\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"missing_report(df_co2, \\\"CO2 Dataset\\\")\",\n \"rows\": 59,\n \"fields\": [\n {\n \"column\": \"Missing Count\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 12,\n \"min\": 27,\n \"max\": 63,\n \"num_unique_values\": 10,\n \"samples\": [\n 28,\n 62,\n 52\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Missing %\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 4.849909261138194,\n \"min\": 10.150375939849624,\n \"max\": 23.684210526315788,\n \"num_unique_values\": 10,\n \"samples\": [\n 10.526315789473683,\n 23.308270676691727,\n 19.548872180451127\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"print(\"Agri shape:\", df_agri.shape)\n",
"print(\"CO2 shape:\", df_co2.shape)\n",
"\n",
"df_agri.describe(include='all')\n",
"df_co2.describe(include='all')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 495
},
"id": "XauQcTypbLdI",
"outputId": "e9684ffe-f391-4b2b-8d50-9c1c724e5868"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Agri shape: (6965, 31)\n",
"CO2 shape: (266, 60)\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Country Name 1960 1961 1962 1963 \\\n",
"count 266 203.000000 204.000000 206.000000 207.000000 \n",
"unique 266 NaN NaN NaN NaN \n",
"top Zimbabwe NaN NaN NaN NaN \n",
"freq 1 NaN NaN NaN NaN \n",
"mean NaN 3.160220 3.292338 3.462051 3.906006 \n",
"std NaN 14.821169 15.114669 16.286958 16.909771 \n",
"min NaN 0.007984 0.007857 0.008435 0.009336 \n",
"25% NaN 0.195031 0.185078 0.211355 0.208805 \n",
"50% NaN 0.616754 0.662374 0.659399 0.706050 \n",
"75% NaN 2.060142 2.420962 2.526705 2.270349 \n",
"max NaN 204.631696 208.837879 226.081890 214.785217 \n",
"\n",
" 1964 1965 1966 1967 1968 ... \\\n",
"count 213.000000 213.000000 213.000000 213.000000 213.000000 ... \n",
"unique NaN NaN NaN NaN NaN ... \n",
"top NaN NaN NaN NaN NaN ... \n",
"freq NaN NaN NaN NaN NaN ... \n",
"mean 4.007034 4.029132 3.992162 4.249468 4.363587 ... \n",
"std 16.325047 15.139695 14.054838 15.943855 14.936638 ... \n",
"min 0.011589 0.011851 0.013248 0.011791 -0.020098 ... \n",
"25% 0.219304 0.236942 0.258556 0.265284 0.293462 ... \n",
"50% 0.793962 0.794770 0.885508 1.032198 1.004645 ... \n",
"75% 2.523331 2.630170 3.202366 3.913345 4.072719 ... \n",
"max 207.626699 185.213644 172.158729 210.819017 194.917536 ... \n",
"\n",
" 2009 2010 2011 2012 2013 \\\n",
"count 239.000000 239.000000 239.000000 239.000000 239.000000 \n",
"unique NaN NaN NaN NaN NaN \n",
"top NaN NaN NaN NaN NaN \n",
"freq NaN NaN NaN NaN NaN \n",
"mean 4.494702 4.329083 4.315602 4.372246 4.280935 \n",
"std 5.177846 5.006608 4.912689 4.894707 4.844110 \n",
"min 0.000000 0.000000 0.000000 0.035207 0.042976 \n",
"25% 0.736515 0.779051 0.798791 0.805751 0.815681 \n",
"50% 2.741639 2.667232 2.689378 2.869867 2.695691 \n",
"75% 6.524149 6.110808 6.188510 6.315302 6.284435 \n",
"max 34.544976 33.544700 32.305726 33.373132 31.927018 \n",
"\n",
" 2014 2015 2016 2017 2018 \n",
"count 239.000000 239.000000 239.000000 239.000000 239.000000 \n",
"unique NaN NaN NaN NaN NaN \n",
"top NaN NaN NaN NaN NaN \n",
"freq NaN NaN NaN NaN NaN \n",
"mean 4.195690 4.148874 4.147100 4.154185 4.158613 \n",
"std 4.732984 4.654801 4.592901 4.575980 4.547079 \n",
"min 0.039617 0.037904 0.026146 0.028010 0.026169 \n",
"25% 0.824377 0.806683 0.818367 0.851900 0.827804 \n",
"50% 2.698682 2.696240 2.754968 2.667119 2.691814 \n",
"75% 6.108660 5.920151 5.836392 6.158644 6.069018 \n",
"max 32.693532 32.470570 32.128042 32.179371 32.415639 \n",
"\n",
"[11 rows x 60 columns]"
],
"text/html": [
"\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Country Name
\n",
"
1960
\n",
"
1961
\n",
"
1962
\n",
"
1963
\n",
"
1964
\n",
"
1965
\n",
"
1966
\n",
"
1967
\n",
"
1968
\n",
"
...
\n",
"
2009
\n",
"
2010
\n",
"
2011
\n",
"
2012
\n",
"
2013
\n",
"
2014
\n",
"
2015
\n",
"
2016
\n",
"
2017
\n",
"
2018
\n",
"
\n",
" \n",
" \n",
"
\n",
"
count
\n",
"
266
\n",
"
203.000000
\n",
"
204.000000
\n",
"
206.000000
\n",
"
207.000000
\n",
"
213.000000
\n",
"
213.000000
\n",
"
213.000000
\n",
"
213.000000
\n",
"
213.000000
\n",
"
...
\n",
"
239.000000
\n",
"
239.000000
\n",
"
239.000000
\n",
"
239.000000
\n",
"
239.000000
\n",
"
239.000000
\n",
"
239.000000
\n",
"
239.000000
\n",
"
239.000000
\n",
"
239.000000
\n",
"
\n",
"
\n",
"
unique
\n",
"
266
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
top
\n",
"
Zimbabwe
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
freq
\n",
"
1
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
...
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
mean
\n",
"
NaN
\n",
"
3.160220
\n",
"
3.292338
\n",
"
3.462051
\n",
"
3.906006
\n",
"
4.007034
\n",
"
4.029132
\n",
"
3.992162
\n",
"
4.249468
\n",
"
4.363587
\n",
"
...
\n",
"
4.494702
\n",
"
4.329083
\n",
"
4.315602
\n",
"
4.372246
\n",
"
4.280935
\n",
"
4.195690
\n",
"
4.148874
\n",
"
4.147100
\n",
"
4.154185
\n",
"
4.158613
\n",
"
\n",
"
\n",
"
std
\n",
"
NaN
\n",
"
14.821169
\n",
"
15.114669
\n",
"
16.286958
\n",
"
16.909771
\n",
"
16.325047
\n",
"
15.139695
\n",
"
14.054838
\n",
"
15.943855
\n",
"
14.936638
\n",
"
...
\n",
"
5.177846
\n",
"
5.006608
\n",
"
4.912689
\n",
"
4.894707
\n",
"
4.844110
\n",
"
4.732984
\n",
"
4.654801
\n",
"
4.592901
\n",
"
4.575980
\n",
"
4.547079
\n",
"
\n",
"
\n",
"
min
\n",
"
NaN
\n",
"
0.007984
\n",
"
0.007857
\n",
"
0.008435
\n",
"
0.009336
\n",
"
0.011589
\n",
"
0.011851
\n",
"
0.013248
\n",
"
0.011791
\n",
"
-0.020098
\n",
"
...
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.035207
\n",
"
0.042976
\n",
"
0.039617
\n",
"
0.037904
\n",
"
0.026146
\n",
"
0.028010
\n",
"
0.026169
\n",
"
\n",
"
\n",
"
25%
\n",
"
NaN
\n",
"
0.195031
\n",
"
0.185078
\n",
"
0.211355
\n",
"
0.208805
\n",
"
0.219304
\n",
"
0.236942
\n",
"
0.258556
\n",
"
0.265284
\n",
"
0.293462
\n",
"
...
\n",
"
0.736515
\n",
"
0.779051
\n",
"
0.798791
\n",
"
0.805751
\n",
"
0.815681
\n",
"
0.824377
\n",
"
0.806683
\n",
"
0.818367
\n",
"
0.851900
\n",
"
0.827804
\n",
"
\n",
"
\n",
"
50%
\n",
"
NaN
\n",
"
0.616754
\n",
"
0.662374
\n",
"
0.659399
\n",
"
0.706050
\n",
"
0.793962
\n",
"
0.794770
\n",
"
0.885508
\n",
"
1.032198
\n",
"
1.004645
\n",
"
...
\n",
"
2.741639
\n",
"
2.667232
\n",
"
2.689378
\n",
"
2.869867
\n",
"
2.695691
\n",
"
2.698682
\n",
"
2.696240
\n",
"
2.754968
\n",
"
2.667119
\n",
"
2.691814
\n",
"
\n",
"
\n",
"
75%
\n",
"
NaN
\n",
"
2.060142
\n",
"
2.420962
\n",
"
2.526705
\n",
"
2.270349
\n",
"
2.523331
\n",
"
2.630170
\n",
"
3.202366
\n",
"
3.913345
\n",
"
4.072719
\n",
"
...
\n",
"
6.524149
\n",
"
6.110808
\n",
"
6.188510
\n",
"
6.315302
\n",
"
6.284435
\n",
"
6.108660
\n",
"
5.920151
\n",
"
5.836392
\n",
"
6.158644
\n",
"
6.069018
\n",
"
\n",
"
\n",
"
max
\n",
"
NaN
\n",
"
204.631696
\n",
"
208.837879
\n",
"
226.081890
\n",
"
214.785217
\n",
"
207.626699
\n",
"
185.213644
\n",
"
172.158729
\n",
"
210.819017
\n",
"
194.917536
\n",
"
...
\n",
"
34.544976
\n",
"
33.544700
\n",
"
32.305726
\n",
"
33.373132
\n",
"
31.927018
\n",
"
32.693532
\n",
"
32.470570
\n",
"
32.128042
\n",
"
32.179371
\n",
"
32.415639
\n",
"
\n",
" \n",
"
\n",
"
11 rows × 60 columns
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"
\n",
"\n",
"\n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
"
\n",
"\n",
"
\n",
"
\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe"
}
},
"metadata": {},
"execution_count": 7
}
]
},
{
"cell_type": "markdown",
"source": [
"### Agriculture Data"
],
"metadata": {
"id": "-OiCwU2JqAfG"
}
},
{
"cell_type": "code",
"source": [
"df_agri.columns"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "zXpQVb21db0P",
"outputId": "17cb861d-5245-424b-8097-358f3587431d"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"Index(['Area', 'Year', 'Savanna fires', 'Forest fires', 'Crop Residues',\n",
" 'Rice Cultivation', 'Drained organic soils (CO2)',\n",
" 'Pesticides Manufacturing', 'Food Transport', 'Forestland',\n",
" 'Net Forest conversion', 'Food Household Consumption', 'Food Retail',\n",
" 'On-farm Electricity Use', 'Food Packaging',\n",
" 'Agrifood Systems Waste Disposal', 'Food Processing',\n",
" 'Fertilizers Manufacturing', 'IPPU', 'Manure applied to Soils',\n",
" 'Manure left on Pasture', 'Manure Management', 'Fires in organic soils',\n",
" 'Fires in humid tropical forests', 'On-farm energy use',\n",
" 'Rural population', 'Urban population', 'Total Population - Male',\n",
" 'Total Population - Female', 'total_emission',\n",
" 'Average Temperature °C'],\n",
" dtype='object')"
]
},
"metadata": {},
"execution_count": 9
}
]
},
{
"cell_type": "markdown",
"source": [
"What we observe:\n",
"\n",
"- Many columns above represent 0 values here which is just no right, there can't ever be 0 rice cultivation for instance, hence we will replace those with the mean of that by the country.\n",
"\n",
"- However, since the fire columns can absolutely represent 0 values aka absence of the fire, hence we won't touch those."
],
"metadata": {
"id": "5Iwn2_GzfIRg"
}
},
{
"cell_type": "markdown",
"source": [
"**Stage 1 computation**"
],
"metadata": {
"id": "DAPdVxWYl6DE"
}
},
{
"cell_type": "code",
"source": [
"columns_to_clean = [\n",
" 'Crop Residues', 'Rice Cultivation', 'Drained organic soils (CO2)',\n",
" 'Pesticides Manufacturing', 'Food Transport', 'Forestland',\n",
" 'Net Forest conversion', 'Food Household Consumption', 'Food Retail',\n",
" 'On-farm Electricity Use', 'Food Packaging',\n",
" 'Agrifood Systems Waste Disposal', 'Food Processing',\n",
" 'Fertilizers Manufacturing', 'IPPU', 'Manure applied to Soils',\n",
" 'Manure left on Pasture', 'Manure Management', 'On-farm energy use',\n",
" 'Rural population', 'Urban population', 'Total Population - Male',\n",
" 'Total Population - Female', 'total_emission', 'Average Temperature °C'\n",
"]"
],
"metadata": {
"id": "Kx_bEcH6edcc"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"df_agri[columns_to_clean] = df_agri[columns_to_clean].replace(0, pd.NA)"
],
"metadata": {
"id": "n8FuqY8wmEIU"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Fill NaNs (former 0s) with country-level mean\n",
"df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "QHmHV3TvmN3d",
"outputId": "72004a0f-d587-4683-b8e4-f058e8e48a90"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n",
":2: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
" df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"missing = df_agri[columns_to_clean].isna().sum()\n",
"print(\"Remaining missing values after replacement:\")\n",
"print(missing[missing > 0])"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "eQ05zjuYmjsn",
"outputId": "0f47af7e-f783-4ef1-ff0f-255f90deb967"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Remaining missing values after replacement:\n",
"Crop Residues 1227\n",
"Rice Cultivation 31\n",
"Drained organic soils (CO2) 3822\n",
"Pesticides Manufacturing 217\n",
"Forestland 1732\n",
"Net Forest conversion 2337\n",
"Food Household Consumption 445\n",
"IPPU 896\n",
"Manure applied to Soils 918\n",
"Manure Management 918\n",
"On-farm energy use 922\n",
"Rural population 248\n",
"Urban population 62\n",
"dtype: int64\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Fill all remaining NaNs (again) using country-wise means\n",
"df_agri[columns_to_clean] = df_agri.groupby(\"Area\")[columns_to_clean].transform(lambda x: x.fillna(x.mean()))"
],
"metadata": {
"id": "YmJHIqvwmnrC"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Final check: Should show all zeroes (i.e., no missing values)\n",
"missing_check = df_agri[columns_to_clean].isna().sum()\n",
"print(\"Missing values after second groupby fill:\")\n",
"print(missing_check[missing_check > 0])"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "bXUzLTYfnSmQ",
"outputId": "ba1c627f-e1f1-48af-e5af-42c75b0bb527"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Missing values after second groupby fill:\n",
"Crop Residues 1227\n",
"Rice Cultivation 31\n",
"Drained organic soils (CO2) 3822\n",
"Pesticides Manufacturing 217\n",
"Forestland 1732\n",
"Net Forest conversion 2337\n",
"Food Household Consumption 445\n",
"IPPU 896\n",
"Manure applied to Soils 918\n",
"Manure Management 918\n",
"On-farm energy use 922\n",
"Rural population 248\n",
"Urban population 62\n",
"dtype: int64\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"There are still many missing values, let us just fill with global mean"
],
"metadata": {
"id": "uPEQ65P5nkPe"
}
},
{
"cell_type": "code",
"source": [
"# Fill any remaining missing values with global column means\n",
"df_agri[columns_to_clean] = df_agri[columns_to_clean].fillna(df_agri[columns_to_clean].mean())"
],
"metadata": {
"id": "ZoEAUzVInW24"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"print(\"✅ Total missing values after global mean fill:\")\n",
"print(df_agri[columns_to_clean].isna().sum().sum())"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "9S2fkzoyntjl",
"outputId": "a529e5ab-d7c1-4c89-9661-b0236ee8b372"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"✅ Total missing values after global mean fill:\n",
"0\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"**Stage 2: Analyzing the extremes of the data**"
],
"metadata": {
"id": "xa0uBENqtvOd"
}
},
{
"cell_type": "code",
"source": [
"columns_to_measure = [\n",
" 'Year','Crop Residues', 'Savanna fires', 'Forest fires', 'Rice Cultivation', 'Drained organic soils (CO2)',\n",
" 'Pesticides Manufacturing', 'Food Transport', 'Forestland',\n",
" 'Net Forest conversion', 'Food Household Consumption', 'Food Retail',\n",
" 'On-farm Electricity Use', 'Food Packaging',\n",
" 'Agrifood Systems Waste Disposal', 'Food Processing',\n",
" 'Fertilizers Manufacturing', 'IPPU', 'Manure applied to Soils',\n",
" 'Manure left on Pasture', 'Manure Management', 'On-farm energy use',\n",
" 'Rural population', 'Urban population', 'Fires in organic soils',\n",
" 'Fires in humid tropical forests','Total Population - Male',\n",
" 'Total Population - Female', 'total_emission', 'Average Temperature °C'\n",
"]"
],
"metadata": {
"id": "4H04J--3nvvm"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Handle outliers using IQR method\n",
"for col in columns_to_measure:\n",
" Q1 = df_agri[col].quantile(0.25)\n",
" Q3 = df_agri[col].quantile(0.75)\n",
" IQR = Q3 - Q1\n",
"\n",
" lower_bound = Q1 - 1.5 * IQR\n",
" upper_bound = Q3 + 1.5 * IQR\n",
"\n",
" median = df_agri[col].median()\n",
"\n",
" # Replace outliers with median\n",
" df_agri[col] = df_agri[col].apply(lambda x: median if x < lower_bound or x > upper_bound else x)"
],
"metadata": {
"id": "iBj7-XfDuLYD"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"for col in columns_to_clean:\n",
" Q1 = df_agri[col].quantile(0.25)\n",
" Q3 = df_agri[col].quantile(0.75)\n",
" IQR = Q3 - Q1\n",
" lower = Q1 - 1.5 * IQR\n",
" upper = Q3 + 1.5 * IQR\n",
" outliers = df_agri[(df_agri[col] < lower) | (df_agri[col] > upper)]\n",
" print(f\"{col}: {len(outliers)} outliers replaced\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "3caxMAMWuZYQ",
"outputId": "16f40884-6308-4faf-e61f-a1360ccc7969"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Crop Residues: 99 outliers replaced\n",
"Rice Cultivation: 533 outliers replaced\n",
"Drained organic soils (CO2): 0 outliers replaced\n",
"Pesticides Manufacturing: 1161 outliers replaced\n",
"Food Transport: 916 outliers replaced\n",
"Forestland: 0 outliers replaced\n",
"Net Forest conversion: 0 outliers replaced\n",
"Food Household Consumption: 1083 outliers replaced\n",
"Food Retail: 933 outliers replaced\n",
"On-farm Electricity Use: 1161 outliers replaced\n",
"Food Packaging: 2991 outliers replaced\n",
"Agrifood Systems Waste Disposal: 517 outliers replaced\n",
"Food Processing: 1081 outliers replaced\n",
"Fertilizers Manufacturing: 32 outliers replaced\n",
"IPPU: 289 outliers replaced\n",
"Manure applied to Soils: 208 outliers replaced\n",
"Manure left on Pasture: 157 outliers replaced\n",
"Manure Management: 222 outliers replaced\n",
"On-farm energy use: 246 outliers replaced\n",
"Rural population: 704 outliers replaced\n",
"Urban population: 625 outliers replaced\n",
"Total Population - Male: 646 outliers replaced\n",
"Total Population - Female: 627 outliers replaced\n",
"total_emission: 863 outliers replaced\n",
"Average Temperature °C: 34 outliers replaced\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"**Stage 3: Data Normalization**"
],
"metadata": {
"id": "0yUEH_9zvfnQ"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.preprocessing import StandardScaler\n",
"import pandas as pd\n",
"\n",
"# Step 1: One-hot encode 'Area'\n",
"df_encoded = pd.get_dummies(df_agri, columns=['Area'], drop_first=True) # drop_first to avoid dummy trap\n",
"\n",
"# Step 2: Normalize only the numerical columns\n",
"scaler = StandardScaler()\n",
"df_encoded[columns_to_measure] = scaler.fit_transform(df_encoded[columns_to_measure])"
],
"metadata": {
"id": "lrfGFzbeuh2g"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"df_encoded.shape"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "8FmTa5-Uvr3w",
"outputId": "c6fa62d7-f358-4c95-c228-7ba12541ca9d"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"(6965, 265)"
]
},
"metadata": {},
"execution_count": 33
}
]
},
{
"cell_type": "code",
"source": [
"df_encoded.head()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 307
},
"id": "yTkZxUxhvuIV",
"outputId": "0d7859a5-ac9d-4d92-b765-b3c8873726aa"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Year Savanna fires Forest fires Crop Residues Rice Cultivation \\\n",
"0 -1.700569 0.002847 -0.350999 -0.358933 0.015239 \n",
"1 -1.588134 0.002847 -0.350999 -0.350862 0.004759 \n",
"2 -1.475699 0.002847 -0.350999 -0.377764 0.015239 \n",
"3 -1.363264 0.002847 -0.350999 -0.306615 0.015239 \n",
"4 -1.250829 0.002847 -0.350999 -0.283305 0.041439 \n",
"\n",
" Drained organic soils (CO2) Pesticides Manufacturing Food Transport \\\n",
"0 0.635421 -0.473601 -0.570823 \n",
"1 0.635421 -0.474986 -0.573847 \n",
"2 0.635421 -0.474986 -0.586398 \n",
"3 0.635421 -0.474986 -0.584737 \n",
"4 0.635421 -0.474986 -0.585332 \n",
"\n",
" Forestland Net Forest conversion ... Area_Uzbekistan Area_Vanuatu \\\n",
"0 0.567415 0.857852 ... False False \n",
"1 0.567415 0.857852 ... False False \n",
"2 0.567415 0.857852 ... False False \n",
"3 0.567415 0.857852 ... False False \n",
"4 0.567415 0.857852 ... False False \n",
"\n",
" Area_Venezuela (Bolivarian Republic of) Area_Viet Nam \\\n",
"0 False False \n",
"1 False False \n",
"2 False False \n",
"3 False False \n",
"4 False False \n",
"\n",
" Area_Wallis and Futuna Islands Area_Western Sahara Area_Yemen \\\n",
"0 False False False \n",
"1 False False False \n",
"2 False False False \n",
"3 False False False \n",
"4 False False False \n",
"\n",
" Area_Yugoslav SFR Area_Zambia Area_Zimbabwe \n",
"0 False False False \n",
"1 False False False \n",
"2 False False False \n",
"3 False False False \n",
"4 False False False \n",
"\n",
"[5 rows x 265 columns]"
],
"text/html": [
"\n",
"
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAJOCAYAAACqbjP2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAeP5JREFUeJzt3Xd4FNXbxvHvpm1CGi0hAQKhF+kgCCi9CFhQVMACAnaQJhbUn9ixIVgQsIGIiCIdkRaaAtJRQEBa6L0kJIS0nfePeVkNSTAbNpmU+3Nde7EzOzP77LCEO2fOnGMzDMNARERERK7Jw+oCRERERPIDhSYRERGRLFBoEhEREckChSYRERGRLFBoEhEREckChSYRERGRLFBoEhEREckChSYRERGRLFBoEhEREckChSYRN4iMjOThhx92Lq9YsQKbzcaKFSssq+lqV9cormvVqhWtWrWyuowsefjhh4mMjLS6jAxFR0djs9mYNGmS249ts9l49dVX3X5cEVBokgJg0qRJ2Gw258PX15eqVasyYMAATp48aXV5LlmwYEGh+YG/c+dO59/XhQsXsn2ct99+m9mzZ7utLne43pr++usvXn31VaKjo91Wk4hcP4UmKTBef/11vv32Wz799FOaNWvGuHHjaNq0KZcuXcr1Wlq0aEFCQgItWrRwab8FCxbw2muv5VBVecuUKVMICwsD4Keffsr2cQpqaHrttdcKbGgqX748CQkJPPTQQ24/dkJCAi+//LLbjysCCk1SgHTq1IkHH3yQRx55hEmTJjF48GAOHDjAnDlzMt0nPj4+R2rx8PDA19cXDw/9E8uIYRhMnTqV+++/n86dO/Pdd99ZXZLkoistjJ6enm4/tq+vL15eXm4/rggoNEkB1qZNGwAOHDgAmH08AgIC2LdvH507dyYwMJAHHngAAIfDwZgxY7jhhhvw9fWlVKlSPP7445w/fz7NMQ3D4M0336Rs2bIUKVKE1q1bs2PHjnTvnVmfpnXr1tG5c2eKFSuGv78/derU4aOPPnLWN3bsWIA0lxuvcHeNV0tOTqZ48eL06dMn3WuxsbH4+voybNgw57pPPvmEG264gSJFilCsWDEaNWrE1KlT//N9AFavXk10dDQ9evSgR48erFq1iiNHjqTbzuFw8NFHH1G7dm18fX0JCQnh1ltvZePGjc7zFB8fzzfffOM8X1f6bWXWp+fVV19Nc14BJk6cSJs2bQgNDcVut1OzZk3GjRuXpc9ytWvVBLBlyxY6depEUFAQAQEBtG3blt9//935+qRJk7j33nsBaN26tfMYV75Lc+bMoUuXLpQuXRq73U6lSpV44403SE1NzVa9V1u3bh233norwcHBFClShJYtW7J69eo021w5h3///TcPPvggwcHBhISE8L///Q/DMDh8+DB33nknQUFBhIWFMWrUqDT7Z9Sn6cSJE/Tp04eyZctit9sJDw/nzjvvTNPatnHjRjp27EjJkiXx8/OjQoUK9O3bN82xM+rT9F/nHP65zL969WqGDh1KSEgI/v7+3HXXXZw+fTr7J1QKFMVxKbD27dsHQIkSJZzrUlJS6NixIzfffDMffPABRYoUAeDxxx9n0qRJ9OnTh4EDB3LgwAE+/fRTtmzZwurVq/H29gbglVde4c0336Rz58507tyZzZs306FDB5KSkv6zniVLlnDbbbcRHh7OoEGDCAsLY+fOncyfP59Bgwbx+OOPc+zYMZYsWcK3336bbv+crtHb25u77rqLmTNnMmHCBHx8fJyvzZ49m8TERHr06AHAF198wcCBA7nnnnsYNGgQly9f5s8//2TdunXcf//9/3kuvvvuOypVqsSNN95IrVq1KFKkCN9//z3PPvtsmu369evHpEmT6NSpE4888ggpKSn8+uuv/P777zRq1Ihvv/2WRx55hMaNG/PYY48BUKlSpf98/6uNGzeOG264gTvuuAMvLy/mzZvHU089hcPhoH///i4d61o17dixg1tuuYWgoCCee+45vL29mTBhAq1atWLlypU0adKEFi1aMHDgQD7++GNefPFFatSoAeD8c9KkSQQEBDB06FACAgJYtmwZr7zyCrGxsbz//vsuf/Z/W7ZsGZ06daJhw4aMGDECDw8PZ6D89ddfady4cZrtu3fvTo0aNXjnnXf4+eefefPNNylevDgTJkygTZs2vPvuu3z33XcMGzaMG2+88ZqXq7t168aOHTt4+umniYyM5NSpUyxZsoRDhw45lzt06EBISAgvvPACRYsWJTo6mpkzZ17zM2XlnP/b008/TbFixRgxYgTR0dGMGTOGAQMG8MMPP2T/xErBYYjkcxMnTjQAY+nSpcbp06eNw4cPG9OmTTNKlChh+Pn5GUeOHDEMwzB69+5tAMYLL7yQZv9ff/3VAIzvvvsuzfqFCxemWX/q1CnDx8fH6NKli+FwOJzbvfjiiwZg9O7d27lu+fLlBmAsX77cMAzDSElJMSpUqGCUL1/eOH/+fJr3+fex+vfvb2T0zzInaszIokWLDMCYN29emvWdO3c2Klas6Fy+8847jRtuuOGax8pMUlKSUaJECeOll15yrrv//vuNunXrptlu2bJlBmAMHDgw3TH+/dn8/f0z/Fy9e/c2ypcvn279iBEj0p3jS5cupduuY8eOaT6zYRhGy5YtjZYtW2bwqdLKrKauXbsaPj4+xr59+5zrjh07ZgQGBhotWrRwrps+fXqa789/1fr4448bRYoUMS5fvuxcl9nnz4zD4TCqVKlidOzYMc35vXTpklGhQgWjffv2znVXzuFjjz3mXJeSkmKULVvWsNlsxjvvvONcf/78ecPPzy/N+Thw4IABGBMnTnRuAxjvv/9+pvXNmjXLAIwNGzZc83MAxogRI5zLWT3nV36OtGvXLs3nHzJkiOHp6WlcuHDhmu8rhYMuz0mB0a5dO0JCQoiIiKBHjx4EBAQwa9YsypQpk2a7J598Ms3y9OnTCQ4Opn379pw5c8b5aNiwIQEBASxfvhyApUuXkpSUxNNPP53m8s7gwYP/s7YtW7Zw4MABBg8eTNGiRdO8dvWloozkRo1gXtIsWbJkmt+qz58/z5IlS+jevbtzXdGiRTly5AgbNmzI0nH/7ZdffuHs2bP07NnTua5nz5788ccfaS4jzpgxA5vNxogRI9IdIyvnzBV+fn7O5zExMZw5c4aWLVuyf/9+YmJi3PIeqampLF68mK5du1KxYkXn+vDwcO6//35+++03YmNjXar14sWLnDlzhltuuYVLly6xa9eubNe3detW9uzZw/3338/Zs2ed37H4+Hjatm3LqlWrcDgcafZ55JFHnM89PT1p1KgRhmHQr18/5/qiRYtSrVo19u/ff83P5OPjw4oVK9Jdbv73cQDmz59PcnJylj5Tds75Y489lub7dcstt5CamsrBgwez9J5SsBXq0LRq1Spuv/12Spcujc1my9bdLoZh8MEHH1C1alXsdjtlypThrbfecn+x8p/Gjh3LkiVLWL58OX/99Rf79++nY8eOabbx8vKibNmyadbt2bOHmJgYQkNDCQkJSfOIi4vj1KlTAM4fmlWqVEmzf0hICMWKFbtmbVcuFdaqVStbny03agTz/HTr1o05c+aQmJgIwMyZM0lOTk4Tmp5//nkCAgJo3LgxVapUoX///un6vWRmypQpVKhQAbvdzt69e9m7dy+VKlWiSJEiaTqE79u3j9KlS1O8ePEsHfd6rF69mnbt2uHv70/RokUJCQnhxRdfBHBbaDp9+jSXLl2iWrVq6V6rUaMGDoeDw4cP/+dxduzYwV133UVwcDBBQUGEhITw4IMPXnete/bsAaB3797pvmNffvkliYmJ6Y5frly5NMvBwcH4+vpSsmTJdOszC0MAdrudd999l19++YVSpUrRokUL3nvvPU6cOOHcpmXLlnTr1o3XXnuNkiVLcueddzJx4kTn9zQj2TnnV3+mK/9urlW/FB6Fuk9TfHw8devWpW/fvtx9993ZOsagQYNYvHgxH3zwAbVr1+bcuXOcO3fOzZVKVjRu3JhGjRpdcxu73Z7ujjaHw0FoaGimd3CFhIS4rcbsys0ae/TowYQJE/jll1/o2rUrP/74I9WrV6du3brObWrUqMHu3buZP38+CxcuZMaMGXz22We88sor1xwyITY2lnnz5nH58uV0wQ5g6tSpvPXWW25pScrsGFd3mN63bx9t27alevXqfPjhh0RERODj48OCBQsYPXp0utYVK124cIGWLVsSFBTE66+/TqVKlfD19WXz5s08//zz11XrlX3ff/996tWrl+E2AQEBaZYzuvstszviDMO45vsPHjyY22+/ndmzZ7No0SL+97//MXLkSJYtW0b9+vWx2Wz89NNP/P7778ybN49FixbRt29fRo0axe+//56utuzKbv1SOBTq0NSpUyc6deqU6euJiYm89NJLfP/991y4cIFatWrx7rvvOkcE3rlzJ+PGjWP79u3O32QqVKiQG6WLG1WqVImlS5fSvHnzNJc+rla+fHnA/I383039p0+f/s/fQq90BN6+fTvt2rXLdLvM/qPPjRqvaNGiBeHh4fzwww/cfPPNLFu2jJdeeinddv7+/nTv3p3u3buTlJTE3XffzVtvvcXw4cPx9fXN8NgzZ87k8uXLjBs3Ll1rxO7du3n55ZdZvXo1N998M5UqVWLRokWcO3fumq1NmZ2zYsWKZTho5tWXWebNm0diYiJz585N08pw5ZJndmRUU0hICEWKFGH37t3pXtu1axceHh5ERERkuj+Yd2WePXuWmTNnpulUfeUO0etx5TsaFBR0ze9oTqpUqRLPPPMMzzzzDHv27KFevXqMGjWKKVOmOLe56aabuOmmm3jrrbeYOnUqDzzwANOmTUtzqfAKV865SFYU6stz/2XAgAGsXbuWadOm8eeff3Lvvfdy6623Opux582bR8WKFZk/fz4VKlQgMjKSRx55RC1N+cx9991Hamoqb7zxRrrXUlJSnP/xtmvXDm9vbz755JM0v3WOGTPmP9+jQYMGVKhQgTFjxqT7j/zfx/L39wdIt01u1HiFh4cH99xzD/PmzePbb78lJSUlzaU5gLNnz6ZZ9vHxoWbNmhiGcc3+JlOmTKFixYo88cQT3HPPPWkew4YNIyAgwNma1q1bNwzDyLDl6upzllE4qlSpEjExMfz555/OdcePH2fWrFlptrvSsvDvY8bExDBx4sRMP8d/yagmT09POnTowJw5c9LcRn/y5EmmTp3KzTffTFBQkHN/SP89yKjWpKQkPvvss2zXekXDhg2pVKkSH3zwAXFxcelez8nb7i9dusTly5fTrKtUqRKBgYHOy2/nz59P19pzpUUss0t0rpxzkawo1C1N13Lo0CEmTpzIoUOHKF26NADDhg1j4cKFTJw4kbfffpv9+/dz8OBBpk+fzuTJk0lNTWXIkCHcc889LFu2zOJPIFnVsmVLHn/8cUaOHMnWrVvp0KED3t7e7Nmzh+nTp/PRRx9xzz33EBISwrBhwxg5ciS33XYbnTt3ZsuWLfzyyy/pWk2u5uHhwbhx47j99tupV68effr0ITw8nF27drFjxw4WLVoEmP9xAQwcOJCOHTvi6elJjx49cqXGf+vevTuffPIJI0aMoHbt2s7b3a/o0KEDYWFhNG/enFKlSrFz504+/fRTunTpQmBgYIbHPHbsGMuXL2fgwIEZvm632+nYsSPTp0/n448/pnXr1jz00EN8/PHH7Nmzh1tvvRWHw8Gvv/5K69atGTBggPOcLV26lA8//JDSpUtToUIFmjRpQo8ePXj++ee56667GDhwIJcuXWLcuHFUrVqVzZs3p/ksPj4+3H777Tz++OPExcXxxRdfEBoayvHjx7N8zv4ts5refPNNlixZws0338xTTz2Fl5cXEyZMIDExkffee8+5f7169fD09OTdd98lJiYGu91OmzZtaNasGcWKFaN3794MHDgQm83Gt99+65ZLRx4eHnz55Zd06tSJG264gT59+lCmTBmOHj3K8uXLCQoKYt68edf9Phn5+++/adu2Lffddx81a9bEy8uLWbNmcfLkSecwF9988w2fffYZd911F5UqVeLixYt88cUXBAUF0blz50yPndVzLpIlVtyylxcBxqxZs5zL8+fPNwDD398/zcPLy8u47777DMMwjEcffdQAjN27dzv327RpkwEYu3btyu2PUGhduVX4v25F7t27t+Hv75/p659//rnRsGFDw8/PzwgMDDRq165tPPfcc8axY8ec26SmphqvvfaaER4ebvj5+RmtWrUytm/fbpQvX/6aQw5c8dtvvxnt27c3AgMDDX9/f6NOnTrGJ5984nw9JSXFePrpp42QkBDDZrOluzXenTVei8PhMCIiIgzAePPNN9O9PmHCBKNFixZGiRIlDLvdblSqVMl49tlnjZiYmEyPOWrUKAMwoqKiMt1m0qRJBmDMmTPHeT7ef/99o3r16oaPj48REhJidOrUydi0aZNzn127dhktWrQw/Pz80g2rsHjxYqNWrVqGj4+PUa1aNWPKlCkZDjkwd+5co06dOoavr68RGRlpvPvuu8bXX39tAMaBAwec22V1yIFr1bR582ajY8eORkBAgFGkSBGjdevWxpo1a9Id44svvjAqVqxoeHp6pvkurV692rjpppsMPz8/o3Tp0sZzzz3nHCri3983V4ccuGLLli3G3Xff7fy7LV++vHHfffel+Xu7cg5Pnz6dZt/M/o21bNkyzRAVVw85cObMGaN///5G9erVDX9/fyM4ONho0qSJ8eOPP6Y5bz179jTKlStn2O12IzQ01LjtttuMjRs3pnkvrhpy4Mq+/3XOM/s5ktm/ZSmcbIah3m1g9iGYNWsWXbt2BeCHH37ggQceYMeOHek6BgYEBBAWFsaIESN4++2301yOSEhIoEiRIixevJj27dvn5kcQERGRHKTLc5moX78+qampnDp1iltuuSXDbZo3b05KSgr79u1zdqL8+++/gX865IqIiEjBUKhbmuLi4ti7dy9ghqQPP/yQ1q1bU7x4ccqVK8eDDz7I6tWrGTVqFPXr1+f06dNERUVRp04dunTpgsPh4MYbbyQgIIAxY8Y4p1wICgpi8eLFFn86ERHTuXPnrjmNjqenZ54YWkMkryvUoWnFihW0bt063frevXszadIkkpOTefPNN5k8eTJHjx6lZMmS3HTTTbz22mvUrl0bMDu3Pv300yxevBh/f386derEqFGjcmVAPhGRrLgyz1pmypcvn+buMhHJWKEOTSIihcGmTZuuOU6Xn58fzZs3z8WKRPInhSYRERGRLNDgliIiIiJZUOjunnM4HBw7dozAwEC3z5QuIiIieZ9hGFy8eJHSpUunm4/0WgpdaDp27JjmGhIREREOHz5M2bJls7x9oQtNV6Z4OHz4sOYcEhERKYRiY2OJiIjIdNqnzBS60HTlklxQUJBCk4iISCHmajcddQQXERERyQJLQ9O4ceOoU6eOs9WnadOm/PLLL9fcZ/r06VSvXh1fX19q167NggULcqlaERERKcwsDU1ly5blnXfeYdOmTWzcuJE2bdpw5513smPHjgy3X7NmDT179qRfv35s2bKFrl270rVrV7Zv357LlYuIiEhhk+cGtyxevDjvv/8+/fr1S/da9+7diY+PZ/78+c51N910E/Xq1WP8+PFZOn5sbCzBwcHExMSoT5OIiEghlN0skGf6NKWmpjJt2jTi4+Np2rRphtusXbuWdu3apVnXsWNH1q5dm+lxExMTiY2NTfMQERERcZXloWnbtm0EBARgt9t54oknmDVrFjVr1sxw2xMnTlCqVKk060qVKsWJEycyPf7IkSMJDg52PjRGk4iIiGSH5aGpWrVqbN26lXXr1vHkk0/Su3dv/vrrL7cdf/jw4cTExDgfhw8fdtuxRUREpPCwfJwmHx8fKleuDEDDhg3ZsGEDH330ERMmTEi3bVhYGCdPnkyz7uTJk4SFhWV6fLvdjt1ud2/RIiIiUuhY3tJ0NYfDQWJiYoavNW3alKioqDTrlixZkmkfKBERERF3sbSlafjw4XTq1Ily5cpx8eJFpk6dyooVK1i0aBEAvXr1okyZMowcORKAQYMG0bJlS0aNGkWXLl2YNm0aGzdu5PPPP7fyY4iIiEghYGloOnXqFL169eL48eMEBwdTp04dFi1aRPv27QE4dOhQmtmHmzVrxtSpU3n55Zd58cUXqVKlCrNnz6ZWrVpWfQQREREpJPLcOE05TeM0iYiIFG75fpwmERERkbxMoUlEREQkCxSaRERERLJAoUlEREQkCxSaRERERLJAoUlEREQkCxSaRERERLJAoUlERETyliNHYN8+q6tIR6FJRERE8o6DB6FlS2jdGqKjra4mDYUmERERyTsuX4b4ePD2BpvN6mrSsHTuOREREZE0qlWDqCgoWhTKlLG6mjQUmkRERMRaO3fCsWPQtq25fMMN1taTCV2eExEREets22b2YbrtNli92upqrkmhSURERKyxZYvZ4fv0aahRA6pXt7qia1JoEhERkdy3YQO0aQNnz0LjxmY/phIlrK7qmhSaREREJHetWQPt2sGFC9CsGSxeDMWKWV3Vf1JHcBEREck9O3ZAx44QFwctWsD8+RAYmGYTh8Mg+mw8Fy+nEOjrRWQJfzw8rB9+QKFJREREck+1anDrrXD+PMyZA/7+aV7efjSGGZuPsPdUHInJDuzeHlQODaBbg7LUKhNsUdEmhSYRERHJPV5eMHUqpKSAn1+al7YfjeHjqD2ci08iPNgPv2BPEpJS2XYkhqPnExjYtoqlwUl9mkRERCRnzZ8PTz0FDoe57O2dLjA5HAYzNh/hXHwSlUMDCPD1wtPDRoCvF5VDAzgXn8TMzUdxOAwLPoBJLU0iIiKSc2bNgu7dITkZ6teHRx/NcLPos/HsPRVHeLAftqumT7HZbIQH+7Hn1EWiz8ZTMSQgNypPRy1NIiIikjN+/BHuvdcMTN27w8MPZ7rpxcspJCY78PPxzPB1Px9PEpMdXLyckkPF/jeFJhEREXG/776Dnj0hNRUefBCmTDEvy2Ui0NcLu7cHCUmpGb6ekJSK3duDQF/rLpIpNImIiIh7TZoEDz1k9mHq08dc9rp22Iks4U/l0ACOxyRgGGn7LRmGwfGYBKqEBhJZwj+TI+Q8hSYRERFxnyNH4PHHwTDMP7/8EjwzvuT2bx4eNro1KEtxfx/2nooj7nIKqQ6DuMsp7D0VR3F/H+5uUMbS8ZrUEVxERETcp2xZ+P57+PVX+PBDsGU95NQqE8zAtlWc4zSdjDXHaapTtih3Nyhj+ThNNuPqNrACLjY2luDgYGJiYggKCrK6HBERkYIhNhbc9P9qTo8Int0soMtzIiIicn3eeQfq1IGDB91yOA8PGxVDAqgbUZSKIQF5YgoVUGgSERGR6/H66zB8uBmY5s61upocpT5NIiIi4jrDgP/9D956y1weORKeftramnKYQpOIiIi4xjDguefggw/M5VGjYOhQa2vKBQpNIiIiknWGAYMHw8cfm8uffAIDBlhaUm5RaBIREZGsu3gRli83n0+YAI89Zm09uUihSURERLIuKAiWLoWVK8155QoR3T0nIiIi15aSAlFR/yyHhha6wAQKTSIiInItycnmPHLt2sHXX1tdjaV0eU5EREQylpQEPXvCzJng7Q3FilldkaUUmkRERCS9xETzEty8eeDjAzNmwG23WV2VpRSaREREJK2EBLj7bli4EHx9YfZs6NjR6qosp9AkIiIi/0hKgttvNzt++/mZLU1t21pdVZ6gjuAiIiLyD29vaNIE/P3NliYFJieFJhEREfmHzQZvvgnbtkGLFlZXk6coNImIiBR258/DkCFw6ZK5bLNBhQrW1pQHqU+TiIhIYXb2LHToAJs3w4kT8P33VleUZyk0iYiIFFanTkH79vDnnxASAi++aHVFeZpCk4iISGF04oTZyfuvvyAszLxbrmZNq6vK0xSaRERECpujR6FNG/j7byhTBpYtg6pVra4qz1NHcBERkcLEMOCuu8zAVK4crFypwJRFCk0iIiKFic0Gn30G9evDqlVQqZLVFeUbujwnIiJSGKSmgqen+bxRI9i0yQxQkmVqaRIRESnodu2CWrVg3bp/1ikwuUyhSUREpCDbvh1atjSD07PPmn2aJFsUmkRERAqqP/6A1q3N8Zjq1YOZM9XCdB0UmkRERAqiTZvMwHTmjNmHKSoKSpa0uqp8TaFJRESkoPn9d3PgyvPn4aabYOlSKF7c6qryPYUmERGRgmb0aIiJgZtvhsWLITjY6ooKBA05ICIiUtBMmmSOv/TSS+Dvb3U1BYZamkRERAqC3bv/uTPOzw/efluByc0UmkRERPK7BQugbl144QUNKZCDFJpERETyszlzoGtXSEw0W5tSU62uqMBSaBIREcmvfvoJ7rkHkpPh3nth+nTwUnflnKLQJCIikh9NnQo9ekBKCtx/v7ns7W11VQWaQpOIiEh+88038NBD5qW4hx+GyZPVwpQLFJpERETyI8OARx+Fr74CT0+rqykUFEtFRETym969oXJlaNoUPNT+kVt0pkVERPKDiRPhxIl/lps3V2DKZZae7ZEjR3LjjTcSGBhIaGgoXbt2Zffu3dfcZ9KkSdhstjQPX1/fXKpYRETEAu+9B337mvPJxcVZXU2hZWloWrlyJf379+f3339nyZIlJCcn06FDB+Lj46+5X1BQEMePH3c+Dh48mEsVi4iI5LI334Tnnzef33OPRvm2kKV9mhYuXJhmedKkSYSGhrJp0yZatGiR6X42m42wsLCcLk9ERMQ6hgEjRsAbb5jLb75pziUnlslTF0NjYmIAKF68+DW3i4uLo3z58kRERHDnnXeyY8eO3ChPREQkdxgGDB/+T2B67z0Fpjwgz4Qmh8PB4MGDad68ObVq1cp0u2rVqvH1118zZ84cpkyZgsPhoFmzZhw5ciTD7RMTE4mNjU3zEBERydPeew/efdd8PmYMPPuspeWIyWYYeWNmvyeffJJffvmF3377jbJly2Z5v+TkZGrUqEHPnj1540oi/5dXX32V1157Ld36mJgYgoKCrqtmERGRHHH4MLRqBcOGwZNPWl1NgRMbG0twcLDLWSBPhKYBAwYwZ84cVq1aRYUKFVze/95778XLy4vvv/8+3WuJiYkkJiY6l2NjY4mIiFBoEhGRvO3SJShSxOoqCqTshiZLL88ZhsGAAQOYNWsWy5Yty1ZgSk1NZdu2bYSHh2f4ut1uJygoKM1DREQkT0lNhUceMSfcvUKBKc+xNDT179+fKVOmMHXqVAIDAzlx4gQnTpwgISHBuU2vXr0YPny4c/n1119n8eLF7N+/n82bN/Pggw9y8OBBHnnkESs+goiIyPVJSYFevczpUHr1guPHra5IMmHpkAPjxo0DoFWrVmnWT5w4kYcffhiAQ4cO4fGvEU/Pnz/Po48+yokTJyhWrBgNGzZkzZo11KxZM7fKFhERcY/kZLj/fvjpJ3PC3SlTIJMrJ2K9PNGnKTdl9zqmiIiIWyUmQvfuMGcO+PiYl+buuMPqqgqF7GYBTdgrIiKS2y5fhm7dYMECsNth9my49Varq5L/oNAkIiKS2yZONAOTnx/MnQvt2lldkWSBQpOIiEhue+IJ+Ptv6NoVWra0uhrJIoUmERGR3HDxonkpzscHbDYYPdrqisRFeWYaFRERkQLrwgVo3x569DDvmJN8SS1NIiIiOencOejQATZtguLF4cABqFrV6qokG9TSJCIiklNOn4Y2bczAVLIkLFumwJSPqaVJREQkJ5w8CW3bwo4dUKoUREXBDTdYXZVcB4UmERERdzt2zAxMu3ZB6dJmC1O1alZXJddJl+dERETcLToaDh2CiAhYuVKBqYBQS5OIiIi7NWtmDl5ZrhxUqGB1NeImCk0iIiLusG8fXLoEtWubyxq0ssDR5TkREZHrtXs3tGhh9mPaudPqaiSHKDSJiIhcj7/+MluVjh2DkBAoVszqiiSHKDSJiIhk159/QqtW5vACderAihUQFmZ1VZJDFJpERESyY/NmaN3aHMCyQQNzWIGQEKurkhyk0CQiIuKqP/80+y+dOwdNmpgDV5YoYXVVksN095yIiIirKlSAGjXAw8McWiAoyOqKJBcoNImIiLgqMBB++QU8PSEgwOpqJJfo8pyIiEhWREXBe+/9sxwcrMBUyKilSURE5L8sXAh33QWXL0PFinDPPVZXJBZQS5OIiMi1zJsHd95pBqY77oDbb7e6IrGIQpOIiEhmZs6Eu++GpCTo1g2mTwe73eqqxCIKTSIiIhn54Qe47z5ISYGePWHaNPDxsboqsZBCk4iIyNX27IEHHoDUVOjVC779FrzUDbiw0zdARETkalWqwPvvm/PKTZhgjsckhZ5Ck4iIyBXJyeDtbT4fMgQMA2w2a2uSPEPRWUREBOCTT6BZM7hw4Z91CkzyLwpNIiIio0bBwIGwcSN8953V1UgepdAkIiKF29tvw7Bh5vOXX4annrK2HsmzFJpERKRwMgx49VV46SVz+fXX4Y03dElOMqWO4CIiUvgYhhmWRo40l995B55/3tqaJM9TaBIRkcLnzBmYNMl8/uGH5p1yIv9BoUlERAqfkBBYtgxWr4Z+/ayuRvIJhSYRESkcHA7Yvh3q1DGXq1c3HyJZpI7gIiJS8KWmmi1KjRvDkiVWVyP5lFqaRESkYEtJgd69YepU8PQ0+zOJZINCk4iIFFzJyfDgg/Djj+aEu1Onwr33Wl2V5FMKTSIiUjAlJUGPHjBrljmf3PTpcOedVlcl+ZhCk4iIFDyJiXDPPTB/PtjtMHMmdO5sdVWSzyk0iYhIwePlBYGB4OsLc+ZAhw5WVyQFgEKTiIgUPJ6eMHky7NgBdetaXY0UEBpyQERECoaLF+Hdd83hBcBsbVJgEjdSS5OIiOR/MTHQqROsXQvHj8OYMVZXJAWQQpOIiORv589Dx46wYQMUK2YOMSCSAxSaREQk/zpzxuzkvWULlCgBS5dCvXpWVyUFlEKTiIjkT6dOQbt2sG0bhIZCVBTUqmV1VVKAKTSJiEj+k5pqXpLbtg3Cw2HZMk2+KzlOd8+JiEj+4+kJr70GFSvCypUKTJIrFJpERCT/MIx/nt9xB/z1F1SpYl09UqgoNImISP6wfz/ccov55xV2u3X1SKGj0CQiInnf339DixawejU88YTV1UghpdAkIiJ5286d0LIlHD0KNWrAN99YXZEUUgpNIiKSd23bZgamEyegdm1YscK8W07EAgpNIiKSN23ZAq1bw+nTUL8+LF9ujsckYhGFJhERyZuGDYOzZ+HGG82BK0uUsLoiKeQUmkREJG/64Qfo2xeWLDHnlBOxmEKTiIjkHSdO/PO8ZEn46isIDrauHpF/UWgSEZG8YdkyqFwZJkywuhKRDCk0iYiI9RYvhi5dID4e5swBh8PqikTSUWgSERFr/fwz3H47XL4Mt90GM2eCh/57krxH30oREbHO7Nlw112QlGT+OWMG+PpaXZVIhhSaRETEGtOnw733QnIy3Hefebecj4/VVYlkSqFJRESssXMnpKTAgw/Cd9+Bt7fVFYlck5fVBYiISCH1v/9BrVpw553g6Wl1NSL/SS1NIiKSe2bPNu+QA7DZ4O67FZgk31BoEhGR3DF2rNnZ+/bbITHR6mpEXGZpaBo5ciQ33ngjgYGBhIaG0rVrV3bv3v2f+02fPp3q1avj6+tL7dq1WbBgQS5UKyIi2TZ6NAwYYD5v2FAdviVfsjQ0rVy5kv79+/P777+zZMkSkpOT6dChA/FXmm4zsGbNGnr27Em/fv3YsmULXbt2pWvXrmzfvj0XKxcRkSx75x0YOtR8/uKL8N575qU5kXzGZhiGYXURV5w+fZrQ0FBWrlxJixYtMtyme/fuxMfHM3/+fOe6m266iXr16jF+/Pj/fI/Y2FiCg4OJiYkhKCjIbbWLiEgGXn8dRowwn7/2mtn5W4FJLJbdLJCn+jTFxMQAULx48Uy3Wbt2Le3atUuzrmPHjqxduzZHaxMRERe9884/gentt+GVVxSYJF/LM6HJ4XAwePBgmjdvTq1atTLd7sSJE5QqVSrNulKlSnHi3zNj/0tiYiKxsbFpHiIikgs6doRixWDUKBg+3OpqRK5bnhmnqX///mzfvp3ffvvNrccdOXIkr732mluPKSIiWVC/PuzeDSEhVlci4hZ5oqVpwIABzJ8/n+XLl1O2bNlrbhsWFsbJkyfTrDt58iRhYWEZbj98+HBiYmKcj8OHD7utbhER+ReHA555Blav/medApMUIJaGJsMwGDBgALNmzWLZsmVUqFDhP/dp2rQpUVFRadYtWbKEpk2bZri93W4nKCgozUNERNwsNRUeeww+/BBuuw3OnbO6IhG3s/TyXP/+/Zk6dSpz5swhMDDQ2S8pODgYPz8/AHr16kWZMmUYOXIkAIMGDaJly5aMGjWKLl26MG3aNDZu3Mjnn39u2ecQESnUUlOhTx/49lvw8IBPPoFr3NAjkl9Z2tI0btw4YmJiaNWqFeHh4c7HDz/84Nzm0KFDHD9+3LncrFkzpk6dyueff07dunX56aefmD179jU7j4uISA5JTjYn3P32W3M6lKlTzWWRAsjlcZri4+N55513iIqK4tSpUzgcjjSv79+/360FupvGaRIRcZOkJLj/fpgxA7y9Ydo0cy45kTwuu1nA5ctzjzzyCCtXruShhx4iPDwcm8bcEBEpnD780AxMPj7w00/mnHIiBZjLoemXX37h559/pnnz5jlRj4iI5BdDhsD69WYH8FtvtboakRzncmgqVqzYNUfsFhGRAuzyZbDbzZG97XaYOdPqikRyjcsdwd944w1eeeUVLl26lBP1iIhIXhUXZ7YoDR0KeWfaUpFc43JH8Pr167Nv3z4MwyAyMhJvb+80r2/evNmtBbqbOoKLiGRDbCx07mwOXBkUBH/8AZGRVlclki251hG8a9euru4iIiL52YUL5jxy69dD0aKwaJECkxRKLrc05XdqaRIRccHZs9ChA2zebA5YuWQJNGhgdVUi1yXXWpqu2LRpEzt37gTghhtuoH79+tk9lIiI5EWnT0O7dvDnn+YcckuXQp06VlclYhmXQ9OpU6fo0aMHK1asoGjRogBcuHCB1q1bM23aNEI0OaOISMGwdi1s3w5hYRAVBTVrWl2RiKVcvnvu6aef5uLFi+zYsYNz585x7tw5tm/fTmxsLAMHDsyJGkVExAp33AHffQcrVyowiZCNPk3BwcEsXbqUG2+8Mc369evX06FDBy5cuODO+txOfZpERK7h0CFzDrkyZayuRCTHZDcLuNzS5HA40g0zAODt7Z1uHjoREclHDhyAli2hbVs4ccLqakTyHJdDU5s2bRg0aBDHjh1zrjt69ChDhgyhbdu2bi1ORERyyd69ZmCKjgaHA1JSrK5IJM9xOTR9+umnxMbGEhkZSaVKlahUqRIVKlQgNjaWTz75JCdqFBGRnLRrF7RoAYcPQ/XqsGIFlC1rdVUieY7Ld89FRESwefNmli5dyq5duwCoUaMG7dq1c3txIiKSw7ZvN4cVOHkSatUyhxUoVcrqqkTyJA1uKSJSWG3bBm3awJkzUK+eOXBlyZJWVyWS43J0cMuPP/6Yxx57DF9fXz7++ONrbqthB0RE8onixSE42JwSZdEic1lEMpWllqYKFSqwceNGSpQoQYUKFTI/mM3G/v373Vqgu6mlSUTkX44cgYAAc045kUIiR1uaDhw4kOFzERHJZ1avNjt89+hhLqvDt0iWZXvuuStSU1PZtm0b5cuXp1ixYu6oSUREcsKKFXDbbZCQYM4lp2FiRFzi8pADgwcP5quvvgLMwNSiRQsaNGhAREQEK1ascHd9IiLiDkuXQufOEB9vhqWmTa2uSCTfcTk0/fTTT9StWxeAefPmER0dza5duxgyZAgvvfSS2wsUEZHrtGDBPy1MnTvD3LlQpIjVVYnkOy6HpjNnzhAWFgbAggULuPfee6latSp9+/Zl27Ztbi9QRESuw5w50LUrJCbCnXfCzJng62t1VSL5ksuhqVSpUvz111+kpqaycOFC2rdvD8ClS5fw9PR0e4EiIpJNW7fCPfdAcjLcey9Mnw52u9VVieRbLncE79OnD/fddx/h4eHYbDbnSODr1q2jevXqbi9QRESyqW5dePxxOH8evvkGvK773h+RQs3lf0GvvvoqtWrV4vDhw9x7773Y//+3Fk9PT1544QW3FygiIi4yDLDZzMfHH5vLuhIgct3cMo3KhQsXKJpPBkbT4JYiUqB9+SXMnw8//gg+PlZXI5InZTcLuNyn6d133+WHH35wLt93332UKFGCsmXL8ueff7p6OBERcZdx4+DRR83O399+a3U1IgWOy6Fp/PjxREREALBkyRKWLFnCL7/8wq233sqwYcPcXqCIiGTBRx/BU0+Zz4cMgb59ra1HpAByuU/TiRMnnKFp/vz53HfffXTo0IHIyEiaNGni9gJFROQ/vP8+PPec+fz552HkSLM/k4i4lcstTcWKFePw4cMALFy40Hn3nGEYpKamurc6ERG5trfe+icwvfKKApNIDnK5penuu+/m/vvvp0qVKpw9e5ZOnToBsGXLFipXruz2AkVEJBOHD5shCeCNN+Dll62tR6SAczk0jR49msjISA4fPsx7771HQEAAAMePH+epK9fTRUQk50VEmFOkbNwIQ4daXY1IgeeWIQfyEw05ICL5mmHAkSNmYBKRbMluFshSS9PcuXPp1KkT3t7ezJ0795rb3nHHHVl+cxERcYHDAQMHwrRpsHw51K5tdUUihUqWQlPXrl05ceIEoaGhdO3aNdPtbDabOoOLiOQEhwOeeAK++MLs6L11q0KTSC7LUmhyOBwZPhcRkVyQmgr9+pnzx3l4wKRJ8NBDVlclUuho9kYRkbwsJQV694apU83546ZMgR49rK5KpFDKVmjasGEDy5cv59SpU+lanj788EO3FCYiUuglJ8P998NPP4GXl9mXqVs3q6sSKbRcDk1vv/02L7/8MtWqVaNUqVLY/jWImk0DqomIuE9yMpw6ZU68+9NPcPvtVlckUqi5HJo++ugjvv76ax5++OEcKEdERJyKFIH5881O37fcYnU1IoWey9OoeHh40Lx585yoRURELl0y+y1dERiowCSSR7gcmoYMGcLYsWNzohYRkcItLg66dDHvjHv/faurEZGruHx5btiwYXTp0oVKlSpRs2ZNvL2907w+c+ZMtxUnIlJoxMaagem338zWpWbNrK5IRK7icmgaOHAgy5cvp3Xr1pQoUUKdv0VErteFC9CpE/z+OwQHw6JF0KSJ1VWJyFVcDk3ffPMNM2bMoEuXLjlRj4hI4XLuHHToAJs2QbFisGQJNGxodVUikgGXQ1Px4sWpVKlSTtQiIlK4JCVB27bm3XElS8LSpVC3rtVViUgmXO4I/uqrrzJixAguXbqUE/WIiBQePj7m9CilSsGKFQpMInmczTAMw5Ud6tevz759+zAMg8jIyHQdwTdv3uzWAt0tNjaW4OBgYmJiCAoKsrocERGzT1PRolZXIVJoZDcLuHx5rmvXrq7uIiIiVxw5AkOGwIQJULy4uU6BSSRfcDk0jRgxIifqEBEp+KKjoU0bOHAADMOcGkVE8g2X+zQBXLhwgS+//JLhw4dz7tw5wLwsd/ToUbcWJyJSYOzbBy1bmoGpUiXQ5OYi+Y7LLU1//vkn7dq1Izg4mOjoaB599FGKFy/OzJkzOXToEJMnT86JOkVE8q/du8275I4ehWrVICoKypSxuioRcZHLLU1Dhw7l4YcfZs+ePfj6+jrXd+7cmVWrVrm1OBGRfO+vv8wWpqNHoWZN8y45BSaRfMnl0LRhwwYef/zxdOvLlCnDiRMn3FKUiEiBYBjQqxecPAl16piBKSzM6qpEJJtcDk12u53Y2Nh06//++29CQkLcUpSISIFgs8G0aXDbbbBsGehnpEi+5nJouuOOO3j99ddJTk4GwGazcejQIZ5//nm6devm9gJFRPKduLh/nleuDPPmQYkS1tUjIm7hcmgaNWoUcXFxhIaGkpCQQMuWLalcuTKBgYG89dZbOVGjiEj+sWYNVKgAv/xidSUi4mYu3z0XHBzMkiVLWL16NX/88QdxcXE0aNCAdu3a5UR9IiL5x6pV0LkzxMfDxx/Drbeal+hEpEBwOTRd0bx5c5o3b57p67Vr12bBggVERERk9y1ERPKPqCi4/XZISIB27WDGDAUmkQImW4NbZkV0dLSz35OISIG2aJHZ2TshATp1MvswFSlidVUi4mY5FppERAqF+fPhjjvg8mXzz1mz4F9j2IlIwaHQJCJyPebMgaQk6NYNpk8Hu93qikQkh2S7T5OIiADjx0P9+vDYY+ClH6kiBZlamkREXLVqFaSmms89PeGppxSYRAoBhSYREVdMnAitWkHfvuBwWF2NiOSiHAtNEyZMoFSpUjl1eBGR3DdhghmWDAP8/a2uRkRyWZbakz/++OMsH3DgwIEA3H///f+57apVq3j//ffZtGkTx48fZ9asWXTt2jXT7VesWEHr1q3TrT9+/DhhmgRTRHLSJ5/A//98Y9AgGD1a4zCJFDJZCk2jR4/O0sFsNpszNGVFfHw8devWpW/fvtx9991Z3m/37t0EBQU5l0NDQ7O8r4iIy0aNgmHDzOfPPgvvvqvAJFIIZSk0HThwIEfevFOnTnTq1Mnl/UJDQylatKj7CxIRudr778Nzz5nPX34ZXn9dgUmkkMqXHcHr1atHeHg47du3Z/Xq1VaXIyIFWa1a4ONjhqU33lBgEinEsnWP7JEjR5g7dy6HDh0iKSkpzWsffvihWwrLSHh4OOPHj6dRo0YkJiby5Zdf0qpVK9atW0eDBg0y3CcxMZHExETncmxsbI7VJyIFUKdOsGMHVK5sdSUiYjGXQ1NUVBR33HEHFStWZNeuXdSqVYvo6GgMw8g0uLhLtWrVqFatmnO5WbNm7Nu3j9GjR/Ptt99muM/IkSN57bXXcrQuESlADAPefBN69IAqVcx1CkwiQjYuzw0fPpxhw4axbds2fH19mTFjBocPH6Zly5bce++9OVHjNTVu3Ji9e/dm+vrw4cOJiYlxPg4fPpyL1YlIvmIY5h1yr7wCbdtCXJzVFYlIHuJyaNq5cye9evUCwMvLi4SEBAICAnj99dd599133V7gf9m6dSvh4eGZvm632wkKCkrzEBFJx+GAJ5+ETz81+y29/DIEBFhdlYjkIS5fnvP393f2YwoPD2ffvn3ccMMNAJw5c8alY8XFxaVpJTpw4ABbt26lePHilCtXjuHDh3P06FEmT54MwJgxY6hQoQI33HADly9f5ssvv2TZsmUsXrzY1Y8hIvKP1FR49FFztG+bDb7+Gh5+2OqqRCSPcTk03XTTTfz222/UqFGDzp0788wzz7Bt2zZmzpzJTTfd5NKxNm7cmGawyqFDhwLQu3dvJk2axPHjxzl06JDz9aSkJJ555hmOHj1KkSJFqFOnDkuXLs1wwEsRkSxJSYE+fWDKFPDwgMmT4YEHrK5KRPIgm2EYhis77N+/n7i4OOrUqUN8fDzPPPMMa9asoUqVKnz44YeUL18+p2p1i9jYWIKDg4mJidGlOhGBESPM4QQ8PeH778GCvpkikruymwVcDk35nUKTiKRx7pw5rMDw4XCNaZxEpODIbhZwuSN4xYoVOXv2bLr1Fy5coGLFiq4eTkQk9zkc/zwvXhzWrlVgEpH/5HJoio6OJjU1Nd36xMREjh496paiRERyTEICdOli3iV3hUe+nBxBRHJZljuCz5071/l80aJFBAcHO5dTU1OJiooiMjLSrcWJiLhVfDzccQcsWwa//gr33ANhYVZXJSL5RJZDU9f/b7q22Wz07t07zWve3t5ERkYyatQotxYnIuI2Fy/CbbfBqlXm+EsLFigwiYhLshyaHP/fB6BChQps2LCBkiVL5lhRIiJuFRNjdvZeuxaCgmDhQmja1OqqRCSfcXmcpgMHDuREHSIiOeP8eejYETZsgGLFYPFiaNTI6qpEJB/KVu/HlStXcvvtt1O5cmUqV67MHXfcwa+//uru2kRErt/MmWZgKlHC7MukwCQi2eRyaJoyZQrt2rWjSJEiDBw4kIEDB+Ln50fbtm2ZOnVqTtQoIpJ9/frB++/DihVQr57V1YhIPuby4JY1atTgscceY8iQIWnWf/jhh3zxxRfs3LnTrQW6mwa3FCkETpwAf38IDLS6EhHJg3JtcMv9+/dz++23p1t/xx13qL+TiFjvyBFo0cIciyk+3upqRKQAcTk0RUREEBUVlW790qVLiYiIcEtRIiLZcvAgtGwJe/bAoUOQwewFIiLZ5fLdc8888wwDBw5k69atNGvWDIDVq1czadIkPvroI7cXKCKSJfv3Q5s2ZnCqWNHs9F2unNVViUgB4nJoevLJJwkLC2PUqFH8+OOPgNnP6YcffuDOO+90e4EiIv9pzx4zMB05AlWrQlQUlC1rdVUiUsC43BE8v1NHcJECZudOaNsWjh+HGjXMwBQebnVVIpKH5VpH8IoVK3I2g34CFy5coGLFiq4eTkTk+qSkQFIS1K5tDiugwCQiOcTly3PR0dGkpqamW5+YmMjRo0fdUpSISJbVrg3Ll5thSdM7iUgOynJomjt3rvP5okWLCA4Odi6npqYSFRVFZGSkW4sTEcnQxo1w6ZI5tACYwUlEJIdlOTR17doVAJvNRu/evdO85u3tTWRkJKNGjXJrcSIi6axdC7feCqmpsHIlNGxodUUiUkhkOTQ5HA4AKlSowIYNGyipZnARyW2//QadOkFcHNxyi3mnnIhILnG5T5NG/RYRSyxfDrfdZl6Wa9MG5s41p0oREcklLt89JyKS6xYvhs6dzcDUsSPMn6/AJCK5TqFJRPK29evhjjvg8mWzpWn2bPDzs7oqESmEXL48JyKSq+rVgw4dwMsLpk0DHx+rKxKRQkqhSUTyNh8fmD4dPDzA29vqakSkEMtSaIqNjc3yATU1iYhct6lTYd06GDMGbDaw262uSEQka6GpaNGi2Gy2LB0wo9HCRUSy7JtvoE8fMAxo1gy6d7e6IhERIIuhafny5c7n0dHRvPDCCzz88MM0bdoUgLVr1/LNN98wcuTInKlSRAqHL76Axx83A9Pjj8O991pdkYiIk80wDMOVHdq2bcsjjzxCz54906yfOnUqn3/+OStWrHBnfW6X3ZmNRSSHjR0LAwaYz59+Gj76yLw0JyLiZtnNAi4PObB27VoaNWqUbn2jRo1Yv369q4cTEYHRo/8JTM88o8AkInmSy6EpIiKCL774It36L7/8koiICLcUJSKFyN9/w7PPms9ffBHef1+BSUTyJJeHHBg9ejTdunXjl19+oUmTJgCsX7+ePXv2MGPGDLcXKCIFXNWqMHky7N0L//ufApOI5Fku92kCOHz4MOPGjWPXrl0A1KhRgyeeeCJftDSpT5NIHmAYEBMDRYtaXYmIFELZzQLZCk35mUKTiMUMA55/HmbOhFWroHRpqysSkUIm1zqCA/z66688+OCDNGvWjKNHjwLw7bff8ttvv2XncCJSWBgGDBli9lvatw+WLrW6IhGRLHM5NM2YMYOOHTvi5+fH5s2bSUxMBCAmJoa3337b7QWKSAHhcED//uadcQDjx0OvXtbWJCLiApdD05tvvsn48eP54osv8P7XPFDNmzdn8+bNbi1ORAoIhwMeewzGjTM7en/1lTl4pYhIPuLy3XO7d++mRYsW6dYHBwdz4cIFd9QkIgVJair07WveIefhYU6T8uCDVlclIuIyl1uawsLC2Lt3b7r1v/32GxUrVnRLUSJSgFy4AL//Dp6e5kS8Ckwikk+5HJoeffRRBg0axLp167DZbBw7dozvvvuOYcOG8eSTT+ZEjSKSn5UoAcuWwZw5mnxXRPI1ly/PvfDCCzgcDtq2bculS5do0aIFdrudYcOG8fTTT+dEjSKS3yQmwq+/Qrt25nKZMuZDRCQfy/Y4TUlJSezdu5e4uDhq1qxJQECAu2vLERqnSSSHJSTA3XfDokUwZQrcf7/VFYmIpJFr4zT17duXixcv4uPjQ82aNWncuDEBAQHEx8fTt29fVw8nIgXJpUtwxx2wcCH4+kKpUlZXJCLiNi6Hpm+++YaEhIR06xMSEpg8ebJbihKRfCguDjp3Nges9PeHX36Btm2trkpExG2y3KcpNjYWwzAwDIOLFy/i6+vrfC01NZUFCxYQGhqaI0WKSB4XG2sGptWrITDQbGlq1szqqkRE3CrLoalo0aLYbDZsNhtVq1ZN97rNZuO1115za3Eikg9cugQdOsC6deYEvIsWQePGVlclIuJ2WQ5Ny5cvxzAM2rRpw4wZMyhevLjzNR8fH8qXL09pTbwpUvj4+ZmtSnv2wJIl0KCB1RWJiOQIl++eO3jwIOXKlcNms+VUTTlKd8+J5ADDgCNHICLC6kpERP5Trt09t2zZMn766ad066dPn84333zj6uFEJD86eRIGDjTHYwJzPjkFJhEp4FwOTSNHjqRkyZLp1oeGhvL222+7pSgRycOOHYOWLeGTT0AD2opIIeJyaDp06BAVKlRIt758+fIcOnTILUWJSB51+LAZmHbvhnLl4Pnnra5IRCTXuByaQkND+fPPP9Ot/+OPPyhRooRbihKRPCg6Glq0gL17oUIFWLkSKlWyuioRkVzjcmjq2bMnAwcOZPny5aSmppKamsqyZcsYNGgQPXr0yIkaRcRqe/eagSk6GipXNgNTZKTVVYmI5CqXJ+x94403iI6Opm3btnh5mbs7HA569eqlPk0iBVFqqjk1yuHDUL06REWBhhcRkUIo2xP2/v333/zxxx/4+flRu3Ztypcv7+7acoSGHBDJhjVr4JlnYPZszScnIvledrNAtkNTfqXQJJJFKSng9a/GaMMwhxYQEcnnspsFsnR5bujQobzxxhv4+/szdOjQa2774YcfZvnNRSSP2rwZuneHH3+E+vXNdQpMIlLIZSk0bdmyheTkZOfzzOTXUcJF5F/WrYOOHSEmBl55BebNs7oiEZE8QZfnRHKQw2EQfTaei5dTCPT1IrKEPx4eefiXi9WroVMnuHgRbr4ZFiyAwECrqxIRcascvTwnIq7bfjSGGZuPsPdUHInJDuzeHlQODaBbg7LUKhNsdXnprVgBt90G8fHQurXZwuTvb3VVIiJ5RpZC0913353lA86cOTPbxYgUFNuPxvBx1B7OxScRHuyHX7AnCUmpbDsSw9HzCQxsWyVvBaelS81hBRISoH178y65IkWsrkpEJE/J0uCWwcHBzkdQUBBRUVFs3LjR+fqmTZuIiooiODgP/ScgYhGHw2DG5iOci0+icmgAAb5eeHrYCPD1onJoAOfik5i5+SgORx65Mm4YMHq0GZg6d4a5cxWYREQykKWWpokTJzqfP//889x3332MHz8eT09PAFJTU3nqqafUR0gEiD4bz95TcYQH+6W7OcJmsxEe7MeeUxeJPhtPxZAAi6pMU5R5l9x778GLL4LdbnVFIiJ5ksvTqHz99dcMGzbMGZgAPD09GTp0KF9//bVbixPJjy5eTiEx2YGfj2eGr/v5eJKY7ODi5ZRcruwq27ebrUxg9l167TUFJhGRa3A5NKWkpLBr165063ft2oXD4XBLUSL5WaCvF3ZvDxKSUjN8PSEpFbu3B4G+Ft6HMW0a1KsHr79uXQ0iIvmMyz+1+/TpQ79+/di3bx+NGzcGYN26dbzzzjv06dPH7QWK5DeRJfypHBrAtiMxVLYHpLlEZxgGx2MSqFO2KJElLLozbfJk6NMHHA7Yv9/808Pl359ERAodl0PTBx98QFhYGKNGjeL48eMAhIeH8+yzz/LMM8+4vUCR/MbDw0a3BmU5ej7B2bfJz8e8e+54TALF/X24u0EZa8Zr+uorePRR87LcI4/AhAkKTCIiWeTyT0sPDw+ee+45jh49yoULF7hw4QJHjx7lueeeS9PPKStWrVrF7bffTunSpbHZbMyePfs/91mxYgUNGjTAbrdTuXJlJk2a5OpHEMlxtcoEM7BtFWqXDeZCQhLRZ+K5kJBEnbJFrRtuYPx4MygZBjz1lAKTiIiLstWpIiUlhRUrVrBv3z7uv/9+AI4dO0ZQUBABAVm/Gyg+Pp66devSt2/fLI0FdeDAAbp06cITTzzBd999R1RUFI888gjh4eF07NgxOx9FJMfUKhNMzfCgvDEi+Mcfw6BB5vPBg+HDDzWXnIiIi1wOTQcPHuTWW2/l0KFDJCYm0r59ewIDA3n33XdJTExk/PjxWT5Wp06d6NSpU5a3Hz9+PBUqVGDUqFEA1KhRg99++43Ro0crNEme5OFhyxvDCvj6mn8+9xy8844Ck4hINrjcNj9o0CAaNWrE+fPn8fPzc66/6667iIqKcmtxV1u7di3t2rVLs65jx46sXbs2R99XJN977DFYu1aBSUTkOrjc0vTrr7+yZs0afHx80qyPjIzk6NGjbissIydOnKBUqVJp1pUqVYrY2FgSEhLShLgrEhMTSUxMdC7HxsbmaI0ieYJhwLhxcN99ULKkue6mm6ytSUQkn3O5pcnhcJCamn78mSNHjhCYB2dDHzlyZJppYCIiIqwuSSRnGYY5snf//uY8cv/6pUFERLLP5dDUoUMHxowZ41y22WzExcUxYsQIOnfu7M7a0gkLC+PkyZNp1p08eZKgoKAMW5kAhg8fTkxMjPNx+PDhHK1RxFKGAc88Y16GA3j4YY3yLSLiJtkap+nWW2+lZs2aXL58mfvvv589e/ZQsmRJvv/++5yo0alp06YsWLAgzbolS5bQtGnTTPex2+3Y9Z+GFAYOBwwcCGPHmsuffQZPPmltTSIiBYjLoSkiIoI//viDH374gT/++IO4uDj69evHAw88kGlrT2bi4uLYu3evc/nAgQNs3bqV4sWLU65cOYYPH87Ro0eZPHkyAE888QSffvopzz33HH379mXZsmX8+OOP/Pzzz65+DJGCxeGAJ56AL74wO3p/8QX062d1VSIiBYrNMK7M2PnfkpOTqV69OvPnz6dGjRrX/eYrVqygdevW6db37t2bSZMm8fDDDxMdHc2KFSvS7DNkyBD++usvypYty//+9z8efvjhLL9nbGwswcHBxMTEEBQUdN2fQSRPGD7cvCTn4QETJ0KvXlZXJCKSZ2U3C7gUmgDKlCnD0qVL3RKarKDQJAXS/v3Qti28/Tb07Gl1NSIieVp2s4DLHcH79+/Pu+++S0pKiqu7ikhOqVgRdu5UYBIRyUEu92nasGEDUVFRLF68mNq1a+Pvn3am9pkzZ7qtOBHJRGIiPPQQPPgg3HGHue7KqN8iIpIjXA5NRYsWpVu3bjlRi4hkxeXLcM898PPPsGgRREdDsWJWVyUiUuC5HJomTpyYE3WISFZcugR33QWLF4OfH8yYocAkIpJLstynyeFw8O6779K8eXNuvPFGXnjhBRISEnKyNhH5t/h4uO02MzD5+8OCBXDVXIwiIpJzshya3nrrLV588UUCAgIoU6YMH330Ef3798/J2kTkiosXoVMnWL4cAgNh4UJo1crqqkRECpUsh6bJkyfz2WefsWjRImbPns28efP47rvvcDgcOVmfiIA5+e6vv0JwsNnSdPPNVlckIlLoZLlP06FDh9LMLdeuXTtsNhvHjh2jbNmyOVKciPy/YcPgyBFz0MpGjayuRkSkUMpyaEpJScH3qluavb29SU5OdntRIgKcP29eivPyMkf6/vhjqysSESnUshyaDMPg4YcfTjP57eXLl3niiSfSjNWkcZpE3ODkSbOTd+3a8O234OlpdUUiIoVelkNT796906178MEH3VqMiADHj0ObNrBrF5w9C8eOQUSE1VWJiBR6WQ5NGp9JJBccOWIGpj17zKC0bJkCk4hIHuHy3HMikkOio6FFCzMwRUbCypVQubLVVYmIyP9TaBLJC/btg5Yt4cABqFTJDEwVKlhdlYiI/ItCk0hecOiQ2fm7WjUzMJUrZ3VFIiJyFZfnnhORHNC6tTktSs2aEBZmdTUiIpIBhSYRq2zbBt7eUL26udymjbX1iIjINenynIgVtmwxW5fatDH7M4mISJ6n0CSS2zZsMMPS2bPmcAIlSlhdkYiIZIFCk0huWrPGHOn7wgVo1gyWLIGiRa2uSkREskChSSS3rFoFHTtCbKw5vMCiRRAUZHVVIiKSRQpNIrlh7Vro1Ani4syWpgULICDA6qpERMQFuntOJIc5HAaHQiIIrVQVQkLwnT0bjyJFrC5LRERcpNAkkoO2H41hxuYj7D0Vh1fvd8C/CJHLDtCtQVlqlQm2ujwREXGBQpNIDjn45RS2r9jCtubdCA/2wy84nISkVLYdieHo+QQGtq2i4CQiko8oNInkAMe0H4h4/GHKO1K5FFmZPaVuBiDA14vK9gD2nopj5uaj1AwPwsPDZnG1IiKSFeoILuJuU6Zge+B+PByprL+5C/vq3pTmZZvNRniwH3tOXST6bLxFRYqIiKsUmkTcaeJE6NULm8PBsma3MWPAGzg80zfo+vl4kpjs4OLlFAuKFBGR7NDlORF3mTABnngCgNje/ZjUvB/BqRDgnX7ThKRU7N4eBPrqn6CISH6hliYRd9iyxRmYGDiQgK8+p1JYEMdjEjAMI82mhmFwPCaBKqGBRJbwt6BYERHJDv2aK+IO9evD22/DuXPw3nt42Gx0a1CWo+cT2Hsqzrx7zseThKRUjsckUNzfh7sblFEncBGRfMRmXP1rcAEXGxtLcHAwMTExBGkKC7leiYlgt/+zbBhg+ycI/XucpsRkB3ZvD6qEBnJ3gzIabkBExCLZzQJqaRLJDsOA1183549btAgCA831trQtR7XKBFMzPIjos/FcvJxCoK8XkSX81cIkIpIPKTSJuMow4OWXzctxAHPnwgMPZLq5h4eNiiGaZ05EJL9TaBJxhWHAc8/BBx+Yy6NGXTMwiYhIwaHQJJJVhgGDB8PHH5vLn3wCAwZYWpKIiOQehSaRrHA4oH9/GD/eXJ4wAR57zNqaREQkVyk0iWTFsWMwY4bZ0furr6BPH6srEhGRXKbQJJIJh8P4111vRYlcshSPnX9Bjx5WlyYiIhZQaBLJwPajMcxaf4DLf2xnT1gl7N4eVA4NoNstnahldXEiImIJTaMicpXtR2MYu+gv2r8+mBEjH6X1qV0U9fNh25EYPo7aw/ajMVaXKCIiFlBoEvkXh8Ng9rr99B3zLDdtXYmHIxW/xEsE+HpROTSAc/FJzNx8FIejUA2kLyIiKDSJpHHwyBnueOUpbty2mmQfO5OHf8Luhi0AsNlshAf7sefURaLPxltcqYiI5DaFJpEr4uMp2fMe6uz4nSS7L5Ne/JQ99Zql2cTPx5PEZAcXL6dYVKSIiFhFHcFFAOLjoXNnAtesIsFehAnPfczJ2o3TbZaQlIrd24NAX/3TEREpbNTSJALg4wMlSmAEBTH1jc/5LbwGhpG235JhGByPSaBKaCCRJfwtKlRERKyiX5dFALy9Ydo0bPv20SSoNOui9rD3VBzhwX74+XiSkJTK8ZgEivv7cHeDMnh42KyuWEREcplamqTwOnsWRo40p0gBs7WpRg1qlQlmYNsq1C4bzIWEJKLPxHMhIYk6ZYsysG0VapUJtrZuERGxhFqapHA6dQratYNt2yAuDt56K83LtcoEUzM86F8jgnsRWcJfLUwiIoWYQpMUPsePQ9u2sHMnhIXBgw9muJmHh42KIQG5XJyIiORVCk1SuBw9Cm3awN9/Q5kysGwZVK1qdVUiIpIPKDRJ4XHwoBmY9u+HcuVg+XKoWNHqqkREJJ9QR3ApHJKSzD5M+/dDhQqwapUCk4iIuEShSQoHHx94+22oUcMMTOXLW12RiIjkMwpNUrD9e4DKe++FP/6AsmWtq0dERPIthSYpuLZvh2bN4PDhf9Z5e1tXj4iI5GsKTVIwbd0KrVrB77/DkCFWVyMiIgWAQpMUPBs3mnfJnT0LjRrB559bXZGIiBQACk1SsPz+uzlw5fnz0LQpLF0KxYtbXZWIiBQACk1ScPz2G3ToALGxcMstsGgRBGueOBERcQ+FJikYDAOGDYOLF81Lc7/8AoGBVlclIiIFiEKTFAw2G8yeDU8+CfPng7+/1RWJiEgBo9Ak+dvRo/88DwuDzz4DPz/r6hERkQJLoUnyrzlzoFIl+OYbqysREZFCQKFJ8qfp0+GeeyAx0ezw/e+Rv0VERHKAQpPkP1OnQo8ekJICDzwAkyebfZpERERykEKT5C/ffAMPPggOBzz8sLns5WV1VSIiUgjkidA0duxYIiMj8fX1pUmTJqxfvz7TbSdNmoTNZkvz8PX1zcVqxTJffAF9+piX4h57DL76Cjw9ra5KREQKCctD0w8//MDQoUMZMWIEmzdvpm7dunTs2JFTp05luk9QUBDHjx93Pg4ePJiLFYtl9u0zA9OAATB+PHhY/vUVEZFCxPL/dT788EMeffRR+vTpQ82aNRk/fjxFihTh66+/znQfm81GWFiY81GqVKlcrFgsM3Kkecfcxx+rD5OIiOQ6S0NTUlISmzZtol27ds51Hh4etGvXjrVr12a6X1xcHOXLlyciIoI777yTHTt2ZLptYmIisbGxaR6Sj/zwAyQkmM9tNrjjDgUmERGxhKWh6cyZM6SmpqZrKSpVqhQnTpzIcJ9q1arx9ddfM2fOHKZMmYLD4aBZs2YcOXIkw+1HjhxJcHCw8xEREeH2zyE55I03zLvkunUz75QTERGxkOWX51zVtGlTevXqRb169WjZsiUzZ84kJCSECRMmZLj98OHDiYmJcT4OHz6cyxWLywwD/vc/eOUVc/nmm3WHnIiIWM7S/4lKliyJp6cnJ0+eTLP+5MmThIWFZekY3t7e1K9fn71792b4ut1ux263X3etkksMA154Ad57z1x+/31zIl4RERGLWdrS5OPjQ8OGDYmKinKuczgcREVF0bRp0ywdIzU1lW3bthEeHp5TZUpuMQwYOvSfwPTRRwpMIiKSZ1h+zWPo0KH07t2bRo0a0bhxY8aMGUN8fDx9+vQBoFevXpQpU4aRI0cC8Prrr3PTTTdRuXJlLly4wPvvv8/Bgwd55JFHrPwY4g4vvABjxpjPx42DJ56wtBwREZF/szw0de/endOnT/PKK69w4sQJ6tWrx8KFC52dww8dOoTHv8bjOX/+PI8++ignTpygWLFiNGzYkDVr1lCzZk2rPoK4y913w+efw6hR0Lev1dWIiIikYTOMwjXTaWxsLMHBwcTExBAUFGR1OXK1c+egeHGrqxARkQIsu1kg3909JwVISgo8/jhs2PDPOgUmERHJoxSaxBpJSeYYTJ9/DrfdBvHxVlckIiJyTZb3aZJCKDER7rsP5s4FHx/48kvw97e6KhERkWtSaJLcdfmy2eH7l1/AbofZs+HWW62uSkRE5D8pNEnuuXQJunaFJUvAzw/mzYO2ba2uSkREJEsUmiT3vPWWGZj8/eHnn6FlS6srEhERyTJ1BJfc8/LLZkvTokUKTCIiku+opUly1qVL5qU4m838c9YsqysSERHJFrU0Sc45dw5atICXXjLnlRMREcnHFJokZ5w+DW3awKZN8MUXcPKk1RWJiIhcF4Umcb+TJ6F1a/jjDyhVClasgLAwq6sSERG5LurTJO517Jg5jMCuXVC6NCxbBtWqWV2ViIjIdVNoEvc5fNi8JLd3L5QrZwamSpWsrkpERMQtdHlO3Gf1ajMwVagAK1cqMImISIGiliZxnx49wOGAW26BiAirqxEREXErhSa5Pn//DcHBZodvgPvvt7YeERGRHKLLc5J9O3aY4zC1awdnzlhdjYiISI5SaJLs+eMPaNXKHF7A01ODV4qISIGn0CSu27TJHIfpzBlo2NC8Sy4kxOqqREREcpRCk7hm3TpzHKbz56FJE1i6FIoXt7oqERGRHKfQJFn3++/Qvj3ExMDNN8PixVC0qNVViYiI5ArdPSdZFx5utio1bAjz5kFAgNUViYiI5BqFJsm68uVh1SooWRKKFLG6GhERkVyly3NybQsXwsyZ/yyXK6fAJCIihZJamiRz8+bBPfeYo3yvWgVNm1pdkYiIiGXU0iQZmzED7r4bkpLgzjvNfkwiIiKFmEKTpPfDD9C9O6SkQM+eMG0a+PhYXZWIiIilFJokrW+/NeePS02FXr3MZS9dxRUREVFokn+sXg29e5t9mB55BCZONKdIEREREXUEl39p2hT69jUvxX36KXgoU4uIiFyh0CRmy5KHh/n4/HOw2cyHiIiIOKkpobD74IN/On2DGZwUmERERNJRaCrM3noLnn0WfvoJZs+2uhoREZE8TaGpMDIMGDECXn7ZXH7jDXMQSxEREcmU+jQVNoYBL74I77xjLr/7Ljz3nLU1iYiI5AMKTYWJYcCwYfDhh+by6NEweLClJYmIiOQXCk2FyZ49MG6c+XzsWHjqKWvrERERyUcUmgoQh8Mg+mw8Fy+nEOjrRWQJfzw8/nUnXNWqMGcOHDoE/fpZV6iIiEg+pNBUQGw/GsOMzUfYeyqOxGQHdm8PKocG0K1uOLWIg3LlzA3bt7e2UBERkXxKd88VANuPxvBx1B62HYmhqJ8PkSX9Kernw46DZ4nvcT/JjW7k8NrN/HH4AvtPx+FwGFaXLCIiku+opSmfczgMZmw+wrn4JCqHBmD7/4Epg7wMHp36FnXWLibFw5Pp3y3l91q3/NMC1aAstcoEW1y9iIhI/qHQlM9Fn41n76k4woP9nIHJMzmZnh8+yw3rl5Hs6cUz97zExYatiQy0k5CUyrYjMRw9n8DAtlUUnERERLJIl+fyuYuXU0hMduDn4wmAV1IiD74/hBvWLyPJy5tneo5gba3meHva8PSwEeDrReXQAM7FJzFz81FdqhMREckihaZ8LtDXC7u3BwlJqXglXuahdwZRfdMqkrztDHvoTTbWbIqnhwfenv/8VdtsNsKD/dhz6iLRZ+MtrF5ERCT/UGjK5yJL+FM5NIDjMQl4pCTje+kiSXZfPnlmDGsq1Ccp1UGwnxeBvmmvxPr5eJKY7ODi5RSLKhcREclf1Kcpn/PwsNGtQVmOnk9gR1wSnz77KRFnDrM9rAqJB8/j7+NFZMl/OohfkZCUit3bI12YEhERkYyppSm/i4mh1rK5DGxbhdplgznuYefXYhVJSTWIKOZHcX9vihXxTrOLYRgcj0mgSmggkSX8LSpcREQkf1EzQz7mOHuOpHbt8d26mbCRo3hp2GAOnb/kHBE8LjGFT5ftdd5d5+fjSUJSKsdjEiju78PdDcqkHTFcREREMqXQlE/t3Lafond2IfzALmIDijL6cig+v+ykW4Oy1I0o6txuYNsqzpHCT8aaI4XXKVuUuxuU0XADIiIiLlBoyoOunkOuXLEiHDp/iZiEZC5cSuLgzmha9b+f8OP7iQ0uwRevTCA2rCLHMxh/qVaZYGqGB117TjoRERH5TwpNeczVc8glpzpITEkl1WFwOi4R3zMn+ea7l4g8e5hTAcV55pFR+IdEUszXi8r2APaeimPm5qPUDA9yBiMPDxsVQwIs/mQiIiL5m0JTHnJlDrlz8UmEB/uR6JXKn0cuEHM5mRSHgT3pMj9NGU7Fc0c5FliSXg+8zSF7KEUPnadBuWIU8/dJM/6SgpKIiIj76O65POLqOeQC7J5En4snxTCwYZCcanDJy85P9W/lSFAoPe5/h0PFy2CzwcXLyew/EweGofGXREREcohamvII5xxyQb7EJaZw4VIypy4mkpicSkKyOdWJw4AJN97FlDodibcXAQPsnjYcDoNz8UlcTEzBhk3jL4mIiOQAtTTlERcvp3AuPomdJ2PZGH2ezYfOc+FSMmEnDzN+1lsEJprTnaQacNGnCAZg/GveuBSHQVJyqsZfEhERySFqjsgjTsRc5kTMZRyGgd3Lg8SUVCqdOcz3014kNP48F338ebbLYOf2hgHYwGEYGIaBDTgWe5nSwX4af0lERCQHKDTlAQ6HwZp9pzEwcBgGMQnJVD4ZzXfTXqLkpRh2hkTyTquH0+3nZbORmmq2Nvl5e3Jj+eJ0a1hW4y+JiIjkAIWmPGDJXydYsvMUDgMuJaVS9dhevv3hfxRPiGV7qUo82P0NLvgFObe/clHO29OGp4cH5UsU4ek2VWhfs5RamERERHKIQpPFth+N4evV0cRcSibQ14sbjuzls+9fJDgxnq3hVel93+vE+ppDB9j4JzB52CDA15umFUvwaIuKal0SERHJYQpNFnE4DPafiWPCyn0cu5CAwzCIjbvMGzPfJzgxno1latDn3ldJ8PXH19OGAxtFi3iTmpJKXFIqdSOK8eadtagUGqDWJRERkVyg0GSBK6N+/3H4AjuPx5KU4sBhgIfNxuD7XuapZZMZ1mkwcf8/rIDNYeDn44GPpwfnL6cQGuTHy11qUCUs0OqPIiIiUmgoNOWy7Udj+Gjp3+w/E8/ZuEQSkh0EJF4izl6EVAO2BZVl8D0vk5zqcF6LM/+wEZOQTPEAO890qErtskWt+xAiIiKFkMZpykUOh8Hnq/axIfocB89e4kJCCi32b+LX8f1oevAPwAxIiSkOPDxseNjMfkwhAXYqhvjTvmYYn95fnzvrlbH0c4iIiBRGamnKRYt2HGfpjhNcSjHbjtrsXc+42W9jT02h5x+LWFu+rnNbHw8b3j6eeHp6MKR9VRpFFieyhL/6L4mIiFhELU25ZHP0OYb8sNUZmDr+vYbxs8zA9EvVZjzTZYhzWxuQmOrA09ODcsWK0CiyOBVD1OFbRETESmppygXP/rSF6RuPOZe77PyVj+a9j5fhYG6NFgztMpQUz3/+KgzMIQWCfL2pX66YpkQRERHJAxSacliN4T+T8M8UcXTdsZxRP4/G03Aw44bWPNd5MKkens7XbZiDVnp7elC6qK+mRBEREckj8sTlubFjxxIZGYmvry9NmjRh/fr119x++vTpVK9eHV9fX2rXrs2CBQtyqVLXRL6QNjBhGLTetxFPw8EPtdvz7FWBCQCb2dJUvngRXri1ugatFBERySMsD00//PADQ4cOZcSIEWzevJm6devSsWNHTp06leH2a9asoWfPnvTr148tW7bQtWtXunbtyvbt23O58muLfOHn9CttNp7pMoQXOg7ghU5P47g6MAF2Tw9qhgfxzj11NKyAiIhIHmIzDMP4781yTpMmTbjxxhv59NNPAXA4HERERPD000/zwgsvpNu+e/fuxMfHM3/+fOe6m266iXr16jF+/Pj/fL/Y2FiCg4OJiYkhKCjoP7fPjo8X/8mHyw47l5tHb2VN+ToYtmtnVBvQuloIQztUUwuTiIhIDsluFrC0pSkpKYlNmzbRrl075zoPDw/atWvH2rVrM9xn7dq1abYH6NixY6bbJyYmEhsbm+aRk1JSHGkCU7/1s/juh5d5a9Fn8B/5tFXVknz+UCMFJhERkTzI0tB05swZUlNTKVWqVJr1pUqV4sSJExnuc+LECZe2HzlyJMHBwc5HRESEe4rPxOp9Z5zPn/x9Ov9b/hUA54pcO8lWCinCMx2r4+Vl+RVTERERyUCB/x96+PDhxMTEOB+HDx/+752yyeEw2HE8FgyDgau/5/mV3wDw4c0P8MEtD4Et47vg6kUE81GPBmphEhERycMsHXKgZMmSeHp6cvLkyTTrT548SVhYWIb7hIWFubS93W7Hbre7p+Br2H40hp82HWb1ntM88+sUnl77AwDvtejFZ03vy3S/ZhWCmfJocw0rICIiksdZ2tLk4+NDw4YNiYqKcq5zOBxERUXRtGnTDPdp2rRpmu0BlixZkun2uWH70RjenP8XC7adoOecCc7A9EbrftcMTGWDfZj6+M0KTCIiIvmA5YNbDh06lN69e9OoUSMaN27MmDFjiI+Pp0+fPgD06tWLMmXKMHLkSAAGDRpEy5YtGTVqFF26dGHatGls3LiRzz//3JL6r0zCu+vERbw8beytcAPJa7x4o3U/Jje8PdP9SgX48Nvw9rlYqYiIiFwPy0NT9+7dOX36NK+88gonTpygXr16LFy40NnZ+9ChQ3h4/NMg1qxZM6ZOncrLL7/Miy++SJUqVZg9eza1atWypP79Z+LYePC8c9qTdXVa8HCZb9njXxIuJma4T8caJZnQu0kuVyoiIiLXw/JxmnKbu8dpWrDtOC/M+JNgP298vNIOVmkYDs5dTCA20aBcCT9aVw3h2fbVKVLE+7rfV0RERLInu1nA8pam/C/zzGmzeRBYxBeHLZnnbq1O59qlc7EuERERcacCP+RATqtaKpAAXy/iElNIH6AM4hJTCPD1omqpQCvKExERETdRaLpOFUsG0Kh8cQwDLlxKIjnVgWEYJKc6uHApCcOAG8sXp2LJAKtLFRERkeugy3PXycPDxmMtKnLq4mX2n47nUlKK2eBkAy8PD6qU8ufRFhU1rICIiEg+p9DkBrXKBPNyl5rM2HSEbUdjuJScShFvT2qXCaZbw7Ia6VtERKQAUGhyk1plgqkZHkT02XguXk4h0NeLyBL+amESEREpIBSa3MjDw0bFEPVdEhERKYjUEVxEREQkCxSaRERERLJAoUlEREQkCxSaRERERLJAoUlEREQkCxSaRERERLJAoUlEREQkCxSaRERERLJAoUlEREQkCxSaRERERLJAoUlEREQkCxSaRERERLJAoUlEREQkCxSaRERERLJAoUlEREQkC7ysLiC3GYYBQGxsrMWViIiIiBWuZIArmSCrCl1ounjxIgAREREWVyIiIiJWunjxIsHBwVne3ma4GrPyOYfDwbFjxwgMDMRms+X4+8XGxhIREcHhw4cJCgrK8fcraHT+ro/O3/XR+bs+On/Zp3N3ff7r/BmGwcWLFyldujQeHlnvqVToWpo8PDwoW7Zsrr9vUFCQvvjXQefv+uj8XR+dv+uj85d9OnfX51rnz5UWpivUEVxEREQkCxSaRERERLJAoSmH2e12RowYgd1ut7qUfEnn7/ro/F0fnb/ro/OXfTp31yenzl+h6wguIiIikh1qaRIRERHJAoUmERERkSxQaBIRERHJAoUmNxg7diyRkZH4+vrSpEkT1q9ff83tp0+fTvXq1fH19aV27dosWLAglyrNm1w5f5MmTcJms6V5+Pr65mK1ecuqVau4/fbbKV26NDabjdmzZ//nPitWrKBBgwbY7XYqV67MpEmTcrzOvMjVc7dixYp03z2bzcaJEydyp+A8ZuTIkdx4440EBgYSGhpK165d2b1793/up59/puycP/38M40bN446deo4x2Bq2rQpv/zyyzX3cdf3TqHpOv3www8MHTqUESNGsHnzZurWrUvHjh05depUhtuvWbOGnj170q9fP7Zs2ULXrl3p2rUr27dvz+XK8wZXzx+Yg5UdP37c+Th48GAuVpy3xMfHU7duXcaOHZul7Q8cOECXLl1o3bo1W7duZfDgwTzyyCMsWrQohyvNe1w9d1fs3r07zfcvNDQ0hyrM21auXEn//v35/fffWbJkCcnJyXTo0IH4+PhM99HPv39k5/yBfv4BlC1blnfeeYdNmzaxceNG2rRpw5133smOHTsy3N6t3ztDrkvjxo2N/v37O5dTU1ON0qVLGyNHjsxw+/vuu8/o0qVLmnVNmjQxHn/88RytM69y9fxNnDjRCA4OzqXq8hfAmDVr1jW3ee6554wbbrghzbru3bsbHTt2zMHK8r6snLvly5cbgHH+/PlcqSm/OXXqlAEYK1euzHQb/fzLXFbOn37+Za5YsWLGl19+meFr7vzeqaXpOiQlJbFp0ybatWvnXOfh4UG7du1Yu3ZthvusXbs2zfYAHTt2zHT7giw75w8gLi6O8uXLExERcc3fLiQ9ff+uX7169QgPD6d9+/asXr3a6nLyjJiYGACKFy+e6Tb6/mUuK+cP9PPvaqmpqUybNo34+HiaNm2a4Tbu/N4pNF2HM2fOkJqaSqlSpdKsL1WqVKb9HE6cOOHS9gVZds5ftWrV+Prrr5kzZw5TpkzB4XDQrFkzjhw5khsl53uZff9iY2NJSEiwqKr8ITw8nPHjxzNjxgxmzJhBREQErVq1YvPmzVaXZjmHw8HgwYNp3rw5tWrVynQ7/fzLWFbPn37+/WPbtm0EBARgt9t54oknmDVrFjVr1sxwW3d+7wrdhL2SvzVt2jTNbxPNmjWjRo0aTJgwgTfeeMPCyqSgq1atGtWqVXMuN2vWjH379jF69Gi+/fZbCyuzXv/+/dm+fTu//fab1aXkS1k9f/r5949q1aqxdetWYmJi+Omnn+jduzcrV67MNDi5i1qarkPJkiXx9PTk5MmTadafPHmSsLCwDPcJCwtzafuCLDvn72re3t7Ur1+fvXv35kSJBU5m37+goCD8/Pwsqir/aty4caH/7g0YMID58+ezfPlyypYte81t9fMvPVfO39UK888/Hx8fKleuTMOGDRk5ciR169blo48+ynBbd37vFJqug4+PDw0bNiQqKsq5zuFwEBUVlem11aZNm6bZHmDJkiWZbl+QZef8XS01NZVt27YRHh6eU2UWKPr+udfWrVsL7XfPMAwGDBjArFmzWLZsGRUqVPjPffT9+0d2zt/V9PPvHw6Hg8TExAxfc+v3Lhud1OVfpk2bZtjtdmPSpEnGX3/9ZTz22GNG0aJFjRMnThiGYRgPPfSQ8cILLzi3X716teHl5WV88MEHxs6dO40RI0YY3t7exrZt26z6CJZy9fy99tprxqJFi4x9+/YZmzZtMnr06GH4+voaO3bssOojWOrixYvGli1bjC1bthiA8eGHHxpbtmwxDh48aBiGYbzwwgvGQw895Nx+//79RpEiRYxnn33W2LlzpzF27FjD09PTWLhwoVUfwTKunrvRo0cbs2fPNvbs2WNs27bNGDRokOHh4WEsXbrUqo9gqSeffNIIDg42VqxYYRw/ftz5uHTpknMb/fzLXHbOn37+mV544QVj5cqVxoEDB4w///zTeOGFFwybzWYsXrzYMIyc/d4pNLnBJ598YpQrV87w8fExGjdubPz+++/O11q2bGn07t07zfY//vijUbVqVcPHx8e44YYbjJ9//jmXK85bXDl/gwcPdm5bqlQpo3PnzsbmzZstqDpvuHIb/NWPK+esd+/eRsuWLdPtU69ePcPHx8eoWLGiMXHixFyvOy9w9dy9++67RqVKlQxfX1+jePHiRqtWrYxly5ZZU3wekNG5A9J8n/TzL3PZOX/6+Wfq27evUb58ecPHx8cICQkx2rZt6wxMhpGz3zubYRiG6+1TIiIiIoWL+jSJiIiIZIFCk4iIiEgWKDSJiIiIZIFCk4iIiEgWKDSJiIiIZIFCk4iIiEgWKDSJiIiIZIFCk4iIiOQpq1at4vbbb6d06dLYbDZmz57t8jEMw+CDDz6gatWq2O12ypQpw1tvvXVddSk0iUiuy+4PwZzy8MMP07VrV0traNWqFYMHD77u4+SFzyJyveLj46lbty5jx47N9jEGDRrEl19+yQcffMCuXbuYO3cujRs3vq66vK5rbxHJ09auXcvNN9/Mrbfeys8//+zSvpGRkQwePNgt/5G7qlWrVtSrV48xY8bkyn55wcyZM/H29r7u43z00UdoogfJ7zp16kSnTp0yfT0xMZGXXnqJ77//ngsXLlCrVi3effddWrVqBcDOnTsZN24c27dvp1q1agDZmhT5amppEinAvvrqK55++mlWrVrFsWPHrC5HrqF48eIEBgZe93GCg4MpWrTo9RckkocNGDCAtWvXMm3aNP7880/uvfdebr31Vvbs2QPAvHnzqFixIvPnz6dChQpERkbyyCOPcO7cuet74+xOmCciedvFixeNgIAAY9euXUb37t2Nt956K902c+fONRo1amTY7XajRIkSRteuXQ3DMCe85KqJRA3DMEaMGGHUrVs3zTFGjx5tlC9f3rm8fv16o127dkaJEiWMoKAgo0WLFsamTZvS7AMYs2bNyrDu3r17p3vvAwcOGIZhGCtWrDBuvPFGw8fHxwgLCzOef/55Izk5+Zr7paSkGH379jUiIyMNX19fo2rVqsaYMWPSveedd96ZpfOamppqvP32287j1alTx5g+fbrz9SsTAS9cuNCoV6+e4evra7Ru3do4efKksWDBAqN69epGYGCg0bNnTyM+Pt65X8uWLY1BgwY5l8eOHWtUrlzZsNvtRmhoqNGtWzfna9OnTzdq1arlnDy4bdu2RlxcXIaf5fLly8bTTz9thISEGHa73WjevLmxfv36dPUuXbrUaNiwoeHn52c0bdrU2LVrV5bOh0hOu/rnxcGDBw1PT0/j6NGjabZr27atMXz4cMMwDOPxxx837Ha70aRJE2PVqlXOicpbt259XbWopUmkgPrxxx+pXr061apV48EHH+Trr79Oc9nm559/5q677qJz585s2bKFqKgo5/X+mTNnUrZsWV5//XWOHz/O8ePHs/y+Fy9epHfv3vz222/8/vvvVKlShc6dO3Px4sUs7f/RRx/RtGlTHn30Ued7R0REcPToUTp37syNN97IH3/8wbhx4/jqq6948803r7mfw+GgbNmyTJ8+nb/++otXXnmFF198kR9//NGFs/mPkSNHMnnyZMaPH8+OHTsYMmQIDz74ICtXrkyz3auvvsqnn37KmjVrOHz4MPfddx9jxoxh6tSp/PzzzyxevJhPPvkkw/fYuHEjAwcO5PXXX2f37t0sXLiQFi1aAHD8+HF69uxJ37592blzJytWrODuu+/O9JLcc889x4wZM/jmm2/YvHkzlStXpmPHjul+437ppZcYNWoUGzduxMvLi759+2br/IjktG3btpGamkrVqlUJCAhwPlauXMm+ffsAcDgcJCYmMnnyZG655RZatWrFV199xfLly9m9e3f23/y6IpeI5FnNmjVztqgkJycbJUuWNJYvX+58vWnTpsYDDzyQ6f7ly5c3Ro8enWZdVlqarpaammoEBgYa8+bNc67jGi1NhpG+1cUwDOPFF180qlWrZjgcDue6sWPHGgEBAUZqamqm+2Wkf//+aVpustrSdPnyZaNIkSLGmjVr0qzv16+f0bNnT8Mw0rbcXDFy5EgDMPbt2+dc9/jjjxsdO3bM8DPPmDHDCAoKMmJjY9PVsGnTJgMwoqOjM6zx358lLi7O8Pb2Nr777jvn60lJSUbp0qWN9957L9N6f/75ZwMwEhIS/vOciOS0q39eTJs2zfD09DR27dpl7NmzJ83j+PHjhmEYxiuvvGJ4eXmlOc6lS5cMwFi8eHG2a1FLk0gBtHv3btavX0/Pnj0B8PLyonv37nz11VfObbZu3Urbtm3d/t4nT57k0UcfpUqVKgQHBxMUFERcXByHDh26ruPu3LmTpk2bYrPZnOuaN29OXFwcR44cuea+Y8eOpWHDhoSEhBAQEMDnn3+erXr27t3LpUuXaN++fZrfcCdPnuz8DfeKOnXqOJ+XKlWKIkWKULFixTTrTp06leH7tG/fnvLly1OxYkUeeughvvvuOy5dugRA3bp1adu2LbVr1+bee+/liy++4Pz58xkeZ9++fSQnJ9O8eXPnOm9vbxo3bszOnTszrTc8PBwg0/pErFS/fn1SU1M5deoUlStXTvMICwsDzJ8NKSkpaf5d/v333wCUL18+2++tu+dECqCvvvqKlJQUSpcu7VxnGAZ2u51PP/2U4OBg/Pz8XD6uh4dHustAycnJaZZ79+7N2bNn+eijjyhfvjx2u52mTZuSlJSUvQ9znaZNm8awYcMYNWoUTZs2JTAwkPfff59169a5fKy4uDjAvLRZpkyZNK/Z7fY0y/++E85ms6W7M85ms+FwODJ8n8DAQDZv3syKFStYvHgxr7zyCq+++iobNmygaNGiLFmyhDVr1jgv8b300kusW7fuuu4OurpeINP6RHJaXFwce/fudS4fOHCArVu3Urx4capWrcoDDzxAr169GDVqFPXr1+f06dNERUVRp04dunTpQrt27WjQoAF9+/ZlzJgxOBwO+vfvT/v27alatWq261JLk0gBk5KSwuTJkxk1ahRbt251Pv744w9Kly7N999/D5gtC1FRUZkex8fHh9TU1DTrQkJCOHHiRJrgtHXr1jTbrF69moEDB9K5c2duuOEG7HY7Z86ccekzZPTeNWrUYO3atWnee/Xq1QQGBlK2bNlM91u9ejXNmjXjqaeeon79+lSuXDldq1BW1axZE7vdzqFDh9L9hhsREZGtY2bGy8uLdu3a8d577/Hnn38SHR3NsmXLADPUNG/enNdee40tW7bg4+PDrFmz0h2jUqVK+Pj4sHr1aue65ORkNmzYQM2aNd1ar4g7bdy4kfr161O/fn0Ahg4dSv369XnllVcAmDhxIr169eKZZ56hWrVqdO3alQ0bNlCuXDnA/AVv3rx5lCxZkhYtWtClSxdq1KjBtGnTrqsutTSJFDDz58/n/Pnz9OvXj+Dg4DSvdevWja+++oonnniCESNG0LZtWypVqkSPHj1ISUlhwYIFPP/884A5TtOqVavo0aMHdrudkiVL0qpVK06fPs17773HPffcw8KFC/nll18ICgpyvkeVKlX49ttvadSoEbGxsTz77LMut2pFRkaybt06oqOjCQgIoHjx4jz11FOMGTOGp59+mgEDBrB7925GjBjB0KFD8fDwyHS/KlWqMHnyZBYtWkSFChX49ttv2bBhQ7ZaZQIDAxk2bBhDhgzB4XBw8803ExMTw+rVqwkKCqJ3794uHzMj8+fPZ//+/bRo0YJixYqxYMECHA4H1apVY926dURFRdGhQwdCQ0NZt24dp0+fpkaNGumO4+/vz5NPPsmzzz5L8eLFKVeuHO+99x6XLl2iX79+bqlVJCe0atXqmuONeXt789prr/Haa69luk3p0qWZMWOGW+tSS5NIAfPVV1/Rrl27dIEJzNC0ceNG/vzzT1q1asX06dOZO3cu9erVo02bNqxfv9657euvv050dDSVKlUiJCQEMFt7PvvsM8aOHUvdunVZv349w4YNS/f+58+fp0GDBjz00EMMHDiQ0NBQlz7DsGHD8PT0pGbNmoSEhHDo0CHKlCnDggULWL9+PXXr1uWJJ56gX79+vPzyy9fc7/HHH+fuu++me/fuNGnShLNnz/LUU0+5VM+/vfHGG/zvf/9j5MiR1KhRwzlwqDsGzruiaNGizJw5kzZt2lCjRg3Gjx/P999/zw033EBQUBCrVq2ic+fOVK1alZdffplRo0ZlOhDgO++8Q7du3XjooYdo0KABe/fuZdGiRRQrVsxt9YoUFjbjWlFORERERAC1NImIiIhkiUKTiMj/O3ToUJqhBK5+XO+wCSKSv+nynIjI/0tJSSE6OjrT1yMjI/Hy0v0zIoWVQpOIiIhIFujynIiIiEgWKDSJiIiIZIFCk4iIiEgWKDSJiIiIZIFCk4iIiEgWKDSJiIiIZIFCk4iIiEgWKDSJiIiIZMH/ARhhn1BIVfozAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"MAE Interpretation (with 0-1 scaling): Since the target variable is scaled between 0 and 1, an MAE of 0.00308... is an excellent result. It means, on average, the model's predictions are off by only about 0.31% of the total possible range of the scaled data (which is 1)."
