVb7x58+YsXrzYYtu5c+dYu3atw2yFhQsX8uyzz7J06VLKy8vttjl8+LDFcV64cIHGjRvXur/BjLkd4YofbM3w9sN5uIfyw3pLxi0O2/kyEjbIBuN+Qzk9DYQIC6pJS0sz3hITE5Ekyfj80KFDxMfHs3r1avr160d0dDSbNm3i+PHj3HXXXaSmphIXF0evXr348ccfLfZrbUdIksSHH37I3XffTUxMDG3btmXlypU19u+OO+7g0qVLbN682bjt448/ZuDAgXZF88SJE2zZsoXnn3+eq6++muXLl9vdb+PGjS2OPS0tLSQzP9yhXUo7QJl2rF7SuyPCAPPvmM/xJ44zqtMoh23UXGFfRMJnC89SXlVOmCaMlkktvb5/fxLws+3dd98lIyODqKgo+vTpw6+//uq0/bJly2jfvj1RUVF06dKFVatWWby+fPlyBg4cSMOGDZEkiT179tjs4/jx49x99900atSIhIQERo0aRU5OjjcPywJZlimpLKFEV6Lc+/Fmb1FHT3nhhReYOXMmv//+O127dqW4uJihQ4eydu1adu/ezeDBg7nzzjs5fdp50ZZXXnmFUaNGsXfvXoYOHcrYsWPJy8tz+p6IiAjGjh3LokWLjNsWL17MxIkT7bZftGgRt99+O4mJidx///0sXLjQ/QOuo8RFxNEsoRkAm88oP2r2ylg6Q5IkWie3dmph+DISVtPT2iS3CakC7vYIaO8///xzpk+fzvz58+nTpw9vvfUWgwYN4vDhw3ajmy1btjBmzBhmz57NHXfcwaeffsrw4cPZtWsXnTt3BqCkpIQbbriBUaNGMXnyZJt9lJSUMHDgQDIzM1m3bh0AL730EnfeeSfbtm3zSRRUqisl4V8JXt+vKxTPKCY2ItYr+5o1axa33HILCQkJaDQaGjRoQGZmpvH1V199la+//pqVK1cydepUh/t58MEHGTNmDAD//Oc/efvtt/n1118ZPHiw08+fOHEiN954I3PnzmXnzp0UFBRwxx132PjBBoOBxYsX88477wBw77338pe//IUTJ04Y87ZVmjVrZvG8ZcuW/P777zX+LUKd9intOVt4lp9P/QxASrR7kbArqBMo8svzySvLo0F0A6/tu64MykGAI+E5c+YwefJkJkyYQMeOHZk/fz4xMTF89NFHdtvPnTuXwYMH88wzz9ChQwdeffVVevTowbx584xtHnjgAV5++WX69+9vdx+bN2/m5MmTLF68mC5dutClSxc+/vhjduzYYRRlgX2uucaySEpxcTFPP/00HTp0ICkpibi4OA4ePFhjJNy1a1fj49jYWBISEoyz0ZyRmZlJ27Zt+fLLL/noo4944IEHCAuzjSOysrIoKSlh6NChAKSkpDBgwACLKFrl559/Zs+ePcab9ZVVXUXNkFBzeN21I1whJjyGJvFNAPjm8Dde3XddSU+DAEbClZWV7Ny5kxkzZhi3aTQa+vfvz9atW+2+Z+vWrUyfPt1i26BBg1ixYoXLn1tRUYEkSURGmmbYqDOoNm3a5FC8a0NMeAyFzxVSWFRIQnyCXz3HmHDvTRiJjbWMqJ9++mmysrJ4/fXXueqqq4iOjmbEiBFUVlY63U94eLjFc0mSMBgMLvVh4sSJvPvuuxw4cMChdbVw4ULy8vKMs9xAiY737t1rc/60atWKpKQklz67LmE9wcJdO8JVJnWfxKsbX2XKd1PomtqV7undvbLfuhQJB0yEL126hF6vJzU11WJ7amoqhw7ZLskNSj0Ge+3dSSm69tpriY2N5bnnnuOf//wnsizz/PPPo9fruXDB8cyeiooKKioqjM8LCwsBjBXSzNHpdMiyjMFgMIpLTHgM+nA9MeExfk36l2XZbV9Y7bP1vbof9dg2b97M+PHjuesuJXG/uLiYkydPGl8374P5c/O/i7Nt1sdhMBi49957efrpp8nMzKR9+/YWfTMYDFy+fJn//e9/fPrpp3Tq1Mn4fr1ez0033cS6deu4++67LY7N1R8Ag8GALMvodLqATVtWz7Xaztprm2wpXkkRST6ZCfjCdS/w69lf+f6P7xn+2XC2TNhCcoSymGhtPk8V4daJrQMyg9HZ9+Buf0Lb0faARo0asWzZMqZMmcLbb7+NRqNhzJgx9OjRw2mEOnv2bF555RWb7T/88INNClZYWBhpaWkUFxfbRIVFRUXeORAfUl5ejizLxh+a0tJSQBHZxMRE4zFkZGTw5ZdfcsstSprSP//5T2N9BvW9BoOB8vJy43OAsrIyi+eyLNu0Maeqqsq4T61Wy6FDhwgLCzO21+v1VFRUUFhYyIcffkiDBg0YPHiwzY/dgAED+OSTT+jfv7/xmP744w/i4+Mt2jVo0MAmWgfl6q2srIyNGze6nKLnK7Kysmr1/jyd5UDo8X3HWXXSN1bMAzEPsC9yH6cLTzPow0G8ctUrhElhxmM4UXaClbkraRbVjHtS76lxf3pZzx95fwBwes9pVh0InIVk73tQzy1XCZgIp6SkoNVqbbIScnJySEtLs/uetLQ0t9o7YuDAgRw/fpxLly4RFhZmLFHYurXjSkwzZsywuJQtLCykefPmDBw4kIQEy0G38vJyzpw5Q1xcHFFRUYAiNEVFRcTHxwf99NeoqCgkSTIel/ojExenzKhSj2Hu3Lk89NBDDBo0iJSUFJ599lnKysqIiIgwvlej0RAVFWXxN4qOjrZ4LkmSTRtzwsLCLPZp3U6r1RIZGUlCQgJLly7l7rvvJjEx0WY/o0aNYvz48VRUVBiPqVevXjbtNm/ezLXXXmuzvby8nOjoaG666Sbj9+pvdDodWVlZDBgwwO4PhavIssy0o9MoqlR+UIfeMpSujbvW8C7P6XKpCzcsvoHfS37nB+kHhjKUZt2b8c+t/2T5YVP64D9H/pPUuFQne1KyLfS/6YkOi+aBux5AI/l/aMvZ9+AomHCIHEB69+4tT5061fhcr9fLTZs2lWfPnm23/ahRo+Q77rjDYlvfvn3lRx55xKbtiRMnZEDevXt3jf1Yu3atLEmSfOjQIZf7XlBQIANyQUGBzWtlZWXygQMH5LKyMuM2vV4vX7lyRdbr9S5/RrAR6sdQ2/7b+179TWVlpbxixQq5srKy1vvqtaCXzCxkZiGfLzzvhd45Z+WhlbI0S5KZhdz59c7Gx9IsSY75R4zMLORlvy+rcT+rjqySmYXc5b0uPu+zI5x9D860wR4BzY6YPn06H3zwAR9//DEHDx5kypQplJSUMGHCBADGjRtnMXA3bdo01qxZwxtvvMGhQ4eYNWsWO3bssEiHysvLY8+ePRw4cABQZkTt2bPHwjdetGgR27Zt4/jx43zyySeMHDmSp556inbt2vnpyAWCwGM+OGevCI+3ubPdnbx6y6sA7C/ej4zM3e3v5rdHf2NiNyXfe8PJDTXuR/WDQ32mnEpAPeHRo0dz8eJFXn75ZbKzs+nWrRtr1qwxDr6dPn3awqe97rrr+PTTT/nrX//KCy+8QNu2bVmxYoUxRxhg5cqVRhEHJUcUYObMmcZ80sOHDzNjxgzy8vLIyMjgxRdf5KmnnvLDEQsEwYMqwgmRCURoI/zymS/c+AIF5QVsO7iN1//0Or2b9wbg5oybmbd9HhtPb6xxH3WlZoRKwAfmpk6d6jCx/6effrLZNnLkSEaOHOlwfw8++CAPPvig08987bXX7BaDEQjqE6oI+yJH2BGSJPGPW/7BqrJVdE8zpavd2OJGAPbl7KtxYkddSk+DIJi2LBAIAkP/1v25vvn1PNrz0UB3hdS4VNqntEdGZtPpTU7bGidq1BE7QoiwQFBPSYhMYNPETTxz/TOB7goAN7W4CYCNpxxbEuVV5ZzKPwXUHTtCiLBAIAgKbmqpiPCGU44H5/648gcyMgmRCTSOrRslR4UICwSCoEAV4V0XdlFUYX9Sk9EPbtA26PPtXUWIsEAgCAqaJzanVVIrDLLBWGLTGrWEZV3xg0GIsEAgCCJuzrgZcOwL17X0NBAiLPAy/fr148knnwx0NwQhijo458gXrmsTNUCIsKCaO++802FR9Z9//hlJkti7d2+tP2fx4sVIkkSHDrYLRC5btgxJksjIyLB5raysjAYNGpCSkmJRzU4lIyPD7qKdIh88tFAj4e3ntlOqsy2EY4yE60iOMAgRFlQzadIksrKyOHv2rM1rixYt4pprrrEoxl4bYmNjyc3NtakbvXDhQlq0aGH3PV999RWdOnWiffv2DutH/+1vf7NZtPPxxx/3Sp8F/qFVUiuaxjdFZ9Cx7ew2i9eKK4s5X3QeEHaEoA5yxx130KhRI5sVjYuLi1m2bBmTJk3i8uXLTJo0iebNmxMTE0OXLl1YunSp258VFhbGfffdZ7GCytmzZ/npp5+477777L5n4cKF3H///U7Xi4uPj7dZtNO6EL0guJEkyaEvrK5VlxKTQnJ0st/75iuECPsDWYaSksDcXCzoHhYWxrhx41i8eLFFEfhly5ah1+sZM2YM5eXldOvWjW+++Yb9+/fz8MMP88ADD9S4OKs9Jk6cyBdffGGsvbp48WIGDx5sU7QflIVZt27dyqhRoxg1ahQ///wzp06dcvszBaGBvUkb5VXlvLjuRQA6pNhaWaGMEGF/UFqKJiGBpGbN0CQkQFyc/25uFJieOHEix48fZ8MG06DIokWLuOeee0hMTKRp06Y8/vjjdOvWjdatW/P4448zePBgvvjiC7f/JN27d6d169Z8+eWXyLLsdOXkjz76iCFDhpCcnEyDBg0YNGiQ3fXinnvuOeLi4ixuP//8s9t9EwQWNRLeenYrFVUVlFSWcMend7Dq6Cqiw6KNldjqCkKEBUbat2/PddddZ7QJjh07xs8//8ykSZMAZQWLf//732RmZtKgQQPi4uL4/vvva1zY0xETJ05k0aJFbNiwwWJhTnP0ej0ff/wx999/v3Hb/fffz+LFi22WJXrmmWcsFu3cs2ePzeKkguCnXcN2NI5tTHlVOetOrGPQJ4NYe2ItcRFxrB672ijSdYWAV1GrF8TEYCgspLCw0LhcvD8/2x0mTZrE448/zrvvvsuiRYto06YNN9+snPSvv/468+fP58033yQzM5PY2FiefPLJGhf2dMTYsWN59tlnmTVrlsOVk7///nvOnTvH6NGjLbbr9XrWrl3LgAEDjNtSUlK46qqrPOqLIHiQJImbWt7Elwe+5E9f/InyqnISIxNZc/8arm1mu+JJqCMiYX8gSRAbG5ibm1M7R40ahUaj4dNPP+W///0vEydONE4P3bx5M0OHDuX+++8nMzOT1q1bc+TIEY//LA0aNGDYsGFs2LDBoRWxcOFC7r33XpsI995773U4QCcIfVRfuLyqnIbRDVk3fl2dFGAQkbDAiri4OEaPHs2MGTMoLCy0qM3ctm1bli1bxpYtW2jYsCFz5swhJyeHjh07evx5ixcv5r333qNhQ9uVHS5evMg333zDypUrLQr3g7Lqyt13301eXh4NGii1Z4uKimxW3o6JiXG4dp0geBl81WC0kpaUmBR+HPcjnRt3rvlNIYqIhAU2TJo0iStXrjBo0CCaNGli3P7iiy+SmZnJkCFD6NevH2lpaQwfPrxWnxUdHW1XgAH++9//Ehsby2233Wbz2m233UZ0dDSffPKJcdvLL79Menq6xe3ZZ5+tVf8EgaFtw7bsm7KPA48dqNMCDCDJsos5TAILCgsLSUxMpKCgwO5qyydOnKBVq1bGVXkNBkNgPGEvEurHUNv+2/te/Y1Op2PVqlUMHTq0VqstB5K6fgzOtMEeofefJBAIBHUIIcICgUAQQIQICwQCQQARIiwQCAQBRIiwQCAQBBAhwj5EJJ7ULcT3KfAFQoR9gJqyUupG8RxB8KN+n6GaViUITsSMOR+g1WpJSkoiNzcXUGZtybJMZWUl5eXlIZljC0qebSgfg6f9l2WZ0tJScnNzSUpKQqvV+rCXgvqGEGEfkZaWBmAUYlmWKSsrIzo6OmSX6g71Y6ht/5OSkozfq0DgLYQI+whJkkhPT6dx48bodDp0Oh0bN27kpptuCtnL2VA/htr0Pzw8XETAAp8gRNjHaLVa462qqoqoqKiQFDAg5I8h1PsvqJuEnrEnEAgEdQghwgKBQBBAhAgLBAJBABGesIeoifuFhYUutdfpdJSWllJYWBiyfmSoH0Oo9x/EMQQLzo5B1QRXJ/cIEfaQoqIiAJo3bx7gnggEgmCkqKiIxMTEGtuJou4eYjAYOH/+PPHx8S7lnBYWFtK8eXPOnDkTssvthPoxhHr/QRxDsODsGGRZpqioiCZNmrg0KUhEwh6i0Who1qyZ2+9LSEgI2RNPJdSPIdT7D+IYggVHx+BKBKwiBuYEAoEggAgRFggEggAiRNhPREZGMnPmTCIjIwPdFY8J9WMI9f6DOIZgwZvHIAbmBAKBIICISFggEAgCiBBhgUAgCCBChAUCgSCACBH2A++++y4ZGRlERUXRp08ffv3110B3ySEbN27kzjvvpEmTJkiSxIoVKyxel2WZl19+mfT0dKKjo+nfvz9Hjx4NTGcdMHv2bHr16kV8fDyNGzdm+PDhHD582KJNeXk5jz32GA0bNiQuLo577rmHnJycAPXYlvfff5+uXbsa81D79u3L6tWrja8He/+tee2115AkiSeffNK4LdiPYdasWUiSZHFr37698XVv9V+IsI/5/PPPmT59OjNnzmTXrl1kZmYyaNAg44obwUZJSQmZmZm8++67dl//f//v//H2228zf/58fvnlF2JjYxk0aBDl5eV+7qljNmzYwGOPPca2bdvIyspCp9MxcOBASkpKjG2eeuopvvnmG5YtW8aGDRs4f/48f/rTnwLYa0uaNWvGa6+9xs6dO9mxYwe33nord911F7///jsQ/P03Z/v27fznP/+ha9euFttD4Rg6derEhQsXjLdNmzYZX/Na/2WBT+ndu7f82GOPGZ/r9Xq5SZMm8uzZswPYK9cA5K+//tr43GAwyGlpafK///1v47b8/Hw5MjJSXrp0aQB66Bq5ubkyIG/YsEGWZaXP4eHh8rJly4xtDh48KAPy1q1bA9XNGklOTpY//PDDkOp/UVGR3LZtWzkrK0u++eab5WnTpsmyHBrfwcyZM+XMzEy7r3mz/yIS9iGVlZXs3LmT/v37G7dpNBr69+/P1q1bA9gzzzhx4gTZ2dkWx5OYmEifPn2C+ngKCgoAaNCgAQA7d+5Ep9NZHEf79u1p0aJFUB6HXq/ns88+o6SkhL59+4ZU/x977DFuv/12i75C6HwHR48epUmTJrRu3ZqxY8dy+vRpwLv9F7UjfMilS5fQ6/WkpqZabE9NTeXQoUMB6pXnZGdnA9g9HvW1YMNgMPDkk09y/fXX07lzZ0A5joiICJKSkizaBttx7Nu3j759+1JeXk5cXBxff/01HTt2ZM+ePSHR/88++4xdu3axfft2m9dC4Tvo06cPixcvpl27dly4cIFXXnmFG2+8kf3793u1/0KEBXWaxx57jP3791t4eaFCu3bt2LNnDwUFBXz55ZeMHz+eDRs2BLpbLnHmzBmmTZtGVlYWUVFRge6ORwwZMsT4uGvXrvTp04eWLVvyxRdfEB0d7bXPEXaED0lJSUGr1dqMmObk5ITk0ulqn0PleKZOncq3337L+vXrLSrepaWlUVlZSX5+vkX7YDuOiIgIrrrqKnr27Mns2bPJzMxk7ty5IdH/nTt3kpubS48ePQgLCyMsLIwNGzbw9ttvExYWRmpqatAfgzVJSUlcffXVHDt2zKvfgRBhHxIREUHPnj1Zu3atcZvBYGDt2rX07ds3gD3zjFatWpGWlmZxPIWFhfzyyy9BdTyyLDN16lS+/vpr1q1bR6tWrSxe79mzJ+Hh4RbHcfjwYU6fPh1Ux2GNwWCgoqIiJPp/2223sW/fPvbs2WO8XXPNNYwdO9b4ONiPwZri4mKOHz9Oenq6d7+DWgweClzgs88+kyMjI+XFixfLBw4ckB9++GE5KSlJzs7ODnTX7FJUVCTv3r1b3r17twzIc+bMkXfv3i2fOnVKlmVZfu211+SkpCT5f//7n7x37175rrvuklu1aiWXlZUFuOcmpkyZIicmJso//fSTfOHCBeOttLTU2ObRRx+VW7RoIa9bt07esWOH3LdvX7lv374B7LUlzz//vLxhwwb5xIkT8t69e+Xnn39eliRJ/uGHH2RZDv7+28M8O0KWg/8Y/vKXv8g//fSTfOLECXnz5s1y//795ZSUFDk3N1eWZe/1X4iwH3jnnXfkFi1ayBEREXLv3r3lbdu2BbpLDlm/fr0M2NzGjx8vy7KSpvbSSy/JqampcmRkpHzbbbfJhw8fDmynrbDXf0BetGiRsU1ZWZn85z//WU5OTpZjYmLku+++W75w4ULgOm3FxIkT5ZYtW8oRERFyo0aN5Ntuu80owLIc/P23h7UIB/sxjB49Wk5PT5cjIiLkpk2byqNHj5aPHTtmfN1b/RdV1AQCgSCACE9YIBAIAogQYYFAIAggQoQFAoEggAgRFggEggAiRFggEAgCiBBhgUAgCCBChAUCgSCACBEWCASCACJEWCAIIPaWkBLUL4QIC+otDz74oM0aYpIkMXjw4EB3TVCPEPWEBfWawYMHs2jRIottkZGRAeqNoD4iImFBvSYyMpK0tDSLW3JyMqBYBe+//z5DhgwhOjqa1q1b8+WXX1q8f9++fdx6661ER0fTsGFDHn74YYqLiy3afPTRR3Tq1InIyEjS09OZOnWqxeuXLl3i7rvvJiYmhrZt27Jy5UrfHrQgqBAiLBA44aWXXuKee+7ht99+Y+zYsdx7770cPHgQUFamHjRoEMnJyWzfvp1ly5bx448/Wojs+++/z2OPPcbDDz/Mvn37WLlyJVdddZXFZ7zyyiuMGjWKvXv3MnToUMaOHUteXp5fj1MQQLxX+E0gCC3Gjx8va7VaOTY21uL2j3/8Q5ZlpSTmo48+avGePn36yFOmTJFlWZYXLFggJycny8XFxcbXv/vuO1mj0RjrRTdp0kR+8cUXHfYBkP/6178anxcXF8uAvHr1aq8dpyC4EZ6woF5zyy238P7771tsU1dlBmxWSejbty979uwB4ODBg2RmZhIbG2t8/frrr8dgMHD48GEkSeL8+fPcdtttTvvQtWtX4+PY2FgSEhLIzc319JAEIYYQYUG9JjY21sYe8BauLgYZHh5u8VySJAwGgy+6JAhChCcsEDhh27ZtNs87dOgAQIcOHfjtt98oKSkxvr5582Y0Gg3t2rUjPj6ejIwMi3XIBAJrRCQsqNdUVFSQnZ1tsS0sLIyUlBQAli1bxjXXXMMNN9zAkiVL+PXXX1m4cCEAY8eOZebMmYwfP55Zs2Zx8eJFHn/8cR544AFSU1MBmDVrFo8++iiNGzdmyJAhFBUVsXnzZh5//HH/HqggaBEiLKjXrFmzhvT0dItt7dq149ChQ4CSufDZZ5/x5z//mfT0dJYuXUrHjh0BiImJ4fvvv2fatGn06tWLmJgY7rnnHubMmWPc1/jx4ykvL+fNN9/k6aefJiUlhREjRvjvAAVBj1hjTiBwgCRJfP311wwfPjzQXRHUYYQnLBAIBAFEiLBAIBAEEOEJCwQOEE6dwB+ISFggEAgCiBBhgUAgCCBChAUCgSCACBEWCASCACJEWCAQCAKIEGGBQCAIIEKEBQKBIIAIERYIBIIAIkRYIBAIAsj/BxFAOshWBCoJAAAAAElFTkSuQmCC\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "model.save(\"/content/drive/My Drive/AuraClima/co2_lstm_forecast_model.keras\")" ], "metadata": { "id": "j2K701jLvsZL" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "import pandas as pd\n", "\n", "# Update path if needed\n", "csv_path = \"/content/drive/MyDrive/AuraClima/CO2_Emissions_MinMaxScaled.csv\"\n", "df = pd.read_csv(csv_path)" ], "metadata": { "id": "GpwPmkaLy9PL" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "from tensorflow.keras.models import load_model\n", "\n", "# Update path if needed\n", "model_path = \"/content/drive/MyDrive/AuraClima/co2_lstm_forecast_model.keras\"\n", "model = load_model(model_path)" ], "metadata": { "id": "yA4nw3_IzG2c" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "country_features = [col for col in df.columns if col not in [\"Country Name\"] + year_cols]" ], "metadata": { "id": "A9iT65yy7EFQ" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "year_cols = [str(year) for year in range(1960, 2019)]\n", "country_features = [col for col in df.columns if col not in [\"Country Name\"] + year_cols]" ], "metadata": { "id": "mhhI8VFi7HFU" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "def forecast_to_2030(model, series, country_vec, start_year=2018, end_year=2030, window_size=45):\n", " predictions = []\n", " current_series = list(series[-window_size:])\n", "\n", " for _ in range(end_year - start_year):\n", " if len(current_series) < window_size:\n", " raise ValueError(\"Insufficient history to predict\")\n", "\n", " co2_col = np.array(current_series[-window_size:]).reshape(window_size, 1) # (45, 1)\n", " country_mat = np.tile(country_vec, (window_size, 1)) # (45, 266)\n", " input_seq = np.concatenate([co2_col, country_mat], axis=1) # (45, 267)\n", " input_seq = input_seq.reshape(1, window_size, -1) # (1, 45, 267)\n", "\n", " pred = model.predict(input_seq, verbose=0)[0]\n", " predictions.append(pred[0])\n", " current_series.append(pred[0])\n", "\n", " return predictions" ], "metadata": { "id": "7HlcYH7vwRyC" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Assuming these were added during one-hot encoding\n", "country_feature_names = [col for col in df.columns if col.startswith(\"Country_\")]" ], "metadata": { "id": "bLvvwYICzr2d" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "year_cols = [str(year) for year in range(1960, 