],
"metadata": {
"id": "u1Ox-dXigC78"
}
},
{
"cell_type": "code",
"source": [
"save_path = '/content/drive/MyDrive/AuraClima/Agri_TimeSeries.keras'\n",
"model.save(save_path)\n",
"print(f\"Model successfully saved to: {save_path}\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "GpD8yOFUe4Ui",
"outputId": "925fabbb-ec2e-4136-87ba-239ed89c1713"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Model successfully saved to: /content/drive/MyDrive/AuraClima/Agri_TimeSeries.keras\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"**2. Regression Neural Network for total_emission with Slider-Ready Features**"
],
"metadata": {
"id": "jwaUkJE7htsb"
}
},
{
"cell_type": "code",
"source": [
"import os\n",
"import pickle\n",
"import numpy as np\n",
"import pandas as pd\n",
"import tensorflow as tf\n",
"from tensorflow.keras.models import Sequential\n",
"from tensorflow.keras.layers import Dense, Dropout\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.metrics import mean_absolute_error"
],
"metadata": {
"id": "CITaeAgbgkes"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Load dataset\n",
"csv_path = '/content/drive/MyDrive/AuraClima/Agrofood_co2_emission.csv'\n",
"df = pd.read_csv(csv_path)"
],
"metadata": {
"id": "x0wZP15-hy2_"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Define column sets\n",
"required_cols = ['Area', 'Year', 'total_emission']\n",
"numeric_cols = [\n",
" 'Year', 'Crop Residues', 'Savanna fires', 'Forest fires', 'Rice Cultivation',\n",
" 'Drained organic soils (CO2)', 'Pesticides Manufacturing', 'Food Transport', 'Forestland',\n",
" 'Net Forest conversion', 'Food Household Consumption', 'Food Retail',\n",
" 'On-farm Electricity Use', 'Food Packaging', 'Agrifood Systems Waste Disposal',\n",
" 'Food Processing', 'Fertilizers Manufacturing', 'IPPU', 'Manure applied to Soils',\n",
" 'Manure left on Pasture', 'Manure Management', 'On-farm energy use',\n",
" 'Rural population', 'Urban population', 'Fires in organic soils',\n",
" 'Fires in humid tropical forests', 'Total Population - Male',\n",
" 'Total Population - Female', 'Average Temperature °C'\n",
"]"
],
"metadata": {
"id": "Bb6rAOzgh3t1"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Check for any missing required columns\n",
"missing = [col for col in required_cols + numeric_cols if col not in df.columns]\n",
"if missing:\n",
" print(f\"⚠️ Missing columns in dataset: {missing}\")"
],
"metadata": {
"id": "PdUMVCLhh6S4"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Drop incomplete rows\n",
"df.dropna(subset=required_cols, inplace=True)"
],
"metadata": {
"id": "qHc-8awVh8_j"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"print(\"\\n--- Converting general numeric columns to numeric (coercing errors) ---\")\n",
"for col in numeric_cols:\n",
" if col in df.columns:\n",
" df[col] = pd.to_numeric(df[col], errors='coerce')\n",
" else:\n",
" print(f\"Warning: Column '{col}' in numeric_cols not found in DataFrame.\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "cND2foEPlykD",
"outputId": "fbe7eb92-edbe-4723-a639-9bd00e11049e"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"--- Converting general numeric columns to numeric (coercing errors) ---\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Fill NaNs created by the coercion for these columns\n",
"print(\"\\n--- Handling NaNs in general numeric columns ---\")\n",
"for col in numeric_cols:\n",
" if col in df.columns and df[col].isnull().any():\n",
" df[col].fillna(df[col].mean(), inplace=True) # Fill NaNs with mean\n",
" print(f\"Filled NaNs in '{col}'.\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "rhMdQI8Il2MH",
"outputId": "7a95dd15-b509-49bf-b30a-aba203dd211e"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"--- Handling NaNs in general numeric columns ---\n",
"Filled NaNs in 'Crop Residues'.\n",
"Filled NaNs in 'Savanna fires'.\n",
"Filled NaNs in 'Forest fires'.\n",
"Filled NaNs in 'Forestland'.\n",
"Filled NaNs in 'Net Forest conversion'.\n",
"Filled NaNs in 'Food Household Consumption'.\n",
"Filled NaNs in 'IPPU'.\n",
"Filled NaNs in 'Manure applied to Soils'.\n",
"Filled NaNs in 'Manure Management'.\n",
"Filled NaNs in 'On-farm energy use'.\n",
"Filled NaNs in 'Fires in humid tropical forests'.\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"df_encoded = pd.get_dummies(df, columns=['Area'], drop_first=True) # Get dummies first\n",
"print(\"\\n--- df_encoded dtypes immediately after get_dummies ---\")\n",
"print(df_encoded.dtypes) # Check what dtypes these new columns have initially"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "8E75Monwl8xV",
"outputId": "6ad9bd5d-8565-476f-fed2-2fef7f3fabfc"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"--- df_encoded dtypes immediately after get_dummies ---\n",
"Year int64\n",
"Savanna fires float64\n",
"Forest fires float64\n",
"Crop Residues float64\n",
"Rice Cultivation float64\n",
" ... \n",
"Area_Western Sahara bool\n",
"Area_Yemen bool\n",
"Area_Yugoslav SFR bool\n",
"Area_Zambia bool\n",
"Area_Zimbabwe bool\n",
"Length: 265, dtype: object\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Identify the newly created one-hot encoded columns\n",
"area_ohe_cols = [col for col in df_encoded.columns if col.startswith('Area_')]"
],
"metadata": {
"id": "xoyFh5jBmAK4"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# One-hot encode categorical column\n",
"df_encoded = pd.get_dummies(df, columns=['Area'], drop_first=True)"
],
"metadata": {
"id": "HxOEGKYWh_0L"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"print(\"\\n--- Converting one-hot encoded 'Area_X' columns from 'TRUE'/'FALSE' strings to numeric 0/1 ---\")\n",
"for col in area_ohe_cols:\n",
" if col in df_encoded.columns and df_encoded[col].dtype == 'object':\n",
" # Replace 'TRUE' with 1, 'FALSE' with 0, and then convert to numeric\n",
" df_encoded[col] = df_encoded[col].replace({'TRUE': 1, 'FALSE': 0}).astype(float)\n",
" print(f\"Converted '{col}' from object to float (0/1).\")\n",
" elif col in df_encoded.columns and df_encoded[col].dtype == 'bool':\n",
" # If they came as booleans, convert to float (0.0/1.0) for consistency\n",
" df_encoded[col] = df_encoded[col].astype(float)\n",
" print(f\"Converted '{col}' from bool to float (0.0/1.0).\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "9ZRkMPRqmDIE",
"outputId": "091f43d6-bf81-4b38-c54a-d1ed26733711"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"--- Converting one-hot encoded 'Area_X' columns from 'TRUE'/'FALSE' strings to numeric 0/1 ---\n",
"Converted 'Area_Albania' from bool to float (0.0/1.0).\n",
"Converted 'Area_Algeria' from bool to float (0.0/1.0).\n",
"Converted 'Area_American Samoa' from bool to float (0.0/1.0).\n",
"Converted 'Area_Andorra' from bool to float (0.0/1.0).\n",
"Converted 'Area_Angola' from bool to float (0.0/1.0).\n",
"Converted 'Area_Anguilla' from bool to float (0.0/1.0).\n",
"Converted 'Area_Antigua and Barbuda' from bool to float (0.0/1.0).\n",
"Converted 'Area_Argentina' from bool to float (0.0/1.0).\n",
"Converted 'Area_Armenia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Aruba' from bool to float (0.0/1.0).\n",
"Converted 'Area_Australia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Austria' from bool to float (0.0/1.0).\n",
"Converted 'Area_Azerbaijan' from bool to float (0.0/1.0).\n",
"Converted 'Area_Bahamas' from bool to float (0.0/1.0).\n",
"Converted 'Area_Bahrain' from bool to float (0.0/1.0).\n",
"Converted 'Area_Bangladesh' from bool to float (0.0/1.0).\n",
"Converted 'Area_Barbados' from bool to float (0.0/1.0).\n",
"Converted 'Area_Belarus' from bool to float (0.0/1.0).\n",
"Converted 'Area_Belgium' from bool to float (0.0/1.0).\n",
"Converted 'Area_Belgium-Luxembourg' from bool to float (0.0/1.0).\n",
"Converted 'Area_Belize' from bool to float (0.0/1.0).\n",
"Converted 'Area_Benin' from bool to float (0.0/1.0).\n",
"Converted 'Area_Bermuda' from bool to float (0.0/1.0).\n",
"Converted 'Area_Bhutan' from bool to float (0.0/1.0).\n",
"Converted 'Area_Bolivia (Plurinational State of)' from bool to float (0.0/1.0).\n",
"Converted 'Area_Bosnia and Herzegovina' from bool to float (0.0/1.0).\n",
"Converted 'Area_Botswana' from bool to float (0.0/1.0).\n",
"Converted 'Area_Brazil' from bool to float (0.0/1.0).\n",
"Converted 'Area_British Virgin Islands' from bool to float (0.0/1.0).\n",
"Converted 'Area_Brunei Darussalam' from bool to float (0.0/1.0).\n",
"Converted 'Area_Bulgaria' from bool to float (0.0/1.0).\n",
"Converted 'Area_Burkina Faso' from bool to float (0.0/1.0).\n",
"Converted 'Area_Burundi' from bool to float (0.0/1.0).\n",
"Converted 'Area_Cabo Verde' from bool to float (0.0/1.0).\n",
"Converted 'Area_Cambodia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Cameroon' from bool to float (0.0/1.0).\n",
"Converted 'Area_Canada' from bool to float (0.0/1.0).\n",
"Converted 'Area_Cayman Islands' from bool to float (0.0/1.0).\n",
"Converted 'Area_Central African Republic' from bool to float (0.0/1.0).\n",
"Converted 'Area_Chad' from bool to float (0.0/1.0).\n",
"Converted 'Area_Channel Islands' from bool to float (0.0/1.0).\n",
"Converted 'Area_Chile' from bool to float (0.0/1.0).\n",
"Converted 'Area_China' from bool to float (0.0/1.0).\n",
"Converted 'Area_China, Hong Kong SAR' from bool to float (0.0/1.0).\n",
"Converted 'Area_China, Macao SAR' from bool to float (0.0/1.0).\n",
"Converted 'Area_China, Taiwan Province of' from bool to float (0.0/1.0).\n",
"Converted 'Area_China, mainland' from bool to float (0.0/1.0).\n",
"Converted 'Area_Colombia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Comoros' from bool to float (0.0/1.0).\n",
"Converted 'Area_Congo' from bool to float (0.0/1.0).\n",
"Converted 'Area_Cook Islands' from bool to float (0.0/1.0).\n",
"Converted 'Area_Costa Rica' from bool to float (0.0/1.0).\n",
"Converted 'Area_Croatia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Cuba' from bool to float (0.0/1.0).\n",
"Converted 'Area_Cyprus' from bool to float (0.0/1.0).\n",
"Converted 'Area_Czechia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Czechoslovakia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Democratic People's Republic of Korea' from bool to float (0.0/1.0).\n",
"Converted 'Area_Democratic Republic of the Congo' from bool to float (0.0/1.0).\n",
"Converted 'Area_Denmark' from bool to float (0.0/1.0).\n",
"Converted 'Area_Djibouti' from bool to float (0.0/1.0).\n",
"Converted 'Area_Dominica' from bool to float (0.0/1.0).\n",
"Converted 'Area_Dominican Republic' from bool to float (0.0/1.0).\n",
"Converted 'Area_Ecuador' from bool to float (0.0/1.0).\n",
"Converted 'Area_Egypt' from bool to float (0.0/1.0).\n",
"Converted 'Area_El Salvador' from bool to float (0.0/1.0).\n",
"Converted 'Area_Equatorial Guinea' from bool to float (0.0/1.0).\n",
"Converted 'Area_Eritrea' from bool to float (0.0/1.0).\n",
"Converted 'Area_Estonia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Eswatini' from bool to float (0.0/1.0).\n",
"Converted 'Area_Ethiopia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Ethiopia PDR' from bool to float (0.0/1.0).\n",
"Converted 'Area_Falkland Islands (Malvinas)' from bool to float (0.0/1.0).\n",
"Converted 'Area_Faroe Islands' from bool to float (0.0/1.0).\n",
"Converted 'Area_Fiji' from bool to float (0.0/1.0).\n",
"Converted 'Area_Finland' from bool to float (0.0/1.0).\n",
"Converted 'Area_France' from bool to float (0.0/1.0).\n",
"Converted 'Area_French Polynesia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Gabon' from bool to float (0.0/1.0).\n",
"Converted 'Area_Gambia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Georgia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Germany' from bool to float (0.0/1.0).\n",
"Converted 'Area_Ghana' from bool to float (0.0/1.0).\n",
"Converted 'Area_Gibraltar' from bool to float (0.0/1.0).\n",
"Converted 'Area_Greece' from bool to float (0.0/1.0).\n",
"Converted 'Area_Greenland' from bool to float (0.0/1.0).\n",
"Converted 'Area_Grenada' from bool to float (0.0/1.0).\n",
"Converted 'Area_Guadeloupe' from bool to float (0.0/1.0).\n",
"Converted 'Area_Guam' from bool to float (0.0/1.0).\n",
"Converted 'Area_Guatemala' from bool to float (0.0/1.0).\n",
"Converted 'Area_Guinea' from bool to float (0.0/1.0).\n",
"Converted 'Area_Guinea-Bissau' from bool to float (0.0/1.0).\n",
"Converted 'Area_Guyana' from bool to float (0.0/1.0).\n",
"Converted 'Area_Haiti' from bool to float (0.0/1.0).\n",
"Converted 'Area_Holy See' from bool to float (0.0/1.0).\n",
"Converted 'Area_Honduras' from bool to float (0.0/1.0).\n",
"Converted 'Area_Hungary' from bool to float (0.0/1.0).\n",
"Converted 'Area_Iceland' from bool to float (0.0/1.0).\n",
"Converted 'Area_India' from bool to float (0.0/1.0).\n",
"Converted 'Area_Indonesia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Iran (Islamic Republic of)' from bool to float (0.0/1.0).\n",
"Converted 'Area_Iraq' from bool to float (0.0/1.0).\n",
"Converted 'Area_Ireland' from bool to float (0.0/1.0).\n",
"Converted 'Area_Isle of Man' from bool to float (0.0/1.0).\n",
"Converted 'Area_Israel' from bool to float (0.0/1.0).\n",
"Converted 'Area_Italy' from bool to float (0.0/1.0).\n",
"Converted 'Area_Jamaica' from bool to float (0.0/1.0).\n",
"Converted 'Area_Japan' from bool to float (0.0/1.0).\n",
"Converted 'Area_Jordan' from bool to float (0.0/1.0).\n",
"Converted 'Area_Kazakhstan' from bool to float (0.0/1.0).\n",
"Converted 'Area_Kenya' from bool to float (0.0/1.0).\n",
"Converted 'Area_Kiribati' from bool to float (0.0/1.0).\n",
"Converted 'Area_Kuwait' from bool to float (0.0/1.0).\n",
"Converted 'Area_Kyrgyzstan' from bool to float (0.0/1.0).\n",
"Converted 'Area_Lao People's Democratic Republic' from bool to float (0.0/1.0).\n",
"Converted 'Area_Latvia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Lebanon' from bool to float (0.0/1.0).\n",
"Converted 'Area_Lesotho' from bool to float (0.0/1.0).\n",
"Converted 'Area_Liberia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Libya' from bool to float (0.0/1.0).\n",
"Converted 'Area_Liechtenstein' from bool to float (0.0/1.0).\n",
"Converted 'Area_Lithuania' from bool to float (0.0/1.0).\n",
"Converted 'Area_Luxembourg' from bool to float (0.0/1.0).\n",
"Converted 'Area_Madagascar' from bool to float (0.0/1.0).\n",
"Converted 'Area_Malawi' from bool to float (0.0/1.0).\n",
"Converted 'Area_Malaysia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Maldives' from bool to float (0.0/1.0).\n",
"Converted 'Area_Mali' from bool to float (0.0/1.0).\n",
"Converted 'Area_Malta' from bool to float (0.0/1.0).\n",
"Converted 'Area_Marshall Islands' from bool to float (0.0/1.0).\n",
"Converted 'Area_Martinique' from bool to float (0.0/1.0).\n",
"Converted 'Area_Mauritania' from bool to float (0.0/1.0).\n",
"Converted 'Area_Mauritius' from bool to float (0.0/1.0).\n",
"Converted 'Area_Mayotte' from bool to float (0.0/1.0).\n",
"Converted 'Area_Mexico' from bool to float (0.0/1.0).\n",
"Converted 'Area_Micronesia (Federated States of)' from bool to float (0.0/1.0).\n",
"Converted 'Area_Monaco' from bool to float (0.0/1.0).\n",
"Converted 'Area_Mongolia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Montenegro' from bool to float (0.0/1.0).\n",
"Converted 'Area_Montserrat' from bool to float (0.0/1.0).\n",
"Converted 'Area_Morocco' from bool to float (0.0/1.0).\n",
"Converted 'Area_Mozambique' from bool to float (0.0/1.0).\n",
"Converted 'Area_Myanmar' from bool to float (0.0/1.0).\n",
"Converted 'Area_Namibia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Nauru' from bool to float (0.0/1.0).\n",
"Converted 'Area_Nepal' from bool to float (0.0/1.0).\n",
"Converted 'Area_Netherlands (Kingdom of the)' from bool to float (0.0/1.0).\n",
"Converted 'Area_Netherlands Antilles (former)' from bool to float (0.0/1.0).\n",
"Converted 'Area_New Caledonia' from bool to float (0.0/1.0).\n",
"Converted 'Area_New Zealand' from bool to float (0.0/1.0).\n",
"Converted 'Area_Nicaragua' from bool to float (0.0/1.0).\n",
"Converted 'Area_Niger' from bool to float (0.0/1.0).\n",
"Converted 'Area_Nigeria' from bool to float (0.0/1.0).\n",
"Converted 'Area_Niue' from bool to float (0.0/1.0).\n",
"Converted 'Area_North Macedonia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Northern Mariana Islands' from bool to float (0.0/1.0).\n",
"Converted 'Area_Norway' from bool to float (0.0/1.0).\n",
"Converted 'Area_Oman' from bool to float (0.0/1.0).\n",
"Converted 'Area_Pacific Islands Trust Territory' from bool to float (0.0/1.0).\n",
"Converted 'Area_Pakistan' from bool to float (0.0/1.0).\n",
"Converted 'Area_Palau' from bool to float (0.0/1.0).\n",
"Converted 'Area_Palestine' from bool to float (0.0/1.0).\n",
"Converted 'Area_Panama' from bool to float (0.0/1.0).\n",
"Converted 'Area_Papua New Guinea' from bool to float (0.0/1.0).\n",
"Converted 'Area_Paraguay' from bool to float (0.0/1.0).\n",
"Converted 'Area_Peru' from bool to float (0.0/1.0).\n",
"Converted 'Area_Philippines' from bool to float (0.0/1.0).\n",
"Converted 'Area_Poland' from bool to float (0.0/1.0).\n",
"Converted 'Area_Portugal' from bool to float (0.0/1.0).\n",
"Converted 'Area_Puerto Rico' from bool to float (0.0/1.0).\n",
"Converted 'Area_Qatar' from bool to float (0.0/1.0).\n",
"Converted 'Area_Republic of Korea' from bool to float (0.0/1.0).\n",
"Converted 'Area_Republic of Moldova' from bool to float (0.0/1.0).\n",
"Converted 'Area_Romania' from bool to float (0.0/1.0).\n",
"Converted 'Area_Russian Federation' from bool to float (0.0/1.0).\n",
"Converted 'Area_Rwanda' from bool to float (0.0/1.0).\n",
"Converted 'Area_Saint Helena, Ascension and Tristan da Cunha' from bool to float (0.0/1.0).\n",
"Converted 'Area_Saint Kitts and Nevis' from bool to float (0.0/1.0).\n",
"Converted 'Area_Saint Lucia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Saint Pierre and Miquelon' from bool to float (0.0/1.0).\n",
"Converted 'Area_Saint Vincent and the Grenadines' from bool to float (0.0/1.0).\n",
"Converted 'Area_Samoa' from bool to float (0.0/1.0).\n",
"Converted 'Area_San Marino' from bool to float (0.0/1.0).\n",
"Converted 'Area_Sao Tome and Principe' from bool to float (0.0/1.0).\n",
"Converted 'Area_Saudi Arabia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Senegal' from bool to float (0.0/1.0).\n",
"Converted 'Area_Serbia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Serbia and Montenegro' from bool to float (0.0/1.0).\n",
"Converted 'Area_Seychelles' from bool to float (0.0/1.0).\n",
"Converted 'Area_Sierra Leone' from bool to float (0.0/1.0).\n",
"Converted 'Area_Singapore' from bool to float (0.0/1.0).\n",
"Converted 'Area_Slovakia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Slovenia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Solomon Islands' from bool to float (0.0/1.0).\n",
"Converted 'Area_Somalia' from bool to float (0.0/1.0).\n",
"Converted 'Area_South Africa' from bool to float (0.0/1.0).\n",
"Converted 'Area_South Sudan' from bool to float (0.0/1.0).\n",
"Converted 'Area_Spain' from bool to float (0.0/1.0).\n",
"Converted 'Area_Sri Lanka' from bool to float (0.0/1.0).\n",
"Converted 'Area_Sudan' from bool to float (0.0/1.0).\n",
"Converted 'Area_Sudan (former)' from bool to float (0.0/1.0).\n",
"Converted 'Area_Suriname' from bool to float (0.0/1.0).\n",
"Converted 'Area_Sweden' from bool to float (0.0/1.0).\n",
"Converted 'Area_Switzerland' from bool to float (0.0/1.0).\n",
"Converted 'Area_Syrian Arab Republic' from bool to float (0.0/1.0).\n",
"Converted 'Area_Tajikistan' from bool to float (0.0/1.0).\n",
"Converted 'Area_Thailand' from bool to float (0.0/1.0).\n",
"Converted 'Area_Timor-Leste' from bool to float (0.0/1.0).\n",
"Converted 'Area_Togo' from bool to float (0.0/1.0).\n",
"Converted 'Area_Tokelau' from bool to float (0.0/1.0).\n",
"Converted 'Area_Tonga' from bool to float (0.0/1.0).\n",
"Converted 'Area_Trinidad and Tobago' from bool to float (0.0/1.0).\n",
"Converted 'Area_Tunisia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Turkmenistan' from bool to float (0.0/1.0).\n",
"Converted 'Area_Turks and Caicos Islands' from bool to float (0.0/1.0).\n",
"Converted 'Area_Tuvalu' from bool to float (0.0/1.0).\n",
"Converted 'Area_USSR' from bool to float (0.0/1.0).\n",
"Converted 'Area_Uganda' from bool to float (0.0/1.0).\n",
"Converted 'Area_Ukraine' from bool to float (0.0/1.0).\n",
"Converted 'Area_United Arab Emirates' from bool to float (0.0/1.0).\n",
"Converted 'Area_United Kingdom of Great Britain and Northern Ireland' from bool to float (0.0/1.0).\n",
"Converted 'Area_United Republic of Tanzania' from bool to float (0.0/1.0).\n",
"Converted 'Area_United States Virgin Islands' from bool to float (0.0/1.0).\n",
"Converted 'Area_United States of America' from bool to float (0.0/1.0).\n",
"Converted 'Area_Uruguay' from bool to float (0.0/1.0).\n",
"Converted 'Area_Uzbekistan' from bool to float (0.0/1.0).\n",
"Converted 'Area_Vanuatu' from bool to float (0.0/1.0).\n",
"Converted 'Area_Venezuela (Bolivarian Republic of)' from bool to float (0.0/1.0).\n",
"Converted 'Area_Viet Nam' from bool to float (0.0/1.0).\n",
"Converted 'Area_Wallis and Futuna Islands' from bool to float (0.0/1.0).\n",
"Converted 'Area_Western Sahara' from bool to float (0.0/1.0).\n",
"Converted 'Area_Yemen' from bool to float (0.0/1.0).\n",
"Converted 'Area_Yugoslav SFR' from bool to float (0.0/1.0).\n",
"Converted 'Area_Zambia' from bool to float (0.0/1.0).\n",
"Converted 'Area_Zimbabwe' from bool to float (0.0/1.0).\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"print(\"\\n--- Dtypes of 'df_encoded' AFTER ALL conversions ---\")\n",
"print(df_encoded.dtypes)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "JN3gYqvDmHAD",
"outputId": "968d3f68-9c8e-4620-945c-3ae829830426"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"--- Dtypes of 'df_encoded' AFTER ALL conversions ---\n",
"Year int64\n",
"Savanna fires float64\n",
"Forest fires float64\n",
"Crop Residues float64\n",
"Rice Cultivation float64\n",
" ... \n",
"Area_Western Sahara float64\n",
"Area_Yemen float64\n",
"Area_Yugoslav SFR float64\n",
"Area_Zambia float64\n",
"Area_Zimbabwe float64\n",
"Length: 265, dtype: object\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# --- Prepare features and target ---\n",
"feature_cols = [col for col in df_encoded.columns if col != 'total_emission']\n",
"X = df_encoded[feature_cols].copy()\n",
"y = df_encoded['total_emission'].values.reshape(-1, 1)"
],
"metadata": {
"id": "fa6AD_5hmKLY"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"print(\"\\n--- Dtypes of X DataFrame (before scaling and to_numpy) ---\")\n",
"print(X.dtypes)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "TLwGPIW6mNnR",
"outputId": "99f2350d-613b-4fed-8bad-38fc9bca2c40"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"--- Dtypes of X DataFrame (before scaling and to_numpy) ---\n",
"Year int64\n",
"Savanna fires float64\n",
"Forest fires float64\n",
"Crop Residues float64\n",
"Rice Cultivation float64\n",
" ... \n",
"Area_Western Sahara float64\n",
"Area_Yemen float64\n",
"Area_Yugoslav SFR float64\n",
"Area_Zambia float64\n",
"Area_Zimbabwe float64\n",
"Length: 264, dtype: object\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Normalize numeric features only\n",
"num_idx = [X.columns.get_loc(col) for col in numeric_cols if col in X.columns and col != 'total_emission']\n",
"scaler_X = StandardScaler()\n",
"X_scaled = X.values.copy()\n",
"X_scaled[:, num_idx] = scaler_X.fit_transform(X_scaled[:, num_idx])"
],
"metadata": {
"id": "HEcq4JDNmP0W"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Prepare features and target\n",
"feature_cols = [col for col in df_encoded.columns if col != 'total_emission']\n",
"X = df_encoded[feature_cols].copy()\n",
"y = df_encoded['total_emission'].values.reshape(-1, 1)"
],
"metadata": {
"id": "wHLlvBqViCHl"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Normalize target\n",
"scaler_y = StandardScaler()\n",
"y_scaled = scaler_y.fit_transform(y)"
],
"metadata": {
"id": "fzpglxaRmU_q"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Split dataset\n",
"X_train, X_test, y_train, y_test = train_test_split(\n",
" X_scaled, y_scaled, test_size=0.2, random_state=42, shuffle=True\n",
")"
],
"metadata": {
"id": "hOXqQZp_mYYK"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# --- Final check of NumPy array dtypes ---\n",
"print(\"\\n--- Final NumPy Array dtypes for model input ---\")\n",
"print(\"X_train dtype:\", X_train.dtype)\n",
"print(\"y_train dtype:\", y_train.dtype)\n",
"print(\"X_train shape:\", X_train.shape)\n",
"print(\"y_train shape:\", y_train.shape)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "8me0b6Xpma6y",
"outputId": "c70c0b2c-f7c8-4225-bdde-daa3a68bfa13"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"--- Final NumPy Array dtypes for model input ---\n",
"X_train dtype: float64\n",
"y_train dtype: float64\n",
"X_train shape: (5572, 264)\n",
"y_train shape: (5572, 1)\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# --- Build and compile model ---\n",
"tf.random.set_seed(42)\n",
"model = Sequential([\n",
" Dense(64, activation='relu', input_shape=(X_train.shape[1],)),\n",
" Dropout(0.2),\n",
" Dense(32, activation='relu'),\n",
" Dropout(0.2),\n",
" Dense(1, activation='linear')\n",
"])\n",
"\n",
"model.compile(optimizer='adam', loss='mse', metrics=['mae'])\n",
"model.summary()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 289
},
"id": "kc-NuBSOiJJu",
"outputId": "2094f255-74b6-436d-c9f3-73c3af4f015c"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"\u001b[1mModel: \"sequential_2\"\u001b[0m\n"
],
"text/html": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA94AAAMWCAYAAAAH1l7yAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA+JFJREFUeJzs3Xd8E4X7B/BPku7dQltGKLRllG1Zyl4i4AJBQNQfGxeoOMAt4KCA4lZAQYaCbBAREQd8FQWkUHbZBSwFWkYXnUnu98fZcLl0pSS9XPJ5v168JJdL8lzzafDJ3T2nEQRBABERERERERE5hFbpAoiIiIiIiIhcGRtvIiIiIiIiIgdi401ERERERETkQGy8iYiIiIiIiByIjTcRERERERGRA7HxJiIiIiIiInIgNt5EREREREREDsTGm4iIiIiIiMiB2HgTERERERERORAbbyIiJ6TRaDBt2jSly3BK06ZNg0ajsVjWoEEDjBo1SpmCSlFajc7MGet11O+A0lmZPXs24uLiYDKZHPL8Z8+ehUajweLFi6v0+Or47OnRowd69Ojh0Neoqlv5+W3ZsgUBAQHIyMiwf2FEpHpsvInI5X3xxRfQaDS4/fbbq/wcaWlpmDZtGvbv32+/wlRKo9GY/2i1WtSpUwd33XUXtm/frnRpNlHyPd2+fbvFz7G8PxWpzu0YNWpUmXX6+Pg4/PXVLjs7G7NmzcJLL70Erdbyf8Fu3LiBt99+G61atYKfnx+Cg4PRtWtXLF26FIIgKFSxsoqKivDxxx8jPj4eQUFBCAkJQfPmzfHYY4/h2LFjSpdnpV+/fmjYsCESEhKULoWInJCH0gUQETnasmXL0KBBA/zzzz84deoUGjZsaPNzpKWlYfr06WjQoAFuu+02+xepMn369MGIESMgCAJSUlLwxRdfoFevXvjxxx/Rv3//aq/n+PHjVo1MRZR8T5s2bYpvvvnGYtkrr7yCgIAAvPbaazY9V3Vvh7e3NxYsWGC1XKfT2fV18vPz4eFh//9NqUpW7OXrr7+GwWDA8OHDLZZfvnwZvXv3RnJyMh566CFMnDgRBQUFWLt2LUaOHInNmzdj2bJllfoZ169fH/n5+fD09KxSjY76uVfF4MGD8dNPP2H48OEYP348iouLcezYMWzatAmdOnVCXFyc0iVaefzxx/Hiiy9i+vTpCAwMVLocInIizvHJSkTkICkpKfj777+xbt06PP7441i2bBmmTp2qdFmq17hxYzz66KPm2w888ABatWqFjz76qMzGu6CgAF5eXg5pery9ve3+nI4UGRlp8fMDgJkzZ6JmzZpWy52Nh4dHtdToqD3oSmZl0aJFuP/++622beTIkUhOTsb69etx//33m5c/88wzmDx5Mt5//33Ex8fjpZdeKvO5DQYDTCYTvLy8buln5yxHLuzZswebNm3Cu+++i1dffdXivs8++wyZmZnKFFaBwYMH4+mnn8bq1asxZswYpcshIifCQ82JyKUtW7YMoaGhuOeee/Dggw9i2bJlpa6XmZmJ5557Dg0aNIC3tzf0ej1GjBiBK1euYPv27Wjfvj0AYPTo0eZDa0vOASzrnFH5eYxFRUV488030bZtWwQHB8Pf3x9du3bFtm3bbN6uy5cvw8PDA9OnT7e67/jx49BoNPjss88AAMXFxZg+fToaNWoEHx8f1KhRA126dMEvv/xi8+uWpWXLlqhZsyZSUlIA3DyUesWKFXj99ddRt25d+Pn5ITs7GwCwe/du9OvXD8HBwfDz80P37t3x119/WT3vjh070L59e/j4+CA2Nhbz588v9fVLew9u5T11RI1VcebMGQwZMgRhYWHw8/PDHXfcgR9//NF8f0Xb8eeff2LIkCGIioqCt7c36tWrh+eeew75+fl2q7E0ixcvhkajwY4dO/DMM88gPDwcISEhePzxx1FUVITMzEyMGDECoaGhCA0NxZQpU6wOp5afa5yTk4NJkyaZ38+IiAj06dMH+/btM69z8uRJDB48GLVq1YKPjw/0ej0eeughZGVlmdcpLSsV/ZyBm5letWoV3n33Xej1evj4+KB37944depUhT+TlJQUHDx4EHfeeafF8l27duHnn3/GqFGjLJruEgkJCWjUqBFmzZplft9KzkN+//338dFHHyE2Nhbe3t44evRomecor169Gs2aNYOPjw9atGiB9evXY9SoUWjQoIHFevKfe8n5/6dOncKoUaMQEhKC4OBgjB49Gnl5eRaPXbRoEXr16oWIiAh4e3ujWbNmmDt3boU/m9KcPn0aANC5c2er+3Q6HWrUqGGx7MKFCxg7dizq1KkDb29vREdH48knn0RRUREA4Nq1a3jxxRfRsmVLBAQEICgoCP3798eBAwcqVc+xY8fw4IMPIiwsDD4+PmjXrh02btxotV5ERARatWqF77//3tZNJiIXxz3eROTSli1bhkGDBsHLywvDhw/H3LlzsWfPHnOzAgC5ubno2rUrkpOTMWbMGLRp0wZXrlzBxo0bkZqaiqZNm+Ktt97Cm2++icceewxdu3YFAHTq1MmmWrKzs7FgwQLzYZM5OTlYuHAh+vbti3/++cemw4QjIyPRvXt3rFq1ymoP/sqVK6HT6TBkyBAA4v84JyQkYNy4cejQoQOys7ORmJiIffv2oU+fPjZtQ1muX7+O69evWx3G//bbb8PLywsvvvgiCgsL4eXlhd9//x39+/dH27ZtMXXqVGi1WvP/sP/555/o0KEDAODQoUO46667EB4ejmnTpsFgMGDq1KmIjIyssJ5bfU+ro8aKXL58GZ06dUJeXh6eeeYZ1KhRA0uWLMH999+PNWvW4IEHHqhwO1avXo28vDw8+eSTqFGjBv755x98+umnSE1NxerVq6tc25UrV6yWeXl5ISgoyGLZ008/jVq1amH69OnYtWsXvvzyS4SEhODvv/9GVFQUZsyYgc2bN+O9995DixYtMGLEiDJf84knnsCaNWswceJENGvWDFevXsWOHTuQnJyMNm3aoKioCH379kVhYaH5dS9cuIBNmzYhMzMTwcHBpT5vZX7OUjNnzoRWq8WLL76IrKwszJ49G4888gh2795d7s/s77//BgC0adPGYvkPP/wAAGVuu4eHBx5++GFMnz4df/31l0XjvmjRIhQUFOCxxx6Dt7c3wsLCSh3a9uOPP2LYsGFo2bIlEhIScP36dYwdOxZ169Ytt2apoUOHIjo6GgkJCdi3bx8WLFiAiIgIzJo1y7zO3Llz0bx5c9x///3w8PDADz/8gKeeegomkwkTJkyo9GsB4iHzgPgZ3rlz53IPf09LS0OHDh2QmZmJxx57DHFxcbhw4QLWrFmDvLw8eHl54cyZM9iwYQOGDBmC6OhoXL58GfPnz0f37t1x9OhR1KlTp8znP3LkCDp37oy6devi5Zdfhr+/P1atWoWBAwdi7dq1Vhlp27YtNmzYYNP2EpEbEIiIXFRiYqIAQPjll18EQRAEk8kk6PV64dlnn7VY78033xQACOvWrbN6DpPJJAiCIOzZs0cAICxatMhqnfr16wsjR460Wt69e3ehe/fu5tsGg0EoLCy0WOf69etCZGSkMGbMGIvlAISpU6eWu33z588XAAiHDh2yWN6sWTOhV69e5tutW7cW7rnnnnKfyxYAhLFjxwoZGRlCenq6sHv3bqF3794CAGHOnDmCIAjCtm3bBABCTEyMkJeXZ36syWQSGjVqJPTt29f8sxUEQcjLyxOio6OFPn36mJcNHDhQ8PHxEc6dO2dedvToUUGn0wnyf77k78GtvKeOqrEizZs3t8jLpEmTBADCn3/+aV6Wk5MjREdHCw0aNBCMRmO521FSs1xCQoKg0Wgsap46dWql6h05cqQAoNQ/ffv2Na+3aNEi8zLpz7Bjx46CRqMRnnjiCfMyg8Eg6PV6i20XBOvfgeDgYGHChAll1paUlCQAEFavXl3uNsizUtmfc0mmmzZtavF7/PHHH5f6eyj3+uuvCwCEnJwci+UDBw4UAAjXr18v87Hr1q0TAAiffPKJIAiCkJKSIgAQgoKChPT0dIt1S+6T5qFly5aCXq+3eO3t27cLAIT69etbPF7+cy/Jhvwz6oEHHhBq1Khhsay0vPXt21eIiYmxWCb/bCyNyWQSunfvLgAQIiMjheHDhwuff/65RW5LjBgxQtBqtcKePXtKfR5BEISCggLze1kiJSVF8Pb2Ft566y2LZfKfX+/evYWWLVsKBQUFFs/bqVMnoVGjRlavOWPGDAGAcPny5XK3kYjcCw81JyKXtWzZMkRGRqJnz54AxEMohw0bhhUrVsBoNJrXW7t2LVq3bm2116LkMfai0+ng5eUFADCZTLh27RoMBgPatWtncbhsZQ0aNAgeHh5YuXKlednhw4dx9OhRDBs2zLwsJCQER44cwcmTJ299I/6zcOFChIeHIyIiArfffjv++usvPP/885g0aZLFeiNHjoSvr6/59v79+3Hy5Ek8/PDDuHr1Kq5cuYIrV67gxo0b6N27N/744w+YTCYYjUb8/PPPGDhwIKKiosyPb9q0Kfr27VthfbfynlZXjRXZvHkzOnTogC5dupiXBQQE4LHHHsPZs2dx9OjRCp9D+rO/ceMGrly5gk6dOkEQBCQlJVWpLh8fH/zyyy9Wf2bOnGm17tixYy1+3rfffjsEQcDYsWPNy3Q6Hdq1a4czZ86U+7ohISHYvXs30tLSSr2/ZI/2zz//bHUIdHls/TmPHj3a/HsMwHyUQUX1X716FR4eHggICLBYnpOTAwDlDuIqua/kVI0SgwcPRnh4eLmvm5aWhkOHDmHEiBEWr929e3e0bNmy3MdKPfHEExa3u3btiqtXr1rUJM1bVlYWrly5gu7du+PMmTMWh/tXhkajwc8//4x33nkHoaGh+O677zBhwgTUr18fw4YNM5/jbTKZsGHDBtx3331o165dqc8DiOf2l8yXMBqNuHr1KgICAtCkSZNyP3+vXbuG33//HUOHDkVOTo758+Dq1avo27cvTp48iQsXLlg8JjQ0FEDpR4YQkfty68b7jz/+wH333Yc6depAo9FU6bAgQRDw/vvvo3HjxvD29kbdunXx7rvv2r9YIrKJ0WjEihUr0LNnT6SkpODUqVM4deoUbr/9dly+fBm//fabed3Tp0+jRYsW1VLXkiVL0KpVK/O51uHh4fjxxx9t/p9SAKhZsyZ69+6NVatWmZetXLkSHh4eGDRokHnZW2+9hczMTDRu3BgtW7bE5MmTcfDgwVvajgEDBuCXX37Br7/+it27d+PKlSuYM2eO1eC06Ohoi9slzf/IkSMRHh5u8WfBggUoLCxEVlYWMjIykJ+fj0aNGlm9dpMmTSqs71be0+qqsSLnzp0r9XmaNm1qvr8i58+fx6hRoxAWFoaAgACEh4eje/fuAFClzAFio3znnXda/SntVAnpFxLAzea4Xr16VsuvX79e7uvOnj0bhw8fRr169dChQwdMmzbNotmNjo7G888/jwULFqBmzZro27cvPv/88wq309afs3ybSpqsiuovS0lTXdKAl6as5lz++1WakvpLu5qDLVd4qMx2lxwK7+/vj5CQEISHh5sHo1Ulb97e3njttdeQnJyMtLQ0fPfdd7jjjjuwatUqTJw4EQCQkZGB7OzsCn/fTSYTPvzwQzRq1Aje3t6oWbMmwsPDcfDgwXJrO3XqFARBwBtvvGH1eVBymk96errFY4T/5hXY84tbIlI/tz7H+8aNG2jdujXGjBlj8T+ptnj22WexdetWvP/++2jZsiWuXbuGa9eu2blSIrLV77//josXL2LFihVYsWKF1f3Lli3DXXfdZZfXKut/roxGo8Xlf7799luMGjUKAwcOxOTJkxEREQGdToeEhATzICFbPfTQQxg9ejT279+P2267DatWrULv3r1Rs2ZN8zrdunXD6dOn8f3332Pr1q1YsGABPvzwQ8ybNw/jxo2r0uvq9XqrIVGlke4BA2A+//S9994r85z2gIAAFBYWVqkue1BDjZVhNBrRp08fXLt2DS+99BLi4uLg7++PCxcuYNSoUaWeC2xvZV3+qrTlQgXXqh46dCi6du2K9evXY+vWrXjvvfcwa9YsrFu3zjxJf86cORg1apQ568888wwSEhKwa9cu6PX6W9+gMmqvTP01atSAwWBATk6ORQPdtGlTbNiwAQcPHkS3bt1KfWzJF2XNmjWzWC7//XKkirb79OnT6N27N+Li4vDBBx+gXr168PLywubNm/Hhhx/ect5q166Nhx56CIMHD0bz5s2xatUqqwFy5ZkxYwbeeOMNjBkzBm+//TbCwsKg1WoxadKkcmsrue/FF18s80gW+RcYJV9GSD+HiYjcuvHu379/udebLSwsxGuvvYbvvvsOmZmZaNGiBWbNmmWeUpycnIy5c+fi8OHD5m/LK/PtMxE53rJlyxAREYHPP//c6r5169Zh/fr1mDdvHnx9fREbG4vDhw+X+3zl7bkIDQ0t9dI2586dQ0xMjPn2mjVrEBMTg3Xr1lk8361c3mzgwIF4/PHHzYebnzhxAq+88orVemFhYRg9ejRGjx6N3NxcdOvWDdOmTaty411VsbGxAICgoKByG/fw8HD4+vqWenj88ePHK/U6VX1Pq6vGitSvX7/U5zl27Jj5fqDs7Th06BBOnDiBJUuWWAzusuc0++pWu3ZtPPXUU3jqqaeQnp6ONm3a4N1337X4t7xly5Zo2bIlXn/9dfz999/o3Lkz5s2bh3feeafU56zsz/lWlVxzOiUlBa1atTIvv/fee5GQkIClS5eW2ngbjUYsX74coaGhpU74rkhJ/aVNXq/MNPbK+uGHH1BYWIiNGzda7B2vylUbyuPp6YlWrVrh5MmTuHLlCiIiIhAUFFTh7/uaNWvQs2dPLFy40GJ5ZmZmuQ1yyWe4p6dnpb5sBMT3uGSPOhFRCbc+1LwiEydOxM6dO7FixQocPHgQQ4YMQb9+/cz/k/XDDz8gJiYGmzZtQnR0NBo0aIBx48ZxjzeRwvLz87Fu3Trce++9ePDBB63+TJw4ETk5OeZLwQwePBgHDhzA+vXrrZ6rZG+Ov78/AJTaYMfGxmLXrl3my9YAwKZNm/Dvv/9arFeyx0i6Z2z37t3YuXNnlbc1JCQEffv2xapVq7BixQp4eXlh4MCBFutcvXrV4nZAQAAaNmxoscc2KysLx44dq/Lhx5XVtm1bxMbG4v3330dubq7V/RkZGQDEn1Xfvn2xYcMGnD9/3nx/cnIyfv755wpf51be0+qqsSJ33303/vnnH4t83LhxA19++SUaNGhg3vtZ1naUljdBEPDxxx/fcm3VzWg0WmUzIiICderUMec4OzsbBoPBYp2WLVtCq9WWe3RCZX/Ot6pjx44AgMTERIvlnTp1wp133olFixZh06ZNVo977bXXcOLECUyZMqVKe7jr1KmDFi1aYOnSpRZ5/t///odDhw7Z/HxlKS1vWVlZWLRoUZWe7+TJkxa/VyUyMzOxc+dOhIaGIjw8HFqtFgMHDsQPP/xg9bOV1qPT6ayOSli9erXV+dlyERER6NGjB+bPn4+LFy9a3V/yeSC1d+9e8/tNRFTCrfd4l+f8+fNYtGgRzp8/b77ExIsvvogtW7Zg0aJFmDFjBs6cOYNz585h9erVWLp0KYxGI5577jk8+OCD+P333xXeAiL3tXHjRuTk5JR6TVwAuOOOOxAeHo5ly5Zh2LBhmDx5MtasWYMhQ4ZgzJgxaNu2La5du4aNGzdi3rx5aN26NWJjYxESEoJ58+YhMDAQ/v7+uP322xEdHY1x48ZhzZo16NevH4YOHYrTp0/j22+/Ne85LXHvvfdi3bp1eOCBB3DPPfcgJSUF8+bNQ7NmzUpt8Cpr2LBhePTRR/HFF1+gb9++CAkJsbi/WbNm6NGjB9q2bYuwsDAkJiaaL8tUYv369Rg9ejQWLVpU6jXJ7UWr1WLBggXo378/mjdvjtGjR6Nu3bq4cOECtm3bhqCgIPPllaZPn44tW7aga9eueOqpp2AwGPDpp5+iefPmFZ6jfqvvaXXUWJGXX34Z3333Hfr3749nnnkGYWFhWLJkCVJSUrB27Vrz+fRlbUdcXBxiY2Px4osv4sKFCwgKCsLatWurfC5yCYPBgG+//bbU+x544AHzFwH2lJOTA71ejwcffBCtW7dGQEAAfv31V+zZswdz5swBIJ5eMnHiRAwZMgSNGzeGwWDAN998A51Oh8GDB5f53JX9Od+qmJgYtGjRAr/++ivGjBljcd/SpUvRu3dvDBgwAA8//DC6du2KwsJCrFu3Dtu3bzd/TlXVjBkzMGDAAHTu3BmjR4/G9evX8dlnn6FFixa39Nkjddddd8HLywv33XcfHn/8ceTm5uKrr75CREREqQ1rRQ4cOICHH34Y/fv3R9euXREWFoYLFy5gyZIlSEtLw0cffWRu9mfMmIGtW7eie/fueOyxx9C0aVNcvHgRq1evxo4dOxASEoJ7770Xb731FkaPHo1OnTrh0KFDWLZsmcVRSWX5/PPP0aVLF7Rs2RLjx49HTEwMLl++jJ07dyI1NdXiWuDp6ek4ePCgzZdPIyI3UP2D1J0TAGH9+vXm25s2bRIACP7+/hZ/PDw8hKFDhwqCIAjjx48XAAjHjx83P27v3r0CAOHYsWPVvQlE9J/77rtP8PHxEW7cuFHmOqNGjRI8PT2FK1euCIIgCFevXhUmTpwo1K1bV/Dy8hL0er0wcuRI8/2CIAjff/+90KxZM8HDw8PqcjNz5swR6tatK3h7ewudO3cWEhMTrS6ZYzKZhBkzZgj169cXvL29hfj4eGHTpk3CyJEjK7ykT3mys7MFX19fAYDw7bffWt3/zjvvCB06dBBCQkIEX19fIS4uTnj33XeFoqIi8zoll38q7ZJUcgDKvayTINy89FJZl3ZKSkoSBg0aJNSoUUPw9vYW6tevLwwdOlT47bffLNb73//+J7Rt21bw8vISYmJihHnz5pV66avSLul2q++pvWusiPxyYoIgCKdPnxYefPBBISQkRPDx8RE6dOggbNq0yeqxZW3H0aNHhTvvvFMICAgQatasKYwfP144cOCA1bba43JiAISUlBRBEG7mSX55p5LXycjIsHpef39/i2XS34HCwkJh8uTJQuvWrYXAwEDB399faN26tfDFF1+Y1z9z5owwZswYITY2VvDx8RHCwsKEnj17Cr/++qvF85aWlcr8nMvKdGmXnyrLBx98IAQEBJR62a2cnBxh2rRpQvPmzQVfX18hMDBQ6Ny5s7B48WKLS7JJX/O9996zep6y6lmxYoUQFxcneHt7Cy1atBA2btwoDB48WIiLi7NYT/7ZU9Z7VvIel7zngiAIGzduFFq1aiX4+PgIDRo0EGbNmiV8/fXXVutV5nJily9fFmbOnCl0795dqF27tuDh4SGEhoYKvXr1EtasWWO1/rlz54QRI0YI4eHhgre3txATEyNMmDDBfOm3goIC4YUXXhBq164t+Pr6Cp07dxZ27txpVUtZP7/Tp08LI0aMEGrVqiV4enoKdevWFe69916rWubOnSv4+fkJ2dnZ5W4fEbkfjSBUMA3ETWg0Gqxfv958iObKlSvxyCOP4MiRI1YDRQICAlCrVi1MnToVM2bMQHFxsfm+/Px8+Pn5YevWrejTp091bgIRERE5saysLMTExGD27NkWl1RTym233Ybw8HBVn/fvbOLj49GjRw98+OGHSpdCRE6G53iXIT4+HkajEenp6WjYsKHFn1q1agEAOnfuDIPBYDGN+MSJEwDsN4yFiIiIXENwcDCmTJmC9957r1qmypcoLi62Ov99+/btOHDggHlgLN26LVu24OTJk6UOuCQicus93rm5ueaJnvHx8fjggw/Qs2dPhIWFISoqCo8++ij++usvzJkzB/Hx8cjIyMBvv/2GVq1a4Z577oHJZEL79u0REBCAjz76CCaTCRMmTEBQUBC2bt2q8NYRERERAWfPnsWdd96JRx99FHXq1MGxY8cwb948BAcH4/Dhw6hRo4bSJRIRuTy3bry3b9+Onj17Wi0fOXIkFi9ejOLiYrzzzjtYunQpLly4gJo1a+KOO+7A9OnT0bJlSwBAWloann76aWzduhX+/v7o378/5syZg7CwsOreHCIiIiIrWVlZeOyxx/DXX38hIyMD/v7+6N27N2bOnGk1BJKIiBzDrRtvIiIiIiIiIkfjOd5EREREREREDsTGm4iIiIiIiMiBPJQuoLqZTCakpaUhMDAQGo1G6XKIiIiIiIhIhQRBQE5ODurUqQOttvx92m7XeKelpaFevXpKl0FEREREREQu4N9//4Very93HbdrvAMDAwGIP5ygoCCFq3EtBoMBSUlJiI+Ph4eH20WLSsFMkBwzQVLMA8kxEyTFPJCcs2UiOzsb9erVM/eY5VG+2mpWcnh5UFAQG287MxgM8Pf3R1BQkFP8IpDymAmSYyZIinkgOWaCpJgHknPWTFTmFGYOVyMiIiIiIiJyIDbeZDcajQbBwcEcWkdmzATJMRMkxTyQHDNBUswDyak5ExpBEASli6hO2dnZCA4ORlZWFg81JyIiIiIioiqxpbd0ngPjnYzRaERxcbHSZaiKyWRCeno6IiIiKhynT+6hJBN169aFp6en0uWQEyi5pGNlLrtBro95IDlmgqSYB5JTcybYeMsIgoBLly4hMzNT6VJURxAEFBUVIS8vT5WHf5D9STMRGhqKWrVqMRtuzmQyITU1FbVq1VLdP5hkf8wDyTETJMU8kJyaM8HGW6ak6Y6IiICfnx+bBBsIgoC8vDz+3MisJBOCICAjIwMAULt2bYWrIiIiIiKqXmy8JYxGo7nprlGjhtLlqI4gCDAajfDx8WHjTQBuZsLf3x8ajcZ8KoJOp1O6NCIiIiKiaqOu/fMOVnJOt5+fn8KVqJczXU+PnENJJkp+rzg7wb1ptVqEh4er7vAwcgzmgeSYCZJiHkhOzZlgl1QK7q2tGo1GAx8fH6XLICcizQR/rwgQ/8GMjY1VugxyEswDyTETJMU8kJyaM6G+rwrIaQmCgIKCArjZFeqoHMwEyZlMJpw+fRomk0npUsgJMA8kx0yQFPNAcmrOBBtvqtC0adMQGRkJjUaDDRs2lLuuwWConqLsbNq0abjtttvMt0eNGoWBAwfe0nPa4zkqa+HChbjrrruq5bVKM2/ePNx3332l3qfWTJBjmEwmZGRkqPIfTLI/5oHkmAmSYh5ITs2ZYOPtIkaNGgWNRgONRgMvLy80bNgQb7311i03PcnJyZg+fTrmz5+Pixcvon///rdcq7zJLW+9km3y8PBAgwYN8NxzzyE3N/eWa6jIxx9/jMWLF1dq3bNnz0Kj0WD//v1Vfo5bUVBQgDfeeANTp051+GuVZcyYMdi3bx/+/PNPxWogIiIiInJWPMfbhfTr1w+LFi1CYWEhNm/ejAkTJsDT0xOvvPKKzc9lNBqh0Whw+vRpAMCAAQMUOUe3efPm+PXXX2EwGPDXX39hzJgxyMvLw/z5863WLSoqgpeXl11eNzg42CmeozLWrFmDoKAgdO7cuVperzReXl54+OGH8cknn6Br166K1UFERERE5Iy4x9uFeHt7o1atWqhfvz6efPJJ3Hnnndi4cSMAoLCwEC+++CLq1q0Lf39/3H777di+fbv5sYsXL0ZISAg2btyIZs2awdvbG2PGjDEfPqzVai0a7wULFqBp06bw8fFBXFwcvvjiCwAwN76pqakYPnw4wsLC4O/vj3bt2mH37t1YvHgxpk+fjgMHDpj3Zpe3V9jDwwO1atWCXq/HsGHD8Mgjj5i3qWTP+YIFCxAdHW0e4pWZmYlx48YhPDwcQUFB6NWrFw4cOGDxvDNnzkRkZCQCAwMxduxYFBQUWNwvP0zcZDJh9uzZaNiwIby9vREVFYV3330XABAdHQ0AiI+Ph0ajQY8ePUp9jsLCQjzzzDOIiIiAj48PunTpgj179pjv3759OzQaDX777Te0a9cOfn5+6NSpE44fP17mzwcAVqxYYXGY9x9//AFPT09cunTJYr1JkyZVqSnOyMhArVq1MGPGDPOyv//+G15eXvjtt9/My+677z5s3LgR+fn5Fo+315ch5Bq0Wi30er0qp5GS/TEPJMdMkBTzQHJqzoT6KlbKjRtl/5E1beWuK2tKylzPDnx9fVFUVAQAmDhxInbu3IkVK1bg4MGDGDJkCPr164eTJ0+a18/Ly8OsWbOwYMECHDlyBJ988gkWLVoEALh48SIuXrwIAFi2bBnefPNNvPvuu0hOTsaMGTPwxhtvYOnSpfDy8sKNGzfQvXt3XLhwARs3bsSBAwcwZcoUmEwmDBs2DC+88AKaN29ufs5hw4ZVaZsA4NSpU1i7di3WrVtnPtR7yJAhSE9Px08//YS9e/eiTZs26N27N65duwYAWLVqFaZNm4YZM2YgMTERtWvXNn9xUJZXXnkFM2fOxBtvvIGjR49i+fLliIyMBAD8888/AIBff/0VFy9exLp160p9jilTpmDt2rVYsmQJ9u3bh4YNG6Jv377mukq89tprmDNnDhITE+Hh4YExY8aUW9uOHTvQrl078+1u3bohJiYG33zzjXlZcXExli1bZn6u8+fPIyAgoNw/JY12eHg4vv76a0ybNg2JiYnIycnB//3f/2HixIno3bu3+TXatWsHg8GA3bt3m5eVnPrAieZUQs3/YJL9MQ8kx0yQFPNAcqrOhOBmsrKyBABCVlaW1X35+fnC0aNHhfz8fOsHAmX/uftuy3X9/Mpet3t3y3Vr1ix9PRuNHDlSGDBggCAIgmAymYRffvlF8Pb2Fl588UXh3Llzgk6nEy5cuGDxmN69ewuvvPKKIAiCsGjRIgGAsH//fot11q9fL8hjEhsbKyxfvtxi2dtvvy107NhRyMvLE+bNmycEBgYKV69eLbXWqVOnCq1bt65wm+TrJSYmCjVr1hQefPBB8/2enp5Cenq6eZ0///xTCAoKEgoKCqxqnj9/viAIgtCxY0fhqaeesrj/9ttvt3gt6c8zOztb8Pb2Fr766qtS60xJSREACElJSRbLpc+Rm5sreHp6CsuWLTPfX1RUJNSpU0eYPXu2IAiCsG3bNgGA8Ouvv5rX+fHHHwUApWdSEITr168LAIQ//vjDYvmsWbOEpk2bmm+vXbtWCAgIEHJzcwVBEITi4mLh5MmT5f6Rv39PPfWU0LhxY+Hhhx8WWrZsafUzFgRBCA0NFRYvXmy+bTKZhLy8PMFkMpX/+0Vuw2AwCEePHhUMBoPSpZATYB5IjpkgKeaB5JwtE+X1lnI8x9uFbNq0CQEBASguLobJZMLDDz+MadOmYfv27TAajWjcuLHF+oWFhahRo4b5tpeXF1q1alXua9y4cQOnT5/G2LFjMX78ePNyg8GA4OBgGI1G7N+/H/Hx8QgLC7vlbTp06BACAgJgNBpRVFSEe+65B5999pn5/vr16yM8PNx8+8CBA8jNzbXYLgDIz883n6+enJyMJ554wuL+jh07Ytu2baXWkJycjMLCQou9u7Y6ffo0iouLLc7D9vT0RIcOHZCcnGyxrvQ9qF27NgAgPT0dUVFRVs9bcli3/Prpo0aNwuuvv45du3bhjjvuwOLFizF06FD4+/sDEA/hb9iwoU3b8P7776NFixZYvXo19u7dC29vb6t1fH19kZeXZ7HMaDTa9Drk2gRBQFZWFi8xRwCYB7LGTJAU80Byas4EG+/KKm+Stk5neTs9vex15YdFnD1b5ZLkevbsiblz58LLywt16tSBh4f49ubm5kKn02Hv3r3QyWoNCAgw/93X17fCQ4JLJop/9dVXuP322y3uKznkw9fX95a3pUSTJk2wceNGeHh4oE6dOlbnC5c0ktL6ateubXH+eomQkJAq1WDP7akMT09P899L3o+yLplQo0YNaDQaXL9+3WJ5REQE7rvvPixatAjR0dH46aefLH4m58+fR7Nmzcqt49VXX8Wrr75qvn369GmkpaXBZDLh7NmzaNmypdVjrl27ZvFFCBERERERsfGuPFmDp8i6FT6Vf6l7MePj42E0GpGenn7LE6cjIyNRp04dnDlzBo888ojFfYIg4MaNG2jVqhUWLlyIa9eulbrX28vLq9J7QUsujVZZbdq0waVLl8yXHytN06ZNsXv3bowYMcK8bNeuXWU+Z6NGjeDr64vffvsN48aNK7VGoPw9u7GxsfDy8sJff/2F+vXrAxDPu96zZw8mTZpUiS0rnZeXF5o1a4ajR49aXcd73LhxGD58OPR6PWJjYy32ttepU8fq8mdy0veuqKgIjz76KIYNG4YmTZpg3LhxOHToECIiIszrnD59GgUFBYiPj6/y9hARERERuSI23m6gcePGeOSRRzBixAjMmTMH8fHxyMjIwG+//YZWrVrhnnvusen5pk+fjmeeeQbBwcHo168fCgsLkZiYiGvXruGZZ57B8OHDkZCQgIEDByIhIQG1a9dGUlIS6tSpg44dO6JBgwZISUnB/v37odfrERgYWOphy1Vx5513omPHjhg4cCBmz56Nxo0bIy0tDT/++CMeeOABtGvXDs8++yxGjRqFdu3aoXPnzli2bBmOHDmCmJiYUp/Tx8cHL730EqZMmQIvLy907twZGRkZOHLkCMaOHYuIiAj4+vpiy5Yt0Ov18PHxsbqUmL+/P5588klMnjwZYWFhiIqKwuzZs5GXl4exY8fe0jb37dsXO3bssGrg+/bti6CgILzzzjt46623LO6z9VDz1157DVlZWfjkk08QEBCAzZs3Y8yYMdi0aZN5nT///BMxMTGIjY21eKy93ltyDVqtFjExMeocikJ2xzyQHDNBUswDyak5E+qrmKpk0aJFGDFiBF544QU0adIEAwcOxJ49e0o9b7gi48aNw4IFC7Bo0SK0bNkS3bt3x+LFixETEwNPT094e3tj69atiIiIwN13342WLVti5syZ5sPcBw8ejH79+qFnz54IDw/Hd999Z7ft1Gg02Lx5M7p164bRo0ejcePGeOihh3Du3DnzFPJhw4bhjTfewJQpU9C2bVucO3cOTz75ZLnP+8Ybb+CFF17Am2++iaZNm2LYsGFI/++UAg8PD3zyySeYP38+6tSpgwEDBpT6HDNnzsTgwYPxf//3f2jTpg1OnTqFn3/+GaGhobe0zWPHjsXmzZuRlZVlsVyr1WLUqFEwGo0We/dttX37dnz00Uf45ptvEBQUBK1Wi2+++QZ//vkn5s6da17vu+++szjvHxDfD09PT041JzOtVouIiAhV/oNJ9sc8kBwzQVLMA8mpORMaQcEz0+fOnYu5c+fi7H/nOTdv3hxvvvkm+vfvX+ZjVq9ejTfeeANnz55Fo0aNMGvWLNx9992Vfs3s7GwEBwcjKysLQUFBFvcVFBQgJSXF4prQVHmCICA/P79S54qTfQ0ZMgRt2rTBK6+8YrF87NixyMjIMF/73FGOHDmCXr164cSJExZ7+6WZKCws5O8XwWg04vDhw2jRooXVzAlyP8wDyTETJMU8kJyzZaK83lJO0a8K9Ho9Zs6cib179yIxMRG9evXCgAEDcOTIkVLX//vvvzF8+HCMHTsWSUlJGDhwIAYOHIjDhw9Xc+VUlrKGgJFjvffeexaD8rKysrBjxw4sX74cTz/9tMNf/+LFi1i6dKnVIfYAM0GWSr6MUeM0UrI/5oHkmAmSYh5ITs2ZUPQc7/vuu8/i9rvvvou5c+di165daN68udX6H3/8Mfr164fJkycDAN5++2388ssv+OyzzzBv3rxqqZnIGTVo0MCiwR4wYAD++ecfPPHEE+jTp4/DX//OO+90+GsQEREREamV0wxXMxqNWL16NW7cuIGOHTuWus7OnTvx/PPPWyzr27cvNmzYUObzFhYWorCw0Hw7OzsbgHjdaYPBAEA8V0Cr1cJkMkEQBPMfQDxHtbRvVGxdbgt7vaajl8uVrONMNbrr+yS9Jrkt22nvWqSZKPm70Wg0/+4BN3//jEajxXPpdDpoNBqLdUuWlzxPZZZ7eHhAEASL5RqNBjqdDiaTyWKPfFnLpZ8RpS2X185tKrv2kiy40ja54vtUXdtUUqfRaHSZbXLF94mfEXyf+BnB98lZtsnZPiNsoXjjfejQIXTs2BEFBQUICAjA+vXry7y+8KVLl8wDskpERkbi0qVLZT5/QkICpk+fbrU8KSnJfA3o8PBwxMbGIjU1FUVFRcjLy4PRaISXlxe8vLxQUFBg8SZ6e3vD09MT+fn5Fm+Kj48PPDw8kJeXZ/Gm+Pr6QqvV4saNGxY1+Pv7w2QyIT8/37xMo9HA398fRqMRBQUF5uVarRZ+fn4wGAwWXyTodDr4+vqiuLgYRUVF5uUeHh7w8fFBYWGhRZAdvU0+Pj4QBAF5eXkus02u+D5V5zaV5KGk3rNnzyInJ8e8fkxMDCIiInD48GGLeuLi4hASEoKkpCSLn0GrVq3g5eWFxMREi21q164dioqKcPDgQYsa27dvj6ysLBw7dszi59K6dWtcuXIFZ86cMS8PDg5G06ZNkZaWhtTUVPPyks+IlJQUZGRkmJfr9Xro9XqcOHHCYrgdt6nsbWrbti2io6ORlJTkMtvkiu9TdW6TwWBAUlKSS22TK75P1bVN/IzgNvEzgttU3jY522eELXOLFB2uBojXBz5//jyysrKwZs0aLFiwAP/73/9Kbb69vLywZMkSDB8+3Lzsiy++wPTp03H58uVSn7+0Pd716tXD1atXzSfAl3yLkZeXh7Nnz1oMf+KeVG5TWZytdmffpoKCApw9exZRUVEWlxjjt7rcJm4Tt4nbxG3iNnGbuE3cJjVuU25ubqWHqym+x9vLy8t8PeG2bdtiz549+PjjjzF//nyrdWvVqmXVYF++fBm1atUq8/m9vb1LvY6wh4cHPDwsN1+r1ZobBo3m5lRu6d+lbF1uC3u9pqOXS5Xs2fTz8yt1fWer3V3fp4rYsxZpJko+qHQ6ndXvXsny0pS2rq3LNRpNqctLPkhvdXlZtXObrJeX7LmIj4+3uk+t21Tecm5T+ctNJpM5DyXrqH2bXPF94mcE3yd+RvB9cpZtcsbPiMpSvPGWM5lMFnuopTp27IjffvsNkyZNMi/75Zdfyjwn3FZeXl7QarVIS0tDeHg4vLy87NLIuAtBEFBQUGD+AoOoJBMGgwEZGRnQarXw8vJSuixSmPxbanJvzAPJMRMkxTy4IUEA/vwT6Nat1LvVmglFG+9XXnkF/fv3R1RUFHJycrB8+XJs374dP//8MwBgxIgRqFu3LhISEgAAzz77LLp37445c+bgnnvuwYoVK5CYmIgvv/zSLvVotVpER0fj4sWLSEtLs8tzuhNBEFBUVMQvLMhMmgl/f39ERUWV+g0iERERERFycoDHHwe++w5Ytgx4+GGlK7IbRRvv9PR0jBgxAhcvXkRwcDBatWqFn3/+2Xz5o/Pnz1v8T3qnTp2wfPlyvP7663j11VfRqFEjbNiwAS1atLBbTV5eXoiKioLBYFDttylKMRgMOHz4MBo2bFjm4SLkXkoyERcXB29vb34hQ0RERESlO3AAGDIEOHkS0OmAK1eUrsiuFB+uVt2ys7MrfQI82UYQxAva+/r6ssEiAMwEWWMmSIp5IDlmgqSYBzchCMBXXwHPPAMUFgJ6PbByJdCpUymrOlcmbOktecwn2RXP3yU5ZoLkmAmSYh5IjpkgKebBDWzeLB5eXlgI3H03sH9/qU13CbVmgo032Y3RaERiYiIP0SczZoLkmAmSYh5IjpkgKebBTdx9NzB4MDB7NvDDD0CNGmWuquZM8ERcIiIiIiIiqh6CIA5Pu+8+IDAQ0GiA1avF/7ow7vEmIiIiIiIix8vNBf7v/4BHHgGeeEJswgGXb7oB7vEmIiIiIiIiRzt4EBg6FDh+XJxa3rq10hVVK041J7sRBAFGoxE6nc4ppgyS8pgJkmMmSIp5IDlmgqSYBxchCMDChcDTTwMFBUDduuLU8s6dq/BUzpUJTjUnxRQVFSldAjkZZoLkmAmSYh5IjpkgKeZB5UoOLR8/Xmy6+/cXp5ZXoekuodZMsPEmuzEajTh48KAqpwySYzATJMdMkBTzQHLMBEkxDy7gxg3gt9/EQ8tnzgQ2bQJq1qzy06k5EzzHm4iIiIiIiOwvMlI8rFyrBbp0UboaRXGPNxEREREREd26kkPLV6y4uaxbN7dvugE23mRnOp1O6RLIyTATJMdMkBTzQHLMBEkxDypy6BDQrh3w7bfAU08B2dkOeRm1ZoJTzYmIiIiIiKhqBAH4+mtg4sSbU8tXrHCLvdycak6KEAQBmZmZcLPvcqgczATJMRMkxTyQHDNBUsyDCuTmAiNGAOPGiU13v37i1PJbaLpzCoqRfDEbe1KuIfliNnIKis33qTkTbLzJboxGI44dO6bKKYPkGMwEyTETJMU8kBwzQVLMg5PLywM6dBAPLdfpgIQE4Mcfb2lq+fmreVi4IwVLd57DuqQLWLrzHBbuSMH5q3kA1J0JNt5ERERERERkGz8/4O67xUPLt20DXn5ZnF5eRTkFxViXlIrL2YUWyy9nF2JdUqrFnm81YuNNREREREREFbtxA7h06ebthATx0PKuXW/5qVOv51s13SUuZxci9Xr+Lb+Gkth4k91oNBr4+vpCo9EoXQo5CWaC5JgJkmIeSI6ZICnmwckcPgy0bw8MGgQU/7f32dPzlg4tl8otMFR4v5ozwanmREREREREVDpBABYvBiZMAPLzgTp1gO3bgUaN7PoyyRezsXTnuTLvH9GxPprWdq7+jVPNSREmkwnp6ekwmUxKl0JOgpkgOWaCpJgHkmMmSIp5cAI3bgCjRgFjxohNd9++4qHldm66AUAf6ovIIO9S74sM8oY+1FfVmWDjTXZjMplw5swZVf4ikGMwEyTHTJAU80ByzARJMQ8KKzm0fOlScWjau+8CmzcD4eEOeblAH08MitdbNd+RQd4Y1EaPQB9PVWfCQ+kCiIiIiIiIyIkIAjB+PJCcDNSuDaxYAXTr5vCXjarhh7FdopF6PR+5BQYE+HhAH+qLQB9Ph7+2o7HxJiIiIiIiops0GmDJEuCVV4C5c4GIiGp76UAfTzStrf5GW46HmpPdaDQaBAcHq3LKIDkGM0FyzARJMQ8kx0yQFPNQzY4cAb766ubtxo2BtWurtemuiJozwanmRERERERE7mzxYuCpp4DCQuD334Hu3ZWuSBU41ZwUYTKZkJqaqsphB+QYzATJMRMkxTyQHDNBUsxDNSiZWj56tDi1/M47gaZNla6qTGrOBBtvshs1/yKQYzATJMdMkBTzQHLMBEkxDw529CjQoQOwZAkErRbpL72OPV8sQ7LRBzkFxUpXVyo1Z4LD1YiIiIiIiNzJt98Cjz8O5OXBEFkL6ye/h33RrYEDFwH8dwmveD2iavgpXKjr4B5vIiIiIiIid5KXJzbdve/Ewk/XiU23xOXsQqxLSnXaPd9qxD3eZDdarRbh4eHQavl9DomYCZJjJkiKeSA5ZoKkmAc7MxoBnU78+/jxQM2aOHl7L5zd/W+pq1/OLkTq9XynurSXmjOhvorJaWm1WsTGxqryF4Ecg5kgOWaCpJgHkmMmSIp5sKOlS4HWrYHr18XbGg0waBByi8o/Vzq3wFANxVWemjOhvorJaZlMJpw+fVqVww7IMZgJkmMmSIp5IDlmgqSYh6rJKShG8sVs7Em5hmOnL6J4xEhg5EjxOt2ffWaxboBP+QdAV3R/dVNzJth4k92YTCZkZGSo8heBHIOZIDlmgqSYB5JjJkiKebDd+at5WLgjBUt3nsOOjX8gtEdXeH6zFIJWC7z9NvDqqxbr60N9ERnkXepzRQZ5Qx/qWx1lV5qaM8HGm4iIiIiISOVyCoqxLikVl7MLEb99Iya8NByRqaeRHVITa2cvRs6LL908x/s/gT6eGBSvt2q+I4O8MaiNHoE+znN+t9o517EDREREREREZLPU6/m4nF2IO35agQELZgAATra6A6ueTUBuSA00L2NQWlQNP4ztEo3U6/nILTAgwMcD+lBfNt12xsab7Ear1UKv16ty2AE5BjNBcswESTEPJMdMkBTzYJuSQWgHu/RD142LsbfXA9g2aByE//ZylzcoLdDH06mml5dFzZnQCIIgKF1EdcrOzkZwcDCysrIQFBSkdDlERERERES3ZscOJMe0xNJd5wEAnoX5KPa2PD97RMf6aFqb/Y892dJbqu+rAnJaRqMRycnJMBqNSpdCToKZIDlmgqSYB5JjJkiKeaiEvDxg7Figa1c0+GGV+VxtedPtjIPSqkLNmWDjTXYjCAKysrLgZgdRUDmYCZJjJkiKeSA5ZoKkmIcKHDsG3H478PXXgEYD38xrLj8oTc2Z4DneREREREREavLtt8ATTwA3bgCRkcDy5UCvXogCOCjNSbHxJiIiIiIiUoO8PBRNmAivxYsAADe6dIfwzTcIaFDPvIpaBqW5GzbeZDdarRYxMTGqnDJIjsFMkBwzQVLMA8kxEyTFPFi7/PtfiFiyGCaNBr8NfRLbBo9HxKl8DArMQ1QNP6XLczg1Z4JTzYmIiIiIiJxcTkExFu5IQaNvv0JadBOcaXm7+b7IIG+M7RLNQ8qrGaeakyKMRiMOHDigyimD5BjMBMkxEyTFPJAcM0FSzAOA/Hzg6aeBU6eQej0fl7MLseP+ERZNNwBczi5E6vV8hYqsPmrOBBtvshtBEJCfn6/KKYPkGMwEyTETJMU8kBwzQVJun4eSqeWffQYMH47cvKJyV88tMFRTYcpRcybYeBMRERERETmTZcuAdu2AQ4fEqeWzZiHAz6vchwT4cHyXM2PjTURERERE5Azy84Hx44FHHxUvFdarF7B/P9CrF/ShvlbX6C4RGeQNfahv9dZKNmHjTXaj0+kQFxcHnU6ndCnkJJgJkmMmSIp5IDlmgqTcLg8XLoiHli9YAGg0wNSpwNatQK1aAMTLhA2K11s135FB3hjURu8Wg9XUnAlONSciIiIiIlJaURHQpQtw7hywfDnQu3epq+UUFCP1ej5yCwwI8PGAPtTXLZpuZ8Sp5qQIg8GAPXv2wGBw/cEOVDnMBMkxEyTFPJAcM0FSbpGH/HyguFj8u5cXsGaNeGh5GU03IO75blo7CO2jw9C0dpBbNd1qzgQbb7IrNY72J8diJkiOmSAp5oHkmAmScuk8HD8O3HEH8OabN5dFRQG1aytXkwqoNRNsvImIiIiIiKrTd9+JU8sPHgQWLQIyM5WuiByMjTcREREREVF1yM8HHn8cePhhIDcX6NEDSEoCQkKUrowcjMPVyG5KLmjv6+sLjUajdDnkBJgJkmMmSIp5IDlmgqRcLg/HjwNDh4p7uTUa4I03xMPMVTihWynOlglbekteZZ3sysvLS+kSyMkwEyTHTJAU80ByzARJuUweCgrEvduXLgHh4cCyZUCfPkpXpUpqzQQPNSe7MRqNSExMVO3AA7I/ZoLkmAmSYh5IjpkgKZfKg48P8P77QPfu4tRyNt1VouZMsPEmIiIiIiKytxMngN27b95+5BHg99+BOnWUq4kUw8abiIiIiIjInr77DmjbFhg0CMjIuLlcy/bLXfGdJyIiIiIisof8fOCJJ25OLW/UCFDhYdFkf5xqTnYjCAKMRiN0Op1TTBkk5TETJMdMkBTzQHLMBEk5Sx5yCoqRej0fuQUGBPh4QB/qi0AfT+sVT5wQp5YfOCBOLX/9dXFquQfnWduLs2SiBKeak2KKiorg6+urdBnkRJgJkmMmSIp5IDlmgqSqIw/lNdbnr+ZhXVIqLmcXmtePDPLGoHg9omr43XySFSuA8ePFvdycWu5Qav2M4KHmZDdGoxEHDx5U5ZRBcgxmguSYCZJiHkiOmSCp6sjD+at5WLgjBUt3nsO6pAtYuvMcFu5IwfmrecgpKLZqugHgcnYh1iWlIqegWFwgCMD69WLT3a0bp5Y7kJo/I9h4ExERERGR26mosb5wPd/qPuk6qdfzxRsaDfDVV8Ds2cBvv3FqOZWKjTcREREREbmd1Aoa6/Qy7gOAln9tQc1nnhT3dgNAUBAweTLP56YyMRlkVzqdTukSyMkwEyTHTJAU80ByzARJOTIPuQWGcu8vMpqslnkUFeKeRbNxx9bV4oLVA8SBalRt1PoZwanmRERERETkdpIvZmPpznNl3v9Q+3rYdjzdvFe8Rto5PPzBZNRJOQYAKHzpZXi/8zb3crsxW3pLHmpOdiMIAjIzM+Fm3+VQOZgJkmMmSIp5IDlmgqQcnQd9qC8ig7xLvS8yyBsx4f4YFK9HZJA3Wv61BROnPIQ6KceQFxyK9NUb4D0zgU13NVPzZwQbb7Ibo9GIY8eOqXLKIDkGM0FyzARJMQ8kx0yQlKPzEOjjaW6spSKDvDGojR6BPp6IquGHJ7ctxcMfTIFP/g3k3d4Jpr37EPHgAIfUROVT82cEv6IhIiIiIiK3FFXDD2O7RJd5HW8A8L67P/DebGDyZPhNn8693FQlTA0REREREbmtQB9PNK3tabnw33+BevXEv3fuDJw8CdSvX/3FkcvgoeZkNxqNBr6+vtBoNEqXQk6CmSA5ZoKkmAeSYyZISpE8FBQAEyYAcXHAkSM3l7Ppdgpq/ozgVHMiIiIiIqJTp8RLgyUlibc//RSYOFHZmsipcao5KcJkMiE9PR0mk/U1D8k9MRMkx0yQFPNAcswESVVrHlavBtq0EZvumjWBn35i0+2E1PwZwcab7MZkMuHMmTOq/EUgx2AmSI6ZICnmgeSYCZKyNQ85BcVIvpiNPSnXkHwxGzkFxRU/qKBAbLCHDgVycoAuXcTmu1+/W6yeHEHNnxEcrkZERERERKp2/moe1iWl4nJ2oXlZZJA3BsXrEVXDr+wHLlgAfP65+PdXXgHeeotTy8khuMebiIiIiIhUK6eg2KrpBoDL2YVYl5Ra/p7vJ54ABg8GNm8GZsxg000Ow8ab7Eaj0SA4OFiVUwbJMZgJkmMmSIp5IDlmgqQqm4fU6/lWTXeJy9mFSL2ef3NBYSEwe7b4X0BstNesAfr3t1fZ5EBq/ozgVzpkNzqdDk2bNlW6DHIizATJMRMkxTyQHDNBUpXNQ26BoXL3nz4tnsu9bx+Qmgp88ok9yqRqpObPCO7xJrsxmUxITU1V5bADcgxmguSYCZJiHkiOmSCpyuYhwKf8fYkBPv/t1W7TRmy6a9Tg8DSVUvNnBBtvshs1/yKQYzATJMdMkBTzQHLMBElVNg/6UF9EBnmXel8dHw1i33oFGDIEyM4GOncG9u8H7r7bARWTo6n5M4KNNxERERERqVagjycGxeutmu9GN9Lx+Kv/B695X4gLXn4Z2LYN0OsVqJLcHc/xJiIiIiIiVYuq4YexXaKRej0fuQUGBPh4oF6mF7zOpoiHli9dyr3cpCg23mQ3Wq0W4eHh0Gp5IAWJmAmSYyZIinkgOWaCpGzNQ6CPJ5pG6oCS9WsHAevWAY0aAfXqObBSqi5q/ozQCIIgKF1EdcrOzkZwcDCysrIQFBSkdDlERERERGQPZ84ADz0EvP020Lev0tWQG7Clt1TfVwXktEwmE06fPq3KYQfkGMwEyTETJMU8kBwzQVI25WHtWiA+HtizB5g0CTAaHV4fVT81f0aw8Sa7MZlMyMjIUOUvAjkGM0FyzARJMQ8kx0yQVKXyUFgIPPss8OCD4tTyTp2ArVsBna76CqVqo+bPCDbeRERERESkPmfOAF26AJ98It6eMgXYvp3nc5NT4nA1IiIiIiJSl3//Bdq0AbKygLAwcWr5PfcoXRVRmdh4k91otVro9XpVThkkx2AmSI6ZICnmgeSYCZIqNw/16gGDBgHHjgErV3Ivt5tQ82eEohUnJCSgffv2CAwMREREBAYOHIjjx4+X+5jFixdDo9FY/PHx8ammiqk8av5FIMdgJkiOmSAp5oHkmAmSsspDSgpw5crNFT7/HPjf/9h0uxE1f0YoWvH//vc/TJgwAbt27cIvv/yC4uJi3HXXXbhx40a5jwsKCsLFixfNf86dO1dNFVN5jEYjkpOTYeQUSfoPM0FyzARJMQ8kx0yQlEUe1q8Xp5aPGAGUDNby9QU8PZUtkqqVmj8jFD3UfMuWLRa3Fy9ejIiICOzduxfdunUr83EajQa1atVydHlkI0EQkJWVBTe7NDyVg5kgOWaCpJgHkmMmSEoQBGRfuQLN3LnAp5+KCzMzxfO6Q0MVrY2UoebPCKfaR5+VlQUACAsLK3e93Nxc1K9fH/Xq1cOAAQNw5MiR6iiPiIiIiIiqS0oKmj/+OLQlTffkyeKh5Wy6SYWcZriayWTCpEmT0LlzZ7Ro0aLM9Zo0aYKvv/4arVq1QlZWFt5//3106tQJR44cgV6vt1q/sLAQhYWF5tvZ2dkAAIPBAIPBAEA8V0Cr1cJkMllcE65kudFotPhWpazlOp0OGo3G/LzS5QCsDokoa7mHhwcEQbBYrtFooNPprGosa7kS21TyWEEQrNZX6zaVt5zbVPE2ldRpNBpdZptc8X2qzm0q+YxwpW1yxfeJnxF8n/gZwfdJ8W1auxa6sWMRkJUFITQUwqJF0A4YINYuqVNV2+SK75Obf0bYwmka7wkTJuDw4cPYsWNHuet17NgRHTt2NN/u1KkTmjZtivnz5+Ptt9+2Wj8hIQHTp0+3Wp6UlAR/f38AQHh4OGJjY5GSkoKMjAzzOnq9Hnq9HidOnDDvjQeAmJgYRERE4PDhw8jPzzcvj4uLQ0hICJKSkize9FatWsHLywuJiYkWNbRr1w5FRUU4ePCgeZlOp0P79u2RlZWFY8eOmZf7+vqidevWuHLlCs6cOWNeHhwcjKZNmyItLQ2pqanm5UptU4MGDVBYWIjDhw+7zDa54vtUndtUXFyMpKQkl9omV3yfqmub2rRpA71ej6SkJJfZJld8n/gZwfeJnxF8nxTdJr0exuefh2dWFrKbNcOpd99FRNu20APq3SZXfJ/4GWHTkG+N4AQHyE+cOBHff/89/vjjD0RHR9v8+CFDhsDDwwPfffed1X2l7fGuV68erl69iqCgIAD8ForbxG3iNnGbuE3cJm4Tt4nbxG1yqm3aswdYuRKmt98GPD1dY5tc8X1y823Kzc1FcHAwsrKyzL1lWRRtvAVBwNNPP43169dj+/btaNSokc3PYTQa0bx5c9x999344IMPKlw/Ozu70j8cso3RaMThw4fRokUL8y8FuTdmguSYCZJiHkiOmXBj338PXL0KjBljXsQ8kJyzZcKW3lLRQ80nTJiA5cuX4/vvv0dgYCAuXboEQNz97+vrCwAYMWIE6tati4SEBADAW2+9hTvuuAMNGzZEZmYm3nvvPZw7dw7jxo1TbDtIJAgC8vPzVTllkByDmSA5ZoKkmAeSYybcUFER8PLLwIcfAl5eQPv2QMuWAJgHsqbmTCjaeM+dOxcA0KNHD4vlixYtwqhRowAA58+ftzhx/fr16xg/fjwuXbqE0NBQtG3bFn///TeaNWtWXWUTEREREdGtOnsWGDYM+Ocf8fbTTwNNmihaEpGjKNp4V+abiu3bt1vc/vDDD/Hhhx86qCIiIiIiInK4DRuA0aPF63KHhgKLFwP3369wUUSO41TX8SZ10+l0iIuLc4rzLcg5MBMkx0yQFPNAcsyEm5gyBXjgAbHpvv12ICmp1KabeSA5NWfCaS4nRuqn0WgQEhKidBnkRJgJkmMmSIp5IDlmQjk5BcVIvZ6P3AIDAnw8oA/1RaCPp2NeLDRU/O/zzwMJCeK53aVgHkhOzZngHm+yG4PBgD179lhdDoDcFzNBcswESTEPJMdMKOP81Tws3JGCpTvPYV3SBSzdeQ4Ld6Tg/NU8+72I5NrNeOkl4M8/gTlzymy6AeaBrKk5E2y8ya7k19QjYiZIjpkgKeaB5JiJ6pVTUIx1Sam4nF1osfxydiHWJaUip6D41l6gqAh44QXxkPK8/xp5rRbo0qVSD2ceSE6tmWDjTURERETkplKv51s13SUuZxci9Xp+qfdVyrlzQLduwAcfAIcOAZs2Vf25iFSO53gTEREREbmp3ILyD9mt6P4ybdwIjBwpDlALCRGnlg8YAKCazycnchJsvMludDodWrVqpcopg+QYzATJMRMkxTyQHDNR/QJ8ym8HKrrfSlER8Mor4l5uAOjQAVi5EmjQAIB4Prn80PbIIG8MitcjqoafxVMxDySn5kzwUHOyK69yBmSQe2ImSI6ZICnmgeSYieqlD/VFZJB3qfdFBnlDH+pr2xO+8MLNpvu558Qhav813VU5n5x5IDm1ZoKNN9mN0WhEYmKiagcekP0xEyTHTJAU80ByzET1C/TxxKB4vVXzHRnkjUFt9LYfAv7SS0CjRsD69WIDLmmSbD2fnHkgOTVngoeaExERERG5sagafhjbJbpq510XFwM//QTcf794W68Hjh4FPKzbDIedT06kAmy8iYiIiIjcXKCPJ5rWtnHv9rlzwEMPAbt2iXu4Bw4Ul5fSdAMOOJ+cSEV4qDkREREREdnmhx+A+Hix6Q4OBiox7Mru55MTqYhGEARB6SKqU3Z2NoKDg5GVlYWgoCCly3EpgiDAaDRCp9NBo9EoXQ45AWaC5JgJkmIeSI6ZUIHiYuDVV4H33xdvt28vTi2Pjq7Uw8ucat5Gj6gwy6nmzAPJOVsmbOkteTwH2VVRURF8ffltJd3ETJAcM0FSzAPJMRNOTHpoOQBMmgTMmmUxQK0itp5PzjyQnFozwUPNyW6MRiMOHjyoyimD5BjMBMkxEyTFPJAcM+HkEhNvHlq+fj3w4Yc2Nd0lxPPJg9A+OgxNaweV2XQzDySn5kxwjzcREREREVVs8GDxEmEDB1b60HIiEnGPNxERERERWfv3X7HJTku7uey559h0E1UB93iTXekqMdGS3AszQXLMBEkxDyTHTDiJTZuAkSOBa9fE2xs2KFIG80Byas0Ep5oTEREREZGouBh47TXgvffE2+3aAatWcS83USls6S15qDnZjSAIyMzMhJt9l0PlYCZIjpkgKeaB5JgJhf37L9C9+82m+9lngR07FGu6mQeSU3Mm2HiT3RiNRhw7dkyVUwbJMZgJkmMmSIp5IDlmQkF79wK33Qbs3ClOLV+7FvjoI8DbW7GSmAeSU3MmeI43EREREZG7i4sDIiPFvdurVgExMUpXRORS2HgTEREREbmjy5eB8HBAqwX8/YEtW8TmW8G93ESuioeak91oNBr4+vpCo9EoXQo5CWaC5JgJkmIeSI6ZqEabNwPNmonX5S4RFeVUTTfzQHJqzgSnmhMRERERuYviYuCNN4BZs8Tbd9whDlBT6SWaiJTEqeakCJPJhPT0dJhMJqVLISfBTJAcM0FSzAPJMRMO9u+/QM+eN5vup58Gtm932qabeSA5NWeCjTfZjclkwpkzZ1T5i0COwUyQHDNBUswDyTETDrR5MxAfD/z1FxAUBKxZA3zyiVMdWi7HPJCcmjPB4WpERERERK4sLQ144AGgqAho2xZYuRKIjVW6KiK3wsabiIiIiMiV1akDzJ4NnDoFvP++U+/lJnJVbLzJbjQaDYKDg1U5ZZAcg5kgOWaCpJgHkmMm7GjLFqBWLeC228Tbzz6raDlVwTyQnJozwanmRERERESuwmAQp5bPnAk0bAjs3QsEBSGnoBip1/ORW2BAgI8H9KG+CPTxVLpaIlWzpbfkHm+yG5PJhLS0NNSpUwdaLef2ETNB1pgJkmIeSI6ZuEWpqcDw4eLlwQCgXz/A2xvnr+ZhXVIqLmcXmleNDPLGoHg9omr4KVRsxZgHklNzJtRVLTk1k8mE1NRUVU4ZJMdgJkiOmSAp5oHkmIlbsGWLOLV8xw4gMBBYtQr49FPkCFqrphsALmcXYl1SKnIKihUquGLMA8mpORNsvImIiIiI1MpgAF59FejfH7hyRWy+9+0DhgwBAKRez7dquktczi5E6vX86qyWyG2x8SYiIiIiUiutFkhMFP/+1FPA33+L53b/J7fAUO7DK7qfiOyD53iT3Wi1WoSHh6vufAtyHGaC5JgJkmIeSI6ZsIEgABqN2Hh/+y3w55/A4MFWqwX4lP+/+xXdryTmgeTUnAlONSciIiIiUguDAZg6Fbh6FZg3r8LVcwqKsXBHSqmHm0cGeWNsl2hONyeqIlt6S/V9VUBOy2Qy4fTp06ocdkCOwUyQHDNBUswDyTETFbhwAejVC5gxA5g/H9izp8KHBPp4YlC8HpFB3hbLI4O8MaiN3qmbbuaB5NScCTbeZDcmkwkZGRmq/EUgx2AmSI6ZICnmgeSYiXL8/DNw223iIeWBgcDKlUD79pV6aFQNP4ztEo0RHetjUHxdjOhYH2O7RCMqzHkvJQYwD2RNzZlw3pM6iIiIiIjcXcmh5TNmiLdvuw1YvdpigFplBPp4omlt5927TeTq2HgTERERETmroUOB9evFvz/5JPDBB4CPj7I1EZHNeKg52Y1Wq4Ver1fllEFyDGaC5JgJkmIeSI6ZKMXYsUBQELBiBfDFF27VdDMPJKfmTHCqORERERGRszAYgBMngGbNbi67dg0IC1OuJiIqFaeakyKMRiOSk5NhNBqVLoWcBDNBcswESTEPJOf2mUhLA3r3Brp0Ac6du7ncTZtut88DWVFzJth4k90IgoCsrCy42UEUVA5mguSYCZJiHkjOrTOxdas4OO2PP4DiYuDYMaUrUpxb54FKpeZMsPEmIiIiIlKKwQC8/jrQrx+QkQG0bg3s2wf07at0ZURkR5xqTkRERESkhLQ0YPhwcS83ADzxBPDhh241QI3IXbDxJrvRarWIiYlR5ZRBcgxmguSYCZJiHkjO7TLx0Udi0x0QAHz1FfDQQ0pX5FTcLg9UITVnglPNiYiIiIiUUFAAPPaYeKh548ZKV0NENuJUc1KE0WjEgQMHVDllkByDmSA5ZoKkmAeSc/lMXLwIvPwyULJ9Pj7A0qVsusvg8nkgm6k5EzzUnOxGEATk5+ercsogOQYzQXLMBEkxDyTn0pn45Rfg0UeB9HTx0PLXX1e6Iqfn0nmgKlFzJrjHm4iIiIjIUYxG4M03xSnl6elAq1bA0KFKV0VE1Yx7vImIiIiIHOHiReDhh4Ht28Xbjz0mDlTz9VWyKiJSABtvshudToe4uDjodDqlSyEnwUyQHDNBUswDyblUJv74Axgy5Oah5fPni004VZpL5YHsQs2ZYONNdqPRaBASEqJ0GeREmAmSYyZIinkgOZfKREgIkJ0tHlq+ahXQpInSFamOS+WB7ELNmeA53mQ3BoMBe/bsgcFgULoUchLMBMkxEyTFPJCc6jNRWHjz761aAVu3Art2semuItXngexOzZlg4012pcbR/uRYzATJMRMkxTyQnGoz8euvQMOGYqNdomtXns99i1SbB3IYtWaCjTcRERERUVUZjcDUqcBddwGpqcC77ypdERE5IZ7jTURERERUFRcvAo88AmzbJt4ePx74+GNlayIip6QR1Hj18VuQnZ2N4OBgZGVlISgoSOlyXErJBe19fX2h0WiULoecADNBcswESTEPJKeqTPz2m9h0X74M+PuLU8sfeUTpqlyKqvJA1cLZMmFLb8k93mRXXl5eSpdAToaZIDlmgqSYB5JTRSZ27gT69AEEAWjRAli9GoiLU7oql6SKPFC1UmsmeI432Y3RaERiYqJqBx6Q/TETJMdMkBTzQHKqycQddwD33w+MGwfs3s2m20FUkweqNmrOBPd4ExERERFV5M8/gdtuAwIDAY1GvDa3Sve8EVH14x5vIiIiIqKyGI3A9OlA9+7AE0+Ih5cDbLqJyCbc401EREREVJrLl8WBab/9Jt729QUMBsDTU9m6iEh1ONWc7EYQBBiNRuh0OqeYMkjKYyZIjpkgKeaB5JwqE7//Ljbdly4Bfn7AvHnA//2fsjW5GafKAzkFZ8uELb0lDzUnuyoqKlK6BHIyzATJMRMkxTyQnOKZKDm0/M47xaa7RQsgMZFNt0IUzwM5HbVmgo032Y3RaMTBgwdVOWWQHIOZIDlmgqSYB5Jzikxcvy7u3RYEYOxYcWp506bK1ePGnCIP5FTUnAme401EREREVKJmTWD5cuDff4ERI5SuhohcBBtvIiIiInJfRiPw7rtAkybAsGHisp49la2JiFwOG2+yK51Op3QJ5GSYCZJjJkiKeSC5as2EdGp5QADQowcQGVl9r08V4mcEyak1E5xqTkRERETuZ9s24OGHb04tnzuXh5YTkU041ZwUIQgCMjMz4Wbf5VA5mAmSYyZIinkguWrJhNEIvP32zanlzZuLU8vZdDsdfkaQnJozwcab7MZoNOLYsWOqnDJIjsFMkBwzQVLMA8k5PBMGA9C/P/Dmm4DJBIwZA/zzD6eWOyl+RpCcmjPBxpuIiIiI3IOHB9CqlXho+ZIlwMKF4t+JiByMjTcRERERuS6TSbw2d4mEBCApiYeWE1G1YuNNdqPRaODr6wuNRqN0KeQkmAmSYyZIinkgObtnIj0d6NcPuOceoLhYXObpCTRubJ/nJ4fiZwTJqTkTnGpORERERK5n+3ZxavnFi+Lh5Nu3A+3bK10VEbkQTjUnRZhMJqSnp8NkMildCjkJZoLkmAmSYh5Izi6ZMJmAd94BevcWm+5mzYA9e9h0qxA/I0hOzZlg4012YzKZcObMGVX+IpBjMBMkx0yQFPNAcreciZJDy994Q2zAR44Up5Y3a2bfQqla8DOC5NScCQ+lCyAiIiIisouRI4FffgF8fYEvvgBGjVK6IiIiANzjTURERESu4qOPgA4dxEPL2XQTkRNh4012o9FoEBwcrMopg+QYzATJMRMkxTyQnM2ZSE8HVqy4ebtJE2DXLqB5c8cUSNWKnxEkp+ZMcKo5EREREanPH38Aw4cDly4Bv/0G9OihdEVE5GY41ZwUYTKZkJqaqsphB+QYzATJMRMkxTyQXKUyYTIBM2YAPXsCaWniXu7w8OorkqoNPyNITs2ZYONNdqPmXwRyDGaC5JgJkmIeSK7CTGRkAP37A6+9JjbgI0aI53Pz0HKXxM8IklNzJjjVnIiIiIicX8mh5WlpnFpORKrDxpuIiIiInN+xY2LTHRcHrF4NtGihdEVERJXGxpvsRqvVIjw8HFotz2AgETNBcswESTEPJGeVCUEASqYXjx8vHl7+6KNAQIByRVK14WcEyak5E4pWnJCQgPbt2yMwMBAREREYOHAgjh8/XuHjVq9ejbi4OPj4+KBly5bYvHlzNVRLFdFqtYiNjVXlLwI5BjNBcswESTEPJGeRiT//BLp1A65fF+/UaIAnnmDT7Ub4GUFyas6EohX/73//w4QJE7Br1y788ssvKC4uxl133YUbN26U+Zi///4bw4cPx9ixY5GUlISBAwdi4MCBOHz4cDVWTqUxmUw4ffq0KocdkGMwEyTHTJAU80ByJpMJp0+ehKlkavmOHcC0aUqXRQrhZwTJqTkTijbeW7ZswahRo9C8eXO0bt0aixcvxvnz57F3794yH/Pxxx+jX79+mDx5Mpo2bYq3334bbdq0wWeffVaNlVNpTCYTMjIyVPmLQI7BTJAcM0FSzAPJmS5fRo3/+z9oX3sNMBrFw8rffVfpskgh/IwgOTVnwqnO8c7KygIAhIWFlbnOzp078fzzz1ss69u3LzZs2FDq+oWFhSgsLDTfzs7OBgAYDAYYDAYA4iELWq0WJpPJ4k0sWW40GiEIQoXLdTodNBqN+XmlywHAaDRWarmHhwcEQbBYrtFooNPprGosa7kS21TyWEEQrNZX6zaVt5zbVPE2ldRpNBpdZptc8X2qzm0q+YxwpW1yxfeJnxF8nxTZph07oHvkEYSkpUHw8YHp448hjB4NaDTwANS5TeUsV+37VI3bxM8IbpOz/3+ELZym8TaZTJg0aRI6d+6MFuVMqbx06RIiIyMtlkVGRuLSpUulrp+QkIDp06dbLU9KSoK/vz8AIDw8HLGxsUhJSUFGRoZ5Hb1eD71ejxMnTpi/FACAmJgYRERE4PDhw8jPzzcvj4uLQ0hICJKSkize9FatWsHLywuJiYkWNbRr1w5FRUU4ePCgeZlOp0P79u2RlZWFY8eOmZf7+vqidevWuHLlCs6cOWNeHhwcjKZNmyItLQ2pqanm5UpsU0kQCwoKcOTIEZfYJsD13qfq3Kb09HRkZmZi3759qFevnktskyu+T9W5TfHx8TCZTNi3bx80/w1MUvs2ueL7xM8Ivk/VvU1h27ah0RtvQGM0Ii8qCifffRf5DRsCe/eqdptc8X2q7m3iZwS3ydn/P8LHxweVpRGkbbuCnnzySfz000/YsWMH9Hp9met5eXlhyZIlGD58uHnZF198genTp+Py5ctW65e2x7tevXq4evUqgoKCAPBbKHttk8lkwuXLl1GnTh3IY6XWbSpvObep4m0yGAy4dOkSatWqBQ8PD5fYJld8n6pzmzQaDdLS0hAZGWnxTbGat8kV3yd+RvB9qvZtunoVuvbtIXTtirQ33kBETAw/I7hN/IzgNjn9/0fk5uYiODgYWVlZ5t6yLE7ReE+cOBHff/89/vjjD0RHR5e7blRUFJ5//nlMmjTJvGzq1KnYsGEDDhw4UOFrZWdnV/qHQ0REREQOcvw40LjxzcuFpacD4eE3bxMROTlbektFh6sJgoCJEydi/fr1+P333ytsugGgY8eO+O233yyW/fLLL+jYsaOjyqRKMhqNSE5OtvpmitwXM0FyzARJMQ9uymQCZs0CmjcHFi26uTwiAkaTiZkgM35GkJyaM6Fo4z1hwgR8++23WL58OQIDA3Hp0iVcunTJ4rj/ESNG4JVXXjHffvbZZ7FlyxbMmTMHx44dw7Rp05CYmIiJEycqsQkkIQgCsrKyrA4zJ/fFTJAcM0FSzIMbunIFuPde4OWXxanlu3ZZ3M1MkBTzQHJqzoSijffcuXORlZWFHj16oHbt2uY/K1euNK9z/vx5XLx40Xy7U6dOWL58Ob788ku0bt0aa9aswYYNG8odyEZERERECvvrL+C224CffgJ8fIAFC4D585WuioioWig61bwy31Rs377datmQIUMwZMgQB1RERERERHZlMgHvvQeUXJu7cWNg9WqgVSulKyMiqjaK7vEm16LVahEjm0JK7o2ZIDlmgqSYBzeRlAS88orYdD/8MJCYWGbTzUyQFPNAcmrOhFNMNa9OnGpOREREVM1mzBAnlo8bx6nlROQyVDPVnFyL0WjEgQMHVDllkByDmSA5ZoKkmAcXZTIBH3wAnDp1c9mrrwLjx1fYdDMTJMU8kJyaM8HGm+xGEATk5+ercsogOQYzQXLMBEkxDy7oyhXgvvuAF14Ahg4FiopsejgzQVLMA8mpOROKDlcjIiIiIhfx11/AQw8Bqani1PKnngI8PZWuiojIKXCPNxERERFVnckEzJ4NdO8uNt2NGwO7d/N8biIiCe7xJrvR6XSIi4uDTqdTuhRyEswEyTETJMU8uICsLOCRR4AffxRvDx8uXps7MLBKT8dMkBTzQHJqzgQbb7IbjUaDkJAQpcsgJ8JMkBwzQVLMgwvw9QXS0wFvb+CTTyo1QK08zARJMQ8kp+ZM8FBzshuDwYA9e/bAYDAoXQo5CWaC5JgJkmIeVMpkEq/JDQBeXsCqVeKh5Y89dsuHljMTJMU8kJyaM8HGm+xKjaP9ybGYCZJjJkiKeVCZq1eBAQOA11+/uaxBA6B1a7u9BDNBUswDyak1E2y8iYiIiKhiO3cC8fHApk3Axx8DaWlKV0REpBpsvImIiIiobIIAzJkDdOsG/Psv0KgR8PffQJ06SldGRKQaGkGNVx+/BdnZ2QgODkZWVhaCgoKULsellFzQ3tfXFxpePoTATJA1ZoKkmAcVuHoVGDVK3MsNAMOGAV9+CTjo/6GYCZJiHkjO2TJhS2/JqeZkV15eXkqXQE6GmSA5ZoKkmAcnZjSKe7mPHhWnln/8sV0GqFWEmSAp5oHk1JoJHmpOdmM0GpGYmKjagQdkf8wEyTETJMU8ODmdDnj1VaBhQ2DXLuDxxx3edDMTJMU8kJyaM8HGm4iIiIhE164B+/ffvP3II8ChQ8BttylVERGRS2DjTURERETiXu34eOCee4CMjJvLfXyUq4mIyEWw8SYiIiJyZyVTy7t2Bc6fB/z8gCtXlK6KiMilcKo52Y0gCDAajdDpdE4xZZCUx0yQHDNBUu6Yh5yCYqRez0dugQEBPh7Qh/oi0MdTuYKuXROnlv/wg3jbwVPLK+KOmaCyMQ8k52yZ4FRzUkxRURF8fX2VLoOcCDNBcswESblTHs5fzcO6pFRczi40L4sM8sageD2iavhVf0G7domN9vnz4tTyjz6qlgFqFXGnTFDFmAeSU2smeKg52Y3RaMTBgwdVOWWQHIOZIDlmgqTcKQ85BcVWTTcAXM4uxLqkVOQUFFd/UZ9+KjbdDRsCO3cCTzyheNPtTpmgijEPJKfmTHCPNxEREZGDpV7Pt2q6S1zOLkTq9Xw0rV3Nh5zPnQtERADTpyt2aDkRkbvgHm8iIiIiB8stMNzS/Xbxzz/As8+Kw9QAsdn+8EM23URE1YB7vMmudDqd0iWQk2EmSI6ZICl3yUOAT/n/y1XR/bdEEICPPwamTAGKi4FWrYCxYx33erfIXTJBlcM8kJxaM8Gp5kREREQOllNQjIU7Uko93DwyyBtju0Q7Zrr59evA6NHA99+Lt4cMAb76CggOtv9rERG5GVt6Sx5qTnYjCAIyMzPhZt/lUDmYCZJjJkjKnfIQ6OOJQfF6RAZ5WyyPDPLGoDZ6xzTd//wDxMeLTbeXF/D558DKlU7ddLtTJqhizAPJqTkTbLzJboxGI44dO6bKKYPkGMwEyTETJOVueYiq4YexXaIxomN9DIqvixEd62Nsl2hEhTngUmJffw106QKcOwfExIhTy596SvGp5RVxt0xQ+ZgHklNzJniONxEREVE1CfTxrJ7p5U2aACYT8OCDwIIFTr2Xm4jIHbDxJiIiInIFWVk3G+zOnYE9e4DbbnP6vdxERO6Ah5qT3Wg0Gvj6+kLDf+DpP8wEyTETJMU82EnJ1PIGDYAjR24uj49XXdPNTJAU80Byas4Ep5oTERERqdX168CYMcCGDeLtKVOAWbMULYmIyF1wqjkpwmQyIT09HSaTSelSyEkwEyTHTJAU83CL9uwB2rQRm24vL+Czz4CZM5Wu6pYwEyTFPJCcmjPBxpvsxmQy4cyZM6r8RSDHYCZIjpkgKeahigQB+OQT8Tzus2fFqeV//w1MmKC6Q8vlmAmSYh5ITs2ZYONNREREpCbLlwPPPgsUFwODBwP79gFt2ypdFRERlYONNxEREZGaDBsG9OkDfPopsHo1LxVGRKQCvJwY2Y1Go0FwcLAqpwySYzATJMdMkBTzUEmCACxbBgwZAnh7Ax4ewM8/q/6w8tIwEyTFPJCcmjNR5anmRUVFpZ7YHhUVZZfCHIVTzYmIiEg1MjPFqeXr1wNPPy2e201ERE7BoVPNT548ia5du8LX1xf169dHdHQ0oqOj0aBBA0RHR1e5aFI/k8mE1NRUVQ47IMdgJkiOmSAp5qECJVPL168HPD2BRo2UrsjhmAmSYh5ITs2ZsPlQ81GjRsHDwwObNm1C7dq1Vbmbnxyj5BehVq1a0Go5PoCYCbLGTJAU81AGQRAvDfbCC+IAtehoYNUqoF07pStzOGaCpJgHklNzJmxuvPfv34+9e/ciLi7OEfUQERERua/MTGDsWGDdOvH2oEHAwoVASIiSVRER0S2y+WuCZs2a4cqVK46ohYiIiMi9XbsG/PqreGj5J58Aa9aw6SYicgE27/GeNWsWpkyZghkzZqBly5bw9PS0uJ8Dy9yXVqtFeHi46g77IMdhJkiOmSAp5qEUMTHAd98B4eFA+/ZKV1PtmAmSYh5ITs2ZsHmqeclGys/tFgQBGo0GRqPRftU5AKeaExERkdPIygLGjxcPL+/bV+lqiIjIBrb0ljbv8d62bVuVCyPXZjKZkJKSgujoaFV+C0X2x0yQHDNBUm6fh717gaFDgTNngL//Bk6fFq/T7cbcPhNkgXkgOTVnwubGu3v37o6og1yAyWRCRkYG6tevr7pfBHIMZoLkmAmScts8CALwxRfA888DRUVAgwbi1HI3b7oBN84ElYp5IDk1Z8LmxhsAMjMzsXDhQiQnJwMAmjdvjjFjxiA4ONiuxRERERG5lKwsYNw4cWgaADzwAPD11xygRkTk4mz+miAxMRGxsbH48MMPce3aNVy7dg0ffPABYmNjsW/fPkfUSERERKR+164BbduKTbenJ/DRR8DatWy6iYjcgM17vJ977jncf//9+Oqrr+DhIT7cYDBg3LhxmDRpEv744w+7F0nqoNVqodfrVXfYBzkOM0FyzARJuV0ewsKArl0BoxFYuRLo0EHpipyO22WCysU8kJyaM2HzVHNfX18kJSUhLi7OYvnRo0fRrl075OXl2bVAe+NUcyIiIqo2WVliox0WJt7OywMKC4HQUGXrIiKiW2ZLb2nzVwVBQUE4f/681fJ///0XgYGBtj4duRCj0Yjk5GSnv6QcVR9mguSYCZJy+Tzs2we0aQM8+ihgMonL/PzYdJfD5TNBNmEeSE7NmbC58R42bBjGjh2LlStX4t9//8W///6LFStWYNy4cRg+fLgjaiSVEAQBWVlZsPEgCnJhzATJMRMk5bJ5KJla3rGjeKmw5GQgLU3pqlTBZTNBVcI8kJyaM2HzOd7vv/8+NBoNRowYAYPBAADw9PTEk08+iZkzZ9q9QCIiIiLVyMoCxo8HVq8Wbw8YACxaxL3cRERuzubG28vLCx9//DESEhJw+vRpAEBsbCz8/PzsXhwRERGRauzbBwwdCpw+DXh4AO+9Bzz7LKDRKF0ZEREprErX8QYAPz8/tGzZ0p61kMpptVrExMSocsogOQYzQXLMBEm5VB5MJvFc7tOngfr1xanlt9+udFWq41KZoFvGPJCcmjNRqanmgwYNwuLFixEUFIRBgwaVu+66devsVpwjcKo5EREROcTevcDMmcD8+TenmBMRkcuy+1Tz4OBgaP47TCo4OLjcP+S+jEYjDhw4oMopg+QYzATJMRMkpfo8JCUBy5ffvN22rXhuN5vuKlN9JsiumAeSU3MmKnWo+aJFi0r9O5GUIAjIz89X5ZRBcgxmguSYCZJSbR4EAZg3D5g0SbwdFydeNoxumWozQQ7BPJCcmjNh88Hx+fn5yMvLM98+d+4cPvroI2zdutWuhRERERE5nexsYPhw4KmngKIioF8/oEEDpasiIiInZ3PjPWDAACxduhQAkJmZiQ4dOmDOnDkYMGAA5s6da/cCiYiIiJzC/v3i4eQrV4pTy+fMATZs4KHlRERUIZsb73379qFr164AgDVr1qBWrVo4d+4cli5dik8++cTuBZJ66HQ6xMXFQafTKV0KOQlmguSYCZJSVR6++gq44w7g1CkgKgr480/g+ed5qTA7U1UmyOGYB5JTcyZsvpxYXl4eAgMDAQBbt27FoEGDoNVqcccdd+DcuXN2L5DUQ6PRICQkROkyyIkwEyTHTJCUqvJw5QpQWAjcdx+weDH3cjuIqjJBDsc8kJyaM2HzHu+GDRtiw4YN+Pfff/Hzzz/jrrvuAgCkp6fz8lxuzmAwYM+ePTAYDEqXQk6CmSA5ZoKknD4P0qm5L70kHmL+/fdsuh3I6TNB1Yp5IDk1Z8LmxvvNN9/Eiy++iAYNGuD2229Hx44dAYh7v+Pj4+1eIKmLGkf7k2MxEyTHTJCUU+ZBEMRrcd9xB1AyUFarBYYO5aHl1cApM0GKYR5ITq2ZsPlQ8wcffBBdunTBxYsX0bp1a/Py3r1744EHHrBrcURERETVKjsbePxxYMUK8fbChcDTTytbExERqZ7NjTcA1KpVC7Vq1QIAZGdn4/fff0eTJk0QFxdn1+KIiIiIqs3+/eJe7ZMnxanls2YBEycqXRUREbkAjWDj1ceHDh2Kbt26YeLEicjPz0fr1q1x9uxZCIKAFStWYPDgwY6q1S6ys7MRHByMrKwsnpNuZyUXtPf19YWGh+IRmAmyxkyQlNPkQRCAL78Enn1WHKBWr554Pvd/p9NR9XGaTJBTYB5IztkyYUtvafM53n/88Yf5cmLr16+HIAjIzMzEJ598gnfeeadqFZPL8PLyUroEcjLMBMkxEyTlFHlISACeeEJsuu+5B0hKYtOtIKfIBDkN5oHk1JoJmxvvrKwshP03zXPLli0YPHgw/Pz8cM899+DkyZN2L5DUw2g0IjExUbUDD8j+mAmSYyZIymnyMGIEUKsW8N57wMaNQI0aytbjxpwmE+QUmAeSU3MmbD7Hu169eti5cyfCwsKwZcsWrPhv+Mj169fh4+Nj9wKJiIiI7EoQgF27bu7V1uvF87oDApSti4iIXJbNe7wnTZqERx55BHq9HnXq1EGPHj0AiIegt2zZ0t71EREREdlPTg7wyCNAp07Ahg03l7PpJiIiB7J5j/dTTz2FDh064N9//0WfPn2g1Yq9e0xMDM/xJiIiIud18CAwZAhw4gSg0wGpqUpXREREbsLmqeZqx6nmjiMIAoxGI3Q6nVNMGSTlMRMkx0yQVLXlQRCABQuAZ54BCgrEQ8tXrhT3epNT4WcESTEPJOdsmbClt6zUHu/nn38eb7/9Nvz9/fH888+Xu+4HH3xQ+UrJ5RQVFcHX11fpMsiJMBMkx0yQlMPzkJMjTixfvly8fffdwNKlHKDmxPgZQVLMA8mpNROVOsc7KSkJxcXF5r+X9Wf//v2OrJWcnNFoxMGDB1U5ZZAcg5kgOWaCpKolD9u2iU23TgfMng388AObbifGzwiSYh5ITs2ZqNQe723btpX6dyIiIiKndv/9wPTpQO/eQOfOSldDRERuyuap5kREREROKzcXmDABSEu7uezNN9l0ExGRomyeal5QUIBPP/0U27ZtQ3p6Okwmk8X9+/bts1txpD46nU7pEsjJMBMkx0yQlF3zcPAgMHQocPy4OLl861bACYbvkG34GUFSzAPJqTUTNk81f+SRR7B161Y8+OCDiIyMtJomN3XqVLsWaG+cak5ERORiBAFYuBB4+umbU8tXrOBebiIicii7TzWX2rRpEzZv3ozO/MeMZARBQFZWFoKDg51ivD8pj5kgOWaCpOySh9xc4MkngW+/FW/ffTewZAlQs6b9CqVqw88IkmIeSE7NmbD5HO+6desiMDDQEbWQyhmNRhw7dkyVUwbJMZgJkmMmSOqW83DmDNCundh063TAzJni1HI23arFzwiSYh5ITs2ZsLnxnjNnDl566SWcO3fOEfUQERERVU5kJKDVAnXrAtu3Ay+9JN4mIiJyMjYfat6uXTsUFBQgJiYGfn5+8PT0tLj/2rVrdiuOiIiIyMKNG4Cvr9hg+/sD338PhIZyLzcRETk1mxvv4cOH48KFC5gxY0apw9XIfWk0Gvj6+jITZMZMkBwzQVI25+HQIWDIEGDsWGDyZHFZo0aOK5CqHT8jSIp5IDk1Z8LmqeZ+fn7YuXMnWrdu7aiaHIpTzYmIiFRGEICvvwYmThSnltevDyQni3u+iYiIFGJLb2nziVBxcXHIz8+vcnHkukwmU6nXdif3xUyQHDPhHnIKipF8MRt7Uq4h+WI2cgqKS12vUnnIzQVGjADGjROb7n79gD172HS7KH5GkBTzQHJqzoTNjffMmTPxwgsvYPv27bh69Sqys7Mt/pD7MplMOHPmjCp/EcgxmAmSYyZc3/mreVi4IwVLd57DuqQLWLrzHBbuSMH5q3lW61aYh8OHgfbtb04tT0gAfvwRCA938FaQUvgZQVLMA8mpORM2n+Pdr18/AEDv3r0tlguCAI1Go8rR7kRERHTrcgqKsS4pFZezCy2WX84uxLqkVIztEo1AH88yHi2TmQl06QJkZYlTy7/7Duja1f5FExERVQObG+9t27Y5og4iIiJSudTr+VZNd4nL2YVIvZ6PprUr2XiHhADTpwNbtgBLl3IvNxERqZrNjXf37t3t9uJ//PEH3nvvPezduxcXL17E+vXrMXDgwDLX3759O3r27Gm1/OLFi6hVq5bd6qKq0Wg0CA4OVuWUQXIMZoLkmAnXlltgsOl+qzwcPgyYTECrVuLtZ54Bnn6a1+Z2I/yMICnmgeTUnIlK/0s2e/Zsi6Fqf/31FwoLb36rnZOTg6eeesqmF79x4wZat26Nzz//3KbHHT9+HBcvXjT/iYiIsOnx5Bg6nQ5NmzaFTqdTuhRyEswEyTETri3Ap/zv8+X3W+Rh0SKgQwfgwQeBkpkxGg2bbjfDzwiSYh5ITs2ZqPS/Zq+88gpycnLMt/v3748LFy6Yb+fl5WH+/Pk2vXj//v3xzjvv4IEHHrDpcREREahVq5b5j5b/KDsFk8mE1NRUVQ47IMdgJkiOmXBt+lBfRAZ5l3pfZJA39KGWk8hNJhMunDgBYeRIYMwYID8fiIkBikufgk6uj58RJMU8kJyaM1HpjlV+uW8bL/9tV7fddhtq166NPn364K+//lKsDrKk5l8EcgxmguSYCdcW6OOJQfF6q+Y7Msgbg9rorQarmQ4dQmjfvtAsXSru2Z4xA9i8GahRozrLJifCzwiSYh5ITs2ZsPkcbyXVrl0b8+bNQ7t27VBYWIgFCxagR48e2L17N9q0aVPqYwoLCy0OiS+55JnBYIDBIJ5rptVqodVqYTKZLN7EkuVGo9Hii4aylut0Omg0GvPzSpcDsJr4XtZyDw8PCIJgsVyj0UCn01nVWNZyJbap5LGCIFitr9ZtKm85t6nibSqp02g0usw2ueL7VJ3bVPIZ4Urb5Irv061sU51gL4zqGIULmfnIKxLg76VFnRAfBHh7wGAw3Nymr7+GbuJE+OXnQ6hTB8KyZdD26CHWLqnTGbapouVqfJ+cdZv4GcFt4v9HcJvKq93ZPiNsoarGu0mTJmjSpIn5dqdOnXD69Gl8+OGH+Oabb0p9TEJCAqZPn261PCkpCf7+/gCA8PBwxMbGIiUlBRkZGeZ19Ho99Ho9Tpw4gaysLPPymJgYRERE4PDhwxbnvcfFxSEkJARJSUkWb3qrVq3g5eWFxMREixratWuHoqIiHDx40LxMp9Ohffv2yMrKwrFjx8zLfX190bp1a1y5cgVnzpwxLw8ODkbTpk2RlpaG1NRU83IltqkkiAUFBThy5IhLbBPgeu9TdW5Teno6MjMzsW/fPtSrV88ltskV36fq3Kb4+HiYTCbs27fPPBhF7dvkiu+TvbapfdOmSE1NxbFDN9cPDw9HbHQ0Cr7+Gn75+cho0wZn33oLtRs2hB5w+m1yxffJmbaJnxHcJv5/BLepvG1yts8IHx8fVJZGqOQx41qtFu+88w4CAgIAAC+99BImT56MmjVrAhCHq7355ptVvo63RqOpcKp5aSZPnowdO3Zg586dpd5f2h7vevXq4erVqwgKCgLAb6HstU0mkwnnz59HdHS01akIat2m8pZzmyreJoPBgHPnzqF+/frw8PBwiW1yxfepOrdJo9EgJSUFUVFRFt8Uq3mbXPF9qpZtunQJpiVLkDJwIOpHR/MzgttkroefEdwm/n8Et0ktnxG5ubkIDg5GVlaWubcsS6Ub7wYNGlRqbHtKSkplns66kCo23n369EFgYCDWrVtXqfWzs7Mr/cMhIiIiO1m8GNi/H/joI4ULISIisg9bestKH2p+9uzZW63LSm5uLk6dOmW+nZKSgv379yMsLAxRUVF45ZVXcOHCBSxduhQA8NFHHyE6OhrNmzdHQUEBFixYgN9//x1bt261e21kO5PJhJSUFERHR9t8zgO5JmaC5JgJN3TjBjBhArBkiXj7nnuAPn0AMA9kjZkgKeaB5NScCUWrTUxMRHx8POLj4wEAzz//POLj4/Hmm28CAC5evIjz58+b1y8qKsILL7yAli1bonv37jhw4AB+/fVX9O7dW5H6yZLJZEJGRobFoRnk3pgJkmMm3MzRo+K1uZcsEaeWv/MOIPk3m3kgOWaCpJgHklNzJhQdrtajR49yL0u2ePFii9tTpkzBlClTHFwVERER3bIlS4CnngLy8oDatYHvvgO6d1e6KiIiIkWoa/88EREROb8XXgBGjRKb7j59xHO72XQTEZEbY+NNdqPVaqHX61V3vgU5DjNBcsyEm+jVC9DpxEPLt2wBIiJKXY15IDlmgqSYB5JTcyYqPdXcVXCqORERkQNcuADUrXvzdkoKEB2tXD1EREQOZktvWamvCrKzsyv9h9yX0WhEcnJyla/lTq6HmSA5ZsIF5eUBY8YALVsC587dXF6Jppt5IDlmgqSYB5JTcyYqNVwtJCSkwmt4C4IAjUajyh8C2YcgCMjKyip3YB65F2aC5JgJF3P0KDB0KHDkiDi1fPt2YOTISj+ceSA5ZoKkmAeSU3MmKtV4b9u2zdF1EBERkZosXQo8+aS4x7tWLXFqeY8eSldFRETklCrVeHfnJFIiIiICxEb76aeBr78Wb995J/Dtt0BkpLJ1ERERObEqX8c7Ly8P58+fR1FRkcXyVq1a3XJRpE5arRYxMTGqnDJIjsFMkBwz4QLef19surVaYNo04NVXxQnmVcA8kBwzQVLMA8mpORM2TzXPyMjA6NGj8dNPP5V6v7Of482p5kRERLegoAAYNAiYPBno2VPpaoiIiBRj96nmUpMmTUJmZiZ2794NX19fbNmyBUuWLEGjRo2wcePGKhdN6mc0GnHgwAGn//KFqg8zQXLMhArl5QFz5gAl75mPD7B5s12abuaB5JgJkmIeSE7NmbD5UPPff/8d33//Pdq1awetVov69eujT58+CAoKQkJCAu655x5H1EkqIAgC8vPzVTllkByDmSA5ZkJljh0DhgwBDh8GcnLEQ8vtiHkgOWaCpJgHklNzJmze433jxg1EREQAAEJDQ5GRkQEAaNmyJfbt22ff6oiIiEgZ334LtGsnNt2RkUC3bkpXREREpFo2N95NmjTB8ePHAQCtW7fG/PnzceHCBcybNw+1a9e2e4FERERUjfLygHHjgP/7P+DGDaB3b2D/fqBXL6UrIyIiUi2bDzV/9tlncfHiRQDA1KlT0a9fPyxbtgxeXl5YvHixvesjFdHpdIiLi4OuitNtyfUwEyTHTDi548eBBx8U93JrNOKh5a+9VuWp5RVhHkiOmSAp5oHk1JwJm6eay+Xl5eHYsWOIiopCzZo17VWXw3CqORERURkOHgRuvx0IDgaWL+debiIionI4dKr5W2+9hby8PPNtPz8/tGnTBv7+/njrrbdsr5ZchsFgwJ49e2AwGJQuhZwEM0FyzIQTkn7/3qoVsHZttR1azjyQHDNBUswDyak5EzY33tOnT0dubq7V8ry8PEyfPt0uRZF6qXG0PzkWM0FyzIQTOXZMHKC2a9fNZXffDdSqVW0lMA8kx0yQFPNAcmrNhM2NtyAI0Gg0VssPHDiAsLAwuxRFREREDrZsmdh079sHPPus5Z5vIiIisqtKD1cLDQ2FRqOBRqNB48aNLZpvo9GI3NxcPPHEEw4pkoiIiOwkP19stL/6Srzds6d4PncpX6oTERGRfVR6uNqSJUsgCALGjBmDjz76CMHBweb7vLy80KBBA3Ts2NFhhdoLh6s5TskF7X19fUs9KoLcDzNBcsyEwo4fB4YMAQ4dEhvtN98E3njDYVPLK8I8kBwzQVLMA8k5WyZs6S0rvcd75MiRAIDo6Gh06tQJnp6et1YluSQvLy+lSyAnw0yQHDOhkORkoH178drcERHiXu7evZWuinkgK8wESTEPJKfWTNh8jnf37t2h1Wqxdu1avPPOO3jnnXewfv161Z7kTvZjNBqRmJjILJAZM0FyzISC4uLESeU9e4pTyx3UdOcUFCP5Yjb2pFxD8sVs5BQUl7ku80ByzARJMQ8kp+ZMVHqPd4lTp07h7rvvxoULF9CkSRMAQEJCAurVq4cff/wRsbGxdi+SiIiIquDECaB2bSAwUDy0fPlywNfXYYeWn7+ah3VJqbicXWheFhnkjUHxekTV8HPIaxIREamBzXu8n3nmGcTGxuLff//Fvn37sG/fPpw/fx7R0dF45plnHFEjERER2eq774C2bYEnnrg5sTwgwC5Nd2l7tXMKiq2abgC4nF2IdUmp5e75JiIicnU27/H+3//+h127dllcOqxGjRqYOXMmOnfubNfiiIiIyEb5+cCkScCXX4q309LEZX722eNc1l7tzrE1rZruEpezC5F6PR9Na3M+DBERuSeb93h7e3sjJyfHanlubq5qT3Qn+9DpdGjXrh10Ck3HJefDTJAcM+FgJ04Ad9whNt0lU8t//dVuTXd5e7WTL2Wj2Ggq87G5BQarZcwDyTETJMU8kJyaM1HpxvuPP/5AcXEx7r33Xjz22GPYvXs3BEGAIAjYtWsXnnjiCdx///2OrJVUoKioSOkSyMkwEyTHTDhIyaHlBw8C4eHAzz8D06fb9Xzu1Ov5Ze7VFgTgRqF1c10iwKf0g+yYB5JjJkiKeSA5tWai0o13z549cf36dXzyySeIjY1Fx44d4ePjAx8fH3Tu3BkNGzbExx9/7MhayckZjUYcPHhQlVMGyTGYCZJjJhwkJwd47jkgNxfo3l2cWt6nj91fprS91iWKDEbUDPQu9b7IIG/oQ32tljMPJMdMkBTzQHJqzkSlz/EW/hvMEhISgu+//x4nT57EsWPHAABNmzZFw4YNHVMhERERlS8wUJxYvm0bMHUq4GHzCJdKKWuvNQCcu5aPB9vUxfYTGdZTzdvoEejD87uJiMh92fQvs0ajMf+9UaNGaNSokd0LIiIiokpYsUJssB98ULzdq5f4x4H0ob6IDPIu9XDzmgFeiI0IQGxEAFKv5yO3wIAAHw/oQ33ZdBMRkduzqfEeNWoUvL1LP4ysxLp1626pIFI3NQ46IMdiJkiOmbhFBQXiYeXz5ol7utu2BaKjq+WlA308MSheX/q1uiV7tW2ZXs48kBwzQVLMA8mpNRMaoeQY8gpotVoMHToUvr7W52hJLVq0yC6FOUp2djaCg4ORlZWFoKAgpcshIiKqvJMngSFDgAMHxKnlr78uTi530KHlZckpKOZebSIicnu29JY2/Uv9ySefICIi4paKI9clCAKysrIQHBxscVoCuS9mguSYiVuwciUwbpw4QC08HFi2zCED1Coj0MfTLtfkZh5IjpkgKeaB5NSciUpPNVfbhlH1MxqNOHbsmCqnDJJjMBMkx0xUgSAATz0FPPSQw6eWVzfmgeSYCZJiHkhOzZmodONdySPSiYiIyJ40GsDP7+ah5b/+CtSpo3RVREREZINKH2q+bds2hIWFObIWIiIiKlFQAPj4iH9PSAAGDgS6dFG0JCIiIqqaSu/x7t69OzyqeXgLqYtGo4Gvry9PSyAzZoLkmIlKKCgQDy3v1QsoLhaXeXq6ZNPNPJAcM0FSzAPJqTkTlZ5q7io41ZyIiJzWqVPi1PL9+8VDyzdvBvr1U7oqIiIiKoUtvWWl93gTVcRkMiE9PR0mk0npUshJMBMkx0yUY9UqoE0bsemuWRP46SeXb7qZB5JjJkiKeSA5NWeCjTfZjclkwpkzZ1T5i0COwUyQHDNRioICYMIEYNgwICcH6NpVbL779lW6ModjHkiOmSAp5oHk1JyJSp20nZ2dXekn5OHbRERENnjsMeCbb8S/v/oqMH06wJkqRERELqVS/7KHhIRU+gR2NV5TjYiISDGvvQbs2AF88YXLH1pORETkrirVeG/bts3897Nnz+Lll1/GqFGj0LFjRwDAzp07sWTJEiQkJDimSlIFjUaD4OBgVU4ZJMdgJkiOmYB4aPn27Teb7CZNgBMn3HIvN/NAcswESTEPJKfmTNg81bx3794YN24chg8fbrF8+fLl+PLLL7F9+3Z71md3nGpORES3KqegGKnX85FbYECAjwf0ob4I9PGs+IGnT4tTyw8cAH77DejRw+G1EhERkWM4dKr5zp070a5dO6vl7dq1wz///GPr05ELMZlMSE1NVeWwA3IMZoLknCUTOQXFSL6YjT0p15B8MRs5BcWVfuz5q3lYuCMFS3eew7qkC1i68xwW7kjB+at55T9w9WpxanlSEhAWBhgMt7gV6ucseSDnwUyQFPNAcmrOhM2Nd7169fDVV19ZLV+wYAHq1atnl6JIndT8i0COwUyQnDNkosqNM8SGfV1SKi5nF1osv5xdiHVJqaU38IWFwMSJwNChQHY20KWL2Hzfeae9Nskmt/Klg705Qx7IuTATJMU8kJyaM2HzCWUffvghBg8ejJ9++gm33347AOCff/7ByZMnsXbtWrsXSEREZC8VNc5ju0SXe8h46vV8q8dKnyP1ej6a1pY8/vRpseHet0+8/corwFtvKXY+9/mreVbbHxnkjUHxekTV8FOkJiIiIndg8x7vu+++GydOnMB9992Ha9eu4dq1a7jvvvtw4sQJ3H333Y6okYiIyC4q0ziXJ7eg/MPDre7//Xex6a5RA/jpJ2DGDMWa7irtrSciIiK7qNK//vXq1cOMGTPsXQupnFarRXh4OLRam7/PIRfFTJCc0pmwuXGWCfAp/59Nq/vHjQPS04GRIwG9vlI1OorNe+urgdJ5IOfDTJAU80Byas5ElSr+888/8eijj6JTp064cOECAOCbb77Bjh077FocqYtWq0VsbKwqfxHIMZgJklM6EzY3zjL6UF9EBnmXel9kkDfqZV4EBg8Grl8XF2o04nW6FW66gVv/0sERlM4DOR9mgqSYB5JTcyZsrnjt2rXo27cvfH19sW/fPhQWit+eZ2VlcS+4mzOZTDh9+rQqhx2QYzATJKd0JipqnPWhvuU+PtDHE4Pi9VbPERnkjUdSExFwRwdg3Trg+eftVnNlVGZg2q1+6eAISueBnA8zQVLMA8mpORM2N97vvPMO5s2bh6+++gqenjcPSevcuTP2lQyPIbdkMpmQkZGhyl8EcgxmguSUzkR5jfOgNvpKXYs7qoYfxnaJxoiO9TEovi5GtqmFp9Z+jPDRj4hTyzt3Bt5+21GbYKWyU9pv9UsHR1A6D+R8mAmSYh5ITs2ZsPnr7ePHj6Nbt25Wy4ODg5GZmWmPmoiIiBympHFOvZ6P3AIDAnw8oA/1rVTTXSLQx1M8H/r0aWDYMGDvXvGOl18Wp5Z7Vs+50rZMaS/50qHUqeaV/NKBiIiIqsbmxrtWrVo4deoUGjRoYLF8x44diImJsVddREREDmNunG/Fn38C994r7uUOCwO++Qao5qt72DowzR5fOhAREZHtbG68x48fj2effRZff/01NBoN0tLSsHPnTrz44ot44403HFEjqYRWq4Ver1flsANyDGaC5FwqE82aAcHBQIsWwIoVQL161V5CVQam2eVLBztxqTyQXTATJMU8kJyaM2Fz4/3yyy/DZDKhd+/eyMvLQ7du3eDt7Y0XX3wRTz/9tCNqJJUo+UUgKsFMkJzqM5GeDoSHi9PKa9QAtm8XG+5qOrRczhkHptlC9Xkgu2MmSIp5IDk1Z8Lmrwo0Gg1ee+01XLt2DYcPH8auXbuQkZGBt6txkAw5J6PRiOTkZBiNRqVLISfBTJCcqjOxdi3QqBGwaNHNZTExijXdgHMOTLOFqvNADsFMkBTzQHJqzoTNjfeYMWOQk5MDLy8vNGvWDB06dEBAQABu3LiBMWPGOKJGUglBEJCVlQVBEJQuhZwEM0Fy1ZWJylxeq9IKC4FnnwUefFA8n/u77wAnybQ9prQriZ8RJMdMkBTzQHJqzoTNx6AtWbIEM2fORGBgoMXy/Px8LF26FF9//bXdiiMiIrLV+at5pU/ujtcjqoafbU+WkgIMHQokJoq3p0wB3nlHPNTcSXBgGhERkfOrdOOdnZ0NQRAgCAJycnLg4+Njvs9oNGLz5s2IiIhwSJFERESVYcvltSq0fj0wejSQlSVOLV+6FLjnHgdUfeucaWAaERERWat04x0SEgKNRgONRoPGjRtb3a/RaDB9+nS7FkfqotVqERMTo8opg+QYzATJOToTtl5eq0wnT4qHlptMQMeOwMqVikwtd3X8jCA5ZoKkmAeSU3MmKt14b9u2DYIgoFevXli7di3CwsLM93l5eaF+/fqoU6eOQ4okddBqtTzqgSwwEyTn6ExU5fJapWrUCHjjDSAvD3j3XUUHqLkyfkaQHDNBUswDyak5E5VuvLt37w4ASElJQVRUFDROdH4bOQej0YjDhw+jRYsW0Ol0SpdDToCZIDlHZ+KWLq+1YYN4Te6GDcXbU6c61bncroifESTHTJAU80Byas6Ezfvof//9d6xZs8Zq+erVq7FkyRK7FEXqJAgC8vPzVTllkByDmSA5R2eiSpfXKioCJk0CHnhAHKRWUCAuZ9PtcPyMIDlmgqSYB5JTcyZsbrwTEhJQs2ZNq+URERGYMWOGXYoiIiKqCpsvr5WSAnTpAnz8sXi7d29AZd+gExERkfOz+XJi58+fR3R0tNXy+vXr4/z583YpioiIqKoqfXmtDRvEqeWZmUBoKLBkCXDffUqUTERERC7O5sY7IiICBw8eRIMGDSyWHzhwADVq1LBXXaRCOp0OcXFxqjvfghyHmSC56spEuZfXKioCXnoJ+Ogj8fYdd4hTy6OiHFoTWeNnBMkxEyTFPJCcmjNh86Hmw4cPxzPPPINt27b9f3t3Ht5Enf8B/J076ZH0pLSkLS1nUYFyyrErKoqAroiKeCyouOquN66Ku/5E13XRFTzWRbwQVndXwRXwPlF0ERRKWxCkoFAphd60TXqkTWbm90e2cTq9IWky6fv1PH20k0ny/XbeHfrJzHwGgiBAEAR8/vnnuOOOOzB//vxAjJFUQqPR+G47RwQwE9RWyGTi66+9//3974GvvmLRHSQhkwcKGcwEyTEPpKTmTPS48H7kkUcwceJEnHvuubBYLLBYLDj//PNxzjnn8BrvPs7j8WDnzp3weLp5ux4Ke8wEKQU1Ey2NWIxGYP164J13gCee4K3Cgoj7CFJiJkiOeSAlNWeix6eaG41GrFu3Do888gh2794Ni8WCM844A+np6YEYH6mMIAjBHgKFGGaClHo9E83NwJIlgMkELFvmXTZwoPeLgo77CFJiJkiOeSAltWaix4V3i6FDh2Lo0KH+HAsREZF//fQTcMUVwI4d3tuDXXstMGxYsEdFREREfUy3Cu/FixfjkUceQWRkJBYvXtzpuk8++aRfBkZERHRK3n7bW2i3dC1fu5ZFNxEREQVFtwrvvLw8uN1u3/93RI0XuZP/6HQ6jBw5UpVdBikwmAlS6pVMtJxa/tRT3u8nTvR2LeclUSGH+whSYiZIjnkgJTVnQiNJLd1m+gaHwwGbzYba2lpYrdZgDyesSJIEQRCg0+n4IQwBYCaorYBnQpKA884DNm/2fr94sfe6bqPR/+9Fp4z7CFJiJkiOeSClUMtET2rLHnc1J+qIIAjIyclRbcMD8j9mgpQCnomW67hjYoBNm4AVK1h0hzDuI0iJmSA55oGU1JyJbp1qPnfu3G6/4IYNG056MERERD3W3OxtotbS8POaa4CZM4H4+KAOi4iIiKhFt45422w235fVasXmzZuRk5Pje3zXrl3YvHkzbDZbwAZKRETUxpEjwC9/CZx9NlBR8fNyFt1EREQUQrp1xHvNmjW+/7/vvvswb948PP/8876L2gVBwO9+9zteM01ERL3n3XeBhQuB6mrvqeUHDgCJicEeFREREVEbPW6ulpiYiK1bt2KY4pYsBw4cwOTJk1FVVeXXAfobm6sFTqg1O6DgYyZIyS+ZcLuB++/3Xr8NABMmeLuWDxzot3FS7+A+gpSYCZJjHkgp1DIR0OZqHo8HBQUFbZYXFBRAFMWevhyFmebm5mAPgUIMM0FKp5SJllPLW4ruxYuB//6XRbeKcR9BSswEyTEPpKTWTPS48L7uuuuwaNEiPPnkk9i6dSu2bt2KFStW4IYbbsB1110XiDGSSgiCgD179qiyyyAFBjNBSqeciUceAb75hl3LwwT3EaTETJAc80BKas5Et67xllu+fDn69++PFStWoKSkBACQnJyMe+65B3fffbffB0hEROSzYgVQX++9NzePchMREZFK9Ljw1mq1uPfee3HvvffC4XAAAK+VJiKiwCgqAlavBh56yHuPbpsNeP31YI+KiIiIqEd6fKo54L3O+7PPPsPrr7/uu6j9+PHjqKur8+vgSH1aOt0TtWAmSKnbmXjvPWD0aOBPfwJWrQromCh4uI8gJWaC5JgHUlJrJnrc1fzIkSO44IILUFRUhKamJhw8eBCZmZm444470NTUhOeffz5QY/ULdjUnIgpxbjfwhz8Ay5d7vx8/3tu1PCMjuOMiIiIikgloV/M77rgD48aNQ3V1NSwWi2/5JZdcgs2bN/d8tBQ2JElCTU0NevhZDoUxZoKUusxEURFw1lk/F9133AFs3cqiO0xxH0FKzATJMQ+kpOZM9Ljw/u9//4sHHngARkUX2YEDB+LYsWN+GxipjyAIKCgoUGWXQQoMZoKUOs3EJ58A2dnA9u3ea7k3bACefppdy8MY9xGkxEyQHPNASmrORI+bq4mi2O5Ei4uLER0d7ZdBERFRHxQZCdTWAuPGAevXt3uU2+lyo7i6EXUuD6LMethjLYg2G4IwWCIiIqLu63Hhff755+Ppp5/Giy++CADQaDSoq6vD0qVLMWvWLL8PkIiIwlhz889HtKdMAT7+GJg6FTCZ2qxaVNWADXnFKHM0+ZYlWU2Ym21HWnxEb42YiIiIqMd6fKr58uXL8fXXX2PEiBFwuVy46qqrfKeZP/744z16ra+++goXXXQRUlJSoNFosGnTpi6fs2XLFowZMwYmkwmDBw/G2rVrezoFChCNRgOLxeLrdE/ETJBSq0y8/z4weDCwb9/PK5x7brtFt9PlblN0A0CZowkb8orhdLkDPXQKAO4jSImZIDnmgZTUnIkeF96pqanYvXs3/vjHP+Kuu+5CdnY2HnvsMeTl5aFfv349eq36+nqMGjUKK1eu7Nb6hYWFmD17Ns4++2zk5+fjzjvvxA033ICPP/64p9OgANDpdBg1apRqW/yT/zETpKTT6TBqxAjo/vAH4MILgaNHgcce6/J5xdWNbYruFmWOJhRXN/p7qNQLuI8gJWaC5JgHUlJzJnp0qrnb7cbw4cPx3nvv4eqrr8bVV199Sm8+c+ZMzJw5s9vrP//888jIyMCKFSsAAFlZWdi6dSueeuopzJgx45TGQqdOFEVUVlYiISEBWu1J3SKewgwzQUrikSPwXH45jDt3ehfccQfQjbOl6lyeU3qcQhP3EaTETJAc80BKas5Ejwpvg8EAl8sVqLF0afv27Zg+fXqrZTNmzMCdd97Z4XOamprQ1PTzURKHwwEA8Hg88Hi8f6hptVpotVqIoghRFH3rtiwXBKFVy/qOlut0Omg0Gt/rypcDaNOUrqPler0ekiS1Wq7RaKDT6dqMsaPlwZiTIAg4dOgQYmNjW72nmufU2XLOqes5ud1uHDp0CDabDQaDISzmFI7bqbfmpPnwQ2ivvRbGEycg2WwQX3oJ0iWXeOcEdDqnCIMGWnjHKQGQoIUGEjTwjiXCoIEoitxOKpsT9xGck3LskiT5MiE/oqXmOYXjduI+gtuJ+wj0uPDvcXO1W265BY8//jhefvll6PU9fvopKS0tRVJSUqtlSUlJcDgcaGxsbHVf8RbLli3Dww8/3GZ5Xl4eIiMjAQCJiYkYNGgQCgsLUVFR4VvHbrfDbrfj4MGDqK2t9S3PzMxEv379sHfvXjQ2/nx64/DhwxETE4O8vLxWG33kyJEwGo3IyclpNYZx48ahubkZe/bs8S3T6XQYP348amtrUVBQ4FtusVgwatQoVFZW4vDhw77lNpsNWVlZOH78OIqLi33LgzGnliC6XC7sk12zqeY5AeG3nXpzTuXl5aipqUFubi5SU1PDYk7huJ16Y062b79F1v8+JHUOH44fHnkEzXY7kJPTrTlVFx3C6cYGNHlE1EtGFEtxiNPUI0FTB5Nei+qiBhQ29eN2UtmcuI/gnJRzys7OhiiKyM3N9V3DqfY5heN24j6C24n7CO+czGYzuksj9fDu45dccgk2b96MqKgonHHGGb7itcWGDRt68nI/D0SjwcaNGzFnzpwO1xk6dCiuu+463H///b5lH3zwAWbPno2GhoZ2C+/2jninpqaiqqoKVqsVAD+F8tecBEFAbm4uxo0b16bhgVrn1Nlyzql7n1Tn5uZizJgx/KS6r8/J44Hu/PMhjhqFnZddhuwzz+zxJ9XFJxrx9u5jKHM2+Y54J0UbcfHoAbDHWridVDgn7iM4p/aOZuXk5GDMmDEhcTSL24n7CG6n0JpTqO0j6urqYLPZUFtb66stO9LjQ9YxMTG49NJLe/o0v+jfvz/KyspaLSsrK4PVam236AYAk8kEUzsdcvV6fZsj9i0/VCX5Ru3O8o7OBOjJco1G0+7yjsbY0+WBmJNGo0FMTAy0Wm27r6PGOXW1nHPqfLler0dMTAz0er1vHbXPKRy3U8DmtGUL9JMmebuU6/XAp58Cej1sBw9Cr9e3ea2u5jSwXzSu/8WgLu/jze2knjlxH8E5KZcLguDLRE/3Eae6nNsp9ObEfQTnpIZ9RHf1uPBes2bNKb3hqZg0aRI++OCDVss+/fRTTJo0KUgjIjmdToesrKxgD4NCCDPRR7ndwP/9n7dp2m23AX/7m3e5yQQdcEqZiDYbkJVs6HpFUgXuI0iJmSA55oGU1JyJbl8RLooiHn/8cUyZMgXjx4/HkiVLWp2ffzLq6uqQn5+P/Px8AN7bheXn56OoqAgAcP/992PBggW+9W+++WYcPnwY9957LwoKCvDcc89h/fr1uOuuu05pHOQfoiiiuLi41akZ1LcxE+rmdLmxv8SBnYUnsL/E0b17ZR89Cpx99s+dyiUJkG3/rjJxUu9JqsV9BCkxEyTHPJCSmjPR7SPejz76KB566CFMnz4dFosFzzzzDMrLy/HKK6+c9Jvn5OTg7LPP9n2/ePFiAMDChQuxdu1alJSU+IpwAMjIyMD777+Pu+66C8888wzsdjtefvll3kosRLT8IvTv37/d0zOo72Em1KuoqgEb8opb3Ts7yWrC3Gw70uIj2n/SBx8ACxYAVVWA1QqsXg1cdlmrVdrLhNPl/t99ul2ocDahpqEZR040QhClrt+TVI37CFJiJkiOeSAlNWei24X3q6++iueeew433XQTAOCzzz7D7Nmz8fLLL5/0pKdNm9bqAnWltWvXtvucvLy8k3o/IqK+oqWY7exa6M6eqyy6AaDM0YQNecVYNDWj9WvJTy0HgDFjgPXrgUGDunyvlgK/uLoRBaUONDaLSI+PwLnD+2F/qbPj9yQiIiJSkW4X3kVFRZg1a5bv++nTp0Oj0eD48eOw2+0BGRwREfXcSR2tlvEefW5q97EyRxOKqxtbX2ddUgI8/7z3/2+9FVi+3NtQrQvyAr++yYPGZu9pY0eqGrC5oByTMuNwuLKh/fckIiIiUpFuH6r2eDxt7lNmMBjgdvP6O/LSarVITExU3WkfFDjMRO/r6mh1d66ZrnN5evZ4Whrwj394j3I/+2ynRbc8E/IC3y20vlbrSFUDjPqfu4d2NSZSJ+4jSImZIDnmgZTUnIluH/GWJAnXXnttq1tzuVwu3Hzzza3u5X2y9/Em9dNqtRjUjVNLqe9gJnpfj49WtyPK3Pk/DVF6AH/4A3DWWUBLj42LL+7W+OSZkBfTBl3bf0Cb3D/fi7OrMZE6cR9BSswEyTEPpKTmTHT7o4KFCxeiX79+sNlsvq9rrrkGKSkprZZR3yWKIg4dOqTKLoMUGMxE7+vx0ep22GMtSLK2f9Q6s7kGQ+b/Cli2DPj1r4Ha2h6NT54JeTEdadLDYmz9T5LJ4D3inWQ1wR5r6dH7kDpwH0FKzATJMQ+kpOZMdPsQQjDv303qIIoiKioqkJ6ersrTP8j/mIne1+XR6m4cOY42GzA3297mlPUJB77Fr1bcD11VJRAdDaxcCfTwA1d5JloK/DJHEww6LTLio1BYVedrsNbsEbzXpo+xs7FamOI+gpSYCZJjHkhJzZnguXtERGFEXswq9eTIcVp8BBZNzfB2Rq9zIePvf0XC31Z4H8zO9l7PPXjwKY1VWeBHmfUY3t8Kq1mPmaf3R7TZgAE96MZOREREFKpYeBMRhZGOjlafzJHjaLMBWTY3cMVlwH//6114yy3eruWKZpsnq1WBfxK3PiMiIiJSAxbe5DdarRZ2u111p31Q4DATweHXYjYiwns/7vx8YPVq4PLLT2ls7WUi2mzgrcL6KO4jSImZIDnmgZTUnAmNJElSsAfRmxwOB2w2G2pra2G1WoM9HCKi0OPxAA0NQMs+sqHBe69ulXYRJSIiIgqEntSW6vuogEKWIAjYv38/BEHoemXqE5gJFTp2DDjnHGD+fKClY2jLUW8/YCZIjnkgJWaC5JgHUlJzJniqOfmNJEmora1FHzuJgjrBTKjMxx8D11wDVP6va3lBATBihF/fgpkgOeaBlJgJkmMeSEnNmeARbyKivs7jAf74R+CCC7xF9+jRQG6u34tuIiIior6KR7yJiPqy48eBK68EvvrK+/1vfws8+aTfupYTEREREQtv8iOtVovMzExVdhmkwGAmQpwkAZdeCnzzjffU8pdeAq64IqBvyUyQHPNASswEyTEPpKTmTLCrORFRX7Zrl/fe3K+9BgwZEuzREBEREakGu5pTUAiCgN27d6uyyyAFBjMRfE6XG/tLHNhZeAL7SxyoO3wEePvtn1cYOxbYvr3Xim5mguSYB1JiJkiOeSAlNWeCp5qT30iShMbGRlV2GaTAYCaCq6iqARvyilHmaAIADN69HVf+7X5IDXXQbN8OjBnjXVGj6bUxMRMkxzyQEjNBcswDKak5Eyy8iYjCkNPl9hXdGkHAueufx9lvvQitJKEiczgsRjOigj1IIiIioj6ChTcRURgqrm5EmaMJ0dUVuOKpJRi0bycA4JvzL8f7192Lq+LtyAryGImIiIj6Chbe5Dc6nQ7Dhw+HTqcL9lAoRDATwVPn8mDw7u2Y98z9iK49gSZzBDb8din2TJ3pezwYmAmSYx5IiZkgOeaBlNScCRbe5DcajQYxMTHBHgaFEGYieKLMegw4tA/RtSdwfOAwvH73E6hMGdjq8WBgJkiOeSAlZoLkmAdSUnMm2NWc/Mbj8WDnzp3weIJzJI1CDzMRPPZYCwoW/BbvLFqCVX95rVXRnWQ1wR5rCcq4mAmSYx5IiZkgOeaBlNScCRbe5FdqbO1PgcVM9KJPPwWmTwcaGhBtNmDu2DQcnn8dPCazb5Ukqwlzx9gRbTYEbZjMBMkxD6TETJAc80BKas0ETzUnIlI7QQAefhj4858BSQKeeAJYuhRp8RFYNDUDxdWNqHN5EGXWwx5rCWrRTURERNQXsfAmIlKzkhLgqquALVu83990E3Dvvb6Ho80GZCWz0CYiIiIKJo2kxruPnwKHwwGbzYba2lpYrdZgDyestNzQ3mKxQKPRBHs4FAKYiQD77DPg6quB8nIgKgp48UXgyiuDPapOMRMkxzyQEjNBcswDKYVaJnpSW/KIN/mV0WgM9hAoxDATAfKPfwDXXec9tXzkSGD9emDYsGCPqluYCZJjHkiJmSA55oGU1JoJNlcjvxEEATk5OapteED+x0wE0LnnAnFxwI03At98o5qim5kgOeaBlJgJkmMeSEnNmeARbyKiEOd0uVFc3Qh3wUEYhg/1Nkiz24G9e4H+/YM9PCIiIiLqAo94ExGFsKKqBrzy5Y84dud9OH36ROQ8vQartxaiqKqBRTcRERGRSrDwJiIKUU6XGx9tzsOFv1+I6eufh1YUkV6QizJHEzbkFcPpcgd7iERERETUDexqTn4jSRIEQYBOpwuJLoMUfMzEqTmy/h3E3XQ9omuq0GS2YNNNDyL/l7N9jy+YlI6sZHXtx5gJkmMeSImZIDnmgZRCLRM9qS15xJv8qrm5OdhDoBDDTJwEQQAefhhp8+cguqYKpWmDsfLxN1oV3QBQ5/IEaYCnhpkgOeaBlJgJkmMeSEmtmWDhTX4jCAL27Nmjyi6DFBjMxEnasgV46CFoJAk7ps/Fc4/9CxX2jDarRZnV1x+TmSA55oGUmAmSYx5ISc2ZUN9fbURE4e7cc4F770Xj8CxsS50Mt6OpzSpJVhPssZYgDI6IiIiIeopHvImIgsjpcmN/cTWO3rcUP+Qf/Llh2uOPw3LdtZibbUeS1dTqOUlWE+aOsSPabAjCiImIiIiop3jEm/xKp9MFewgUYpiJjhVVNeCjz/NxziOLkfrdtzj0/odY/eSrmDs2DWnxEQCAtPgILJqageLqRtS5PIgy67338VZx0c1MkBzzQErMBMkxD6Sk1kywqzkRURA4XW58/PfXcf6jd8NaU+ntWn7j/yH/rAuRZDVh0dQMVRfXREREROGOXc0pKCRJQk1NDfrYZznUCWaiA4IA1/89hLn3XQdrTeXPXcvPuhAAUOZoQnF1Y5AHGRjMBMkxD6TETJAc80BKas4EC2/yG0EQUFBQoMougxQYzEQ7KiuBCy5A4vK/QCuK2HnuJe12LVfrrcK6wkyQHPNASswEyTEPpKTmTPAabyKi3mSxAMeOQbRE4D83/BF50y5qdzU13iqMiIiIiNrHv+yIiLrJ6XKfXJMzQQA0GkCrBSIjgf/8B43NHhyvNAO8VRgRERFR2GPhTX6j0WhgsVig0WiCPRQKEeGUiaKqBmzIK0aZrFBOspowN9vu60DerrIy4OqrgRkzgHvu8S4bMQKRAOZ29JphfKuwcMoEnTrmgZSYCZJjHkhJzZlgV3Mioi44XW6s3lrYqkBu0WkH8i++AK66CigtBWw2oLAQiI1t89rhdKswIiIior6CXc0pKERRRHl5OURRDPZQKESESyaKqxvbLbqBDjqQCwLwyCPA9Oneovu004Bt29oU3QAQbTYgK9mK8RlxyEq2hn3RHS6ZIP9gHkiJmSA55oGU1JwJFt7kN6Io4vDhw6r8RaDACJdMdNVhvNXj5eXAzJnAgw8Coghcfz2wYwcwYkSAR6kO4ZIJ8g/mgZSYCZJjHkhJzZngNd5ERF3oqsO473GXC+L4CdAWHYFgiUDZY08i+sbrw/4oNhERERF1jke8iYi6YI+1IMlqavcxeQfyonoRX82+GmX2Qfjbsn/hWftkrN5aiKKqht4cLhERERGFGBbe5DcajQY2m02VXQYpMMIlE9FmA+Zm29sU30lWEy5LNSK68Ec4XW5syCvGx+degb//9XWUpw4C4L0GfENeMZwudzCGHnLCJRPkH8wDKTETJMc8kJKaM8Gu5kRE3aTsQJ6+dyciFv4aiIrCgfc+x9q91R0+d8GkdGQlc59DREREFC7Y1ZyCQhRFFBcXq7LZAQVGuGXC14E8PQZZrzyLiAvOB0pKAIMBTSXlnT63qwZtfUW4ZYJODfNASswEyTEPpKTmTLDwJr9R8y8CBUZYZqKla/kDD3i7ll97LbBjBwxDB3f6tK4atPUVYZkJOmnMAykxEyTHPJCSmjPBwpuIqLu++grIzgY++QSwWIA1a7xfkZHdbsBGRERERH0PC28iou567DHg+HHvPbl37vQe7f6fzhqwzR1j5y3FiIiIiPownvtIfqPVapGYmAitlp/nkFfYZWLtWuAvf4Hz/x5CcbMWdYUnEGXWwx5rQbTZgLT4CCyamtGqAVvLY+QVdpmgU8I8kBIzQXLMAympORPsak5E1JGvvvKeVv7nP/sWFVU1YENeMcocTb5lSVYT5mbbkRYfEYxREhEREVEQsKs5BYUoijh06JAqmx1QYKg2E6II/OUvwNlnA48+CmzcCKfLjYISB17aehgHSp1wCz/Piffq7j7VZoICgnkgJWaC5JgHUlJzJlh4k9+IooiKigpV/iJQYKgyExUV3q7lf/yjtwBfsABHx07F6q2F2PnTCewtrkW5swk/VdajwunyFeBljiYUVzcGefChT5WZoIBhHkiJmSA55oGU1JwJXuNNRNTiq6+AK6/0NlCzWIDnnoNz/tV4a2shKuuakWIzo8zp8t2TW6fVICXGgsyEKESZ9bxXNxERERG1i0e8iYgA4NlnvaeWHz8ODB8O7NgBXHstiqsbUeZoQnqcBSca3K2Ka0GU4Gh0o7CqDm5B5L26iYiIiKhdLLzJb7RaLex2uyq7DFJgqCoTmZneU8t//WvvrcJOPx0AfIW2Ua9DYUU9BiZEQhAleEQJgihBkCQ0Nouw/q+DOXVOVZmggGMeSImZIDnmgZTUnAkeniG/aflFIGoR8plwOICWDpSzZ3sL7rFjAY3Gt0rLUewmt4CcIydwzvB+aPYIOFRRDwDwCBIGJJgx8/T+vG1YN4R8JqhXMQ+kxEyQHPNASmrOhPo+KqCQJQgC9u/fD0EQgj0UChEhmwlRBB57DBg8GDhy5Ofl48a1KroBwB5rQZLVBINeixP1zdiQW4yMhEgsmJSOBZPScfXENKQnRMCk1/XyJNQpZDNBQcE8kBIzQXLMAympORMsvMlvJElCbW0t+tit4akTIZmJykrv0e377/d2MP/XvzpdPdpswNxsOzQA0uIi4BYkfP1jFT7cW4o9xbV4d08JjtW4YNRzd9odIZkJChrmgZSYCZJjHkhJzZngqeZE1Hds3QrMnw8cOwaYzcDKlcB113X5tLT4CGSnxiDJasYH35XgeK0LoiihusGNtLgInJvVjx3NiYiIiKhDLLyJSHWcLjeKqxtR5/Ig6n9NzTq9vloUgSee8N6bWxC8XcvXrwfOOKPb72k06PD1oSqMtNswbmAcmtwCTAYdmj0C9pc4MSYt1g8zIyIiIqJwxMKb/Ear1SIzM1OVXQYpMAKRiaKqBmzIK0aZo8m3LMlqwtxsO9LiI9p/0qpVwJIl3v+/5hpg1So49SYUlzi6XbzbYy1IiDLicGVDm8eSrCZ2NO8m7idIjnkgJWaC5JgHUlJzJjSSGk+QPwUOhwM2mw21tbWwtnQzJiJVcLrcWL21sFXR3SLJasKiqRntF88uF3DuucD11wPXX4+iE409L97RSdE/xo60uI6fR0REREThpye1pfo+KqCQJQgCdu/ercougxQY/s5EcXVju0U3AJQ5mlBc3ej9RhS9TdNa3tdsBv77X2DRIjibPG2K55bnb8grhtPl7vD90+IjsGhqBhZMSsfc7AFYMCkdi6ZmsOjuAe4nSI55ICVmguSYB1JScyZ4qjn5jSRJaGxsVGWXQQoMf2eiqwZmdS6Pt2v5ggXAhx8CP/4ILF3qffB/pyR1p3jPSu74lPNos6HTx6lz3E+QHPNASswEyTEPpKTmTPCINxGpRpS5888KE/fkAKNHe4tusxmw29us063inYiIiIjIj3jEm4hUwx5rQZLV1OaItUYUMfPjfyJ9zVPe08uHDgXefBMYObLNa3RVvHf1OBERERFRT/EvTPIbnU6H4cOHQ6fTBXsoFCJ6momubhMWbTZgbra91TXaEY5qXLPqQWTs+NK70lVXAc8/D0RHt/seHRXvALuT9wbuJ0iOeSAlZoLkmAdSUnMm2NWciEJCT24TJi/Q4wsPIGP2OdAAwLPPAosWARrNyb0Xu5MTERERUTexqzkFhcfjwc6dO+Hx8BpZ8upuJpwud486jXsbnFkxPiMOmedMgubVV4FvvwVuuKHLohtgd/Jg4n6C5JgHUmImSI55ICU1Z4KFN/mVGlv7U2B1JxPdvk0YAFRVAZdcAnzzzc/LLr+83eu5OyMv3rOSre3f/5sCgvsJkmMeSImZIDnmgZTUmgle401EQdftTuPbtgFXXAEUFwP79wP79gEqvMaHiIiIiPoWHvEmoqDrstO4UQs88QTwy196i+6hQ4F161h0ExEREZEqsLka+U3LDe0tFgs03bjOlsJfdzPhdLmxemthu6ebp6MBN7z8J+g//MC74MorgRde6LBrOYU27idIjnkgJWaC5JgHUgq1TLC5GgWN0WgM9hAoxHQnEy23CUuymlotz2yuwQ23X+Ytuk0mb8H9r3+x6FY57idIjnkgJWaC5JgHUlJrJlh4k98IgoCcnBzVNjwg/+tJJtrrND7/4onQjx0DDBni7Vp+443d6lpOoYv7CZJjHkiJmSA55oGU1JwJNlcjopARbTYgy+gAoow/H9X+xz8ArRbgpSFEREREpFI84k1EoWP7diA7G7j5ZqCl/URMDItuIiIiIlI1Ft5EFHySBKxY4e1afvQosHMncOJEsEdFREREROQX7GpOfiNJEgRBgE6nC4kugxR83crEiRPAtdcC777r/X7+fODFF9lALUxxP0FyzAMpMRMkxzyQUqhlgl3NKWiam5uDPQQKMZ1m4ptvvKeWv/uut2v5888D//43i+4wx/0EyTEPpMRMkBzzQEpqzQQLb/IbQRCwZ88eVXYZpMDoNBPNzcC8eUBRETB4sLcIv+kmdi0Pc9xPkBzzQErMBMkxD6Sk5kywqzkRnTSny43i6kbUuTyIMuthj7Ug2mzo3pONRmDtWuDll71HunnpBxERERGFqZA44r1y5UoMHDgQZrMZEydOxI4dOzpcd+3atdBoNK2+zGZzL46WiACgqKoBq7cW4tXtR7Ah7xhe3X4Eq7cWoqiqoeMnffMN8PbbP39/zjneU8tZdBMRERFRGAt64b1u3TosXrwYS5cuRW5uLkaNGoUZM2agvLy8w+dYrVaUlJT4vo4cOdKLI6bO6HS6YA+BeoHT5caGvGKUOZpaLS9zNOHt/GMod7iwv8SBXUeqUe8WUedye7uW/+IXwDXXAAcPBmnkFAq4nyA55oGUmAmSYx5ISa2ZCHpX84kTJ2L8+PH4+9//DgAQRRGpqam47bbbsGTJkjbrr127FnfeeSdqampO6v3Y1Zzo1O0vceDV7W0/8NJpNcjqH41DFXVodIsAAIuzFle/sBSDtn/uXWnePOCll3iUm4iIiIhUTTVdzZubm7Fr1y5Mnz7dt0yr1WL69OnYvn17h8+rq6tDeno6UlNTcfHFF2Pfvn29MVzqgiRJqKmpQR+7Q12fVOfytLs8Pc6CzQXlKDrhPd089eBu3H7PPAza/jk8BgNczzwLvPEGi+4+jPsJkmMeSImZIDnmgZTUnImgNlerrKyEIAhISkpqtTwpKQkFBQXtPmfYsGF45ZVXMHLkSNTW1mL58uWYPHky9u3bB7vd3mb9pqYmNDX9fDqsw+EAAHg8Hng83uJBq9VCq9VCFEWIouhbt2W5IAitNm5Hy1vuJ9fyuvLlANp03+touV6v992jroVGo4FOp2szxo6WB2NOgiBg//79GDduXJv76ql1Tp0t78tzijBooIEICVpoIEED71iMOg2OVtVjcFI0prz3Gma++hR0ggdV/VPx77ufwPTLZ2KoKIbknDpbrtbtFIpzkiQJ+/fvx5gxY1qdKqbmOYXjduqtObndbl8eDAZDWMwpHLcT9xHcTtxHcDuFypxCbR/RE6rraj5p0iRMmjTJ9/3kyZORlZWFF154AY888kib9ZctW4aHH364zfK8vDxERkYCABITEzFo0CAUFhaioqLCt47dbofdbsfBgwdRW1vrW56ZmYl+/fph7969aGxs9C0fPnw4YmJikJeX12qjjxw5EkajETk5Oa3GMG7cODQ3N2PPnj2+ZTqdDuPHj0dtbW2rDx8sFgtGjRqFyspKHD582LfcZrMhKysLx48fR3FxsW95MObUEkSXy9XqLAQ1zwkIv+3kjzl5RAlDzSIOuKyI09QjQVPnXbemCmPiBAgmPZKrjkIneHB0ylR89bvFaLL0R53LE7JzCsftFIpzys7OhiiKyM3N9X1Ap/Y5heN26q05lZeXo6amBrm5uUhNTQ2LOYXjduI+gtuJ+whup1CZU6jtI3rS5Duo13g3NzcjIiIC//nPfzBnzhzf8oULF6KmpgZvy7sfd+Lyyy+HXq/H66+/3uax9o54p6amoqqqyncePj+F8t8R79zcXB7x7iNzKq5uxKbdJSh3uHxHvEelWLG1sBqRJgN0nmac8e2naJyajUNSPwjQ4deTBmJov8iQnVM4bqdQm5MkScjJyQmZT6q5nYJ/NCs3N5dHszgnH+4jOCfuIzinzsYeavuIurq6bl/jHdQj3kajEWPHjsXmzZt9hbcoiti8eTNuvfXWbr2GIAj47rvvMGvWrHYfN5lMMJlMbZbr9Xro9a2n3/JDVZJv1O4sV77uySzXaDTtLu9ojD1dHog5aTQaREREQKvVtvs6apxTV8v78pwGJkZj0VSz9z7ejW6k/vMlxD31AUr/uAolDSIEvRG7p8xEOk5AgBb9rGbYYy0hPaeTXc45dX/sgiAgIiICer2+zWupdU6dLeecOl+u1+t9eWhZR+1zCsftxH0EtxP3EdxOoTKnUNxHdFfQu5qvW7cOCxcuxAsvvIAJEybg6aefxvr161FQUICkpCQsWLAAAwYMwLJlywAAf/rTn3DmmWdi8ODBqKmpwRNPPIFNmzZh165dGDFiRJfvx67mRH5WXQ1cd53v/tyVz72Efw75ZatbjSVZTZg7xo60uIhgjZKIiIiIyK96UlsG/RrvK664AhUVFXjwwQdRWlqK0aNH46OPPvI1XCsqKmr1iUN1dTV+85vfoLS0FLGxsRg7diy2bdvWraKbAksURVRWViIhIaHdT4koDO3Y4b092JEjgNEIPP00Em5ehEVNHhRXN8LZ6Ia22YkhacmwRbQ984T6Hu4nSI55ICVmguSYB1JScyaCfsS7t/GId+B4PB7k5ORg3LhxHZ4uQmFCkoBnngHuvRdwu4HMTODNN4ExY1qtxkyQEjNBcswDKTETJMc8kFKoZUI19/EmIpVasgS46y5v0X3ZZUBubpuim4iIiIiIvFh4E1HPXX89EB8P/P3vwPr1gM0W7BEREREREYWs4B+fp7Ch0Whgs9na3EqMwoAkATt3AhMmeL8fNgwoLASiozt9GjNBSswEyTEPpMRMkBzzQEpqzgSv8SaizlVXe49wv/MOsHkzMG1asEdERERERBR0vMabgkIURRQXF7e64Typ3M6d3mu3N20C9Hrgp5969HRmgpSYCZJjHkiJmSA55oGU1JwJFt7kN2r+RSAFSQL+9jdgyhRvsZ2ZCWzbBlx7bY9ehpkgJWaC5JgHUmImSI55ICU1Z4LXeBNRazU13lPLN270fn/ppcDq1WygRkRERER0knjEm4hae/ttb9FtNALPPuu9PzeLbiIiIiKik8Yj3uQ3Wq0WiYmJ0Gr5eY6qLVgA7N0LXHEFMG7cKb0UM0FKzATJMQ+kxEyQHPNASmrOBLuaE/V1NTXAAw8AjzwCxMZ26ylOlxvF1Y2oc3kQZdbDHmtBtNkQ2HESEREREYWQntSWPOJNfiOKIgoLC5GRkaHKT6HCQY8L4pwcYN487z25y8uB9eu7fI+iqgZsyCtGmaPJtyzJasLcbDvS4iNarctMkBIzQXLMAykxEyTHPJCSmjOhrtFSSBNFERUVFarsMhgOiqoasHprIV7dfgQb8o7h1e1HsHprIYqqGtquLEne67cnT/YW3RkZwL33dvkeTpe7TdENAGWOJmzIK4bT5W61nJkgJWaC5JgHUmImSI55ICU1Z4KFN1EY6FFBXFMDXHYZcPvtgNsNzJ0L5OZ263ru4urGNu8hf6/i6sZTmQYRERERUVhi4U0UBrpdEH//PTBmDLBhA2AwAM88A/znP0BMTLfep87lOaXHiYiIiIj6Il7jTX6j1Wpht9tVd71FOOh2QZyUBHg8wMCB3uu5x4/v0ftEmTvfZSgfZyZIiZkgOeaBlJgJkmMeSEnNmWDhTX7T8otAva+zgtjQ1Igok877TXw88MEHgN3e7lHurpqz2WMtSLKa2j26nmQ1wR5rabWMmSAlZoLkmAdSYiZIjnkgJTVnQn0fFVDIEgQB+/fvhyAIwR5Kn9NSECulHPoei+++DAPflXUrP/30dovu7jRnizYbMDfb3ua9kqwmzB1jb9NBnZkgJWaC5JgHUmImSI55ICU1Z4JHvMlvJElCbW0t+tit4UNCS0Hsa7AmSZj04RuY9epy6N1u4G9PA4uuA/Tt/8p31Zxt0dQMRJsNcLrcqG/2YMLAOGg0gMWgg9mgw4AOblvGTJASM0FyzAMpMRMkxzyQkpozwcKbKIT15L7cafERWDQ1A8ePlCLxrlsR9+E73gcuuQR45ZUOi26g6+Zsx6obEWFsW5y33L+703uFExERERH1cSy8iUJUUVVDh4VuWnxEu8+J/v47DLv8cuDwYW/X8iee8N42TKPp9L26as7mcgv4aF9pl0fEiYiIiIioLV7jTX6j1WqRmZmpyi6DoaZH9+VuUVICTJ3qLboHDgS2bgXuuKPLohvoult5g1s4qft3MxOkxEyQHPNASswEyTEPpKTmTKhvxBSytFot+vXrp8pfhFDT7ftyyyUnA/fcA8yZA+TmAhMmdPv9OmrOBniPsqOLy2g6OmLOTJASM0FyzAMpMRMkxzyQkpozob4RU8gSBAG7d+9WZZfBUNPt+3Ln5gKHDv38wIMPAhs2ALGxPXq/rrqVx0YaO31+R0fMmQlSYiZIjnkgJWaC5JgHUlJzJniNN/mNJElobGxUZZfBUNPVqd9RJh3w3HPAXXcBp50GbNsGmM2ATnfS79nSnK29Zm5Ol7tH9+9uwUyQEjNBcswDKTETJMc8kJKaM8HCmygEtZz63V6hm6prxuDbFgEb3vIuSEsDmpq8hfcpijYbkJXctklam9uV/U9H9+8mIiIiIqKfsfAmCiEttw+rd3kwbWgiPttfhqr6nxupnV72I+Y98XsYCg97bw/2xBPdbqB2qjo7Ik5ERERERB3TSGo8Tn8KHA4HbDYbamtrYbVagz2csNJyQ3ubzQZNLxSC4UZ5+zCdVoORA6zISIgCJAmp69Yi6aE/QNPcDKSnA+vWARMnBnnUnWMmSImZIDnmgZSYCZJjHkgp1DLRk9qSzdXIbzQaDWJiYkLil0Bt2rt9mCBKyDtai68PVWJ4ogX9N67zFt2/+pW3qVqIF90AM0FtMRMkxzyQEjNBcswDKak5Eyy8yW88Hg927twJj6fzjtzUVpe3D6vzAOvXA888A2zaBMTF9e4ATxIzQUrMBMkxD6TETJAc80BKas4EC2/yKzW29g8FbW4fJkmY+NE6TH9j5c+PDxwI3H57r1zP7U/MBCkxEyTHPJASM0FyzAMpqTUTbK5GFALktw8zNdRh7qqHMXLbxwCAgrG/RNSk9GANjYiIiIiIThELb6IgcLrcOFbdCJdbQINbgCBKGJMWA11+Hn754G1IKCmCoNPjo2vuhHvM2A7vk01ERERERKGPXc3Jb1puaG+xWFTZ8KC3FFU14O38Y4iLNGJzQTmOVDUg0qDFFXkfYN6/noTB3YyaxGT8e/Ff0TxuAuaOsSMtLiLYwz4pzAQpMRMkxzyQEjNBcswDKYVaJnpSW/KIN/mV0WgM9hBCWkv38kijzld0A8BN/34cs799HwBwYMI0NL+0GmcnJoTFfbKZCVJiJkiOeSAlZoLkmAdSUmsm2FyN/EYQBOTk5Ki24UFvaOlebtTrfEU3AOzJHAWPVof/XHUn1t77DPSJCchKtqq+6GYmSImZIDnmgZSYCZJjHkhJzZngEW+iXtTSvbyp2YM4RxVOWOMBAJ+NPR/70k+DefgQJGo0bbucExERERGRavGIN1EvijLrYWqow3mPLsaqp2+Cra7G91hJwgAYdFrfekREREREFB5YeBP1orSiA7hjyVXI+OxdxNRX44zCPb7HLEYtIk16JFlN7GJORERERBRG2NWc/EaSJAiCAJ1OFxJdBkOKJAEvvgjccQfQ1ARnYjK2Pfp3rDOk4khVAyxGLTISojAoMVLVXcyVmAlSYiZIjnkgJWaC5JgHUgq1TLCrOQVNc3MzLBYerW3F6QRuugl4/XXv9xdeCLzwMtI1Ftz+v/t4QwJiI41h0cVciZkgJWaC5JgHUmImSI55ICW1ZoKnmpPfCIKAPXv2qLLLYEAtXeotuvV6YPly4J13EJ2ShOHJVoxOi8XkQQmYPDg8upgrMROkxEyQHPNASswEyTEPpKTmTPCIN1GgLV0K5OcDjz4KTJoU7NEQEREREVEvY+FN5EdOlxvHj5bD/M9X0XDT72CPi0C0zQZ8/nmwh0ZEREREREHCwpv8SqfTBXsIQVNU1YCv3voMMx6+HYnHj+CdYw58PP86zM22Iy0+PJqlnYy+nAlqHzNBcswDKTETJMc8kJJaM8Gu5kR+4Gxsxrd//CvOWvlnGJqbUBOfhNcXP4Gi4aORZDVh0dSMsLt+m4iIiIioL+tJbcnmauQ3kiShpqYGfeyzHMDphHj1NZj+1P/B0NyEgjG/wLMr3kTR8NEAgDJHE4qrG4M7xiDps5mgDjETJMc8kBIzQXLMAympORMsvMlvBEFAQUGBKrsMnrTvvgPGjYNt45sQtDp88Ou78Or9z6IhOqbVanUuT3DGF2R9MhPUKWaC5JgHUmImSI55ICU1Z4LXeBOdCocDOHQI7uQBWH3rX3BkeHa7q0WZ+atGRERERNRXsRog6ilJAjQa7/9PmQKsX4+mCZPgKnACjqY2qydZTbDHWnp5kEREREREFCp4qjn5jUajgcVigaalKA0zTpcbhzdvQ90Zo5H/4VbkF1WjoMQB56yLEGVPxtxsO5KsplbPSbKaMHeMvc82Vgv3TFDPMRMkxzyQEjNBcswDKak5E+xqTgRvUV1c3Yg6lwdRZj3ssZZWxfL3xTUo+MvTuPDlZTC6m5E7fDxW3rcS5wzvhxP1zbh49ACkxUd0+TpERERERBQeelJb8lRz8htRFFFZWYmEhARoteo5maKoqgEb8opRJjtNPMVmxoUjk+HyiCgprsCgpfdg7ocbAQC7R07Gktl3IaqhGZ8XlOPMzDhsyCv23TIsK5mFdgu1ZoICh5kgOeaBlJgJkmMeSEnNmWDhTX4jiiIOHz6MuLg41fwiOF1u7CisxODEKKTHRUCjASKMOkQaDXjpv4dh/H4frvvbfUivOApBq8Vn19yBp0f9CpMyE/DRvhJ4RAlGvQ6HKxtQXN3IoltBjZmgwGImSI55ICVmguSYB1JScyZYeFOfVlheB5NBh1KHC3UuDzyihHKnC0cq6zG7+TiuePhamDzNKImOx+0X34cTIycgNdaCrYeqcNoAG07Uu9Hk9t7OoK/eMoyIiIiIiDrHwpv6LKfLjWMOF97adQx7j9dCA0ACMCghEtOG98PeEiPOO2006vUmvPybpfipUkR9bSOmDo7HlgMVmDo4HuWOapgMOgC8ZRgREREREbVPXcfnKaRpNBrYbDbVdBk8Vt2ILw+UY3+pA00eESfqm2H76RD2/lSJd3Yfh95sxIaHVmLG9Huwu1GPC05LhgaA2aCDVgO4BQnp8RFoaPbwlmEdUFsmKPCYCZJjHkiJmSA55oGU1JwJFt7kNzqdDllZWdDpdMEeSpecLjeO1zTip6oG1DcJaHILmLv7E7z3jztx72cvY3+JExaDDpLVhn62CByqaMC2Q1UYnxEHjygiyWpGf5sJvxiSgBP1zX36lmGdUVMmqHcwEyTHPJASM0FyzAMpqTkTLLzJb0RRRHFxMURRDPZQOlVU1YAXvjyEHYUnIIoSUOfEY28vxxMf/g0WTxPSTxyHXvCgsVlETIQB0SbvKeSFlXUYabehpLYRUwbHY8rgBEiShNlnJCMtLiLIswpNaskE9R5mguSYB1JiJkiOeSAlNWeChTf5TSj/IpQ7XNh+qBI5hVX48mA5jHodMhIjcba7DO++uhhz930Bj0aL5Wdfi+suXwqPTo+4SCNczQKgASRIsFoMiLUYUVPvxkUjU/DRvjLsOeb0XeNNbYVyJig4mAmSYx5IiZkgOeaBlNScCXaDorD3XXEN/r2jCGPSYvDN4RP4vKAcBq0G8777DLdtegam5iaUR8fjlovuwXcZIyF5RIyy2xAXaUC5owmJUSbERhjhEUREmfWIjzbB6XKjzsVru4mIiIiIqGssvCksOV1uFFbUo8zpQmOzB5eOseM/u46izOHCoH5RsFRX4eZ3n4OpuQn5IybirTv/gto6HTK1WthjzZiYEY/39hxHenwkSmpdKKltxIgUG7YcKEd1gxuCKCHJauK13URERERE1CUW3uQ3Wq0WiYmJQb+ZfVFVA3YUVuJgeR0kCchIiEReUTX2HXegtNaFqvpm6LU6PHjxYmRWHsXOeb/BRdl2SMU1iIs0oqahGZv3l2HK4ER8e7gKNY1ujEixYdKgeBwqc+Ku6UNgNRtwTlYSi+4uhEomKHQwEyTHPJASM0FyzAMpqTkTGkmSpGAPojc5HA7YbDbU1tbCarUGezjkR06XG8eqG7Htx3LERJpQWNkAvVYDjyghNdaCgmXP4Ig5Dl8OzIYoSdDrtNBrNTDptbhr+hDUNwuIjzRCp9Wgv82MsloXtFoNrGYDjDotdDoNBiVGoZ/VHOypEhERERFRkPWktuQRb/IbURRRWFiIjIyMXv8UqqiqAetzimCzGGCPjcRL/z2M3KIaDOkXheLiSvxj1z8w76t3cSLCil/duAqllhg0e0RYLHo4XG5EGPXwiBJ2FJ5AfbOAK8enISvFBnushUe1T0EwM0GhiZkgOeaBlJgJkmMeSEnNmVDXaCmkiaKIioqKXu8yeOxEA175+jAgAQPjI7C5oAz7jjug12qQVlKId169CxO+eheCRovPL7gaVRE2GHQaGHUa6HVajE6NhdmgxeHKBhj0OsREGGEx6pCVbGXRfYqClQkKXcwEyTEPpMRMkBzzQEpqzgSPeJOqfX+8FkdP1CM7LQZFVY2odXlw9EQjzhhgwy+3vY+b1q2Ayd2EE7Z4PHrNg0i+aAbE/x6GBkCzICEtNgLj0mNQ6WyCIP581UWUmb8aRERERETkH6wuSLW+P1aLV7/5CQlRJliMehyvaUSUSQ+96MHCl/+MWbmfAAD+mzkGf563BIaU/hio12Lh5IFo9ogw6rWob3LjQKkTCVEm3+vyFmFERERERORPLLzJb7RaLex2e8Cvt3C63Pj+WC0OV9ZjwsA4JFnNOFDqxHfHapGRGIl95Q2obxYhaLR47pwFePWX81HbJCKxvhkxkQa8sbMIZoMOGQmR0GmA807rj/0lTgDgLcL8rLcyQerBTJAc80BKzATJMQ+kpOZMsKs5qUpBiQP//OYIjtU04kCZE65mAdOG94M9xoLXvjyIxReegbXbjqCkpBJZpYX4Ln0EYiKMcLkFDE2Kxt3nD4Wz0Q1JA/S3WpBsM+NEfTOcLg+izHo2UyMiIiIiom7pSW2pvo8KKGQJgoD9+/dDEAS/v7bT5cbuomo89mEBCqvq4XC5kRBlwqB+UXBU1OCMB+7Eq+89hsNlDkwdHI/k5ATk2rPg+d9124MSozBlcAKKquphNmiREGHCqNQY9LOaMTzZivEZcWymFgCBzASpEzNBcswDKTETJMc8kJKaM8FTzclvJElCbW0t/HkShdPlxtHKekiQ8EO5EyNSoqHVatDYLECv1cK9dy+ue+pepJb+BFGrxa4fvsMTzgSMz4jFlMHx8AgS+ttM2HO0Bv/ZdRQP/eo0fLK/AldPTPPbGKljgcgEqRszQXLMAykxEyTHPJCSmjPBwptCVlFVAwqrnDBoNRABxEWa8Nq3RThY6kSzR8ScPZvx509XweJ2oSIqFh//8Ul83W8o0o2N2HKgAgBg0muRlWxFQYkDkwbFw6DVICHKyOZpRERERETUa1h4U0hyutworWlAtFEPSZQgaTV4N78Y3x93wNzkwp8+XoXL934GAMgbOg5v3vkX9Bucjp3bCzF/XBoEUcJPVQ1IjDKiqr4J2WkxuPGXmcgvqmHzNCIiIiIi6lUsvMlvtFotMjMz/dJl8Fil91rsBreIhmYPnC4BAxMi8atRKbjowZsx7cC3EDRaPDX1Kjx35uW4b0Smt4Fav2jsPV6LKYMTMH98BKwWPYx6LTLjI2HUaXHNpHQW3b3In5mg8MBMkBzzQErMBMkxD6Sk5kywqzmFnAPHalHT5MbeYw58e7gKuUdrkBhtwk+V9Rje34oLPcdxwUO34e6Zd+CbtJGwmvW4/dwhMBu0MGi1iDDpYNLroNNpEG3QIWuAjcU2ERERERH5FbuaU1AIgoDdu3efUpfBgqM1EDTAnuJafHu4CnlHa6BvbMTIg7mQJOC7Y7XYqOmPF178APWTpmJIvyhEmfVwutzIKaxGs0eETqNBUrQJEwbGYcKgBBbdQeSPTFB4YSZIjnkgJWaC5JgHUlJzJniqOfmNJElobGzsdpdBp8uNY9WNcLkF1DV7EKHTwCMBxeWNKHW4UFjVANtPP+L5dx5H2onjKPrNM8iLH4j9JQ6MTY9Fk8eJH8rrMDrVhrgIEwo8Tpxut0ILDUalxQZ4ttQdPc0EhT9mguSYB1JiJkiOeSAlNWeChTcFRVFVA97adRQxEQZ8tr8c/aJNuHbKQGw9WIEmt4gmt4hzcz7B7f9ZgQh3E8ojY9Ff70GkWY/6Jg80Gg2iTHpccHoSpg1NxP5SJ66dnA5nkxuJUexYTkREREREoYOFN/U6p8uNf357BBnxFhj1Olw0KgURRh2OVDXAajagtPoE5j7/KMZs3ggA+CZjNG6dfTeqo2LRX69Ff2sUsvpH48zMOIiihAiTHpmJkfAIEvYVO3HNpLggz5CIiIiIiOhnbK5GftNyQ3ubzQaNRtPhermHq1DnEVBc3YgvCsrR6BZRXN2AaLMeI+tKcfdLDyCu8CBEjQarzroGq6ZcgSZJA48gQafVYNj/im6LXofaJjfGpccAEiCIwLiMeKTFRfTepKlT3c0E9R3MBMkxD6TETJAc80BKoZaJntSWPOJNfqPRaBATE9PpOsdONKBBFCGKIgpKnXC5BQzvb8W4gbEQRAkT1r2NuMKDaIhPxPv3LUduYhZ0R04gQgKaNCIG94vCrDP6Q5KAghIHpg3vB5dbwvCkaGT2i2IjtRDTnUxQ38JMkBzzQErMBMkxD6Sk5kyw8Ca/8Xg8yMvLQ3Z2NvT6ttHad6wW7+05jpEDrIgwGfBdcS2mDUvElwcrUFhZD0kC1qWfhzvPr0DEXbdjc4WEX2TG46JRyXALEqJMekSb9ThR3wSdVotJmfGIMumRHGthwR2iusoE9T3MBMkxD6TETJAc80BKas6EukZLIa+91v5OlxvF5XV457sSTMiMhyhJKHO4MHtkf9Tk7sUNL6zA4pl3QLJEQG/W4+lf/hqjy0U0CxIeevd72GPM+OWwRJyf1Q8AMCzJihQW26qhxts9UGAxEyTHPJASM0FyzAMpqTUTLLwpoH4sd8LhaoKzScC5Wf2wKf84CivrIUrApO0f4pbXn4Cl2YWy6Hg8fPYNgMuDmAgD6poEXDk+FdOH90NMhBGxEQbYYy1IT4gK9pSIiIiIiIh6hIU3BcyhMifKnC5oICHSYMDfP/8RBaVOWDwu3PnO33Hxro8AAHmDxyD/yhuBUhFuQYTFoENxdQMKSp1odAv4sbwM98wYxqKbiIiIiIhUiV3NyW9abmjv0ehRVFGPkroG9LdGoNzZhNoGD6LMeiQcPYzkGxci+eiPEDUavDDtGvzz3Gtw7ukpeG37EdgiDBg5wIaaBjeumpiKfccduHJCGkak2II9PToJLZmwWCwh0XmSgo+ZIDnmgZSYCZJjHkgp1DLBruYUFE6XG0crG9EkSNDrtLAYjHjxq8M4VFEPR6MHg/O2YtWmx2BpbkRdbALunXMPdmZmo1+0GWaDDkOSouARJGg0GmQlR2NEsg2zR6bwWm6VMxqNwR4ChRhmguSYB1JiJkiOeSAltWZCG+wBUHgoqmrAj8ercezQ93C43PjuuAP5R2ug1WhR7nShwS3AkzUCjToD9gwdi83/+hCac8+FVquBIEpwuQUcPdEInVaDtHgLrpyQhpGpMSy6VU4QBOTk5Ki2CQb5HzNBcswDKTETJMc8kJKaM8Ej3nTKnC43mhtcEDValNS68Nqu/bCYDDhYVoeRpmZcnD0E7+w+hgKNDbf87m/YqYvFssQkJAtOCOIJDEuKxukpVqSdPwRD+kVjYHwEr+cmIiIiIqKwERJHvFeuXImBAwfCbDZj4sSJ2LFjR6frv/nmmxg+fDjMZjPOOOMMfPDBB700UpIrd7jwzaFK5BdXohEa/PPbI6htdOPIiQY0Nou4YPdmrPnzlZA2bsTYtFi43AIcaZkQtTo0NHngESWMHGDDpWPtsBi0OC3FiozEKBbdREREREQUVoJeeK9btw6LFy/G0qVLkZubi1GjRmHGjBkoLy9vd/1t27bhyiuvxKJFi5CXl4c5c+Zgzpw52Lt3by+PvG/bd6wWj39UgJe2FiIhMgI/lNdh+6ETECUJJncT7vrPcjzz3gpENTdi4tb3YY+NgE6rQUsrv0izHqPsNtx+7mBs/aEcqTEWnD4gBmlxEcGdGBERERERkZ8Fvav5xIkTMX78ePz9738HAIiiiNTUVNx2221YsmRJm/WvuOIK1NfX47333vMtO/PMMzF69Gg8//zzXb4fu5qfunKHC099egBFJxph0mtx5YQ0lDlcePi9fThLrMLdq5ciq+IniNDg2cnz8ezU+bhmyiBsyC1GWlwETHotFk5OR2ZCJNwuD/rFRWIAC+6wJEkSBEGATqcLic6TFHzMBMkxD6TETJAc80BKoZYJ1XQ1b25uxq5du3D//ff7lmm1WkyfPh3bt29v9znbt2/H4sWLWy2bMWMGNm3a1O76TU1NaGpq8n3vcDgAAB6PBx6Px/eeWq0WoihCFMVWY9FqtRAEAfLPJzpa3hKAlteVLwfQpglAR8v1er0vVC00Gg10Ol2bMXa0PBBzqmvy4Hh1IyrqXDha3YjDlU7MH5cKR0MTjDpgzvdb8PAHKxHR3IjKiBisWPAAPul/GnTNHhi0GljNOqTHmfGrUSlIjjbhh+IKjB1qR3KMudXPrDfnFI7bKZTmJAgCXC4XzGYzdDpdWMwpHLdTb85Jq9WiqakJRqOx1T+Yap5TOG4n7iO4nbiP4HYKhTlxH8E5hfo+oieCWnhXVlZCEAQkJSW1Wp6UlISCgoJ2n1NaWtru+qWlpe2uv2zZMjz88MNtlufl5SEyMhIAkJiYiEGDBqGwsBAVFRW+dex2O+x2Ow4ePIja2lrf8szMTPTr1w979+5FY2Ojb/nw4cMRExODvLy8Vht95MiRMBqNyMnJaTWGcePGobm5GXv27PEt0+l0GD9+PGpra1v9DCwWC0aNGoXKykocPnzYt9xmsyErKwvHjx9HcXGxb7m/5/T1tzk4Xl0PDYAIow7Hqpowon8MdFWHYUQkog4U4IlNywEAewePwpbb7kK0NRZX6T2IMBnQLzka4wdkADXHoa06jPJKINUWhbS4CJSXlwdlTuG4nUJtTuXl5aipqUFMTAxSU1PDYk7huJ16c07Z2dnIz8+HVqv1/YOp9jmF43biPoLbifsIbqdQmBP3EZxTqO8jzGYzuiuop5ofP34cAwYMwLZt2zBp0iTf8nvvvRdffvklvv322zbPMRqN+Mc//oErr7zSt+y5557Dww8/jLKysjbrt3fEOzU1FVVVVb7TAfgpVOdzqmvy4JX/HkK5swmpcRHIiI/Azf/Kw68npeP9/GP4x/UT8EVBGaY99ygatCIWDbsCsdZIRJn0SI2zeI9w2yLgFj2I0OsxYoAt6HMKx+0UinNyu93Izc3FmDFjYDAYwmJO4bidenNOkiQhJycHY8aM8a2j9jmF43biPoLbifsIbqdQmBP3EZxTqO8j6urq1HGqeUJCAnQ6XZuCuaysDP3792/3Of379+/R+iaTCSaTqc1yvV4Pvb719Ft+qEryjdqd5crXPZnlGo2m3eUdjbGny3syp2PVjYgwGTA00gzN/9bJTIxG1lcf4zNPf6z4ZD9+d/Yw5N29FKj6CdfoU9AsAmajDrEWA1JiIlBV14Avf6zFxaNSuv1zD+ScgPDbTh2NsafL/Tmnlp1py+lhnY1dLXMKx+3Um3PyeDy+TCgfU+ucOlvOOXEfAXBOHY2xveXcR3Q+xr42J+4jOCc17CO6K6hdzY1GI8aOHYvNmzf7lomiiM2bN7c6Ai43adKkVusDwKefftrh+nTqahqa8eXBCrz41SEcr22E1NiAxz/9O6588h6s2PRXfHuoGqu+OIhx6fHoZ7NgpN2GUfYYnJkRh2lDEvDfgxX4/GANBFFClJm3ju9rTnUnReGHmSA55oGUmAmSYx5ISa2ZCHpX83Xr1mHhwoV44YUXMGHCBDz99NNYv349CgoKkJSUhAULFmDAgAFYtmwZAO/txM466yw89thjmD17Nt544w385S9/QW5uLk4//fQu349dzXumsKIOz37xIz773nuWwZyIOvx+9f/BenA/JI0G7150Pf7+i6tgNBpgMmihhQbQAElWE6ZkJmDnkWqYDN5fjiSrCYumZiDabAjmlIiIiIiIiE6ZarqaA97bg1VUVODBBx9EaWkpRo8ejY8++sjXQK2oqKjVof7Jkyfj3//+Nx544AH84Q9/wJAhQ7Bp06ZuFd3UOafLjeLqRtS5PIgy6xEfacSuomoUVtQjNtKABT9txzVr/gJTYwOa4+KxcfFjKBwzBboD5ThY5kRcpAET7RHQmSJwZmY89hxztCq6546xs+juYyRJQm1tLWw2W6vOk9R3MRMkxzyQEjNBcswDKak5E0E/4t3beMS7fUVVDdiQV4wyx8+N6CwGLc7MjMc/vyjAfZ+8iNPefR0A8G3aGVix8EEMzR6GC07vj2aPABHeay6EssM4Y1Q2YqPNrYp4e6yFRXcf5PF4kJOTg3HjxnV47Q71LcwEyTEPpMRMkBzzQEqhlglVHfGm4HO63G2K7jqXBzk/OXC8phET0myI3rENokaDNdOuwgtnXQNRp8PxgxXQaIBLx9hhMuiQbDWioL4YKbEW6PV6ZCWz0CYiIiIiImLhTSiubmxVdLsFEYVVdXA1e3CwrA7nZg3CzRfdi3711dgxeCwsWh3cHhHxkUY0ukWYDDpkJVvb3AaAiIiIiIiIWHgTvEe35Zqddbjp30+gOH4AXp44F4IooTRtCH5wuQFBRIRRB5vFgMH9omDQaX3P12g0sFgsqrveggKHmSAlZoLkmAdSYiZIjnkgJTVngoU3Icqsh06rQXqcBQnHj2DqX25B4qECePQGbMk+BzqtBjEWA5JtZgiihLhII+Iijb5rtltuEabT6TBq1KhgToVCDDNBSswEyTEPpMRMkBzzQEpqzkRQ7+NNocEea8HY9BgIr7+BGddeiMRDBTgRYcOfb1yG6eeNhV4HpMSYUdPQjPomD6JNel/RnWQ1wR5rAeC9B3t5eTlEUQzmdCiEMBOkxEyQHPNASswEyTEPpKTmTLDwJsDlQvoff4+bn38AEU2N2J05EvN/+xw+SR2N70scqK53Y+bpyRjW3wpbhAHRlp+LbvktwkRRxOHDh1X5i0CBwUyQEjNBcswDKTETJMc8kJKaM8FTzfs6QYD+nLMxJm8XRI0GH190HTZefAPSdHo4XR58d6wWo1NjsL/UiQtOS0JGYhQggbcIIyIiIiIi6iYW3n2dToeKCy9F3KHDWH/7X/BD9hTE/++hmAgRcZFGJEWbMCEjjoU2ERERERHRSWDh3Re5XEBJCZCRAQCov/l3+EfmFDRYY1utZtBpERNhRHpCJLKSO78hPODtMmiz2VTZZZACg5kgJWaC5JgHUmImSI55ICU1Z0IjSZIU7EH0JofDAZvNhtraWlitXReTYefHH4HLLwfq64GcHMBqhdPlxuqtha3u5d0iyWrCoqkZPNJNREREREQk05Paks3V+pL164ExY4D8fKC6GvjhBwBAtNmAudl2JFlNrVZXNk/riiiKKC4uVmWzAwoMZoKUmAmSYx5IiZkgOeaBlNScCZ5q3he4XMDddwPPPef9/he/AF5/HRgwwLdKWnwEFk3NQHF1I+pcnpNqntbyi9C/f39otfxMh5gJaouZIDnmgZSYCZJjHkhJzZlg4R3ufvwRmDcPyMvzfv+HPwAPPwzo2276aLMBWck8pZyIiIiIiMifWHiHu/vu8xbdCQnAa68BF1wQ7BERERERERH1KSy8w92qVYBWCzz1FGC3B/SttFotEhMTVXfaBwUOM0FKzATJMQ+kxEyQHPNASmrOBLuah5sffwTeest7pJuIiIiIiIgCgl3N+6o33/R2LV+yBHjjjV5/e1EUcejQIVV2GaTAYCZIiZkgOeaBlJgJkmMeSEnNmWDhHQ5cLuDWW71N1JxOYMoUYOrUXh+GKIqoqKhQ5S8CBQYzQUrMBMkxD6TETJAc80BKas4EC2+1O3TIW2ivXOn9fskSYMuWgF/PTURERERERN3D5mpqtmkTsHAh4HAA8fHeruUzZwZ7VERERERERCTDwlvNDAZv0T1livea7iAf5dZqtbDb7arsMkiBwUyQEjNBcswDKTETJMc8kJKaM8Gu5mrjdnsL7hYffgicdx6g52coREREREREvYVdzcPVW28Bw4YBR478vGzmzJApugVBwP79+yEIQrCHQiGCmSAlZoLkmAdSYiZIjnkgJTVngoW3GjQ1AbffDlx2GVBYCDzxRLBH1C5JklBbW4s+dhIFdYKZICVmguSYB1JiJkiOeSAlNWciNA6VUscOH/beJmzXLu/3990HPPJIcMdERERERERE3cbCO5S99RZw/fXeBmpxcd6u5bNmBXtURERERERE1AMsvEPVm296j3QDwOTJ3q7lqanBHVMXtFotMjMzVdllkAKDmSAlZoLkmAdSYiZIjnkgJTVngl3NQ5XL5b1N2PTpwJ//3LqTOREREREREQUVu5qHA7MZ+Ppr4PHHVVN0C4KA3bt3q7LLIAUGM0FKzATJMQ+kxEyQHPNASmrOBAvvUGY2B3sEPSJJEhobG1XZZZACg5kgJWaC5JgHUmImSI55ICU1Z4KFNxEREREREVEAsfAmIiIiIiIiCiAW3uQ3Op0Ow4cPh06nC/ZQKEQwE6TETJAc80BKzATJMQ+kpOZMsKs5ERERERERUQ+xqzkFhcfjwc6dO+HxeII9FAoRzAQpMRMkxzyQEjNBcswDKak5Eyy8ya/U2NqfAouZICVmguSYB1JiJkiOeSAltWaChTcRERERERFRAOmDPQBqy+lyo7i6EXUuD6LMethjLYg2G4I9LCIiIiIiIjoJbK4WYoqqGrAhrxhljibfsiSrCXOz7UiLjwjiyLrWckN7i8UCjUYT7OFQCGAmSImZIDnmgZSYCZJjHkgp1DLB5moq5XS52xTdAFDmaMKGvGI4Xe4gjaz7jEZjsIdAIYaZICVmguSYB1JiJkiOeSAltWaChXcIKa5ubFN0tyhzNKG4urGXR9QzgiAgJydHtQ0PyP+YCVJiJkiOeSAlZoLkmAdSUnMmWHiHkDpX523xu3qciIiIiIiIQg8L7xASZe68111XjxMREREREVHoYeEdQuyxFiRZTe0+lmQ1wR5r6eURERERERER0aliV/MQ02FX8zF2pMWFfldzQRCg0+lCossgBR8zQUrMBMkxD6TETJAc80BKoZaJntSWPHc5xKTFR2DR1AzV3se7ubkZFguPzNPPmAlSYiZIjnkgJWaC5JgHUlJrJniqeQiKNhuQlWzF+Iw4ZCVbVVN0C4KAPXv2qLLLIAUGM0FKzATJMQ+kxEyQHPNASmrOBAtvIiIiIiIiogBi4U1EREREREQUQCy8ya90Ol2wh0AhhpkgJWaC5JgHUmImSI55ICW1ZoJdzYmIiIiIiIh6qCe1JY94k99IkoSamhr0sc9yqBPMBCkxEyTHPJASM0FyzAMpqTkTLLzJbwRBQEFBgSq7DFJgMBOkxEyQHPNASswEyTEPpKTmTLDwJiIiIiIiIgogFt5EREREREREAcTCm/xGo9HAYrFAo9EEeygUIpgJUmImSI55ICVmguSYB1JScybY1ZyIiIiIiIioh9jVnIJCFEWUl5dDFMVgD4VCBDNBSswEyTEPpMRMkBzzQEpqzgQLb/IbURRx+PBhVf4iUGAwE6TETJAc80BKzATJMQ+kpOZMsPAmIiIiIiIiCiAW3kREREREREQBxMKb/Eaj0cBms6myyyAFBjNBSswEyTEPpMRMkBzzQEpqzgS7mhMRERERERH1ELuaU1CIooji4mJVNjugwGAmSImZIDnmgZSYCZJjHkhJzZlg4U1+o+ZfBAoMZoKUmAmSYx5IiZkgOeaBlNScCRbeRERERERERAHEwpuIiIiIiIgogFh4k99otVokJiZCq2WsyIuZICVmguSYB1JiJkiOeSAlNWeCXc2JiIiIiIiIeohdzSkoRFHEoUOHVNnsgAKDmSAlZoLkmAdSYiZIjnkgJTVngoU3+Y0oiqioqFDlLwIFBjNBSswEyTEPpMRMkBzzQEpqzgQLbyIiIiIiIqIA0gd7AL2t5ZJ2h8MR5JGEH4/Hg/r6ejgcDuj1fS5a1A5mgpSYCZJjHkiJmSA55oGUQi0TLTVld9qmBX+0vczpdAIAUlNTgzwSIiIiIiIiUjun0wmbzdbpOn2uq7koijh+/Diio6Oh0WiCPZyw4nA4kJqaiqNHj7JjPAFgJqgtZoLkmAdSYiZIjnkgpVDLhCRJcDqdSElJ6fIWZ33uiLdWq4Xdbg/2MMKa1WoNiV8ECh3MBCkxEyTHPJASM0FyzAMphVImujrS3YLN1YiIiIiIiIgCiIU3ERERERERUQCx8Ca/MZlMWLp0KUwmU7CHQiGCmSAlZoLkmAdSYiZIjnkgJTVnos81VyMiIiIiIiLqTTziTURERERERBRALLyJiIiIiIiIAoiFNxEREREREVEAsfCmHlm5ciUGDhwIs9mMiRMnYseOHZ2u/+abb2L48OEwm80444wz8MEHH/TSSKm39CQTa9euhUajafVlNpt7cbQUSF999RUuuugipKSkQKPRYNOmTV0+Z8uWLRgzZgxMJhMGDx6MtWvXBnyc1Ht6moktW7a02UdoNBqUlpb2zoApoJYtW4bx48cjOjoa/fr1w5w5c3DgwIEun8e/JcLTyeSBf0eEt1WrVmHkyJG+e3RPmjQJH374YafPUdP+gYU3ddu6deuwePFiLF26FLm5uRg1ahRmzJiB8vLydtfftm0brrzySixatAh5eXmYM2cO5syZg7179/byyClQepoJALBarSgpKfF9HTlypBdHTIFUX1+PUaNGYeXKld1av7CwELNnz8bZZ5+N/Px83Hnnnbjhhhvw8ccfB3ik1Ft6mokWBw4caLWf6NevX4BGSL3pyy+/xC233IJvvvkGn376KdxuN84//3zU19d3+Bz+LRG+TiYPAP+OCGd2ux2PPfYYdu3ahZycHJxzzjm4+OKLsW/fvnbXV93+QSLqpgkTJki33HKL73tBEKSUlBRp2bJl7a4/b948afbs2a2WTZw4UbrpppsCOk7qPT3NxJo1aySbzdZLo6NgAiBt3Lix03Xuvfde6bTTTmu17IorrpBmzJgRwJFRsHQnE1988YUEQKquru6VMVFwlZeXSwCkL7/8ssN1+LdE39GdPPDviL4nNjZWevnll9t9TG37Bx7xpm5pbm7Grl27MH36dN8yrVaL6dOnY/v27e0+Z/v27a3WB4AZM2Z0uD6py8lkAgDq6uqQnp6O1NTUTj/FpPDHfQR1ZPTo0UhOTsZ5552Hr7/+OtjDoQCpra0FAMTFxXW4DvcTfUd38gDw74i+QhAEvPHGG6ivr8ekSZPaXUdt+wcW3tQtlZWVEAQBSUlJrZYnJSV1eO1daWlpj9YndTmZTAwbNgyvvPIK3n77bfzzn/+EKIqYPHkyiouLe2PIFGI62kc4HA40NjYGaVQUTMnJyXj++efx1ltv4a233kJqaiqmTZuG3NzcYA+N/EwURdx5552YMmUKTj/99A7X498SfUN388C/I8Lfd999h6ioKJhMJtx8883YuHEjRowY0e66ats/6IM9ACLqOyZNmtTqU8vJkycjKysLL7zwAh555JEgjoyIQsGwYcMwbNgw3/eTJ0/GoUOH8NRTT+G1114L4sjI32655Rbs3bsXW7duDfZQKAR0Nw/8OyL8DRs2DPn5+aitrcV//vMfLFy4EF9++WWHxbea8Ig3dUtCQgJ0Oh3KyspaLS8rK0P//v3bfU7//v17tD6py8lkQslgMCA7Oxs//vhjIIZIIa6jfYTVaoXFYgnSqCjUTJgwgfuIMHPrrbfivffewxdffAG73d7puvxbIvz1JA9K/Dsi/BiNRgwePBhjx47FsmXLMGrUKDzzzDPtrqu2/QMLb+oWo9GIsWPHYvPmzb5loihi8+bNHV53MWnSpFbrA8Cnn37a4fqkLieTCSVBEPDdd98hOTk5UMOkEMZ9BHVHfn4+9xFhQpIk3Hrrrdi4cSM+//xzZGRkdPkc7ifC18nkQYl/R4Q/URTR1NTU7mOq2z8Eu7sbqccbb7whmUwmae3atdL3338v3XjjjVJMTIxUWloqSZIk/frXv5aWLFniW//rr7+W9Hq9tHz5cmn//v3S0qVLJYPBIH333XfBmgL5WU8z8fDDD0sff/yxdOjQIWnXrl3S/PnzJbPZLO3bty9YUyA/cjqdUl5enpSXlycBkJ588kkpLy9POnLkiCRJkrRkyRLp17/+tW/9w4cPSxEREdI999wj7d+/X1q5cqWk0+mkjz76KFhTID/raSaeeuopadOmTdIPP/wgfffdd9Idd9whabVa6bPPPgvWFMiPfvvb30o2m03asmWLVFJS4vtqaGjwrcO/JfqOk8kD/44Ib0uWLJG+/PJLqbCwUNqzZ4+0ZMkSSaPRSJ988okkSerfP7Dwph559tlnpbS0NMloNEoTJkyQvvnmG99jZ511lrRw4cJW669fv14aOnSoZDQapdNOO016//33e3nEFGg9ycSdd97pWzcpKUmaNWuWlJubG4RRUyC03ApK+dWSgYULF0pnnXVWm+eMHj1aMhqNUmZmprRmzZpeHzcFTk8z8fjjj0uDBg2SzGazFBcXJ02bNk36/PPPgzN48rv2sgCg1e89/5boO04mD/w7Irxdf/31Unp6umQ0GqXExETp3HPP9RXdkqT+/YNGkiSp946vExEREREREfUtvMabiIiIiIiIKIBYeBMREREREREFEAtvIiIiIiIiogBi4U1EREREREQUQCy8iYiIiIiIiAKIhTcRERERERFRALHwJiIiIiIiIgogFt5EREREREREAcTCm4iIKARpNBps2rQp2MNoJVhjeuihhzB69OhTfp21a9ciJibmlF+HiIjU4auvvsJFF12ElJSUk/43TJIkLF++HEOHDoXJZMKAAQPw6KOP9vh1WHgTEVGftn37duh0OsyePbvHzx04cCCefvpp/w+qCxqNptOvhx56qMPn/vTTT9BoNMjPz/f7uK699tp2x3PBBRec0uv+/ve/x+bNm095fFdccQUOHjx4yq9DRETqUF9fj1GjRmHlypUn/Rp33HEHXn75ZSxfvhwFBQV45513MGHChB6/jv6kR0BERBQGVq9ejdtuuw2rV6/G8ePHkZKSEuwhdamkpMT3/+vWrcODDz6IAwcO+JZFRUUFY1gAgAsuuABr1qxptcxkMp3Sa0ZFRfllThaLBRaL5ZRfh4iI1GHmzJmYOXNmh483NTXhj3/8I15//XXU1NTg9NNPx+OPP45p06YBAPbv349Vq1Zh7969GDZsGAAgIyPjpMbCI95ERNRn1dXVYd26dfjtb3+L2bNnY+3atW3WeffddzF+/HiYzWYkJCTgkksuAQBMmzYNR44cwV133eU7sgu0f1r0008/jYEDB/q+37lzJ8477zwkJCTAZrPhrLPOQm5ubrfH3b9/f9+XzWaDRqPxfd+vXz88+eSTsNvtMJlMGD16ND766CPfc1v+YMjOzoZGo/H9cXGqY2phMplaja9///6IjY31Pa7RaPDCCy/gwgsvREREBLKysrB9+3b8+OOPmDZtGiIjIzF58mQcOnTI9xzlz3TLli2YMGECIiMjERMTgylTpuDIkSMAgN27d+Pss89GdHQ0rFYrxo4di5ycHADtn2q+atUqDBo0CEajEcOGDcNrr73W6nGNRoOXX34Zl1xyCSIiIjBkyBC88847Pf65EBFR6Ln11luxfft2vPHGG9izZw8uv/xyXHDBBfjhhx8AeP8GyMzMxHvvvYeMjAwMHDgQN9xwA06cONHj92LhTUREfdb69esxfPhwDBs2DNdccw1eeeUVSJLke/z999/HJZdcglmzZiEvLw+bN2/2nV62YcMG2O12/OlPf0JJSUmro9BdcTqdWLhwIbZu3YpvvvkGQ4YMwaxZs+B0Ok95Ts888wxWrFiB5cuXY8+ePZgxYwZ+9atf+f6I2LFjBwDgs88+Q0lJCTZs2BDwMSk98sgjWLBgAfLz8zF8+HBcddVVuOmmm3D//fcjJycHkiTh1ltvbfe5Ho8Hc+bMwVlnnYU9e/Zg+/btuPHGG30ffFx99dWw2+3YuXMndu3ahSVLlsBgMLT7Whs3bsQdd9yBu+++G3v37sVNN92E6667Dl988UWr9R5++GHMmzcPe/bswaxZs3D11Vef1B9dREQUOoqKirBmzRq8+eab+MUvfoFBgwbh97//PaZOneo7c+vw4cM4cuQI3nzzTbz66qtYu3Ytdu3ahcsuu6znbygRERH1UZMnT5aefvppSZIkye12SwkJCdIXX3zhe3zSpEnS1Vdf3eHz09PTpaeeeqrVsqVLl0qjRo1qteypp56S0tPTO3wdQRCk6Oho6d133/UtAyBt3LixyzmsWbNGstlsvu9TUlKkRx99tNU648ePl373u99JkiRJhYWFEgApLy+v09c9mTEtXLhQ0ul0UmRkZKsv+XgASA888IDv++3bt0sApNWrV/uWvf7665LZbPZ9L/+ZVlVVSQCkLVu2tDuG6Ohoae3ate0+pvxZTZ48WfrNb37Tap3LL79cmjVrVofjraurkwBIH374YYc/ByIiCj3Kf8Pee+89CUCbf7P0er00b948SZIk6Te/+Y0EQDpw4IDvebt27ZIASAUFBT16f17jTUREfdKBAwewY8cObNy4EQCg1+txxRVXYPXq1b7Tr/Pz8/Gb3/zG7+9dVlaGBx54AFu2bEF5eTkEQUBDQwOKiopO6XUdDgeOHz+OKVOmtFo+ZcoU7N69u1fGdPbZZ2PVqlWtlsXFxbX6fuTIkb7/T0pKAgCcccYZrZa5XC44HA5YrdY2r3XttddixowZOO+88zB9+nTMmzcPycnJAIDFixfjhhtuwGuvvYbp06fj8ssvx6BBg9od6/79+3HjjTe2WjZlyhQ888wzHY43MjISVqsV5eXlnf4ciIgotNXV1UGn02HXrl3Q6XStHmvpK5KcnAy9Xo+hQ4f6HsvKygLgPWLect13d/BUcyIi6pNWr14Nj8eDlJQU6PV66PV6rFq1Cm+99RZqa2sB4KQacWm12lanqwOA2+1u9f3ChQuRn5+PZ555Btu2bUN+fj7i4+PR3Nx88hM6Rf4aU2RkJAYPHtzqS1l4y0/9bjlFvL1loii2+x5r1qzB9u3bMXnyZKxbtw5Dhw7FN998A8B7Pfi+ffswe/ZsfP755xgxYoTvw5WTpTxVXaPRdDg2IiJSh+zsbAiCgPLy8jb/bvXv3x+A98NYj8fTqu9Iy90x0tPTe/R+LLyJiKjP8Xg8ePXVV7FixQrk5+f7vnbv3o2UlBS8/vrrALxHOju7jZXRaIQgCK2WJSYmorS0tFXxrbx119dff43bb78ds2bNwmmnnQaTyYTKyspTnpfVakVKSgq+/vrrNu83YsQI35gBtBl3oMYUKNnZ2bj//vuxbds2nH766fj3v//te2zo0KG466678Mknn2Du3Lltuqy3yMrK6vRnRURE6lZXV+f7Nx4ACgsLkZ+fj6KiIgwdOhRXX301FixYgA0bNqCwsBA7duzAsmXL8P777wMApk+fjjFjxuD6669HXl4edu3ahZtuugnnnXdeq6Pg3cFTzYmIqM957733UF1djUWLFsFms7V67NJLL8Xq1atx8803Y+nSpTj33HMxaNAgzJ8/Hx6PBx988AHuu+8+AN77eH/11VeYP38+TCYTEhISMG3aNFRUVOCvf/0rLrvsMnz00Uf48MMPW50yPWTIELz22msYN24cHA4H7rnnHr/d5uqee+7B0qVLMWjQIIwePRpr1qxBfn4+/vWvfwEA+vXrB4vFgo8++gh2ux1msxk2m81vY2pqakJpaWmrZXq9HgkJCX6ZX2FhIV588UX86le/QkpKCg4cOIAffvgBCxYsQGNjI+655x5cdtllyMjIQHFxMXbu3IlLL7203de65557MG/ePGRnZ2P69Ol49913sWHDBnz22Wd+GSsREQVXTk4Ozj77bN/3ixcvBuA9y2vt2rVYs2YN/vznP+Puu+/GsWPHkJCQgDPPPBMXXnghAO9ZbO+++y5uu+02/PKXv0RkZCRmzpyJFStW9HwwfrhOnYiISFUuvPDCVg205L799lsJgLR7925JkiTprbfekkaPHi0ZjUYpISFBmjt3rm/d7du3SyNHjpRMJpMk/yd11apVUmpqqhQZGSktWLBAevTRR1s1V8vNzZXGjRsnmc1maciQIdKbb77ZplEbTrK5miAI0kMPPSQNGDBAMhgM0qhRo9o0AnvppZek1NRUSavVSmeddZbfxrRw4UIJQJuvYcOGdfga7TV7++KLLyQAUnV1tSRJrZurlZaWSnPmzJGSk5Mlo9EopaenSw8++KAkCILU1NQkzZ8/X0pNTZWMRqOUkpIi3XrrrVJjY2O7PytJkqTnnntOyszMlAwGgzR06FDp1VdfbfV4e3O22WzSmjVrOvw5EBERKWkkSXEhGhERERERERH5Da/xJiIiIiIiIgogFt5EREREREREAcTCm4iIiIiIiCiAWHgTERERERERBRALbyIiIiIiIqIAYuFNREREREREFEAsvImIiIiIiIgCiIU3ERERERERUQCx8CYiIiIiIiIKIBbeRERERERERAHEwpuIiIiIiIgogFh4ExEREREREQXQ/wMBJekdSRXJYQAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"- Observation: The scatter points are tightly clustered around the red diagonal line (the line of perfect prediction, y=x). This is a very strong indicator of good model performance.\n",
"- Interpretation: It shows that your model's predictions are, for the most part, very close to the actual total emission values across the entire range of your data, from negative values up to around 3 million. The linearity of the scatter confirms that the model has captured the underlying relationship well. There are no obvious signs of the model systematically over- or under-predicting across different ranges of emissions."
],
"metadata": {
"id": "zujsI7k5o2Py"
}
},
{
"cell_type": "code",
"source": [
"# --- Graph 2: Residuals Plot (vs. Actual Values) ---\n",
"plt.figure(figsize=(10, 6))\n",
"sns.scatterplot(x=y_test_original_scale, y=residuals, alpha=0.6)\n",
"plt.axhline(y=0, color='red', linestyle='--', label='Zero Error Line')\n",
"plt.title('Residuals Plot (Errors vs. Actual Values)')\n",
"plt.xlabel('Actual Total Emission')\n",
"plt.ylabel('Residuals (Actual - Predicted)')\n",
"plt.grid(True, linestyle='--', alpha=0.7)\n",
"plt.legend()\n",
"plt.tight_layout()\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 607
},
"id": "dr7Vvrx3n_m1",
"outputId": "a53d9093-222c-44e5-9578-f01dc30f0363"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA2dJJREFUeJzs3Xd8VFXiNvDnTp+USa+EhCSUhCIdRBBEWRErYkVcEVHXwrJ2fV0blnV1V0XXgmt3BSvYVldFEP0pLEskgHQIoYT0OinT73n/CBkypJAyKZPzfD+f7Jp7T2bOmWfuMOfec89RhBACREREREREROR3mp6uABEREREREVFfxU43ERERERERURdhp5uIiIiIiIioi7DTTURERERERNRF2OkmIiIiIiIi6iLsdBMRERERERF1EXa6iYiIiIiIiLoIO91EREREREREXYSdbiIiIiIiIqIuwk43ERF1iUceeQSKorSprKIoeOSRR7q0PmeccQbOOOOMLn2OE3VHuxq75ZZb8Lvf/a7bno8Cx8GDB6EoCt5+++1uf+7uPg6a43K50L9/f7z88ss9Wg8ikhM73UREfdzbb78NRVG8PzqdDv369cO1116Lo0eP9nT1Ak5D56XhR6vVIjk5GRdffDG2bNnil+fYuXMnHnnkERw8eLDNf5Obm4vXX38d999/f4t1PfHnr3/9q1/qK6N77rkHiqLgiiuu6PBjdCTnrrR48WIoioL9+/e3WObPf/4zFEXBtm3burFmnafX63HHHXfgiSeegN1u7+nqEJFk2OkmIpLEo48+in/9619YtmwZZs2ahffeew/Tpk3rsi+gDzzwAGw2W5c8dm8wd+5c/Otf/8Kbb76Jq666CmvXrsWpp57ql473zp07sWTJknZ1xp5//nmkpqZi+vTpLdb1xJ8LLrig03WVkRAC77//PgYMGIAvv/wS1dXVHXqcjuTclebNmwcAWLFiRYtl3n//fYwYMQKnnHJKd1XLbxYsWIDS0tJW20dE1BV0PV0BIiLqHrNmzcK4ceMAANdffz2io6Px1FNP4YsvvsDll1/u9+fT6XTQ6fruPzNjxozB1Vdf7f198uTJuPDCC/HKK6/g1Vdf7da6uFwuLF++HDfddFOz+0+sa1sIIWC322E2m5vss9vtMBgM0Gg6fu6+trYWwcHBHf77nrRu3Trk5eVh7dq1mDlzJlatWoX58+f3dLU6beLEiRg4cCDef/99PPTQQ032b9iwAbm5uQE7QiI8PBxnn3023n77bVx33XU9XR0ikgivdBMRSer0008HAOTk5Phs3717Ny699FJERkbCZDJh3Lhx+OKLL3zKuFwuLFmyBIMGDYLJZEJUVBSmTJmC1atXe8s0d0+3w+HA7bffjpiYGISGhuLCCy9EXl5ek7pde+21GDBgQJPtzT3mW2+9hTPPPBOxsbEwGo0YOnQoXnnllTa9Bv/4xz8wbNgwBAUFISIiAuPGjevwVbAzzzwTQP0w79ZkZ2dj1qxZsFgsCAkJwVlnnYX//ve/3v1vv/02LrvsMgDA9OnTvUPB161b1+Jj/vzzzygtLcWMGTM6VHcAGDBgAM4//3x8++23GDduHMxmM1599VWsW7cOiqLggw8+wAMPPIB+/fohKCgIVqsVAPDxxx9j7NixMJvNiI6OxtVXX93ktoVrr70WISEhyMnJwbnnnovQ0FDvVdV9+/bhkksuQXx8PEwmE5KSknDllVeiqqqqxbouWrQIISEhqKura7Jv7ty5iI+Ph8fjAQBkZWVh5syZiI6OhtlsRmpqaqc7XMuXL8fQoUMxffp0zJgxA8uXL2+23NGjR7Fw4UIkJibCaDQiNTUVN998M5xO50lzbuk+6AEDBuDaa6/1/l5eXo677roLI0aMQEhICCwWC2bNmoWtW7d2qG3z5s3D7t27sXnz5ib7VqxYAUVRMHfuXDidTjz00EMYO3YswsLCEBwcjNNPPx0//PDDSZ+jPcc3ALz33nve91hkZCSuvPJKHDlyxKdMW99Hv/vd7/Dzzz+jvLz8pPUkIvKXvnsJgoiIWtUwpDUiIsK7bceOHZg8eTL69euH++67D8HBwfjoo48we/ZsrFy5EhdffDGA+i/HTz75JK6//npMmDABVqsVWVlZ2Lx5c6sTeV1//fV47733cNVVV+G0007D2rVrcd5553WqHa+88gqGDRuGCy+8EDqdDl9++SVuueUWqKqKW2+9tcW/e+2117B48WJceuml+NOf/gS73Y5t27Zh48aNuOqqq9pdj4aTF1FRUS2W2bFjB04//XRYLBbcc8890Ov1ePXVV3HGGWfgxx9/xMSJEzF16lQsXrwYL7zwAu6//35kZmYCgPf/m7N+/XooioLRo0c3u7+urg6lpaVNtoeHh/uMRtizZw/mzp2LP/zhD7jhhhswZMgQ777HHnsMBoMBd911FxwOBwwGA95++20sWLAA48ePx5NPPomioiI8//zz+OWXX5CdnY3w8HDv37vdbsycORNTpkzB3//+dwQFBcHpdGLmzJlwOBz44x//iPj4eBw9ehT//ve/UVlZibCwsGbbc8UVV+Cll17CV1995e24NrTzyy+/xLXXXgutVovi4mKcffbZiImJwX333Yfw8HAcPHgQq1atavG1PBmHw4GVK1fizjvvBFDfyV+wYAEKCwsRHx/vLZefn48JEyagsrISN954IzIyMnD06FF88sknqKur61DOzTlw4AA+++wzXHbZZUhNTUVRURFeffVVTJs2DTt37kRiYmK7Hm/evHlYsmQJVqxYgTFjxni3ezwefPTRRzj99NORnJyM0tJSvP7665g7dy5uuOEGVFdX44033sDMmTPxv//9D6NGjWrX87bkiSeewIMPPojLL78c119/PUpKSvCPf/wDU6dO9b7H2vM+Gjt2LIQQWL9+Pc4//3y/1JGI6KQEERH1aW+99ZYAIL7//ntRUlIijhw5Ij755BMRExMjjEajOHLkiLfsWWedJUaMGCHsdrt3m6qq4rTTThODBg3ybhs5cqQ477zzWn3ehx9+WDT+Z2bLli0CgLjlllt8yl111VUCgHj44Ye92+bPny9SUlJO+phCCFFXV9ek3MyZM0VaWprPtmnTpolp06Z5f7/ooovEsGHDWm1Dc3JzcwUAsWTJElFSUiIKCwvFunXrxOjRowUAsXLlSm/ZE9s1e/ZsYTAYRE5Ojndbfn6+CA0NFVOnTvVu+/jjjwUA8cMPP7SpTldffbWIiopqsa4t/WzYsMFbNiUlRQAQ33zzjc9j/PDDDwKASEtL83mtnU6niI2NFcOHDxc2m827/d///rcAIB566CHvtvnz5wsA4r777vN57OzsbAFAfPzxx21qZwNVVUW/fv3EJZdc4rP9o48+EgDETz/9JIQQ4tNPPxUAxKZNm9r1+K355JNPBACxb98+IYQQVqtVmEwm8dxzz/mUu+aaa4RGo2n2uVVVFUK0nvOJ750GKSkpYv78+d7f7Xa78Hg8PmVyc3OF0WgUjz76qM82AOKtt946aRvHjx8vkpKSfB73m2++EQDEq6++KoQQwu12C4fD4fN3FRUVIi4uTlx33XWttqWtx/fBgweFVqsVTzzxhE+53377Teh0Ou/29ryP8vPzBQDx1FNPnbQsEZG/cHg5EZEkZsyYgZiYGPTv3x+XXnopgoOD8cUXXyApKQlA/TDVtWvX4vLLL0d1dTVKS0tRWlqKsrIyzJw5E/v27fMOGw4PD8eOHTuwb9++Nj//119/DaB+huTGbrvttk61q/E9x1VVVSgtLcW0adNw4MCBVocoh4eHIy8vD5s2berQ8z788MOIiYlBfHw8zjjjDOTk5OCpp57CnDlzmi3v8Xjw3XffYfbs2UhLS/NuT0hIwFVXXYWff/7ZO2S7vcrKynxGLJzoxhtvxOrVq5v8DB061KdcamoqZs6c2exjzJ8/3+e1zsrKQnFxMW655RaYTCbv9vPOOw8ZGRn46quvmjzGzTff7PN7wxXIb7/9ttmh4i1RFAWXXXYZvv76a9TU1Hi3f/jhh+jXrx+mTJkCAN4r7f/+97/hcrna/PitWb58OcaNG4eBAwcCAEJDQ3Heeef5DDFXVRWfffYZLrjgAu88CifW31+MRqP33nqPx4OysjKEhIRgyJAhzQ4Rb4urr74aeXl5+Omnn7zbVqxYAYPB4B1ZoNVqYTAYANS3t7y8HG63G+PGjevw855o1apVUFUVl19+uffzqLS0FPHx8Rg0aJB3KHt73kcNx0lzIz+IiLoKO91ERJJ46aWXsHr1anzyySc499xzUVpaCqPR6N2/f/9+CCHw4IMPIiYmxufn4YcfBgAUFxcDqJ8JvbKyEoMHD8aIESNw9913n3QJoUOHDkGj0SA9Pd1ne+MhzB3xyy+/YMaMGQgODkZ4eDhiYmK8y2a11um+9957ERISggkTJmDQoEG49dZb8csvv7T5eRs6smvWrMGvv/6K4uJi3HPPPS2WLykpQV1dXbPtzczMhKqqTe5TbQ8hRIv7Bg0ahBkzZjT5sVgsPuVSU1NbfIwT9x06dAhA8/llZGR49zfQ6XTeEzyNH/OOO+7A66+/jujoaMycORMvvfRSq7k1uOKKK2Cz2bzzDdTU1ODrr7/GZZdd5u3UTps2DZdccgmWLFmC6OhoXHTRRXjrrbfgcDhO+vjNqaysxNdff41p06Zh//793p/JkycjKysLe/fuBVCftdVqxfDhwzv0PO2hqiqee+45DBo0CEajEdHR0YiJicG2bdva9Do258orr4RWq/XOb2C32/Hpp59i1qxZPid33nnnHZxyyineeR1iYmLw1Vdfdfh5T7Rv3z4IITBo0KAmn0m7du3yfh61533UcJz488QHEdHJsNNNRCSJCRMmYMaMGbjkkkvwxRdfYPjw4bjqqqu8VwpVVQUA3HXXXc1eFV29erX36t7UqVORk5ODN998E8OHD8frr7+OMWPG4PXXX/dLXVv6QtwwOVaDnJwcnHXWWSgtLcWzzz6Lr776CqtXr8btt9/u06bmZGZmYs+ePfjggw8wZcoUrFy5ElOmTPGeYDiZho7smWeeiTFjxvicwOhuUVFRqKio6PTjNDdTeVv2tUXjK7KNPfPMM9i2bRvuv/9+2Gw2LF68GMOGDWt2gr3GTj31VAwYMAAfffQRAODLL7+EzWbzWTdbURR88skn2LBhAxYtWoSjR4/iuuuuw9ixY32ukLfVxx9/DIfDgWeeeQaDBg3y/txxxx0A0OKEav504jHwl7/8BXfccQemTp2K9957D99++y1Wr16NYcOGtfr+b01sbCx+97vfYeXKlXC5XN5l0RomvwPqJze79tprkZ6ejjfeeAPffPMNVq9ejTPPPPOkz9vW41tVVSiK4n3sE38arxLQ1vdRw3ESHR3drteEiKgzOJEaEZGEtFotnnzySUyfPh0vvvgi7rvvPu+QZ71e36ZZsCMjI7FgwQIsWLAANTU1mDp1Kh555BFcf/31zZZPSUmBqqrIycnxuTq6Z8+eJmUjIiJQWVnZZPuJV0+//PJLOBwOfPHFF0hOTvZub8sMygAQHByMK664AldccQWcTifmzJmDJ554Av/v//0/nyHT/hATE4OgoKBm27t7925oNBr0798fQPuvwmVkZGD58uWoqqpqcfIxf0tJSQFQn1/DzO0N9uzZ493fFiNGjMCIESPwwAMPYP369Zg8eTKWLVuGxx9/vNW/u/zyy/H888/DarXiww8/xIABA3Dqqac2KXfqqafi1FNPxRNPPIEVK1Zg3rx5+OCDD1p8r7Zk+fLlGD58eLMnZl599VWsWLECS5YsQUxMDCwWC7Zv397q47WWc3PHgNPpREFBgc+2Tz75BNOnT8cbb7zhs72ysrJTHct58+bhm2++wX/+8x+sWLECFovFZ133Tz75BGlpaVi1apVPO9py0qqtx3d6ejqEEEhNTcXgwYNP+rhteR81rC7Q3gnriIg6g1e6iYgkdcYZZ2DChAlYunQp7HY7YmNjccYZZ+DVV19t8sUeqB8y26CsrMxnX0hICAYOHNjqsN1Zs2YBAF544QWf7UuXLm1SNj09HVVVVT5D1gsKCvDpp5/6lNNqtQB8h1ZXVVXhrbfearEeLbXBYDBg6NChEEL47f7fxrRaLc4++2x8/vnn3pnjAaCoqAgrVqzAlClTvMO9G9avbq5j0pxJkyZBCIFff/3V39Vu0bhx4xAbG4tly5b55P6f//wHu3btatOs9FarFW6322fbiBEjoNFo2jQE/IorroDD4cA777yDb775psl68xUVFU2G3TfMqt348XNycposnXeiI0eO4KeffsLll1+OSy+9tMnPggULsH//fmzcuBEajQazZ8/Gl19+iaysrCaP1VCn1nJOT0/3uacaAP75z382uRqs1WqbtPHjjz9usmxbe82ePRtBQUF4+eWX8Z///Adz5szxORHV3LG3ceNGbNiw4aSP3dbje86cOdBqtViyZEmTNgohvMdwe95Hv/76KxRFwaRJk05aTyIif+GVbiIiid1999247LLL8Pbbb+Omm27CSy+9hClTpmDEiBG44YYbkJaWhqKiImzYsAF5eXnetX+HDh2KM844A2PHjkVkZCSysrLwySefYNGiRS0+16hRozB37ly8/PLLqKqqwmmnnYY1a9Zg//79TcpeeeWVuPfee3HxxRdj8eLFqKurwyuvvILBgwf7TNJ09tlnw2Aw4IILLsAf/vAH1NTU4LXXXkNsbGyzJw4aO/vssxEfH4/JkycjLi4Ou3btwosvvojzzjsPoaGhHXxFW/f4449j9erVmDJlCm655RbodDq8+uqrcDgcePrpp73lRo0aBa1Wi6eeegpVVVUwGo3etcibM2XKFERFReH7779vctUZADZv3oz33nuvyfb09PQOdz70ej2eeuopLFiwANOmTcPcuXO9S4YNGDDAO8S/NWvXrsWiRYtw2WWXYfDgwXC73fjXv/4FrVaLSy655KR/P2bMGAwcOBB//vOf4XA4fIaWA/X3HL/88su4+OKLkZ6ejurqarz22muwWCw499xzveXOOussAPA5GXKiFStWQAiBCy+8sNn95557LnQ6HZYvX46JEyfiL3/5C7777jtMmzYNN954IzIzM1FQUICPP/4YP//8M8LDw1vN+frrr8dNN92ESy65BL/73e+wdetWfPvtt02uXp9//vl49NFHsWDBApx22mn47bffsHz5cp/J+joiJCQEs2fP9t7X3XhoecPzrlq1ChdffDHOO+885ObmYtmyZRg6dOhJh+639fhOT0/H448/jv/3//4fDh48iNmzZyM0NBS5ubn49NNPceONN+Kuu+5q1/to9erVmDx5cqtL+xER+V0PzJhORETdqGHJsOaWLvJ4PCI9PV2kp6cLt9sthBAiJydHXHPNNSI+Pl7o9XrRr18/cf7554tPPvnE+3ePP/64mDBhgggPDxdms1lkZGSIJ554QjidTm+Z5pb3stlsYvHixSIqKkoEBweLCy64QBw5cqTZ5ZG+++47MXz4cGEwGMSQIUPEe++91+xjfvHFF+KUU04RJpNJDBgwQDz11FPizTffFABEbm6ut9yJS4a9+uqrYurUqSIqKkoYjUaRnp4u7r77blFVVdXq69mw9NLf/va3VssJ0fyyT5s3bxYzZ84UISEhIigoSEyfPl2sX7++yd++9tprIi0tTWi12jYtH7Z48WIxcODAZuva0k/jpadSUlKaXQauYcmwlpZj+vDDD8Xo0aOF0WgUkZGRYt68eSIvL8+nzPz580VwcHCTvz1w4IC47rrrRHp6ujCZTCIyMlJMnz5dfP/99622tbE///nPAkCTtgtR/1rPnTtXJCcnC6PRKGJjY8X5558vsrKyfMqlpKQ0u4RVYyNGjBDJycmtljnjjDNEbGyscLlcQgghDh06JK655hrv8nxpaWni1ltv9Vlqq6WcPR6PuPfee0V0dLQICgoSM2fOFPv37292ybA777xTJCQkCLPZLCZPniw2bNjQ5P3eniXDGnz11VcCgEhISGiyLJmqquIvf/mLSElJEUajUYwePVr8+9//bnY5sM4c30IIsXLlSjFlyhQRHBwsgoODRUZGhrj11lvFnj17hBBtfx9VVlYKg8EgXn/99Ta/BkRE/qAI0cp0p0RERBQQDhw4gIyMDPznP//xXrklouOWLl2Kp59+Gjk5OZ2eGJCIqD3Y6SYiIuojbr75Zuzfvx+rV6/u6aoQ9Soulwvp6em47777cMstt/R0dYhIMux0ExEREREREXURzl5ORERERERE1EXY6SYiIiIiIiLqIux0ExEREREREXURdrqJiIiIiIiIuoiupytALVNVFfn5+QgNDYWiKD1dHSIiIiIiIjpGCIHq6mokJiZCo2n5ejY73b1Yfn4++vfv39PVICIiIiIiohYcOXIESUlJLe5np7sXCw0NBVAfosVi6eHaBDa3243s7GyMHj0aOh3f9rJg7vJi9nJi7vJi9nJi7vLqLdlbrVb079/f229rCd+dvVjDkHKLxcJOdye53W4EBwfDYrHwQ1kizF1ezF5OzF1ezF5OzF1evS37k90KzInUiIiIiIiIiLoIO90kDa1W29NVoB7A3OXF7OXE3OXF7OXE3OUVSNkrQgjR05Wg5lmtVoSFhaGqqorDy4mIiIiIiHqRtvbXen4APFE3EEKgqqoKYWFhXH5NIsxdXsxeTsxdXsxeTo1zV1UVLperp6tE3aRhqa6uXlpZr9f75Yo6O90kBY/Hg927d2PcuHG9YrIF6h7MXV7MXk7MXV7MXk4Nuffv3x9Wq7Wnq0PdSAgBp9MJg8HQ5SfawsPDER8f36nn4acSEREREREFJI1Gg6qqKsTFxSEoKIgjHSQhhEBdXV2XZt7wHMXFxQCAhISEDj8WO91ERERERBRwPB4P9Ho9YmNjERUV1dPVoW4khIDH44HJZOrSEy1msxkAUFxcjNjY2A4PNefs5SQFRVFgNpt59lMyzF1ezF5OzF1ezF5ObrcbGo0GQUFBPV0V6gEaTfd0ZRveX52ZM4BXukkKWq0WI0eO7OlqUDdj7vJi9nJi7vJi9nLSarUwGAzd1vmi3kNRlG472eKPk3l8h5IUVFVFcXExVFXt6apQN2Lu8mL2cmLu8mL2clJVFR6PB1wBWT5CCLhcroDJnp1ukoKqqjhw4AD/MZYMc5cXs5cTc5cXs5eTqqpwu909XQ3qIQ6HA+vWrYOiKKisrOzp6rSKnW4iIiIiIqJu0tBRbOln+vTpvapOhYWF3V6fxgYMGIClS5c2u++0005DQUEBwsLCurdS7cR7uomIiIiIiLpJQ0fxRF988QVuuukm3HLLLR1+7Ia1qztqz549sFgsPttiY2Pb9Vwulwt6vb7dz92RvzMYDIiPj2/3c3U3XukmKSiKgrCwMM5qKhnmLi9mLyfmLi9mLydFUQJyErWGjmLjn4qKCtx11124//77cdlll3nLbt++HbNmzUJISAji4uLw+9//HqWlpd79Z5xxBhYtWoTbbrsN0dHRmDlzJgDgxx9/xIQJE2A0GpGQkID77ruvTUPxY2Njm9St4TW+9tprMXv2bDzxxBNITEzEkCFDcPDgQSiKgg8//BDTpk2DyWTC8uXLoaoqHn30USQlJcFoNGLUqFH45ptvvM/T0t+1h1arbTK8/O2330Z4eDi+/fZbZGZmIiQkBOecc06Tkxyvv/46MjMzYTKZkJGRgZdffrldz91evNJNUtBqtcjMzOzpalA3Y+7yYvZyYu7yYvZy0mq10Ov1zZ9sqa1t7Q8Bk6ltZTUa4Nhaza2WDQ5uvbKtqKysxEUXXYQzzjgDjz32mM/2M888E9dffz2ee+452Gw23Hvvvbj88suxdu1ab7l33nkHN998M3755RcAwNGjR3Huuefi2muvxbvvvovdu3fjhhtugMlkwiOPPNLhegLAmjVrYLFYsHr1ap/t9913H5555hmMHj0aJpMJzz//PJ555hm8+uqrGD16NN58801ceOGF2LFjBwYNGtTi37VVa8sE1tXV4e9//zv+9a9/QaPR4Oqrr8Zdd93l7dQvX74cDz30EF588UWMHj0a2dnZuOGGGxAcHIz58+d38JU5CUG9VlVVlQAgqqqqeroqAc/j8YgjR44Ij8fT01WhbsTc5cXs5cTc5cXs5VRbWyu2bdsm6urqmu4EWv4591zfskFBLZedNs23bHR08+U6yOPxiFmzZonMzExhtVp99j322GPi7LPP9tl25MgRAUDs2bNHCCHEtGnTxOjRo33K3H///WLIkCFCVVXvtpdeekmEhIS0eIz88MMPAoAIDg72+Rk6dKi3zPz580VcXJxwOBzebbm5uQKAWLp0qc/jJSYmiieeeMJn2/jx48Utt9zS6t81JyUlRTz33HM+21RVFQ6HQ6xdu1YAEBUVFUIIId566y0BQOzfv9+n7XFxcd7f09PTxYoVK3we77HHHhOTJk1q9vltNpvYuXOnsNlsTfa1tb8WUOMxfvrpJ1xwwQVITEyEoij47LPPfPZfe+21TW78P+ecc3zKlJeXY968ebBYLAgPD8fChQtRU1PjU2bbtm04/fTTYTKZ0L9/fzz99NNN6vLxxx8jIyMDJpMJI0aMwNdff+2zXwiBhx56CAkJCTCbzZgxYwb27dvnnxeC2k1VVeTl5XFWU8kwd3kx++5XbXdhV4EVm3LLsavAimq7q9vrwNzlxezl1LBkWCC7//77sWHDBnz++ecIDQ312bd161b88MMPCAkJ8f5kZGQAAHJycrzlxo4d6/N3u3btwqRJk3yuAk+ePBk1NTXIy8trtT7/93//hy1btnh/TuzjjBgxotn7uMeNG+f9b6vVivz8fEyePNmnzOTJk7Fr164W/669nE5ns9uDgoKQnp7u/T0hIQHFxcUAgNraWuTk5GDhwoU+r+vjjz/u85r6W0ANL6+trcXIkSNx3XXXYc6cOc2WOeecc/DWW295fzcajT77582bh4KCAqxevRoulwsLFizAjTfeiBUrVgCof5OcffbZmDFjBpYtW4bffvsN1113HcLDw3HjjTcCANavX4+5c+fiySefxPnnn48VK1Zg9uzZ2Lx5M4YPHw4AePrpp/HCCy/gnXfeQWpqKh588EHMnDkTO3fubNfQCSIiot7ucFkdVmXnocjq8G6LsxgxZ3QSkqOCerBmRCStEy6q+dBqfX8/1iFr1on3jB882OEqneiDDz7A3//+d3z11Vc+Q64b1NTU4IILLsBTTz3VZF9CQoL3v4M7MbT9RKmpqQgPD29xf0vP1dE6+LPuDU6cjE1RFO963g0XW1977TVMnDjRp5z2xPeFHwVUp3vWrFmYNWtWq2WMRmOLM9jt2rUL33zzDTZt2uQ9q/KPf/wD5557Lv7+978jMTERy5cvh9PpxJtvvgmDwYBhw4Zhy5YtePbZZ72d7ueffx7nnHMO7r77bgDAY489htWrV+PFF1/EsmXLIITA0qVL8cADD+Ciiy4CALz77ruIi4vDZ599hiuvvNJfLwkREVGPqra7mnS4AaDI6sCq7DwsnJKKUFP7Z7ElIuqU9nTmuqpsK7Zs2YKFCxfir3/9q3fysxONGTMGK1euxIABA6DTtb3blpmZiZUrV0II4b3a/csvvyA0NBRJSUl+qX9rLBYLEhMT8csvv2DatGne7b/88gsmTJjQ5c/fmri4OCQmJuLAgQOYN29etz1vQHW622LdunWIjY1FREQEzjzzTDz++OOIiooCAGzYsAHh4eE+wxhmzJgBjUaDjRs34uKLL8aGDRswdepUn2ETM2fOxFNPPYWKigpERERgw4YNuOOOO3yed+bMmd7h7rm5uSgsLMSMGTO8+8PCwjBx4kRs2LChxU63w+GAw3H8S4vVagUAuN1u72yDGo0GGo0Gqqr6DKFq2O7xeLxnclrbrtVqoShKk1kMG87wnDhUp6XtOp0OQgif7YqiQKvVNqljS9u7o02KoiAqKgqqqnr3B3qbmqs72+Rbd1VVERUV5X3+vtCmk21nm45vb+6YD/Q29cacDpfWoMRqgwIFwvu/9XUssdpwpKwWQ/uFd0ubGo75hvoyJ7nadOIx3xfa1Bdz8mebVFWFRqOBEMKnTFs0vvrZ3dtLSkowe/ZsnHHGGd5RuI3La7VaxMTE4JZbbsFrr72GuXPn4u6770ZkZCT279+PDz/8EK+99po3r4b2NzzGzTffjKVLl2LRokVYtGgR9u7di4cffhi33367z/M0/u+G/y8qKoLdbvepe1RUlM/V48b7Gv994+133XUXHnnkEaSlpWHUqFF46623sGXLFrz33ns+ZU+WXcNJg7y8PGRnZ/vsi4+Pb/FxWqojADzyyCP405/+BIvFglmzZsFutyMrKwsVFRXePt6Jr03jx298PLVlRnigj3W6zznnHMyZMwepqanIycnB/fffj1mzZmHDhg3QarUoLCxsss6cTqdDZGSkd9H3wsJCpKam+pSJi4vz7ouIiEBhYaF3W+MyjR+j8d81V6Y5Tz75JJYsWdJke3Z2tnfoRUxMDNLT05Gbm4uSkhJvmaSkJCQlJWHv3r2oqqrybk9LS0NsbCy2b98Om83m3Z6RkYHw8HBkZ2f7fICecsopMBgMyMrK8qnDuHHj4HQ6sW3bNu82rVaL8ePHo6qqCrt37/ZuN5vNGDlyJEpLS3HgwAHv9rCwMGRmZiI/P9/nfpLualNZWRnKysr6VJv6Yk5d0Sa3293n2tQXc/J3m+rq6rB58+Y+1abemFNlnQuDNHZUCTMKRRjiFCvClON1LCkyAv3Cu7VNlZWVzEnCNmk0Gp9jvi+0qS/m5O82mUwm2Gw2GI1GaDQa1J4wu3hwcDBUVfV5DEVREBwcDI/HA7vd7t2u0WgQFBQEt9vtcyFMq9XCbDbD5XL53Ees0+lgMpngcDh8Ol8GgwEGgwF2u93ndTcajdDr9fj0009x6NAhHDp0CImJiThRcnIyduzYgfj4ePz888+46667MHPmTDgcDvTv39878re2thYejwdutxt1dXXeNoWHh2PlypV44IEH8PrrryMyMhLXXnstbr/9du/rc2KbGl6HhnvGG1uzZg2mTJkCoP6ETOPXuKHddrvdZ/utt94Kq9WKO++8EyUlJcjIyMCHH37ovde6rq4OAGCz2VBbW9tqTgDwzDPP4JlnnvGp11tvveXtb9XW1vrcwtu4Li5X/RwjDTnNnTsXWq0WL7zwAu655x4EBwdj6NChuOWWW1BbW+vNyWazQVVVOBwOOJ1OVFdXw2w2+xxPJ77fWqKI9p4W6iUURcGnn36K2bNnt1jmwIEDSE9Px/fff4+zzjoLf/nLX/DOO+9gz549PuViY2OxZMkS3HzzzTj77LORmpqKV1991bt/586dGDZsGHbu3InMzEwYDAa88847mDt3rrfMyy+/jCVLlqCoqAjr16/H5MmTkZ+f73O/xeWXX+5dj645zV3p7t+/P8rKyryL1PPMZ8fapKoqDhw4gJSUFO9ag4HepubqzjY1vdJ96NAhDBgwAHq9vk+06WTb2SZ4j/GcnJwmx3wgt6m35rSnsBor/nf42PVt3yvdADBvYkq3Xuk+dOgQUlJSYDAYmJNEbQKaHvOB3qa+mJO/21RXV4eDBw9i4MCBMDde1qsNevJKd3u2t0dvq3tXtgmo7zsZDAafCeO6ou52ux25ublITU2F2Wz2OZ6sViuioqJQVVXl7a81p09d6T5RWloaoqOjsX//fpx11lmIj4/3zlzXwO12o7y83HsfeHx8PIqKinzKNPx+sjKN9zdsa9zpLioqwqhRo1qsr9FobDLxG1D/QXfifRwNH0QnaviwbOv2lu4Pac92RVGa3d5SHdu73R9tEkKgrKwMqampTfYHapvau13GNrndbm/urdU9kNrU2e2ytKlx9m055tu7nTkd354cHYIYi9l7T3dD5xuon0ytf1Rwq3X3Z5tOPOaZkzxtau2YD9Q2tbadbaqvY0MnXlEUn45XW7X0N71te3v0trp3VZuEEHC73TAajU32+7vuDe+vht8bHwdtvdc+oJYMa6+8vDyUlZV5O76TJk1CZWUlfv31V2+ZtWvXQlVV7+x1kyZNwk8//eQdhgAAq1evxpAhQxAREeEts2bNGp/nWr16NSZNmgSgfta/+Ph4nzJWqxUbN270liEiIuoLQk16zBmdhDiL70njOIsRc8YkcRI1IiKSXkBd6a6pqcH+/fu9v+fm5mLLli2IjIxEZGQklixZgksuuQTx8fHIycnBPffcg4EDB3pnBMzMzMQ555yDG264AcuWLYPL5cKiRYtw5ZVXeu+nuOqqq7BkyRIsXLgQ9957L7Zv347nn38ezz33nPd5//SnP2HatGl45plncN555+GDDz5AVlYW/vnPfwKoPxty22234fHHH8egQYO8S4YlJia2OhyeiIgoECVHBWHhlFTkVdhQY3cjxKRDUoSZHW4iIiIEWKc7KysL06dP9/7eMLvc/Pnz8corr2Dbtm145513UFlZicTERJx99tl47LHHfIZsL1++HIsWLcJZZ50FjUaDSy65BC+88IJ3f1hYGL777jvceuutGDt2LKKjo/HQQw95lwsDgNNOOw0rVqzAAw88gPvvvx+DBg3CZ5995l2jGwDuuece1NbW4sYbb0RlZSWmTJmCb775hmt09xCNRoOkpKRmhzNR38Xc5cXsu1+oSY/MhJ7tZDN3eTF7OWk0mhaHn1Pf13i1qd4uYCdSk4HVakVYWNhJb8wnIiIiIpJN4wmueGGLukpr77O29td4OpCk4PF4sGvXriazcVLfxtzlxezlxNzlxezlpKoqXC4Xc5eQEAI2m63Ts6O3RePZ9jsqoIaXE3WUEAJVVVXdcmBS78Hc5cXs5cTc5cXs5aTT6eByuZCfn4/Y2Ngmy0dR3yWE8K713VWZCyHgdDpRUlICjUbTqeHs7HQTEREREVHA0Wg0cLlc0Ol0yM/P7+nqUDdq6BB3x4mWoKAgJCcnd2rOCHa6iYiIiIgoYCUlJQEAh5lLxO12Y/v27Rg4cGCb18ruCK1WC51O1+mOPTvdJAWNRoO0tDTOaioZ5i4vZi8n5i4vZi+nhty1Wi00Gg30ei5TKAtVVZGWloagoKCAOO45e3kvxtnLiYiIiIiIeifOXk7UiMfjwdatWznsSDLMXV7MXk7MXV7MXk7MXV6Blj073SSF7lxWgHoP5i4vZi8n5i4vZi8n5i6vQMuenW4iIiIiIiKiLsJONxEREREREVEXYaebpKDVapGRkQGtVtvTVaFuxNzlxezlxNzlxezlxNzlFWjZc/byXoyzlxMREREREfVOnL2cqBG3241NmzbB7Xb3dFWoGzF3eTF7OTF3eTF7OTF3eQVa9ux0kzQCZUkB8i/mLi9mLyfmLi9mLyfmLq9Ayl7X0xUgIiKi3qna7kJehQ01djdCTDokRZgRatL3dLWIiIgCCjvdRERE1MThsjqsys5DkdXh3RZnMWLO6CQkRwX1YM2IiIgCCydS68U4kZr/CCFgs9lgNpuhKEpPV4e6CXOXF7PvnGq7C2/8nOvT4W4QZzFi4ZTUXnnFm7nLi9nLibnLq7dkz4nUiE5gMBh6ugrUA5i7vJh9x+VV2JrtcANAkdWBvApbN9eo7Zi7vJi9nJi7vAIpe3a6SQoejwdZWVkBNeECdR5zlxez75wae+uzwZ5sf09h7vJi9nJi7vIKtOzZ6SYiIiIfIabWp3w52X4iIiI6jp1uIiIi8pEUYUacxdjsvjiLEUkR5m6uERERUeBip5uIiIh8hJr0mDM6qUnHO85ixJwxSb1yEjUiIqLeirOX92Kcvdx/hBDweDzQarWc3VIizF1ezN4/Am2dbuYuL2YvJ+Yur96SfVv7a7wpi6ThdDphNnNIpGyYu7yYfeeFmvTITOi9nezmMHd5MXs5MXd5BVL2HF5OUvB4PNi2bVvAzHBI/sHc5cXs5cTc5cXs5cTc5RVo2bPTTURERERERNRF2OkmIiIiIiIi6iLsdJM0tFptT1eBegBzlxezlxNzlxezlxNzl1cgZc/Zy3sxzl5ORERERETUO7W1v8Yr3SQFIQQqKyvBc0xyYe7yYvZyYu7yYvZyYu7yCrTs2ekmKXg8HuzevTtgZjgk/2Du8mL2cmLu8mL2cmLu8gq07NnpJiIiIiIiIuoi7HQTERERERERdRF2ukkKiqLAbDZDUZSergp1I+YuL2YvJ+YuL2YvJ+Yur0DLnrOX92KcvZyIiIiIiKh34uzlRI2oqori4mKoqtrTVaFuxNzlxezlxNzlxezlxNzlFWjZs9NNUlBVFQcOHAiYA5P8g7nLi9nLibnLi9nLibnLK9CyZ6ebiIiIiIiIqIuw001ERERERETURdjpJikoioKwsLCAmeGQ/IO5y4vZy4m5y4vZy4m5yyvQsufs5b0YZy8nIiIiIiLqnTh7OVEjqqoiLy8vYCZbIP9g7vJi9nJi7vJi9nJi7vIKtOzZ6SYpBNqBSf7B3OXF7PuOarsLuwqs2JRbjl0FVlTbXS2WZe7yYvZyYu7yCrTsdT1dASIiIqLmHC6rw6rsPBRZHd5tcRYj5oxOQnJUUA/WjIiIqO14pZuIiIh6nWq7q0mHGwCKrA6sys5r9Yo3ERFRb8JON0lBo9EgJiYGGg3f8jJh7vJi9oEvr8LWpMPdoMjqQF6Frcl25i4vZi8n5i6vQMuew8tJChqNBunp6T1dDepmzF1ezD7w1djd7d7P3OXF7OXE3OUVaNkHxqkBok5SVRU5OTkBM9kC+QdzlxezD3whptavCzS3n7nLi9nLibnLK9CyZ6ebpKCqKkpKSgLmwCT/YO7yYvaBLynCjDiLsdl9cRYjkiLMTbYzd3kxezkxd3kFWvbsdBMREVGvE2rSY87opCYd7ziLEXPGJCHUpO+hmhEREbUP7+kmIiKiXik5KggLp6Qir8KGGrsbISYdkiLM7HATEVFAYaebpKDRaJCUlBQwMxySfzB3eTH7viPUpEdmQts62cxdXsxeTsxdXoGWvSKEED1dCWqe1WpFWFgYqqqqYLFYero6REREREREdExb+2uBcWqAqJM8Hg927doFj8fT01WhbsTc5cXs5cTc5cXs5cTc5RVo2bPTTVIQQqCqqgoc2CEX5i4vZi8n5i4vZi8n5i6vQMuenW4iIiIiIiKiLsJONxEREREREVEXYaebpKDRaJCWlhYwMxySfzB3eTF7OTF3eTF7OTF3eQVa9py9vBfj7OVERERERES9E2cvJ2rE4/Fg69atATPDIfkHc5cXs5cTc5cXs5cTc5dXoGXPTjdJQQgBm80WMDMckn8wd3kxezkxd3kxezkxd3kFWvbsdBMRERERERF1EXa6iYiIiIiIiLoIO90kBa1Wi4yMDGi12p6uCnUj5i4vZi8n5i4vZi8n5i6vQMues5f3Ypy9nIiIiIiIqHfi7OVEjbjdbmzatAlut7unq0LdiLnLi9nLibnLi9nLibnLK9CyZ6ebpBEoSwqQfzF3eTF7OTF3eTF7OTF3eQVS9ux0ExEREREREXURdrqJiIiIiIiIuggnUuvFOJGa/wghYLPZYDaboShKT1eHuglzlxezlxNzlxezlxNzl1dvyZ4TqRGdwGAw9HQVqAcwd3kxezkxd3kxezkxd3kFUvbsdJMUPB4PsrKyAmrCBeo85i4vZi8n5i4vZi8n5i6vQMs+oDrdP/30Ey644AIkJiZCURR89tlnPvuFEHjooYeQkJAAs9mMGTNmYN++fT5lysvLMW/ePFgsFoSHh2PhwoWoqanxKbNt2zacfvrpMJlM6N+/P55++ukmdfn444+RkZEBk8mEESNG4Ouvv253XYiIiIiIiKhvC6hOd21tLUaOHImXXnqp2f1PP/00XnjhBSxbtgwbN25EcHAwZs6cCbvd7i0zb9487NixA6tXr8a///1v/PTTT7jxxhu9+61WK84++2ykpKTg119/xd/+9jc88sgj+Oc//+kts379esydOxcLFy5EdnY2Zs+ejdmzZ2P79u3tqgsRERERERH1bbqerkB7zJo1C7NmzWp2nxACS5cuxQMPPICLLroIAPDuu+8iLi4On332Ga688krs2rUL33zzDTZt2oRx48YBAP7xj3/g3HPPxd///nckJiZi+fLlcDqdePPNN2EwGDBs2DBs2bIFzz77rLdz/vzzz+Occ87B3XffDQB47LHHsHr1arz44otYtmxZm+pCRERE9artLuRV2FBjdyPEpENShBmhJn1PV4uIiMgvAupKd2tyc3NRWFiIGTNmeLeFhYVh4sSJ2LBhAwBgw4YNCA8P93a4AWDGjBnQaDTYuHGjt8zUqVN9bsyfOXMm9uzZg4qKCm+Zxs/TUKbhedpSF+peWq0W48aNg1ar7emqUDdi7vJi9oHjcFkd3vg5F+9uOIRV2Ufx7oZDeOPnXBwuq2v3YzF3eTF7OTF3eQVa9gF1pbs1hYWFAIC4uDif7XFxcd59hYWFiI2N9dmv0+kQGRnpUyY1NbXJYzTsi4iIQGFh4Umf52R1aY7D4YDD4fD+brVaAQButxtutxsAoNFooNFooKoqVFX1lm3Y7vF40HgVuJa2a7VaKIrifdzG2wE0mZSgpe06nQ5CCJ/tiqJAq9U2qWNL27ujTQ3LCphMJu+yAoHepubqzjb51l0IAbvdDrPZDJ1O1yfadLLtbFP9dkVRmj3mA7lNfTGnWqcHn24+jJJqh/cqgAoFRVYHPt18GPNPG4AQo67NbWo45k0mE/R6PXOSqE2KosBut8NoNHqP+UBvU1/Myd9tanzM63S6PtGmttSdbVKg0WiaHPM90aYT29eSPtPp7guefPJJLFmypMn27OxsBAcHAwBiYmKQnp6O3NxclJSUeMskJSUhKSkJe/fuRVVVlXd7WloaYmNjsX37dthsNu/2jIwMhIeHIzs72+dNfMopp8BgMCArK8unDuPGjYPT6cS2bdu827RaLcaPH4+qqirs3r3bu91sNmPkyJEoLS3FgQMHvNvDwsKQmZmJ/Px85OXlebd3R5u0Wi1+/vlnhIeHew/MQG9TX8zJ320SQqCyshLJyckYNmxYn2hTX8ypK9oUGRmJDRs2IDQ01HvMB3qb+mJOZR4TTDUFGKQ5/qXliBqBOhgRWpOHrKxSb6e7LW1qOOajoqIwYcIE5iRRm1JSUvC///3PZ83eQG9TX8zJ321yu92orKxEeHg4Ro4c2Sfa1Bdz6oo2DRs2DL/++isMBoP3mO+JNtXW1qItFNG4+x5AFEXBp59+itmzZwMADhw4gPT0dGRnZ2PUqFHectOmTcOoUaPw/PPP480338Sdd97pHSYO1J+dMJlM+Pjjj3HxxRfjmmuugdVq9ZkZ/YcffsCZZ56J8vJyREREIDk5GXfccQduu+02b5mHH34Yn332GbZu3dqmujSnuSvd/fv3R1lZmXex9UA5+9Tbzqi53W5kZWVhzJgx3rYEepuaqzvb5Ft3j8eDzZs3Y8yYMTAajX2iTSfbzjbBW3bTpk1NjvlAblNfzOnXQ5X4NPsIlEZ1UaEAUKCBigtHJmJsSkSb23TiMc+c5GlTc8d8oLepL+bk7zY1PuYbbg0N9Da1pe5skwIhRJNjvifaZLVaERUVhaqqKm9/rTl95kp3amoq4uPjsWbNGm9H12q1YuPGjbj55psBAJMmTUJlZSV+/fVXjB07FgCwdu1aqKqKiRMnesv8+c9/hsvlgl5fP4nL6tWrMWTIEERERHjLrFmzxqfTvXr1akyaNKnNdWmO0WiE0Whssl2n03mHzDRoeDOcqOFN19btJz5uR7YritLs9pbq2N7t/miToijeA/HE/YHapvZul7VNDbm3VvdAa1NntsvSJlVV23XMt3c7c/JPm0JMOgho0NzZfxUaWIKM7c6v8THPnORpU2vHfKC2qbXtbFPTY77hamdfaFNntsvSJrfb3eIx351taqkdTf6mTaV6iZqaGuzfv9/7e25uLrZs2YLIyEgkJyfjtttuw+OPP45BgwYhNTUVDz74IBITE71XwzMzM3HOOefghhtuwLJly+ByubBo0SJceeWVSExMBABcddVVWLJkCRYuXIh7770X27dvx/PPP4/nnnvO+7x/+tOfMG3aNDzzzDM477zz8MEHHyArK8u7rJiiKCetC3W/lg4cCiztneWYucuL2fd+SRFmxFmMKLI6muyLsxiRFGFu92Myd3kxezkx977rZN/5Ain7gBpevm7dOkyfPr3J9vnz5+Ptt9+GEAIPP/ww/vnPf6KyshJTpkzByy+/jMGDB3vLlpeXY9GiRfjyyy+h0WhwySWX4IUXXkBISIi3zLZt23Drrbdi06ZNiI6Oxh//+Efce++9Ps/58ccf44EHHsDBgwcxaNAgPP300zj33HO9+9tSl5OxWq0ICws76XAFIlkcLqvDquw8ny/ocRYj5oxOQnJUUA/WjIg6qsXjekwSkiN5XBMRyShQvvO1tb8WUJ1u2bDT7T9CCFRVVSEsLMw7/IgCS7XdhTd+zm3xitjCKalNrngzd3kx+8Dir3W6mbu8mL2cmHvf1JbvfCFGXa/Ivq39tT6zTjdRazweD3bv3t1kcgYKHHkVtmY/fAGgyOpAXoWtyXbmLi9mH1hCTXpkJlgwPjUSmQmWDnW4AeYuM2YvJ+beN7XlO1+gZc9ONxEFhBp76+sgnmw/EREREfV+ffE7HzvdRBQQQkytz/t4sv1ERERE1Pv1xe987HSTFBRFgdls5v0+AaxhluPmtDTLMXOXF7OXE3OXF7OXE3Pvm9rynS/QsudEar0YJ1Ij8sVZjomIiIj6vkD5zsfZy/sAdrr9R1VVlJaWIjo6GhoNB3gEsvbMcszc5cXs5cTc5cXs5cTc+7bWvvP1luzb2l8LvAHxRB2gqioOHDiAyMhIfigHuPpZjts2szFzlxezlxNzlxezlxNz79ta+84XaNn3/hoSERERERERBSh2uomIiIiIiIi6CDvdJAVFURAWFhYwMxySfzB3eTF7OTF3eTF7OTF3eQVa9pxIrRfjRGpERERERES9U1v7a7zSTVJQVRV5eXlQVbWnq0LdiLnLi9nLibnLi9nLibnLK9CyZ6ebpBBoByb5B3OXF7OXE3OXF7OXE3OXV6Blz043ERERERERURdhp5uIiIiIiIioi7DTTVLQaDSIiYmBRsO3vEyYu7yYvZyYu7yYvZyYu7wCLXvOXt6LcfZyIiIiIiKi3omzlxM1oqoqcnJyAmayBfIP5i4vZi8n5i4vZi8n5i6vQMuenW6SgqqqKCkpCZgDk/yDucuL2cuJucuL2cuJucsr0LJnp5uIiIiIiIioi7DTTURERERERNRF2OkmKWg0GiQlJQXMDIfkH8xdXsxeTsxdXsxeTsxdXoGWPWcv78U4ezkREREREVHvxNnLiRrxeDzYtWsXPB5PT1eFuhFzlxezlxNzlxezlxNzl1egZc9ON0lBCIGqqipwYIdcmLu8mL2cmLu8mL2cmLu8Ai17drqJiIiIiIiIugg73URERERERERdhJ1ukoJGo0FaWlrAzHBI/sHc5cXs5cTc5cXs5cTc5RVo2XP28l6Ms5cTERERERH1Tpy9nKgRj8eDrVu3BswMh+QfzF1ezF5OzF1ezF5OzF1egZY9O90kBSEEbDZbwMxwSP7B3OXF7OXE3OXF7OXE3OUVaNmz001ERERERETURdjpJiIiIiIiIuoi7HSTFLRaLTIyMqDVanu6KtSNmLu8mL2cmLu8mL2cmLu8Ai17zl7ei3H2ciIiIiIiot6Js5cTNeJ2u7Fp0ya43e6ergp1I+YuL2YvJ+YuL2YvJ+Yur0DLXtfTFSDqLoGypAD5F3OXV0vZV9tdyKuwocbuRohJh6QIM0JN+m6uHXUVHvPyYvZyYu7yCqTs2ekmIiJpHC6rw6rsPBRZHd5tcRYj5oxOQnJUUA/WjIiIiPoqDi8nIiIpVNtdTTrcAFBkdWBVdh6q7a4eqhkRERH1ZR2aSM3hcGDjxo04dOgQ6urqEBMTg9GjRyM1NbUr6igtTqTmP0II2Gw2mM1mKIrS09WhbsLc5dVc9rsKrHh3w6EW/+aaSSnITOBnbSDjMS8vZi8n5i6v3pJ9W/tr7Rpe/ssvv+D555/Hl19+CZfLhbCwMJjNZpSXl8PhcCAtLQ033ngjbrrpJoSGhna6EUT+ZDAYeroK1AOYu7xOzL7G3vpkKyfbT4GBx7y8mL2cmLu8Ain7Ng8vv/DCC3HFFVdgwIAB+O6771BdXY2ysjLk5eWhrq4O+/btwwMPPIA1a9Zg8ODBWL16dVfWm6hdPB4PsrKyAmrCBeo85i6v5rIPMbV+nvlk+6n34zEvL2YvJ+Yur0DLvs3fMM477zysXLkSen3zM7ympaUhLS0N8+fPx86dO1FQUOC3ShIREXVWUoQZcRZjk3u6gfrJ1JIizD1QKyIiIurr2nyl+w9/+EOLHe4TDR06FGeddVaHK0VERORvoSY95oxOQpzF6LM9zmLEnDFJXDaMiIiIugTH0hERkTSSo4KwcEoq1+kmIiKibtPm2csjIiLaPDNceXl5pypF9Xrr7OXVdlfAfWEVQsDj8UCr1XJ2S4kwd3kxezkxd3kxezkxd3n1luz9Pnv50qVLvf9dVlaGxx9/HDNnzsSkSZMAABs2bMC3336LBx98sOO1pl7vcFldk3Vu4yxGzBmdhOSooB6s2ck5nU6YzbxnUzbMXV7MXk7MXV7MXk7MXV6BlH2b7+meP3++9+eXX37Bo48+ivfffx+LFy/G4sWL8f777+PRRx/Fjz/+2JX1pR5UbXc16XADQJHVgVXZeai2u3qoZifn8Xiwbdu2gJnhkPyDucuL2cuJucuL2cuJucsr0LJvc6e7sW+//RbnnHNOk+3nnHMOvv/++05XinqnvApbs7P+AvUd77wKWzfXiIio7artLuwqsGJTbjl2FVh79YlCIiIi6js6NJFaVFQUPv/8c9x5550+2z///HNERUX5pWLU+9TY3Z3aT0TUUwL51hgiIiIKbB3qdC9ZsgTXX3891q1bh4kTJwIANm7ciG+++QavvfaaXytIvUeIqfW3y8n29zStVtvTVaAewNzl1ZD9yW6NWTgltddPBkltx2NeXsxeTsxdXoGUfZtnLz/Rxo0b8cILL2DXrl0AgMzMTCxevNjbCafO622zl1fbXXjj59xmh5jHWYz84kpEvdKuAive3XCoxf3XTEpBZkLPf8YSERFRYPH77OUnmjhxIpYvX97RP6cAFGrSY87opOaHaI5J6tUdbiEEqqqqEBYWxiUlJMLc5dU4e94aIw8e8/Ji9nJi7vIKtOw7NJEaAOTk5OCBBx7AVVddheLiYgDAf/7zH+zYscNvlaPeJzkqCAunpOKaSSmYM7ofrpmUgoVTUpEc2bvvifR4PNi9e3fAzHBI/sHc5dU4+0C/NYbajse8vJi9nJi7vAIt+w51un/88UeMGDECGzduxMqVK1FTUwMA2Lp1Kx5++GG/VpB6n1CTHpkJFoxPjURmgqVXX+EmIkqKMCPOYmx2X5zFiKSIwFjjk4iIiAJThzrd9913Hx5//HGsXr0aBoPBu/3MM8/Ef//7X79VjoiIqLMabo05seMdCLfGEBERUeDr0Ji63377DStWrGiyPTY2FqWlpZ2uFJG/KYoCs9kcEPd8kP8wd3mdmH3DrTF5FTbU2N0IMemQFGFmh7uP4TEvL2YvJ+Yur0DLvkOd7vDwcBQUFCA1NdVne3Z2Nvr16+eXihH5k1arxciRI3u6GtTNmLu8msu+/tYYdrL7Mh7z8mL2cmLu8gq07Ds0vPzKK6/Evffei8LCQiiKAlVV8csvv+Cuu+7CNddc4+86EnWaqqooLi6Gqqo9XRXqRsxdXsxeTsxdXsxeTsxdXoGWfYc63X/5y1+QkZGB/v37o6amBkOHDsXUqVNx2mmn4YEHHvB3HYk6TVVVHDhwIGAOTGpdtd2FXQVWbMotx64CK6rtrmbLMXd5MXs5MXd5MXs5MXd5BVr2HRpebjAY8Nprr+Ghhx7Cb7/9hpqaGowePRqDBg3yd/2IiHwcLqtrfq340UlIjurdS9cRERERkXw6dKX70UcfRV1dHfr3749zzz0Xl19+OQYNGgSbzYZHH33U33UkIgJQf4X7xA43ABRZHViVndfiFW8iIiIiop7SoU73kiVLvGtzN1ZXV4clS5Z0ulJE/qYoCsLCwgJmhkNqXl6FrUmHu0GR1YG8CpvPNuYuL2YvJ+YuL2YvJ+Yur0DLvkPDy4UQzTZw69atiIyM7HSliPxNq9UiMzOzp6tBnVRjd7drf1/Jvdru4lJX7dSZ7Pl6B66+csxT+zF7OTF3eQVa9u3qdEdEREBRFCiKgsGDB/t0vD0eD2pqanDTTTf5vZJEnaWqKvLz85GYmAiNpkMDPKgXCDG1/pF14v6+kDvvYe+YjmbP1zuw9YVjnjqG2cuJucsr0LJvV6d76dKlEELguuuuw5IlSxAWFubdZzAYMGDAAEyaNMnvlSTqLFVVkZeXh/j4+IA4MGXW2lXGpAgz4izGZoeYx1mMSIow+2wL9NxPdg/7wimpvALbgo5kz9c78AX6MU8dx+zlxNzlFWjZt6vTPX/+fABAamoqJk+eDJ2uQ6PTiYiadbKrjKEmPeaMTmq+zJikPtchass97JkJfavNPYmvNxEREXWFDvWaa2trsWbNGsycOdNn+7fffgtVVTFr1iy/VI6I5NHWq4zJUUFYOCVVintu23sPO3UOX28iIiLqCh26Fn/ffffB4/E02S6EwH333dfpShH5m0ajQUxMTEAMP5FVe2YmDzXpkZlgwfjUSGQmWFrscAd67u29h52O60j2fL0DX6Af89RxzF5OzF1egZZ9h2q5b98+DB06tMn2jIwM7N+/v9OVIvI3jUaD9PT0gDkwZdQVVxkDPfeGe9ib09w97HRcR7Ln6x34Av2Yp45j9nJi7vIKtOw7VMuwsDAcOHCgyfb9+/cjODi405Ui8jdVVZGTkwNVVXu6KtSCrrjKGOi5N9zDfmJHsK/ew+5PHcmer3fgC/RjnjqO2cuJucsr0LLv0Fi5iy66CLfddhs+/fRTpKenA6jvcN9555248MIL/VpBIn9QVRUlJSVISUkJmDNismnvzORt0Rdyl+kedn/qaPZ8vQNbXzjmqWOYvZyYu7wCLfsOdbqffvppnHPOOcjIyEBSUhIAIC8vD6effjr+/ve/+7WCRCQH2WYmb4/6e9jlbX934+tNRERE/tTh4eXr16/HV199hVtuuQV33nkn1qxZg7Vr1yI8PNzPVWy7Rx55BIqi+PxkZGR499vtdtx6662IiopCSEgILrnkEhQVFfk8xuHDh3HeeechKCgIsbGxuPvuu+F2+95Lum7dOowZMwZGoxEDBw7E22+/3aQuL730EgYMGACTyYSJEyfif//7X5e0magvabjKeM2kFMwZ3Q/XTErBwimpSI4M6umqERERERF1SIenYlUUBWeffTbOPvtsf9an04YNG4bvv//e+3vjtcRvv/12fPXVV/j4448RFhaGRYsWYc6cOfjll18AAB6PB+eddx7i4+Oxfv16FBQU4JprroFer8df/vIXAEBubi7OO+883HTTTVi+fDnWrFmD66+/HgkJCd4l1D788EPccccdWLZsGSZOnIilS5di5syZ2LNnD2JjY7vx1aAGGo0GSUlJATH8RHb+vMrI3OXF7OXE3OXF7OXE3OUVaNkrQgjRloIvvPACbrzxRphMJrzwwgutll28eLFfKtdejzzyCD777DNs2bKlyb6qqirExMRgxYoVuPTSSwEAu3fvRmZmJjZs2IBTTz0V//nPf3D++ecjPz8fcXFxAIBly5bh3nvvRUlJCQwGA+6991589dVX2L59u/exr7zySlRWVuKbb74BAEycOBHjx4/Hiy++CKD+noP+/fvjj3/8Y7uWVLNarQgLC0NVVRUsFktHXxYiIiIiIiLys7b219p8auC5555DbW2t979b+lm6dGmnK98Z+/btQ2JiItLS0jBv3jwcPnwYAPDrr7/C5XJhxowZ3rIZGRlITk7Ghg0bAAAbNmzAiBEjvB1uAJg5cyasVit27NjhLdP4MRrKNDyG0+nEr7/+6lNGo9FgxowZ3jLU/TweD3bt2tXs+vLUdzF3eTF7OTF3eTF7OTF3eQVa9m0eXp6bm9vsf/cmEydOxNtvv40hQ4agoKAAS5Yswemnn47t27ejsLAQBoOhyT3ncXFxKCwsBAAUFhb6dLgb9jfsa62M1WqFzWZDRUUFPB5Ps2V2797dav0dDgccjuMTSFmtVgCA2+323leu0Wig0WigqqrPFPkN2z0eDxoPXmhpu1arhaIoTe5X12q1ANDkDdzSdp1OByGEz3ZFUaDVapvUsaXt3dEmVVVRWVkJt9vt/ZtAb1NzdWebfOvu8Xi8ufeVNp1sO9tUv10I0ewxH8ht6os5+btNJx7zfaFNjfWVnLqiTc0d84Hepr6Yk7/b1PiYbxhmHOhtakvd2Sal2WO+J9p0Yvta0uF7unujWbNmef/7lFNOwcSJE5GSkoKPPvoIZnP7lxvqbk8++SSWLFnSZHt2drZ3/fOYmBikp6cjNzcXJSUl3jJJSUlISkrC3r17UVVV5d2elpaG2NhYbN++HTabzbs9IyMD4eHhyM7O9nkTn3LKKTAYDMjKyvKpw7hx4+B0OrFt2zbvNq1Wi/Hjx6OqqsrnhILZbMbIkSNRWlrqs557WFgYMjMzkZ+fj7y8PO/27miTVqtFZWUlNm/eDEVR+kSb+mJO/m5Twwfy/v37MWzYsD7Rpr6YU1e0KTIyEtXV1T7HfKC3qS/m5O82NRzzW7duxYQJE/pEm/piTl3RppSUFNhsNp9jPtDb1Bdz8neb3G639/vdyJEj+0Sb+mJOXdGmYcOGwel0+hzzPdGmhpHgJ9Pme7rvuOOONj0gADz77LNtLtvVxo8fjxkzZuB3v/sdzjrrLFRUVPhc7U5JScFtt92G22+/HQ899BC++OILn3vCc3NzkZaWhs2bN2P06NGYOnUqxowZ4zOM/q233sJtt92GqqoqOJ1OBAUF4ZNPPsHs2bO9ZebPn4/Kykp8/vnnLda1uSvd/fv3R1lZmfcegUA5+9Tbzqi53W5kZWVhzJgx3rYEepuaqzvb1PRK9+bNm72rDfSFNp1sO9sEb9lNmzY1OeYDuU19MaeuuNLd+JjvC21qrK/k1BVtau6YD/Q29cWcuuJKd8MxbzAY+kSb2lJ3tqn+SveJx3xPtMlqtSIqKuqk93S3+Up3dna2z++bN2+G2+3GkCFDAAB79+6FVqvF2LFj2/qQXa6mpgY5OTn4/e9/j7Fjx0Kv12PNmjW45JJLAAB79uzB4cOHMWnSJADApEmT8MQTT6C4uNg7y/jq1athsVgwdOhQb5mvv/7a53lWr17tfQyDwYCxY8dizZo13k63qqpYs2YNFi1a1Gp9jUYjjEZjk+06nc5nFnbg+JvhRA1vurZuP/FxO7JdUZRmt7dUx/Zu90ebtFot0tPTodfrmzxHoLapvdtlbJNGo/Hm3lrdA6lNnd0uU5vac8y3dztz6p1tOvGY7wttOhHb1PL2lo75QG5TX8zJn21qfMw3XO0M9DZ1drssbVJVtcVjvjvb1FI7mvxNm0oB+OGHH7z//eyzzyI0NBTvvPMOIiIiAAAVFRVYsGABTj/99LY+pN/ddddduOCCC5CSkoL8/Hw8/PDD0Gq1mDt3LsLCwrBw4ULccccdiIyMhMViwR//+EdMmjQJp556KgDg7LPPxtChQ/H73/8eTz/9NAoLC/HAAw/g1ltv9XaGb7rpJrz44ou45557cN1112Ht2rX46KOP8NVXX3nrcccdd2D+/PkYN24cJkyYgKVLl6K2thYLFizokdeF6g8yLtcmH+YuL2YvJ+YuL2bft1TbXcirsKHG7kaISYekCDNCTU2XE2Xu8gq07Ns8vLyxfv364bvvvsOwYcN8tm/fvh1nn3028vPz/VbB9rjyyivx008/oaysDDExMZgyZQqeeOIJpKenAwDsdjvuvPNOvP/++3A4HJg5cyZefvllxMfHex/j0KFDuPnmm7Fu3ToEBwdj/vz5+Otf/+pzFmPdunW4/fbbsXPnTiQlJeHBBx/Etdde61OXF198EX/7299QWFiIUaNG4YUXXsDEiRPb1R4uGeY/Ho8H27dvx/Dhw1s8a0V9D3OXF7OXE3OXF7PvOw6X1WFVdh6KrMdvuYyzGDFndBKSo4J8yjJ3efWW7NvaX+vQRGpWq9XnJvQGJSUlqK6u7shD+sUHH3zQ6n6TyYSXXnoJL730UotlUlJSmgwfP9EZZ5zRZLj9iRYtWnTS4eTUfYQQsNls6MA5JgpgzF1ezF5OzF1ezL5vqLa7mnS4AaDI6sCq7DwsnJLqc8Wbucsr0LJv8zrdjV188cVYsGABVq1ahby8POTl5WHlypVYuHAh5syZ4+86EhERERFRH5dXYWvS4W5QZHUgr8LW7D6i3q5DV7qXLVuGu+66C1dddRVcLlf9A+l0WLhwIf72t7/5tYJERERERNT31dhbX/P4ZPuJeqsO3dPdoLa2Fjk5OQDqZ4xsWEua/IP3dPuPEAJVVVUICwvzzm5JfR9zlxezlxNzlxez7xt2FVjx7oZDLe6/ZlIKMhOOfydm7vLqLdl36T3dDQoKClBQUICpU6fCbDZDCME3PPVKiqL4rM9Ocugrubd1Flc6rq9kT+3D3OXF7PuGpAgz4izGZoeYx1mMSIow+2xj7vIKtOw7dE93WVkZzjrrLAwePBjnnnsuCgoKAAALFy7EnXfe6dcKEvmD2+3Gpk2bfBazp76vL+R+uKwOb/yci3c3HMKq7KN4d8MhvPFzLg6X1fV01Xq1vpA9tR9zlxez7xtCTXrMGZ2EOIvRZ3ucxYg5Y5KanHBm7vIKtOw71Om+/fbbodfrcfjwYQQFHZ+6/4orrsA333zjt8oR+ZPH4+npKlAPCOTcTzaLa7Xd1UM1CwyBnD11HHOXF7PvG5KjgrBwSiqumZSCOaP74ZpJKVg4JRXJkUHNlmfu8gqk7Ds0vPy7777Dt99+i6SkJJ/tgwYNwqFDLd+HQUREbdeWWVwzEzjMnIiI+pZQk57/vlGf0qEr3bW1tT5XuBuUl5fDaDQ28xdERNRenMWViIiIKPB1qNN9+umn49133/X+rigKVFXF008/jenTp/utckT+otVqccopp0Cr1fZ0VagbBXruIabWByOdbL/MAj176hjmLi9mLyfmLq9Ay75D39iefvppnHXWWcjKyoLT6cQ999yDHTt2oLy8HL/88ou/60jkFwaDoaerQD0gkHNv7yyu5CuQs6eOY+7yYvZyYu7yCqTsO3Sle/jw4di7dy+mTJmCiy66CLW1tZgzZw6ys7ORnp7u7zoSdZrH40FWVlZATbhAnRfoubd3Flc6LtCzp45h7vJi9nJi7vIKtOzbfaXb5XLhnHPOwbJly/DnP/+5K+pERETHNMziynW6iYiIiAJTuzvder0e27Zt64q6EBFRMxpmca22u5BXYcPugmp2vomIiIgCRIfu6b766qvxxhtv4K9//au/60NERM04XFbXZM3uOIsRc0YnITmq+bVLiYiIiKjnKUII0d4/+uMf/4h3330XgwYNwtixYxEcHOyz/9lnn/VbBWVmtVoRFhaGqqoqWCyWnq5OQBNCwOPxQKvVQlGUnq4OdZO+knu13YU3fs5tcUK1hVNSecX7BH0le2of5i4vZi8n5i6v3pJ9W/trHbrSvX37dowZMwYAsHfvXp99fMNTb+V0OmE2c7Zn2fS23BuGiLfn/uy8CluzHW4AKLI6kFdhQ2YCO90n6m3ZU/dg7vJi9nJi7vIKpOw71On+4Ycf/F0Poi7l8Xiwbds2jBs3Djod1zaWRW/LvaNDxGvs7lYf92T7ZdTbsqfuwdzlxezlxNzlFWjZt3vJsA8//BDz5s3DZZddhmXLlnVFnYiI+pxqu6tJhxuov1K9KjsP1XZXi38bYmr9H5OT7SciIiKintOub2qvvPIKbr31VgwaNAhmsxmrVq1CTk4O/va3v3VV/YiI+oSODhGvtrugANBpFZRWOxBs1EGvPX6+NM5iRFJEYAytIiKi3q0jt0AR0cm1q9P94osv4uGHH8bDDz8MAHjvvffwhz/8gZ1uCgharbanq0A9oLfk3pEh4g3D0UtrnMiMD8WaChuOVFiRGhWCEJOufmj6mCR+IWpBb8meuhdzlxez75xAXSWDucsrkLJv1+zlZrMZu3btwoABAwAAqqrCbDbj4MGDSEhI6Ko6SouzlxP1HbsKrHh3w6EW918zKQWZCceP8xNnLNdqFKREmmHQaaEowMikcKTFBLPDTUREncZVMog6pq39tXbd0+1wOHyWB9NoNDAYDLDZbB2vKVE3EEKgsrISHVghjwJYb8o9KcKMOIux2X3NDRE/cTi6RxU4UFqH3YXV2FVQDYNOwy9ArehN2VP3Ye7yYvad05ZboHoj5i6vQMu+3bPvPPjggwgKOj7ExOl04oknnkBYWJh3G9fppt7G4/Fg9+7dATPDIflHb8o91KTHnNFJzQ/da2aIOGcs75zelD11H+YuL2bfOYH6bw5zl1egZd+uGk6dOhV79uzx2XbaaafhwIED3t+5TjcRUfOSo4KwcEpqmyap4YzlRETUXfhvDlHXatcRtG7dui6qBhG1B2cXDVyhJn2zs5SfqGE4ekv313HGciIi8hf+m0PUtXjaiqSgKArMZnOfGIkRqLOL9oRAzr29w9HJVyBnTx3H3OXF7DsnUP/NYe7yCrTs2zV7OXUvzl5OJ+LsovLhqAYiIuou/DeHqH26ZPZyokClqiqKi4uhqmpPV6VTAnV20Z7SF3KvH45uwfjUSGQmWPjlp436QvbUfsxdXszePwLt3xzmLq9Ay56dbpKCqqo4cOBAwByYLQnU2UV7Sl/JndqP2cuJucuL2cuJucsr0LJnp5sogHB2USIiIiKiwNLpTveIESNw5MgRf9SFiE6iYXbR5nB2USIiIiKi3qfTne6DBw/C5XL5oy5EXUZRFISFhQXMDIctaZhd9MSOd2+fXbSn9JXcqf2YvZyYu7yYvZyYu7wCLftOz14eGhqKrVu3Ii0tzV91omM4e7n/9fZZOdtav97eDiIiIiKivq6t/bVO3wB6+umnw2zmkFbq3VRVxbY9uViX50ZRtdO7vTetb92e9bfrZxdlJ/tkVFVFfn4+EhMTodFwCguZMHs5MXd5MXs5MXd5BVr2na7h119/jYSEBH/UhajLWG1O7Mo5iJJqu8/2IqsDq7LzUG3v2Vskqu2uJh1uoGn9qu0u7CqwYlNuOXYVWHu83r2dqqrIy8sLmJktyX+YvZyYu7yYvZyYe9cIhO+bgZY9pzomKRytsMHhbv6gbFjfuruuHDc3NLwt628HG5p2zHvTlXoiIiIiCmztGXlJbcdON0mhxtE71rdu6YNsVP/wVv+uotaJb3cUtnglfOGUVN7TTUREREQddrKRl/y+2XHsdJMUQk16VAkzBJqf4bA71rdu7YOsuNoBl0eFXtvCHR8KUFrjRFp0EAw6LRwuD0yG+v8/VG7r1iv1gUSj0SAmJiYg7vUh/2L2cmLu8mL2cmLu/tWWkZe95ftmoGXPTjdJoX9UMERoLEQzHyTdtb51ax9kVXVOWEw62FxNh8DHWYwI1muRGR+KNbuLcaiszrsvJSoIZ2XEorabrtQHGo1Gg/T09J6uBvUAZi8n5i4vZi8n5u5fJxv52V0jQ9si0LIPjFMDRJ0UbNBiSpyKuFCDz/buXN+6tQ+qQ+U2nDMsvsX1t016bZMONwAcKqvDmt3F3XKlPhCpqoqcnJyAmWSD/IfZy4m5y4vZy4m5+9fJvk/2pu+bgZZ9m1+5iIiINi8+Xl5e3uEKEXUFVVXhrq3EtaeNQoHV2SPrW7f2QeVRBSxmPRZOSW12/e2tRypRfMLM6w2Kq+0tThInO1VVUVJSgpSUlIAZfkT+wezlxNzlxezlxNz9KynCjDiLsdmRmd01MrStAi37Nne6ly5d2oXVIOoeIUYdMhNMPfLcJ/sg63esg93cvTJOt4rUqBDkltXA5jzewTYbNEiNDoGTnW4iIiIi6oRQkx5zRic1P3t5N40M7ava3OmeP39+V9aDqFOaW4art30wdOaDLMSkQ4hJh4x4C2odbu+ka8FGHfRaTa8a7kPdLxDe/0RERNT7JUcFtTjykjqu09/U7XY7nE6nzzaLxdLZhyVqs7asJ6jRaJCUlNSlw0/a0vHp6AdZ46vk4UFN70vvTcN9epPuyL2ncT3N5smQPTXF3OXF7OXE3LtGSyMve5NAy14RQoj2/lFtbS3uvfdefPTRRygrK2uy3+Px+KVysrNarQgLC0NVVRVPZLSg2u7CGz/ntjhku7vWE8wtqcGmQxWorHV6l/Kyu1RcNKqf3zo+zXWuooL1mJEZB7dHIJhnIqXTW97/RERERDJqa3+tQ6cG7rnnHqxduxavvPIKjEYjXn/9dSxZsgSJiYl49913O1xpovZqy3qCQP2JoF27dnXJCaH9xdV4+ts9ePXHA/gwKw/vrD+EDQfKERlswOdbjqLa7vLL8zRcJb9mUgrmjO6HOaP7ITkyCJ9sPoqV2Ufx7oZDeOPnXBw+YYZzmXVl7r1BW9//Murr2VPzmLu8mL2cmPtx1XYXdhVYsSm3HLsKrH77/tlbBVr2HRpe/uWXX+Ldd9/FGWecgQULFuD000/HwIEDkZKSguXLl2PevHn+ridRs9q6nqAQAlVVVejAwI5WVdtd+HlfKdJjQtA/MghGnQbFVge25lVize5iTEqLRF6FrdNDdE4cup4SFYQPNx1BfpXvjOZFVgdWZefxCucxXZV7bxFI62l2t76ePTWPucuL2cuJudeT8VazQMu+Q53u8vJypKWlAai/f7thibApU6bg5ptv9l/tiE6ip9cTzCmuwXc7i7D9aJV3W2p0MH43NA6rdxbBoNN2uuPT3AepWa9BekwIiqod8Ki+HzYNVzh7+7041Hk9/f4nIiKinlVtdzX5ngjwQkxv06Hh5WlpacjNzQUAZGRk4KOPPgJQfwU8PDzcb5UjOpmGCcaa09UTjFXbXViZfRRHyn2Hc+eW1uKnvSUYmRQOm8sDl6p2eKhPwwdpXoUNlXVOlFTbUVnnxMGyOqzZXYyUyObbJ/MVTpn05PufiIiIeh5vNQsMHep0L1iwAFu3bgUA3HfffXjppZdgMplw++234+677/ZrBYla07AM14kdjxOX4dJoNEhLS/PrDId5FTaUVjug02qg1Sg++3JLaxEVYoBWAXYcrcLnW/Px874S/Gd7IdbtKW5zBzyvwoac4lrsLrRib1ENckvrsLeoBrUON/YX18Cg0zb7d7zCWa8rcu9N2vr+l1Ffz56ax9zlxezlxNzlvdUs0LLv0Dfz22+/3fvfM2bMwO7du/Hrr79i4MCBOOWUU/xWOaK2aMsyXBqNBrGxsX593hq7G8FGHYKNWnhUPartLu9QbwFAr1WQFBGE/+aWIzM+FGt2F+NQWR3MBg0y4i1IijCf9F6biloncstqYHOqPtudbhVCCNhcTSeP4BXO47oi996G62k2T4bsqSnmLi9mLyfmLu+tZoGWvV9SSElJQUpKij8eiqhDTraeoMfjwfbt2zF8+HBotc1fHW7/c+owJC4EGfGhKKt1QqsoKKiy4ddD5dBptRiaYMH6A+VICjd5O9wAYHOqqHW423avjYImHW4BAbcq6ocWhxph0mvgcqs4VG5DdIhB+iucjXVF7r1RIKyn2d1kyZ58MXd5MXs5Mffjt5q1tHxoX70QE2jZd6jT/eijj7a6/6GHHupQZYi6ihACNpvN7zMc7iqsxoGSWmg1gMOlIjxIj2smDcDRChuOVNjgdKsw6LTeDncDl6e+I32ySc8MWg0SwozILa2FRlGg1SiIs5hQ53QjyKiDRwjkldvgcHtw6ZgkpMeGsMPdSFflTr0fs5cTc5cXs5cTcz9+q1mzs5f34QsxgZZ9hzrdn376qc/vLpcLubm50Ol0SE9PZ6ebAsqJy3G1ZWhubkkNnl+zDzvyrd5h5cFGHQw6DdbnlOHW6enYfKgCWo0Cl0dFXKgBUOr/W6/VQK89fv9JS/faHC6rw8GyWoxOjkC13Y38ShtSooKRU1KDiCADksLN+Pu3exATYsSMoXH4YXcx0mNDOtUuIiIiIgosvNWs9+tQpzs7O7vJNqvVimuvvRYXX3xxpytF1F06sq5htd2FTYcqsLeoBnqtBuFBBjjdHjjcKkprnNBpFPx6sAI7C6oxKS0S4UEG5JTWorzWCQBQFAWxoUYMTwxDRLCh2XttGmYtDzZosSvfioGxIbhsXBLKa10YVmPBkYo6rNp8FBoNsLuoGm4hcFZGrPequYzrNVLb8YQMERFR38JbzXo3v033ZrFYsGTJEjz44IP+ekgiv9FqtcjIyPC556OldQ3zKmx4e30uthyuaHaW8bwKGyqPdaAb1Do8sNrdKKiyodbpQXGNEzsLrNBqFWw+XIGIIL13eLhOo6Ci1ont+VUIO9bhOVHD8g8786txSlIY8srrUF7rxBdb8/HOhkP4eX8ZNBqgzumBVlG8M5lX1DpPul5je5ctC2TN5S67w2V1eOPnXLy74RBWZR/FuxsO4Y2fc3H4hFsgAh2zlxNzlxezlxNzl1egZe/X6eyqqqpQVVXlz4ckAtD5K3OKojRZQ765dQ1r7G7vbOEpUcHYXVjd5Apxjd0No/74Ae5yq7C5PDDqNNBpFBh1GqTHBKOqzgWPCny9vQDnDk+AgmLsL6mFB/X3noSadJg2OKbZdtTY3XB5VOwrqUZeRR3OzIxBbKgJ4UF6hJl18Kj1ZVQBCA2g1ShwulVAadt6jbKcCW0ud5md7IRM40n9Av1qOLOXE3OXF7OXE3OXV6Bl36FO9wsvvODzuxACBQUF+Ne//oVZs2b5pWJEDfwxVNrtdiM7OxujR4+GTlf/tj/xXmqXR/VZnstxbDmuEzskISYdnG4PUqKCcKisDh4hEGTQos7pQa1HRVSwAev2FCO/0o7RyeFweQRWbs7D2JQInDYwGm6PgE6rIL/ShrzKOlTbXU06MyEmHWodbticKoINOljMBpTXOlFe44QQQI3DDQWAotQff3qtFuFBegTptdKu19ic5nKXWVtPyPSF2xOYvZyYu7yYvZyYu7wCLfsO1fC5557z+V2j0SAmJgbz58/H//t//88vFSMC2ndl7mQ8Ht81rU+8l7qhk9ug8dXsxh2SqGADIoINmDO6H77fVYR9RTU4UFoDl0fFyKQwTEqPwks/7IfLI6DVKBCifvj5j3tLoQDQaBQoqF/H+/Jx/fHb0SroNRqfq4lJEWZEhxqxt6gGmfGhOFJeh5ziGqTFBCPIoMXh8jpY7W4IAZh0GowfEIGkcDNMei2MJ3k5+up6jS05MXeZteWEjD+PuZ7G7OXE3OXF7OXE3OUVSNl36Nt3bm6uv+tB1KyuHCp94rqGDct4AUBKVBCcbt8Dudbu9l4BzCmuxZGKWgyJs+DcUxJg0mlQbXchItiIV9btg8tTP4S8pMaOzIRQZB+uhBD1V6Y9an1n/PrT0/D1bwWoqHMhJtQEwPdq4iWj+8Fa50J0qBFlNU78375SzJuYcmwZMg00igKPEEiNCsZFoxKx/agVkwdFex9HtvUa6eROdsIlxKTj7QlEREREftahidSuu+46VFdXN9leW1uL6667rtOVImrQlUOlG9Y1jLMYodUoGJ4YhlnD43HRqERcPLofFEWBQadBWnQQBseFoLTWgR/3lQACCDJqMTA2FFa7C1m55dhZYEVyVBDyK+swOjkCeq2C8CA9tFBwxfhkpMeE1A8/d3rgVgWuGJeEQ2W12HbUCr1Wg8o6J0qq7dhTWI2Psg4jt6QGP+wuhsWsQ3SIER5VxbB+Fnyx9SiCDFrMHBaPWcPjMWd0P5yZEQOXx4MLRiUi1KT3aVdjfX29Rjq5hhNNzWk4IcPbE4iIiIj8SxEdWFFcq9WioKAAsbGxPttLS0sRHx8Pt5tfyvzBarUiLCwMVVVVsFgsPV2dHrGrwIp3Nxxqcf81k1KQmXDy10YIAZvNBrPZDEVRfPZV213IKa7BJ7/mYV9xDZxuFXa3B2cNicXI/uHYVWCF3a3C5VGxanMekiKCcGZGLA6W1sGtCuwtsqK42oE7fjcYRypsMGg1GBAdBIfLg4paF9yqisgQIyKDDPAIAYfLgxCjDq/93wGY9FpY7W7YXcevspv0GiyaPhC/5JSh1u7G5IFR+HDTYVwwsh9KaxywmHWosrmxK78Ku4uqMSTOgsyEUFw+LtnnfttAnwjLH1rLXVYt3q89JgnJkUF+O+Z6GrOXE3OXF7OXE3OXV2/Jvq39tXYNL7darRBCQAiB6upqmEwm7z6Px4Ovv/66SUecqDNOHALeWHuHShsMhhb3rdtbAo8AYkNNOFJRixmZcdiQU4aPfs1DsLF+crKUqGDMHp2EL7YcxZYjlThvRAJySmqRFh2M8CAdft5fgp/3lUEAiArW4w/T0vHb0Ur8vL8MDrcKjyqQFhOCyelRMOg1sJj1KKl2wOH2Pe9ltbmwr7gGKZH1bTtUVofTB8dgVXYeFCgorXGgxuFGWkwI5o5PxuEKG8pqXU3ut+V6jfVay11GyVFBWDgltcUTMv485noas5cTc5cXs5cTc5dXIGXfruHl4eHhiIyMhKIoGDx4MCIiIrw/0dHRuO6663Drrbd2VV1JQv4aKu3xeJCVldXshAuN72ENMekwc1g8sg9X4GilzTuzuArgYFkt1u8vxcxh8diaV4W9xTV4d8NB7Cmy4t/bClBt9yDMrIfFpMeY5Eh8uTUf/ztYgYhgA4QQUBTgYGkNNhwoQ/9wM1QBhJn1CDXpEBGkh8Wkg6IAqhDH7tvWwqDToqzOgZ0FVhwut6HO5UZBlR01Djd2FVix/kAZBsYEAzh+vy0d11ruMqs/IWPB+NRIZCZYfI6jvnJ7ArOXE3OXF7OXE3OXV6Bl364r3T/88AOEEDjzzDOxcuVKREZGevcZDAakpKQgMTHR75UkuZ3sylxb1DjcqHG48euhCliCjN6/r7a7cLTChpJqO/RaDYKNOui1GuzIt0JRFDg99cPBhQoY9BoUWR0IMtYv5+XyqBAAEsJMWJ9ThshgAwZEBcGtCqTFBmNjbjlcnvrlxFRRP2s5hEBuaS3CgvTQKIp3ODtQ3+HvF25GosWEkmoHLMcmvYoMMuLrbYWIDDYgxKiDxazHsYfCwdJaGIbGH28n77clP/DHMUdERERE9drV6Z42bRqA+tnLk5OTee8EdZvODJU+XFaHjzcdhKW2FlkHD0Cj1SE9JhjnDk/AjgIrDDoNSmuc0GkU1DrciA4xoNbpQbBBe2wNbA3sbg/qnG5YzHrUOd1QhYBRp4FJr0WQQQf1WLmD5XXIr7RjcHz9JGuqKhBi1EGnVeA+NqN5gsWI/cU1mDAgAjanGzsLqqEKgao6F1Iig3D5+P7IOlSOuDATbE4PQkw6TEyNxMbcMgQZtHB5VDQceUEGrXc9cUC+5cCo6/D2BCIiIiL/6NA39LVr1yIkJASXXXaZz/aPP/4YdXV1mD9/vl8qR9RZ1XYX3v/fIdQ5XIg3aDEgOgQGvQ5WmxPZRyrw39xymPVaeDwq9hTWIs5ixKjkcAgh4FYFYkKNqHG4YXd5oArA5FZh0GowPDEMdU43hidaEBViQEZ8KPKr7HC6VQQZtNAqClweFTpN/f/HhBiRX2UHAEQEG6DTKPhiaz5OTYvE+NRI1Njd0GkVFFsdUIVAfoUN249aUWVzwaTXwO5ScfGYJGQdLEewQYc6pxtajQKdVuNdTzzQ7rclIiIiIpJBh2YvHzx4MF599VVMnz7dZ/uPP/6IG2+8EXv27PFbBWXG2cs7b9uRSvywpxhrdxchr6wWLgEACkYnR2BMcji25VWif4QZw5PCcaisDi63CkuQDuv3lyGvwoa06GDsL6lBea0Ldpcbw/uFYUicBUadBv/+LR83nJ6GvIo6WG0u/LSvFAoUKApw+qAY7C6worLOCUuQAeFBelTWuqDRAEPiQxFu0uPbnUWICNbDrNfhQEkNACA6xIgLRyZib1E1rHYXXB4Bi0mH/SU1iAgyYFiCBXuKqlFQZYeiKBgYG4JJaZGodXq8s0/TcUIIeDweaLVajsyRDLOXE3OXF7OXE3Nvm764ok1vyb5LZi9vcPjwYaSmpjbZnpKSgsOHD3fkIYm6RI3DjbW7i3GwtBYWPWB1ATqtgv4RZhh1Glw0qh+KrHZkH67Ab0etcLlVDI4LxfWnp+HD/x1G9pFKKIqClKggpMeEYObQOGw6WIaCKhsWnzUIO45akRYdjLgUE/YU1SCnuAYCwA97inHLGWnYV1SLA6W10KB+3e5+4WacPSwOf/3PLsQfu3c7Mrr+SrlGo0Cv0cCg02B/SQ1UIRAZXH+FPCbEBKvdhSCjDsXVDgxNtKBfuBmzhscj1KRHvz7w4dlVnE4nzGaOAJARs5cTc5cXs5cTc29di0uFjk7yWWo2EAVS9h3qdMfGxmLbtm0YMGCAz/atW7ciKirKH/UialF7ztbZXSpyS2uhV4Dz+7vw2REjLh2fgqyD5ccmSwPqnB6kRJpx+bgkbNhfhiMVdfho0xFcMDIRpw+Owc58KzQaBR5VxXc7CjBpUAy251uhVRTYXG58u7MQ41IikRhuxqlpUXB7BEx6DcLMekSHGhBrMUKnUaBR6mc/02kUDE0Iw6aD5ahxuBEWpEeR1Y46pwczh8XjYFktgvQ6FFfbcaS8Ei5P/URrcRYThsSFQKNJQGK4CTOHxiPWYmq23VTP4/Fg27ZtGDduHHQ63u8uE2YvJ+YuL2YvJ+beumq7q0mHG6hf8ebEpWYDTaBl36Eazp07F4sXL0ZoaCimTp0KoH5o+Z/+9CdceeWVfq0gUWPtPVunCoEQkw4OhwsKgN8NjcNPe0ug1SiotDnrh2kDOFxeh8o6F2aPTsLS7/dgf3ENBseHYk+hFdOHxOKHXcUQCnDhqESs/PUohieGoazGibEpkdhffAQ1djcq65z4X245bE4Ppg2JwYYDZSircUJRgIExIfjtaBXsLg/SY4Jx/dQ0HK6og7vCBqvdhTqnB5kJobh4dCJe/ekAyuoccKvi2D3h9W0pstqRV2lHeY0TB0trMS4lkp1uIiIiImpW42VxT9Sw1CwnTe0eHep0P/bYYzh48CDOOuss75kFVVVxzTXX4IknnvBrBYkatPdsXbHVDr1WQf+IILjcbpgN1VANOhh0Ghwpt8Hu8sDhqr+KrNEAW/KqMHlQDE5Ni8LG3Aq4PCrKalxYt7cEmYkWuFSBvYU1yDpUjulDhiA8yICyWgdmj+oHk16DQfHBsNrc2FtUjYRwM9bnlCHBYoLJoMXRShsGRAfjUFktCqwOFFU5MD4lAldPTMaeohroNAoy4kOx5XAlQow6FFTavUuMNSxtlh4Tgn1F1UiPCYZHCC4PRr1SX7xvjIiIKBCd7Lsiv0t2nw51ug0GAz788EM8/vjj2LJlC8xmM0aMGIGUlBR/14/Iqz1n63YercLqXUWIDjVg+pAYDIkNQm1BDjzhocg6XH/FWa9VEGrSQVEAjaJACKDO6cbkgdGoc9bPVr6joApBpVqcNyIBb/x8AFeNT8YlY5Kw8WA5NuWWY0BUMHYWWJEcGYQzM2Lxf/tKMCA6BFMHRWPrkUoEG3TYV1QDt6oi3mJCYnj9fSeRwQbsKrDig01HsL+4BlMGRiP7cCU8QsXc8ck4Ul6Hg2V1cHgE4HRjWIIFYwZE4PudRchIsECv1XB5sDbSarU9XQVp9Lb7xpi9nJi7vJi9nJh7y072XTHQv0sGUvaazvzxoEGDcNlll+H8889HREQEXnnlFYwbN85fdesTXnrpJQwYMAAmkwkTJ07E//73v56uUsBq69m6YqsdG3PLsH5/KVZlHYVWo+Dv3+/HA7/Y4BQKPEKgzuVBlc2NGocbdU7PsU62gMOlYke+FeW1TkQFGQABuDwCuwqsOGNIHELNeqzfX4qKWicSw80oqLLDpNfiUHkdvvqtEGFBBnyafRRv/F8uLhzZD26PQFiQHm61fgmygiobCqvscKsqvtxWgLwKG5KjgjAgOgQFVXbYnSqOVNiQGhWM+acNwA2np+IP09IxbkAEth6pRFSIERaTjsuDtZFOp8P48eMD4l6fQHeykSjVdle31ofZy4m5y4vZy4m5ty4pwow4i7HZfYH+XTLQsu9UpxsAfvjhB/z+979HQkICHnvsMUycONEf9eoTPvzwQ9xxxx14+OGHsXnzZowcORIzZ85EcXFxT1ctILX1bN2Rijp8s70QJTVOjE+NxOdb8rG7wIpYgwdmnQbxFiOcbhUujwqDTgOPKuBwq0gMr58h3GzQwuFW8fGvRzAhNRJ1zvrOfEZ8KAAgOtSE/Eob7C4V+VU2lNc64XCrKK2xIyUqCAqA7flW1DrcSAw3oaDShshgAxxuD4IMOsSHmVBVVz9cvNbhwfiUSKREmXHuiHhMz4hFfJgJFTYXftlfis+yj+KVdTn4dEs+9hfXIsSoQ2KEGXPGJHHIbhsIIVBZWYkOrIxI7dSWkSjdidnLibnLi9nLibm3LtSkx5zRSU063nEWY8B/lwy07Dt0auDo0aN4++238dZbb6GyshIVFRVYsWIFLr/8cq6R18izzz6LG264AQsWLAAALFu2DF999RXefPNN3HfffW1/oNpaoLnhE1otYDL5lmuJRgM0nlK/PWXr6oCW3tCKAgQFdayszQaoasv1CA72KZtkUNFP70FxddMv9pGxEd6zdRVlVuQdLUVUsAFRigvF+eW487QkJKpFUOqqMWdMEs4YHIuCKhvs1XWAxw272wOzXoeymloIxYWy4gpYbS6cmjYYhbEhcHlUHDhaBr2qYv/BItidHiRHmhHicsDuVqEAsJvrlyELM+thFm64qqvR3wSgtg7x4Tr0txgxaFA4dBoFVo8Ht88YCLcqsHrLEXx3pASFVjtq7G4M6xeGWyf2xzvrD6KwphYmvQFBei0GJATj7IHh2Lk3HxNiUoHaZl5nk+n4e8XpBFytXF1sXNblqi/fEqMRaDiT2J6ybjfgaL4jBgAwGAC9vv1lPR7Abm+5rF4PGAzweDzYvWMHxg0f3vKZ0GNlAdS/H22tdA7bU1anq38tgPpjoq7OP2Xbc9x342dEXXkV9PZm6q0ocBnNx0eqdOFnROOyHrcbe7OzMWbMmPrsG5e12+vfQ2153JOVDQqqrzdQ//51tzIipz1lzeb61xk4+bHcnrJ9/DPCoyjYvXs3xo0eDV1rr2/jY7mNnycA+BnRi79HNDnmgVY/I5rgZ0S9APuM8Gg09cf8uHH1nRo/f49od9le+BmRbAIWjo7F0Uobau1uBAcZ0S8h4niHO0A/I5o95v34PaLVso2P+9ba2Zhoh08++UTMmjVLBAcHi0svvVR89tlnwuFwCJ1OJ3bs2NGeh+rzHA6H0Gq14tNPP/XZfs0114gLL7yw2b+x2+2iqqrK+3PkyBEBQFTVvw2b/HhmzRIul0u4XC7h8XiECApqtpwAhDp1qresy+USanR0y2XHjfMtm5LSYlkxdKhQVfV42aFDW37clBQhhBAej6e+7NixLZeNjq5vkxDC7XYLderUFss6jWaRW2wVqqoKq80pjp42veX6AuLZb3aKa1/fIK5+bYP4v1HTWi3790/+Jx79fJu46IUfxZYzL2q17IQ/vSee/WanGPXIf8SHEy5otewNj3wobnz7v+Ifq3eJ96de1mrZ15d9Id78v/3in+v2irVX3NRqWXXjRm8e7r/+tdWy7u+/9+ZR+8xzrZf9/HNvHp433mi97PvvH39PfvRR62Vff/34e+fLL1sv+/zz3rLu779vtWzd438R24+Uiw17C8R/X3m11bLi4Ye970nXli2tv7533ul9T7r27Wu1rOemm4SqqvV55Oe3Xvb3vxcul0sIIYRaXd162UsuqX8N3O76D47WyvaCz4jCpHRx38qtYvuR8h77jFCDguofT1XrH3/WrFZfN2+7VFWol17aetnKyuN5zJ/fetn8/OOPffPNrb/f9+8/nt0dd7T+Ht6+/XjZBx9s/T3cwc8I9/PPt162l3xG2O12sX79euH49tvWj42nnjr+Hl6/vvXXl58R9W3rw98j+BnR6LUIsM8I5z//KdavXy/sdrtfv0fwM+JYWX5G1Jdt5TOiChAARFVVVbP9uwbtutJ9xRVX4N5778WHH36I0NDQ9vypdEpLS+HxeBAXF+ezPS4uDrt37272b5588kksWbKkzc9RVVWFPVlZAICkpCQktVK2trYW24+VBYAJQqDFMQlCIKtR2dEOB5q/G+R4PRradIrNhpamS3K5XDAAyM/PR15eHobX1SGkhbJutxtF+flISkrC3r170a+6GpYWyiqKwG9bNuNwQgpCLRbEu1ofxhpcfQgjzR78WGGBWdf6HRYpKEJulcCZ8WZ4hGi17HUZCox1R3BVmgtJwa0WRbK+BiH6UniKS5EZ3spZNQAHS2vRryAHWo1AuKhptazH44HTZsO2bduQcOQIUlopm5ubi4EAdh44Cvu+A2htNoZ9+/ZBn5uL9PR0lJaWIraVsjk5OSjPykJaWlqr5QDg4MGDKDn2XhvldKK1BdAOHz6MomNlw/ftQ0YrZbfmFmF3VhYAgaTq1l8zoP61KCkpgfnAAYxspVydzYZgANu3b4d64ABGt1K2uLgYFpsNBoMBW7ZsafX1LSsrw8HsbIwfPx5VVVUIb6VsRXk59mVlISwsDJmZma01q9d8RvQPFqg4vBtZeUqPfEaoqoqsrCxkZGQgPDwcVqu11de4oW3jxo0DPJ5Wh4Rt3rwZqtkMs9nc6nsHALZs2QJ3RAQAINNqRVgrZXNzc1FaUgIASC4sROJJHjs7OxsejwdJ+fmt5tyRz4jS0lLUHj6M1FbK9pbPiMLNm1FZWYmcgwfR2tFR1+j9HrxrF0acpB78jOjb3yP4GXFcoH1GHDp0CJVJSdi8eTNG+/F7BD8j6vEzol57PyOao9Sf4GibP/zhD/jwww8xbNgw/P73v8cVV1yBiIgI6PV6bN26FUOHDm3n0/dd+fn56NevH9avX49JkyZ5t99zzz348ccfsXHjxiZ/43A44Gg0LMZqtaJ///4oO3wYFkv920Cj0UCj0UBVVaiK4h3yodFooLHZ4PF40DjShvIeISAaDQ/R2u1QFAXuE4YuabVaQKOBp2HoCwDU1UF7bFiS54QhVDq9HsJsPr69rg7KscdRVRVqo2EaikYDbWjo8e3HhnH4tKlReU1oaH3dPR6IujrvkI+G8tvzyvHG/+Uip6QWDqMZwUYd+kcG4aLB4fjof4dxuKwGi88chPd/zUNVnR2XpCqoMsbgxf8VQQBwqUBaiBbxwTo43SqOVthw36wMvP7LIYSZtKiscyEuPgJuFZg2JAbP/HsHrhobD49HxeZDFcirtGFAZDDyqhyIDtZjbGYithy1QqMA4xNC8OuBEiRaTBgYG4zvdxWhyuZGcmQQapwq9lU5kRwdgoPldbh6VDzW7SyATqOFAhXJEUFwelSMSLJgza4SHLErCA3SITHMDI/dgQEWA66bmoaMeEuTPLTBwYBWW7+90bAwnU4HIYRPecVsRp2q4I3/O4Cyimpoj70XBAABBbEhBlx9ajJCjPVDljQGQ31ODgfURsOsvO+xhvfesWFhGo0GGlWFp67O5z2p1WqPv/caDfXSCgE4HE3bdGzomker9RkWpnO7m7SpxuHGexuPoLDOA6HX1b+eainyncGIDg3C709NRrDh+K0aGo0GGqMRqk5X/9479r5s0qaG8kYjNCZT/XaPxzsszKdN3oNDB+2xIU4et9tnqJe3TQ11PzYsTKfTQagqPNXVx3NSFN/j6dhQL+/26mrf46YHPyOOlNXhy615KKk5Pmww2mLGBZMGol+Y0Vu2Oz4jhBDYvn07MjMzodFogODg4znV1PgMB22Sx7EhZFqtFrDb4TlhGKTP8XRsOKiiKNC63VCdTt82Nc7PZPIOHdW4XNAca09z+XkMBoiGYaZOJzQeT7PvSa1WCyUoCO6Gxzh23DdpU0P5dn5GaA2G+jo6HN7hoE3ek0Cv+YxQtVrs2LEDwzIyYFDVpm1qqLtWC7VhOKLHA8XhaPY9yc+IwPkeIYTAjh07kJGRUX/M4+TfI3zays+I+vIB9hmh6nTYsXcvhg0bBr2idPp7BD8jAuczAkCTY97ffY22fEZYrVZEJSejqqrK219rTrs63QBgs9nw0Ucf4c0338TGjRsxc+ZMfPXVV9iyZQuGDx/enofq05xOJ4KCgvDJJ59g9uzZ3u3z589HZWUlPv/885M+htVqRVhY2ElDlFGx1Y6Hv9iBvUXHr2KGB+mRER+KPYVWTBscgz2F1ZgxNA4rfz0Kk16DA6V1mJgaiRX/OwwA0GqAUKMeoWYdEiwmOD0C550Sj5W/HsXQBAsmpEWi2uZCemwIbnt/C5weFQunpGJ/SQ0igw2ICTHCrapIigiC26OiqNqByCAD9hRVY3ehFaOSIrCnqBrnDIvHqz/lAFAQYtKhX7gJewprEGcxYm9RNa4+NQVrd9efrVaFQFSwATqtgrMyYrFyc/3s6zanB063iphQI+LDTFhy4TDEWlo7n9s2uwqseHfDoRb3XzMpBZkJgfPe62vtCURcp5uIiIhk0db+WrtnLzebzZg/fz5+/PFH/Pbbbxg2bBji4uIwefJkXHXVVVi1alWnKt5XGAwGjB07FmvWrPFuU1UVa9as8bnyTR2zv6TGp8MNAB61fnmubXlV2Hy4EtdOTkVksAHldU4khJugc1qh0zYuD2g0Cqrtbui1Grg9KmJDTbhuSiouGZOEw2V1iAgy4OOsI0iKNOPycf2xZncxYkNNyDpYgX+s3Y/PsvOxKvsovttZhIGxIYi1GHH6oGhcNDIRRr0GaTHBKLDaUe1wo7SmfhSDANAvwoQwsx5xYSaY9FpYTDqEB+kRatLBrNci3KyDSa8FILC3qBqVNhfCgvRIiQrClEHRKK9tZQKSdmjrMmyBoml9BcJQh/pXPfDaE4hCTXpkJlgwPjUSmQmWHutwq6qK4uJinzPa1Pcxd3kxezkxd3kFWvadWths0KBB+Mtf/oLHH38cX331Fd544w3MnTvXZ4i0zO644w7Mnz8f48aNw4QJE7B06VLU1tZ6ZzOnjrPWNZ1NU6tRUGN3w2zQQQigwuZAsF6P9JhgBOs0OLMfcKTGhiFxIdhTVAO9VoGqCmg1Clye+iXDiirtsLk9GBBpxu5CK6w2F7IPV+IP09Lx+Zaj2F1YjYOltZg8MArTh8TCpNcgKsSA6GAjNh4sQ43dgziLCW/+kgsNgEvHJiE1OhiT0qJQ63Ajt7QWv+U5UONwQwhg1vA4WEw6FFXXz1yuAEiPDcH4ATE4WmnDoNgQTB4YDbdHIDLYgBFJYVi7uwSDY/0zp0Jbl2ELFCfWVwOBeI0V1aoJ6rGRBiQHVVVx4MABREZGeoedUd/H3OXF7OXE3OUVaNn75RuoRqPBBRdcgAsuuIBrUDdyxRVXoKSkBA899BAKCwsxatQofPPNN00mV6P2swQ1vXqmqgLBBi08qoBbFYgLNqKk1onMhFDYHW7UeQR+2FeKS8cnQ6/V4EhFHTxCwKTVol+4GeedkoB9hTUY2T8MeZU2nD4wBsFGLYqr7SiudqC81oXMhFBoFAUFVXbsKqyGxaSH3eXBdZMHQK/VQlHcSIkKwu9PTcHA2BDsKbTir1/vwuKzBuHLbfkoq3UiPMgAvVaD5EgzRidHoNBqx7wJyahxehBu1mNrXiXe/CUX8WEmpEYH4+OsPG8bH5s9HB5V+K3zmBRhRpzF2Oz6ynEWo3cZtkDR19pDRERERIGvzd/c//vf/+LUU089abnY2FjU1dUhNzcXw4YN61Tl+oJFixZh0aJFPV2NPmdgTAgGx4X4DDGvdbohAAxNCIVbVeFUBf6zvRBfbyvE7WelIzjUgP4RJmzKLcfwfmGYnhELnUaBQafBsAQL3EKFXgf8erACX28vxNFKGwbHhiLMrMOg2BDYXfVDxOuc9RMnWEw66DQK7C4VZoMWGgXYWVCN/x4oR5jZgE+zjyIiyICLRvVDWa0DEUEGXD8lDYoCmPQaFFsdsNrc+NeGw5iQGomYUCP2FlZj8+EKeARwoLQOkwdGe9sXYtKh1uH2a+cx1KTHnNFJWJWd59NRjbMYMWdMUsDdi9tSe2JDjbg4ANtDRERERIGvzZ3u3//+90hLS8P111+Pc889F8HBTddE2rlzJ9577z289dZbeOqpp9jppi4TazFh0fSBePGH/d6Od7BBh5yiatx0Rjq+2V6I0honduVXI9Sswz/W7sfi8SEINgL7SupwtNKGIXEWpEabMTA2FB4IrN5ZjKRwM7YftaLIaocqgEPltRgQFYwfdhdjRL8wrDk24ZnFpEOcxYQj5XWwmPUIMepxqLQWOo2CqGADIoKNOFhWi6qyWggAV5+ajDW7S7DtaBUqjl3trrG7MO/UFBj1Gjjc9R15g06DyGADMuJDEW8xISGs/l7ysloHCqvs0Gs1fu8MJ0cFYeGU1D4z+VXj9lTXOeEoFxgxdADCgzs/8RwFDkVREBYWBkVpccES6oOYu7yYvZyYu7wCLfs2d7p37tyJV155BQ888ACuuuoqDB48GImJiTCZTKioqMDu3btRU1ODiy++GN999x1GjDjZinZEnTOsXxiWXDgM+0tqYK1zwWTUotbmwuaDFThzcAzsLg/2FFVjTEoEDpbU4LlNtTg1LRKX9I+AoiiYmBqJQ2V1SIkKgrXOiQtOScSfPsjGwNgQAAoMWiDIoEN5rRNRwQZMTIvCoTIbFKV+aaqckhqY9VqkRgVBqwF+2lcKjUaBXqvAqNdCoygINelQaXMiOsSAkmqHdwI0j6rC6RFQhYDd6YFRp0Gtww2LWY8LRyZize5irNtTgkFxoSiutiM1OhgXj+6HaYNj/DJreYMTZ5rOSAgN2M52Y/WTeR1rR3p064WpT9JqtSddf5T6HuYuL2YvJ+Yur0DLvs2dbr1ej8WLF2Px4sXIysrCzz//jEOHDsFms2HkyJG4/fbbMX36dERGRnZlfYl8xFpM3k7o1sMV2F9Ygw255ThSYcPs0f0QZNBi86EKZMSFICPMjQO1TlTZ3fB4BE4fFIOoYAO25VVhcFwockqqUe1ww6MKDI4LgV6rgVGnQWmNA7UON4IMWggA+4vrr6wbdRqM6GfBGRmxOFJeB7cq4Har6Bdugtsj4PKosLsEFAVwulVEBRtQXuusX1vw2EJ9h8vqMDTRAq2igc3pwbiUcJRWOzFxQCTGD4hAmEmPo5V27CmyYn9JDWaNSPDba3e4rK75YeWjk5AcFeS35+lJqqoiPz8fiYmJATHJBvkPs5cTc5cXs5cTc5dXoGXfodmYxo0bh3Hjxvm7LkSd4hYC3+4sxM78KozuH4aoYD2mDo7GhpwyxFmMGBHhgMkSCrNRj1CTHiFGDe7/dA9umpqO3YXVSI4MQpBBh1qnB7sLrIi1mDAwJgRajYKiagfCzHqcOzwOUOLhUQWCjTooiqhfckyjwK0KhJv1SIsOgc3lRnSIATanB6oAVAGcMSQGCoDcslq41Pped1mtAwtOS8Uv+0tRUGVHQngQvthagMPldQg26CAgkBodjEvGJGFPUQ3yKmzHr+B2QrXd1aTDDQBFVgdWZedh4ZTUPnHFW1VV5OXlIT4+PiA+kMl/mL2cmLu8mL2cmLu8Ai17rp9DfUaVzY0d+VY43CpcKrCvqApXTUjG6KQIfL39KAqr7PjmYAGMBj2mD4lF1sEKBBm0CAvS4/tdRUgMM2FwXDAOl9mg12rg8qiosrsQatJhQFQQjDoNhsSHQgjA7lZh0mlQXO1AbJQRdreKGf+/vTsPj6q6/wf+nn0my0z2kDAhJOzIFtYGqWBFUVCLuNcKKopasQKKpdUfuFP9KksrxbYiqNWqFKSuVIpgqwTZEiIYQCESIySEEDJZJsvMnN8fMVOG7MmdzNw579fz8Dzk3pvJ5+TNJfnMvfecQQk4XVmHY6crcbK8Bn0TIlBR44I92gKtBvhb1nFcdkEPXD0iGVW1Lpj0OhQ5arD834fx5M+HwuUR2HzwJM78+My39sdnVE6W12Lb4RJkpscots50YZmz2Rm+gYbGW6nmnoiIiIhIdmy6KWQ461zweAS0Gg30WuA/35zBNRlmHC+rRqTRgEiTHkOSoyC0Gnz+zWnER5owtncshBD4vsyJ0qo63PXTPvjT9qOoc3twtroO8REm1Ou0mJFhhxsC1XUNt4uHG3WorHEh61gpfihreM57ekZP/OtgMc5W18MjgGMlVRjTOxozMnpCr9PgiqFJ+OqHcuzML4XDWQ9nvQd6rQb9EyNQUVMPAQ1OO+pg1OuajO14aTUm9o9XbKmwtpp3pZp7IiIiIiLZsemmkGEx6hBm1CHix7WzTQYtvj1VhRNnnfjuTDVMdQIHSstR54b3KnZm31jUuwQGJ1kBAPsLzqJXjAVDe1pR5xIY2tOK78ucqHW58ef/HkN+SRVqXR6M7h0DIQTS4iJwpqoWlwxMhD3KgqlDEnHjaDuc9W4UljnxzalKrP7sKPomROKKoT1wvLShHren4ZnwvgkRmDa0B7KOnUGi1QyzUQeLUQtnnafJ+DQaKLZUWFvNu1LNfaBptVrEx8er4rYjUhazlxNzlxezlxNzl5fasg+N36yJAJgNOkwakIDPjpRg494f8IebM/D9mWp8e6oSRoMOO0/pUFHrgkYDuD2AxahHktUMp8uNntEW/GnbUfxiXC9sPlAMIQTS48NRUVOPBKsJmw8Uo9hRC7doWKKgrKoOYUYdKmvr8eBlA/HS9m/x0YEi5J10wCOAQT0icNkFScgvqURyVBiOn6lGWVUtxveJxZCeNtS7BUx6LRruINdg7/EyXH5BIjwegbTYCOSXVvo03hajFoOSrIo9Z22PtiDRamr2FnMl1wEPNK1Wiz59+gS6DAoAZi8n5i4vZi8n5i4vtWWv2FsDZ8+eVeqliDqsoqYeFoMWAxIjYI+xwGzU4Ux1HeIiTaipd6PE4cSkZIEBCeFIj4vAwB6RiDDpEGbSIT7ChC1fF8EeE4aCM1WABuiTEIFxabHY8nUxwox6fH3SgcoaF5JsZoQZdTDqtcgpLEeUxYA3dh5H7g8OuH+8td2o0+Do6WpsO1SMqUOT8E1xBQxaDX4oq4EtzABoGtbjjjDr4fJ4sOXrYuh1Gmi1WiTYzA1Ld/Wwon9iBNLiwtA/MQKT+sdjYI9Ixb5fkWYDZmTYkWg1+WxPtJoUXwc8kDweD44ePQqPp+mdAxTamL2cmLu8mL2cmLu81JZ9p5ruZ599Fm+//bb34xtuuAGxsbHo2bMn9u/fr1hxRO1RUFqNNZ/nI+f7cnx44CRSYyx44JJ+CDfqYTHq0CsmDJFmPZLN9Sgoq8bxM9XIP12FKIsBESYDXv48H4OSrJh7cR+kx0fg1p+kwh5lwVu7C1Dj8sCg06Ki1gVHjQvFjhrERZhgNesxIDESsREmHD9TDYNOAyEEosMM0Gg00Gk0+PpkBUx6Leo9HtijLegZbYHZoEPWt6X44tvTeC3rO3xTXAmTQYt+8RE4VVGLazN6ItFqgkGnRVSYEfGRZgzoEYkbxvRSvBHuFRuG2RPSMDMzFTMyemJmZipmT0hDr5jQWC4MaPgPuaSkRDX/IZNymL2cmLu8mL2cmLu81JZ9p24vf+mll/DGG28AALZs2YItW7bg448/xjvvvIOFCxfik08+UbRIopacu/RVmEGHqlo3esdG4J85J3Cy3IlZmb0xpKcNNXX10GlrYDMbUOcB+iZE4NJBiaird+Hui9KRd9KBwjNOeISADhrEW024aWwvaIRAaowFxY4aaADUujyICjOgus6Nipp6VNW64fYIVNa4UFXnQmpMONweoLK2Hi6PQJ1bYEzvGCTZLHjhkyO4ZFAidDoNSivroNdpUe8WKKuuR3SYEakRRvRJiEBylAXfllTCUV0Pa5gBfeMjvGuRKy3SbOAs5UREREREftSppruoqAgpKSkAgA8++AA33HADLrvsMvTu3Rvjxo1TtECi1py79JXJoMOo1Ghs+boIR05VIslqwaGiChw7XYFkqxk9rPW4engSPNDCUdNw1Xt4ig3/OXIa6fHhOF1Rh5wfqnHKUQtnvRvmH5cIc3kEfpIWg2Onq6HVAHUuD74/U42kKAtiI4yo/nEtbniAIkcNkqxm9NSZ4fYAI3tFIS0uDAdPOHDz2F44U12Lif3jsfe7MvxQ7oT7x/W64yIbbusuq2q6fnai1YQZGXb0ig2dK9BERERERLLoVNMdHR2N77//HikpKdi8eTOeeuopAIAQAm63W9ECiYCGK9qFZU5U1rgQYdbDHm1BpNngs7RVncuN3rHheDf7BwgBhJl0+PehU7huZE/sOnYaH5TVwGk4g2JHHdLiwnDvpL44XFSBD78qwrj0aFTWuFBcXgOjXgu3RwNnvRvbDpfgu9Jq3Djajvf2n8ChogrUuDxw1nvg9niQHh+OXjEWOGrqodVoYNJrUVHjgkcIjEqNxv7vz+KLo6XoGW1BXLgJCZFmpMWFo298BCxGHU6UO2HU6TAuLQbRYQas+Ty/yeRmxY5abMwuxOwJaSHzrHV30Wq1sNvtqpnZkpTD7OXE3OXF7OXE3OWltuw71XTPmDEDv/jFL9CvXz+UlpbiiiuuAABkZ2ejb9++ihZIVFBa3eLV38hzlrY6fsaJC5IiEWk2wOFsWCu73u3Bhn0/YFL/OMRHxqN3XBgqalyod3nwzSkHPB4gNTYM0WFG5H5fjgMnHEi2mVFV60JFrQs6rQbZBWUY2SsKw+xRuHhAAlwegdMVtSg8W40l//wK9/+sP6pqXcg7WQG91gCDQYOhyTaMS4/BK5/n4+KBidhz/Ay++LYUEEBUmAGjekdhZEoMjpc6ERdhRM9oi89V+/MVO2pRWObkreAd1PgfMsmH2cuJucuL2cuJuctLbdl36q2B5cuXY+7cuRg8eDC2bNmCiIgIAMDJkyfxq1/9StECSW7nPrN9rsarvzHhRu8M3G6PQFWdG1EWAwb0iERsuBFRFgP0Og3+e+QUzvyQj5o6F74rrcYP5TWINBtx/IwTlwxMgF6rgVs03Op9qqIWSVEWxIQbvbd/19S7UVJRgx42M7KOnsbbe77HF9+WotzpxrIthzGxfzyWzhiK31w+AAsvG4DrRqXg77sKcFG/eOz//iwKzzih+3HW8tOVtThWUo0tecUY1tPqnS383Kv2zWlrPzXldruRl5fHO3AkxOzlxNzlxezlxNzlpbbsO3Wl22Aw4KGHHmqyff78+V0uiOhcbV39La2qw4wMu7cxr3d7EB1uwMnyGkSHGaHXaVBTL2DQatAvRgshBAw6LRKtJoxJjcaJs07kFVVgaLIVMWFG2Cx66DRaFJU7EWkxoF9EBIQHuCDZit5x4fj4QDEm9I1HWXU98k9XAQCq6zzYdrgE90y04nRlLT4+UoSxvWNQUy8QYTbgSHGFt2arWQebxYAwgw4mvRYDeli9s4VHmFs/HdvaT00JIVBeXg7x4xsqJA9mLyfmLi9mLyfmLi+1Zd/u3+Lfe++9dr/o1Vdf3aliiM7Xnqu/g5KsmD0hDYVlTlTVuDCqVzTe2v09DpwoR88oC34464Q9yoTEyHp8VV6DRKsZM0ba0SsmzPt5ZVV1SI0Nw9GSKpRWNTT5VXUN75z1iQ/HD2VO/LRvPKLDDNhfeBYDe1jx037xqHN7YNQ1NPMnzlbD7QEMOi1MBh0AoM7tu4yBgIBJr0eEWY+oMCPqXP/bb4+2INFqavZNhkSrCfZoS5e+l0RERERE1P3a3XRPnz69XcdpNBrVXOan4Nfeq7/nL33VOy7cu+yWLcyAcIMWJ789iBuHpaBXXIR3QrLGz6uoqcfpylp4hMC2wyU4U1UHoKHhnp7RExP6xKFnTBhmZNjxzp4CbD9SAufxhoY5NTYMlwxKQN7JCgyz2xBu0qPO5UZqbBiMOt8nOLQaDSxGLcJN+ibjizQbvFftC8ucqKp1od7tQa+YMFw1LImTqBERERERqVC7m261LDxOoaWzV38TrGafta09Hg96mAcgLs7W7CyHkWYDRqREw+X24NLBiaiocUOv0yDaYkCi1Yy+iZEAgF6xYbh7Yh9M7J+AvCIHhGiYNT3vZAXiIowY07vhlvXGZ8VPnHUiLS4c+aeroNNqYLUYkBYX4b3F/fz6e8WG4efDk7H7eBnOVtXBZNChzuXGR18V4ecjdFw2rIO0Wi3S09NVM7MlKYfZy4m5y4vZy4m5y0tt2WuEWm6El5DD4YDNZkN5eTmsVmugywmYFmcv//EWcSV9e6oCb35ZgIIz1TDoGq5I26Mtza6T3dIyZo31nq6sQ1qsBclRYfjXwSJU1roQFWb0NtzN1V9RU9/ssmGNY+6uZcNaGhsRERERETVob7/W6aa7qqoKn332GQoKClBXV+ez79e//nVnXpLOw6b7f7raBLrdbhw4cABDhgyBTqdr8Wso1fCeW2+kWY+YcCNKq+rarD/vpAOvZR1v8XVnZqZiUJJ//y20tkSb2q60tyd3Ck3MXk7MXV7MXk7MXV7Bkn17+7VOTYecnZ2NqVOnorq6GlVVVYiJicHp06cRFhaGhIQENt2kuPOf2e4oIQScTmerMxwquU52c/Wee7t7SwK9bFhbS7R115V2pbQndwpNzF5OzF1ezF5OzF1easu+UzfBz58/H1dddRXKyspgsViwc+dOHD9+HKNGjcLzzz+vdI1E3SLQDS8Q+GXD2vPGAxERERERtV+nmu6cnBw8+OCD0Gq10Ol0qK2tRUpKCp577jn87ne/U7pGom4R6IYX+N/Ecc3pjmXDguGNByIiIiKiUNKppttgMHhniktISEBBQQEAwGaz4fvvv1euOiKF6HQ6DBw4sNVnPgLd8AL/Wzbs/DoaJ17z963dwfDGg5LakzuFJmYvJ+YuL2YvJ+YuL7Vl36nfoDMyMrB7927069cPEydOxOLFi3H69Gm8/vrrGDJkiNI1EnWZRqNBVFRUq8ecu052czOld9ezzL1iwzB7QlpAZg/v7BJtwao9uVNoYvZyYu7yYvZyYu7yUlv2nbrS/cwzzyApKQkA8PTTTyM6Ohr33nsvSkpK8Je//EXRAomU4HK5sHv3brhcrd8e3djwzsxMxYyMnpiZmYrZE9IUX5qsLQ0TsVkxJi0Gg5Ks3dbwB/pKu9LamzuFHmYvJ+YuL2YvJ+YuL7Vl36kr3aNHj/b+PSEhAZs3b1asICJ/cbvd7TquqzOlq10gr7T7Q3tzp9DD7OXE3OXF7OUUyNy7uqQtdY2aznl1PaBJRN1C9jceiIiIiFpTUFrd/COJGXb0iu3eOyQp+HWq6U5LS4NGo2lx/7FjxzpdEBERERERUbCqqKlv0nADDcurbswuxOwJabziTT461XTPmzfP5+P6+npkZ2dj8+bNWLhwoRJ1ESlKp9Nh2LBhqpnhkJTB3OXF7OXE3OXF7OUUqNwLy5zNTjoLNDTehWVO3jHoZ2o75zvVdD/wwAPNbl+1ahX27NnTpYKI/MVoNAa6BAoA5i4vZi8n5i4vZi+nQOReWdP65F1t7SdlqOmc79Ts5S254oorsGHDBiVfkkgRbrcbe/bsUdWEC9R1zF1ezF5OzF1ezF5Ogco9wtz6dcu29lPXqe2cV7Tp/sc//oGYmBglX5KIiIiIiCho2KMtTZZXbZRoNcEebenmiijYdeptmIyMDJ+J1IQQKCoqQklJCf70pz8pVhwREREREVEwiTQbMCPD3vzs5SPtnESNmuhU0z19+nSfj7VaLeLj4zFp0iQMHDhQibqIiIiIiIiCUq/YMMyekMZ1uqldNEIIEegiqHkOhwM2mw3l5eWwWq2BLkfVhBBwu93Q6XStLndHoYW5y4vZy4m5y4vZy4m5yytYsm9vv9buK90Oh6PdX5wNIgWjuro6WCx8xkY2zF1ezF5OzF1ezF5OzF1easq+3ROpRUVFITo6ul1/iIKN2+1Gbm6uamY4VLuKmnrknXRgd/4Z5J10oKKmPiB1MHd5MXs5MXd5MXs5MXd5qS37dl/p3rZtm/fv3333HRYtWoTbbrsNmZmZAICsrCy8+uqrWLp0qfJVEpFqFJRWNz+xSIYdvWLDAlgZEREREVH3a3fTPXHiRO/fn3jiCSxbtgw333yzd9vVV1+NoUOH4i9/+QtmzZqlbJVEpAoVNfVNGm4AKHbUYmN2IWZPSOMEI0REREQklU6t052VlYXRo0c32T569Gjs2rWry0UR+YNOpwt0CSGvsMzZpOFuVOyoRWGZs5srYu4yY/ZyYu7yYvZyYu7yUlP2nWq6U1JS8Ne//rXJ9pdffhkpKSldLopIaXq9HmPGjIFe36lV8qidKmtcXdqvNOYuL2YvJ+YuL2YvJ+YuL7Vl36kqly9fjmuvvRYff/wxxo0bBwDYtWsXvvnmG2zYsEHRAomUIIRAeXk5bDYbl5Twowhz6/+ltLVfacxdPSpq6hVd65TZy4m5y4vZy4m5y0tt2XfqSvfUqVNx5MgRXHXVVThz5gzOnDmDq666CkeOHMHUqVOVrpGoy9xuNw4dOqSaGQ7Vyh5tQaLV1Oy+RKsJ9ujuXdaBuatDQWk11nyej9eyjmNj9g94Les41nyej4LS6k6/JrOXE3OXF7OXU0dyD5aVVUgZajvnO33ZKSUlBc8884yStRCRykWaDZiRYW9+9vKRdk6iRk1w8j0iIvI3rqxCgdbupjs3NxdDhgyBVqtFbm5uq8cOGzasy4URkTr1ig3D7Alpit4qTKGrPZPvDUrivx0iIuocvrlLwaDdTfeIESNQVFSEhIQEjBgxAhqNBkKIJsdpNBrVXOYneWg0GlgsFlU88xEKIs2GoGiUOpq70s8VU9v8Nfkez3k5MXd5MXs5tSd3vrkbmtR2zre76c7Pz0d8fLz370RqotPpMHz48ECXQd2sI7m399YzNubK8tfkezzn5cTc5cXs5dSe3INtZRVShtrO+Xb/NpOamtrs34nUwOPx4PTp04iLi4NW26n5A0mF2pt7e2894zNhymucfK+5qxBdmXxP7ec839zpHLXnTp3H7OXUntyDbWUVUobazvlOVfjqq6/iww8/9H788MMPIyoqCuPHj8fx48cVK45IKR6PB8eOHYPH4wl0KaoUrDN+tlVXe3Nvz61nbTXmwfI9UZvGyffOn/W+q5Pvqfmc98ds7rJQc+7UNcxeTu3JPdhWViFlqO2c79RbO8888wxWr14NAMjKysKLL76IFStW4IMPPsD8+fOxceNGRYskosAJ1qu7StbVnlvP+EyY/3Dyvf/hhD9ERMriyioUDDrVdH///ffo27cvAGDTpk247rrrMGfOHFx44YWYNGmSkvURUQAFawOgdF3tufWMz4T5V7BMvhdofHOHiEh5fHOXAq1Tt5dHRESgtLQUAPDJJ5/g0ksvBQCYzWY4nU7lqiNSiEajgc1mU80Mh8GiPQ1AILS3rvbm3p5bz/hMmLqo9Zznmztdo9bcqeuYvZw6knvDm7tWjEmLwaAkKxtulVPbOd+p3xIvvfRS3HnnncjIyMCRI0cwdepUAMDBgwfRu3dvJesjUoROp8OgQYMCXYbqBGsD0N662pt7e249s0fDLxN+kX+o9Zznmztdo9bcqeuYvZyYu7zUln2nrnSvWrUKmZmZKCkpwYYNGxAbGwsA2Lt3L26++WZFCyRSgsfjQWFhoWomWwgWwdoAtLeujuTeeOvZzMxUzMjoiZmZqZg9IQ29YhqeD/fXhF/kH2o95znhT9eoNXfqOmYvJ+YuL7Vl36nfmKOiovDiiy822f744493uSAif2g8MXv06KGKZQWChb+Wc+qq9tbV0dzbeq6Yz4Sph1rPeU740zVqzZ26jtnLibnLS23Zd/oy1X//+1/8+c9/xrFjx7B+/Xr07NkTr7/+OtLS0jBhwgQlaySiAAnWBiCQdXX3hF9cr1k+fHOHiIgotHSq6d6wYQNuvfVW3HLLLdi3bx9qaxt+6S0vL8czzzyDjz76SNEiiShwgrUBCNa6lBSsy7WR/3E2dyIiotDRqWvxTz31FF566SX89a9/hcHwv18KLrzwQuzbt0+x4oiUotVqER8fr4rbT4JRsM742VZdas69rWXRKmrqA1SZOqg5e+o85i4vZi8n5i4vtWXfqSoPHz6Miy66qMl2m82Gs2fPdrUmIsVptVr06dNHNScmKUPNuQfrcm1qoebsqfOYu7yYvZyYu7zUln2nquzRowe+/fbbJts///xzpKend7koIqV5PB4cPXpUNTMckjLUnHuwLtemFmrOnjqPucuL2cuJuctLbdl3qum+66678MADD+DLL7+ERqPBiRMn8MYbb+Chhx7Cvffeq3SNRF3m8XhQUlKimhOTlKHm3IN1uTa1UHP21HnMXV7MXk7MXV5qy75Tv7UtWrQIHo8Hl1xyCaqrq3HRRRfBZDLhoYcewv333690jURE0gnW5dqIiIiIqGM6daVbo9HgkUcewZkzZ3DgwAHs3LkTJSUlePLJJ+F08jlDIqKualwWLdFq8tke6OXaiIiIiKhjunR/otFoxODBgwEAtbW1WLZsGZ577jkUFRUpUhyRUrRaLex2u2omWyBlqD13GZZF8xe1Z0+dw9zlxezlxNzlpbbsNUII0d6Da2tr8dhjj2HLli0wGo14+OGHMX36dKxduxaPPPIIdDod5s6di9/85jf+rFkaDocDNpsN5eXlsFqtgS6HiIiIiIiIftTefq1Dbw0sXrwYq1evRu/evfHdd9/h+uuvx5w5c7B8+XIsW7YM3333HRtuCkputxt5eXlwu92BLoW6EXOXF7OXE3OXF7OXE3OXl9qy79Dt5evXr8drr72Gq6++GgcOHMCwYcPgcrmwf/9+aDQaf9VI1GVCCJSXl6MDN3ZQCGDu8mL2cmLu8mL2cmLu8lJb9h260l1YWIhRo0YBAIYMGQKTyYT58+ez4SYiIiIiIiJqRoeabrfbDaPR6P1Yr9cjIiJC8aKIiIiIiIiIQkGHbi8XQuC2226DydSwhE1NTQ3uuecehIeH+xy3ceNG5SokUoBWq0V6erpqZjgkZTB3eTF7OTF3eTF7OTF3eakt+w5VOWvWLCQkJMBms8Fms+GXv/wlkpOTvR83/gmU3r17Q6PR+Pz5/e9/73NMbm4ufvrTn8JsNiMlJQXPPfdck9dZv349Bg4cCLPZjKFDh+Kjjz7y2S+EwOLFi5GUlASLxYLJkyfjm2++8TnmzJkzuOWWW2C1WhEVFYXZs2ejsrJS+UFTu2i1WiQkJKjmxCRlMHd5MXs5MXd5MXs5MXd5qS37Dl3pXrt2rb/qUMwTTzyBu+66y/txZGSk9+8OhwOXXXYZJk+ejJdeeglfffUV7rjjDkRFRWHOnDkAgB07duDmm2/G0qVLceWVV+LNN9/E9OnTsW/fPgwZMgQA8Nxzz+EPf/gDXn31VaSlpeH//b//hylTpuDrr7+G2WwGANxyyy04efIktmzZgvr6etx+++2YM2cO3nzzzW78blAjt9uNAwcOYMiQIdDpdIEuh7oJc5cXs5cTc5cXs5cTc5eX2rLvUNOtBpGRkejRo0ez+9544w3U1dXhlVdegdFoxAUXXICcnBwsW7bM23SvXLkSl19+ORYuXAgAePLJJ7Flyxa8+OKLeOmllyCEwIoVK/Doo4/i5z//OQDgtddeQ2JiIjZt2oSbbroJeXl52Lx5M3bv3o3Ro0cDAP74xz9i6tSpeP7555GcnNwN3wk6lxACTqdTNTMckjKYu7yYvZyYu7yYvZz8nXtFTT0Ky5yorHEhwqyHPdqCSLPBL1+LOkZt57w6rsd3wO9//3vExsYiIyMD//d//weXy+Xdl5WVhYsuushnMrgpU6bg8OHDKCsr8x4zefJkn9ecMmUKsrKyAAD5+fkoKiryOcZms2HcuHHeY7KyshAVFeVtuAFg8uTJ0Gq1+PLLL5UfNBERERERKaagtBprPs/Ha1nHsTH7B7yWdRxrPs9HQWl1oEsjFQqpK92//vWvMXLkSMTExGDHjh347W9/i5MnT2LZsmUAgKKiIqSlpfl8TmJiondfdHQ0ioqKvNvOPaaoqMh73Lmf19IxCQkJPvv1ej1iYmK8xzSntrYWtbW13o8dDgcAwOVyed880Gq10Gq18Hg88Hg83mMbt7vdbp93fFrartPpoNFofN6UaNwOoMlC8y1t1+v1EEL4bNdoNNDpdE1qbGl7d4xJCNGkTrWPqbnaOSbf2hu/ttvthl6vD4kxtbWdY4L3+a7mznk1jykUc1J6TOef86EwpnNxTC2PCWh6zqt9TKGYk9JjOvecV3JM5dW1eHdfAUoqaqEFIAAIaHHKUYN39xVg1vjeiDDpmVMAxwQ0PecDMabzx9eSoG+6Fy1ahGeffbbVY/Ly8jBw4EAsWLDAu23YsGEwGo24++67sXTpUu+M68Fs6dKlePzxx5tsz87O9s4QHx8fjz59+iA/Px8lJSXeY+x2O+x2O44cOYLy8nLv9vT0dCQkJODAgQNwOp3e7QMHDkRUVBSys7N9/rE2ft/27NnjU8Po0aNRV1eH3Nxc7zadTocxY8agvLwchw4d8m63WCwYPnw4Tp8+jWPHjnm322w2DBo0CCdOnEBhYaF3e3eMyWAwwOVyITs7O2TGFIo5+WNMLpcLx44dC6kxAaGXk9Jjio+Ph16v9znn1T6mUMzJH2NyuVzIzc0NqTEBoZeT0mNKT09HZGSkzzmv9jGFYk7+GFPj73dKjumbgpOwVX0P24/3BFcJIwpFDGI0VbBVFWPPntOIMOmZUwDHNGzYMCQmJvqc84EYU1VVFdpDI4L8RviSkhKUlpa2ekx6errPLeONDh48iCFDhuDQoUMYMGAAZs6cCYfDgU2bNnmP2bZtG372s5/hzJkziI6ORq9evbBgwQLMmzfPe8ySJUuwadMm7N+/H8eOHUOfPn2QnZ2NESNGeI+ZOHEiRowYgZUrV+KVV17Bgw8+6L1lHWj4JcBsNmP9+vW45pprmh1Hc1e6U1JSUFpaCqvVCkA97z6F4jtqHBPHxDFxTBwTx8QxcUwcU+iPadexUvwz539NW+OVbg0ENBC4engyRqVGq2pMoZhTMIzJ4XAgNjYW5eXl3n6tOUF/pTs+Ph7x8fGd+tycnBxotVrvrd6ZmZl45JFHUF9fD4OhYRKELVu2YMCAAYiOjvYes3XrVp+me8uWLcjMzAQApKWloUePHti6dau36XY4HPjyyy9x7733el/j7Nmz2Lt3L0aNGgUA+PTTT+HxeDBu3LgW6zWZTM1ekdfr9dDrfaNq/MdwvsZ/sO3dfv7rdma7RqNpdntLNXZ0uxJjanwXNCMjo8l+tY6po9tlHNO5ubdWu5rG1NXtsoypo+d8R7czp+Ac0/nnfCiM6XwcU/PbWzvn1Tqm1rZzTE3P+cZbjpUYU6TFAE8zU1+JH9tua5jJ5/OYU/ePqbVzvjvH1NI4mnztdh2lAllZWVixYoX3avQbb7yB+fPn45e//KW3of7FL34Bo9GI2bNn4+DBg3j77bexcuVKn9vSH3jgAWzevBkvvPACDh06hMceewx79uzB3LlzATSEPm/ePDz11FN477338NVXX2HmzJlITk7G9OnTAQCDBg3C5Zdfjrvuugu7du3CF198gblz5+Kmm27izOUBdP47ZyQH5i4vZi8n5i4vZi8nf+Ruj7Yg0dr8o6mJVhPs0RbFvyZ1nJrO+aC/0t1eJpMJb731Fh577DHU1tYiLS0N8+fP92mobTYbPvnkE9x3330YNWoU4uLisHjxYu9yYQAwfvx4vPnmm3j00Ufxu9/9Dv369cOmTZu8a3QDwMMPP4yqqirMmTMHZ8+exYQJE7B582bvGt1Aw/Jkc+fOxSWXXAKtVotrr70Wf/jDH7rnm0FERERERJ0SaTZgRoYdG7MLUez436OfiVYTZoy0c9kw6rCQabpHjhyJnTt3tnncsGHD8N///rfVY66//npcf/31Le7XaDR44okn8MQTT7R4TExMDN5888026yEiIqK2cb1cIupOvWLDMHtCGv/fIUUE/URqMnM4HLDZbG0+mE9tE0LA6XTCYrF4n/mh0Mfc5cXsQ0tBaXXzV5wy7OgVG+bdxtzlxezlxNzlFSzZt7dfC5lnuona0twM9xT6mLu8mH1oqKipb9JwA0CxoxYbswtRUVPvs525y4vZy4m5y0tN2bPpJim43W7s2bNHVRMuUNcxd3kx+9BRWOZs0nA3KnbUorDsf2uoMnd5MXs5MXd5qS37kHmmm4iIqDvxGePuUVnj6tJ+IiKiQGPTTURE1EHtfcaYui7C3PqvKm3tJyIiCjTeXk5ERNQBHX3GmLqG6+USEZHacfbyIMbZy5UjhIDb7YZOp+PslhJh7vLyZ/Z5Jx14Let4i/tnZqZiUBL/z1ZSi3cWjLSjV4zv7OU85+XE7OXE3OUVLNm3t1/jPVkkjbq6OlgsvCIiG+YuL39lz2eMu19H1svlOS8vZi8n5i4vNWXP28tJCm63G7m5uaqZ4ZCUwdzl5c/s+YxxYESaDRiUZMWYtBgMSrI223DznJcXs5cTc5eX2rJn001ERNQBfMaYiIiIOoJNNxERUQdEmg2YkWFv0ng3PmPMZcOIiIjoXLwHjqSh0+kCXQIFAHOXlz+z78gzxtS9eM7Li9nLibnLS03Zc/byIMbZy4mIiIiIiIJTe/s13l5OUhBC4OzZs+B7THJh7vJi9nJi7vJi9nJi7vJSW/ZsukkKbrcbhw4dUs0Mh6QM5i4vZi8n5i4vZi8n5i4vtWXPppuIiIiIiIjIT9h0ExEREREREfkJm26SgkajgcVigUajCXQp1I2Yu7yYvZyYu7yYvZyYu7zUlj1nLw9inL2ciIiIiIgoOHH2cqJzeDwenDp1Ch6PJ9ClUDdi7vJi9nJi7vJi9nJi7vJSW/ZsukkKHo8Hx44dU82JScpg7vJi9nJi7vJi9nJi7vJSW/ZsuomIiIiIiIj8hE03ERERERERkZ+w6SYpaDQa2Gw21cxwSMpg7vJi9nJi7vJi9nJi7vJSW/acvTyIcfZyIiIiIiKi4MTZy4nO4fF4UFhYqJrJFkgZzF1ezF5OzF1ezF5OzF1easueTTdJQW0nJimDucuL2cuJucuL2cuJuctLbdmz6SYiIiIiIiLyEzbdRERERERERH7CppukoNVqER8fD62W/+RlwtzlxezlxNzlxezlxNzlpbbsOXt5EOPs5URERERERMGJs5cTncPj8eDo0aOqmWyBlMHc5cXs5cTc5cXs5cTc5aW27Nl0kxQ8Hg9KSkpUc2KSMpi7vJi9nJi7vJi9nJi7vNSWPZtuIiIiIiIiIj9h001ERERERETkJ2y6SQparRZ2u101MxySMpi7vJi9nJi7vJi9nJi7vNSWPWcvD2KcvZyIiIiIiCg4cfZyonO43W7k5eXB7XYHuhTqRsxdXsxeTsxdXsxeTsxdXmrLXh/oAoi6gxAC5eXl4I0dcmHu8mL2cmLu8mL23aeiph6FZU5U1rgQYdbDHm1BpNkQkFqYu7zUlj2bbiIiIiIialNBaTU2Zhei2FHr3ZZoNWFGhh29YsMCWBlRcOPt5URERERE1KqKmvomDTcAFDtqsTG7EBU19QGqjCj4sekmKWi1WqSnp6tmhkNSBnOXF7OXE3OXF7P3v8IyZ5OGu1GxoxaFZc5uroi5y0xt2fP2cpKCVqtFQkJCoMugbsbc5cXs5cTc5cXs/a+yxtWl/f7A3OWltuzV8dYAURe53W7s379fNTMckjKYu7yYvZyYu7yYvf9FmFu/VtfWfn9g7vJSW/ZsukkKQgg4nU7VzHBIymDu8mL2cmLu8mL2/mePtiDRamp2X6LVBHu0pZsrYu4yU1v2bLqJiIiIiKhVkWYDZmTYmzTeiVYTZoy0B2zZMCI14DPdRERERETUpl6xYZg9IS1o1ukmUguNUMs1eQk5HA7YbDaUl5fDarUGuhxVE0KgvLwcNpsNGo0m0OVQN2Hu8mL2cmLu8mL2cmLu8gqW7Nvbr7HpDmJsuomIiIiIiIJTe/s1PtNNUnC5XNi9ezdcru5fzoICh7nLi9nLibnLi9nLibnLS23Z85lukoZalhQgZTH37lFRUx90z/gxezkxd3kxezkxd3mpKXs23URE1CUFpdXYmF2IYketd1ui1YQZGXb0ig0LYGVEREREgcfby4mIqNMqauqbNNwAUOyoxcbsQlTU1AeoMiIiIqLgwKabpKDT6TBs2DDodLpAl0LdiLn7X2GZs0nD3ajYUYvCMmc3V9SA2cuJucuL2cuJuctLbdmz6SZpGI3GQJdAAcDc/auypvUJTNra70/MXk7MXV7MXk7MXV5qyp5NN0nB7XZjz549qppwgbqOuftfhLn1qUHa2u8vzF5OzF1ezF5OzF1easueTTcREXWaPdqCRKup2X2JVhPs0ZZuroiIiIgouLDpJiKiTos0GzAjw96k8U60mjBjpD3gy4YRERERBRqXDCMioi7pFRuG2RPSgm6dbiIiIqJgoBFCiEAXQc1zOByw2WwoLy+H1WoNdDmqJoSA2+2GTqeDRqMJdDnUTZi7vJi9nJi7vJi9nJi7vIIl+/b2a7y9nKRRV1cX6BIoAJi7vJi9nJi7vJi9nJi7vNSUPZtukoLb7UZubq5qZjgkZTB3eTF7OTF3eTF7OTF3eaktezbdRERERERERH7CppuIiIiIiIjIT9h0kzR0Ol2gS6AAYO7yYvZyYu7yYvZyYu7yUlP2nL08iHH2ciIidaqoqecSakRERCGuvf0a1+kmKQghUF5eDpvNxiUlJMLc5RXI7AtKq7ExuxDFjlrvtkSrCTMy7OgVG9attciG57y8mL2cmLu81JY9by8nKbjdbhw6dEg1MxySMpi7vAKVfUVNfZOGGwCKHbXYmF2Iipr6bq1HNjzn5cXs5cTc5aW27Nl0ExERKaSwzNmk4W5U7KhFYZmzmysiIiKiQGPTTUREpJDKGleX9hMREVHoYdNNUtBoNLBYLKp45oOUw9zlFajsI8ytT5XS1n7qGp7z8mL2cmLu8lJb9py9PIhx9nIiInWpqKnHms/zm73FPNFqwuwJaZzFnIiIKES0t1/jlW6SgsfjwalTp+DxeAJdCnUj5i6vQGUfaTZgRoYdiVaTz/ZEqwkzRtrZcPsZz3l5MXs5MXd5qS171TTdTz/9NMaPH4+wsDBERUU1e0xBQQGmTZuGsLAwJCQkYOHChXC5fJ+f2759O0aOHAmTyYS+ffti3bp1TV5n1apV6N27N8xmM8aNG4ddu3b57K+pqcF9992H2NhYRERE4Nprr0VxcXGHa6Hu4/F4cOzYMdWcmKQM5i6vQGbfKzYMsyekYWZmKmZk9MTMzFTMnpCGXjFcLszfeM7Li9nLibnLS23Zq6bprqurw/XXX49777232f1utxvTpk1DXV0dduzYgVdffRXr1q3D4sWLvcfk5+dj2rRpuPjii5GTk4N58+bhzjvvxL/+9S/vMW+//TYWLFiAJUuWYN++fRg+fDimTJmCU6dOeY+ZP38+3n//faxfvx6fffYZTpw4gRkzZnSoFiIiCl2RZgMGJVkxJi0Gg5KsvMJNREQkMdU03Y8//jjmz5+PoUOHNrv/k08+wddff42//e1vGDFiBK644go8+eSTWLVqFerq6gAAL730EtLS0vDCCy9g0KBBmDt3Lq677josX77c+zrLli3DXXfdhdtvvx2DBw/GSy+9hLCwMLzyyisAgPLycqxZswbLli3Dz372M4waNQpr167Fjh07sHPnznbXQkRERERERKFPNU13W7KysjB06FAkJiZ6t02ZMgUOhwMHDx70HjN58mSfz5syZQqysrIANFxN37t3r88xWq0WkydP9h6zd+9e1NfX+xwzcOBA9OrVy3tMe2qh7qXRaGCz2VQzwyEpg7nLi9nLibnLi9nLibnLS23Zh8zaJUVFRT5NLgDvx0VFRa0e43A44HQ6UVZWBrfb3ewxhw4d8r6G0Whs8lx5YmJim1/n3FqaU1tbi9ra/81463A4AAAul8v7PLhWq4VWq4XH4/F5hqFxu9vtxrkT0re0XafTQaPRNHnOXKfTAWi4Rb492/V6PYQQPts1Gg10Ol2TGlva3h1j0mq16NevH4QQ3v1qH1NztXNMTWvv16+fd3+ojKm17RxTw3adTof+/fs3OefVPKZQzMkfY2r8vx5AyIypUSjlpPSYdDodBgwYAI/H0+R3JrWOKRRz8seYGs/5xmNCYUxt1c4xaZo95wMxpvbO2RXQpnvRokV49tlnWz0mLy8PAwcO7KaKAmvp0qV4/PHHm2zPzs5GeHg4ACA+Ph59+vRBfn4+SkpKvMfY7XbY7XYcOXIE5eXl3u3p6elISEjAgQMH4HQ6vdsHDhyIqKgoZGdn+/wjHjZsGIxGI/bs2eNTw+jRo1FXV4fc3FzvNp1OhzFjxqC8vNz7pgQAWCwWDB8+HKdPn8axY8e82202GwYNGoQTJ06gsLDQu707xqTX67Fjxw6YzeaQGVMo5uSPMdXU1CAhIQGDBw8OmTEBoZeT0mOKi4vDl19+Ca32fzd0qX1MoZiTP8ZUU1ODsLAwjB07NmTGBIReTkqPKS0tDTk5OT6P8al9TKGYkz/GVFNTA7PZHFJjCsWclB7T0KFDcejQIe9FykCNqaqqCu0R0HW6S0pKUFpa2uox6enpMBqN3o/XrVuHefPm4ezZsz7HLV68GO+99x5ycnK82/Lz85Geno59+/YhIyMDF110EUaOHIkVK1Z4j1m7di3mzZuH8vJy1NXVISwsDP/4xz8wffp07zGzZs3C2bNn8c9//hOffvopLrnkEpSVlflc7U5NTcW8efMwf/78dtXSnOaudKekpKC0tNS77pua3n0KpnfUXC4X9uzZg5EjR3rHovYxNVc7x+Rbu9vtxr59+7wrFoTCmNrazjHBe+zu3bubnPNqHlMo5qT0mM4/50NhTOcKlZz8Mabmznm1jykUc1J6TOee8439gtrH1J7aOSYNhBBNzvlAjMnhcCA2NrbNdboDeqU7Pj4e8fHxirxWZmYmnn76aZw6dQoJCQkAgC1btsBqtWLw4MHeYz766COfz9uyZQsyMzMBAEajEaNGjcLWrVu9TbfH48HWrVsxd+5cAMCoUaNgMBiwdetWXHvttQCAw4cPo6CgwPs67amlOSaTCSaTqcl2vV4Pvd43qsZ/DOdr/EfX3u3nv25ntms0mma3t1RjR7crMSaNRuM9Ec/fr9YxdXS7rGNqzL212tU2pq5sl2VMHo+nQ+d8R7czp+Ad07nnfKiM6VwcU/PbWzvn1Tqm1rZzTE3P+cZne0NhTF3ZLsuYXC5Xi+d8d46ppXE0+Zx2HRUECgoKcObMGRQUFMDtdnuvIvft2xcRERG47LLLMHjwYNx666147rnnUFRUhEcffRT33Xeft5G955578OKLL+Lhhx/GHXfcgU8//RTvvPMOPvzwQ+/XWbBgAWbNmoXRo0dj7NixWLFiBaqqqnD77bcDaLhtYfbs2ViwYAFiYmJgtVpx//33IzMzEz/5yU8AoF21EBERERERUehTTdO9ePFivPrqq96PG2/R3rZtGyZNmgSdTocPPvgA9957LzIzMxEeHo5Zs2bhiSee8H5OWloaPvzwQ8yfPx8rV66E3W7Hyy+/jClTpniPufHGG1FSUoLFixejqKgII0aMwObNm30mRlu+fDm0Wi2uvfZa1NbWYsqUKfjTn/7k3d+eWqh7abVaxMfHN/vuFoUu5i4vZi8n5i4vZi8n5i4vtWUf0Ge6qXUOhwM2m63NZwSIiIiIiIioe7W3X1PHWwNEXeTxeHD06FGfyRMo9DF3eTF7OTF3eTF7OTF3eaktezbdJAWPx4OSkhLVnJikDOYuL2YvJ+YuL2YvJ+YuL7Vlz6abiIiIiIiIyE/YdBMRERERERH5CZtukoJWq4XdblfNDIekDOYuL2YvJ+YuL2YvJ+YuL7Vlz9nLgxhnLyciIiIiIgpOnL2c6Bxutxt5eXlwu92BLoW6EXOXF7OXE3OXF7OXE3OXl9qyZ9NNUhBCoLy8HLyxQy7MXV7MXk7MXV7MXk7MXV5qy55NNxEREREREZGfsOkmIiIiIiIi8hM23SQFrVaL9PR01cxwSMpg7vJi9nJi7vJi9nJi7vJSW/acvTyIcfZyIiIiIiKi4MTZy4nO4Xa7sX//ftXMcEjKYO7yYvZyYu7yYvZyYu7yUlv2bLpJCkIIOJ1O1cxwSMpg7vJi9nJi7vJi9nJi7vJSW/ZsuomIiIiIiIj8hE03ERERERERkZ+w6SYp6HQ6DBw4EDqdLtClUDdi7vJi9nJi7vJi9nJi7vJSW/acvTyIcfZyIiIiIiKi4MTZy4nO4XK5sHv3brhcrkCXQt2IucuL2cuJucuL2cuJuctLbdmz6SZpqGVJAVIWc5cXs5cTc5cXs5cTc5eXmrJn001ERERERETkJ2y6iYiIiIiIiPyEE6kFMU6kphwhBJxOJywWCzQaTaDLoW7C3OXF7OXE3OXF7OXE3OUVLNlzIjWi8xiNxkCXQAHA3OXF7OXE3OXF7OXE3OWlpuzZdJMU3G439uzZo6oJF6jrmLu8mL2cmLu8mL2cmLu81JY9m24iIiIiIiIiP2HTTUREREREROQnbLqJiIiIiIiI/ISzlwcxzl6uHCEE3G43dDodZ7eUCHOXF7OXE3OXF7OXE3OXV7Bkz9nLic5TV1cX6BIoAJi7vJi9nJi7vJi9nJi7vNSUPZtukoLb7UZubq5qZjgkZTB3eTF7OcmSe0VNPfJOOrA7/wzyTjpQUVMf6JICTpbsyRdzl5fastcHugAiIiIiap+C0mpszC5EsaPWuy3RasKMDDt6xYYFsDIiImoJr3QTERERqUBFTX2ThhsAih212JhdyCveRERBik03SUOn0wW6BAoA5i4vZi+nUM69sMzZpOFuVOyoRWGZs5srCi6hnD21jLnLS03Zc/byIMbZy4mIiKjR7vwz2Jj9Q4v7Z2T0xJi0mG6siIhIbpy9nOgcQgicPXsWfI9JLsxdXsxeTqGee4S59al42tofykI9e2oec5eX2rJn001ScLvdOHTokGpmOCRlMHd5MXs5hXru9mgLEq2mZvclWk2wR1u6uaLgEerZU/OYu7zUlj2bbiIiIiIViDQbMCPD3qTxTrSaMGOkHZFmQ4AqIyKi1sh7HxIRERGRyvSKDcPsCWkoLHOissaFCLMe9mgLG24ioiDGppukoNFoYLFYoNFoAl0KdSPmLi9mLydZco80GzAoiU32uWTJnnwxd3mpLXvOXh7EOHs5ERERERFRcOLs5UTn8Hg8OHXqFDweT6BLoW7E3OXF7OXE3OXF7OXE3OWltuzZdJMUPB4Pjh07ppoTk5TB3OXF7OXE3OXF7OXE3OWltuzZdBMRERERERH5CZtuIiIiIiIiIj9h001S0Gg0sNlsqpnhkJTB3OXF7OXE3OXF7OXE3OWltuw5e3kQ4+zlREREREREwYmzlxOdw+PxoLCwUDWTLZAymLu8mL2cmLu8mL2cmLu81JY9m26SgtpOTFIGc5cXs5cTc5cXs5cTc5eX2rJn001ERERERETkJ2y6iYiIiIiIiPyETTdJQavVIj4+Hlot/8nLhLnLi9nLibnLi9nLibnLS23Zc/byIMbZy4mIiIiIiIITZy8nOofH48HRo0dVM9kCKYO5y4vZy4m5y4vZy4m5y0tt2bPpJil4PB6UlJSo5sQkZTB3eTF7OTF3eTF7OTF3eaktezbdRERERERERH6iD3QB1LLGx+0dDkeAK1E/l8uFqqoqOBwO6PX8Zy8L5i4vZi8n5i4vZi8n5i6vYMm+sU9ra5o0/usMYhUVFQCAlJSUAFdCREREREREzamoqIDNZmtxP2cvD2IejwcnTpxAZGQkNBpNoMtRNYfDgZSUFHz//fecCV4izF1ezF5OzF1ezF5OzF1ewZK9EAIVFRVITk5udfkyXukOYlqtFna7PdBlhBSr1cr/lCXE3OXF7OXE3OXF7OXE3OUVDNm3doW7ESdSIyIiIiIiIvITNt1EREREREREfsKmm6RgMpmwZMkSmEymQJdC3Yi5y4vZy4m5y4vZy4m5y0tt2XMiNSIiIiIiIiI/4ZVuIiIiIiIiIj9h001ERERERETkJ2y6iYiIiIiIiPyETTeFjFWrVqF3794wm80YN24cdu3a1erx69evx8CBA2E2mzF06FB89NFH3VQpKakjua9btw4ajcbnj9ls7sZqSQn/+c9/cNVVVyE5ORkajQabNm1q83O2b9+OkSNHwmQyoW/fvli3bp3f6yTldTT77du3NznnNRoNioqKuqdgUsTSpUsxZswYREZGIiEhAdOnT8fhw4fb/Dz+nFe3zuTOn/OhYfXq1Rg2bJh3De7MzEx8/PHHrX5OsJ/vbLopJLz99ttYsGABlixZgn379mH48OGYMmUKTp061ezxO3bswM0334zZs2cjOzsb06dPx/Tp03HgwIFurpy6oqO5A4DVasXJkye9f44fP96NFZMSqqqqMHz4cKxatapdx+fn52PatGm4+OKLkZOTg3nz5uHOO+/Ev/71Lz9XSkrraPaNDh8+7HPeJyQk+KlC8ofPPvsM9913H3bu3IktW7agvr4el112Gaqqqlr8HP6cV7/O5A7w53wosNvt+P3vf4+9e/diz549+NnPfoaf//znOHjwYLPHq+J8F0QhYOzYseK+++7zfux2u0VycrJYunRps8ffcMMNYtq0aT7bxo0bJ+6++26/1knK6mjua9euFTabrZuqo+4AQLz77rutHvPwww+LCy64wGfbjTfeKKZMmeLHysjf2pP9tm3bBABRVlbWLTVR9zh16pQAID777LMWj+HP+dDTntz5cz50RUdHi5dffrnZfWo433mlm1Svrq4Oe/fuxeTJk73btFotJk+ejKysrGY/Jysry+d4AJgyZUqLx1Pw6UzuAFBZWYnU1FSkpKS0+q4phQ6e7zRixAgkJSXh0ksvxRdffBHocqiLysvLAQAxMTEtHsPzPvS0J3eAP+dDjdvtxltvvYWqqipkZmY2e4waznc23aR6p0+fhtvtRmJios/2xMTEFp/bKyoq6tDxFHw6k/uAAQPwyiuv4J///Cf+9re/wePxYPz48SgsLOyOkilAWjrfHQ4HnE5ngKqi7pCUlISXXnoJGzZswIYNG5CSkoJJkyZh3759gS6NOsnj8WDevHm48MILMWTIkBaP48/50NLe3PlzPnR89dVXiIiIgMlkwj333IN3330XgwcPbvZYNZzv+kAXQETUXTIzM33eJR0/fjwGDRqEP//5z3jyyScDWBkR+cOAAQMwYMAA78fjx4/H0aNHsXz5crz++usBrIw667777sOBAwfw+eefB7oU6kbtzZ0/50PHgAEDkJOTg/LycvzjH//ArFmz8Nlnn7XYeAc7Xukm1YuLi4NOp0NxcbHP9uLiYvTo0aPZz+nRo0eHjqfg05ncz2cwGJCRkYFvv/3WHyVSkGjpfLdarbBYLAGqigJl7NixPOdVau7cufjggw+wbds22O32Vo/lz/nQ0ZHcz8ef8+plNBrRt29fjBo1CkuXLsXw4cOxcuXKZo9Vw/nOpptUz2g0YtSoUdi6dat3m8fjwdatW1t89iMzM9PneADYsmVLi8dT8OlM7udzu9346quvkJSU5K8yKQjwfKdz5eTk8JxXGSEE5s6di3fffReffvop0tLS2vwcnvfq15ncz8ef86HD4/Ggtra22X2qON8DPZMbkRLeeustYTKZxLp168TXX38t5syZI6KiokRRUZEQQohbb71VLFq0yHv8F198IfR6vXj++edFXl6eWLJkiTAYDOKrr74K1BCoEzqa++OPPy7+9a9/iaNHj4q9e/eKm266SZjNZnHw4MFADYE6oaKiQmRnZ4vs7GwBQCxbtkxkZ2eL48ePCyGEWLRokbj11lu9xx87dkyEhYWJhQsXiry8PLFq1Sqh0+nE5s2bAzUE6qSOZr98+XKxadMm8c0334ivvvpKPPDAA0Kr1Yp///vfgRoCdcK9994rbDab2L59uzh58qT3T3V1tfcY/pwPPZ3JnT/nQ8OiRYvEZ599JvLz80Vubq5YtGiR0Gg04pNPPhFCqPN8Z9NNIeOPf/yj6NWrlzAajWLs2LFi586d3n0TJ04Us2bN8jn+nXfeEf379xdGo1FccMEF4sMPP+zmikkJHcl93rx53mMTExPF1KlTxb59+wJQNXVF4zJQ5/9pzHrWrFli4sSJTT5nxIgRwmg0ivT0dLF27dpur5u6rqPZP/vss6JPnz7CbDaLmJgYMWnSJPHpp58GpnjqtOYyB+BzHvPnfOjpTO78OR8a7rjjDpGamiqMRqOIj48Xl1xyibfhFkKd57tGCCG677o6ERERERERkTz4TDcRERERERGRn7DpJiIiIiIiIvITNt1EREREREREfsKmm4iIiIiIiMhP2HQTERERERER+QmbbiIiIiIiIiI/YdNNRERERERE5CdsuomIiIiIiIj8hE03ERGRRDQaDTZt2hToMnwEqqbHHnsMI0aM6PLrrFu3DlFRUV1+HSIiUtZ//vMfXHXVVUhOTu70zxohBJ5//nn0798fJpMJPXv2xNNPP92h12DTTURE5AdZWVnQ6XSYNm1ahz+3d+/eWLFihfJFtUGj0bT657HHHmvxc7/77jtoNBrk5OQoXtdtt93WbD2XX355l173oYcewtatW7tc34033ogjR450+XWIiEhZVVVVGD58OFatWtXp13jggQfw8ssv4/nnn8ehQ4fw3nvvYezYsR16DX2nvzoRERG1aM2aNbj//vuxZs0anDhxAsnJyYEuqU0nT570/v3tt9/G4sWLcfjwYe+2iIiIQJQFALj88suxdu1an20mk6lLrxkREaHImCwWCywWS5dfh4iIlHXFFVfgiiuuaHF/bW0tHnnkEfz973/H2bNnMWTIEDz77LOYNGkSACAvLw+rV6/GgQMHMGDAAABAWlpah+vglW4iIiKFVVZW4u2338a9996LadOmYd26dU2Oef/99zFmzBiYzWbExcXhmmuuAQBMmjQJx48fx/z5871XdIHmb4VesWIFevfu7f149+7duPTSSxEXFwebzYaJEydi37597a67R48e3j82mw0ajcb7cUJCApYtWwa73Q6TyYQRI0Zg8+bN3s9t/CUkIyMDGo3G+wtLV2tqZDKZfOrr0aMHoqOjvfs1Gg3+/Oc/48orr0RYWBgGDRqErKwsfPvtt5g0aRLCw8Mxfvx4HD161Ps5539Pt2/fjrFjxyI8PBxRUVG48MILcfz4cQDA/v37cfHFFyMyMhJWqxWjRo3Cnj17ADR/e/nq1avRp08fGI1GDBgwAK+//rrPfo1Gg5dffhnXXHMNwsLC0K9fP7z33nsd/r4QEVHnzZ07F1lZWXjrrbeQm5uL66+/Hpdffjm++eYbAA0/q9PT0/HBBx8gLS0NvXv3xp133okzZ8506Ouw6SYiIlLYO++8g4EDB2LAgAH45S9/iVdeeQVCCO/+Dz/8ENdccw2mTp2K7OxsbN261Xur2saNG2G32/HEE0/g5MmTPlef21JRUYFZs2bh888/x86dO9GvXz9MnToVFRUVXR7TypUr8cILL+D5559Hbm4upkyZgquvvtr7i8muXbsAAP/+979x8uRJbNy40e81ne/JJ5/EzJkzkZOTg4EDB+IXv/gF7r77bvz2t7/Fnj17IITA3Llzm/1cl8uF6dOnY+LEicjNzUVWVhbmzJnjfdPjlltugd1ux+7du7F3714sWrQIBoOh2dd699138cADD+DBBx/EgQMHcPfdd+P222/Htm3bfI57/PHHccMNNyA3NxdTp07FLbfc0uFf5IiIqHMKCgqwdu1arF+/Hj/96U/Rp08fPPTQQ5gwYYL3zqpjx47h+PHjWL9+PV577TWsW7cOe/fuxXXXXdexLyaIiIhIUePHjxcrVqwQQghRX18v4uLixLZt27z7MzMzxS233NLi56emporly5f7bFuyZIkYPny4z7bly5eL1NTUFl/H7XaLyMhI8f7773u3ARDvvvtum2NYu3atsNls3o+Tk5PF008/7XPMmDFjxK9+9SshhBD5+fkCgMjOzm71dTtT06xZs4ROpxPh4eE+f86tB4B49NFHvR9nZWUJAGLNmjXebX//+9+F2Wz2fnzu97S0tFQAENu3b2+2hsjISLFu3bpm953/vRo/fry46667fI65/vrrxdSpU1ust7KyUgAQH3/8cYvfByIi6rzzf9Z88MEHAkCTny16vV7ccMMNQggh7rrrLgFAHD582Pt5e/fuFQDEoUOH2v21+Uw3ERGRgg4fPoxdu3bh3XffBQDo9XrceOONWLNmjfeW65ycHNx1112Kf+3i4mI8+uij2L59O06dOgW3243q6moUFBR06XUdDgdOnDiBCy+80Gf7hRdeiP3793dLTRdffDFWr17tsy0mJsbn42HDhnn/npiYCAAYOnSoz7aamho4HA5YrdYmr3XbbbdhypQpuPTSSzF58mTccMMNSEpKAgAsWLAAd955J15//XVMnjwZ119/Pfr06dNsrXl5eZgzZ47PtgsvvBArV65ssd7w8HBYrVacOnWq1e8DEREpo7KyEjqdDnv37oVOp/PZ1zjfR1JSEvR6Pfr37+/dN2jQIAANV8obn/NuC28vJyIiUtCaNWvgcrmQnJwMvV4PvV6P1atXY8OGDSgvLweATk26pdVqfW5RB4D6+nqfj2fNmoWcnBysXLkSO3bsQE5ODmJjY1FXV9f5AXWRUjWFh4ejb9++Pn/Ob7rPvd278bbw5rZ5PJ5mv8batWuRlZWF8ePH4+2330b//v2xc+dOAA3Pfx88eBDTpk3Dp59+isGDB3vfWOms829P12g0LdZGRETKysjIgNvtxqlTp5r8fOnRoweAhjdMXS6Xz3wgjatVpKamtvtrsekmIiJSiMvlwmuvvYYXXngBOTk53j/79+9HcnIy/v73vwNouMLZ2lJVRqMRbrfbZ1t8fDyKiop8Gu/zl+f64osv8Otf/xpTp07FBRdcAJPJhNOnT3d5XFarFcnJyfjiiy+afL3Bgwd7awbQpG5/1eQvGRkZ+O1vf4sdO3ZgyJAhePPNN737+vfvj/nz5+OTTz7BjBkzmsym3mjQoEGtfq+IiKh7VFZWen8WA0B+fj5ycnJQUFCA/v3745ZbbsHMmTOxceNG5OfnY9euXVi6dCk+/PBDAMDkyZMxcuRI3HHHHcjOzsbevXtx991349JLL/W5+t0W3l5ORESkkA8++ABlZWWYPXs2bDabz75rr70Wa9aswT333IMlS5bgkksuQZ8+fXDTTTfB5XLho48+wm9+8xsADet0/+c//8FNN90Ek8mEuLg4TJo0CSUlJXjuuedw3XXXYfPmzfj44499bpPu168fXn/9dYwePRoOhwMLFy5UbCmrhQsXYsmSJejTpw9GjBiBtWvXIicnB2+88QYAICEhARaLBZs3b4bdbofZbIbNZlOsptraWhQVFfls0+v1iIuLU2R8+fn5+Mtf/oKrr74aycnJOHz4ML755hvMnDkTTqcTCxcuxHXXXYe0tDQUFhZi9+7duPbaa5t9rYULF+KGG25ARkYGJk+ejPfffx8bN27Ev//9b0VqJSKi9tmzZw8uvvhi78cLFiwA0HAX1rp167B27Vo89dRTePDBB/HDDz8gLi4OP/nJT3DllVcCaLjL7P3338f999+Piy66COHh4bjiiivwwgsvdKwQhZ5LJyIikt6VV17pM1nWub788ksBQOzfv18IIcSGDRvEiBEjhNFoFHFxcWLGjBneY7OyssSwYcOEyWQS5/6oXr16tUhJSRHh4eFi5syZ4umnn/aZSG3fvn1i9OjRwmw2i379+on169c3mZQNnZxIze12i8cee0z07NlTGAwGMXz48CaTfv31r38VKSkpQqvViokTJypW06xZswSAJn8GDBjQ4ms0N7Hbtm3bBABRVlYmhPCdSK2oqEhMnz5dJCUlCaPRKFJTU8XixYuF2+0WtbW14qabbhIpKSnCaDSK5ORkMXfuXOF0Opv9XgkhxJ/+9CeRnp4uDAaD6N+/v3jttdd89jc3ZpvNJtauXdvi94GIiNRJI8R5D4gRERERERERkSL4TDcRERERERGRn7DpJiIiIiIiIvITNt1EREREREREfsKmm4iIiIiIiMhP2HQTERERERER+QmbbiIiIiIiIiI/YdNNRERERERE5CdsuomIiIiIiIj8hE03ERERERERkZ+w6SYiIiIiIiLyEzbdRERERERERH7CppuIiIiIiIjIT/4/F/QZ5rJOFdIAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"- Observation: Most of the residuals (errors) are clustered around the red dashed \"Zero Error Line\".\n",
"For lower actual emission values (e.g., up to ~0.5 million), the errors are generally small and tightly clustered around zero.\n",
"As actual emission values increase, the spread of the residuals seems to slightly increase, forming a very subtle \"fanning out\" or megaphone shape. This is common in regression and indicates heteroscedasticity, meaning the model's error magnitude increases with the magnitude of the predicted value.\n",
"There are a few outliers (points far from zero) especially at higher actual emission values (e.g., around 1.4 million and 3 million), where the model has larger prediction errors (both positive and negative).\n",
"- Interpretation:\n",
"The model is generally unbiased, with errors centered around zero.\n",
"The slight fanning out suggests that while the model performs very well overall, its predictions might be less precise for very high emission values compared to lower ones. This is often an inherent characteristic of data with a wide dynamic range, where absolute errors are naturally larger for larger values. Given your large range of total_emission, this slight heteroscedasticity is not necessarily a major flaw but something to be aware of.\n"
],
"metadata": {
"id": "jss4eOoKpA5R"
}
},
{
"cell_type": "code",
"source": [
"# --- Graph 3: Distribution of Residuals (Histogram/KDE) ---\n",
"plt.figure(figsize=(10, 6))\n",
"sns.histplot(residuals, bins=50, kde=True, color='skyblue')\n",
"plt.axvline(x=0, color='red', linestyle='--', label='Mean Residual (ideally 0)')\n",
"plt.title('Distribution of Residuals')\n",
"plt.xlabel('Residuals (Actual - Predicted)')\n",
"plt.ylabel('Frequency')\n",
"plt.legend()\n",
"plt.tight_layout()\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 607
},
"id": "4b9_oyAloH1z",
"outputId": "4fd412c9-31ba-4be4-f436-aa54174581c3"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAk3lJREFUeJzs3Xl8VNX9//H3nS0rSVgTkFVFNkEEFeNeRRDRakWrfkURcalCVXCltS5YxX0tivWn4Fqq1trWBQXEDQEVUREQAZGgkLAnZM/MnN8fydxkSAJZZjJLXs/HYx6ZuffMvWfCkDuf+ZzzOZYxxggAAAAAAIScI9IdAAAAAAAgXhF0AwAAAAAQJgTdAAAAAACECUE3AAAAAABhQtANAAAAAECYEHQDAAAAABAmBN0AAAAAAIQJQTcAAAAAAGFC0A0AAAAAQJgQdAMA4sKdd94py7Ja5FwnnXSSTjrpJPvxRx99JMuy9MYbb7TI+S+99FL17NmzRc7VVIWFhbr88suVlZUly7J0/fXXR7pLtViWpTvvvHO/7VrivRV4D3300UdhPQ8AoOURdAMAos7s2bNlWZZ9S0xMVJcuXTRy5Eg98cQT2rNnT0jOs3nzZt1555365ptvQnK8UIrmvjXEvffeq9mzZ+vqq6/WSy+9pIsvvrjetj179gz6905JSdFRRx2lF198sQV7DABAeLgi3QEAAOozbdo09erVSxUVFcrNzdVHH32k66+/Xo888oj++9//atCgQXbb2267Tbfeemujjr9582bddddd6tmzpwYPHtzg533wwQeNOk9T7Ktvzz77rPx+f9j70Bwffvihjj76aN1xxx0Naj948GDdcMMNkqQtW7bo//2//6dx48aprKxMV1xxRVj6WFJSIpeLj0IAgPDiSgMAiFqjRo3SEUccYT+eOnWqPvzwQ51xxhn67W9/q9WrVyspKUmS5HK5wh5AFRcXKzk5WR6PJ6zn2R+32x3R8zfE1q1b1b9//wa3P+CAAzR27Fj78aWXXqoDDzxQjz76aNiC7sTExLAcFwCAmhheDgCIKSeffLL+8pe/aOPGjXr55Zft7XXNu503b56OO+44ZWRkKDU1VX369NGf/vQnSZVzaI888khJ0vjx4+2hzbNnz5ZUOW/70EMP1bJly3TCCScoOTnZfu7ec7oDfD6f/vSnPykrK0spKSn67W9/q02bNgW16dmzpy699NJaz615zP31ra453UVFRbrhhhvUrVs3JSQkqE+fPnrooYdkjAlqZ1mWJk2apLfeekuHHnqoEhISNGDAAM2dO7fuX/hetm7dqgkTJigzM1OJiYk67LDD9MILL9j7A3OTN2zYoHfeecfu+88//9yg4wd07NhRffv21fr164O2+/1+PfbYYxowYIASExOVmZmpq666Srt27Qpq99VXX2nkyJHq0KGDkpKS1KtXL1122WW1fhd7z+n+7LPPdOSRRyoxMVEHHXSQnnnmmVp9+/nnn4P+PfZ1zI0bN+qaa65Rnz59lJSUpPbt2+u8885r0O9j7dq1GjNmjLKyspSYmKiuXbvqggsuUH5+/n6fCwCIHmS6AQAx5+KLL9af/vQnffDBB/VmQVeuXKkzzjhDgwYN0rRp05SQkKB169Zp0aJFkqR+/fpp2rRpuv3223XllVfq+OOPlyQdc8wx9jF27NihUaNG6YILLtDYsWOVmZm5z37dc889sixLt9xyi7Zu3arHHntMw4cP1zfffGNn5BuiIX2ryRij3/72t1q4cKEmTJigwYMH6/3339dNN92kX3/9VY8++mhQ+88++0xvvvmmrrnmGrVp00ZPPPGExowZo5ycHLVv377efpWUlOikk07SunXrNGnSJPXq1Uuvv/66Lr30Uu3evVvXXXed+vXrp5deekmTJ09W165d7SHjHTt2bPDrlySv16tffvlFbdu2Ddp+1VVXafbs2Ro/fryuvfZabdiwQX/729+0fPlyLVq0SG63W1u3btWIESPUsWNH3XrrrcrIyNDPP/+sN998c5/nXLFihf28O++8U16vV3fcccd+/9335csvv9Tnn3+uCy64QF27dtXPP/+sp59+WieddJJWrVql5OTkOp9XXl6ukSNHqqysTH/84x+VlZWlX3/9VW+//bZ2796t9PT0JvcJANDCDAAAUWbWrFlGkvnyyy/rbZOenm4OP/xw+/Edd9xhal7WHn30USPJbNu2rd5jfPnll0aSmTVrVq19J554opFkZs6cWee+E0880X68cOFCI8kccMABpqCgwN7+2muvGUnm8ccft7f16NHDjBs3br/H3Fffxo0bZ3r06GE/fuutt4wk89e//jWo3bnnnmssyzLr1q2zt0kyHo8naNu3335rJJknn3yy1rlqeuyxx4wk8/LLL9vbysvLTXZ2tklNTQ167T169DCjR4/e5/Fqth0xYoTZtm2b2bZtm1mxYoW5+OKLjSQzceJEu92nn35qJJlXXnkl6Plz584N2v7vf/97v+8fYyp/F3fccYf9+OyzzzaJiYlm48aN9rZVq1YZp9MZ9N7asGFDvf82ex+zuLi4VpvFixcbSebFF1+0twXeQwsXLjTGGLN8+XIjybz++uv7fA0AgOjH8HIAQExKTU3dZxXzjIwMSdJ//vOfJhcdS0hI0Pjx4xvc/pJLLlGbNm3sx+eee646d+6sd999t0nnb6h3331XTqdT1157bdD2G264QcYYvffee0Hbhw8froMOOsh+PGjQIKWlpemnn37a73mysrJ04YUX2tvcbreuvfZaFRYW6uOPP27ya/jggw/UsWNHdezYUQMHDtRLL72k8ePH68EHH7TbvP7660pPT9epp56q7du327ehQ4cqNTVVCxculFT9b//222+roqKiQef3+Xx6//33dfbZZ6t79+729n79+mnkyJFNfl01RzhUVFRox44dOvjgg5WRkaGvv/663ucFMtnvv/++iouLm3x+AEDkEXQDAGJSYWFhUIC7t/PPP1/HHnusLr/8cmVmZuqCCy7Qa6+91qgA/IADDmhU0bTevXsHPbYsSwcffHCj5zM31saNG9WlS5dav49+/frZ+2uqGVQGtG3btta86LrO07t3bzkcwR8f6jtPYwwbNkzz5s3T3Llz9dBDDykjI0O7du0K+v2vXbtW+fn56tSpkx2gB26FhYXaunWrJOnEE0/UmDFjdNddd6lDhw4666yzNGvWLJWVldV7/m3btqmkpKTWv6Ek9enTp8mvq6SkRLfffrs9175Dhw7q2LGjdu/evc+52b169dKUKVP0//7f/1OHDh00cuRIzZgxg/ncABCDmNMNAIg5v/zyi/Lz83XwwQfX2yYpKUmffPKJFi5cqHfeeUdz587VP//5T5188sn64IMP5HQ693uexszDbqi9i70F+Hy+BvUpFOo7j9mr6FpL6tChg4YPHy5JGjlypPr27aszzjhDjz/+uKZMmSKpsohap06d9Morr9R5jMC8ccuy9MYbb2jJkiX63//+p/fff1+XXXaZHn74YS1ZskSpqanN6uu+/g339sc//lGzZs3S9ddfr+zsbKWnp8uyLF1wwQX7/QLo4Ycf1qWXXqr//Oc/+uCDD3Tttddq+vTpWrJkibp27dqs1wAAaDlkugEAMeell16SpP0O+3U4HDrllFP0yCOPaNWqVbrnnnv04Ycf2sOQ6wuemmrt2rVBj40xWrduXVCl8bZt22r37t21nrt3lrgxfevRo4c2b95ca7j9Dz/8YO8PhR49emjt2rW1gsVQn0eSRo8erRNPPFH33nuvioqKJEkHHXSQduzYoWOPPVbDhw+vdTvssMOCjnH00Ufrnnvu0VdffaVXXnlFK1eu1Jw5c+o8X8eOHZWUlFTr31CS1qxZE/Q4UNxt73/HujL9b7zxhsaNG6eHH35Y5557rk499VQdd9xxdb4H6jJw4EDddttt+uSTT/Tpp5/q119/1cyZMxv0XABAdCDoBgDElA8//FB33323evXqpYsuuqjedjt37qy1bfDgwZJkDzNOSUmRVDt4aqoXX3wxKPB94403tGXLFo0aNcredtBBB2nJkiUqLy+3t7399tu1lhZrTN9OP/10+Xw+/e1vfwva/uijj8qyrKDzN8fpp5+u3Nxc/fOf/7S3eb1ePfnkk0pNTdWJJ54YkvME3HLLLdqxY4eeffZZSdLvf/97+Xw+3X333bXaer1e+3e1a9euWln7vf/t9+Z0OjVy5Ei99dZbysnJsbevXr1a77//flDbtLQ0dejQQZ988knQ9qeeeqrO4+7dlyeffLLOrHhNBQUF8nq9QdsGDhwoh8Oxz2HyAIDow/ByAEDUeu+99/TDDz/I6/UqLy9PH374oebNm6cePXrov//9rxITE+t97rRp0/TJJ59o9OjR6tGjh7Zu3aqnnnpKXbt21XHHHSepMgDOyMjQzJkz1aZNG6WkpGjYsGHq1atXk/rbrl07HXfccRo/frzy8vL02GOP6eCDDw5a1uzyyy/XG2+8odNOO02///3vtX79er388stBhc0a27czzzxTv/nNb/TnP/9ZP//8sw477DB98MEH+s9//qPrr7++1rGb6sorr9QzzzyjSy+9VMuWLVPPnj31xhtvaNGiRXrsscf2Oce+KUaNGqVDDz1UjzzyiCZOnKgTTzxRV111laZPn65vvvlGI0aMkNvt1tq1a/X666/r8ccf17nnnqsXXnhBTz31lH73u9/poIMO0p49e/Tss88qLS1Np59+er3nu+uuuzR37lwdf/zxuuaaa+wvFAYMGKDvvvsuqO3ll1+u++67T5dffrmOOOIIffLJJ/rxxx9rHfOMM87QSy+9pPT0dPXv31+LFy/W/Pnz97k0m1T55dKkSZN03nnn6ZBDDpHX69VLL70kp9OpMWPGNO0XCgCIjIjWTgcAoA6BJcMCN4/HY7Kyssypp55qHn/88aClqQL2XjJswYIF5qyzzjJdunQxHo/HdOnSxVx44YXmxx9/DHref/7zH9O/f3/jcrmCloE68cQTzYABA+rsX31Lhv3jH/8wU6dONZ06dTJJSUlm9OjRQctPBTz88MPmgAMOMAkJCebYY481X331Va1j7qtvey8ZZowxe/bsMZMnTzZdunQxbrfb9O7d2zz44IPG7/cHtdNey3AF1LeU2d7y8vLM+PHjTYcOHYzH4zEDBw6sc+msxi4ZVl/b2bNn11qe6+9//7sZOnSoSUpKMm3atDEDBw40N998s9m8ebMxxpivv/7aXHjhhaZ79+4mISHBdOrUyZxxxhnmq6++Cjq29lreyxhjPv74YzN06FDj8XjMgQceaGbOnFnrvWVM5VJgEyZMMOnp6aZNmzbm97//vdm6dWutY+7atcv+faWmppqRI0eaH374odbve+8lw3766Sdz2WWXmYMOOsgkJiaadu3amd/85jdm/vz5DfqdAgCih2VMBKumAAAAAAAQx5jTDQAAAABAmBB0AwAAAAAQJgTdAAAAAACECUE3AAAAAABhQtANAAAAAECYEHQDAAAAABAmrkh3IBr4/X5t3rxZbdq0kWVZke4OAAAAACDKGWO0Z88edenSRQ5H/flsgm5JmzdvVrdu3SLdDQAAAABAjNm0aZO6du1a736Cbklt2rSRVPnLSktLi3BvAACtRlGR1KVL5f3Nm6WUlMj2BwAANFhBQYG6detmx5P1IeiW7CHlaWlpBN0AgJbjdFbfT0sj6AYAIAbtb4oyhdQAAAAAAAgTgm4AAAAAAMIkokF3z549ZVlWrdvEiRMlSaWlpZo4caLat2+v1NRUjRkzRnl5eUHHyMnJ0ejRo5WcnKxOnTrppptuktfrjcTLAQAAAAAgSETndH/55Zfy+Xz24++//16nnnqqzjvvPEnS5MmT9c477+j1119Xenq6Jk2apHPOOUeLFi2SJPl8Po0ePVpZWVn6/PPPtWXLFl1yySVyu9269957I/KaAAAAgHDw+XyqqKiIdDeAVsPtdstZs/5KE1nGGBOC/oTE9ddfr7fffltr165VQUGBOnbsqFdffVXnnnuuJOmHH35Qv379tHjxYh199NF67733dMYZZ2jz5s3KzMyUJM2cOVO33HKLtm3bJo/H06DzFhQUKD09Xfn5+RRSAwC0nKIiKTW18n5hIYXUANTJGKPc3Fzt3r070l0BWp2MjAxlZWXVWSytoXFk1FQvLy8v18svv6wpU6bIsiwtW7ZMFRUVGj58uN2mb9++6t69ux10L168WAMHDrQDbkkaOXKkrr76aq1cuVKHH354necqKytTWVmZ/bigoCB8LwwAgPokJUkbNlTfB4A6BALuTp06KTk5eb+VkgE0nzFGxcXF2rp1qySpc+fOTT5W1ATdb731lnbv3q1LL71UUuUfF4/Ho4yMjKB2mZmZys3NtdvUDLgD+wP76jN9+nTdddddoes8AABN4XBIPXtGuhcAopjP57MD7vbt20e6O0CrklT1hfjWrVvVqVOnJg81j5rq5c8995xGjRqlLl26hP1cU6dOVX5+vn3btGlT2M8JAAAANFZgDndycnKEewK0ToH/e82ppxAVme6NGzdq/vz5evPNN+1tWVlZKi8v1+7du4Oy3Xl5ecrKyrLbfPHFF0HHClQ3D7SpS0JCghISEkL4CgAAaILycunPf668f889UgNrkQBofRhSDkRGKP7vRUWme9asWerUqZNGjx5tbxs6dKjcbrcWLFhgb1uzZo1ycnKUnZ0tScrOztaKFSvscfaSNG/ePKWlpal///4t9wIAAGiKigrpoYcqb1QkBgAgLkU86Pb7/Zo1a5bGjRsnl6s68Z6enq4JEyZoypQpWrhwoZYtW6bx48crOztbRx99tCRpxIgR6t+/vy6++GJ9++23ev/993Xbbbdp4sSJZLIBAAAARFzPnj312GOP7bONZVl66623Qnrek046Sddff/1+251wwgl69dVXG9yXn3/+WZZl6Ztvvml+J+s55kcffSTLssJasb+8vFw9e/bUV199FbZzBEQ86J4/f75ycnJ02WWX1dr36KOP6owzztCYMWN0wgknKCsrK2gIutPp1Ntvvy2n06ns7GyNHTtWl1xyiaZNm9aSLwEAAABADZdeeqksy9If/vCHWvsmTpwoy7LsAsqRNHv2bFmWJcuy5HA41LlzZ51//vnKyckJ2Tm+/PJLXXnllSE7Xij997//VV5eni644AJ725YtWzRq1KgI9ip0ZsyYoZ49eyoxMVHDhg0Lmprs8Xh044036pZbbgl7PyIedI8YMULGGB1yyCG19iUmJmrGjBnauXOnioqK9Oabb9aaq92jRw+9++67Ki4u1rZt2/TQQw8FZcwBAAAAtLxu3bppzpw5KikpsbeVlpbq1VdfVffu3SPYs2BpaWnasmWLfv31V/3rX//SmjVrdN5554Xs+B07dozaQnhPPPGExo8fL4ejOizMysqKi1HD//znPzVlyhTdcccd+vrrr3XYYYdp5MiRQVOTL7roIn322WdauXJlWPsS8aAbAAAAQPwZMmSIunXrFjRS9c0331T37t11+OGHB7X1+/2aPn26evXqpaSkJB122GF644037P0+n08TJkyw9/fp00ePP/540DEuvfRSnX322XrooYfUuXNntW/fXhMnTtxv1WnLspSVlaXOnTvrmGOO0YQJE/TFF1+ooKDAbvOf//xHQ4YMUWJiog488EDddddd8nq9kirXc77zzjvVvXt3JSQkqEuXLrr22mvt5+49vHzt2rU64YQTlJiYqP79+2vevHlB/alraPU333wjy7L0888/S5J27NihCy+8UAcccICSk5M1cOBA/eMf/9jn69zbtm3b9OGHH+rMM8+s9fuoObz8iy++0OGHH67ExEQdccQRWr58ea1jff/99xo1apRSU1OVmZmpiy++WNu3b7f3z507V8cdd5wyMjLUvn17nXHGGVq/fn2D+llUVKS0tLSg94NUueR0SkqK9uzZU+fzHnnkEV1xxRUaP368+vfvr5kzZyo5OVnPP/+83aZt27Y69thjNWfOnAb1pakIugEAAIBYU1RU/620tOFta2Sh99m2iS677DLNmjXLfvz8889r/PjxtdpNnz5dL774ombOnKmVK1dq8uTJGjt2rD7++GNJlUF5165d9frrr2vVqlW6/fbb9ac//UmvvfZa0HEWLlyo9evXa+HChXrhhRc0e/ZszZ49u8H93bp1q/7973/L6XTaazJ/+umnuuSSS3Tddddp1apVeuaZZzR79mzdc889kqR//etfevTRR/XMM89o7dq1euuttzRw4MA6j+/3+3XOOefI4/Fo6dKlmjlzZpOGN5eWlmro0KF655139P333+vKK6/UxRdfXGtlp3357LPPlJycrH79+tXbprCwUGeccYb69++vZcuW6c4779SNN94Y1Gb37t06+eSTdfjhh+urr77S3LlzlZeXp9///vd2m6KiIk2ZMkVfffWVFixYIIfDod/97nfy+/377WdKSoouuOCCoPeRVFmM+9xzz1WbNm1qPae8vFzLli3T8OHD7W0Oh0PDhw/X4sWLg9oeddRR+vTTT/fbj+ZgHDYAAAAQa1JT6993+unSO+9UP+7USSourrvtiSdKH31U/bhnT6lGhtJmTFN6qbFjx2rq1KnauHGjJGnRokWaM2eOPqpxzrKyMt17772aP3++vUrRgQceqM8++0zPPPOMTjzxRLndbt111132c3r16qXFixfrtddeCwru2rZtq7/97W9yOp3q27evRo8erQULFuiKK66ot4/5+flKTU2VMUbFVb+na6+9VikpKZKku+66S7feeqvGjRtn9+3uu+/WzTffrDvuuEM5OTnKysrS8OHD5Xa71b17dx111FF1nmv+/Pn64Ycf9P7776tLly6SpHvvvbfRc6gPOOCAoOD3j3/8o95//3299tpr9Z57bxs3blRmZmbQ0PK9vfrqq/L7/XruueeUmJioAQMG6JdfftHVV19tt/nb3/6mww8/XPfee6+97fnnn1e3bt30448/6pBDDtGYMWOCjvv888+rY8eOWrVqlQ499ND99vXyyy/XMcccoy1btqhz587aunWr3n33Xc2fP7/O9tu3b5fP51NmZmbQ9szMTP3www9B27p06WK/P8OFoBsAgEhJSpK+/776PgDEmY4dO2r06NGaPXu2jDEaPXq0OnToENRm3bp1Ki4u1qmnnhq0vby8PGgY+owZM/T8888rJydHJSUlKi8v1+DBg4OeM2DAADtDLUmdO3fWihUr9tnHNm3a6Ouvv1ZFRYXee+89vfLKK3YWW5K+/fZbLVq0KGibz+dTaWmpiouLdd555+mxxx7TgQceqNNOO02nn366zjzzzDrrTK1evVrdunWzA25J9hcNjeHz+XTvvffqtdde06+//qry8nKVlZU1au54SUmJEhMT99lm9erVGjRoUFC7vfv77bffauHChUqt44ug9evX65BDDtHatWt1++23a+nSpdq+fbud4c7JyWlQ0H3UUUdpwIABeuGFF3Trrbfq5ZdfVo8ePXTCCSc05KXuU1JSkv1lS7gQdAMAECkOhzRgQKR7ASAWFRbWv69G0ClJqlE4qpa9s5xVc4ZD6bLLLtOkSZMkVQbOeyusei3vvPOODjjggKB9gYJec+bM0Y033qiHH35Y2dnZatOmjR588EEtXbo0qL3b7Q56bFnWfocwOxwOHXzwwZKkfv36af369br66qv10ksv2f276667dM4559R6bmJiorp166Y1a9Zo/vz5mjdvnq655ho9+OCD+vjjj2v1pyECmWdTY3TB3vPSH3zwQT3++ON67LHHNHDgQKWkpOj6669XeXl5g8/ToUMH7dq1q9H921thYaHOPPNM3X///bX2de7cWZJ05plnqkePHnr22WfVpUsX+f1+HXrooY3q7+WXX64ZM2bo1ltv1axZszR+/HhZllVn2w4dOsjpdCovLy9oe15eXq3C3Dt37lTHjh0b3I+mIOgGAAAAYk3V0OeItm2g0047TeXl5bIsSyNHjqy1v3///kpISFBOTo5OPPHEOo+xaNEiHXPMMbrmmmvsbQ0txNVYt956qw466CBNnjxZQ4YM0ZAhQ7RmzRo7MK9LUlKSzjzzTJ155pmaOHGi+vbtqxUrVmjIkCFB7fr166dNmzbZw6QlacmSJUFtAgHgli1b1LZtW0mqtSb2okWLdNZZZ2ns2LGSKueK//jjj+rfv3+DX+fhhx+u3Nxc7dq1yz7P3vr166eXXnpJpaWldrZ77/4OGTJE//rXv9SzZ886s/s7duzQmjVr9Oyzz+r444+XVDmfvLHGjh2rm2++WU888YRWrVplD/evi8fj0dChQ7VgwQKdffbZkip/RwsWLLC/AAr4/vvvaxX2CzUKqQEAECnl5dKdd1beGvFtPwDEEqfTqdWrV2vVqlVBQ78D2rRpoxtvvFGTJ0/WCy+8oPXr1+vrr7/Wk08+qRdeeEGS1Lt3b3311Vd6//339eOPP+ovf/mLvvzyy7D0t1u3bvrd736n22+/XZJ0++2368UXX9Rdd92llStXavXq1ZozZ45uu+02SZVrfT/33HP6/vvv9dNPP+nll19WUlKSevToUevYw4cP1yGHHKJx48bp22+/1aeffqo///nPQW0OPvhgdevWTXfeeafWrl2rd955Rw8//HBQm969e2vevHn6/PPPtXr1al111VW1srr7c/jhh6tDhw5atGhRvW3+7//+T5Zl6YorrtCqVav07rvv6qGHHgpqM3HiRO3cuVMXXnihvvzyS61fv17vv/++xo8fL5/Pp7Zt26p9+/b6+9//rnXr1unDDz/UlClTGtVXqXK+/jnnnKObbrpJI0aMUNeuXffZfsqUKXr22Wf1wgsvaPXq1br66qtVVFRUq5Dfp59+qhEjRjS6P41B0A0AQJj4jNEnm4v0U0E9AXVFhXTXXZW3/SxpAwCxLC0tTWlpafXuv/vuu/WXv/xF06dPV79+/XTaaafpnXfeUa9evSRJV111lc455xydf/75GjZsmHbs2BGU9Q61yZMn65133tEXX3yhkSNH6u2339YHH3ygI488UkcffbQeffRRO6jOyMjQs88+q2OPPVaDBg3S/Pnz9b///U/t27evdVyHw6F///vfKikp0VFHHaXLL788aK64VDlE/h//+Id++OEHDRo0SPfff7/++te/BrW57bbbNGTIEI0cOVInnXSSsrKy7IxuQzmdTo0fP16vvPJKvW1SU1P1v//9TytWrNDhhx+uP//5z7WGkXfp0kWLFi2Sz+fTiBEjNHDgQF1//fXKyMiQw+GQw+HQnDlztGzZMh166KGaPHmyHnzwwUb1NWDChAkqLy/XZZddtt+2559/vh566CHdfvvtGjx4sL755hvNnTs3qLja4sWLlZ+fr3PPPbdJ/Wkoy5gmliKMIwUFBUpPT1d+fv4+/xgAANAY3+8s1dsbC9U+wakr+tcxdK+oqLoCcWFhWIZ1AohtpaWl2rBhg3r16rXfoldAY+Xm5mrAgAH6+uuv68zMR5uXXnpJkydP1ubNm+XxeJp9vPPPP1+HHXaY/vSnP9XbZl//BxsaR5LpBgAgTH7YVZnhLqjwie+4AQDRJisrS88995xycnIi3ZV9Ki4u1vr163XffffpqquuCknAXV5eroEDB2ry5Mkh6OG+EXQDABAGpT6/NuypDLor/FK5n6AbABB9zj77bLvAWbR64IEH1LdvX2VlZWnq1KkhOabH49Ftt92mpBZYspOgGwCAMFiXXy5fjTi7sGLfS9YAAIC63XnnnaqoqNCCBQvqXA882hF0AwAQBoGh5QEE3QAAtE4E3QAAhFjNoeVt3JWXWoJuAABap9qrlwMAgGYJDC1vn+hUVpJLK3eV1R10JyZKX3xRfR8A6uH388UdEAmh+L9H0A0AQIgFhpb3zfDIW3Wt3lNX0O10Skce2YI9AxBrPB6PHA6HNm/erI4dO8rj8ciyrEh3C4h7xhiVl5dr27ZtcjgczaqYTtANAEAI1Rxa3jcjQT/vqZAkFTG8HEATOBwO9erVS1u2bNHmzZsj3R2g1UlOTlb37t3lcDR9ZjZBNwAAIVRzaHnHJJe2l/ok1ZPpLi+XHn+88v5110khWHcUQPzxeDzq3r27vF6vfD5fpLsDtBpOp1Mul6vZo0sIugEACKHVu8okVQ4tl6TUfRVSq6iQbr658v411xB0A6iXZVlyu91yu92R7gqARqJ6OQAAIVLq89vDyftmJEgKrl5ujKn3uQAAID4RdAMAECI/5VcEDS2XpJSqoNtrpDIfQTcAAK0NQTcAACGSX14517JLcvXsLbfDUoKzci5YoZdiagAAtDYE3QAAhEhpVSY70RlccKXNvuZ1AwCAuEbQDQBAiJT6KoPqRFfw5XWfxdQAAEBcI+gGACBE6st0p7gIugEAaK1YMgwAgBAp9e57eHmttboTE6WFC6vvAwCAuEPQDQBAiASqkyc46x5eXrR30O10Sied1BJdAwAAEcLwcgAAQsSe071Xpps53QAAtF5kugEACBF7Trer7qC71vDyigrp73+vvH/llZLbHfY+AgCAlkXQDQBACBhj7OHlifUMLy+s8MsYI8uqCsrLy6VJkyrvX3opQTcAAHGI4eUAAIRAmd/IVN2vb3i5z1TP+wYAAK0DQTcAACEQCKadluRyBAfdLodlB+K1hpgDAIC4RtANAEAI1LdcWEAbiqkBANAqEXQDABACduVyV92XViqYAwDQOhF0AwAQAnbl8noy3SkE3QAAtEoE3QAAhMD+gm57eLmXoBsAgNaEJcMAAAiBQCG1BGcjhpcnJEhvv119HwAAxB2CbgAAQqC0KoNdX6a7zqDb5ZJGjw573wAAQOQwvBwAgBDY3/DyQNDNkmEAALQuZLoBAAiB6uHl+w66iyr8MsbIsiypokJ65ZXKBhddJLndLdJXAADQcgi6AQAIgf0tGZZStd1nKrPiSS5LKi+Xxo+vbHDeeQTdAADEIYaXAwAQAvsbXu5yWJWBthhiDgBAa0LQDQBACOwv6JakVBdrdQMA0NoQdAMAEALV1cvrv7TWWcEcAADENYJuAABCYH+F1CSCbgAAWiOCbgAAmsnrN/JWxtxKdNUfdLch6AYAoNUh6AYAoJkC87klKcFBphsAAFRjyTAAAJrJXi7MaVWuv12PWkF3QoL02mvV9wEAQNwh6AYAoJnKGlC5XKoj6Ha5KtfnBgAAcYvh5QAANFOpd/9F1KTgoNsYs8+2AAAgPpDpBgCgmaqHlwd/l52Tk6Pt27fbj72yJKub/JK+XP6NXN4KZSxcKEna/ZvfVGa+99KhQwd17949fJ0HAABhRdANAEAzBQqp1axcnpOTo379+qm4uDio7T1f5srhdGr4yFHybc9TUdX2FEnBLSslJydr9erVBN4AAMQogm4AAJqptI453du3b1dxcbFu+9tz6nFwH3v7Dksykh74x3+VWFQgnX2qJGnGW/PkTUwKOu7GdWv010kTtH37doJuAABiFEE3AADNVF1IrXaplB4H91GfQYPtx19uLVW536j7If2UXlFib+996CD5k1PC3lcAANCyKKQGAEAzlXor53Tvr5CaJLmqrrw+P4XUAABoDQi6AQBoprqGl9cn0MRHzA0AQKtA0A0AQDNVF1Lb/2XVaVVG3T6WDAMAoFUg6AYAoJmqlwxrRKbbH84eAQCAaEEhNQAAmqmsMcPLHdWZbuPxaM2jMyVJxu0JXwcBAEDEEHQDANBMgeHlDSmkVnNOt3G7tfX8seHsGgAAiLCIDy//9ddfNXbsWLVv315JSUkaOHCgvvrqK3u/MUa33367OnfurKSkJA0fPlxr164NOsbOnTt10UUXKS0tTRkZGZowYYIKCwtb+qUAAFohvzH7XDJsb4E53V7mdAMA0CpENOjetWuXjj32WLndbr333ntatWqVHn74YbVt29Zu88ADD+iJJ57QzJkztXTpUqWkpGjkyJEqLS2121x00UVauXKl5s2bp7fffluffPKJrrzyyki8JABAK1Neowx5w4aXV/70+SV5vWo7f67azp8reb1h6iEAAIikiA4vv//++9WtWzfNmjXL3tarVy/7vjFGjz32mG677TadddZZkqQXX3xRmZmZeuutt3TBBRdo9erVmjt3rr788ksdccQRkqQnn3xSp59+uh566CF16dKlZV8UAKBVCQwtdzuq52vvS83q5Y7yMh16ybmSpEXr8uR3MesLAIB4E9FM93//+18dccQROu+889SpUycdfvjhevbZZ+39GzZsUG5uroYPH25vS09P17Bhw7R48WJJ0uLFi5WRkWEH3JI0fPhwORwOLV26tM7zlpWVqaCgIOgGAEBTlDZiaLkkuVinGwCAViWiQfdPP/2kp59+Wr1799b777+vq6++Wtdee61eeOEFSVJubq4kKTMzM+h5mZmZ9r7c3Fx16tQpaL/L5VK7du3sNnubPn260tPT7Vu3bt1C/dIAAK1EYLmwhhRRk1inGwCA1iaiQbff79eQIUN077336vDDD9eVV16pK664QjNnzgzreadOnar8/Hz7tmnTprCeDwAQv0q9DV8uTNprTjcAAIh7EQ26O3furP79+wdt69evn3JyciRJWVlZkqS8vLygNnl5efa+rKwsbd26NWi/1+vVzp077TZ7S0hIUFpaWtANAICmaEzlcolMNwAArU1Eg+5jjz1Wa9asCdr2448/qkePHpIqi6plZWVpwYIF9v6CggItXbpU2dnZkqTs7Gzt3r1by5Yts9t8+OGH8vv9GjZsWAu8CgBAa9b44eWVP5nTDQBA6xDRMqmTJ0/WMccco3vvvVe///3v9cUXX+jvf/+7/v73v0uSLMvS9ddfr7/+9a/q3bu3evXqpb/85S/q0qWLzj77bEmVmfHTTjvNHpZeUVGhSZMm6YILLqByOQAg7OxCaq7GzumuXKUDAADEt4gG3UceeaT+/e9/a+rUqZo2bZp69eqlxx57TBdddJHd5uabb1ZRUZGuvPJK7d69W8cdd5zmzp2rxMREu80rr7yiSZMm6ZRTTpHD4dCYMWP0xBNPROIlAQBamerq5Y2b0y1JXpdH6+55WJJk3J6Q9w0AAERexBcEPeOMM3TGGWfUu9+yLE2bNk3Tpk2rt027du306quvhqN7AADsU6m3cnh5Q+d0OyRZkowkr8utLeOvClvfAABA5EV0TjcAALGurJGZbsuyaszrZng5AADxLuKZbgAAYllgeHlDC6lJlfO6vcbIV+FT+hefSZLyhx0rOZ1h6SMAAIgcgm4AAJqhupBawwePOR2S/JJKSzTo3NMlSYvW5cmfnBKGHgIAgEhieDkAAM0QWDKsocPLpeAK5gAAIL4RdAMA0ETGmEZXL5fEnG4AAFoRgm4AAJrIayR/Vdzc0OrlkuR0VGW6/eHoFQAAiCYE3QAANFFguTBLkrsRV9RApttLphsAgLhH0A0AQBNVF1GzZFmNH17uJ+YGACDuEXQDANBETZnPLUkuu5AaUTcAAPGOJcMAAGii6srljfsOO9C8wuHWT7f9VZJkXO6Q9g0AAEQHgm4AAJqorImZ7sCSYRVut3695vpQdwsAAEQRhpcDANBEpd7KoDuh0UF35U/W6QYAIP6R6QYAoImq53Q3cnh5VabbX+FV6jffS5IKBw6WnM6Q9g8AAEQeQTcAAE1UPae7kZnuqhjdlJbq8NNPlCQtWpcnf3JKSPsHAAAij+HlAAA0UWBOd+OHl1dVLxfjywEAiHcE3QAANFFF1ULb7ibO6WadbgAA4h9BNwAATWQH3Y5GrtNd1Z6gGwCA+EfQDQBAE5VXRc2eRgbdjUyMAwCAGEbQDQBAE1VU1lFrdKbbYVki7gYAoHUg6AYAoImqh5c3/rlkuwEAaB1YMgwAgCaq8DVteLkkOR2WKlxurb3uVnmclozLHeruAQCAKEDQDQBAEzW1kJpUmekuc3v0w/VTlZHgDHXXAABAlGB4OQAATVTexCXDpOq1ur1UMAcAIK6R6QYAoA45OTnavn17vfuNJJ/VXZK0+vsV8sgftH/16tX7PL7LkuT3K+WHVUpOcqq4d1/JwXfhAADEG4JuAAD2kpOTo379+qm4uLjeNgkpqbrz0w2SpOOzj5a3vKzOdoWFhXVudzgsuctKNOL0bEnSonV58ienNLPnAAAg2hB0AwCwl+3bt6u4uFi3/e059Ti4T51t/A6ndkqSMXrqvwtqLQG2ZOEHeu7+aSotLa3z+S6qlwMA0CoQdAMAUI8eB/dRn0GD69xX4vVr5/YyOR2W+tbRZuPaNfs8dmBONwAAiG9MHgMAoAmqaqipCYXLJbFONwAArQVBNwAATeAzlVF3UzPWTq7AAAC0ClzyAQBoAl9VprupGWuGlwMA0DoQdAMA0ATVw8ubmOkm5gYAoFWgkBoAAE1QPby8ac93Oiz5XG59PW6iOiW5ZFzuEPYOAABEC4JuAACaoLmF1FyW5Hd79MmUuzS0Y2LoOgYAAKIKw8sBAGiCZhdSq3pe4DgAACA+EXQDANAEvlAsGeb3K+XXHCVs2ij5/SHrGwAAiB4MLwcAoAn8dvXypi4ZZsldVqI/jB4qSVq0Lk/+5JRQdQ8AAEQJMt0AADRBYFh4szLdAAAg7hF0AwDQBP5mrtPtsCwRdwMAEP8IugEAaAJfM4eXVz43RJ0BAABRi6AbAIAm8PubN7xcal7ADgAAYgNBNwAATeBr5vDy5j4XAADEBoJuAACawC6k1oxUN5luAADiH0uGAQDQBM0tpCZJlselZeeNV7rHKePkkgwAQDziCg8AQBMEhpc7mpGtthISNW/qA+rVxq0uCVySAQCIRwwvBwCgCfxVw8tDMac7MFQdAADEH4JuAACaICSF1CQl7dou147tEoE3AABxibFsAAA0kjFGgRC5OcPLPWXFuu6UfpKkRevy5E9OCUHvAABANCHTDQBAI/lqJKWbN7yc6uUAAMQ7gm4AABqpZtDdnLDZRcwNAEDcI+gGAKCRahZRs5qRrW5OlhwAAMQGgm4AABqpermw5h3H2dwDAACAqEfQDQBAI1VnupsXNJPpBgAg/hF0AwDQSKFYLqzy+UTdAADEO5YMAwCgkfz28PLmBc2W26UVZ54vSTJOLskAAMQjrvAAADSSr0YhteZwJCbqnbv+JknK9ngYfgYAQBzi+g4AQCOFrJBajefXXIYMAADEDzLdAAA0UqgKqTkkJZQUyS/J5/fI7XA2v3MAACCqEHQDANBIocp0O0qKNfnYnpKkeau3SOltmndAAAAQdRheDgBAI/nt6uWhqz4emCcOAADiS0SD7jvvvFOWZQXd+vbta+8vLS3VxIkT1b59e6WmpmrMmDHKy8sLOkZOTo5Gjx6t5ORkderUSTfddJO8Xm9LvxQAQCsSqkJqNfmJuQEAiEsRH14+YMAAzZ8/337sclV3afLkyXrnnXf0+uuvKz09XZMmTdI555yjRYsWSZJ8Pp9Gjx6trKwsff7559qyZYsuueQSud1u3XvvvS3+WgAArYPfX/mzucPLa6KQGgAA8SniQbfL5VJWVlat7fn5+Xruuef06quv6uSTT5YkzZo1S/369dOSJUt09NFH64MPPtCqVas0f/58ZWZmavDgwbr77rt1yy236M4775TH42nplwMAaAV8ISqkVtcxAQBAfIn4nO61a9eqS5cuOvDAA3XRRRcpJydHkrRs2TJVVFRo+PDhdtu+ffuqe/fuWrx4sSRp8eLFGjhwoDIzM+02I0eOVEFBgVauXNmyLwQA0GqEqpBaTQwvBwAgPkU00z1s2DDNnj1bffr00ZYtW3TXXXfp+OOP1/fff6/c3Fx5PB5lZGQEPSczM1O5ubmSpNzc3KCAO7A/sK8+ZWVlKisrsx8XFBSE6BUBAFoDu5BaCKNuMt0AAMSniAbdo0aNsu8PGjRIw4YNU48ePfTaa68pKSkpbOedPn267rrrrrAdHwAQ30JVSM04nPp55G9V6jPyskY3AABxKeLDy2vKyMjQIYcconXr1ikrK0vl5eXavXt3UJu8vDx7DnhWVlatauaBx3XNEw+YOnWq8vPz7dumTZtC+0IAAHHNH6Lh5SYxUZ88/oLeeuB5eT2Jze8YAACIOlEVdBcWFmr9+vXq3Lmzhg4dKrfbrQULFtj716xZo5ycHGVnZ0uSsrOztWLFCm3dutVuM2/ePKWlpal///71nichIUFpaWlBNwAAGsoXwnW6A9lyH5O6AQCISxEdXn7jjTfqzDPPVI8ePbR582bdcccdcjqduvDCC5Wenq4JEyZoypQpateundLS0vTHP/5R2dnZOvrooyVJI0aMUP/+/XXxxRfrgQceUG5urm677TZNnDhRCQkJkXxpAIA4FhheHoop3U5H4JjNPxYAAIg+EQ26f/nlF1144YXasWOHOnbsqOOOO05LlixRx44dJUmPPvqoHA6HxowZo7KyMo0cOVJPPfWU/Xyn06m3335bV199tbKzs5WSkqJx48Zp2rRpkXpJAIBWwC6k1syg21FcpAt6VxYAnfVljpTRrpk9AwAA0SaiQfecOXP2uT8xMVEzZszQjBkz6m3To0cPvfvuu6HuGgAAdfIbo0BS2hHSdbpDdigAABBFompONwAA0a7m1OvmZrprIugGACA+EXQDANAIgeDYUqgz3UTdAADEI4JuAAAawR/CImrBxw3t8QAAQHQg6AYAoBF8ISqiVuu4IuoGACAeEXQDANAI1cuFhTbqJtMNAEB8imj1cgAAYk2olguTJONwavvJI7S73C+v5ZQxRlaIg3kAABBZBN0AADRC9fDy5gfHJjFR37/4Ly3ZWiqpMqAP9bB1AAAQWQwvBwCgEUJdSK3mcVg2DACA+EPQDQBAI4S6kJplWXbg7WfZMAAA4g5BNwAAjRDKQmqO4iIdc1AnTc7uIXdJEZluAADiEHO6AQBoBL+/8meoMt3OkmI5q+77yHQDABB3yHQDANAIgWx0qJcMk1g2DACAeETQDQBAIwTmXYejyjjDywEAiD8E3QAANIKd6Q7DFZTh5QAAxB+CbgAAGqE60x36VDeZbgAA4g9BNwAAjRDqJcNqYskwAADiD9XLAQBoBH8oC6lZDu3OPk6lXiNjOeTzN/+QAAAguhB0AwDQCL4QFlLzJyVpxb/m6uc9FfIWeRleDgBAHGJ4OQAAjVC9ZFjojhk4FsPLAQCIPwTdAAA0QjgKqQWy5mS6AQCIPwTdAAA0Qigz3Y7iIh19aA/97qiD5S4pYskwAADiEHO6AQBoBL9dvTw0mW73zh21jg0AAOIHmW4AABrIb4wCcXE4lgxjeDkAAPGHoBsAgAaqmYkOZSG1AIaXAwAQfwi6AQBooEAm2lKI1uneC8PLAQCIPwTdAAA0UCATHY4sd83jAwCA+EHQDQBAA1UXUQvP8ZnTDQBA/KF6OQAADVSd6Q5R1G05tOewITKSjOWQ30jGGFlhGLoOAAAig6AbAIAGCnWm25+UpG/e+0Q+Y+TNK7XPEa5MOgAAaHkMLwcAoIF8IV6jO6DmxZgh5gAAxBeCbgAAGsgfpkJqlmXZ2W2KqQEAEF8IugEAaCCfv/JnqIZ/O4qLdeRR/XXkUf3lKS2WxLJhAADEG+Z0AwDQQCEvpCajxF9yJEnOvc4BAADiA5luAAAaKJxLhlUPLw/9sQEAQOQQdAMA0ECBgDh0me5qgWMyvBwAgPhC0A0AQAMFCqk5w3D1pJAaAADxiaAbAIAG8jG8HAAANBJBNwAADRT6QmrVAsck0w0AQHyhejkAAA0U+kJqlooO6StJcjgtyUh+f6iODQAAogFBNwAADRTqQmr+5GR9/dFXlQ/2VEhFXoaXAwAQZxheDgBAA9mF1MIwp9tBITUAAOISQTcAAA1UnekO/bEDgTxLhgEAEF8IugEAaKDqTHdoom5HcbGGnHSEhpx0hDylJZLIdAMAEG+Y0w0AQAOFPtNtlPLjD5XHlAk6BwAAiA9kugEAaKDQVy+vFsie+8l0AwAQVwi6AQBoAL8xCoTD4Vin22kXUgv5oQEAQAQRdAMA0AA1C5yFM9NN0A0AQHwh6AYAoAFqBsNhiLnteeIMLwcAIL4QdAMA0AA11+i2wjC83F6n2x/yQwMAgAiiejkAAA0QnjW6LZV27S5Jcjorvwf3SzLGhCWwBwAALY+gGwCABgj1Gt2S5E9O1pdfrKp8YIy0p1RSZYDvIuYGACAuMLwcAIAG8Icl012t5gXZz7RuAADiBkE3AAAN4AvjGt1S5Tzx6mXDiLoBAIgXBN0AADRAIBAO5RrdjpISDR51ggaPOkGOkpLqYmrE3AAAxA3mdAMA0AD+cGS6jV9tvv3avu+0nKqQYdkwAADiCJluAAAaoHpOd/gqnDnJdAMAEHcIugEAaIDq4eXhO0egMjpBNwAA8YOgGwCABgjL8PK9BAJ6hpcDABA/CLoBAGgAXxjW6d6bPbzcH7ZTAACAFkbQDQBAA4R7nW6p5vByMt0AAMSLqAm677vvPlmWpeuvv97eVlpaqokTJ6p9+/ZKTU3VmDFjlJeXF/S8nJwcjR49WsnJyerUqZNuuukmeb3eFu49ACDeVa/THdqou6Jde1W0ay9JcjiCzwUAAGJfVCwZ9uWXX+qZZ57RoEGDgrZPnjxZ77zzjl5//XWlp6dr0qRJOuecc7Ro0SJJks/n0+jRo5WVlaXPP/9cW7Zs0SWXXCK326177703Ei8FABCn/GEopOZPTtGS7zfaj517KoLOBQAAYl+TMt0//fRTyDpQWFioiy66SM8++6zatm1rb8/Pz9dzzz2nRx55RCeffLKGDh2qWbNm6fPPP9eSJUskSR988IFWrVqll19+WYMHD9aoUaN09913a8aMGSovLw9ZHwEA8LXI8PLgcwEAgNjXpKD74IMP1m9+8xu9/PLLKi0tbVYHJk6cqNGjR2v48OFB25ctW6aKioqg7X379lX37t21ePFiSdLixYs1cOBAZWZm2m1GjhypgoICrVy5sln9AgCgJn8LFFJzsGQYAABxp0lB99dff61BgwZpypQpysrK0lVXXaUvvvii0ceZM2eOvv76a02fPr3WvtzcXHk8HmVkZARtz8zMVG5urt2mZsAd2B/YV5+ysjIVFBQE3QAA2BdfGJYMc5SUaOCY0zRwzGlylJTYx2Z4OQAA8aNJQffgwYP1+OOPa/PmzXr++ee1ZcsWHXfccTr00EP1yCOPaNu2bfs9xqZNm3TdddfplVdeUWJiYlO60WTTp09Xenq6fevWrVuLnh8AEHvCUr3c+JWx+DNlLP5MMn6GlwMAEIeaVb3c5XLpnHPO0euvv677779f69at04033qhu3brpkksu0ZYtW+p97rJly7R161YNGTJELpdLLpdLH3/8sZ544gm5XC5lZmaqvLxcu3fvDnpeXl6esrKyJElZWVm1qpkHHgfa1GXq1KnKz8+3b5s2bWribwAA0Fr47EJqLTG8nKgbAIB40ayg+6uvvtI111yjzp0765FHHtGNN96o9evXa968edq8ebPOOuusep97yimnaMWKFfrmm2/s2xFHHKGLLrrIvu92u7VgwQL7OWvWrFFOTo6ys7MlSdnZ2VqxYoW2bt1qt5k3b57S0tLUv3//es+dkJCgtLS0oBsAAPviD8Pw8r1VDy8P3zkAAEDLatKSYY888ohmzZqlNWvW6PTTT9eLL76o008/XY6qBUZ79eql2bNnq2fPnvUeo02bNjr00EODtqWkpKh9+/b29gkTJmjKlClq166d0tLS9Mc//lHZ2dk6+uijJUkjRoxQ//79dfHFF+uBBx5Qbm6ubrvtNk2cOFEJCQlNeWkAANRijKlRvTx8UXegSJvPH7ZTAACAFtakoPvpp5/WZZddpksvvVSdO3eus02nTp303HPPNatzjz76qBwOh8aMGaOysjKNHDlSTz31lL3f6XTq7bff1tVXX63s7GylpKRo3LhxmjZtWrPOCwBATTUTzy2R6WZ4OQAA8aNJQffatWv328bj8WjcuHGNOu5HH30U9DgxMVEzZszQjBkz6n1Ojx499O677zbqPAAANEbNwmbhXKe7asAYw8sBAIgjTZrTPWvWLL3++uu1tr/++ut64YUXmt0pAACiSWAJL0uhH17uS0qWLylZUvXwcr8qh7QDAIDY16Sge/r06erQoUOt7Z06ddK9997b7E4BABBNfOFYLkySPzlFn6/fqs/Xb5U/OSVo6DrLhgEAEB+aFHTn5OSoV69etbb36NFDOTk5ze4UAADRpCUql0uVmfQAgm4AAOJDk4LuTp066bvvvqu1/dtvv1X79u2b3SkAAKJJS6zRLUmWZdVYNoyoGwCAeNCkoPvCCy/Utddeq4ULF8rn88nn8+nDDz/UddddpwsuuCDUfQQAIKLClem2Sks14OIxGnDxGFmlpUHnINMNAEB8aFL18rvvvls///yzTjnlFLlclYfw+/265JJLmNMNAIg74Vqj2/L71G7B+/Z9Y5/DsGwYAABxoklBt8fj0T//+U/dfffd+vbbb5WUlKSBAweqR48eoe4fAAARFxjqHe453TXPwbJhAADEhyYF3QGHHHKIDjnkkFD1BQCAqBSu6uV1cdqZ7vCfCwAAhF+Tgm6fz6fZs2drwYIF2rp1q/x+f9D+Dz/8MCSdAwAgGlRnusMfddtzukl1AwAQF5oUdF933XWaPXu2Ro8erUMPPVRWC3wIAQAgUloy0+2oOgmZbgAA4kOTgu45c+botdde0+mnnx7q/gAAEHVaap3umuegkBoAAPGhSUuGeTweHXzwwaHuCwAAUcnfQut0SywZBgBAvGlS0H3DDTfo8ccfl+FbeABAK+ALU6bbn5yiTzcX6tPNhfInp1SdIzC8nGssAADxoEnDyz/77DMtXLhQ7733ngYMGCC32x20/8033wxJ5wAAiAbhWqe7LtWF1MJ+KgAA0AKaFHRnZGTod7/7Xaj7AgBAVGrRdbod1ZnuJg1HAwAAUaVJQfesWbNC3Q8AAKKWP0zVy63SUvW59nJJ0pon/p9MYmLQnG6CbgAAYl+Tr+der1fz58/XM888oz179kiSNm/erMLCwpB1DgCAaOALUyE1y+9Tx7ffUse335Ll90liTjcAAPGmSZnujRs36rTTTlNOTo7Kysp06qmnqk2bNrr//vtVVlammTNnhrqfAABETGSWDAv/uQAAQPg1KdN93XXX6YgjjtCuXbuUlJRkb//d736nBQsWhKxzAABEg+rq5S1RSK3yHH4KqQEAEBealOn+9NNP9fnnn8vj8QRt79mzp3799deQdAwAgGhRvU53+M/lrPo6nOHlAADEhyZluv1+v3w+X63tv/zyi9q0adPsTgEAEE18YSqkVpfqOd0SYTcAALGvSUH3iBEj9Nhjj9mPLctSYWGh7rjjDp1++umh6hsAABFnjKkxp7vl1umuPGULRPkAACCsmjS8/OGHH9bIkSPVv39/lZaW6v/+7/+0du1adejQQf/4xz9C3UcAACKm5tTqlsl0V983FouGAQAQ65oUdHft2lXffvut5syZo++++06FhYWaMGGCLrrooqDCagAAxDp/jTHeoa5e7k9K1qJ1efZ9qXL0mEOVwT5BNwAAsa9JQbckuVwujR07NpR9AQAg6gQKmlmqDIhDyrLkT06ptdnpqKxeTtANAEDsa1LQ/eKLL+5z/yWXXNKkzgAAEG1aco3uAKdlqUJGxkHQDQBArGtS0H3dddcFPa6oqFBxcbE8Ho+Sk5MJugEAcaO6cnnoo26rrEy9b7lWkrT2/idkEhIk1Sim1gKF2wAAQHg16Sv0Xbt2Bd0KCwu1Zs0aHXfccRRSAwDElcAa3eHIdFs+rzJfe0WZr70iy+e1tweqpDO8HACA2Beyq3nv3r1133331cqCAwAQy1pyje4AZ9XVmaAbAIDYF9Krucvl0ubNm0N5SAAAIqol1+gOcJDpBgAgbjRpTvd///vfoMfGGG3ZskV/+9vfdOyxx4akYwAARANfVdTdoplue043QTcAALGuSUH32WefHfTYsix17NhRJ598sh5++OFQ9AsAgKjgr/rZstXLK38SdAMAEPuaFHT7/f79NwIAIA4E1ukOR/Xy+lBIDQCA+MHVHACAfQh8z9yimW4KqQEAEDealOmeMmVKg9s+8sgjTTkFAABRIZzrdPuTkrVkxQb7foCd6XYQdAMAEOuaFHQvX75cy5cvV0VFhfr06SNJ+vHHH+V0OjVkyBC7ndWCQ/EAAAgHv8K3TrcsSxXtO9bazJxuAADiR5OC7jPPPFNt2rTRCy+8oLZt20qSdu3apfHjx+v444/XDTfcENJOAgAQKYHh5S1bvZw53QAAxIsmXc0ffvhhTZ8+3Q64Jalt27b661//SvVyAEBcCRRSC8c63VZZmQ6aOlkHTZ0sq6zM3k6mGwCA+NGkq3lBQYG2bdtWa/u2bdu0Z8+eZncKAIBo4bfndIf+2JbPqy4vPKsuLzwry+e1tzsdZLoBAIgXTbqa/+53v9P48eP15ptv6pdfftEvv/yif/3rX5owYYLOOeecUPcRAICICRRSY51uAADQFE2a0z1z5kzdeOON+r//+z9VVFRUHsjl0oQJE/Tggw+GtIMAAESSn3W6AQBAMzQp6E5OTtZTTz2lBx98UOvXr5ckHXTQQUpJSQlp5wAAiDRfGIeX18fOqluWXAmJLXdiAAAQcs36Cn3Lli3asmWLevfurZSUFJmqbAAAAPHCbw8vb8lMd/X9hCS+0AYAIJY1KejesWOHTjnlFB1yyCE6/fTTtWXLFknShAkTWC4MABBXqquXt9w5LcuyM+uelNSWOzEAAAi5JgXdkydPltvtVk5OjpKTk+3t559/vubOnRuyzgEAEGnhrF6+L4EgPyGZoBsAgFjWpDndH3zwgd5//3117do1aHvv3r21cePGkHQMAIBIM5L8VffDUUjNn5ikL5autO/X5LQsVcgogUw3AAAxrUlBd1FRUVCGO2Dnzp1KSEhodqcAAIgKNQLtsAwvdzhU1q1HnbvIdAMAEB+aNLz8+OOP14svvmg/tixLfr9fDzzwgH7zm9+ErHMAAESSqXGZbPnh5ZUnJNMNAEBsa1Km+4EHHtApp5yir776SuXl5br55pu1cuVK7dy5U4sWLQp1HwEAiIjAOtkOq/IL5lCzysvV8767JEk/33qHjMdj73NWxfueZKqXAwAQy5qU6T700EP1448/6rjjjtNZZ52loqIinXPOOVq+fLkOOuigUPcRAICIMFWBdrPW19wHy1uhrjMfV9eZj8vyVgTtszPdDC8HACCmNTrTXVFRodNOO00zZ87Un//853D0CQCAqBDIdLfkGt0BzOkGACA+NPrLe7fbre+++y4cfQEAIKrYw8vDlereBzvoTmF4OQAAsaxJHyPGjh2r5557LtR9AQAgulRluMNSuXw/HAwvBwAgLjSpkJrX69Xzzz+v+fPna+jQoUrZ61v4Rx55JCSdAwAgkuxMtyIwvLzqa3GqlwMAENsaFXT/9NNP6tmzp77//nsNGTJEkvTjjz8GtQlHdVcAACIhUEjNGZHh5ZXn9iQxvBwAgFjWqKC7d+/e2rJlixYuXChJOv/88/XEE08oMzMzLJ0DACCSqpcMi2AhNTLdAADEtEYF3caYoMfvvfeeioqKQtohAACiRXX18vAc35+YpGULv7Dv18SSYQAAxIcmzekO2DsIBwAgntjrdIcr0e1wqLhP/zp3BQJ9D5luAABiWqNmqVmWVWvONnO4AQDxKqLrdDvIdAMAEA8aPbz80ksvVUJCgiSptLRUf/jDH2pVL3/zzTdD10MAACLFntMdpsOXl6vbEw9KkjZde5OMx2Pvs+d0J6dIKghPBwAAQNg1KtM9btw4derUSenp6UpPT9fYsWPVpUsX+3Hg1lBPP/20Bg0apLS0NKWlpSk7O1vvvfeevb+0tFQTJ05U+/btlZqaqjFjxigvLy/oGDk5ORo9erSSk5PVqVMn3XTTTfJ6vY15WQAA1MmEeZ1uy1uhHo9MV49HpsvyVgTts6uXJ6eKyVwAAMSuRmW6Z82aFdKTd+3aVffdd5969+4tY4xeeOEFnXXWWVq+fLkGDBigyZMn65133tHrr7+u9PR0TZo0Seecc44WLVokSfL5fBo9erSysrL0+eefa8uWLbrkkkvkdrt17733hrSvAIDWxyjy1cudLpf8hqlcAADEqmYVUmuuM888M+jxPffco6efflpLlixR165d9dxzz+nVV1/VySefLKky6O/Xr5+WLFmio48+Wh988IFWrVql+fPnKzMzU4MHD9bdd9+tW265RXfeeac8NYbpAQDQWOGuXr4vNc/pFUE3AACxqlHDy8PJ5/Npzpw5KioqUnZ2tpYtW6aKigoNHz7cbtO3b191795dixcvliQtXrxYAwcODFonfOTIkSooKNDKlSvrPVdZWZkKCgqCbgAA7K26ennLB72WZUl+vyTJFz2XawAA0EgRv4qvWLFCqampSkhI0B/+8Af9+9//Vv/+/ZWbmyuPx6OMjIyg9pmZmcrNzZUk5ebmBgXcgf2BffWZPn160Bz0bt26hfZFAQDiQiQz3ZJkmcqgm0w3AACxK+JBd58+ffTNN99o6dKluvrqqzVu3DitWrUqrOecOnWq8vPz7dumTZvCej4AQIwK9zrd+zu9IdMNAECsi+icbknyeDw6+OCDJUlDhw7Vl19+qccff1znn3++ysvLtXv37qBsd15enrKysiRJWVlZ+uKLL4KOF6huHmhTl4SEBHvZMwAA6mOsyBVSk8h0AwAQD6Luq3O/36+ysjINHTpUbrdbCxYssPetWbNGOTk5ys7OliRlZ2drxYoV2rp1q91m3rx5SktLU//+/Vu87wCA+BLu4eX+hEQtf/djLX/3Y/kTEmvtJ9MNAEDsi2ime+rUqRo1apS6d++uPXv26NVXX9VHH32k999/X+np6ZowYYKmTJmidu3aKS0tTX/84x+VnZ2to48+WpI0YsQI9e/fXxdffLEeeOAB5ebm6rbbbtPEiRPJZAMAmi3c63TL6VTh4KH17ibTDQBA7Ito0L1161Zdcskl2rJli9LT0zVo0CC9//77OvXUUyVJjz76qBwOh8aMGaOysjKNHDlSTz31lP18p9Opt99+W1dffbWys7OVkpKicePGadq0aZF6SQCAOOF0eyQ70x3Z4eVkugEAiF0RDbqfe+65fe5PTEzUjBkzNGPGjHrb9OjRQ++++26ouwYAaOUSUlLt++HKdFvl5ery/yq/TN58+TUyHk/wfjLdAADEvIgXUgMAIBolJFcG3Q5VrZkdBpa3Qgf+9TZJ0pZLr6g36CbTDQBA7OIqDgBAHQKZbmcEr5RkugEAiH0E3QAA1CGQ6Y7UfG5JsvxkugEAiHVcxQEAqIOd6Y5gkplMNwAAsY+gGwCAOniiIdPNnG4AAGIeV3EAAOrAnG4AABAKBN0AANQhKuZ0k+kGACDmsWQYAAB1qA66w3cOf0KivnvjXfv+3sh0AwAQ+wi6AQCoQ0JqCxRSczqVf8wJ9e4m0w0AQOzjKg4AQB2iaXi5V5aMMRHrBwAAaDoy3QAA1KElCqlZFRXKevl5SVLu2Mtk3O7g/YFA27LkNZKbUeYAAMQcgm4AAOrQEpluq6JcB//5BklS3vlj6wi6/fb9cp+R20HUDQBArGF4OQAAdbAz3RGMcy1JZcVFkqRyP8PLAQCIRQTdAADUIRrmdEtSWVGhpMpMNwAAiD0E3QAA1MGTHP453Q1RXlwVdJPpBgAgJhF0AwBQh+rh5RHOdBeT6QYAIJYRdAMAUIfq4eWR7QdzugEAiG0E3QAA7MVI8iSnSIp8prucTDcAADGNJcMAANiLT5YcjsrvpcOZ6fZ7EvT9i2/Y9+tiF1Ij0w0AQEwi6AYAYC/ewEAwYxTWpbFdLu0afto+m5RRSA0AgJjG8HIAAPbiU2WkbRm/rEgXUqvKdJcxvBwAgJhEphsAgL0EMt2W8Yf1PFZFhTq++U9J0rZzzpdxu2u1Kd2TL0kq84W3LwAAIDwIugEA2EvNTHc4WRXl6jP5D5Kk7Wf+rs6gu6Qq6C4l0w0AQExieDkAAHtpqUx3Q9hBt5egGwCAWETQDQDAXloq090QJQWBTHfk+wIAABqPoBsAgL1EVaa7YLckCqkBABCrCLoBANiLN5Dp9kc+6C5lTjcAADGNoBsAgL34oinTbVcvNzKGwBsAgFhD0A0AwF680TSnuyroNpLK/ATdAADEGpYMAwBgLy2V6fZ7ErT6mRft+3XxlpXKYYz8lqVSr1GiM6xdAgAAIUbQDQDAXlos0+1yafuZ5+y/mfwql5NiagAAxCCGlwMAsJdoql4uSW5V9oNlwwAAiD1kugEA2EuLrdPt9arDe/+VJG0f9VvJVfdl2WUH3WS6AQCINQTdAADspaUy3Y7yMvW76hJJ0qJ1efLXE3S7CboBAIhZDC8HAGAvdiG1KFinW6qR6fZGR38AAEDDEXQDALCXaFoyTKrOdFNIDQCA2EPQDQDAXlpqybCGYk43AACxi6AbAIAafP7KNbGl6Am6mdMNAEDsIugGAKCGcn91YBttQXcZS4YBABBzCLoBAKghMG+6orSkamZ35DG8HACA2MWSYQAA1BDIdJcVF4b9XMbt0ZpHZ9r368PwcgAAYhdBNwAANZRXBbZlRYVSQnjPZdxubT1/7H7bsWQYAACxi+HlAADUUJ3pLopwT6qR6QYAIHYRdAMAUIOd6W6B4eXyetV2/ly1nT9X8nrrbRbIdPuM5PUTeAMAEEsYXg4AQA2BTHd5UaGktmE9l6O8TIdecq4kadG6PPlddV+WXaoOtEt9RqmOaCnxBgAA9odMNwAANbRopruBLEmJzspAm3ndAADEFoJuAABqsOd0F0VP0C3VCLqZ1w0AQEwh6AYAoIbq6uV7ItyTYAkE3QAAxCSCbgAAaihrwXW6GyPRWXnJLvMxvBwAgFhC0A0AQA1B63RHkUQXmW4AAGIRQTcAADWUR22mm6AbAIBYxJJhAADU0JKZbuP2aN09D9v39yUwvJzq5QAAxBaCbgAAamjJTLdxu7Vl/FUNakshNQAAYhPDywEAqCFq53QTdAMAEJPIdAMAUEOLzun2+ZS+dJEkKX/YsZLTWW/TRFegejlBNwAAsYSgGwCAGgKZ7vIWyHQ7yko16NzTJUmL1uXJn5xSb9vqTDdzugEAiCUMLwcAoIoxxs50lzK8HAAAhABBNwAAVSr8UiCkjb453VXDy70E3QAAxBKCbgAAqgSy3DJGFaXFke3MXgLVy8v8Rn5D4A0AQKwg6AYAoEpgPrdL0RfUBoaXSxRTAwAglkQ06J4+fbqOPPJItWnTRp06ddLZZ5+tNWvWBLUpLS3VxIkT1b59e6WmpmrMmDHKy8sLapOTk6PRo0crOTlZnTp10k033SSv19uSLwUAEAcCmW6noq9YmdNhyV111WZeNwAAsSOiQffHH3+siRMnasmSJZo3b54qKio0YsQIFRUV2W0mT56s//3vf3r99df18ccfa/PmzTrnnHPs/T6fT6NHj1Z5ebk+//xzvfDCC5o9e7Zuv/32SLwkAEAMK6uqDB6NmW6pel43FcwBAIgdEV0ybO7cuUGPZ8+erU6dOmnZsmU64YQTlJ+fr+eee06vvvqqTj75ZEnSrFmz1K9fPy1ZskRHH320PvjgA61atUrz589XZmamBg8erLvvvlu33HKL7rzzTnk8nki8NABADGrpTLdxufXTbX+17+9PotPSngqKqQEAEEuiak53fn6+JKldu3aSpGXLlqmiokLDhw+32/Tt21fdu3fX4sWLJUmLFy/WwIEDlZmZabcZOXKkCgoKtHLlyjrPU1ZWpoKCgqAbAAAtPafbeDz69Zrr9es118s04EviBJYNAwAg5kRN0O33+3X99dfr2GOP1aGHHipJys3NlcfjUUZGRlDbzMxM5ebm2m1qBtyB/YF9dZk+fbrS09PtW7du3UL8agAAsSia53RLNYeXE3QDABAroibonjhxor7//nvNmTMn7OeaOnWq8vPz7dumTZvCfk4AQPRr8erlPp9Sv1mm1G+WST7ffpsnugKZ7uj8UgAAANQW0TndAZMmTdLbb7+tTz75RF27drW3Z2Vlqby8XLt37w7Kdufl5SkrK8tu88UXXwQdL1DdPNBmbwkJCUpISAjxqwAAxLpAptvVQpluR1mpDj/9REnSonV58ien7LM9w8sBAIg9Ec10G2M0adIk/fvf/9aHH36oXr16Be0fOnSo3G63FixYYG9bs2aNcnJylJ2dLUnKzs7WihUrtHXrVrvNvHnzlJaWpv79+7fMCwEAxIVApjt6h5dXBt2s0w0AQOyIaKZ74sSJevXVV/Wf//xHbdq0sedgp6enKykpSenp6ZowYYKmTJmidu3aKS0tTX/84x+VnZ2to48+WpI0YsQI9e/fXxdffLEeeOAB5ebm6rbbbtPEiRPJZgMAGqXM38LDyxvJntPtjc4vBQAAQG0RDbqffvppSdJJJ50UtH3WrFm69NJLJUmPPvqoHA6HxowZo7KyMo0cOVJPPfWU3dbpdOrtt9/W1VdfrezsbKWkpGjcuHGaNm1aS70MAECciJVMN8PLAQCIHRENuo3Z/4eGxMREzZgxQzNmzKi3TY8ePfTuu++GsmsAgFaoPNoz3S6CbgAAYk3UVC8HACDSoj3TnWAvGRad/QMAALURdAMAUCXqM90UUgMAIOZExZJhAABEg+p1ulsmk2xcbm2cMtW+vz/2nG6vkTFGlmWFtX8AAKD5CLoBAKgSyHQ7WyjTbTwe5dz45wa3D1Qv90uq8EseZ5g6BgAAQobh5QAAVGnpTHdjuR3VF27mdQMAEBsIugEAkOQ3Rt6qBHeLzen2+5W8ZpWS16yS/PsPoi3LooI5AAAxhuHlAACoOssttVz1ckdpiYb+5ihJ0qJ1efInp+z3OQlOS8VeQ9ANAECMINMNAICkssB8biu6L46Bed1lDC8HACAmRPPnCgAAWkxp1djyQIXwaFWzgjkAAIh+BN0AAEgqqcocJ7mi+9JoB90MLwcAICZE9ycLAABaSEmsZLqrvhSgejkAALGBoBsAAEkl3sogNjnKM90JZLoBAIgp0f3JAgCAFlJSFcQmuaI8010VdJcRdAMAEBNYMgwAAFVnupOcLfd9tHG59csfrrPvN0SgejmF1AAAiA0E3QAAqHpOd0tmuo3How2339Oo5wT6V+xlTjcAALGA4eUAAKi6enlilM/pTnVX9q+QoBsAgJgQ3Z8sAABoIXamuyWrl/v9Sti0UQmbNkr+hgXRKVVfChRV+GUMQ8wBAIh2DC8HAEA15nS7HCpsoXM6Skt01LABkqRF6/LkT07Z73MCmW6fqSymlhjlhd8AAGjtyHQDAKDYqV7uclj2smGFFQwxBwAg2hF0AwBaPb8x9hJcyS1YvbypmNcNAEDsiP5PFgAAhFnN5bdiYbh2zXndAAAguhF0AwBavUDl8gSnJYcV/UG3nekm6AYAIOoRdAMAWr3iSFQub4aUqmx8kZfq5QAARDuCbgBAq1ezcnksCGS6GV4OAED0Y8kwAECrF6nK5cbp0uZxV9j3GyqF4eUAAMQMgm4AQKtXGsh0t3DlcpOQoPXTH23081IDhdSoXg4AQNSLjXF0AACEUYk3NtboDiDTDQBA7CDoBgC0eoHq5S0+p9sYuXdsk3vHNsk0vChaYE53qc/I66eYGgAA0YygGwDQ6pVEqHq5o6RYRw/spaMH9pKjpLjBz0t0WnJUdZUh5gAARDeCbgBAq1ccY9XLLcuqntfNEHMAAKJabHy6AAAgjEojVL28OZjXDQBAbCDoBgC0eiURql7eHIGgm+HlAABEt9j5dAEAQBgYY2KuerlUY9mwCgqpAQAQzQi6AQCtWrnfKJArjpU53ZKU4q78goDh5QAARLfY+XQBAEAYBLLcLktyO2Io083wcgAAYoIr0h0AACCSIrZGtyTjdCnv9xfZ9xsjxUUhNQAAYgFBNwCgVYvkfG6TkKAfH3umSc+1M90E3QAARDWGlwMAWrVYrFwuBVcvN4ZiagAARKvY+oQBAECIRbRyuTFyFBfJUVwkNTJwDgwv95nqdcYBAED0IegGALRqkZzT7Sgp1rEHZ+rYgzPlKClu1HNdDkuJzsovChhiDgBA9CLoBgC0anam2xk7lcsDAvO6C6lgDgBA1CLoBgC0avac7hhaozsgMMScTDcAANEr9j5hAAAQQiW+CM7pbiY7003QDQBA1CLoBgC0arFavVyqWcGcQmoAAESr2PuEAQBACEW0enkzpVT1mUw3AADRi6AbANCqRbJ6eXMFhpczpxsAgOjlinQHAACIFK/fKBCvRqJ6uXE4te2Ms+37jVU9vJygGwCAaEXQDQBotQJZbktSQiSC7sRE/fD3l5v8/FQXhdQAAIh2sTeWDgCAEKk5n9uyYnBOd1Wmu9Rn5PVTTA0AgGhE0A0AaLViuXK5JCU6LQUS9AwxBwAgOsXmpwwAAEIg0pXLHcVFOr5Lqo7vkipHcVGjn29ZllJcFFMDACCaEXQDAFqtwJzuxBisXB4QqGDOvG4AAKJT7H7KAACgmexMdwSKqIUKFcwBAIhuBN0AgFbLntMdw5nuFCqYAwAQ1WL3UwYAAM1U4ov9THdgeHlRBdXLAQCIRgTdAIBWKy4y3e7KLwwKGV4OAEBUit1PGQAANFOpL7LVy0OhOtNN0A0AQDRyRboDAABESvWSYZH5Dto4nNp5ykj7flMwpxsAgOhG0A0AaLWKA8PLIzSn2yQmauVL/2rWMdomVAbreyr8KvcZeWJ4fjoAAPEoosPLP/nkE5155pnq0qWLLMvSW2+9FbTfGKPbb79dnTt3VlJSkoYPH661a9cGtdm5c6cuuugipaWlKSMjQxMmTFBhYWELvgoAQCzyG1NjeHnszrZKcjns4fE7y3wR7g0AANhbRD9lFBUV6bDDDtOMGTPq3P/AAw/oiSee0MyZM7V06VKlpKRo5MiRKi0ttdtcdNFFWrlypebNm6e3335bn3zyia688sqWegkAgBhV5quu9h3L1cslqX1VtpugGwCA6BPR4eWjRo3SqFGj6txnjNFjjz2m2267TWeddZYk6cUXX1RmZqbeeustXXDBBVq9erXmzp2rL7/8UkcccYQk6cknn9Tpp5+uhx56SF26dGmx1wIAiC2B+dwehyWnIzJBt6O4SEcP7CVJWrJig/zJKU06TrtEp34p8mpHqVdSQgh7CAAAmitqx9Nt2LBBubm5Gj58uL0tPT1dw4YN0+LFiyVJixcvVkZGhh1wS9Lw4cPlcDi0dOnSFu8zACB2lPgCy4VFNsvtLCmWs6S4WcewM92lZLoBAIg2UVtILTc3V5KUmZkZtD0zM9Pel5ubq06dOgXtd7lcateund2mLmVlZSorK7MfFxQUhKrbAIAYUV1ELWq/f26w9omVl/MdDC8HACDqxP4njSaYPn260tPT7Vu3bt0i3SUAQAvbU14ZdLfxxP6lsF2NTLcxZj+tAQBAS4raTxpZWVmSpLy8vKDteXl59r6srCxt3bo1aL/X69XOnTvtNnWZOnWq8vPz7dumTZtC3HsAQLTLrwq60+Mg6M5IcMhhSV4jFbBeNwAAUSVqP2n06tVLWVlZWrBggb2toKBAS5cuVXZ2tiQpOztbu3fv1rJly+w2H374ofx+v4YNG1bvsRMSEpSWlhZ0AwC0LrvLK4dip3ucEe5J8zksKyjbDQAAokdE53QXFhZq3bp19uMNGzbom2++Ubt27dS9e3ddf/31+utf/6revXurV69e+stf/qIuXbro7LPPliT169dPp512mq644grNnDlTFRUVmjRpki644AIqlwMA9imeMt1S5RDz7aU+7Sj1qRffJQMAEDUiGnR/9dVX+s1vfmM/njJliiRp3Lhxmj17tm6++WYVFRXpyiuv1O7du3Xcccdp7ty5SkxMtJ/zyiuvaNKkSTrllFPkcDg0ZswYPfHEEy3+WgAAsSU/GjLdlkO7s4+z7zdH+0SnlE8xNQAAok1Eg+6TTjppnwVfLMvStGnTNG3atHrbtGvXTq+++mo4ugcAiFPlPmOv052eELlMtz8pSSv+NTckx2J4OQAA0Sk+xtQBANAIgSx3otNSYhwsGSZVZbpFphsAgGgTtet0AwAQLrE2n3v16tX7bVMhS7K6qbDCry++Xi6XKjP5HTp0UPfu3cPdRQAAUA+CbgBAqxMtlcsdxUU66qj+kqQvvlglf3JK0P4dW3Mly9LYsWMbdLw/fbBSbTp00jljx+vX1d9KkpKTk7V69WoCbwAAIoSgGwDQ6uSXBYLuyGe63Tt31LuvMD9fMkaT7n5Yhx1Z/1KYAbvTUuWVdOtTLymxrEAb163RXydN0Pbt2wm6AQCIEIJuAECrYw8vT4iNNboP6HWQ+gwavN926/LLlVfiU0aXburRxh3+jgEAgP2K/Ff8AAC0sOrlwuLrMpjkqnw9JV5/hHsCAAAC4uvTBgAADRDIdGdEeE53qCW7LElSia/+5TgBAEDLIugGALQqpT6/SquC0rR4y3Q7q4Jur5ExBN