2019)]\n", "country_features = [col for col in df.columns if col not in [\"Country Name\"] + year_cols]\n", "\n", "all_forecasts = []\n", "\n", "for idx, row in df.iterrows():\n", " try:\n", " country_name = row[\"Country Name\"]\n", " series = row[year_cols].values.astype(float)\n", " country_vec = row[country_features].values.astype(float) # ✅ ADD THIS BACK\n", "\n", " forecast = forecast_to_2030(model, series, country_vec) # make sure this uses country_vec\n", " years = list(range(2019, 2031))\n", "\n", " df_future = pd.DataFrame({\n", " \"Country Name\": [country_name] * len(years),\n", " \"Year\": years,\n", " \"Forecasted CO2\": forecast\n", " })\n", "\n", " all_forecasts.append(df_future)\n", "\n", " except Exception as e:\n", " print(f\"[{country_name}] Error: {e}\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "8-a-JR0JyDH0", "outputId": "c9f87118-6168-404c-e50e-845729313619" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[Afghanistan] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Africa Eastern and Southern] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Africa Western and Central] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Albania] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Algeria] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[American Samoa] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Andorra] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Angola] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Antigua and Barbuda] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Arab World] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Argentina] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Armenia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Aruba] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Australia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Austria] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Azerbaijan] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Bahamas, The] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Bahrain] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Bangladesh] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Barbados] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Belarus] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Belgium] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Belize] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Benin] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Bermuda] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Bhutan] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Bolivia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Bosnia and Herzegovina] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Botswana] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Brazil] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[British Virgin Islands] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Brunei Darussalam] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Bulgaria] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Burkina Faso] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Burundi] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Cabo Verde] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Cambodia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Cameroon] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Canada] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Caribbean small states] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Cayman Islands] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Central African Republic] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Central Europe and the Baltics] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Chad] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Channel Islands] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Chile] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[China] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Colombia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Comoros] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Congo, Dem. Rep.] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Congo, Rep.] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Costa Rica] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Cote d'Ivoire] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Croatia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Cuba] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Curacao] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Cyprus] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Czech Republic] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Denmark] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Djibouti] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Dominica] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Dominican Republic] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Early-demographic dividend] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[East Asia & Pacific] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[East Asia & Pacific (IDA & IBRD countries)] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[East Asia & Pacific (excluding high income)] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Ecuador] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Egypt, Arab Rep.] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[El Salvador] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Equatorial Guinea] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Eritrea] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Estonia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Eswatini] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Ethiopia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Euro area] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Europe & Central Asia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Europe & Central Asia (IDA & IBRD countries)] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Europe & Central Asia (excluding high income)] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[European Union] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Faroe Islands] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Fiji] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Finland] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Fragile and conflict affected situations] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[France] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[French Polynesia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Gabon] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Gambia, The] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Georgia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Germany] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Ghana] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Gibraltar] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Greece] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Greenland] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Grenada] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Guam] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Guatemala] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Guinea] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Guinea-Bissau] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Guyana] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Haiti] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Heavily indebted poor countries (HIPC)] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[High income] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Honduras] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Hong Kong SAR, China] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Hungary] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[IBRD only] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[IDA & IBRD total] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[IDA blend] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[IDA only] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[IDA total] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Iceland] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[India] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Indonesia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Iran, Islamic Rep.] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Iraq] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Ireland] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Isle of Man] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Israel] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Italy] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Jamaica] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Japan] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Jordan] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Kazakhstan] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Kenya] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Kiribati] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Korea, Dem. People's Rep.] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Korea, Rep.] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Kosovo] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Kuwait] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Kyrgyz Republic] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Lao PDR] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Late-demographic dividend] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Latin America & Caribbean] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Latin America & Caribbean (excluding high income)] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Latin America & the Caribbean (IDA & IBRD countries)] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Latvia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Least developed countries: UN classification] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Lebanon] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Lesotho] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Liberia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Libya] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Liechtenstein] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Lithuania] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Low & middle income] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Low income] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Lower middle income] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Luxembourg] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Macao SAR, China] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Madagascar] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Malawi] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Malaysia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Maldives] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Mali] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Malta] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Marshall Islands] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Mauritania] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Mauritius] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Mexico] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Micronesia, Fed. Sts.] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Middle East & North Africa] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Middle East & North Africa (IDA & IBRD countries)] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Middle East & North Africa (excluding high income)] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Middle income] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Moldova] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Monaco] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Mongolia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Montenegro] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Morocco] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Mozambique] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Myanmar] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Namibia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Nauru] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Nepal] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Netherlands] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[New Caledonia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[New Zealand] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Nicaragua] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Niger] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Nigeria] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[North America] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[North Macedonia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Northern Mariana Islands] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Norway] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Not classified] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[OECD members] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Oman] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Other small states] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Pacific island small states] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Pakistan] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Palau] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Panama] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Papua New Guinea] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Paraguay] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Peru] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Philippines] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Poland] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Portugal] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Post-demographic dividend] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Pre-demographic dividend] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Puerto Rico] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Qatar] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Romania] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Russian Federation] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Rwanda] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Samoa] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[San Marino] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Sao Tome and Principe] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Saudi Arabia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Senegal] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Serbia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Seychelles] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Sierra Leone] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Singapore] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Sint Maarten (Dutch part)] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Slovak Republic] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Slovenia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Small states] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Solomon Islands] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Somalia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[South Africa] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[South Asia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[South Asia (IDA & IBRD)] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[South Sudan] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Spain] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Sri Lanka] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[St. Kitts and Nevis] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[St. Lucia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[St. Martin (French part)] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[St. Vincent and the Grenadines] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Sub-Saharan Africa] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Sub-Saharan Africa (IDA & IBRD countries)] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Sub-Saharan Africa (excluding high income)] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Sudan] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Suriname] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Sweden] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Switzerland] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Syrian Arab Republic] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Tajikistan] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Tanzania] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Thailand] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Timor-Leste] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Togo] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Tonga] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Trinidad and Tobago] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Tunisia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Turkey] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Turkmenistan] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Turks and Caicos Islands] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Tuvalu] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Uganda] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Ukraine] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[United Arab Emirates] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[United Kingdom] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[United States] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Upper middle income] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Uruguay] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Uzbekistan] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Vanuatu] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Venezuela, RB] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Vietnam] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Virgin Islands (U.S.)] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[West Bank and Gaza] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[World] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Yemen, Rep.] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Zambia] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n", "[Zimbabwe] Error: Exception encountered when calling LSTMCell.call().\n", "\n", "\u001b[1mDimensions must be equal, but are 1 and 267 for '{{node sequential_1/lstm_1/lstm_cell_1/MatMul}} = MatMul[T=DT_FLOAT, grad_a=false, grad_b=false, transpose_a=false, transpose_b=false](sequential_1/lstm_1/strided_slice_1, sequential_1/lstm_1/lstm_cell_1/Cast/ReadVariableOp)' with input shapes: [1,1], [267,512].\u001b[0m\n", "\n", "Arguments received by LSTMCell.call():\n", " • inputs=tf.Tensor(shape=(1, 1), dtype=float32)\n", " • states=('tf.Tensor(shape=(1, 128), dtype=float32)', 'tf.Tensor(shape=(1, 128), dtype=float32)')\n", " • training=False\n" ] } ] }, { "cell_type": "code", "source": [ "df.columns" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "RmEvNX3eyGSr", "outputId": "86d65078-44a7-4335-84a7-70540a1b8bd8" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Index(['Country Name', '1960', '1961', '1962', '1963', '1964', '1965', '1966',\n", " '1967', '1968', '1969', '1970', '1971', '1972', '1973', '1974', '1975',\n", " '1976', '1977', '1978', '1979', '1980', '1981', '1982', '1983', '1984',\n", " '1985', '1986', '1987', '1988', '1989', '1990', '1991', '1992', '1993',\n", " '1994', '1995', '1996', '1997', '1998', '1999', '2000', '2001', '2002',\n", " '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010', '2011',\n", " '2012', '2013', '2014', '2015', '2016', '2017', '2018'],\n", " dtype='object')" ] }, "metadata": {}, "execution_count": 19 } ] }, { "cell_type": "markdown", "source": [ "____________________________________________________________________________________________________________________________________________" ], "metadata": { "id": "bpbxYTBUG9O5" } }, { "cell_type": "code", "source": [ "import os\n", "import pandas as pd\n", "from sklearn.preprocessing import MinMaxScaler, StandardScaler\n", "import joblib\n", "\n", "# Paths: adjust as needed. If running in Colab, mount Drive and set paths to Drive locations.\n", "agri_path = \"/content/drive/MyDrive/AuraClima/Agrofood_co2_emission.csv\"\n", "co2_path = \"/content/drive/MyDrive/AuraClima/CO2_Emissions_1960-2018.csv\"" ], "metadata": { "id": "KRufo-Hu3ZtW" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# === Model 1 scaler: total_emission ===\n", "if os.path.exists(agri_path):\n", " df_agri = pd.read_csv(agri_path)\n", " print(f\"Loaded '{agri_path}'. Columns:\")\n", " print(df_agri.columns.tolist())\n", "\n", " if 'total_emission' in df_agri.columns:\n", " # Fit MinMaxScaler on total_emission\n", " scaler1 = MinMaxScaler()\n", " df_te = df_agri[['total_emission']].dropna()\n", " scaler1.fit(df_te)\n", " joblib.dump(scaler1, '/content/drive/MyDrive/AuraClima/scaler1.save')\n", " print(\"Model 1 scaler saved to '/content/drive/MyDrive/AuraClima/scaler1.save'.\")\n", " else:\n", " print(\"❗ Column 'total_emission' not found in agri_full.csv. Please verify column name.\")\n", "else:\n", " print(f\"❗ File '{agri_path}' not found. Place your agricultural dataset CSV in this path.\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "k47v1gMEHuGq", "outputId": "6f994cb0-0f0d-4ed7-fd4e-7ba272b2a67e" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Loaded '/content/drive/MyDrive/AuraClima/Agrofood_co2_emission.csv'. Columns:\n", "['Area', 'Year', 'Savanna fires', 'Forest fires', 'Crop Residues', 'Rice Cultivation', 'Drained organic soils (CO2)', 'Pesticides Manufacturing', 'Food Transport', 'Forestland', 'Net Forest conversion', 'Food Household Consumption', 'Food Retail', 'On-farm Electricity Use', 'Food Packaging', 'Agrifood Systems Waste Disposal', 'Food Processing', 'Fertilizers Manufacturing', 'IPPU', 'Manure applied to Soils', 'Manure left on Pasture', 'Manure Management', 'Fires in organic soils', 'Fires in humid tropical forests', 'On-farm energy use', 'Rural population', 'Urban population', 'Total Population - Male', 'Total Population - Female', 'total_emission', 'Average Temperature °C']\n", "Model 1 scaler saved to '/content/drive/MyDrive/AuraClima/scaler1.save'.\n" ] } ] }, { "cell_type": "code", "source": [ "# === Model 2 scaler & feature list: regression NN ===\n", "if os.path.exists(agri_path):\n", " # Define numeric columns used in training.\n", " # Replace the placeholder list below with the exact numeric columns from your training script.\n", " numeric_cols = [\n", " 'Year', 'Crop Residues', 'Savanna fires', 'Forest fires', 'Rice Cultivation',\n", " 'Drained organic soils (CO2)', 'Pesticides Manufacturing', 'Food Transport', 'Forestland',\n", " 'Net Forest conversion', 'Food Household Consumption', 'Food Retail',\n", " 'On-farm Electricity Use', 'Food Packaging', 'Agrifood Systems Waste Disposal',\n", " 'Food Processing', 'Fertilizers Manufacturing', 'IPPU', 'Manure applied to Soils',\n", " 'Manure left on Pasture', 'Manure Management', 'On-farm energy use',\n", " 'Rural population', 'Urban population', 'Fires in organic soils',\n", " 'Fires in humid tropical forests', 'Total Population - Male',\n", " 'Total Population - Female', 'Average Temperature °C'\n", " ]\n", "\n", " df = df_agri.copy()\n", " # Convert numeric columns and fill NaNs\n", " for col in numeric_cols:\n", " if col in df.columns:\n", " df[col] = pd.to_numeric(df[col], errors='coerce')\n", " if df[col].isnull().any():\n", " df[col].fillna(df[col].mean(), inplace=True)\n", " else:\n", " print(f\"⚠️ Warning: Numeric column '{col}' not found in DataFrame.\")\n", "\n", " # Ensure 'Area' column exists for one-hot encoding\n", " if 'Area' in df.columns:\n", " df_encoded = pd.get_dummies(df, columns=['Area'], drop_first=True)\n", " if 'total_emission' not in df_encoded.columns:\n", " print(\"❗ Column 'total_emission' not found after encoding; verify dataset.\")\n", " else:\n", " feature_cols2 = [c for c in df_encoded.columns if c != 'total_emission']\n", " X = df_encoded[feature_cols2].values.astype(float)\n", " y = df_encoded['total_emission'].values.reshape(-1, 1)\n", " scaler_X2 = StandardScaler()\n", " scaler_y2 = StandardScaler()\n", " scaler_X2.fit(X)\n", " scaler_y2.fit(y)\n", " joblib.dump(scaler_X2, '/content/drive/MyDrive/AuraClima/scalerX2.save')\n", " joblib.dump(scaler_y2, '/content/drive/MyDrive/AuraClima/scalerY2.save')\n", " joblib.dump(feature_cols2, 'feature_cols2.list')\n", " print(\"Model 2 scalers and feature list saved:\")\n", " print(f\" - scalerX2.save\\n - scalerY2.save\\n - feature_cols2.list (length {len(feature_cols2)})\")\n", " else:\n", " print(\"❗ Column 'Area' not found in agri_full.csv; required for one-hot encoding in Model 2.\")\n", "\n", "else:\n", " print(f\"❗ File '{agri_path}' not found; cannot compute Model 2 scalers.\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "haYu4K4oHwkB", "outputId": "740a20c3-d382-4fda-b10d-f40e65d0d93c" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Model 2 scalers and feature list saved:\n", " - scalerX2.save\n", " - scalerY2.save\n", " - feature_cols2.list (length 264)\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ ":23: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.\n", "The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.\n", "\n", "For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.\n", "\n", "\n", " df[col].fillna(df[col].mean(), inplace=True)\n" ] } ] }, { "cell_type": "code", "source": [ "# === Model 3 scaler: CO2 time-series ===\n", "if os.path.exists(co2_path):\n", " df_co2 = pd.read_csv(co2_path)\n", " print(f\"\\nLoaded '{co2_path}'. Columns:\")\n", " print(df_co2.columns.tolist())\n", "\n", " # Identify year columns (e.g., '1960' to '2018')\n", " year_cols = [c for c in df_co2.columns if c.isdigit()]\n", " if year_cols:\n", " # Stack all values to fit scaler\n", " co2_vals = df_co2[year_cols].astype(float).values.flatten().reshape(-1, 1)\n", " scaler3 = MinMaxScaler()\n", " scaler3.fit(co2_vals)\n", " joblib.dump(scaler3, '/content/drive/MyDrive/AuraClima/scaler3.save')\n", " print(\"Model 3 scaler saved to '/content/drive/MyDrive/AuraClima/scaler3.save'.\")\n", " else:\n", " print(\"❗ No year columns detected in co2_timeseries.csv. Ensure columns named '1960', '1961', ..., '2018'.\")\n", "else:\n", " print(f\"❗ File '{co2_path}' not found. Place your CO2 timeseries CSV in this path.\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "EneHHTRgIAjs", "outputId": "5ade72d9-b43a-4556-e4d7-c3133229b0e9" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", "Loaded '/content/drive/MyDrive/AuraClima/CO2_Emissions_1960-2018.csv'. Columns:\n", "['Country Name', '1960', '1961', '1962', '1963', '1964', '1965', '1966', '1967', '1968', '1969', '1970', '1971', '1972', '1973', '1974', '1975', '1976', '1977', '1978', '1979', '1980', '1981', '1982', '1983', '1984', '1985', '1986', '1987', '1988', '1989', '1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015', '2016', '2017', '2018']\n", "Model 3 scaler saved to '/content/drive/MyDrive/AuraClima/scaler3.save'.\n" ] } ] }, { "cell_type": "code", "source": [ "# === Next Steps ===\n", "print(\"\\n✅ Completed scaler preparation script.\")\n", "print(\"You can now upload the generated scaler files ('scaler1.save', 'scalerX2.save', 'scalerY2.save', 'feature_cols2.list', 'scaler3.save') to Google Drive or use in your Streamlit app.\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "yDvWDk1cIGLB", "outputId": "9f3d8d5c-b304-4a27-9b3c-2b0ce38d165f" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", "✅ Completed scaler preparation script.\n", "You can now upload the generated scaler files ('scaler1.save', 'scalerX2.save', 'scalerY2.save', 'feature_cols2.list', 'scaler3.save') to Google Drive or use in your Streamlit app.\n" ] } ] }, { "cell_type": "code", "source": [ "import pandas as pd\n", "import joblib\n", "import os\n", "\n", "# Paths (adjust if needed)\n", "agri_path = \"/content/drive/MyDrive/AuraClima/Agrofood_co2_emission.csv\"\n", "scalerX2_path = '/content/drive/MyDrive/AuraClima/scalerX2.save'\n", "scalerY2_path = '/content/drive/MyDrive/AuraClima/scalerY2.save'\n", "\n", "# Check files exist\n", "print(\"Checking required files:\")\n", "for p in [agri_path, scalerX2_path, scalerY2_path]:\n", " print(f\" {p}: {'FOUND' if os.path.exists(p) else 'MISSING'}\")\n", "\n", "# Load agricultural dataset\n", "if os.path.exists(agri_path):\n", " df = pd.read_csv(agri_path)\n", " print(\"\\nLoaded agri_full.csv. Columns:\")\n", " print(df.columns.tolist())\n", "\n", " # Define numeric columns used in training; adjust this list if needed\n", " numeric_cols = [\n", " 'Year', 'Crop Residues', 'Savanna fires', 'Forest fires', 'Rice Cultivation',\n", " 'Drained organic soils (CO2)', 'Pesticides Manufacturing', 'Food Transport', 'Forestland',\n", " 'Net Forest conversion', 'Food Household Consumption', 'Food Retail',\n", " 'On-farm Electricity Use', 'Food Packaging', 'Agrifood Systems Waste Disposal',\n", " 'Food Processing', 'Fertilizers Manufacturing', 'IPPU', 'Manure applied to Soils',\n", " 'Manure left on Pasture', 'Manure Management', 'On-farm energy use',\n", " 'Rural population', 'Urban population', 'Fires in organic soils',\n", " 'Fires in humid tropical forests', 'Total Population - Male',\n", " 'Total Population - Female', 'Average Temperature °C'\n", " ]\n", "\n", " # Convert numeric columns and fill NaNs as during training\n", " for col in numeric_cols:\n", " if col in df.columns:\n", " df[col] = pd.to_numeric(df[col], errors='coerce')\n", " if df[col].isnull().any():\n", " df[col].fillna(df[col].mean(), inplace=True)\n", " else:\n", " print(f\"Warning: Numeric column '{col}' not found in dataset. \"\n", " \"Confirm if the name differs or if it was excluded in training.\")\n", "\n", " # One-hot encode 'Area'\n", " if 'Area' in df.columns:\n", " df_encoded = pd.get_dummies(df, columns=['Area'], drop_first=True)\n", " # Build feature_cols2 list\n", " feature_cols2 = [c for c in df_encoded.columns if c != 'total_emission']\n", " print(f\"\\nDerived feature_cols2 list with length {len(feature_cols2)}.\")\n", " # Save feature_cols2\n", " joblib.dump(feature_cols2, 'feature_cols2.list')\n", " print(\"Saved feature_cols2 to 'feature_cols2.list'.\")\n", " else:\n", " print(\"Error: 'Area' column not found in dataset; cannot one-hot encode for Model 2.\")\n", "else:\n", " print(\"Error: agri_full.csv not found; place your dataset at the specified path.\")\n", "\n", "# Verify scaler shapes if scalers exist\n", "if os.path.exists(scalerX2_path):\n", " scalerX2 = joblib.load(scalerX2_path)\n", " print(\"\\nLoaded scalerX2. Scaler mean_ length:\", len(scalerX2.mean_))\n", " if os.path.exists('/content/drive/MyDrive/AuraClima/feature_cols2.list'):\n", " feature_cols2 = joblib.load('/content/drive/MyDrive/AuraClima/feature_cols2.list')\n", " print(\"feature_cols2 length:\", len(feature_cols2))\n", " if len(feature_cols2) != len(scalerX2.mean_):\n", " print(\"Warning: Length mismatch between feature_cols2 and scalerX2. \"\n", " \"Ensure preprocessing matches how scalerX2 was originally fitted.\")\n", " else:\n", " print(\"feature_cols2.list not found; cannot verify length against scalerX2.\")\n", "else:\n", " print(\"scalerX2.save not found; ensure scalerX2 exists.\")\n", "\n", "if os.path.exists(scalerY2_path):\n", " scalerY2 = joblib.load(scalerY2_path)\n", " print(\"\\nLoaded scalerY2. Scaler mean_ length:\", len(scalerY2.mean_))\n", "else:\n", " print(\"scalerY2.save not found; ensure scalerY2 exists.\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "NePKrPYWIjM7", "outputId": "35b60668-e9e8-4a0e-c52c-352e90de332d" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Checking required files:\n", " /content/drive/MyDrive/AuraClima/Agrofood_co2_emission.csv: FOUND\n", " /content/drive/MyDrive/AuraClima/scalerX2.save: FOUND\n", " /content/drive/MyDrive/AuraClima/scalerY2.save: FOUND\n", "\n", "Loaded agri_full.csv. Columns:\n", "['Area', 'Year', 'Savanna fires', 'Forest fires', 'Crop Residues', 'Rice Cultivation', 'Drained organic soils (CO2)', 'Pesticides Manufacturing', 'Food Transport', 'Forestland', 'Net Forest conversion', 'Food Household Consumption', 'Food Retail', 'On-farm Electricity Use', 'Food Packaging', 'Agrifood Systems Waste Disposal', 'Food Processing', 'Fertilizers Manufacturing', 'IPPU', 'Manure applied to Soils', 'Manure left on Pasture', 'Manure Management', 'Fires in organic soils', 'Fires in humid tropical forests', 'On-farm energy use', 'Rural population', 'Urban population', 'Total Population - Male', 'Total Population - Female', 'total_emission', 'Average Temperature °C']\n", "\n", "Derived feature_cols2 list with length 264.\n", "Saved feature_cols2 to 'feature_cols2.list'.\n", "\n", "Loaded scalerX2. Scaler mean_ length: 264\n", "feature_cols2.list not found; cannot verify length against scalerX2.\n", "\n", "Loaded scalerY2. Scaler mean_ length: 1\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ ":39: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.\n", "The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.\n", "\n", "For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.\n", "\n", "\n", " df[col].fillna(df[col].mean(), inplace=True)\n" ] } ] }, { "cell_type": "code", "source": [ "import pandas as pd\n", "import numpy as np\n", "from sklearn.preprocessing import MinMaxScaler\n", "import joblib\n", "\n", "# === Model 1 Scaler: total_emission ===\n", "agri_path = \"/content/drive/MyDrive/AuraClima/Agrofood_co2_emission.csv\"\n", "\n", "agri_df = pd.read_csv(agri_path)\n", "\n", "if 'total_emission' not in agri_df.columns:\n", " raise ValueError(\"❌ 'total_emission' not found in agri_full.csv!\")\n", "\n", "scaler1 = MinMaxScaler()\n", "scaler1.fit(agri_df[['total_emission']].dropna())\n", "joblib.dump(scaler1, \"/content/drive/MyDrive/AuraClima/scaler1.save\")\n", "print(\"✅ Saved scaler1.save for Model 1 (MinMaxScaler on total_emission)\")\n", "\n", "# === Model 3 Scaler: CO2 year-wise ===\n", "co2_path = \"/content/drive/MyDrive/AuraClima/CO2_Emissions_1960-2018.csv\"\n", "co2_df = pd.read_csv(co2_path)\n", "\n", "# Extract year-only columns (e.g., 1960–2018)\n", "year_cols = [col for col in co2_df.columns if col.isdigit()]\n", "co2_values = co2_df[year_cols].values.astype(float).flatten()\n", "co2_values = co2_values[~np.isnan(co2_values)].reshape(-1, 1)\n", "\n", "scaler3 = MinMaxScaler()\n", "scaler3.fit(co2_values)\n", "joblib.dump(scaler3, \"/content/drive/MyDrive/AuraClima/scaler3.save\")\n", "print(\"✅ Saved scaler3.save for Model 3 (MinMaxScaler on CO2 values)\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "VBqYa-7tJczh", "outputId": "d0f9fab9-5ee0-4d02-dfa3-9b080a631b09" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "✅ Saved scaler1.save for Model 1 (MinMaxScaler on total_emission)\n", "✅ Saved scaler3.save for Model 3 (MinMaxScaler on CO2 values)\n" ] } ] }, { "cell_type": "code", "source": [ "import pickle\n", "\n", "feature_cols2 = [col for col in df_encoded.columns if col != 'total_emission']\n", "\n", "# Save to Google Drive\n", "with open('/content/drive/MyDrive/AuraClima/feature_cols2.list', 'wb') as f:\n", " pickle.dump(feature_cols2, f)\n", "\n", "print(\"✅ Saved feature_cols2.list to Google Drive.\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "zE8wa6m6KJY3", "outputId": "d7ab8696-9f1a-4e14-ea2c-021bc04cf406" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "✅ Saved feature_cols2.list to Google Drive.\n" ] } ] }, { "cell_type": "code", "source": [ "import tensorflow as tf\n", "print(\"TensorFlow version:\", tf.__version__)" ], "metadata": { "id": "KDDZKYK7KjDU", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "bc51b878-0fb8-481f-96e3-2870f3cdb379" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "TensorFlow version: 2.18.0\n" ] } ] }, { "cell_type": "code", "source": [], "metadata": { "id": "qiVRv2D61pcb" }, "execution_count": null, "outputs": [] } ] }