4AAESD+Pq0AQDAfhRUZbmTnJYS4mSN7oAEpyVLkpFURrYbAICoQCE1AECrsjtQuTwaiqhZDu05bIh9v9mHsywluSwVe42KCboBAIgKBN0AgFbFrlweBUPL/UlJ+ua9T0J6zCSXQ8VeH8XUAACIEpH/xAEAQAuqrlweBZnuMKg5rxsAAEQeQTcAoFWJpkx3OCS5CLoBAIgm8fmJAwCAegQy3dGwXJijuFhHHtVfRx7VX47i4pAcMzmwVreP4eUAAEQD5nQDAFqV6Mp0GyX+kmPfD4XEquHlFX7Jb0X+iwUAAFq7aPjEAQBAiyj1+u2ltNKiINMdDi6HpeSqIeYVnuQI9wYAABB0AwBajd1VWe5klyVPVUY4HgWGzpd7UiLcEwAAQNANAGg14r1yeUDbhMrLO5luAAAij6AbANBqRNd87vBp43HIkuR3utWxV+9IdwcAgFYtvj91AABQQzRVLg8np2XZXyz0Pvo3Ee4NAACtG9XLAQCtRn5ZVaY7IVq+c7ZUdEhf+34opSc4tLvcr95HnxjS4wIAgMYh6AYAtBrRNqfbn5ysrz/6KizHbutxaqO8OvCIY+XXjrCcAwAA7F+0fNUPAEBYGWNazZxuqbJCu+XzypOUot1KiHR3AABoteL/UwcAAJJKfUbl/vheo7smy7LkqSiWJO1QYoR7AwBA60XQDQBoFXZXDS1PcVlyO6JjjW5HcbGGnHSEhpx0hBzFxSE/vru8SBJBNwAAkcScbgBAqxAoopaREE1ZbqOUH3+w74daIOgukEclXr+SXHzXDgBAS+PqCwBoFXZHWRG1luD0+5S7dpVkWfp5T0WkuwMAQKtE0A0AaBW2FHslSR0SW0/QLUlrl3wkSfp5T3lkOwIAQCtF0A0AiHvGGP1SWJnp7ZbqjnBvWta6pR9LkjYUVMiY0A9hBwAA+0bQDQCIe7vL/SryGjktqXNy6ypnsuHrxbKMUUGFX9tLfZHuDgAArQ5BNwAg7m2qynJnJbvkipLK5S2lorREHVQiSfpia0mEewMAQOtD0A0AiHu/FFUG3V1Tom1ouaXSrt1V2rW7pPB9GdBLBZKk73eWaVcZ2W4AAFpS6xpjBwBolX4prCyi1jU1ui57/uRkffnFqrCfJ0PlOrCNWz/tqdDnucUa3aNN2M8JAAAqkekGAMS14gq/dlZld6Mv091yju2cLIlsNwAALY2gGwAQ1wJDyzskOpXkar2XvQNS3DqwjVtG0uLc4kh3BwCAVqP1fvoAALQKgSJq0ZjldpSUaPCoEzR41AlylIS/yFkg271iZ5l2k+0GAKBFEHQDAOLaL0XROZ9bkmT8avPt12rz7deS8Yf9dAekuNWrKtv9eR7ZbgAAWgJBNwAgbpX7jPKKq4LuKMx0R8JxgbndO5jbDQBASyDoBgDErS3FFfJLauN2KN3DJU+qznb7Jb35U4HKfOHPsAMA0JpF4Vg7AACaLycnR19sL5esDKWU79Hy5T83+LmrV68OX8eiwGndU/Ximt3aVurTvzfs0XkHpclphW+dcAAAWjOCbgBA3MnJyVG/fv10wYOz1Tv7N3rm/mla8trzjT5OYWFhGHrX8ur6EuFQefSlOunnPRV6dflG9ddO1Rd2d+jQQd27dw9vJwEAiFME3QCAuLN9+3aVlpXp4KOOlySNu/JqTbjssgY/f8nCD/Tc/dNUWloari62iB1bcyXL0tixY+vc3/f4U3XxIy/pV2eqZs14Ugufe6TOdsnJyVq9ejWBNwAATUDQDQCIS1m9B8hyuuS0pP79+spqxPDpjWvXhLFnwSratQ/bsQvz8yVjNOnuh3XYkcPqbFNSvF1FbTI1YuJU/e6Sy5RUsjto/8Z1a/TXSRO0fft2gm4AAJqAoBsAEJd6Dq4MMtu4HY0KuFuSPzlFS77fGPbzHNDrIPUZNLje/T/vqdCvRV4VtclUm8wu6tXGLUeU/s4AAIg1lHIFAMSlPscNlySlUbV8v3qkutSjah3z3GKfVu4qV4XfRLhXAADEBz6JAADizh65dcgxJ0vGqEOiM9LdiXqWZalrqlv9MjxyWFJBuV/f7ihTUQXLiQEA0FwE3QCAuLNRbSRJnrJCJbmi91LnKCnRwDGnaeCY0+QoKYl0d9Qu0anD2iUo0WmpzGf03Y4ylSamRbpbAADENOZ0AwDiyp4Kn7YoRZKUVLxTUqfIdmhfjF8Ziz+z70eDZLdDg9on6Mfd5dpd7ldhWmedd9ff5K13QTEAALAv0fv1PwAATbBsa6mMZWnD8iVye2N7ya9IcTss9W/rqZznbYyGnHm+lipL20q8ke4aAAAxh6AbABA3ynx+Ld9RGWh/+uKMCPcmtgXmeafv3qT8rVtUZLn1wprd+npbiYyhyBoAAA1F0A0AiBvf7ihTmc8o2VToh0/ej3R34oK7okRPXniy2psSeY30wS9F+teGPSr2RsdweAAAoh1BNwAgLviM0VdbK4uR9VQB2dgQKtq1XUO0TacckCKnJa3LL9dzq3dpQ0F5pLsGAEDUI+gGAMSFH3aVqaDCr2SXpc4qinR34o4l6chOSbrkkAy1T3SqyGv0z/UFemcjWW8AAPaFoBsAEPNKvH59llssSRraMUmxtDK3LylZvqTkSHejwTKTXbq0T4aGdEiUJK3YWaZnV+3SdztKGV0AAEAdWDIMABDTvH6jf/1UoF1lfqW5HRraIVGrNke6Vw3jT07R5+u3RrobjeZ2WBrRLVUD2iVobk6htpX69G5OoVbsLNVJXVJ0QIo70l0EACBqEHQDAGKWMUbvbNyjX4q8SnBYOu+gNCW6GMQVDqtXr65z+2GSNqqN1itdmwq9eunHfLUzJTpIBWqrMklShw4d1L179xbsLQAA0YOgGwAQsz7eUqzVu8vlkPS7A9uoYxKXtVDbsTVXsiyNHTt2n+0yOnfVyZffoCFnnK+d7iTtVJLWffGJlrw2SznLPtP3331L4A0AaJX4dAIAiElfbyvRkrzKauWjuqeqZxtPhHvUeFZpqfpfcZEkadWzr8gkJka4R7UV5udLxmjS3Q/rsCOH7be9L3+TilPaqSwxXQcfdYIOPuoEFefv0ifbfTqpXYUOSHHJsqwW6DkAANGBoBsAEFPyy32a/0uR1uZXLld1XFayBraPvmC1ISy/T+0WvG/fj+YyZAf0Okh9Bg1ucPtSn1+5xT5tKShRcnpb/SLp5bX5SnRa6pbqVrdUt7qnutUx0SmngyAcABC/CLoBADEhsA73Z7nFqvBXLr9xdGaSjs1KinTXUIdEp0M92zhUumGl7r99qv7y9Iva4WyjUp/R2vxy+0sTS1Kax6G2CU61TXAqw+NQG49TaW6H2ngcauN2yEFmHAAQw+Im6J4xY4YefPBB5ebm6rDDDtOTTz6po446KtLdAoCwMsZoT4W/8lbuV87WHdpZVCq/LPkl+WXJyJJTfrnll6vqZ4J8SpJPifLKtVd+NdqKXu0q8+mHXWVasbNMO8t8kqSuKS6N7JbKHO4YYEla/8Wncq1epBP69VOBPNqlBO1SonYrQV7Lofxyv/LL/fp5T0XtAxijBPmU6rbUITVJ6R6n2iZUBuntEpxq43YwXB0AENXi4tPKP//5T02ZMkUzZ87UsGHD9Nhjj2nkyJFas2aNOnXqFOnuAUCzVfiNdpb6tKPMpx2lXvv+zlKfvEExs0eyGje3uXDXdu3evEm7Nm/Sri05Ktqep/vu+LMOPiBL6R6nPM6WDWiKKvzaWuLVlmKv1uwuU16Jz96X5LT0mwNSNLBdAoFWjNhfIbbU9p3UofuBat+tl9p3P1Bts7oqPesApWd2UVqnznK5PSqTS2Veacfu8lrPd1mqDMATnXa2vI3boSSnpSSXQ0kuS66q4euBd4zPVC41V2HfKv+Pef1G5X4jn7+qoVX9w+Ow5HFaSnBa8jgsJbkqf8b7+9BnjMp8lbdSn1/lPiOHZclhSQ5LclqVv5Nkl0NupgkAQJ3iIuh+5JFHdMUVV2j8+PGSpJkzZ+qdd97R888/r1tvvTXCvQMQDsZUflAu8/lV5jPauDlXO/PzqzK8lTcp8JnZyKq6b9n3K386ZOSQUbuMDHXt0kVOR+WHSJclOR2WnJbCPrTVGKNSn1Gx16+ffs1VXn6hSuVSiVwqkVPFcqvUqv/PtVWVCfSX7NGXnyxU/0GHKS09XZapfO0yRsbhkLGcMpZDfodTfodLfqdbxuFUatsOSm3bQV0HHG4f8+M90sc/7JYkJbkspXucSvc47J9pHoeSnA4lVAUhCU5LLsuSZVX9ni1LxhgZVQY4PmPk9UvlPqMyf+UH9xKfUVGFX4VVtz1VwXZx8LcIsoxRO5UqU8XK9BbLu9Fo+cZ9/07rW94KLa+xhdiqlcrs2iDjcOrXzZv1rxef16Qbb1Fa5gEqllvFVf9HvLK0rdSnbaW+/R8yxJyWKgP7qqAz2VUZ6Ce7HEp0WnI7qm5O2f8/tm3dqvz8fPvvkKQ67gc/1l5/rzq1b6+e3bs1OeDPycnR9u3b5ZNUJqdK5VLpXj8rtztVYTkbfFxX4PfhspTkrPrpCv4CJNnlkMdhKS8vT/n5u+3n+qtecc2/4TW31fw9BX6mtWmjjh06yLIq/y1cliWno+rvt2XJFfh77mjZv+nRyFR9eVLiMyrx+lXirbzmFHv9KvUZ7cgvUFFJmXyy5JNlf0EV+F07ZeyRUnv/DNzPat9OvXpEzygpIJrEfNBdXl6uZcuWaerUqfY2h8Oh4cOHa/HixRHsWWi9ti5f24rK5Pd55VDlhdeS2et+9ePAzVnjvkNGbVJT1b5du8o/plaNi7tVnQGwLMverprXpToq/NRX9MfU8cDU07reYzTmfEbyGlP54d5v7A/5gWxGzfteIxUVl6i0vKLWhb2uAE113pf8fr+cjpoXJlP1L6EaPxW0zb/XY4fTIZfTtdfvX7KqLniBzwU19wVer5FUXlEhr9dn/25M1fOC3xOV74vgx5XbnDJKSUpU24y0yg8rluRyVGYwAn2o631iVW0Mep+Y6n8fo8oLfPX9Gttr/GNWPq7c4qvKNFUYowpf5b9TIAsVyD4Fsi2BW/D7IVGymlFMK19S/q46d1km+P9b4Lb3tgSPW6lJSXI6ZP8+HZYlnzHyG8lf9T4MvJbyqtdR7PXLb5+t/tdRvHuntm5Yq20/17yt067NOfL7qgOOR9+YqyFDDm3Qy/b6Axmsyp9b8vL01ZLPdXj2CTKJKfJaTpV4jUq8XuUWN/SXWfk7M1L1m7YxjNH2TT9p8w/fa+2Sj7Tqo3dVvHtn448jqbCwsEnPQ+g1thBbTbtyf9XKhe/q6g/fCdrucLnUtnM3deh+kNp3P1Adehyk9t16KbVtByWnt1VyRjt5kpLrPa63vEwVpSUqLymu/Fl131teKklVQa0lh9MpT1KyElPTlNnlgMovrSyHfEZVXxpJUkOD/mb+rZKknZK1c3tlMOmw5A4Elg7J7aj8AszlqPx7Hvjb4zeVX4DtKSnTz5t3KSmtvTxJKQ0+ZVlRoUr25Ku8pEiW5ZDL7VanzCxZTpcq5JCxLHmNqqa7SPv/fSRKVlZzfgtSoaTCPY1+mmWq/467nJYSXC65HNXXwL2/eK1vX/XPyv01PxPUpUGFEvfTyCj4M87en3l8/sq/5yU+o9Kq4LrEV/lz34d2S5a7IT2s307JuXObklxOJboqv4xNdFpKrPqCtuZnDFfVaInA79Rp1b5c1Pe7rPVbDjw0kl+V73VT4/7e/we8xshX9XnQ6w/+rOj1S0WlpSqv8MpX9RXP3l/U7/3l/d6ftVOSEtUuPc3+sicwMsRS5X3Lvl/7S2qp+jOese8Hvw5frft1byssLlZpWbn9udMf9NOqN3ZwVL2ulKQEZaSlVb63q/6mOPb6vxHoa9Wvv9Znu+07dqmgqKjqM3DNW/1fsNW8WU6njunSRkM6xn7tlpgPurdv3y6fz6fMzMyg7ZmZmfrhhx/qfE5ZWZnKysrsx/n5+ZKkgoKC8HW0mTZt3a49Pkcjn2WHRNWKyqS8LaHqFuJBUam0vTTSvWgyyxhZvgrt2LpFyckpcjqdkt8n46/8ikNVH5oty1H1rUH1ld1yWJLllM/nU0VFhVxujxwej9yeJn4gLqqQdjUiMt37tfgqtO3XTUpOcMlpfDKlxfKXlshXUih/yR6ZinIlSurmkbod0ks6pJekEfbzV3+3TB+8Pkerly+Ts4mZnB+WLdUr996uV6oee1JSlZF5gDKyuiqjc1elZ3ZR287dlJ7ZRYlt0pSYkqaElDZyuvf/Yc3v96u8eI/KiotUVlSosqI9KtyxTXt2bNWeHVtVuH2rtm74UVs3rJW3rETnXHa1jh16mI4delijX0dzfxcb1/8oSdqweqVSkpp2sW/IMVxlJRpYdf+7LxbLmxDcrrn9aKnXEe4+rPz6S8kYnXnxFTrwkEP23XjnRmnnRpVKKpUkh1OWw6E133+rhf99U6edf4l6HHiQ5PfW+nbXIam+//0/rVmt/738vP3YlZBYGdint1NyelulZLRTUkY7pVQF+4mpaXIlJsmTmCRPUpJc7kRZDocsh0PpbdvLlVA1DcT+G1Uj6rCqv/q1am5zOCr/ljVTQkqa/D6/Sgv3yPh88pdX/q3xlxfLlJbIX1Z5M2Ul8peXyHgrgn5Xe/8uJMmdlKzktLZKTm+rpPS2Sqn6mZyeoaT0dkpOy1BSWoZS0tvJnZwsy7KUkpYhl7vqo6jfX/l325jqv+F+v4zxVUYT9rfAlb+TkpJibc/LlcPhlMPpktPllNOdIKcnQS6PWy53olwej5wej1yeRDkczf+9xQOH8ctTlZn2yCe3/CrctUNz331bfQcNVmpyikzgS1xL9vvScrpkuTySyy3L5Zbl8lTe3C5ZTk/ltqr3alEEX19UiPHPVbaQvY76ws2gVEy91lfs0sEJnUPQj/AIxI/G7Pu1WGZ/LaLc5s2bdcABB+jzzz9Xdna2vf3mm2/Wxx9/rKVLl9Z6zp133qm77rqrJbsJAAAAAIhDmzZtUteuXevdH/OZ7g4dOsjpdCovLy9oe15enrKy6h62NHXqVE2ZMsV+7Pf7tXPnTrVv3z7uC6LEs4KCAnXr1k2bNm1SWlpapLuDOMP7C+HCewvhxPsL4cT7C+EUC+8vY4z27NmjLl267LNdzAfdHo9HQ4cO1YIFC3T22WdLqgyiFyxYoEmTJtX5nISEBCUkJARty8jICHNP0VLS0tKi9j8mYh/vL4QL7y2EE+8vhBPvL4RTtL+/0tPT99sm5oNuSZoyZYrGjRunI444QkcddZQee+wxFRUV2dXMAQAAAACIhLgIus8//3xt27ZNt99+u3JzczV48GDNnTu3VnE1AAAAAABaUlwE3ZI0adKkeoeTo3VISEjQHXfcUWvqABAKvL8QLry3EE68vxBOvL8QTvH0/or56uUAAAAAAEQrFi0EAAAAACBMCLoBAAAAAAgTgm4AAAAAAMKEoBsRdc899+iYY45RcnJyvWul5+TkaPTo0UpOTlanTp100003yev1BrX56KOPNGTIECUkJOjggw/W7Nmzax1nxowZ6tmzpxITEzVs2DB98cUXQftLS0s1ceJEtW/fXqmpqRozZozy8vIa3RdEt549e8qyrKDbfffdF9Tmu+++0/HHH6/ExER169ZNDzzwQK3jvP766+rbt68SExM1cOBAvfvuu0H7jTG6/fbb1blzZyUlJWn48OFau3ZtUJudO3fqoosuUlpamjIyMjRhwgQVFhaG/kUjqu3vbxNalzvvvLPW36i+ffva+0N1rQrFdRPR75NPPtGZZ56pLl26yLIsvfXWW0H7Q3WtaqnrJqLL/t5fl156aa2/Z6eddlpQm1bz/jJABN1+++3mkUceMVOmTDHp6em19nu9XnPooYea4cOHm+XLl5t3333XdOjQwUydOtVu89NPP5nk5GQzZcoUs2rVKvPkk08ap9Np5s6da7eZM2eO8Xg85vnnnzcrV640V1xxhcnIyDB5eXl2mz/84Q+mW7duZsGCBearr74yRx99tDnmmGMa1RdEvx49ephp06aZLVu22LfCwkJ7f35+vsnMzDQXXXSR+f77780//vEPk5SUZJ555hm7zaJFi4zT6TQPPPCAWbVqlbntttuM2+02K1assNvcd999Jj093bz11lvm22+/Nb/97W9Nr169TElJid3mtNNOM4cddphZsmSJ+fTTT83BBx9sLrzwwpb5RSAqNORvE1qXO+64wwwYMCDob9S2bdvs/aG4VoXquono9+6775o///nP5s033zSSzL///e+g/aG4VrXkdRPRZX/vr3HjxpnTTjst6O/Zzp07g9q0lvcXQTeiwqxZs+oMut99913jcDhMbm6uve3pp582aWlppqyszBhjzM0332wGDBgQ9Lzzzz/fjBw50n581FFHmYkTJ9qPfT6f6dKli5k+fboxxpjdu3cbt9ttXn/9dbvN6tWrjSSzePHiBvcF0a9Hjx7m0UcfrXf/U089Zdq2bRv0b3rLLbeYPn362I9///vfm9GjRwc9b9iwYeaqq64yxhjj9/tNVlaWefDBB+39u3fvNgkJCeYf//iHMcaYVatWGUnmyy+/tNu89957xrIs8+uvvzbrNSJ27O9vE1qfO+64wxx22GF17gvVtSoU103Enr2DolBdq1rquonoVl/QfdZZZ9X7nNb0/mJ4OaLa4sWLNXDgQGVmZtrbRo4cqYKCAq1cudJuM3z48KDnjRw5UosXL5YklZeXa9myZUFtHA6Hhg8fbrdZtmyZKioqgtr07dtX3bt3t9s0pC+IDffdd5/at2+vww8/XA8++GDQsMvFixfrhBNOkMfjsbeNHDlSa9as0a5du+w2+3rPbdiwQbm5uUFt0tPTNWzYsKD3U0ZGho444gi7zfDhw+VwOLR06dLQv2hEnYb8bULrtHbtWnXp0kUHHnigLrroIuXk5EgK3bUqFNdNxL5QXata6rqJ2PTRRx+pU6dO6tOnj66++mrt2LHD3tea3l8E3Yhqubm5QR8cJNmPc3Nz99mmoKBAJSUl2r59u3w+X51tah7D4/HUmle+d5v99QXR79prr9WcOXO0cOFCXXXVVbr33nt188032/ub856rub/m8+pr06lTp6D9LpdL7dq14/3USjTkbxNan2HDhmn27NmaO3eunn76aW3YsEHHH3+89uzZE7JrVSium4h9obpWtdR1E7HntNNO04svvqgFCxbo/vvv18cff6xRo0bJ5/NJal3vL1eLnAWtyq233qr7779/n21Wr14dVBgGaI7GvOemTJlibxs0aJA8Ho+uuuoqTZ8+XQkJCeHuKgDs06hRo+z7gwYN0rBhw9SjRw+99tprSkpKimDPAKBxLrjgAvv+wIEDNWjQIB100EH66KOPdMopp0SwZy2PoBshd8MNN+jSSy/dZ5sDDzywQcfKysqqVS01UKU1KyvL/rl35da8vDylpaUpKSlJTqdTTqezzjY1j1FeXq7du3cHZRD2brO/viAymvOeGzZsmLxer37++Wf16dOn3veTtP/3XM39gW2dO3cOajN48GC7zdatW4OO4fV6tXPnTt5PrUSHDh32+7cJyMjI0CGHHKJ169bp1FNPDcm1KhTXTcS+UF2rWuq6idh34IEHqkOHDlq3bp1OOeWUVvX+Yng5Qq5jx47q27fvPm8152XsS3Z2tlasWBH0H3LevHlKS0tT//797TYLFiwIet68efOUnZ0tSfJ4PBo6dGhQG7/frwULFththg4dKrfbHdRmzZo1ysnJsds0pC+IjOa857755hs5HA57eFN2drY++eQTVVRU2G3mzZunPn36qG3btnabfb3nevXqpaysrKA2BQUFWrp0adD7affu3Vq2bJnd5sMPP5Tf79ewYcNC8FtBtGvI3yagsLBQ69evV+fOnUN2rQrFdROxL1TXqpa6biL2/fLLL9qxY4cd+Laq91eLlGsD6rFx40azfPlyc9ddd5nU1FSzfPlys3z5crNnzx5jTPXSJyNGjDDffPONmTt3runYsWOdS5/cdNNNZvXq1WbGjBl1Ln2SkJBgZs+ebVatWmWuvPJKk5GREVTd9Q9/+IPp3r27+fDDD81XX31lsrOzTXZ2tr2/IX1BdPv888/No48+ar755huzfv168/LLL5uOHTuaSy65xG6ze/duk5mZaS6++GLz/fffmzlz5pjk5ORaS1O4XC7z0EMPmdWrV5s77rijzqUpMjIyzH/+8x/z3XffmbPOOqvOZVgOP/xws3TpUvPZZ5+Z3r17s2RYK9OQv01oXW644Qbz0UcfmQ0bNphFixaZ4cOHmw4dOpitW7caY0JzrQrVdRPRb8+ePfZnK0nmkUceMcuXLzcbN240xoTmWtWS101El329v/bs2WNuvPFGs3jxYrNhwwYzf/58M2TIENO7d29TWlpqH6O1vL8IuhFR48aNM5Jq3RYuXGi3+fnnn82oUaNMUlKS6dChg7nhhhtMRUVF0HEWLlxoBg8ebDwejznwwP/f3r0H5ZT/cQB/P6X7U09sqaQbXZRIlrUM0gW5NKNFDdFF27o1Blstu+zaWb+ixSoku1vJZWuyGUylVUst2dJmo9J2U7IzD0tkJUSd3x+NZzxKK9uTdrxfM88f53y/53u+59uZnj7nc77fhggJCQkdzrVr1y7B1NRUUFVVFd577z0hPz9frvzhw4fCihUrhP79+wuampqCp6enIJVK5eq8Sl+o7yoqKhLGjRsnSCQSQV1dXbC1tRXCw8PlfvkLgiBcunRJmDhxoqCmpiYYGxsLW7Zs6dBWSkqKYG1tLaiqqgrDhw8X0tPT5crb2tqEjRs3CgYGBoKamprg6uoqVFRUyNVpaGgQFixYIIjFYkFHR0cICAiQPXCit8c//W6it4u3t7dgZGQkqKqqCsbGxoK3t7dQXV0tK++p76qe+N6kvu/MmTOd/p3l5+cnCELPfVf11vcm9S1d3V/Nzc3CtGnTBH19fUFFRUUwMzMTgoKCOjy4e1vuL5EgCELv5NSJiIiIiIiI3i6c001ERERERESkIAy6iYiIiIiIiBSEQTcRERERERGRgjDoJiIiIiIiIlIQBt1ERERERERECsKgm4iIiIiIiEhBGHQTERERERERKQiDbiIiIiIiIiIFYdBNRERvlbq6OohEIhQXF7+0Tk5ODkQiERobG3v03CKRCMeOHXvt41taWmBpaYnz58/3XKcUaP/+/dDV1X3T3eiWKVOmYPXq1bJtc3Nz7Ny5s9f78eLYxcbGwsPDo9f7QURE/x6DbiIi6lP8/f0hEokgEomgoqICCwsLhIWF4dGjRz3SvomJCaRSKezt7Xukvd4UGxsLCwsLTJgwoUPZ0qVLoaysjCNHjnSrTUU9YOhJU6ZMkd0T6urqsLOzQ0xMTK+cu7CwEB999NEr1VXkQ4YlS5bg4sWLOHv2rELaJyIixWHQTUREfY67uzukUimuXr2Kb775Bvv27cMXX3zRI20rKyvD0NAQ/fr165H2eosgCNi9ezcCAwM7lDU3NyM5ORlhYWGIj49/A71TvKCgIEilUly5cgVeXl5YuXIlkpKSOq3b0tLSY+fV19eHpqZmj7X3ulRVVbFw4UJER0e/6a4QEVE3MegmIqI+R01NDYaGhjAxMcGcOXPg5uaGrKwsWXlbWxsiIiJgYWEBDQ0NODg44Mcff5SV3717Fz4+PtDX14eGhgasrKyQkJAAoPPXyzMyMmBtbQ0NDQ04Ozujrq5Orj+bNm3CqFGj5Pbt3LkT5ubmsu3CwkJMnToVenp6kEgkcHJywsWLF196jS0tLQgODoaRkRHU1dVhZmaGiIiIl9YvKipCTU0NZs2a1aHsyJEjsLOzw7p16/DLL7/g+vXrcuWPHz/GJ598AhMTE6ipqcHS0hJxcXGoq6uDs7MzAKB///4QiUTw9/cH0Plr1aNGjcKmTZtk2zt27MCIESOgpaUFExMTrFixAk1NTS+9hn9DU1MThoaGGDJkCDZt2gQrKyucOHECQHsmPDg4GKtXr4aenh6mT58OACgtLcWMGTMgFothYGCAxYsX4/bt27I2Hzx4AF9fX4jFYhgZGWH79u0dzvviODQ2NmLp0qUwMDCAuro67O3tkZaWhpycHAQEBODevXuyrPyzsXr8+DFCQkJgbGwMLS0tjBs3Djk5OXLn2b9/P0xNTaGpqQlPT080NDR06IuHhwdOnDiBhw8f/svRJCKi3sSgm4iI+rTS0lKcP38eqqqqsn0RERE4cOAAYmNjUVZWhjVr1mDRokXIzc0FAGzcuBFXrlzByZMnUV5ejr1790JPT6/T9q9fv44PPvgAHh4eKC4uxocffoh169Z1u5/379+Hn58fzp07h/z8fFhZWWHmzJm4f/9+p/Wjo6Nx4sQJpKSkoKKiAocPH5YL4l909uxZWFtbQ1tbu0NZXFwcFi1aBIlEghkzZmD//v1y5b6+vkhKSkJ0dDTKy8uxb98+iMVimJiYIDU1FQBQUVEBqVSKqKioV75mJSUlREdHo6ysDImJiTh9+jTCwsJe+fh/Q0NDQy6jnZiYCFVVVeTl5SE2NhaNjY1wcXGBo6MjfvvtN2RmZuLmzZvw8vKSHRMaGorc3FwcP34cp06dQk5OTpcPStra2jBjxgzk5eXh0KFDuHLlCrZs2QJlZWVMmDABO3fuhI6ODqRSKaRSKUJCQgAAwcHB+PXXX5GcnIzLly9j/vz5cHd3R1VVFQCgoKAAgYGBCA4ORnFxMZydnbF58+YO5x8zZgyePn2KgoKCnhpGIiLqBf+td+uIiOitkJaWBrFYjKdPn+Lx48dQUlLC7t27AbRnDcPDw5GdnY3x48cDAIYMGYJz585h3759cHJyQn19PRwdHTFmzBgA6DKY3bt3L4YOHSrLctrY2KCkpARbt27tVp9dXFzktr/99lvo6uoiNzcXs2fP7lC/vr4eVlZWmDhxIkQiEczMzLps/9q1axg0aFCH/VVVVcjPz8fRo0cBAIsWLcLatWuxYcMGiEQiVFZWIiUlBVlZWXBzcwPQPl7PDBgwAAAwcODAbs9HfnHBsc2bN2PZsmUKnW/d2tqKpKQkXL58WW6utZWVFSIjI2XbmzdvhqOjI8LDw2X74uPjYWJigsrKSgwaNAhxcXE4dOgQXF1dAbQH7oMHD37pubOzs3HhwgWUl5fD2toagPxYSiQSiEQiGBoayvbV19cjISEB9fX1sp9fSEgIMjMzkZCQgPDwcERFRcHd3V32wMLa2hrnz59HZmam3Pk1NTUhkUhw7dq1bo8bERG9Ocx0ExFRn+Ps7Izi4mIUFBTAz88PAQEBmDt3LgCguroazc3NmDp1KsRisexz4MAB1NTUAACWL1+O5ORkjBo1CmFhYV2u9l1eXo5x48bJ7XsWzHfHzZs3ERQUBCsrK0gkEujo6KCpqQn19fWd1vf390dxcTFsbGywatUqnDp1qsv2Hz58CHV19Q774+PjMX36dFkmf+bMmbh37x5Onz4NACguLoaysjKcnJy6fU3/JDs7G66urjA2Noa2tjYWL16MhoYGNDc3v9Lxz179FovFGD58eJd1Y2JiIBaLoaGhgaCgIKxZswbLly+Xlb/77rty9S9duoQzZ87I3SPDhg0DANTU1KCmpgYtLS1yP/sBAwbAxsbmpX0oLi7G4MGDZQH3qygpKUFrayusra3l+pKbmyu7X7tzD2poaLzy+BIRUd/ATDcREfU5WlpasLS0BNAeVDo4OCAuLg6BgYGyOcPp6ekwNjaWO05NTQ1AezB37do1ZGRkICsrC66urli5ciW2bdv2Wv1RUlKCIAhy+548eSK37efnh4aGBkRFRcHMzAxqamoYP378Sxf1Gj16NGpra3Hy5ElkZ2fDy8sLbm5ucnPTn6enp4eSkhK5fa2trUhMTMSNGzfkFoZrbW1FfHw8XF1doaGh8TqX/I/XXFdXh9mzZ2P58uX43//+hwEDBuDcuXMIDAxES0vLKy0+9v3338vmJ6uoqHRZ18fHB5999hk0NDRgZGQEJSX5vIGWlpbcdlNTEzw8PDp9Y8HIyAjV1dX/2L8Xvc5YNjU1QVlZGUVFRVBWVpYrE4vF3W7vzp070NfX7/ZxRET05jDoJiKiPk1JSQmffvop1q5di4ULF8LOzg5qamqor6/vMnurr68PPz8/+Pn5YdKkSQgNDe006La1tZUtyPVMfn5+h7Zu3LgBQRAgEokAoMP/+c7Ly0NMTAxmzpwJoH2u+POLdnVGR0cH3t7e8Pb2xrx58+Du7o47d+7IXvl+nqOjI/bu3SvXh4yMDNy/fx+///67XEBXWlqKgIAANDY2YsSIEWhra0Nubq7s9fLnPZsr39ra2uGapVKpbPvvv/9GbW2tbLuoqAhtbW3Yvn27LABOSUnp8npf9OJDk65IJBLZg5hXMXr0aKSmpsLc3LzTleqHDh0KFRUVFBQUwNTUFED7AnyVlZUvva9GjhyJP//8E5WVlZ1mu1VVVTuMo6OjI1pbW/HXX39h0qRJnbZra2vbYZ72i/cg0J6hf/ToERwdHTu/aCIi6pP4ejkREfV58+fPh7KyMvbs2QNtbW2EhIRgzZo1SExMRE1NDS5evIhdu3YhMTERAPD555/j+PHjqK6uRllZGdLS0mBra9tp28uWLUNVVRVCQ0NRUVGBH374ocNCZFOmTMGtW7cQGRmJmpoa7NmzBydPnpSrY2VlhYMHD6K8vBwFBQXw8fHpMjO6Y8cOJCUl4Y8//kBlZSWOHDkCQ0PDl86rdnZ2RlNTE8rKymT74uLiMGvWLDg4OMDe3l728fLygq6urmxxNj8/PyxZsgTHjh1DbW0tcnJyZAGymZkZRCIR0tLScOvWLdmbBC4uLjh48CDOnj2LkpIS+Pn5yQX2lpaWePLkCXbt2oWrV6/i4MGDiI2Nfen19raVK1fizp07WLBgAQoLC1FTU4OffvoJAQEBaG1thVgsRmBgIEJDQ3H69GmUlpbC39+/Qwb9eU5OTpg8eTLmzp2LrKws2ZsKz+Zem5ubo6mpCT///DNu376N5uZmWFtbw8fHB76+vjh69Chqa2tx4cIFREREID09HQCwatUqZGZmYtu2baiqqsLu3bs7zOcG2hfTGzJkCIYOHaqYQSMiIoVg0E1ERH1ev379EBwcjMjISDx48ABfffUVNm7ciIiICNja2sLd3R3p6emwsLAA0J5xXL9+PUaOHInJkydDWVkZycnJnbZtamqK1NRUHDt2DA4ODoiNjZVbfAtoz0TGxMRgz549cHBwwIULF2QrUz8TFxeHu3fvYvTo0Vi8eDFWrVqFgQMHvvSatLW1ERkZiTFjxmDs2LGoq6tDRkbGS4O+d955B56enjh8+DCA9jnk6enpsrnuz1NSUoKnpyfi4uIAtC8WN2/ePKxYsQLDhg1DUFAQHjx4AKA92/zll19i3bp1MDAwQHBwMABg/fr1cHJywuzZszFr1izMmTNHLthzcHDAjh07sHXrVtjb2+Pw4cNd/suz3jZo0CDk5eWhtbUV06ZNw4gRI7B69Wro6urKxvjrr7/GpEmT4OHhATc3N0ycOLHD3PAXpaamYuzYsViwYAHs7OwQFhYmy25PmDABy5Ytg7e3N/T19WULuyUkJMDX1xcff/wxbGxsMGfOHBQWFsoy7O+//z6+++47REVFwcHBAadOncKGDRs6nDspKQlBQUE9OUxERNQLRMKLE7aIiIioT7p8+TKmTp2Kmpqa15oPTP9dZWVlcHFxQWVlJSQSyZvuDhERdQMz3URERP8RI0eOxNatW+XmVtPbQSqV4sCBAwy4iYj+g5jpJiIiIiIiIlIQZrqJiIiIiIiIFIRBNxEREREREZGCMOgmIiIiIiIiUhAG3UREREREREQKwqCbiIiIiIiISEEYdBMREREREREpCINuIiIiIiIiIgVh0E1ERERERESkIAy6iYiIiIiIiBSEQTcRERERERGRgvwfgNL3q9bd41cAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"- Observation: The histogram of residuals is sharply peaked around zero, indicating that the majority of the errors are very small. The mean residual (red dashed line) is very close to zero, which is ideal. The distribution appears roughly symmetrical, but with longer tails, especially on the positive side, indicating the presence of some larger positive and negative errors (consistent with the outliers seen in the residuals plot).\n",
"- Interpretation:\n",
"The model's errors are predominantly small and centered around zero, confirming that it's not systematically over- or under-predicting.\n",
"The non-perfect normal distribution (with longer tails than a pure bell curve) suggests that while most predictions are very accurate, there are occasional larger deviations. This is often fine, especially for complex real-world data."
],
"metadata": {
"id": "_WnTnl4bpJPg"
}
},
{
"cell_type": "code",
"source": [
"# --- Graph 4: Actual vs. Predicted Over Time (IMPORTANT for Time Series) ---\n",
"\n",
"sample_size = min(200, len(y_test_original_scale)) # Plot a manageable subset\n",
"plt.figure(figsize=(14, 7))\n",
"# Plotting based on a simple index for demonstration.\n",
"# Replace `range(sample_size)` with your actual time index if available and un-shuffled.\n",
"plt.plot(y_test_original_scale[:sample_size], label='Actual Total Emission', color='blue', alpha=0.8)\n",
"plt.plot(y_pred_original_scale[:sample_size], label='Predicted Total Emission', color='orange', linestyle='--', alpha=0.8)\n",
"plt.title(f'Actual vs. Predicted Total Emission Over Time (First {sample_size} Samples in Test Set)')\n",
"plt.xlabel('Time Step / Sample Index') # Change to 'Year' or 'Date' if applicable\n",
"plt.ylabel('Total Emission')\n",
"plt.legend()\n",
"plt.grid(True, linestyle='--', alpha=0.7)\n",
"plt.tight_layout()\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 591
},
"id": "SKZ4DxzhoLwk",
"outputId": "57e4a25a-fcf9-416d-c662-a51f39561b84"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABW4AAAKyCAYAAABFb0fEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd8FNX6BvBndjedkBBIaKGE0AJC6FxApBuQjgqKSlNExYsVu1K8YgMv+lMErwgWlCYqIqKAIAgIhCpKryIBQkkCIW1nzu+PZJcsKSRkz87uzPP9fNBkMtl9z+6TLe+eOaMIIQSIiIiIiIiIiIiIyGtY9C6AiIiIiIiIiIiIiFyxcUtERERERERERETkZdi4JSIiIiIiIiIiIvIybNwSEREREREREREReRk2bomIiIiIiIiIiIi8DBu3RERERERERERERF6GjVsiIiIiIiIiIiIiL8PGLREREREREREREZGXYeOWiIiIiIiIiIiIyMuwcUtERKanKAomTpyodxleaeLEiVAUxWVb7dq1MWLECH0KKkRhNXozb6xX1t+At2XFCObOnQtFUXDs2DG9S3Hx999/IzAwEBs2bCjx73jrWOjGHDt2DIqiYO7cuR67zrVr10JRFKxdu9Zj12kGzz33HNq2bat3GUREBDZuiYjIzWbMmAFFUcr0gv/UqVOYOHEidu7c6b7CfJSiKM5/FosF1apVw6233upzb1L1vE8db+xL8u96PDmOESNGFFlnYGCg9Os3gj///BP33nsvqlevjoCAAFSrVg333HMP/vzzT71Lc9G5c+cS5dObP2CaPHky2rZtiw4dOji3FZfhFStWuL2G0v59bt26FY8++igaN26MkJAQ1KxZE4MHD8aBAwcK3X/v3r3o2bMnypUrh4iICNx3331ITk4usJ+maXjrrbcQExODwMBANG3aFF999VWJx/Hbb7+hV69eqF69OgIDA1GzZk307dsXX375ZYkvg0rP8aHa9f517tzZLde3fPnyUv1Na5qGzz77DG3btkVERARCQ0NRv359DBs2DL///nupr//KlSuYOHFioa8nHn/8cezatQtLly4t9eUSEZF72fQugIiIjGXevHmoXbs2tmzZgkOHDqFu3bqlvoxTp05h0qRJqF27Npo1a+b+In1Mjx49MGzYMAghcPToUcyYMQNdu3bFDz/8gF69enm8nv3798NiKd1nv3rep3Fxcfj8889dtj3//PMoV64cXnzxxVJdlqfHERAQgI8//rjAdqvV6tbrycjIgM3m/peFN5IVd1myZAnuvvtuRERE4P7770dMTAyOHTuG2bNnY/HixZg/fz4GDhyoS23XevHFF/HAAw84v9+6dSvee+89vPDCC4iLi3Nub9q0KRo3boy77roLAQEBepRaqOTkZHz66af49NNPC/ysqAzHx8ejR48ebh1Laf8+33zzTWzYsAF33nknmjZtitOnT+P9999HixYt8Pvvv+Omm25y7nvy5EnccsstCAsLw5QpU3D58mVMnToVf/zxB7Zs2QJ/f3/nvi+++CLeeOMNjB49Gq1bt8Z3332HoUOHQlEU3HXXXcXWtGjRIgwZMgTNmjXDY489hgoVKuDo0aNYt24d/ve//2Ho0KE3fPsY0S233IKMjAyX2/9GDRo0yOU1y+XLl/Hwww9j4MCBGDRokHN75cqVy3xdQG7j9oMPPihx83bcuHH44IMP0L9/f9xzzz2w2WzYv38/fvzxR9SpUwf/+te/SnX9V65cwaRJkwCgQDO6SpUq6N+/P6ZOnYp+/fqV6nKJiMi92LglIiK3OXr0KDZu3IglS5ZgzJgxmDdvHiZMmKB3WT6vfv36uPfee53fDxw4EE2bNsX06dOLbNxmZmbC399fStPMmxpGJVG5cmWX2w8A3njjDVSqVKnAdm9js9k8UqOsGbx6ZeXw4cO47777UKdOHaxbtw6RkZHOnz322GPo2LEj7rvvPuzevRt16tTxWF3p6ekICQkpsL1Hjx4u3wcGBuK9995Djx49Cp3d5+7GfVl98cUXsNls6Nu3b4GfXS/D1xuLEAKZmZkICgoqc53XevLJJ/Hll1+6NP2GDBmCJk2a4I033sAXX3zh3D5lyhSkp6dj27ZtqFmzJgCgTZs26NGjB+bOnYsHH3wQAPDPP/9g2rRpGDt2LN5//30AwAMPPIBOnTph/PjxuPPOO4sd88SJE9GoUSP8/vvvBZqRZ8+eddvYjcJisbjt8atp06Zo2rSp8/tz587h4YcfRtOmTXV/rjhz5gxmzJiB0aNH46OPPnL52fTp0wud+V1WgwcPxp133okjR4549HGSiIhccakEIiJym3nz5qFChQro3bs37rjjDsybN6/Q/VJSUvDEE0+gdu3aCAgIQHR0NIYNG4Zz585h7dq1aN26NQBg5MiRzkMTHWvmFbVmZufOnV0aHNnZ2XjllVfQsmVLhIWFISQkBB07dsSaNWtKPa4zZ87AZrM5Z6bkt3//fiiK4nyDnpOTg0mTJqFevXoIDAxExYoVcfPNN2PlypWlvt6iNGnSBJUqVcLRo0cBXF0KYP78+XjppZdQvXp1BAcHIy0tDQCwefNm9OzZE2FhYQgODkanTp0KXYfyt99+Q+vWrREYGIjY2FjMmjWr0Osv7D4oy30qo8YbceTIEdx5552IiIhAcHAw/vWvf+GHH35w/vx641i/fj3uvPNO1KxZEwEBAahRowaeeOIJZGRkuK3GwjjWCf3tt98wbtw4REZGIjw8HGPGjEF2djZSUlIwbNgwVKhQARUqVMAzzzwDIYTLZVx7GP6lS5fw+OOPO+/PqKgo9OjRA9u3b3fuc/DgQdx+++2oUqUKAgMDER0djbvuugupqanOfQrLyvVuZ+BqphcuXIjXXnsN0dHRCAwMRLdu3XDo0KHr3iZvv/02rly5go8++silaQsAlSpVwqxZs5Ceno633noLALB48WIoioJff/21wGXNmjULiqJgz549zm379u3DHXfcgYiICAQGBqJVq1YFDil23C+//vorHnnkEURFRSE6Ovq6tV9PYevC1q5dG3369MHatWvRqlUrBAUFoUmTJs5DoJcsWYImTZogMDAQLVu2xI4dOwpcbknGVJRvv/0Wbdu2Rbly5dw2lp9++sk5Fsff+cqVK3HzzTcjPDwc5cqVQ4MGDfDCCy8AuP7fZ2Hat29foDlar149NG7cGHv37nXZ/vXXX6NPnz7Opi0AdO/eHfXr18fChQud27777jvk5OTgkUcecW5TFAUPP/wwTp48iU2bNhV7mxw+fBitW7cudAZpVFSUy/dTp05F+/btUbFiRQQFBaFly5ZYvHhxgd9TFAWPPvooFi1ahEaNGiEoKAjt2rXDH3/8ASA343Xr1kVgYCA6d+5cYM3hzp0746abbsK2bdvQvn17BAUFISYmBjNnzix2LA4lydaNPncWtsato96//voLXbp0QXBwMKpXr+78ey8rd4xnxIgR+OCDDwC4LolUlKNHj0II4bIUiYOiKAWykZKSgscffxw1atRAQEAA6tatizfffBOapgHIXY/Y8dg4adKkQpdj6d69O4DcTBMRkX4445aIiNxm3rx5GDRoEPz9/XH33Xfjww8/xNatW51vpoHcQw87duyIvXv3YtSoUWjRogXOnTuHpUuX4uTJk4iLi8PkyZPxyiuv4MEHH0THjh0B5L7BLo20tDR8/PHHuPvuuzF69GhcunQJs2fPRkJCArZs2VKqw9wrV66MTp06YeHChQVmEC9YsABWqxV33nkngNzZUq+//joeeOABtGnTBmlpaUhMTMT27dsLzKq7URcvXsTFixcLLEPx6quvwt/fH08//TSysrLg7++PX375Bb169ULLli0xYcIEWCwWzJkzB127dsX69evRpk0bAMAff/yBW2+9FZGRkZg4cSLsdjsmTJhQokNCy3qfeqLG6zlz5gzat2+PK1euYNy4cahYsSI+/fRT9OvXD4sXL8bAgQOvO45FixbhypUrePjhh1GxYkVs2bIF//d//4eTJ09i0aJFN1zbuXPnCmzz9/dH+fLlXbb9+9//RpUqVTBp0iT8/vvv+OijjxAeHo6NGzeiZs2amDJlCpYvX463334bN910E4YNG1bkdT700ENYvHgxHn30UTRq1Ajnz5/Hb7/9hr1796JFixbIzs5GQkICsrKynNf7zz//YNmyZUhJSUFYWFihl1uS2zm/N954AxaLBU8//TRSU1Px1ltv4Z577sHmzZuLvc2+//571K5d23kfXeuWW25B7dq1nQ3j3r17o1y5cli4cCE6derksu+CBQvQuHFj52Hzf/75Jzp06IDq1avjueeeQ0hICBYuXIgBAwbg66+/LjCGRx55BJGRkXjllVeQnp5ebN1lcejQIQwdOhRjxozBvffei6lTp6Jv376YOXMmXnjhBWcj8fXXX8fgwYNdlrEo7Zjyy8nJwdatW/Hwww8Xuc+1Gfbz8ysyI0DuB2J33303xowZg9GjR6NBgwb4888/0adPHzRt2hSTJ09GQEAADh065PyAx13PHUIInDlzBo0bN3Zu++eff3D27Fm0atWqwP5t2rTB8uXLnd/v2LEDISEhLktcOPZz/Pzmm28u8vpr1aqF1atX4+TJk9dt9L/77rvo168f7rnnHmRnZ2P+/Pm48847sWzZMvTu3dtl3/Xr12Pp0qUYO3YsgNwc9OnTB8888wxmzJiBRx55BBcvXsRbb72FUaNG4ZdffnH5/YsXL+K2227D4MGDcffdd2PhwoV4+OGH4e/vj1GjRhVZY0mz5e7nzosXL6Jnz54YNGgQBg8ejMWLF+PZZ59FkyZNyrTEkLvGM2bMGJw6dQorV64ssJRPYWrVqgUg93nmzjvvRHBwcJH7XrlyBZ06dcI///yDMWPGoGbNmti4cSOef/55JCUlYfr06YiMjMSHH35YYCmI/DOOw8LCEBsbiw0bNuCJJ5644duMiIjKSBAREblBYmKiACBWrlwphBBC0zQRHR0tHnvsMZf9XnnlFQFALFmypMBlaJomhBBi69atAoCYM2dOgX1q1aolhg8fXmB7p06dRKdOnZzf2+12kZWV5bLPxYsXReXKlcWoUaNctgMQEyZMKHZ8s2bNEgDEH3/84bK9UaNGomvXrs7v4+PjRe/evYu9rNIAIO6//36RnJwszp49KzZv3iy6desmAIhp06YJIYRYs2aNACDq1Kkjrly54vxdTdNEvXr1REJCgvO2FUKIK1euiJiYGNGjRw/ntgEDBojAwEBx/Phx57a//vpLWK1Wce3LhWvvg7Lcp7JqvJ7GjRu75OXxxx8XAMT69eud2y5duiRiYmJE7dq1haqqxY7DUfO1Xn/9daEoikvNEyZMKFG9w4cPFwAK/ZeQkODcb86cOc5t+W/Ddu3aCUVRxEMPPeTcZrfbRXR0tMvYhSj4NxAWFibGjh1bZG07duwQAMSiRYuKHcO1WSnp7ezIdFxcnMvf8bvvvlvo32F+KSkpAoDo379/sbX169dPABBpaWlCCCHuvvtuERUVJex2u3OfpKQkYbFYxOTJk53bunXrJpo0aSIyMzOd2zRNE+3btxf16tVzbnPcLzfffLPLZZbEokWLBACxZs2aAj9zXO7Ro0ed22rVqiUAiI0bNzq3/fTTTwKACAoKcsmf47Es/2WXdEyFOXTokAAg/u///q/Az4rKsCN/xY1lxYoVLpf13//+VwAQycnJRdZS3N9nSX3++ecCgJg9e3aBy/3ss88K7D9+/HgBwHnb9e7dW9SpU6fAfunp6QKAeO6554q9/tmzZwsAwt/fX3Tp0kW8/PLLYv369c6/jfyufczJzs4WN910k8tzkhC5f98BAQEut7MjB1WqVHH+DQghxPPPP1/gPunUqZPLc44QQmRlZYlmzZqJqKgokZ2dLYQQ4ujRowVu/5Jm60afOx2PFfnz7Kg3//2VlZUlqlSpIm6//fYSX3ZycnKBx0Z3jmfs2LGleu4aNmyYACAqVKggBg4cKKZOnSr27t1bYL9XX31VhISEiAMHDrhsf+6554TVahUnTpwocnzXuvXWW0VcXFyJayQiIvfjUglEROQW8+bNQ+XKldGlSxcAuYfuDRkyBPPnz4eqqs79vv76a8THxxc6g6u4wwRLy2q1Og811TQNFy5cgN1uR6tWrVwO9y6pQYMGwWazYcGCBc5te/bswV9//YUhQ4Y4t4WHh+PPP//EwYMHyz6IPLNnz0ZkZCSioqLQtm1bbNiwAU8++SQef/xxl/2GDx/usg7kzp07cfDgQQwdOhTnz5/HuXPncO7cOaSnp6Nbt25Yt24dNE2Dqqr46aefMGDAAJfDgOPi4pCQkHDd+spyn3qqxutZvnw52rRp4zITrly5cnjwwQdx7Ngx/PXXX9e9jPy3fXp6Os6dO4f27dtDCFHooeklERgYiJUrVxb498YbbxTY9/7773e5vdu2bQshBO6//37nNqvVilatWuHIkSPFXm94eDg2b96MU6dOFfpzx2zJn376CVeuXCnxeEp7O48cOdLlkHHHLMri6r906RIAIDQ0tNhaHD93LCkyZMgQnD171uWQ68WLF0PTNOff+IULF/DLL79g8ODBuHTpkjOv58+fR0JCAg4ePIh//vnH5XpGjx7tkTVpGzVqhHbt2jm/b9u2LQCga9euLn8zju2O2/BGxpTf+fPnAQAVKlQo9OeFZXjatGnFjiUmJqbA33V4eDiA3MO2HYd7u9u+ffswduxYtGvXDsOHD3dudyx3UtiazY71VR37ZGRklGi/oowaNQorVqxA586d8dtvv+HVV19Fx44dUa9ePWzcuNFl3/yPORcvXkRqaio6duxY6HNct27dULt2bef3jhzcfvvtLn8r1+bDwWazYcyYMc7v/f39MWbMGJw9exbbtm0rdCylyZa7nzvLlSvnsi6tv78/2rRpc93HvuLoOR4AmDNnDt5//33ExMTgm2++wdNPP424uDh069bN5W900aJF6NixIypUqOCs8dy5c+jevTtUVcW6detKfJ2OyyAiIv2YunG7bt069O3bF9WqVYOiKPj2229LfRlCCEydOhX169dHQEAAqlevjtdee839xRIReTFVVTF//nx06dIFR48exaFDh3Do0CG0bdsWZ86cwerVq537Hj582OVM3TJ9+umnaNq0qXN9ucjISPzwww8ua3CWVKVKldCtWzeXtQwXLFgAm83mcrbpyZMnIyUlBfXr10eTJk0wfvx47N69u0zj6N+/P1auXIlVq1Zh8+bNOHfuHKZNm1bgxGMxMTEu3zveMA4fPhyRkZEu/z7++GNkZWUhNTUVycnJyMjIQL169Qpcd4MGDa5bX1nuU0/VeD3Hjx8v9HIchzsfP378updx4sQJjBgxAhEREShXrhwiIyOdh93fSOaA3EZr9+7dC/wrbKmP/M054GpztUaNGgW2X7x4sdjrfeutt7Bnzx7UqFEDbdq0wcSJE10aHjExMXjyySfx8ccfo1KlSkhISMAHH3xw3XGW9na+dkyO5mBx9TuaUI4GblGubfA61ljO/+HMggUL0KxZM9SvXx9A7nIEQgi8/PLLBfLqWEbl2hNIXft3KUtp7n/g6m14I2MqjLhm3WSHwjLcsmXLYi+rsNtsyJAh6NChAx544AFUrlwZd911FxYuXOi2Ju7p06fRu3dvhIWFYfHixS7NdkeDNCsrq8DvZWZmuuwTFBRUov2Kk5CQgJ9++gkpKSlYt24dxo4di+PHj6NPnz4u98WyZcvwr3/9C4GBgYiIiHAe/l7Y3+GN5sOhWrVqBU6s5/i7uHZNXIfSZMvdz53R0dEFPjisUKHCdR/7iqPneIDcE7GNHTsW27Ztw7lz5/Ddd9+hV69e+OWXX3DXXXc59zt48CBWrFhRoEbHmrWlOcmdEMKtH6oTEVHpmXqN2/T0dMTHx2PUqFEub7pL47HHHsPPP/+MqVOnokmTJrhw4QIuXLjg5kqJiLzbL7/8gqSkJMyfPx/z588v8PN58+bh1ltvdct1FfUGQlVVlzfaX3zxBUaMGIEBAwZg/PjxiIqKgtVqxeuvv47Dhw/f0HXfddddGDlyJHbu3IlmzZph4cKF6NatGypVquTc55ZbbsHhw4fx3Xff4eeff8bHH3+M//73v5g5cyYeeOCBG7re6Oho5xuu4lzbEHA0NN5+++0i1/QtV65coU0GT/GFGktCVVX06NEDFy5cwLPPPouGDRsiJCQE//zzD0aMGCFthmB+Rc3qLGx7UU02h8GDB6Njx4745ptv8PPPP+Ptt9/Gm2++iSVLljjXh5w2bRpGjBjhzPq4cePw+uuv4/fff3fLSbiKqv169YeFhaFq1arXbZLs3r0b1atXd64VHBAQgAEDBuCbb77BjBkzcObMGWzYsAFTpkxx/o7jfnz66aeLnOl97drTJWnUuUNp7n/g6m14I2PKr2LFigCKb6aXVmG3WVBQENatW4c1a9bghx9+wIoVK7BgwQJ07doVP//8c5lmNaempqJXr15ISUnB+vXrUa1aNZefV61aFQCQlJRU4HeTkpIQERHhnGVbtWpVrFmzpkDDy/G71152cYKDg9GxY0d07NgRlSpVwqRJk/Djjz9i+PDhWL9+Pfr164dbbrkFM2bMQNWqVeHn54c5c+bgyy+/LHBZN5qPsihNttz93CljXHqO51oVK1ZEv3790K9fP3Tu3Bm//vorjh8/jlq1akHTNPTo0QPPPPNMob/raLiXxMWLF11e4xARkeeZunHbq1evYhenz8rKwosvvoivvvoKKSkpuOmmm/Dmm286z1q+d+9efPjhh9izZ49z9oinZlUQEXmTefPmISoqynmG5PyWLFmCb775BjNnzkRQUBBiY2Ndzs5emOJmd1SoUAEpKSkFth8/fhx16tRxfr948WLUqVMHS5Yscbm8a08uVhoDBgzAmDFjnDPyDhw4gOeff77AfhERERg5ciRGjhyJy5cv45ZbbsHEiRPd8matNGJjYwEA5cuXL7bxGxkZiaCgoEIP6dy/f3+JrudG71NP1Xg9tWrVKvRy9u3b5/w5UPQ4/vjjDxw4cACffvqpy0m/rndGdG9WtWpVPPLII3jkkUdw9uxZtGjRAq+99prLa6cmTZqgSZMmeOmll7Bx40Z06NABM2fOxH/+859CL7Okt3NZ9enTB//73//w22+/FXoiqPXr1+PYsWMuh34DubM6P/30U6xevRp79+6FEMJlKRTHY4yfn1+JPkzxBWUdU82aNREUFISjR4+6u7QCLBYLunXrhm7duuGdd97BlClT8OKLL2LNmjXo3r37Dc0MzMzMRN++fXHgwAGsWrUKjRo1KrBP9erVERkZicTExAI/u/Zkl82aNcPHH3+MvXv3ulyW44R6pTkxZn6OE6M5GsBff/01AgMD8dNPP7kszTBnzpwbuvzrOXXqFNLT011m3R44cAAAXJZgyK+02fKW586iuHs87prJ2qpVK/z6669ISkpCrVq1EBsbi8uXL1+3xpJc/9GjRxEfH++WOomI6MaYeqmE63n00UexadMmzJ8/H7t378add96Jnj17Ot80fv/996hTpw6WLVuGmJgY1K5dGw888ABn3BKRqWRkZGDJkiXo06cP7rjjjgL/Hn30UVy6dAlLly4FkLue3q5du/DNN98UuCzHTBjHG8PCGrSxsbH4/fffkZ2d7dy2bNky/P333y77OWbb5J9ds3nzZmzatOmGxxoeHo6EhAQsXLgQ8+fPh7+/PwYMGOCyj2O9R4dy5cqhbt26LjNGU1NTsW/fvhs+fL6kWrZsidjYWEydOhWXL18u8PPk5GQAubdVQkICvv32W5w4ccL587179+Knn3667vWU5T71VI3Xc9ttt2HLli0u+UhPT8dHH32E2rVrOxswRY2jsLwJIfDuu++WuTZPU1W1QDajoqJQrVo1Z47T0tJgt9td9mnSpAksFkuxs6NLejuX1fjx4xEUFIQxY8YU+Ju8cOECHnroIQQHB2P8+PEuP+vevTsiIiKwYMECLFiwAG3atHH5UD4qKgqdO3fGrFmzCp196cirLynrmPz8/NCqVatCm5ruVNjra0cT1JG54p47CqOqKoYMGYJNmzZh0aJFLmsEX+v2228v8FyzevVqHDhwAHfeeadzW//+/eHn54cZM2Y4twkhMHPmTFSvXh3t27cvtqb8Swvlt3z5cgBXl4axWq1QFMVlDfljx47d0NJvJWG32zFr1izn99nZ2Zg1axYiIyOLXPqiNNkqyXOn3tw9ntLk9fTp04WutZ6dnY3Vq1fDYrE4Z/sOHjwYmzZtKvS5MSUlxfnYHRwcXOz1p6am4vDhw9fNLBERyWXqGbfFOXHiBObMmYMTJ044D2l6+umnsWLFCsyZMwdTpkzBkSNHcPz4cSxatAifffYZVFXFE088gTvuuAO//PKLziMgIvKMpUuX4tKlS+jXr1+hP//Xv/6FyMhIzJs3D0OGDMH48eOxePFi3HnnnRg1ahRatmyJCxcuYOnSpZg5cybi4+MRGxuL8PBwzJw5E6GhoQgJCUHbtm0RExODBx54AIsXL0bPnj0xePBgHD58GF988YVz5qZDnz59sGTJEgwcOBC9e/fG0aNHMXPmTDRq1KjQBmFJDRkyBPfeey9mzJiBhIQE5wlzHBo1aoTOnTujZcuWiIiIQGJiIhYvXoxHH33Uuc8333yDkSNHYs6cORgxYsQN13I9FosFH3/8MXr16oXGjRtj5MiRqF69Ov755x+sWbMG5cuXx/fffw8AmDRpElasWIGOHTvikUcegd1ux//93/+hcePG1z3kvKz3qSdqvJ7nnnsOX331FXr16oVx48YhIiICn376KY4ePYqvv/7auZ5wUeNo2LAhYmNj8fTTT+Off/5B+fLl8fXXX5f58HG73Y4vvvii0J8NHDiwwJqT7nDp0iVER0fjjjvuQHx8PMqVK4dVq1Zh69atzpNK/fLLL3j00Udx5513on79+rDb7fj8889htVpx++23F3nZJb2dy6pevXr49NNPcc8996BJkya4//77ERMTg2PHjmH27Nk4d+4cvvrqqwKPG35+fhg0aBDmz5+P9PR0TJ06tcBlf/DBB7j55pvRpEkTjB49GnXq1MGZM2ewadMmnDx5Ert27XLLGDyprGPq378/XnzxRaSlpTmXnnC3yZMnY926dejduzdq1aqFs2fPYsaMGYiOjnbOqi7ucaYwTz31FJYuXYq+ffviwoULBf7W8p/c6oUXXsCiRYvQpUsXPPbYY7h8+TLefvttNGnSBCNHjnTuFx0djccffxxvv/02cnJy0Lp1a3z77bdYv3495s2bd90lHfr374+YmBj07dsXsbGxSE9Px6pVq/D999+jdevW6Nu3LwCgd+/eeOedd9CzZ08MHToUZ8+exQcffIC6deuW+fGwMNWqVcObb76JY8eOoX79+liwYAF27tyJjz76CH5+fkX+XkmzVZLnTm/gzvE4Gt7jxo1DQkICrFary1q1+Z08eRJt2rRB165d0a1bN1SpUgVnz57FV199hV27duHxxx93Lmkwfvx4LF26FH369MGIESPQsmVLpKen448//sDixYtx7NgxVKpUCUFBQWjUqBEWLFiA+vXrIyIiAjfddJNzzfpVq1ZBCIH+/fvLvEmJiOh6BAkhhAAgvvnmG+f3y5YtEwBESEiIyz+bzSYGDx4shBBi9OjRAoDYv3+/8/e2bdsmAIh9+/Z5eghERLro27evCAwMFOnp6UXuM2LECOHn5yfOnTsnhBDi/Pnz4tFHHxXVq1cX/v7+Ijo6WgwfPtz5cyGE+O6770SjRo2EzWYTAMScOXOcP5s2bZqoXr26CAgIEB06dBCJiYmiU6dOolOnTs59NE0TU6ZMEbVq1RIBAQGiefPmYtmyZWL48OGiVq1aLvUBEBMmTCjReNPS0kRQUJAAIL744osCP//Pf/4j2rRpI8LDw0VQUJBo2LCheO2110R2drZznzlz5hQYU1EAiLFjxxa7z5o1awQAsWjRokJ/vmPHDjFo0CBRsWJFERAQIGrVqiUGDx4sVq9e7bLfr7/+Klq2bCn8/f1FnTp1xMyZM8WECRPEtS8XatWqJYYPH+6yraz3qbtrvJ7GjRu75EUIIQ4fPizuuOMOER4eLgIDA0WbNm3EsmXLCvxuUeP466+/RPfu3UW5cuVEpUqVxOjRo8WuXbsKjLWk9Q4fPlwAKPLf0aNHhRBX87R161aX33dcT3JycoHLDQkJcdmW/28gKytLjB8/XsTHx4vQ0FAREhIi4uPjxYwZM5z7HzlyRIwaNUrExsaKwMBAERERIbp06SJWrVrlcrmFZaUkt3NRmT569GiJ/3aEEGL37t3i7rvvFlWrVhV+fn6iSpUq4u677xZ//PFHkb+zcuVKAUAoiiL+/vvvQvc5fPiwGDZsmKhSpYrw8/MT1atXF3369BGLFy927lPU/VISixYtEgDEmjVrCvzMcbmO+1+I3Nu5d+/eBfYt7PHDcRu+/fbbpR5TUc6cOSNsNpv4/PPPXbYXlrUbHcvq1atF//79RbVq1YS/v7+oVq2auPvuu8WBAwdc9ivuceZanTp1KvZv7Fp79uwRt956qwgODhbh4eHinnvuEadPny6wn6qqzucff39/0bhx40KfLwrz1VdfibvuukvExsaKoKAgERgYKBo1aiRefPFFkZaW5rLv7NmzRb169URAQIBo2LChmDNnTqGPL6XJQWF/e506dRKNGzcWiYmJol27diIwMFDUqlVLvP/++4Ve5rW3eUmyVZLnzsI46s3/t+Ko91qFPf8XJzk5udDXB+4aj91uF//+979FZGSkUBSl2OeFtLQ08e6774qEhAQRHR0t/Pz8RGhoqGjXrp343//+JzRNc9n/0qVL4vnnnxd169YV/v7+olKlSqJ9+/Zi6tSpLjVs3LjR+Zx67ViHDBkibr755hLfXkREJIcihBtWnjcARVHwzTffOA95XbBgAe655x78+eefBT4ZL1euHKpUqYIJEyZgypQpyMnJcf4sIyMDwcHB+Pnnn9GjRw9PDoGIiIiISBf3338/Dhw4gPXr1+tdCrlZ586dce7cueuuZU7Gcfr0acTExGD+/PmccUtEpDMulVCE5s2bQ1VVnD17Fh07dix0nw4dOsBut+Pw4cPOQ+0ci/S76+QaRERERETebsKECahfvz42bNiADh066F0OEZXB9OnT0aRJEzZtiYi8gKln3F6+fBmHDh0CkNuofeedd9ClSxdERESgZs2auPfee7FhwwZMmzYNzZs3R3JyMlavXo2mTZuid+/e0DQNrVu3Rrly5TB9+nRomoaxY8eifPny+Pnnn3UeHRERERERUdlwxi0REZF+3HMGCB+VmJiI5s2bo3nz5gCAJ598Es2bN8crr7wCAJgzZw6GDRuGp556Cg0aNMCAAQOwdetW1KxZE0DuSV++//57VKpUCbfccgt69+6NuLg4zJ8/X7cxERERERERERERke8z9YxbIiIiIiIiIiIiIm9k6hm3RERERERERERERN6IjVsiIiIiIiIiIiIiL2PTuwBP0zQNp06dQmhoKBRF0bscIiIiIiIiIiIiMgkhBC5duoRq1arBYil+Tq3pGrenTp1CjRo19C6DiIiIiIiIiIiITOrvv/9GdHR0sfuYrnEbGhoKIPfGKV++vM7VyGe327Fjxw40b94cNpvp7m6SiNkiGZgrkoXZIlmYLZKBuSJZmC2SgbkiWYyarbS0NNSoUcPZoyyOcUZdQo7lEcqXL2+axm1ISAjKly9vqJCT/pgtkoG5IlmYLZKF2SIZmCuShdkiGZgrksXo2SrJEq48ORkRERERERERERGRl2Hj1uAURUFQUBBPxEZux2yRDMwVycJskSzMFsnAXJEszBbJwFyRLMwWoAghhF5Xvm7dOrz99tvYtm0bkpKS8M0332DAgAFF7r9kyRJ8+OGH2LlzJ7KystC4cWNMnDgRCQkJJb7OtLQ0hIWFITU11RRLJRAREREREREREZF3KE1vUtcFItLT0xEfH49Ro0Zh0KBB191/3bp16NGjB6ZMmYLw8HDMmTMHffv2xebNm9G8eXMPVOx7NE3DuXPnUKlSJVgsnGBN7sNskQzMFcnCbJEszBbJwFyRLMwWXUtVVeTk5JTpMjRNw8WLF1GhQgXmitzKV7Pl5+cHq9XqlsvStXHbq1cv9OrVq8T7T58+3eX7KVOm4LvvvsP333/Pxm0RNE3DkSNHEBER4VMhJ+/HbJEMzBXJwmyRLMwWycBckSzMFjkIIXD69GmkpKS45bKys7ORmppq6kPayf18OVvh4eGoUqVKmev26VOyaZqGS5cuISIiQu9SiIiIiIiIiIh8gqNpGxUVheDg4DI1l4QQuHLlSpkvh+havpgtR81nz54FAFStWrVMl+fTjdupU6fi8uXLGDx4cJH7ZGVlISsry/l9WloaAMBut8NutwMALBYLLBYLNE2DpmnOfR3bVVVF/qWAi9putVqhKIrzcvNvB3IPQSjJdpvNBiGEy3ZFUWC1WgvUWNT2/GPKf1lGGZMR7ydfG5NjH03TXK7Xl8dkxPvJF8fk+L+RxnS92jkm+WMSQhSo3dfHZMT7yRfH5Ph5URnzxTFdr3aOSf6YABS4Xl8fkxHvJ18cU/56jTKm4mrnmAqvXVVVpKSkIDIyssBEOEVRXC63JNs1TYOqqggICHA2127kckqzvTRk18IxyRuT4+8rf7Y8VXtZxhQYGAghBJKTkxEZGVngckvDZxu3X375JSZNmoTvvvsOUVFRRe73+uuvY9KkSQW279ixAyEhIQCAyMhIxMbG4ujRo0hOTnbuEx0djejoaBw4cACpqanO7XXq1EFUVBT27NmDjIwM5/aGDRsiPDwcO3bscHlQbNq0Kfz9/ZGYmOhSQ6tWrZCdnY3du3c7t1mtVrRu3RqpqanYt2+fc3tQUBDi4+Nx7tw5HDlyxLk9LCwMcXFxOHXqFE6ePOnc7hjTiRMnkJ6eju3bt0NRFEOMyYj3ky+OqXz58ggLC8Pp06dx6tQpQ4zJiPeTr41p7969zses4OBgQ4zJiPeTL46pRYsWCAkJcT4fGmFMRryffHFMQgikp6cjKysLiqIYYkxGvJ98bUwVK1ZEVlaWy2OWr4/JiPeTL45JCAGLxQJFUQwzJsB495MnxlS+fHkEBgYiPT3duU1RFISEhEBVVWRmZjq3WywWBAcHw263u0yMs1qtCAoKQk5ODjRNw5UrVwDkNrQDAwORlZXl0kj29/eHv78/MjMzXWoMCAiAn58fMjIyXJrXgYGBsNlsuHLliksDLSgoCBaLxaV2AAgJCYGmaS63S1nGlJ2d7dzOMek3JqvVClVVfXJMAHDhwgWXx4KgoCDExMSgpBRR1pa4myiKgm+++QYDBgy47r7z58/HqFGjsGjRIvTu3bvYfQubcVujRg2cP3/eeeY2fmrHMXFMHBPHxDFxTBwTx8QxcUwcE8fEMXFMHJMZxpSZmYm///4btWvXRmBgoMv+3jZjk7NTC+dttXNMBWVmZuLYsWOoXbs2/Pz8XC43PT0dYWFhSE1NdfYmi+JzjduvvvoKo0aNwvz589G/f/9SX09aWlqJbxwj0DQNp06dQrVq1WCxcPF5ch9mi2RgrkgWZotkYbZIBuaKZGG2CMhtKB09ehQxMTEFGrc3QgiBnJwc+Pn5lfowcKLi+HK2ivs7K01vUtdH6suXL2Pnzp3YuXMnAODo0aPYuXMnTpw4AQB4/vnnMWzYMOf+X375JYYNG4Zp06ahbdu2OH36NE6fPu1y2AC50jQNJ0+edPnkjsgdmC2SgbkiWZgtkoXZIhmYK5KF2SJZ8h+ublaKouDbb7/VuwwXetU0ceJENGvWrMyXM3fu3GKXRzUDXRu3iYmJaN68OZo3bw4AePLJJ9G8eXO88sorAICkpCRnExcAPvroI9jtdowdOxZVq1Z1/nvsscd0qZ+IiIiIiIiIiDxn06ZNsFqt1106szC1a9fG9OnT3V/UdSiKUuy/iRMnFvm7x44dg6IozkmP7jRixIhC6+nZs2eZLvfpp5/G6tWry1zfkCFDsGPHjjJfji/T9eRknTt3Lna9iLlz57p8v3btWrkFERERERERERGR15o9ezb+/e9/Y/bs2c6lP7xdUlKS8+sFCxbglVdewf79+53bypUrp0dZAICePXtizpw5LtsCAgLKdJnlypVzy5iCgoIQGRlZ5svxZVzUxuAsFgsiIyO5fhG5HbNFMjBXJAuzRbIwWyQDc0WyMFski83mmXmBly9fxoIFC/Dwww+jd+/eBSb8AcD333+P1q1bIzAwEJUqVcLAgQMB5E4ePH78OJ544gnnzFKg8MP6p0+fjtq1azu/37p1K3r06IFKlSohLCwMnTp1wvbt20tcd5UqVZz/wsLCoCiK8/uoqCi88847iI6ORkBAAJo1a4YVK1Y4fzcmJgYA0Lx5cyiKgs6dO7ulJoeAgACX+qpUqYIKFSo4f64oCmbNmoU+ffogODgYcXFx2LRpEw4dOoTOnTsjJCQE7du3x+HDh52/c+1tunbtWrRp0wYhISEIDw9Hhw4dcPz4cQDArl270KVLF4SGhqJ8+fJo2bIlEhMTAeRO6IyOjnap98MPP0RsbCz8/f3RoEEDfP755y4/VxQFH3/8MQYOHIjg4GDUq1cPS5cuLfXt4i34aG1wFosFsbGxfGImt2O2SAbmimRhtkgWZotkYK5IFmaLCiMEkJFx4/8yMxUIEYjMTKXUv1vMQdiFWrhwIRo2bIgGDRrg3nvvxSeffOJyJPcPP/yAgQMH4rbbbsOOHTuwevVqtGnTBgCwZMkSREdHY/LkyUhKSnKZBXs9ly5dwvDhw/Hbb7/h999/R7169XDbbbfh0qVLpRtAId59911MmzYNU6dOxe7du5GQkIB+/frh4MGDAIAtW7YAAFatWoWkpCQsWbJEek3XevXVVzFs2DDs3LkTDRs2xNChQzFmzBg8//zzSExMhBACjz76aKG/a7fbMWDAAHTq1Am7d+/Gpk2b8OCDDzob5/fccw+io6OxdetWbNu2Dc899xz8/PwAwLmP4//ffPMNHnvsMTz11FPYs2cPxowZg5EjR2LNmjUu1zlp0iQMHjwYu3fvxm233YZ77rkHFy5ccPvt4gm6LpVA8mma5jyLHZ+cyZ2YLZKBuSJZmC2ShdkiGZgrkoXZosJkZgIdO5blEgSEEHnNNaVUv7l+PRAUVPL9Z8+ejXvvvRdA7iH+qamp+PXXX52zUF977TXcddddmDRpkvN34uPjAQARERGwWq0IDQ1FlSpVSlVn165dXb7/6KOPEB4ejl9//RV9+vQp1WVda+rUqXj22Wdx1113AQDefPNNrFmzBtOnT8cHH3zgXCqgYsWKLnW7q6Zly5YVWNbghRdewAsvvOD8fuTIkRg8eDAA4Nlnn0W7du3w8ssvIyEhAQDw2GOPYeTIkYVeflpaGlJTU9GnTx/ExsYCAOLi4pw/P3HiBMaPH4+GDRsCAOrVq+f8maMp78jX1KlTMWLECDzyyCMAcs+V9fvvv2Pq1Kno0qWL8/dGjBiBu+++GwAwZcoUvPfee9iyZUuZ1+7VAx+pDU7TNCQnJ/OsoeR2zBbJwFyRLMwWycJskQzMFcnCbJEsxZ2/yF3279+PLVu2OBtyNpsNQ4YMwezZs5377Ny5E926dXP7dZ85cwajR49GvXr1EBYWhvLly+Py5cs4ceJEmS43LS0Np06dQocOHVy2d+jQAXv37vVITV26dMHOnTtd/j300EMu+zRt2tT5deXKlQEATZo0cdmWmZmJtLS0ApcfERGBESNGICEhAX379sW7777rMtv5ySefxAMPPIDu3bvjjTfecFly4Vp79+4t0W2Vv96QkBCUL18eZ8+eLe5m8FqccUtEREREREREZFKBgbkzX2+UEEB6egZCQkKglG7CLQIDS77v7NmzYbfbXU5GJoRAQEAA3n//fYSFhSGoNNN381gslgKN55ycHJfvhw8fjvPnz+Pdd99FrVq1EBAQgHbt2iE7O7vU1+cu7qopJCQEdevWLXYfx9IFwNVlCwrbVtSHQnPmzMG4ceOwYsUKLFiwAC+99BJWrlyJf/3rX5g4cSKGDh2KH374AT/++CMmTJiA+fPnO9cmvhH5a3PU56sfWHHGLRERERERERGRSSlK7nIFevwraaPXbrfjs88+w7Rp01xmhu7atQvVqlXDV199BSB3puXq1auLvBx/f3+oquqyLTIyEqdPn3Zp3u7cudNlnw0bNmDcuHG47bbb0LhxYwQEBODcuXMlK74Y5cuXR7Vq1bBhw4YC19eoUSNnzQAK1C2rJlmaN2+O559/Hhs3bsRNN92EL7/80vmz+vXr44knnsDPP/+MQYMGYc6cOYVeRlxcXLG3lRFxxq3BWSwWREdHc/0icjtmi2RgrkgWZotkYbZIBuaKZGG2SBZHc1GWZcuW4eLFi7j//vsRFhbm8rPbb78ds2fPxkMPPYQJEyagW7duiI2NxV133QW73Y7ly5fj2WefBQDUrl0b69atw1133YWAgABUqlQJnTt3RnJyMt566y3ccccdWLFiBX788UeUL1/eeR316tXD559/jlatWiEtLQ3jx4+/odm9hRk/fjwmTJiA2NhYNGvWDHPmzMHOnTsxb948AEBUVBSCgoKwYsUKREdHIzAwEGFhYW6rKSsrC6dPn3bZZrPZUKlSJbeM7+jRo/joo4/Qr18/VKtWDfv378fBgwcxbNgwZGRkYPz48bjjjjsQExODkydPYuvWrbj99tsLvazx48dj8ODBaN68Obp3747vv/8eS5YswapVq9xSqzfio7XB8YmZZGG2SAbmimRhtkgWZotkYK5IFmaLZFAUBf7+/s7D5WWYPXs2unfvXqBpC+Q2bhMTE7F792507twZixYtwtKlS9GsWTN07doVW7Zsce47efJkHDt2DLGxsc6TfsXFxWHGjBn44IMPEB8fjy1btuDpp58ucP0XL15EixYtcN9992HcuHGIiopyy9jGjRuHJ598Ek899RSaNGmCFStWYOnSpc6TdNlsNrz33nuYNWsWqlWrhv79+7u1phUrVqBq1aou/26++Wa3jA0AgoODsW/fPtx+++2oX78+HnzwQYwdOxZjxoyB1WrF+fPnMWzYMNSvXx+DBw9Gr169nCeXc2TK8f8BAwbg3XffxdSpU9G4cWPMmjULc+bMcZ6czogU4YkVpL1IWloawsLCkJqa6vLpiVGpqooDBw6gfv36sFqtepdDBsJskQzMFcnCbJEszBbJwFyRLMwWAUBmZiaOHj2KmJgYBJZmkdkiCCGQmZmJwMBAqc1bMh9fzlZxf2el6U3yYzaDE0IgNTXVI2d4JHNhtkgG5opkYbZIFmaLZGCuSBZmi2S5dv1VIncxe7bYuCUiKgl7OpB1Qe8qiIiIiIiIiMgkeHIyIqKSWNUp9//d1gB+ofrWQkRERERERESGxxm3BmexWFCnTh0uPk9uZ9psXT6qdwWGZtpckXTMFsnCbJEMzBXJwmyRLAEBAXqXQAZl9mxxxq3BWSwWt53pkCg/ZotkYK5IFmaLZGG2SAbmimRhtkgGRVHg5+endxlkQMwWZ9wanqqq2LVrl+kXcyb3M1W2hHb1ax87k6WvMVWuyKOYLZKF2SIZmCuShdkiGYQQuHLlCk96R27HbLFxa3hCCGRkZJg65CSHqbKVv3EbUku/OkzAVLkij2K2SBZmi2RgrkgWZotk0TTt+jsR3QCzZ4tLJRARXY9iAVpMB6AB1mC9qyEiIiIiIiIiE2DjlojoehQLEHWz3lUQERERERERkYlwqQSDs1qtaNiwIaxWq96lkMGYLlt/vQXsfAG4ckrvSgzNdLkij2G2SBZmi2RgrkgWZotkCQwM1LsEtxoxYgQGDBjg/L5z5854/PHHPV7H2rVroSgKUlJSPH7dRfF0Tfmz5a774dr715uxcWtwiqIgPDwcCk+oRG5mqmyp2cCJhcDpn4GcFL2rMTRT5Yo8itkiWZgtkoG5IlmYLZJBURTYbDbpuRoxYgQURYGiKPD390fdunUxefJk2O12qdcLAEuWLMGrr75aon091dh0XE9x/9auXVvk78+dOxfh4eFSaqtdu3ah9bzxxhulupxrs1Wa+6E47777LubOnVvmy/EENm4Nzm63Y+vWrR55ICNzMVW27Jevfs0TOUhlqlyRRzFbJAuzRTIwVyQLs0UyCCGQnp7ukZPe9ezZE0lJSTh48CCeeuopTJw4EW+//Xah+2ZnZ7vteiMiIhAaGuq2y3OH9u3bIykpyflv8ODBztvH8a99+/a61Td58mSXWpKSkvDvf/+7VJdxbbbcdT+EhYVJa1q7Gxu3JqCqqt4lkEGZJlsi31kshUnGrCPT5Io8jtkiWZgtkoG5IlmYLZLBE01bAAgICECVKlVQq1YtPPzww+jevTuWLl0K4Orh76+99hqqVauGBg0aAAD+/vtvDB48GOHh4YiIiED//v1x7Ngx52Wqqoonn3wS4eHhqFixIp555pkC47n2EP2srCw8++yzqFGjBgICAlC3bl3Mnj0bx44dQ5cuXQAAFSpUgKIoGDFiBABA0zS8/vrriImJQVBQEOLj47F48WKX61m+fDnq16+PoKAgdOnSxaXOa/n7+6NKlSrOf0FBQc7bp0qVKggICMADDzyAChUqIDg4GL169cLBgwcB5M7WHTlyJFJTU52zYSdOnAgA+Pzzz9GqVSuEhoaiSpUqGDp0KM6ePVvau8r5+/n/hYSEOK9fURT89NNPaN68OYKCgtC1a1ecPXsWP/74I+Li4lC+fHncc889SE9PL/J+mDFjBurVq4fAwEBUrlwZd9xxh/NnixcvRpMmTRAUFISKFSuie/fuzsu6dqmErKwsjBs3DlFRUQgMDMTNN9+MrVu3On/uqHf16tVo1aoVgoOD0b59e+zfv7/Ut0tpsXFLRHRdWhFfExERERERGYQ9o+h/anbx+6r5v84q2eW6QVBQkMvM2tWrV2P//v1YuXIlli1bhpycHCQkJCA0NBTr16/Hhg0bUK5cOfTs2dP5e9OmTcPcuXPxySef4LfffsOFCxfwzTffFHu9w4YNw1dffYX33nsPe/fuxaxZs1CuXDnUqFEDX3/9NQBg//79SEpKwrvvvgsAeP311/HZZ59h5syZ+PPPP/HEE0/g3nvvxa+//gogt8E8aNAg9O3bFzt37sQDDzyA55577oZvmxEjRiAxMRFLly7Fpk2bIITAbbfdhpycHLRv3x7Tp09H+fLlnbNhn376aQBATk4OXn31VezatQvffvstjh075mw+u9vEiRPx/vvvY+PGjc4G+/Tp0/Hll1/ihx9+wM8//4yZM2cW+ruJiYkYN24cJk+ejP3792PFihW45ZZbAABJSUm4++67MWrUKOzduxdr167FoEGDivyA4ZlnnsHXX3+NTz/9FNu3b0fdunWRkJCACxcuuOz34osvYtq0aUhMTITNZsOoUaPce4MUwib9GoiIfF3+WbaCjVsiIiIiIjKgVR2L/lmlDkCrd69+v6YHoGY6vw1SNcCaNzewQgug7UdX9/21b+HnCumZeMOlCiGwevVq/PTTTy6H34eEhODjjz+Gv78/AOCLL76Apmn4+OOPneukzpkzB+Hh4Vi7di1uvfVWTJ8+Hc8//zwGDRoEAJg5cyZ++umnIq/7wIEDWLhwIVauXInu3bsDAOrUqeP8eUREBAAgKirKeTh+VlYWpkyZglWrVqFdu3bO3/ntt98wa9YsdOrUCR9++CFiY2Mxbdo0AECDBg3wxx9/4M033yz17XPw4EEsXboUGzZscC6XMG/ePNSoUQPffvst7rzzToSFhUFRFFSpUsXld/M3I+vUqYP33nsPrVu3xuXLl1GuXLkS1/Dss8/ipZdectn2448/omPHqzn7z3/+gw4dOgAA7r//fjz//PM4fPiw8/a8/fbbsX79+kIv/8SJEwgJCUGfPn0QGhqKWrVqoXnz5gByG7d2ux2DBg1CrVq1AABNmjQp9HLS09Px4YcfYu7cuejVqxcA4H//+x9WrlyJ2bNnY/z48c59X3vtNXTq1AkA8Nxzz6F3797IzMyUenI+Nm4Nzmq1omnTpjxrKLmdqbLl0rjloWUymSpX5FHMFsnCbJEMzBXJwmyRLBaLZw7oXrZsGcqVK4ecnBxomoahQ4c6D/EHcptzjqYtAOzatQuHDh0qsC5qZmYmDh8+jNTUVCQlJaFt27bOn9lsNrRq1arI2Zk7d+6E1Wp1NvBK4tChQ7hy5Qp69Ojhsj07O9vZbNy7d69LHQCcTd7S2rt3L2w2m8vlVaxYEQ0aNMDevXuL/d1t27Zh4sSJ2LVrFy5evAhNy528dOLECTRq1KjENYwfP77ATN3q1au7fN+0aVPn15UrV0ZwcLBLE7xy5couSxbk16NHD9SqVQt16tRBz5490bNnTwwcOBDBwcGIj49Ht27d0KRJEyQkJODWW2/FHXfcgQoVKhS4nMOHDyMnJ8fZQAYAPz8/tGnTpsBtlb/eqlWrAgDOnj2LmjVrXufWuHFs3JpA/gctIncyTbZc1rjlyclkM02uyOOYLZKF2SIZmCuShdmiInUvfGYjAEC5ptnfZeXVr/O/R1IUQLmmidvp+7LX5rjaLl3w4Ycfwt/fH9WqVYPN5trWcqyh6nD58mW0bNkS8+bNK3BZkZGRN1RDUFBQqX/n8uXcE17/8MMPBZqXAQEBN1SHDOnp6UhISEBCQgLmzZuHyMhInDhxAgkJCaU+2VulSpVQt27dYvfx8/Nzfq0oisv3jm2OxvG1QkNDsX37dqxduxY///wzXnnlFUycOBFbt25FeHg4Vq5ciY0bN+Lnn3/G//3f/+HFF1/E5s2bERMTU6pxFFcvgCLrcxeucWtwqqoiMTGRC9CT25kqW45ZtooNiGipby0GZ6pckUcxWyQLs0UyMFckC7NFxbIFFf3P6l/svulZWr59A0p2uTcgJCQEdevWRc2aNQs0bQvTokULHDx4EFFRUahbt67Lv7CwMISFhaFq1arYvHmz83fsdju2bdtW5GU2adIEmqY516a9luPDkfx/Z40aNUJAQABOnDhRoI4aNWoAAOLi4rBlyxaXy/r999+vO8bCxMXFwW63u4zr/Pnz2L9/v3PWrL+/f4HHgn379uH8+fN444030LFjRzRs2PCGTkzmTsU1Rm02G7p374633noLu3fvxrFjx/DLL78AyG2sdujQAZMmTcKOHTvg7+9f6NrFsbGx8Pf3x4YNG5zbcnJysHXr1lLNMJaFM26JiK4nMAqIfz33U2YLDysjIiIiIiLyBffccw/efvtt9O/fH5MnT0Z0dDSOHz+OJUuW4JlnnkF0dDQee+wxvPHGG6hXrx4aNmyId955BykpKUVeZu3atTF8+HCMGjUK7733HuLj43H8+HGcPXsWgwcPRq1ataAoCpYtW4bbbrsNQUFBCA0NxdNPP40nnngCmqbh5ptvRmpqKjZs2IDy5ctj+PDheOihhzBt2jSMHz8eDzzwALZt24a5c+fe0Ljr1auH/v37Y/To0Zg1axZCQ0Px3HPPoXr16ujfv79zHJcvX8bq1asRHx+P4OBg1KxZE/7+/vi///s/PPTQQ9izZw9effXVG6rh0qVLOH36tMu24OBglC9f/oYu71rLli3DkSNHcMstt6BChQpYvnw5NE1DgwYNsHnzZqxevRq33noroqKisHnzZiQnJyMuLq7A5YSEhODhhx/G+PHjERERgZo1a+Ktt97ClStXcP/997ul1rLgjFsiouuxhQBVewBVuupdCREREREREZVQcHAw1q1bh5o1a2LQoEGIi4vD/fffj8zMTGcD8amnnsJ9992H4cOHo127dggNDcXAgQOLvdwPP/wQd9xxBx555BE0bNgQo0ePRnp6OoDcdVwnTZqE5557DpUrV8ajjz4KAHj11Vfx8ssv4/XXX0dcXBx69uyJH374wXnofs2aNfH111/j22+/RXx8PGbOnIkpU6bc8NjnzJmDli1bok+fPmjXrh2EEFi+fLnzcP/27dvjoYcewpAhQxAZGYm33noLkZGRmDt3LhYtWoRGjRrhjTfewNSpU2/o+l955RVUrVrV5d8zzzxzw+O5Vnh4OJYsWYKuXbsiLi4OM2fOxFdffYXGjRujfPnyWLduHW677TbUr18fL730EqZNm+Y8+di13njjDdx+++2477770KJFCxw6dAg//fRToWviepoiilpt2aDS0tIQFhaG1NRUt3X5vZndbkdiYiJatWpVosMIiErKdNk68imQfhyoORgIa6h3NYZlulyRxzBbJAuzRTIwVyQLs0VA7om5jh49ipiYGAQGBpb58oQQSE9PR0hIiHPdTyJ38OVsFfd3VpreJBu3BieEgKqqsFqtPhdy8m6mylZ2KvBLt9yvm73FmbcSmSpX5FHMFsnCbJEMzBXJwmwRIKdx68BckTv5crbc1bjlUgkmUNoz/xGVlGmylX786teCJ3KQzTS5Io9jtkgWZotkYK5IFmaLZCjuBFJEZWH2bLFxa3CqqmL37t08ayi5namylb9ZK8z9pCGbqXJFHsVskSzMFsnAXJEszBbJkpGRoXcJZFBmzxYbt0RE15WvWcsZt0RERERERETkAWzcEhFdj5a/WcsZt0REREREREQkHxu3JmC1WvUugQzKNNniUgkeZZpckccxWyQLs0UyMFckC7NFDu5cO9TXThxFvsNXs+Wuvy9F5D9FmwmU5sxtREQAgOQNwLbHcr9u/CJQY6C+9RAREREREd0gTdNw8OBBWK1WREZGwt/f32ebY0TeRgiB7OxsJCcnQ1VV1KtXDxaL67zZ0vQmbTKLJf0JIZCamoqwsDA+EJNbmSpbQoWqAqp/ZfhX66V3NYZmqlyRRzFbJAuzRTIwVyQLs0UAYLFYEBMTg6SkJJw6dcotl6lpWoHmFJE7+Gq2goODUbNmzTLXzsatwamqin379qFVq1aw2Xh3k/uYKluhDTB1xSs4mRyOtzsGIpBHl0ljqlyRRzFbJAuzRTIwVyQLs0UO/v7+qFmzJux2O1S1bCdgttvt2LNnD2666SbmitzKV7NltVphs9nc8gGZ74yaiEgvQZXx9eZ+0DTg4kWgalW9CyIiIiIiIiobRVHg5+cHPz+/Ml2O3W4HAAQGBvpUc428H7PFxi0R0XUJAbSrtRx1Kv4Ja2oXoGorvUsiIiIiIiIiIoNj49bgFEVBUFAQ1y8itzNTtkTGWdzTchrK+afCcrkqADZuZTFTrsizmC2ShdkiGZgrkoXZIhmYK5KF2QIUIYTQuwhPKs2Z24iIAMB+YjkOLH4FABB58zhEthmmc0VERERERERE5ItK05v0vdOyUalomoazZ89C0zS9SyGDMVO2tLx1dQBAaGVbuJ+KZ6ZckWcxWyQLs0UyMFckC7NFMjBXJAuzxcat4WmahiNHjpg65CSHmbIl8o1RmGC8ejJTrsizmC2ShdkiGZgrkoXZIhmYK5KF2WLjlojoulQ1f+OWM26JiIiIiIiISD42bomIriN/s5YzbomIiIiIiIjIE9i4NThFURAWFmbqM/CRHGbKlqZebdya+RANTzBTrsizmC2ShdkiGZgrkoXZIhmYK5KF2QIUIYTQuwhPKs2Z24iIACB195f4Z9U7OHz+JtS+/T00acHHDiIiIiIiIiIqvdL0Jjnj1uA0TcPJkyc5S5DczkzZyi7XCp8lPoMlu8cgB2zaymSmXJFnMVskC7NFMjBXJAuzRTIwVyQLs8XGreEx5CSLmbKVHVAfqw4Mxh9J7WCC4erKTLkiz2K2SBZmi2RgrkgWZotkYK5IFmYLsOldABGRt1NVoHGVzbipyhaEpMcDuEXvkoiIiIiIiIjI4Ni4JSK6noxTGNDkYzSI3IHgK4PBxi0RERERERERycalEgzOYrEgMjISFgvvanIvM2Ur6Pz3aBC5AwAghHkP0fAEM+WKPIvZIlmYLZKBuSJZmC2SgbkiWZgtzrg1PIvFgtjYWL3LIAMyU7Y0TXV+LUy8to4nmClX5FnMFsnCbJEMzBXJwmyRDMwVycJsccat4WmahsOHD5t6IWeSw0zZEvkatxBq0TtSmZkpV+RZzBbJwmyRDN6Wqy1bgIcfBv7+W+9KqKy8LVtkDMwVycJssXFreJqmITk52dQhJznMlK38s2y5VIJcZsoVeRazRbIwWySDt+Vq2TJg61Zg/Xq9K6Gy8rZskTEwVyQLs8XGLRHRdbnMuNU445aIiIjMxW53/T8RERF5Bhu3RETXkb9xyxm3REREZDZq3kshNm6JiIg8i41bg7NYLIiOjjb1GfhIDjNly7FUwraTnXHU7986V2NsZsoVeRazRbIwWySDt+XKcYSqygOPfJ63ZYuMgbkiWZgtwKZ3ASSXI+RE7mambKUGdsHCHVVx8FxTDO1aWe9yDM1MuSLPYrZIFmaLZPC2XDkatiZeYtAwvC1bZAzMFcnCbHHGreGpqoq9e/dC5cfj5GZmylaaXxv8sHcYDiQ34xsWycyUK/IsZotkYbZIBm/LFWfcGoe3ZYuMgbkiWZgtzrg1PCEEUlNTIYTQuxQyGDNlS1WBmuEH0Dx6HSpm1wRwq94lGZaZckWexWyRLMwWyeBtuXK8Xzbx+2bD8LZskTEwVyQLs8XGLRHRddmyT6Jrva/Rtd7X8FNvBhu3REREZCZs3BIREemDjVsiouuocmkmutZbkfsN10ogIiIik3G8/OHLICIiIs/iGrcGZ7FYUKdOHVOfgY/kMFO2hNAK/Zrcz0y5Is9itkgWZotk8LZcORq2dru+dVDZeVu2yBiYK5KF2eKMW8OzWCyIiorSuwwyIFNlS8v3LoWNW6lMlSvyKGaLZGG2SAZvy5VjiQTOuPV93pYtMgbmimRhtjjj1vBUVcWuXbtMfQY+ksNM2XKZZSuMP149mSlX5FnMFsnCbJEM3pYrR8PWS8qhMvC2bJExMFckC7PFxq3hCSGQkZFh6jPwkRymypZL45ZTTWQyVa7Io5gtkoXZIhm8LVc8OZlxeFu2yBiYK5KF2WLjlojouoSW710KZ9wSERGRyXDGLRERkT64xi0R0fXkNWtXH7wDkeUHo77O5RARERF5Ehu3RERE+mDj1uCsVisaNmwIq9WqdylkMGbK1incht/23IStJ7oioVkdvcsxNDPlijyL2SJZmC2SwdtyZc87TytPTub7vC1bZAzMFcnCbLFxa3iKoiA8PFzvMsiAzJStU7gNX+/O/ZozTeQyU67Is5gtkoXZIhm8LVeOhq2jgUu+y9uyRcbAXJEszBbXuDU8u92OrVu3ws5XWeRmZsqWqgIVg0+jZ8N5qGldpnc5hmamXJFnMVskC7NFMnhbrhyNW8649X3eli0yBuaKZGG2OOPWFFROESRJzJKtAPUkmkdvxNAW/4Wffx0AffQuydDMkivyPGaLZGG2SAZvypWjFC8qicrAm7JFxsFckSxmzxYbt0RE1xGvvIi4Vn/mfiM41YSIiIjMhScnIyIi0geXSiAiuh6XZi0bt0RERGQunHFLRESkDzZuDc5qtaJp06amPgMfyWGqbIl871I441YqU+WKPIrZIlmYLZLB23LFGbfG4W3ZImNgrkgWZouNW1Pw9/fXuwQyKNNki41bjzJNrsjjmC2ShdkiGbwpVzw5mbF4U7bIOJgrksXs2WLj1uBUVUViYqLpF3Mm9zNVtvI1axWYYLw6MlWuyKOYLZKF2SIZvC1XjjJMfFJvw/C2bJExMFckC7PFxi0R0XUp+Wfcco1bIiIiMhnOuCUiItKHTe8CiIi8X27jdskfY1CpfhvU1bkaIiIiIk/yVy4jvtou2LW24FtIIiIiz9F1xu26devQt29fVKtWDYqi4Ntvv73u76xduxYtWrRAQEAA6tati7lz50qvk4jM7WDmQPy4916sP9IHpzLi9S6HiIiIyKP+3WEcnur8GDpV/5/epRAREZmKro3b9PR0xMfH44MPPijR/kePHkXv3r3RpUsX7Ny5E48//jgeeOAB/PTTT5Ir9V1WqxWtWrUy9Rn4SA4zZWv3pRH4asfjOJ9elYcISmamXJFnMVskC7NFMnhbrrJygnL/bw/QuRIqK2/LFhkDc0WyMFs6H+fSq1cv9OrVq8T7z5w5EzExMZg2bRoAIC4uDr/99hv++9//IiEhQVaZPi87OxtBQUF6l0EGZJZsaRoQaEtHu9o/oUGIBcAAvUsyNLPkijyP2SJZmC2SwZtydTkrFACQkVNO50rIHbwpW2QczBXJYvZs+dTJyTZt2oTu3bu7bEtISMCmTZt0qsj7qaqK3bt3m/oMfCSHmbIVhCTEVNyLkW2m4OaK0/Qux9DMlCvyLGaLZGG2SAZvy5WSd3JWu2reGU9G4W3ZImNgrkgWZsvHVpY/ffo0Kleu7LKtcuXKSEtLQ0ZGRqEd+KysLGRlZTm/T0tLAwDY7XbY7XYAgMVigcVigaZp0PIdB+3YrqoqhBDX3W61WqEoivNy828HUCBoRW232WwQQrhsVxQFVqu1QI1Fbc8/pvyXZZQxGfF+8rUxOfbRNM3len15TEVt71fpHvToluYYeYHHDl8ckzffT47/G2lM16udY5I/JiFEgdp9fUxGvJ98cUyOnxeVMV8c0/Vq55jkjwlAgevVa0yKYkWrGr8AAOpV2AC7vT/vJx8eU/56jTKm4mrnmDw3psL6Dr4+JiPeT742pqL6Dr48JkVRUBo+1bi9Ea+//jomTZpUYPuOHTsQEhICAIiMjERsbCyOHj2K5ORk5z7R0dGIjo7GgQMHkJqa6txep04dREVFYc+ePcjIyHBub9iwIcLDw7Fjxw6XO6Vp06bw9/dHYmKiSw2tWrVCdnY2du/e7dxmtVrRunVrpKamYt++fc7tQUFBiI+Px7lz53DkyBHn9rCwMMTFxeHUqVM4efKkc7tjTMePH0dKSgq2b98ORVEMMSYj3k++OKbQ0NxD5pKSkpCUlGSIMRV1P1W0ZwPIfQNlz8lyXrcvj8lb76e9e/c6H7OCg4MNMSYj3k++OKbmzZtD0zTn86ERxmTE+8kXxySEQEpKCjIzMxEUFGSIMRnxfvK1MUVERODSpUsuj1l6jalevTjnBxNVg3YhMTGR95MPj0kIgczMTAAwzJgA491PvjampKQkl76DEcZkxPvJF8cUEJC7tvr58+dx/PhxQ4wpKCgIMTExKClF5G8p60hRFHzzzTcYMGBAkfvccsstaNGiBaZPn+7cNmfOHDz++OMuN3x+hc24rVGjBs6fP4/y5csD8J2O/I18cpKdnY0dO3agWbNmsFqthhiTEe8nXxyTquYeshAfH++cGeLrYypq+8k5XXHl0hUAQEg5C6qP2ujzY/LW+yk7Oxs7d+5Es2bNYLPZDDEmI95PvjgmIQR27NiB+Ph45z6+PiYj3k++OCZVVbFz5060aNECNpvNEGO6Xu0ck/wxOT5oyv+YpdeYVNWKQ++3AgBkaBGIf3w57ycfHpOqqti1axdatGgBRVEMMabiaueYPDOmovoOvjwmI95PvjimovoOvjwmRVGQnp6OsLAwpKamOnuTRfGpxu2zzz6L5cuX448//nBuGzp0KC5cuIAVK1aU6HrS0tJKfOMQEQHA8Y/bIz0td9ZtuXJAzdFbgVIe3kBERETkizIygKMf5jZu03Kq4l/Pfq9zRURERL6tNL1JXU9OdvnyZezcuRM7d+4EABw9ehQ7d+7EiRMnAADPP/88hg0b5tz/oYcewpEjR/DMM89g3759mDFjBhYuXIgnnnhCj/J9guPwPS/pz5OBmClbirj6SV3ucI0/Zr2YKVfkWcwWycJskQzelCtVBb7/cyQAYOepzvoWQ2XmTdki42CuSBZmS+fGbWJiIpo3b47mzZsDAJ588kk0b94cr7zyCoDctTMdTVwAiImJwQ8//ICVK1ciPj4e06ZNw8cff4yEhARd6vcFqqpi3759BaZrE5WVubKluX4rzDBmfZgrV+RJzBbJwmyRDN6UK00DNJF7CKgC/euhsvGmbJFxMFckC7Ol88nJOnfuXGzXfO7cuYX+zo4dOyRWRUSUjxBQ8hq3sze/hMo1K+IZxXqdXyIiIiIyBlUFVOF47WPeN85ERER60LVxS0Tk/QS2nx+Mv4+r+P34rWhYLhjg8rZERERkEpoGDGoyCwBQr+J2nashIiIyFzZuDU5RFAQFBUHhiZTIzUyTLcWCVf88g01bc7/VtOJ3p7IxTa7I45gtkoXZIhm8KVeqCpxLr4ZKIaewfO8wdNW7ICoTb8oWGQdzRbIwW2zcGp7VakV8fLzeZZABmSlbqgoo0NA+ZgVqRWiAeitg9de7LEMyU67Is5gtkoXZIhm8KVeaBqRnh6JSCHAxvaLe5VAZeVO2yDiYK5KF2dL55GQkn6ZpOHv2LDROEyQ3M022hIYA5QJCA1Mwpt0rGFB3IqBe0bsqwzJNrsjjmC2ShdkiGbwpV5oGWJXctW3tmo1HH/k4b8oWGQdzRbIwW2zcGp6maThy5IipQ05ymCZb9st4rMmteH/QrbnfCwDC4GPWkWlyRR7HbJEszBbJ4E25UlUgOvwQAKBd7RVs3Po4b8oWGQdzRbIwW2zcEhEVL1+TVkCBAADBMyoTERGROeR/r9y8+jo2bomIiDyIjVsiouIIDULkfqkJK2fcEhERkamo+T6vVhQBu12/WoiIiMyGjVuDUxQFYWFhpj4DH8lhmmwJOwRym7aasOQ2cTnjVhrT5Io8jtkiWZgtksGbcpW/cSuEwhm3Ps6bskXGwVyRLMwWG7eGZ7VaERcXB6vVqncpZDCmyZbQAAGowgpNc4yV71hkMU2uyOOYLZKF2SIZvClXmgbM2jQZAHD8YkOXRi75Hm/KFhkHc0WyMFts3Bqepmk4efKkqRdyJjlMk628pRKEsECDJW+NW4OPWUemyRV5HLNFsjBbJIM35UpVATXvw2uLorJx6+O8KVtkHMwVycJssXFreAw5yWKabOUti6AJC2b//jI+3TEFCKioc1HGZZpckccxWyQLs0UyeFOuNC1vnX+wcWsE3pQtMg7mimRhtgCb3gUQEXk1WzC2nOqLCxf9sOVEd1S6Aj5yEhERkWloGjD25ucBAJVDT7JxS0RE5EGccUtEVJyAivjqjwmYs+UFAOAJOYiIiMhU8jdqP9n8Il8LEREReRDnjRmcxWJBZGQkLBb26Mm9zJQtxxuUplU3IiIsA8hpDfiV17cogzJTrsizmC2ShdkiGbwpV5oGZNmDEGi7gtNpNWG3610RlYU3ZYuMg7kiWZgtNm4Nz2KxIDY2Vu8yyIBMky2hwYZM2Cw23P+v/6BSubPAlc+AsEZ6V2ZIpskVeRyzRbIwWySDN+VKVYEAJXfarSqsnHHr47wpW2QczBXJwmxxqQTD0zQNhw8fNvVCziSHabKVtg9v3XoL3u43CKpmhRAAhMHHrCPT5Io8jtkiWZgtksGbcqWqgJ81CwDQue63XOPWx3lTtsg4mCuShdli49bwNE1DcnKyqUNOcpgmW0KFEIAQFgiR95DJxq00pskVeRyzRbIwWySDN+Uqfwk9Gixg49bHeVO2yDiYK5KF2eJSCURExctr0qrCCiEUCAAQfMdCRERE5qDahfNrBYKNWyIiIg9i45aIqDh5M241zZr3PQCY99M+IiIiMhdNE9d8r1MhREREJsSlEgzOYrEgOjra1GfgIzlMk6282bWasEATlry+LaeayGKaXJHHMVskC7NFMnhTrjRhwSsrPgcAZOSU44xbH+dN2SLjYK5IFmaLM24NzxFyInczTbaEljvjVlydcSuEgKJvVYZlmlyRxzFbJAuzRTJ4U65U9eqRR4qiwW7XuSAqE2/KFhkHc0WyMFuccWt4qqpi7969UPnROLmZabKVb8btkj8exMe/vwItOEbnoozLNLkij2O2SBZmi2TwplxpGqCK3Pk+VkXlUgk+zpuyRcbBXJEszBZn3BqeEAKpqakQQlx/Z6JSMEu2hH9FbD7eHcnp1bDt7y4AANUPsOpcl1GZJVfkecwWycJskQzelCthv4LHbnkaAOBnzUKOed87G4I3ZYuMg7kiWZgtNm6JiIqllWuA9397w3UbZ5oQERGRWWjZqBJ6AgDw5uoZeOxmneshIiIyETZuiYiKkf+IjDoV/0RoQAq0jAZAYCX9iiIiIiLyEJHvE+vD5xvz5GREREQexMatwVksFtSpU8fUZ+AjOcySLU11HJKhYGiL/6J+5E7g4ptAhW56lmVYZskVeR6zRbIwWySDN+VKted2agUsABQeeeTjvClbZBzMFcnCbLFxa3gWiwVRUVF6l0EGZJpsnf4Znw19EX+ebgNN5D5ZCI1TTWQxTa7I45gtkoXZIhm8KVeOGbcKNPSK+wKqeq/OFVFZeFO2yDiYK5KF2QLM27I2CVVVsWvXLlOfgY/kMEu2NOcsEwWayD0lmaZyqoksZskVeR6zRbIwWySDN+Uq/wfWdzefDtXO10G+zJuyRcbBXJEszBZn3BqeEAIZGRmmPgMfyWGWbGl5s0w0YYVyzTZyP7PkijyP2SJZmC2SwZtyJa55s5z7ATbn//gqb8oWGQdzRbIwW3zGJSIqlqNJK4QFArkzbrlUAhEREZmFEK4fWGsmnvVERETkaWzcEhEVQ6h2AIAGa95JOQBVNe+nfURERGQuaWpNPLjwV+f3bNwSERF5DpdKMDir1YqGDRvCarXqXQoZjFmy5VjPVsAKKLkNW864lccsuSLPY7ZIFmaLZPCmXGmaghw14Or3bNz6NG/KFhkHc0WyMFuccWt4iqIgPDwciqJcf2eiUjBLtoRzPVsLfjs2EJ8njkdWcLyuNRmZWXJFnsdskSzMFsngTbnSNEATV9828gNs3+ZN2SLjYK5IFmaLjVvDs9vt2Lp1K+x2u96lkMGYJVs5tirYdaoD/k5tiD+TO2LlgSHI9qujd1mGZZZckecxWyQLs0UyeFOuArWTeLjDy87vOePWt3lTtsg4mCuShdniUgmmoPLFFUlihmxdKXcLpq29BeXLA5a8j7o0rfjfobIxQ65IH8wWycJskQzekiubdhH/qvUTAOCN1R+i9z2hOldEZeUt2SJjYa5IFrNnizNuiYiK4XiOsFqByqEn0CBqO5B5Rt+iiIiIiDzEsWzUmcs18NeZ1sjR/HWuiIiIyDw445aIqBiO2bVWK9C7wcdoFrUcQSmPAbhP17qIiIiIPMGxpq3IW+eWRx4RERF5DmfcGpzVakXTpk1NfQY+ksMs2Sp3dg5m39Ued970NjTkjlUIvmORxSy5Is9jtkgWZotk8KpcidzGbZXQ4+hWbzEUe5rOBVFZeFW2yDCYK5KF2WLj1hT8/Xk4E8lhhmwJNQd+lmzYLCoUxZK3zdxr7MhmhlyRPpgtkoXZIhm8JVdavim2w1u/AT/tnI7VkDt4S7bIWJgrksXs2WLj1uBUVUViYqLpF3Mm9zNLthyHB0KxQHDGrXRmyRV5HrNFsjBbJINX5Uq7pgbNvGf2NgKvyhYZBnNFsjBbbNwSERXLMcskt2lrcdlGREREZHjC9c2yuLaRS0RERNKwcUtEVBzHmxOLFchbKoFn5SAiIiKzOJHRDg8tWoP07PIA+AE2ERGRJ7FxS0RUjKuzSizOxi2XSiAiIiKzUDUbruSE4nJ2GACu9U9ERORJNr0LILmsVitatWpl6jPwkRxmyZZwzCpRrNh/8RYc+rsSBrVoqm9RBmaWXJHnMVskC7NFMnhTrhx9Wk3Lq0VwjVtf5k3ZIuNgrkgWZoszbk0hOztb7xLIoMyQrUxLDew72xIp2dVx7FIbLPtrBC75tdC7LEMzQ65IH8wWycJskQzekquK1j9wf9tXUS38GABA44xbn+ct2SJjYa5IFrNni41bg1NVFbt37zb1GfhIDrNk60zgYExZNQs7zw2AJe8R0+BD1pVZckWex2yRLMwWyeBNuQq1/o1Osd8BsOC/v76D89l19S6JysCbskXGwVyRLMwWl0ogIiqW4/nBagXK2ZIRE5EMW04FAFV1rYuIiIjII0Tui6F9yf/Cjn9uQW2ulEBEROQxbNwSERUjf+O2VeWv0bLBx/BPHwzgGV3rIiIiIvIIx0lZLbnrC5p40hMREZHHcakEEzDzIs4klxmyVSv9Tcy4oxtaV14IKLkPmULwHYtMZsgV6YPZIlmYLZLBa3KV97qnfqVEdIhZjiAk6VwQlZXXZIsMhbkiWcyeLTZuDc5ms6F169aw2Ti5mtzLLNlS1Mso558KP2sOoOQ+YQhN07kq4zJLrsjzmC2ShdkiGbwpV47XPYG2DIxp9woq+f2pc0VUFt6ULTIO5opkYbbYuDU8IQRSUlIghNC7FDIY02TLMbtWsThn3IIzbqUxTa7I45gtkoXZIhm8K1e5r3sUJe9bvg7yad6VLTIK5opkYbbYuDU8VVWxb98+U5+Bj+QwTbby1nVTFCsUx1IJnHErjWlyRR7HbJEszBbJ4FW50lwbt8IbaqIb5lXZIsNgrkgWZouNWyKiYjmbtC4zbtm4JSIiInPYeX4gxn3zI5Ku3JS3xbxvnomIiDyNjVsiomI4T0RmseZb45ZvWIiIiMgcMnOCkJIRiQwtAgBfBxEREXkSG7cGpygKgoKCoDgXpSJyD9Nky3l4oBVns27Cd3sewFmlq85FGZdpckUex2yRLMwWyeBNuXIenZr3ATbXuPVt3pQtMg7mimRhtgDznpbNJKxWK+Lj4/UugwzILNlKR00kXWiE7OBwnMluitW7myK2p95VGZdZckWex2yRLMwWyeBNuYoptxGNWm5E/bA1uHQJzg+1yTd5U7bIOJgrkoXZ4oxbw9M0DWfPnoXGkymRm5klW3+qT2LCis9wIvMWWPMmmph4XXTpzJIr8jxmi2RhtkgGb8pVtZA9uLXBfFzIqYcPNkzBodR/6V0SlYE3ZYuMg7kiWZgtNm4NT9M0HDlyxNQhJznMki1Hk9ZqBYJsl1G1/DH4a6f1LcrAzJIr8jxmi2RhtkgGr8qVsAMATme3wObjt+J8Rk2dC6Ky8KpskWEwVyQLs8XGLRFRsRzPD1YrEFvuF7zZ5w7EiTf0LYqIiIjIU0TuiyFL3qFHdruexRAREZkLG7dERMVoaRmP/w7ogxpBm6BY8h4yhXk/7SMiIiKTyXvdUyngEFrV+AUVA47oXBAREZF5sHFrcIqiICwszNRn4CM5zJKtAJxDxeDT8LPmAEruQ6bCsylLY5ZckecxWyQLs0UyeFOuFOS+7qkWsAXjOj6DhuGrda6IysKbskXGwVyRLMwWYNO7AJLLarUiLi5O7zLIgEyTrbwmrWKxAFruIYKCM26lMU2uyOOYLZKF2SIZvClXjsat8z0zP8D2ad6ULTIO5opkYbY449bwNE3DyZMnTb2QM8lhmmzla9xaLJxxK5tpckUex2yRLMwWyeBNuRJ5NVyd7MTXQb7Mm7JFxsFckSzMFhu3hseQkyxmyZaCvDcrFiugcMatbGbJFXkes0WyMFskgzfl6qfDozH++yU4KfoA4AfYvs6bskXGwVyRLMwWl0ogIiqeY8atYgWslrxJJuZ90iAiIiJzuZRVAWcuVYDdEoEAAJxxS0RE5DmccUtEVJx8SyWkixr4ad9QHM9K0LkoIiIiIs9Q8/q0FlvenB+NjVsiIiJP4Yxbg7NYLIiMjHSuzUnkLmbJVqq9JlJTrdBCg3FJxGLe9idxTxzQS+/CDMosuSLPY7ZIFmaLZPCmXMVXXomwKgdQQdmDTFw9WRn5Jm/KFhkHc0WyMFts3BqexWJBbGys3mWQAZklWyvP/xff/AA8/DBgzV3iFiZeXkc6s+SKPI/ZIlmYLZLBm3LVOHIdmlf+EXZrL8ze/DKuWGIwUu+i6IZ5U7bIOJgrkoXZ4lIJhqdpGg4fPmzqhZxJDrNky3l4oAWwWbJRMfg0AsRZfYsyMLPkijyP2SJZmC2SwZty5ZhhmxnQGL8e7o/D55vqXBGVhTdli4yDuSJZmC02bg1P0zQkJyebOuQkh1my5WjcWq1AlN8u/HdAH3QLe1TfogzMLLkiz2O2SBZmi2Twplw5GrcWa+5bR5UrJfg0b8oWGQdzRbIwW1wqgYioWP0q34+OfdJwyToNUHLXSuDabkRERGQeuW+WgyzJaFp1I3KslQDU17ckIiIik+CMWyKiYoTZjqNa+aOwKnYoeQuiCyF0roqIiIjIMxSR+4F1ePY6PN1lHG6tO1ffgoiIiEyEM24NzmKxIDo62tRn4CM5TJMtkTvLxGK15i50C864lck0uSKPY7ZIFmaLZPCmXFmU3Nc9ijUg9/98HeTTvClbZBzMFcnCbLFxa3iOkBO5m1myZYE99/9WCzSLY6kE866vI5tZckWex2yRLMwWyeBNuXI0ahWLn8v35Ju8KVtkHMwVycJscakEw1NVFXv37oXKswiQm5knW3kzbi1W50k5IIw+Zv2YJ1fkacwWycJskQzelKtPNr+Al5Z/iczwzgDYuPV13pQtMg7mimRhtjjj1vCEEEhNTeWanOR2ZsmWY3atYrFAUTjjVjaz5Io8j9kiWZgtksFbciUEkHy5GgBA8T8AIHfpBE1zriBFPsZbskXGwlyRLMwWG7dERMVyzCqxWK1QreFYc2gQqtcO5bmUiYiIyPC0fJ9V2/xyP8Bm45aIiMhz2LglIipGanZVpF2xQ7HaYLdVwJwtL6BzMDBA78KIiIiIJFNV4JY6SxEedA7+am4X15rXuCUiIiL52Lg1OIvFgjp16pj6DHwkh1my9cEf32L7dmBKm6szS/hmRR6z5Io8j9kiWZgtksFbcqVpQNd6X6NOxT9h9XscX2x7GuevVEYvO+Dvr2tpdIO8JVtkLMwVycJssXFreBaLBVFRUXqXQQZklmw5mrQ2G2BRNIT4X4I/BIBwPcsyLLPkijyP2SJZmC2SwVtypWm5r38AwFI+Bj/v7+DcTr7JW7JFxsJckSzMFmDelrVJqKqKXbt2mfoMfCSHWbLlGJ7FAgRbkvDhHd0wun4ffYsyMLPkijyP2SJZmC2SwVtyZbcDFktuDTa/q28dGXff5S3ZImNhrkgWZoszbg1PCIGMjAxTn4GP5DBFttRMjG58Py5Wt8Jm+Rha3uEZCjjNRBZT5Ip0wWyRLMwWyeAtucqdcZv7ZtmKDDSI3IFsNQCq2kjXuujGeUu2yFiYK5KF2WLjloioaJodVUL2I9wCpFoBi9Xq+IGuZRERERF5Qv6lEpRL+/DSrZ/gxMV6UNWvdK6MiIjIHHRfKuGDDz5A7dq1ERgYiLZt22LLli3F7j99+nQ0aNAAQUFBqFGjBp544glkZmZ6qFoiMhcNyPtgT7HYoHDGLREREZmIqubOuFUUQLH4A0ru9yY+YpWIiMijdG3cLliwAE8++SQmTJiA7du3Iz4+HgkJCTh79myh+3/55Zd47rnnMGHCBOzduxezZ8/GggUL8MILL3i4ct9htVrRsGFDWJ0zBYncwxTZ0uxwHJFhtSqujVsTH6ohkylyRbpgtkgWZotk8JZcaRpgVRwL/vtDAWC12HlyMh/mLdkiY2GuSBZmS+fG7TvvvIPRo0dj5MiRaNSoEWbOnIng4GB88sknhe6/ceNGdOjQAUOHDkXt2rVx66234u67777uLF0zUxQF4eHhUBRF71LIYEyRLaFBABCwwGpTnEsliHz/JfcyRa5IF8wWycJskQzekitVBd5b/xZe/2U2UL4+oOQ2cu12XcuiMvCWbJGxMFckC7Ol4xq32dnZ2LZtG55//nnnNovFgu7du2PTpk2F/k779u3xxRdfYMuWLWjTpg2OHDmC5cuX47777ivyerKyspCVleX8Pi0tDQBgt9thz3vFYbFYYLFYoGkatHwfHzu2q6rqshByUdutVisURXFebv7tAAqcBa+o7TabDUIIl+2KosBqtRaosajtjhqzs7OxY8cONGvWDFar1RBjMuL95ItjUlUVu3fvRnx8PCyWq58B+fKYCmy3ZwMC0IQF+T/gEwKw52TBYgvwvTFdU6O33U/Z2dnYuXMnmjVrBpvNZogxGfF+8sUxCSGwY8cOxMfHu3xi78tjMuL95ItjUlUVO3fuRIsWLWCz2QwxpuvVzjHJH5Omac4jEh216TGmnBwFxy82QFCQgF35Awpyl0qw2zUAvJ98cUyOM7S3aNECiqIYYkzF1c4xeWZMRfUdfHlMRryffHFMRfUdfHlMpW1C69a4PXfuHFRVReXKlV22V65cGfv27Sv0d4YOHYpz587h5ptvhhACdrsdDz30ULFLJbz++uuYNGlSge07duxASEgIACAyMhKxsbE4evQokpOTnftER0cjOjoaBw4cQGpqqnN7nTp1EBUVhT179iAjI8O5vWHDhggPD8eOHTtc7pSmTZvC398fiYmJLjW0atUK2dnZ2L17t3Ob1WpF69atkZqa6nI7BAUFIT4+HufOncORI0ec28PCwhAXF4dTp07h5MmTzu2OMR0/fhwXLlzA9u3boSiKIcZkxPvJF8cUGhoKVVWRlJSEpKQkQ4zp2vvJz34OIXY7VNUGqwU4k3wOuw90R2h5DWe3bUN0jdo+NyZvv5/27t2LlJQUbN++HcHBwYYYkxHvJ18cU/PmzZGTk+N8PjTCmIx4P/nimIQQSElJQWZmJoKCggwxJiPeT742poiICOfzoeMxS48xpadXBFAPdns29vy5FwGaCqHl4Nixv1GnTi3T30++OCYhhPMcMUYZE2C8+8nXxpSUlOTSdzDCmIx4P/nimAICAqCqKs6fP4/jx48bYkxBQUGIiYlBSSkif0vZg06dOoXq1atj48aNaNeunXP7M888g19//RWbN28u8Dtr167FXXfdhf/85z9o27YtDh06hMceewyjR4/Gyy+/XOj1FDbjtkaNGjh//jzKly8PwHc68jfyyYljZnOLFi1cPvny5TEZ8X7yxTGpqoodO3agRYsWLp98+fKYCmzPSMLuWaNwOSMQlW7/HikpGv79bwX16gl88YXmm2O6pkZvu5+ys7Oxfft258w1I4zJiPeTL45JCIHExETn86ERxmTE+8kXx6SqKrZv345WrVpxxi3H5LYxaZqGrVu3ujxm6TGmY8cU/O/lbxBaLgvPvVYXR+aPxYXLEQgftAING/J+8sUxOR6zWrduzRm3HJPbxlRU38GXx2TE+8kXx1RU38GXx6QoCtLT0xEWFobU1FRnb7Ious24rVSpEqxWK86cOeOy/cyZM6hSpUqhv/Pyyy/jvvvuwwMPPAAAaNKkCdLT0/Hggw/ixRdfdLkTHQICAhAQEFBgu81mg83mOnzHHXat/G/wSrL92su9ke2KohS6vagai9vuCHT+y/P1MRnxfvLlMZVmf18Zk8ViAUJr4MXVK5GcDMwbDNhsFigKoGkKbLarv+dTYyrhdr3G5HiCtFqtzuvy9TEZ8X7yxTHZ7fZCnw8B3x1Tcds5Js+OSVEU5z+jjOlGt3NM7hmTpmlFPmZ5ckyKAtwRPwNhwWmw2f6HHw6OxZnzIRg+0FLqMRW33Vfvp+K2e/OY8h95UhhfHJMDx6TfmAp7zPL1MRnxfvLlMbljrN40ppLS7eRk/v7+aNmyJVavXu3cpmkaVq9e7TIDN78rV64UuOEdN65OE4e9ntVqRdOmTYsMIdGNMku2HB+MWSyA1SJgs2TDhozchW7J7cySK/I8ZotkYbZIBm/JlaoCFiVvxlJARaw5PhKrDgxGvklM5GO8JVtkLMwVycJs6TjjFgCefPJJDB8+HK1atUKbNm0wffp0pKenY+TIkQCAYcOGoXr16nj99dcBAH379sU777yD5s2bO5dKePnll9G3b19T34nX4+/vr3cJZFBmyJajcWu15jZvP7mrPfz9AeSsAvzD9SzNsMyQK9IHs0WyMFskgzfkKrdxq0JRAChWON5yXXMkKPkYb8gWGQ9zRbKYPVu6zbgFgCFDhmDq1Kl45ZVX0KxZM+zcuRMrVqxwnrDsxIkTLic9eumll/DUU0/hpZdeQqNGjXD//fcjISEBs2bN0msIXk9VVSQmJhZYZ4OorEyRrfQTeLLD/RjX8RlYrYDVlu/sj4JTTWQwRa5IF8wWycJskQzekitNAyyWvBqEhhph+xAT8ReuWfKPfIi3ZIuMhbkiWZgtnWfcAsCjjz6KRx99tNCfrV271uV7m82GCRMmYMKECR6ojIhMz56O2IhdCA+Ics64FbBACA0Q5n3iICIiInNQVcCqqIACICcNj7UejoxMKzK1gieSJiIiIvfTdcYtEZFXy5tVq2rW3DVurblf5/8ZERERkVFpGqAoGhQAsPhBUXKXTlDtXOufiIjIE9i4JSIqilAhBKCJ3DXdrFZACEvueck445aIiIgMTlM1KBC5M24t/rn/B6CqbNwSERF5gu5LJZBcVqsVrVq14snbyO1Mka285qwmLM6lElThGC9n3MpgilyRLpgtkoXZIhm8JVeqquDNX2YgurqG1/zDHH1baKodgLlPFuOrvCVbZCzMFcnCbHHGrSlkZ2frXQIZlNGzJYTmnHFrseStceucccvGrSxGzxXph9kiWZgtksEbcqUJBX+eboMjaf8CLIFQ8jq3msbXQb7MG7JFxsNckSxmzxYbtwanqip2795t6jPwkRxmyJamXp1xa7PlLpWw7WQnbD/VDbAG6lydMZkhV6QPZotkYbZIBm/JlePqLRYAytXZTpqdefdV3pItMhbmimRhtrhUAhFRkTRNQaY9GJk5wc4Ztx9tmoTgYOBu9m2JiIjI4DR7NrrVW4rq1SyA0vfqjFsTv4EmIiLyJDZuiYiKYA9rjQcXrgMA9Hg5d8YtkHuGZSIiIiLDUzMxvPUbCAoCgH7YdGYUDh+1oXWcn96VERERmQIbtyZg5kWcSS6jZyt/g9ZxcrLc7QIQgHPaCbmV0XNF+mG2SBZmi2Twhlw5ZtYqCgDFgg3Jj2DTH0CzO/Sti8rGG7JFxsNckSxmzxYbtwZns9nQunVrvcsgAzJDtvIfBehYKuGd/v0QWe4UkPYZENZIv+IMygy5In0wWyQLs0UyeEuuhPNTbAVQLM6jj7hSgu/ylmyRsTBXJAuzxZOTGZ4QAikpKRBC6F0KGYwpsnVhB8Z3+TeGNH8PFsvVpRIEAAiulyCDKXJFumC2SBZmi2TwllwJLbdDK/LeNkYEnkD1sCPQ7OY+w7cv85ZskbEwVyQLs8XGreGpqop9+/aZ+gx8JIcZsiUyk9Gk6ibEVvzTOeNWExZA5J+BQu5khlyRPpgtkoXZIhm8JVeOpRIEcj+9vrfOfXi992D4a6f1LIvKwFuyRcbCXJEszBYbt0RERXI0Zx1vVqzWvMYtAE0z7xMHERERmYN2zWsh5/9N/AaaiIjIk9i4JSIqwtU3K7kPlbkzbnPfsGgqZ9wSERGRsQnVdakELe8UKRobt0RERB7Bk5MZnKIoCAoKgqIoepdCBmOGbGmqPfcLJbdZ61wqAYBqV+GnV2EGZoZckT6YLZKF2SIZvCVXmaIS/vvrO2gab8G/ASBvxq3GJaN8lrdki4yFuSJZmC02bg3ParUiPj5e7zLIgMyQLcdSCY5ZtrlLJVhdfkbuZYZckT6YLZKF2SIZvCVX2VowdvxzC8Lq5X4v8j7MhmbXrygqE2/JFhkLc0WyMFtcKsHwNE3D2bNn+ak4uZ0ZsqU6l0O4ulTCweR47E5qD9USpl9hBmaGXJE+mC2ShdkiGbwlV44VESzOd415SyZwqQSf5S3ZImNhrkgWZouNW8PTNA1HjhwxdchJDjNkS2gCAgqg5D5UWq3Ap1ufxdQ178EeEqdzdcZkhlyRPpgtkoXZIhm8JVdWNRUdYpajbvm1AADhWOOWJ2n1Wd6SLTIW5opkYba4VAIRUZHSwm7H8C9vR6VKAoMB5F9Wx8TPG0RERGQSgeIkxrR7BZaQqgA643BWP/y1NxWVW0fqXRoREZEpsHFLRFQEx1GAVmtux1ZR8k5Qpl39GREREZFROZZEEHkHav6VOQLzdwCjmutZFRERkXlwqQSDUxQFYWFhpj4DH8lhhmw5ZtVarVe3Pd1lHGYP6QDruV/0KcrgzJAr0gezRbIwWySDt+Tq6slYr56oFeAH2L7MW7JFxsJckSzMFmfcGp7VakVcHNfiJPczQ7aCUn/BuFt+RFJ2WwB3AAD8bVnws2ZBqDybsgxmyBXpg9kiWZgtksFbcuVo3Aolt2MbbLuASiGZgFoBQJCOldGN8pZskbEwVyQLs8UZt4anaRpOnjxp6oWcSQ4zZMuWdQytotegRtg+5zaRN+PEyOPWkxlyRfpgtkgWZotk8JpcibwPqvNO1HpLuafwTv9+qGzdomNRVBZeky0yFOaKZGG22Lg1PIacZDFDthxnTFaU/A+VuV8LA49bT2bIFemD2SJZmC2SwVty5Zxxm/fBtaOB63iNRL7HW7JFxsJckSzMFhu3RERFu/bNCq6enEPj4m5ERERkcFffKOe9bcxbMsE5E5eIiIikYuOWiKgIIm82iWNdN+BqE5czbomIiMjoLuTUwwcbpmB3xiO5G5TcU6TwdRAREZFn8ORkBmexWBAZGQmLhT16ci8zZEsUu1QCZ9zKYIZckT6YLZKF2SIZvCVXV9RIbD5+K+o6XvY4Pszm6yCf5S3ZImNhrkgWZouNW8OzWCyIjY3VuwwyIDNkSwjHbJKrM25Pp8dCUS+hpaWSPkUZnBlyRfpgtkgWZotk8JZcOVaGsjpeCin8ANvXeUu2yFiYK5KF2eJSCYanaRoOHz5s6oWcSQ4zZOvqUglXHyp/PPQIpqz6COkht+hVlqGZIVekD2aLZGG2SAZvyVUgzqBVjV8Q5bcTAKBYuMatr/OWbJGxMFckC7PFxq3haZqG5ORkU4ec5DBDto4FPIZR8zfit9MPObc5jtDgucnkMEOuSB/MFsnCbJEM3pKrSpYdGNfxGdwU+BEA4LylPVYfvAPns2J0rYtunLdki4yFuSJZmC0ulUBEVCRVs8KuWV0+4nIcKmji5w0iIiIyCeeyUXlHH52y3oFPtwJdu+pYFBERkYlwxi0RUREczVnr1SVuMbDh2/jg9h4IvbhQn6KIiIiIPEW4nqiVH2ATERF5FmfcGpzFYkF0dLSpz8BHcpghW5GZ32JM++1ID+0BoCMAINB2BaEBFwH1ir7FGZQZckX6YLZIFmaLZPCaXGkqoABCye3Y+lszEBqQCYsWCCBI39rohnhNtshQmCuShdnijFvDY8hJFjNkq5y6Cx1qL0dU8JGrGx0nKuNUEynMkCvSB7NFsjBbJIO35MqxVIKS17itZ8898qhphQV6lkVl4C3ZImNhrkgWZouNW8NTVRV79+6FyjMpkZuZIlta3tiUqw+VArlvXDTNwOPWkSlyRbpgtkgWZotk8JpcCdfXQo4GLvg6yGd5TbbIUJgrkoXZYuPW8IQQSE1NhRBC71LIYMyQLeGcVZtvkVvOuJXKDLkifTBbJAuzRTJ4S66Eo0Frsbr+X5j3DbSv85ZskbEwVyQLs8XGLRFR0fIOD7RY8z9U5n7tPMsyERERkUGdSG+D2Ztfxj/KQACAkte4VWDXsywiIiLT4MnJiIiKInLflAiXGbe5XwvOuCUiIiKDO5dZB78eroO2eS+FFL4OIiIi8ijOuDU4i8WCOnXqmHohZ5LDDNlynpDDcrVxm5ZTBccuxCFLidSrLEMzQ65IH8wWycJskQzekitHf9bqeCnknHHLpRJ8lbdki4yFuSJZmC02bg3PYrEgKirK1CEnOUyRLWfj9uoYE8/dg1dWfI4kv8F6VWVopsgV6YLZIlmYLZLBW3JV3vo3mlbdiHI4AiDfh9lc49ZneUu2yFiYK5KF2WLj1vBUVcWuXbtMfQY+ksMM2dqa/R888vUqHMno5dzmmHHCIwTlMEOuSB/MFsnCbJEM3pKr+qEr8HSXcagp5gMAsgIa4rejvXEyLU7XuujGeUu2yFiYK5KF2eIat4YnhEBGRoapz8BHcpghW9lqMC5nBSP/EreOD/rYuJXDDLkifTBbJAuzRTJ4T67y3ijnzbRND+2OjzZ1R2ysjiVRmXhPtshImCuShdnijFsioiI5PtSz5mvctor8Cu/074vojBn6FEVERETkKXmfVDtOSsYjj4iIiDyLM26JiIpQ1/YFRrY5geCAgQByDwkMsl1GpaAkQEvRtTYiIiIi6fLWsnWs92+1aPCz5kDRFAD+OhZGRERkDpxxa3BWqxUNGzaENf+UQSI3MEO2qlp/RZe6SxBqTbq6MW/GiRCcaiKDGXJF+mC2SBZmi2Twnlzlvd7Je/0TkTYPs4d0wKAG/9GxJioL78kWGQlzRbIwW5xxa3iKoiA8PFzvMsiATJEtxywTa77PuByL3LJxK4UpckW6YLZIFmaLZPCaXOW9FnI0bhXnG2e+DvJVXpMtMhTmimRhtjjj1vDsdju2bt0Ku92udylkMGbIlnLN4YEAoIBnJ5PJDLkifTBbJAuzRTJ4S66UvJOTWfJeC1ksNpft5Hu8JVtkLMwVycJsccatKagqX1iRHIbPlnA9IUfuN7lvXLhUgjyGzxXphtkiWZgtksEbcrXnXDfsOlgDt8c3AnB1xq3jw23yTd6QLTIe5opkMXu22LglIiqSY8bt1catc/Yt37AQERGRwR252AL797dAn6Dc7x2vgyyKeWc+EREReRKXSiAiKkohSyVkiXCcSotBhhapV1VEREREHuFYGcqxtK3j5DBcKoGIiMgz2Lg1OKvViqZNm5r6DHwkhxmypeSdeMOSb4xHMm/Dc8sW4U/1cZ2qMjYz5Ir0wWyRLMwWyeAtuYoIOIYGkTvgr50FACjWvAM2uWSUz/KWbJGxMFckC7PFpRJMwd/fX+8SyKCMnq2lSbOwZnU27nsgwrnNMfnW5MvsSGX0XJF+mC2ShdkiGbwhV51rfILGTZcjOPMxAPdBBFZB4t9d8c+lBnqXRmXgDdki42GuSBazZ4szbg1OVVUkJiaafjFncj8zZOtyTgTOX6kCi+3qEwUbt3KZIVekD2aLZGG2SAZvyZVzSYS89f5FeAu8t/4tfLfnfh2rorLwlmyRsTBXJAuzdYMzblNSUrBlyxacPXsWmuZ6mMywYcPcUhgRkd4cD2/5lrhF7eBf8XrvD1De1gzAC3qURUREROQZeUsiOE7U6jhS1cTvn4mIiDyq1I3b77//Hvfccw8uX76M8uXLQ1EU588URWHjlogMo2XYR6jUIh1Byj0AogAAAZbLqB52BHalsr7FEREREUnmmHFryfsU27nEoNCgaRaXD7eJiIjI/Ur9VPvUU09h1KhRuHz5MlJSUnDx4kXnvwsXLsiokYhIF43LL0HPhvMQZE1xblMc71AEp5oQERGRsTkat44Zt34pG/HZ0FaY1HM4NJ6fjIiISLpSN27/+ecfjBs3DsHBwTLqITezWq1o1aqVqc/AR3KYIVvXruvm8rUQni/IBMyQK9IHs0WyMFskg/fk6pqlEmy5bx8tFpWNWx/lPdkiI2GuSBZm6wYatwkJCUhMTJRRC0mSnZ2tdwlkUEbPlvPwQOvVh0qLJW95GM64lcbouSL9MFskC7NFMnhDrq7OuLXk/T/3jbNFUWG361YWlZE3ZIuMh7kiWcyerVI3bnv37o3x48dj4sSJ+Prrr7F06VKXf+RdVFXF7t27TX0GPpLDDNlS8maZWPJ9uqc4Z9xymokMZsgV6YPZIlmYLZLBW3K18XhfLNo1FmpIHADAYsubeatwxq2v8pZskbEwVyQLs3UDJycbPXo0AGDy5MkFfqYoiqlvTCIyGsfhgVc/41IUi8vPiIiIiIxq6989cPkyMLJc7veOQ1UtFhV820dERCRfqRu3Gj9aJSKTsCD3GEBLvjVuVSUYF65Uhl9QhF5lEREREXmE462f4zNsx1FIVoWNWyIiIk8odeOWfI+ZF3EmuYyfrYJLJVxQ2uC1b3/AwIFAW73KMjjj54r0wmyRLMwWyeANuYoMPgYEZMKqVQcQCihWKEruGrds3Poub8gWGQ9zRbKYPVulXuMWAH799Vf07dsXdevWRd26ddGvXz+sX7/e3bWRG9hsNrRu3Ro2G3v05F5myNaM3Qvx/A8LofldnV3rmHHCNytymCFXpA9mi2RhtkgGb8nVyFaT8GqvexFwZVvuBr9Q7DndHn+dacXXQj7KW7JFxsJckSzM1g00br/44gt0794dwcHBGDduHMaNG4egoCB069YNX375pYwaqQyEEEhJSYEQQu9SyGDMkK3k9Jr4J7UOLNarTxKOD/u4aowcZsgV6YPZIlmYLZLBW3JlQW531rlsVHA03tv4Hj7aNImvhXyUt2SLjIW5IlmYrRto3L722mt46623sGDBAmfjdsGCBXjjjTfw6quvyqiRykBVVezbt48njSO3M0O2HEPLf2RGuGUfJvUchm4Vn9OnKIMzQ65IH8wWycJskQzekCshAEXJa9zmezHkOPrIbtejKiorb8gWGQ9zRbIwWzfQuD1y5Aj69u1bYHu/fv1w9OhRtxRFRKQ7TUW3GjNwe9OZsFmynZv9LFcQE/EXKvgd1LE4IiIiIrmEACxK7rRaJV/jlkcfEREReU6pF4moUaMGVq9ejbp167psX7VqFWrUqOG2woiIdCVy0KnGJ8iKAjKUYQD8AVw9VFARfLdCRERExqWquSchAwDFMc024zTe7XMnMrP9oKq/6FgdERGROZS6cfvUU09h3Lhx2LlzJ9q3bw8A2LBhA+bOnYt3333X7QVS2SiKgqCgICiKoncpZDCGz5bQ4FhFx5JvIXTFkjteBeY9VEMmw+eKdMNskSzMFsngDbnStKszbp1n9FYsCLBlQGh2npzMR3lDtsh4mCuShdm6gcbtww8/jCpVqmDatGlYuHAhACAuLg4LFixA//793V4glY3VakV8fLzeZZABGT5bwg5H59ZivbqqjOI4OQc441YGw+eKdMNskSzMFsngDblSVcBiuWaNW8UKRQGsFpWNWx/lDdki42GuSBZm6wYatwAwcOBADBw40N21kASapuHcuXOoVKkSLJZSL2lMVCTDZyvfjFurS+M292uFjVspDJ8r0g2zRbIwWySDN+RK04BVB+5EaEAKngyunLtRsQBK7usgTRUAzDsDyld5Q7bIeJgrkoXZuoGTk5Fv0TQNR44cgcazB5CbGT5bQit+xq3gNBMZDJ8r0g2zRbIwWySDN+RK04Cf9g3F4l2PwBpSJXejYnW2alWVmfdF3pAtMh7mimRhtko44zYiIgIHDhxApUqVUKFChWLXlrhw4YLbiiMi0o1QIQSgCSv88z1SKlYbLmeHwWYL0682IiIiIsns9qtfOyc5KTbnJFvVrgKwXvtrRERE5EYlatz+97//RWhoqPNrMy8KTEQmkTejVhVW5D8iI8tWB88sXo02bYAZOpVGREREJJumAZVDT8CiCChaVcDq7zLjVqh2AP56lkhERGR4JWrcDh8+3Pn1iBEjZNVCEiiKgrCwMDbbye0Mn62AinhtzTxcvizw9qCrmx3n5uAJOeQwfK5IN8wWycJskQzekCtNA165dRTKB6YAGQuBcnUAxYrjac2RkmpBDb4W8knekC0yHuaKZGG2bmCN2+3bt+OPP/5wfv/dd99hwIABeOGFF5Cdne3W4qjsrFYr4uLiYLXyMCZyL8Nny+KH4xcb4PjFhrDl+4jLMfvWxEvsSGX4XJFumC2ShdkiGbwhV6oKWBQtb2mEvBdAFhs++fN/mLJqFnJEsG610Y3zhmyR8TBXJAuzdQON2zFjxuDAgQMAgCNHjmDIkCEIDg7GokWL8Mwzz7i9QCobTdNw8uRJUy/kTHKYIVuOoeVfKsEf5/FC9zG4u+5YfYoyODPkivTBbJEszBbJ4A250jTAarHn9m2Vq2+YHa+LePSRb/KGbJHxMFckC7N1A43bAwcOoFmzZgCARYsWoVOnTvjyyy8xd+5cfP311+6uj8qIISdZDJ+t7ItIqPcJetRfgPwf7vlZc9AwahtqhO7QrzYDM3yuSDfMFsnCbJEM3pAr54xbwKVx6zgSiZH3Td6QLTIe5opkYbZKuMZtfkII5w22atUq9OnTBwBQo0YNnDt3zr3VEZF57X8PCKwM1Bqiz/VnnsOgm2YgNSMCVuvVGix500ws4DQTIiIiMi5NAxRFg6IAUK7O93msWV9k1b+C7Ox5AKroVh8REZEZlLpx26pVK/znP/9B9+7d8euvv+LDDz8EABw9ehSVK1d2e4FEZEJpB4Cjn+V+rVfjFhoEAFVYXZZKUCxW58+JiIiIjErTAKui5q5xm69xG2xLhZ//FZxT7foVR0REZBKlXiph+vTp2L59Ox599FG8+OKLqFu3LgBg8eLFaN++vdsLpLKxWCyIjIx0zhIkchep2bKVc/9llpKmqoAANGF1WSrBYs0drwIBCKFTdcbFxyyShdkiWZgtksEbcpW7VIKat8bt1fk+ArkvjDQucuuTvCFbZDzMFcnCbN3AjNumTZvijz/+KLD97bffNvVZ3ryVxWJBbGys3mWQAUnNli3k6tdCc5nl4SmONyNCWFwat44Zt0I4auPjnjvxMYtkYbZIFmaLZPCGXKl2gR/33ovQUA31rYHO7c7GrcbGrS/yhmyR8TBXJAuzdQMzbv/++2+cPHnS+f2WLVvw+OOP47PPPoOfn59bi6Oy0zQNhw8fNvVCziSH1GxZ8j2WaPochifyxqVeM+PWasv3sCn4hsXd+JhFsjBbJAuzRTJ4Q640oeCrHY/ju/1PArZg53aR96G14Ixbn+QN2SLjYa5IFmbrBhq3Q4cOxZo1awAAp0+fRo8ePbBlyxa8+OKLmDx5stsLpLLRNA3JycmmDjnJITVb2SlXvxY57r/8ElDzzbh1XePWghzNH9lqILjOrfvxMYtkYbZIFmaLZPCGXDn6stceVMmlEnybN2SLjIe5IlmYrRto3O7Zswdt2rQBACxcuBA33XQTNm7ciHnz5mHu3LmlLuCDDz5A7dq1ERgYiLZt22LLli3F7p+SkoKxY8eiatWqCAgIQP369bF8+fJSXy8RebHM01e/1mnGrWbPfTOiaq4zbhVbMO6fvxHPrf4NyHfYIBEREZGRaKqGSiGnUCHojMu6/o7GreBSCURERNKVeo3bnJwcBAQEAABWrVqFfv36AQAaNmyIpKSkUl3WggUL8OSTT2LmzJlo27Ytpk+fjoSEBOzfvx9RUVEF9s/OzkaPHj0QFRWFxYsXo3r16jh+/DjCw8NLOwwi8mYi36dpmj4zbu0hDfGflR8jR/VH1/xLJeR9beIP/IiIiMgEhP0K3unfD/7+ALSNgNUfAHA+ux5Sz0fAUj1A3wKJiIhMoNSN28aNG2PmzJno3bs3Vq5ciVdffRUAcOrUKVSsWLFUl/XOO+9g9OjRGDlyJABg5syZ+OGHH/DJJ5/gueeeK7D/J598ggsXLmDjxo3O9XRr165d2iGYisViQXR0tKnPwEdySM2Wo1kbXBMIKN3jirvYEYoDyc0AwGWpBMfXPDpQDj5mkSzMFsnCbJEM3pArTc39lFpR4HIy1hVn38FPPwFP3aRTYVQm3pAtMh7mimRhtm5gqYQ333wTs2bNQufOnXH33XcjPj4eALB06VLnEgolkZ2djW3btqF79+5Xi7FY0L17d2zatKnQ31m6dCnatWuHsWPHonLlyrjpppswZcoU51qUVBBDTrJIzZbIWx7BVi7v3YLnOWbUWiyuJVgtAk92fhxjWo4Dci7pUpuR8TGLZGG2SBZmi2TwhlwJx3JVCgDlah2Oo4/4Fsw3eUO2yHiYK5KF2bqBGbedO3fGuXPnkJaWhgoVKji3P/jggwgODi7mN12dO3cOqqr+P3t3HiZHVbYN/K6q7p59zSzZ94QkhJCEhH3fZRMjAoKCgCAiLwr6qqCsr7K6i7ggCH6KbCogIPtOWBISEkISsk0ymZlMZt97uruqzvdHdffMZHqbmTq9VN+/6/IKqa7uOsd+crrqqVPPQXV19ZDt1dXV2Lx5c8T37NixA6+99houvPBCPP/889i2bRuuuuoqBAIB3HzzzRHf4/P54PP5wn/v6uoCAOi6Dl23TkZUVYWqqjBNc0jB49B2wzAgBtV1irZd0zQoihL+3MHbAQxLMEfb7nK5IIQYsl1RFGiaNqyN0baH2hgIBLBlyxbMmTMnvC3T++TE7ykT+xRa3XH27NlQBmU27eiTEuiHCkBR3Sn7ngJdtTh5v5Xo9FXBNI8f6JMwceDEd+F2CZh6P1R3UVp/T5kWe4FAAFu3bsWcOXOgaZoj+uTE7ykT+wQAW7ZswezZs4ec+GVyn5z4PWVin0zTxNatW7HffvtB0zRH9Cle29kn+X0SQmDz5s3hc/hU9Mnv8yPPahFMIcKLkVnnfSpMU8n67ykT+2SaJrZt24b99tsPABzRp1htZ5+S06doeYdM7pMTv6dM7FO0vEMm92lwPxIx4sRtqEGDk7ZAckoWmKaJqqoq/OlPf4KmaTjooINQX1+Pe+65J2ri9o477sCtt946bPvatWtRUFAAAKisrMSsWbNQU1OD5ubm8D6TJ0/G5MmTsWXLFnR2doa3z5w5E1VVVdiwYQO8Xm94+7x581BaWoq1a9cO+VIWLVoEj8eD1atXD2nDsmXL4Pf7sX79+vA2TdOwfPlydHZ2Dklg5+Xl4cADD0RLSwt27NgR3l5SUoL58+ejoaEBdXV14e2hPu3cuRO1tbXo6uqCoiiO6JMTv6dM7FNRURG6u7vR0NAwpL61HX0q6duIOboBV8c6bFj1MvqVgfEmWd9T7boXcMGSP2FL80LU1MwI9+nTT7sw2wAUGGjcU4+JMyvT+nvKtNjbtGkTOjo60NXVhfz8fEf0yYnfUyb2acmSJWhvb8dHH30UPlnK9D458XvKxD4JIdDR0YGpU6ciLy/PEX1y4veUaX0qLy9HfX19+Bw+FX3assWHZcKEgGtIn44qeAAnnFWHduP/UFNTltXfUyb2SQiB/v5+zJ07F1u3bnVEnwDnfU+Z2KfBeQen9MmJ31Om9SknJwc+nw8tLS3YtWuXI/qUl5eHGTNmIFGKGJxSjmLp0qV49dVXUVZWhiVLlsTMDq9ZsyahA/v9fuTn5+PJJ5/E2WefHd5+8cUXo6OjA08//fSw9xxzzDFwu9145ZVXwtv++9//4rTTToPP54PH4xn2nkgzbqdMmYLW1lYUFxcDyJyM/GjunIRKUixduhSapjmiT078njKxT4ZhYO3atVi6dOmQ2Wt29EnZ81+on94KBYC+/EGgZEFS+jR4e9P6l9H22o+wrW0Jzrjtj+E+1dSY6Pn30chx+zH3689ALZiY1t9TpsWe3+/HmjVrsHTpUrhcLkf0yYnfUyb2SQiB1atXh38PndAnJ35PmdgnwzCwZs0aLFu2DC6XyxF9itd29kl+n0zTxKpVq4aMWcnu0wdvNKBs/Qq4czyY9c13wts3PnAJXL2bsL3klzj9kiOy+nvKxD6Fxqzly5dDURRH9ClW29mn5PQpWt4hk/vkxO8pE/sULe+QyX1SFAW9vb0oKSlBZ2dnODcZTUIzbj//+c8jJ8daNXRwknUsPB4PDjroILz66qvhzzRNE6+++iquvvrqiO854ogj8Mgjj8A0zfAXtmXLFkyYMCFi0hawsvOhtg/mcrngcg3tfugL29fgC7xEtu/7uaPZrihKxO3R2hhreyigB39epvfJid9TJvdpJPsn1KfKQwfaqAKI8Pmy+6TAukEl4Arvo6oqPB4VQqiAAFRlBH0aZdujbXdq7IV+IDVNCx8r0/vkxO8pE/uk63rE30Mgc/sUazv7lNw+KYoS/p9T+jTa7eyTPX0yTTPqmJWsPinB5VDM4LlQuO2qtUi0EEbWf0+xtqdznwY/eRJJJvYphH1KXZ8ijVmZ3icnfk+Z3Cc7+ppOfUpUQu8cXIYgWkmC0bjuuutw8cUXY9myZTj44IPxq1/9Cr29vbjkkksAABdddBEmTZqEO+64AwDwzW9+E/feey++/e1v43/+53+wdetW3H777bjmmmtsa5PTqKqKmTNnRgxYorGQGlu5lUDBdKB358BCZUlmGqHjDu2fpgGmCG4TQ++m0dhxzCJZGFskC2OLZEiHuAqIfLy29YuoGu/GfkNesS5uhcnzoEyUDrFFzsO4IlkYW6OscRvS09MzZOoxgLhTfAc777zz0NzcjJtuugmNjY1YvHgxXnjhhfCCZbW1tUO+nClTpuDFF1/Etddei0WLFmHSpEn49re/jR/84Adj6YajqaqKqqqqVDeDHEh6bCnB4clMTeJWBMc2gaF33lQVEEKF9RSFOfyNNCYcs0gWxhbJwtgiGdIhrnyiHA+tuh5LlwLnDn5BYeI2k6VDbJHzMK5IFsbWvlPJElBTU4PTTz8dBQUFKCkpQVlZGcrKylBaWjpswbJEXH311di1axd8Ph8++OADHHLIIeHX3njjDTz00END9j/ssMPw/vvvo7+/H9u3b8cNN9wQdUozWfU11q1bN6zOBtFYSY2trq3oadwGrxeACNj/+QkI35RShg6TqsoZtzJxzCJZGFskC2OLZEiHuAqdCg271AomblN1c53GJh1ii5yHcUWyMLZGMeP2K1/5CoQQePDBB1FdXR1zoTJKPSEEvF7vkCLLRHaQGVt9te9g927rQmFuqmbcBn8YzH1m3LpcwFVPvgIBFauvTUXLnI1jFsnC2CJZGFskQzrElTB0FOV0I8/tAlA08EJoxq3gk0eZKB1ii5yHcUWyMLZGkbhdt24dPvroI+y3337xdyYiGoX+Ph1CAIaBlM247c47Ave8/lvkFpdhxaDtqgqI0GIdpvV3IiIiIqfJDWzB7754EUROFYDnw9v7MAHdnTPhK89PXeOIiIiyxIhTDsuXL8fu3btltIWICABg6lay9r2dp8CsOCYlbQioVfhkz2Fo7Js3ZPvgRK3JiSZERETkUOEZtcrQp4/W69fj+ucex07v8SloFRERUXYZ8YzbP//5z7jyyitRX1+PhQsXwu12D3l90aJFtjWOxk7TNMybN491gMl2MmPLNKzyCB3eCuimGx7bjxBfqITOvt3TNOCiZXejNK8FZs/VQOnU5DfOwThmkSyMLZKFsUUypENcmUbkhVpdwSvILC43mNHSIbbIeRhXJAtjaxSJ2+bmZmzfvh2XXHJJeJuiKBBCQFGUrC4YnI4URUFpaWmqm0EOJDO2Qolb3XRD1wFPCjK3Lu8WHDv7U2hF0wAsDW9XVWDxpHdQUdAAs/+ryW+Yw3HMIlkYWyQLY4tkSIu4Cq4zIDB8oVaAidtMlRaxRY7DuCJZGFujKJVw6aWXYsmSJXjvvfewY8cO1NTUDPmT0ouu61i1ahV0nau+kr1kxlaoVMIZCx6C2bza9s9PRH7f+7j04J9i+cRnhmzXNMAQwUU5WCvBdhyzSBbGFsnC2CIZ0iGuTDM043boXJ8Frntx1xnnYHbuM5HeRmkuHWKLnIdxRbIwtkYx43bXrl145plnMHv2bBntIQk4C5pkkRVboRm3ACC6tgBYJuU4cRph/akMn2UihLWN/7bk4P+vJAtji2RhbJEMqY6rgRvUQ8+F8tQWFBbvRLvRkfQ2kT1SHVvkTIwrkiXbY2vEM26PP/54rFu3TkZbiIgAAE255yBg5AAAjBTdWRuYZTK0lo6qAoYZnHFrcMYtEREROZOIchM7vFiZyO4LaSIiomQY8YzbM888E9deey0++eQTHHDAAcMWJzvrrLNsaxwRZaceZT98uvNUHDPraZgpStyGLlYUZXjiNjTj1mSpBCIiInIor1mBd2pOx8SZ1Riy/HTo3Mhk4paIiEi2ESdur7zySgDAbbfdNuw1Lk6WfjRNw6JFi7J6BT6SQ2Zs6TpgmNbwlKoZt+FZJPvOMsHAIh0mxzvbccwiWRhbJAtji2RIh7jqMObgT+/dirMqgTMGv6CGLiF5HpSJ0iG2yHkYVyQLY2sUiVvOMMs8Ho8n1U0gh5IVW7neNVg25XUAQ+vdJpNpRC6VYG2zErfCFEltU7bgmEWyMLZIFsYWyZDquApd9qn7VkoIbeCM24yV6tgiZ2JckSzZHlsjrnFLmcUwDKxevZozocl2MmNrgvchFOe2AQBEihK3oRm3yr5XKwDueuPP+Ppj76C/8NBkt8rxOGaRLIwtkoWxRTKkQ1yZhgGP1g+XNvRcbKCMVPau8J3J0iG2yHkYVyQLY2sEidvTTjsNnZ2d4b/feeed6OjoCP+9tbUVCxYssLVxRJSdBidrTT2QkjY0qqfjN2/fjU87zhj2moFc+I1cmIL3voiIiMiZJiiv4s/nHYlTx109ZLuplaCldwK8gaIUtYyIiCh7JJx1ePHFF+Hz+cJ/v/3229HW1hb+u67r+Oyzz+xtHRFlJWFaidvH1l6DvUWXp6QN3ZiF1buPR1tgzrDXwk8IsnIMEREROVWUev978i/FdU//B+/uuSQFjSIiIsouCde4FULE/DsRkW2Elbjd0z0NPrM4JU0IJWUj1UA/db+HMS5nO5SucwEsTGq7iIiIiJIhWr3/0LkRb2ATERHJx+d8HU7TNCxbtiyrV+AjOaTGlmmVRzBMFwKpqZSA/MCnOHTai6jM2zHstYXV7+GI6c9D9TWkoGXOxjGLZGFskSyMLZIhLeIqPON2aBtCTx7pLHGbkdIitshxGFckC2NrBIlbRVGgKMqwbZT+/H5/qptADiUttoKlEr60+Hco7nlezjHimGA8hauO+BHmFL8+7DURHDoFV1OWgmMWycLYIlkYWyRDyuMqSqmESv+zuPXUi3DUhPtT0CiyQ8pjixyJcUWyZHtsJZy4FULga1/7GlasWIEVK1agv78fV155Zfjvl156qcx20igZhoH169dn9Qp8JIfU2BLWNNuppVtQ3P+m/Z+fSBPMyBcrwMAjg8LgM4J245hFsjC2SBbGFsmQDnE1cC40dJaTB22YUb4RJZ76FLSKxiodYouch3FFsjC2RlDj9uKLLx7y96985SvD9rnooovG3iIiynof910Dd8tDmF2xPrxQWdIJKymrqBEeyVA445aIiIgcLngutO9N7PC5keANbCIiItkSTtz+5S9/kdkOIqKwXd6jsXtbp5W4NVKTuBUi8oIcg7eZXJWDiIiIHKojMBmr647H5NIDhmwPJW4VsMgtERGRbAknbilzZXMRZ5JLVmzpurUwGYDwQmVJF5zpq6gRKsqEZ9wycSsDxyyShbFFsjC2SIZUx9Vu7+F46u3DcdXQvC1UzToPUsAnjzJVqmOLnIlxRbJke2wxcetwLpcLy5cvT3UzyIFkxla1+g5KJ3xg/SUNSyVwcTJ5OGaRLIwtkoWxRTKkQ1yF7k/vew9b1axLSCZuM1M6xBY5D+OKZGFsjWBxMspMQgh0dHRACJHqppDDyIytY0tvwJEznrWOk+rEbYTFyf615UZ8658voy3/88luleNxzCJZGFskC2OLZEiHuDIM69jDHj4K3tTmk0eZKR1ii5yHcUWyMLaYuHU8wzCwefPmrF6Bj+SQG1uDkrUiNYnbLb7z8cf3bsNeffjdvYAoQrevDIbwpKBlzsYxi2RhbJEsjC2SIR3ianHRA/jrBcuwSLt9yHZFy0O3rwz9en6KWkZjkQ6xRc7DuCJZGFsslUBEaUgJJmvveu0+nPT5yZidgjbsDSzFuzXA1EOHvxaaeZLFvx1ERETkdOGnj5Qhm/vLTsa3/nkyKiuB81PRLiIioiySUOL2mWeeSfgDzzrrrFE3hogIwoQC60JhZ9t+6AqUpKQZoaf/ItVBX1L9PA4rXocC73EAImR2iYiIiDKdCN6h3qfef+jciDewiYiI5EsocXv22Wcn9GGKomT19OV0pCgK8vLyht0pJxorabFlBhAqX6ObbgQC9n58osqVj7F0cicKtPkAqoa8NrN0NeZNfgaafwKYuLUXxyyShbFFsjC2SIa0iKvgjFsoQxO3fPIos6VFbJHjMK5IFsZWgolbk4XnM5amaTjwwANT3QxyIGmxJfRw4vbzCx/EXHcxgIvsP04cC3P/gKVHr8b2nNsBnDz0xeCCZRwb7ccxi2RhbJEsjC2SIS3iKjjjdt+FWvP61+GGE3+HNt90ADckv100JmkRW+Q4jCuShbHFxckczzRNNDU1McFEtpMWW4Nm3J6x4CHsl/OIvZ+fICU8y2T4MBm+gDE51cRuHLNIFsYWycLYIhnSIq5Cidt9SyWILsyrWoPJxZ+lolU0RmkRW+Q4jCuShbE1ysXJent78eabb6K2thZ+v3/Ia9dcc40tDSN7mKaJHTt2oLy8HKrKPD3ZR1psaXl4ZvuPgO6tOHHu41BEamoliPDFyvC+CVgXMCKLfzxk4ZhFsjC2SBbGFsmQHnEVPM/ZJ3GrBovcKuAN7EyUHrFFTsO4IlkYW6NI3K5duxannXYa+vr60Nvbi/LycrS0tCA/Px9VVVVM3BLR2Gg5eL/+C+jcU2slbqGnpBmhBdJUNcLqZMEZt6HkLhEREZHTNPfNgK/tcMyeNXXIdlWzLiGZuCUiIpJvxOnqa6+9FmeeeSba29uRl5eH999/H7t27cJBBx2En/3sZzLaSERZRtethckAQEGKVieLspIygIHyCYIzbomIiMiZ1raswM9e/w1ac88csl3VrPMgRWHiloiISLYRJ24//vhjfPe734WqqtA0DT6fD1OmTMHdd9+NG25gcfp0oygKSkpKsnoFPpJDWmzpfZhe9AFmlm+0jiNSM+M2lLiN/DhGcMYtSyXYjmMWycLYIlkYWyRDOsSVEbqHvc+pkBYslaApBngqlHnSIbbIeRhXJAtjaxSlEtxudziRUVVVhdraWsyfPx8lJSXYvXu37Q2ksdE0DfPnz091M8iBpMVWXx0uX/wt+Pyh+mmmNbM1wiJhMoVKJSja8Bm3q9ouxZ9WnYerv1OIhUltlfNxzCJZGFskC2OLZEiHuAolbvc9FQqdG6nBxG2WlhzMWOkQW+Q8jCuShbE1ihm3S5YswapVqwAAxxxzDG666Sb8/e9/x3e+8x0sXMgURroxTRN1dXVZvQIfySEttoQOIQCfnmf9VQAwkz/r9oPWy/GXD2+AV50x7DW/KEFL70T4RXHS2+V0HLNIFsYWycLYIhnSIa5Om/ZT3H/uURjf/48h2zWXC34jFwHDwxm3GSgdYouch3FFsjC2RpG4vf322zFhwgQAwE9/+lOUlZXhm9/8Jpqbm/HHP/7R9gbS2DDISRZpsWUGIATQ6y/GrS8+hAc2/Q1QR/xwwJht7Toer29bgYBWNey10MwTg6XdbMcxi2RhbJEsjC2SIR3iyoV+5Li8UNWhbVBKF+Drj72D6597HHqKKlrR6KVDbJHzMK5IFsbWKEolLFu2LPzfVVVVeOGFF2xtEBFlueCMW7+Rg+2tC1HYBSAF5WyiPR4IANMKPsCXl7yHCmMRgOOT2i4iIiKiZFBgnQwp+9RCGHxulMXX0UREREkx4hm3xx9/PDo6OoZt7+rqwvHHM4FBRGNkBiAA6KYbAFI2k2NC7lrsP/5DeNTeYa9NLFiPz83/G8rM91PQMiIiIqJkCNb7V4bexR6cuOXTR0RERHKNeMbtG2+8Ab/fP2x7f38/3n77bVsaRfZRVRWVlZXhBeWI7CIrtoRpzbg1TBdOmfcIpo7vBwLnAu5CW48Tz6kTb8Rp4xqxF38FsGDoi6ELGE4zsR3HLJKFsUWyMLZIhrSIKxF5oVbF14TvHvtTBIwcGMbdqWgZjUFaxBY5DuOKZGFsjSBxu379+vB/b9y4EY2NjeG/G4aBF154AZMmTbK3dTRmqqpi1qxZqW4GOZCs2DL1ABBM3J6z6PcoLvACgVOSnrgNPR6oRqiVoCjBHw3BxK3dOGaRLIwtkoWxRTKkQ1ypih5uy2CK8GPxpHfhDeRzxm0GSofYIudhXJEsjK0RJG4XL14MRVGgKErEkgh5eXn47W9/a2vjaOxM00RNTQ1mzJiR1XcoyH6yYiuQOxt/X3MdOr3j8LWD74QQAMyAbZ+fqIHEbYS+KSogACF4tWI3jlkkC2OLZGFskQxpEVehG9TqPjexFQ1QAE3VmbjNQGkRW+Q4jCuShbE1ghq3NTU12L59O4QQ+PDDD1FTUxP+X319Pbq6unDppZfKbCuNgmmaaG5uzuoV+EgOWbEVcE/Bi5svwPu7ToFuuK3ErUh+oVslWNct0ozbcKkEzri1HccskoWxRbIwtkiGdIirPd2z8FnzEghPxdAXFA0KAE0xWDUqA6VDbJHzMK5IFsbWCGbcTps2DQCy+v8sIpIvMGhyrSFcwRm3KVihLFTXbd9ZJhhcKoHTTIiIiMiZnvnsf7BnD/DQhfu8oLgABVAVI2WLyBIREWWLES9OBgDbt2/Hr371K2zatAkAsGDBAnz729/O+roTRDR2Rl8zZlfsQXd/GQzTBQEAIvmlElRFh4Hhdd2sFzXAAGfcEhERkWOFyiAMOxUKzrgFANMwMYKHOImIiGiERvwr++KLL2LBggX48MMPsWjRIixatAgffPAB9t9/f7z88ssy2khjoKoqJk+enLW1QEgeWbGlNb+Gm06+FOcsvg+6mboZt7FKJezyn4Lrn3scH/dfl+xmOR7HLJKFsUWyMLZIhnSIq9CDlsNOhRQNSjBza+h8+ijTpENskfMwrkgWxtYoZtz+8Ic/xLXXXos777xz2PYf/OAHOOmkk2xrHI1dKMiJ7CYrtszgM3eG6bJm3KZocbIXaq5B814/Tj+4ZNhrulKC+s4S9PDxQNtxzCJZGFskC2OLZEiHuLpi2XcwMX8j8ntvAXD4wAvBklECKkzDAOBORfNolNIhtsh5GFckC2NrFDNuN23ahMsuu2zY9ksvvRQbN260pVFkH8MwsGnTJhhc8pVsJiu2DN1K0uqmG/e/fzN++vL9QMl8W4+RiJV15+K/m74C1VMw7LXQzBOW/LYfxyyShbFFsjC2SIZ0iKsCVweKc9ugqfvcqdby8J0XVuHiRz6ELnJT0zgatXSILXIexhXJwtgaxYzbyspKfPzxx5gzZ86Q7R9//DGqqqpsaxjZQwiBzs5OCCFS3RRyGFmxZQYTt4rqwo7W/a1tWvKrp4WSspGeyCh3bcGKA17HVNdkAKcntV1OxzGLZGFskSyMLZIhHeJKUUILtar7vgBX8CqSN7EzTzrEFjkP44pkYWyNIHF722234Xvf+x4uv/xyXHHFFdixYwcOP9x6ZObdd9/FXXfdheuuY71HIhobI1gqQdUGhiddBzyeJDZCCEwuWAe1QoWq7A9gaHG3cvdWHHTA/fB5DgUTt0RERORECqzZTZHq/Yc2ZfEEKCIioqRIOHF766234sorr8SNN96IoqIi/PznP8f1118PAJg4cSJuueUWXHPNNdIaSkTZQRjWjFvV5cKSSW+hsrABeueh8FROT2YjcNVBX4ffD5jqawCKh74emnkiOM2EiIiInClW4vYrB9yA3hkBmL4bMew8iYiIiGyTcOI2NC1ZURRce+21uPbaa9Hd3Q0AKCoqktM6GjNVVTFz5sysXoGP5JAVW6YRmnHrxkn7PY6F49+HaL8VSHLiNvQghqJFGCYVLbwf2YtjFsnC2CJZGFskQzrElYIopRIAHFD1OvTSAPzG/4KJ28ySDrFFzsO4IlkYWyOscasoypC/M2Gb/lRVZe1hkkJWbLW7jsB/1pfAKDoA++XsADBQPiFphIFQ5lbThv9AhH80srjOjiwcs0gWxhbJwtgiGdIhrsIzbtXhM25FcPWB0A13yhzpEFvkPIwrkoWxNcL1fubOnYvy8vKY/6P0YhgG1q1bl9Ur8JEcsmKrXT0ET2+4DLW9B8MM3lsyAgFbjxGXMMM5WTVC4lZRQtv478puHLNIFsYWycLYIhnSIa7qOmZhZ/s8KJ6CYa+JYP1/k3GfcdIhtsh5GFckC2NrhDNub731VpSUlMhqC0kghIDX683qFfhIDlmxFcrRut2AUIKJ22TPuMVA7VrNNXyWiRKaecIat7bjmEWyMLZIFsYWyZDquDJN4Ddv3w0AeDnC+tOmsM7RmLjNPKmOLXImxhXJwtgaYeL2/PPPz/opykQkl+ZvwNTSHhTlVkPADQAwU1AqITzjNlItneA2hTVuiYiIyIHMQfemI6xNBgENCgBh8lyIiIhIpoQTt/vWtyUikmGq9zf4yWmvYFXP9yF6QrM5kpy4Na3FyQRUaK7hY1+nuhgPvPgwlh+aj8XJbRkRERGRdIMTt5HuYYcSt5xxS0REJFfCidtsnpacyTRNw7x586BFulVONAayYkuYVpJW0VxAsFSCqSe5xq0rH//ecBUCfuCy8yK9XoQdrftjpi+5zcoGHLNIFsYWycLYIhlSHVeGAdx26ldRmNMJzfsboHD6kNdDi5MJLk6WcVIdW+RMjCuShbE1gsStabKWYyZSFAWlpaWpbgY5kKzYEkYwSau68F79eXhj47H43tFTMdH2I8Xgysd/Pr0Ufj9wefRKCeCwaD+OWSQLY4tkYWyRDKmOK9MEKgobUOjphKYNP+G5f/O/8OEqFbfcOqLKe5QGUh1b5EyMK5KFsQVESEmQk+i6jlWrVkFP+uJO5HTSYis849aNVv8srN9zOPow2d5jJCD05F+kG3t5yl6cPv+vmF/07+Q2KgtwzCJZGFskC2OLZEh1XBkGoCnWyZAa4WRIqLnQTQ8Mk5eTmSbVsUXOxLgiWRhbI1ycjDKTwdpTJImU2DKtGbeq5oIrOEIFklwpAYYfU0pqEDDc0LSZw14uUBpw3pLfQM+ZCuALSW6c83HMIlkYWyQLY4tkSGVcmSagKNZM20iJ29Amhn5m4phFMjCuSJZsjy0mbokovYjgjFvVjcklWzBh1ibk9E0DkrgMmNlbj9tOvRC9/mJo2mvDd1CDVyuCtRKIiIjIeUxz0IzbCKuTHVl9HxYevge5ga8BmJXcxhEREWURJm6JKK2EFidTNRcWVLyFg+f8ATm9K5DUxG2weK1huiKupKxpCgBAARO3RERE5Dy6bs24VRQAyvAZt7OK30FOzhbsNU8HE7dERETysCiRw2mahkWLFmX1Cnwkh6zY2t5/Jp7d+DV41SlQVOveUiiZmyymbs0wMaFGrHEbnnHLxK3tOGaRLIwtkoWxRTKkOq5ME9DU4KOpERK3Alpwv+x+fDUTpTq2yJkYVyQLY4szbrOCx+NJdRPIoWTE1saeL+Hxj4FLlwIFqhsAIIzkFrkN1dARInLiVlGC97xYKkEKjlkkC2OLZGFskQypjCvTBBo6p8PtMjA/eD42lHWCJLK87mCm4phFMjCuSJZsjy3OuHU4wzCwevXqrC/mTPaTFVuhxSLdbgApmnErjFCpBC1iqQRVszaqCv9d2Y1jFsnC2CJZGFskQ6rjyjCA6597HDe9/E/AUzLsdRGchSs44zbjpDq2yJkYVyQLY4szbokozeSJ3aguBHLc1UBohkeKZtyaQoMrwiipcHEyIiIicrBguf+IN7ABDJRPENl7IU1ERJQMTNwSUVo5veJynHxWC7a5H0FHqmrchhO3qrUoxz4Mz0Tc/sofMX2mGz9JasuIiIiI5AtNbIpWUjBc4zaLZ0ARERElAxO3RJRWFFizazWXK2WLk+laNZ759FL0BYpxfITELbQ8bG46CGpFUptFRERElBRC9+KuM74Kl1sFjL8B2j71BVkqgYiIKCmYuHU4TdOwbNmyrF6Bj+SQFVuqsBK3qsuNZmMpfvP+3TjlrArMs/UosemeiXhy3VVwu4HbIrUx+NggJ5nYj2MWycLYIlkYWyRDquPKNHRMKN5plYyK8PjRO9134N//FvjKxXnJbxyNSapji5yJcUWyMLa4OFlW8Pv9qW4COZSM2FJgza5VNRf86nis3n08mgOLbD9OLKGEbLS6bm6lDyfOfRzLq59IXqOyCMcskoWxRbIwtkiGVMaVqVsnQ4qCgXq2g+hKEXr9xQgY7iS3jOzAMYtkYFyRLNkeW0zcOpxhGFi/fn1Wr8BHcsiKrVDiVnO74Q5eC+jJrZQA09+H6qJajCtoivi6C924aNndOG3mL5LbsCzAMYtkYWyRLIwtkiHVcWUagxZgVYZfMoYmPjHsM0+qY4uciXFFsjC2WCqBiNKJMAFYFwqa240CdxsOmbYalcgDcFTSmuHqWo17zrwOu7v2B/DwsNc1zbqAUZC9Px5ERETkXKZpQAEgoszzmZ33DC45eAPKlZMALE9q24iIiLIJE7dElD5MHUJY/+lyuzAuZyu+dcQN0HJmIpmJ29Ask9CKyftS1FDi1oz4OhEREVEmMw0DGqKfC01wf4BZs1/ETnU6mLglIiKSh4nbLJDNRZxJLhmxtbL+QrQ2B7D8EA9ULThEieTWSjBNKyFrRrlYUYMzbgVgzRKO8AghjR7HLJKFsUWyMLZIhlTGlQidC4kobQjWvTVNPn2UiThmkQyMK5Il22OLiVuHc7lcWL6cd8HJflJiS/PgP1uvxbZtwKGXAopmFblVkp24NULHi5yQ1VyaNddWgIlbm3HMIlkYWyQLY4tkSHVcGQbQ0TsBntycyDsooZvrfPoo06Q6tsiZGFckC2OLi5M5nhACHR0dEKHnz4lsIiu2AgHrT7cb0FzWRYEiArYeI57QLJN4pRKCOyejSVmDYxbJwtgiWRhbJEOq48qnTsR1T/8Hv1n7ZOQd1OA5EmfcZpxUxxY5E+OKZGFsMXHreIZhYPPmzVm9Ah/JISW2TB0FWiNKclvhdgOqyx18IbkzbkV4JeXIQ6QaTNwKAUDw35adOGaRLIwtkoWxRTKkOq6C97ChRrlaVEJPGyX5qSgau1THFjkT44pkYWyxVAIRpRPvHtx41BfQ7c2H2/0W1OCMWxXJnXEbqtcmlCg1bt25+Pkbv0JhkYpfX+1JZtOIiIiIpAtdH0dL3IZn3PIGNhERkVRM3BJR+hABCAEYpgsul1XPBkh+jdt+1wy8+NmXoefMwBkRXlc1FesajkRxMfjcAhERETmO278Tt516I7SCCgC/HPa6olrnaKHyUkRERCQHE7cOpygK8vLyoChKqptCDiMltkwdQgC66YbbDQhPGf703i2YPdeDq+07Slw92kL8/aOFmDUr8uuhRS15rWI/jlkkC2OLZGFskQwpjyujD9PLN0F3VUd8uUb9Ov701AU47OhCnJnkptHYpDy2yJEYVyQLY4uJW8fTNA0HHnhgqptBDiQltoQ+ZMat6s7DOzVnoH+cvYeJJ5SQ1SJXSoCqAkfOeBb5eQZgnApoUVZcphHjmEWyMLZIFsYWyZDquBLBWgnRFmo1tWK09hWjz5/MVpEdUh1b5EyMK5KFscWHfB3PNE00NTXB5NRAspmU2Npnxm2wUgICyS1xCxHoQ1leE/Ld3RFfV1Xg8sNuw0VL/w8IRN6HRodjFsnC2CJZGFskQ6rjSpixE7d8+ihzpTq2yJkYVyQLY4uJW8czTRM7duzI6iAnOWTElmkMzLh1uwG3y8SSSW9hdtFrgJm8OrelvU/h1184DWfNvivi65oGCKFACADgvy07ccwiWRhbJAtji2RIdVyZhnVcM0ridhw+xAVLf4lZBa8ks1lkg1THFjkT44pkYWylSeL2d7/7HaZPn47c3Fwccsgh+PDDDxN636OPPgpFUXD22WfLbSARJYURnFobmnHrcRu49pjrcN7c7wOGN3kNCc4ygRJ5iFRVwBBcTZmIiIicSYTPbyKfC5XiE5w67++YkvdB8hpFRESUhVKeuH3sscdw3XXX4eabb8aaNWtw4IEH4pRTTkFTU1PM9+3cuRPf+973cNRRRyWppUQkm+6qxOvbVmDV7uPhdgNasFaCEADM5NVLCN3NE0rkMuDWjFvVapfI3jt/RERE5EwiNLNJiVLwP7ydN7CJiIhkSnni9he/+AUuv/xyXHLJJViwYAH+8Ic/ID8/Hw8++GDU9xiGgQsvvBC33norZs6cmcTWZh5FUVBSUpLVK/CRHDJiy++Zib98eAOe+uRyuFyA26PAFFowQZq8Ugmhum7RhkhVBUxhvWYavGCxE8cskoWxRbIwtkiGVMeVYaro9pXBZxZHfF3V+ORRpkp1bJEzMa5IFsYWEHk6WZL4/X589NFHuP7668PbVFXFiSeeiPfeey/q+2677TZUVVXhsssuw9tvvx3zGD6fDz6fL/z3rq4uAICu69B1PXxMVVVhmuaQuhmh7YZhQFjFLGNu1zQNiqKEP3fwdsBKOCey3eVyQQgxZLuiKNA0bVgbo20PtVFRFMyZMwdCCOi67og+OfF7ytQ+zZ8/H6ZpDjnuWPrk9QoIoUFVAUUB3G4FftMFIQzogX7ApSfnezICUAEIKEP+3YT2N03ANK3jmaYJkebfUybFnhAiPGYZhuGIPjnxe8rUPs2bNw+GYQx5T6b3KdJ29in5fZozZw5UVR3WxkzuU6y2s0/y+6RpGubOnRs+h092n5qNpbjryZdw7LEChwHD2o7gBbQi9IjngdnyPWVqn/bbbz/H9cmJ31Mm9Sla3iGT++TE7ylT+xQp75DpfRqJlCZuW1paYBgGqqurh2yvrq7G5s2bI77nnXfewQMPPICPP/44oWPccccduPXWW4dtX7t2LQoKCgAAlZWVmDVrFmpqatDc3BzeZ/LkyZg8eTK2bNmCzs7O8PaZM2eiqqoKGzZsgNc7UHdz3rx5KC0txdq1a4d8KYsWLYLH48Hq1auHtGHZsmXw+/1Yv359eJumaVi+fDk6OzuH/H+Ql5eHAw88EC0tLdixY0d4e0lJCebPn4+GhgbU1dWFt4f6tGPHDtTV1SE3N9cxfXLi95SJfSouLkZxcTFM00RDQ4Mtfaqr9ULRp0KobnR2uuFylaInoCLHZWD9ujXwuxqS8j319vSgyDTR0+vF6tWrh/XJ61WRa1hJRtMwsT2Nv6dMjL3+/n7k5uY6qk9O/J4yrU9Lly5FXV3dkFJMmd4nJ35Pmdqn/v5+LFu2DLm5uY7pE+C87ymT+lRRUYEPPvgAqjrw9E8y+7RlSzn6+iais7MfQMWwPgU6uzEOgN/nHXLcbPueMrVP+fn5WLhwoaP65MTvKZP6VFdXhx07doTzDk7okxO/p0zsU25uLioqKuByubBz505H9CkvLw8zZsxAohQxOKWcZA0NDZg0aRJWrlyJww47LLz9+9//Pt5880188MHQYvfd3d1YtGgR7rvvPnzuc58DAHzta19DR0cHnnrqqYjHiDTjdsqUKWhtbUVxsfXoT6Zk5Edz5yQ0q3np0qXQNM0RfXLi95SJfTIMA2vXrsXSpUuHXFSMpU/Na59B21s/xcbmw/HF23+NmhoFzY+diNL8Dsy6+O9A4aykfE/rnvgd3Lv/gi2+c3HG/143rE9eL3Dthe/Cpen45V8PgSc/L22/p0yLPb/fjzVr1mDp0qVwuVyO6JMTv6dM7JMQAqtXrw7/HjqhT078njKxT4ZhYM2aNVi2bBlcLpcj+hSv7eyT/D6ZpolVq1YNGbOS2adHH1Xwy1+qOOkkgTvvHN72z17+F5RNd6PGexxO+cEdCfXJid9TJvYpNGYtX74ciqI4ok+x2s4+JadP0fIOmdwnJ35PmdinaHmHTO6Toijo7e1FSUkJOjs7w7nJaFI647aiogKapmHv3r1Dtu/duxfjx48ftv/27duxc+dOnHnmmeFtoS/C5XLhs88+w6xZs4a8JycnBzk5OcM+y+VyweUa2v3QF7avwRd4iWzf93NHs11RlIjbo7Ux1vZQQA/+vEzvkxO/p0zu00j2j90na6A04YGiKHC7AUO4IATgUgEMOo7MPnUpC7Bh+9lQKhcPeV9o/5wc4OOGY6y2qkCULqXd95QJsRf6gdQ0LXysTO+TE7+nTOyTrusRfw+BzO1TrO3sU3L7pChK+H9O6dNot7NP9vTJNM2oY1Yy+jROWY0fnfQn5FbNA3DdsLarLjcEAAVmxM/Jlu8p1vZ07lPoMV0n9SmEfUpdnyKNWZneJyd+T5ncJzv6mk59SlRKE7cejwcHHXQQXn31VZx99tkArJOUV199FVdfffWw/efNm4dPPvlkyLYf//jH6O7uxq9//WtMmTIlGc0mIknMQPBulmINTS4X8Njaa5CX48OdV1XHeKe9mpTj8MAHx+G44yK/Pnj83+eGGhEREVHGc5utmFa1Bj05kS9kewpOwG3PLsHEqQU4LcltIyIiyiYpTdwCwHXXXYeLL74Yy5Ytw8EHH4xf/epX6O3txSWXXAIAuOiiizBp0iTccccdyM3NxcKFC4e8v7S0FACGbSeLqqqorKyMeKeBaCxkxJahBwAAQnEDANxu4N2a06xEqce2w8RvRzAZG20mraoCB058B3nuXpj9hwDFpUlrm9NxzCJZGFskC2OLZEh1XAnTOhlSlMjHF65i7OkqRr434suUxlIdW+RMjCuShbGVBonb8847D83NzbjpppvQ2NiIxYsX44UXXggvWFZbW5vVX9BYqao6rHwEkR1kxJZpWDNuRXBocruD203rf0kbCnQv8t063FoOImWMVRW4ePndqChoAPoeBFCapIY5H8cskoWxRbIwtkiGlMeVsMrRCUR7dNT6c1D5QMoQKY8tciTGFcnC2ALSIiN69dVXY9euXfD5fPjggw9wyCGHhF9744038NBDD0V970MPPRR1YTKySk9s3759SFFmIjvIiC0zOOMW6kDidkb5Rhww4T0EetttO048s83f4A9fOg7Lyv8SdR9TWBcypsF/W3bimEWyMLZIFsYWyZDquArNuIUSOXGbq+/AFxf9Hsuq/53EVpEdUh1b5EyMK5KFsZUmiVuSxzRNNDc3Z3WQkxwyYssMrtgYKpXgcgFfO/hO/O9x/wOzfYNtx4lLBB8PjDHFVwQfHeS/LXtxzCJZGFskC2OLZEh5XAXPhaI97pRr7MTnFz6AJdXPJbFRZIeUxxY5EuOKZGFspUGpBCKikF51Dj7c+Tn05CwAYCVuDdMapozQwmXJIEI/ClGK3AIQwRm3gquTERERkcMMXCBHPhdSgwsBKOB5EBERkUxM3BJR2mjWTsAfVp6ApUutv6sqYAhrmNIDgaS1QwQvVhQ1RuI2+MACSyUQERGR05imioCRA1OJvDosE7dERETJwVIJDqeqKiZPnswF3sh2MmIrlJt1DbqlZAqrbEKojEJyBI8VZSVli/VauAYc2YJjFsnC2CJZGFskQ6rjaptvBS577F283/eTiK+rwZvbqpLM8zOyQ6pji5yJcUWyMLY449bxQkFOZDcZsaX7/XCpgNvlQjgxqiS/VEIiM27N4KODhimS0qZswTGLZGFskSyMLZIh1XEVul8e7TpZ4YzbjJXq2CJnYlyRLIwtzrh1PMMwsGnTJhisw0k2kxFbM/vvxIPnH47Dxv81vM2EO3i85Ne4jbU42X+3XIE/vncr/J45yWpVVuCYRbIwtkgWxhbJkOq4CpW41aLcw1aDj0cpYMmoTJPq2CJnYlyRLIwtzrh1PCEEOjs7IQRnBZK9ZMSWMHQoAKC6B7YFZ9wms1RCc+BA7NmloGDOtKj7bGw5Ci0twLeiT8qlUeCYRbIwtkgWxhbJkOq4mup+Cd877lmU5xwB4Lxhr4dLJXDGbcZJdWyRMzGuSBbGFhO3RJROhFXkVlEHhqY1jadjfe0ifO3YxUlrxqa+8/DIu+fh4tnR9wlNxs3iG39ERETkUIVqLaZPWIkebXzE183CObjphf8HRcvB0UluGxERUTZh4paI0ocRTNxqAzNut3Ychdpa4EtJLOwS7/FAAJhZ/gkmuduh+OYBqEpKu4iIiIiSIlg2CkrkkyHNk4+dbfOHLChLRERE9uNPrcOpqoqZM2dm9Qp8JIeM2BKmVSph8Izb0AVBIGDbYeK3wwhAUwFN0xCtFPgZc3+HqYWr4en9KYBTktc4h+OYRbIwtkgWxhbJkPK4Mq0SVdHq/YdubvPJo8yT8tgiR2JckSyMLSZuHU9VVVRVcTYg2U9KbJmhGbcDQ1NFQQNclU1Q+qsATLT3eFEcV3ItTj//fdS6bwNwWuSdFOuHQ5i8YrETxyyShbFFsjC2SIbUx1XsGbcuswOnL3gauumGaV6ALL6ezjipjy1yIsYVycLYijaVjBzDMAysW7cuq1fgIzlkxJYIzu5QB5VKOHLKo/jxSV9Hafe/bDtOAg0BEH2WCQCYsC5khOBqynbimEWyMLZIFsYWyZDquBJxSiWoRjvOW/xbnL3wz+ESU5QZUh1b5EyMK5KFscUZt44nhIDX683qFfhIDhmxtde/BHvqiuCaUx3eFiqbYBq6bceJRwmukBz7cYzgjFuDVyt24phFsjC2SBbGFsmQ6rhSROxSCS6XldBVVYOJ2wyT6tgiZ2JckSyMLSZuiSiNfNR1JZ54C7h8v0EbleAwZSSvyO3ALJPoQ6QIzbhlqQQiIiJyGGEKQAWUKDNulWCRW00xoOuAx5PM1hEREWUPlkogorQRWoDM7R60MRUzboWVjFW0GENksMatyWkmRERE5DBvNn0XFz2yCju0KyO+roVm3CqccUtERCQTE7cOp2ka5s2bB02LfLecaLRkxFYgYD3+4Bo80VW1srjCTN6M2xGVSuDViq04ZpEsjC2ShbFFMqQ6rqxSggo0V+RzoVC7NNVAFpcdzEipji1yJsYVycLYYuLW8RRFQWlpKRRFSXVTyGFkxNZ5E1bg4QsORqVr/cBxgjNuRRJn3Irw4mTRfxzWNH8BD6/6IbpcS5PVrKzAMYtkYWyRLIwtkiHVcRW6Lx3tHnboHEmBCUPP3rqDmSjVsUXOxLgiWRhbTNw6nq7rWLVqFXQ9eUkvyg5SYkvoUGCGH78DMGjGbfJieHfvQVhTdwwC6rio+9R0H4ZXt56DXmVW0tqVDThmkSyMLZKFsUUypDquFpU8jv856geoEG9FfF3RXAhdQxtcqDWjpDq2yJkYVyQLY4uLk2UFg88vkSR2x5aKAEwA6qAity36Ijy58SocUjkT+9t6tOje2PMdvPMOcOMx0fcJlXNgpQT7ccwiWRhbJAtji2RIZVyNz9uAacWvwq8sjLyDVoC73vgTfD4Nv/xy9s6CylQcs0gGxhXJku2xxcQtEaUNRVh30bRBRW7bzQV45tMFmBwjiWq3UDI2Vhmdyryd2H98E9yByQAmJqVdREREREkRKhulRDkZUjVsb1sKrxcwWSmBiIhIGiZuiShtKLAWIBucuA1Nvk3mkxGhG3qx1iY7dPxfMWvaM9B93wJwSVLaRURERJQcoXr/0U+GQi9l8dOrRERE0jFx63CapmHRokVZvQIfySEjthQEZ9wOKpWQ7+nB1NIG5BoeANNtO1YsX99vBa6c2YBu3A/ggMg7hWagCNZKsBPHLJKFsUWyMLZIhlTHlSKsu9hRF2oVAifMeRy+fgOm/kUAOclrHI1JqmOLnIlxRbIwtpi4zQoejyfVTSCHsju21AgzbifnfYifnPZ9mJ7FAP5s6/FitUNT9JizTKBYrwkzu+vtyMAxi2RhbJEsjC2SIbVxFTy/iVYqAcD5i+6BrgMicCqYuM0sHLNIBsYVyZLtsRUjK0FOYBgGVq9enfXFnMl+tseWENjafhg2NB4C1ZMb3qyowSSuSN5zeErwYkWNmbi1LmQEVyezFccskoWxRbIwtkiGlMdV8IkiVYtyLqQoMIV1LmTqjP1MkvLYIkdiXJEsjC3OuCWidKEoeODjX6OmBvjjeQObVc0aphQRSF5TELpYifU4RvBChqUSiIiIyGFCN7EVJfpNbBMaACOrL6aJiIhkY+KWiNJGIJibHVTiFmqobIKZzJUvQgtyxEjcBi9kTM64JSIiIof526c/w47tOu45xB11HwENClg2ioiISCYmbokobYRWJR5U4haKFrpgSF7iVg0eK+rjgRg0A4UzbomIiMhhAoYbPt0NLcbVohBW4palEoiIiORh4tbhNE3DsmXLsnoFPpLD9tjyteGuE8+E1+eB2/UaAMU6TjCLq6ZZqYRd3qPwwZYKHD5+QbKalRU4ZpEsjC2ShbFFMqQ6rkIPFMU6vAkNKgBDT+ZTUTRWqY4tcibGFcnC2OLiZFnB7/enugnkULbGlhmAS/HBo/XD7VHCmzVXcMZtEhcn29a+DJ82HgzFlRd1n72Bg/DfTV9Bq7k0ae3KFhyzSBbGFsnC2CIZUhlXx055AFccdgvyA5ui7iMQWqiVM24zDccskoFxRbJke2wxcetwhmFg/fr1XDSAbGd7bAkdQgC66R5S49ZwV+A/n16CNS3n23OcBDy07me467X7YHoqo+6jBkdPlri1F8cskoWxRbIwtkiGVMfVfuXv4sgZz8Ij9kbd5/HNP8Vdr/0O/cqkJLaMxirVsUXOxLgiWRhbLJVAROnCDEAIwDBdQxK3wlOBJ9Z9C4fmARcmqSmh34RYT2MUupswq2IvcoxyALxgISIiIudQYJ0MKWr0eT67epZjcyMQEMlqFRERUfbhjFsiSgtiUOJ28OJkof8OJK/EbUJ13eYXPoObT74Es9SHk9MoIiIioqQJ1vtXo58MhXK6WTwJioiISDrOuM0C2VzEmeSyM7ZCC1vopntI4tbtMlBdVI8SzQAww7bjRSUE7jj+GPj8KlzmUwBKI++nWFcrrOtmP45ZJAtji2RhbJEMqYyrRGbcLqx8DdWzO6AGjgZQkaSWkR04ZpEMjCuSJdtji4lbh3O5XFi+fHmqm0EOZHds6X5rSu2+pRJy1U7cc+YK5OYpgPgQUJQon2ATYcKj9UF1A5orxkMJoRkogkVu7cQxi2RhbJEsjC2SIdVxFUrcxppxe9zkP6Bg0g70BqaBidvMkerYImdiXJEsjC2WSnA8IQQ6OjogBItPkb3sjq2AyMfmpqXY3rr/kMSty+MKHTA5SVIxMINW1aIPkUpwxu3g/WnsOGaRLIwtkoWxRTKkOq7U0IxbV4xZTsFzIZO1EjJKqmOLnIlxRbIwtpi4dTzDMLB58+asXoGP5LA7tgI5s3H7K3/Cfe/ePqS2rOa2ErdCABC6LceKzUToN0GLkbgNl0rgjFtbccwiWRhbJAtji2RIdVwpSqjGbfRzIQHrhE0YyTg/I7ukOrbImRhXJAtji6USiChNBEvcwu0eWg3B5RqUuDUDgJYjtyHCROhenhKjlk74QoaJWyIiInKY2197CL5+HQ+tKIq+k2KdJ5kmz4WIiIhkYeKWiNJCwCpxO6RMAjBQKiFpM26FjlDmVov1eGCw5pvCUglERETkMD2+Ynj7Ac0dfR8RvJTkQq1ERETysFSCwymKgry8PCiyF3SirGN3bKktb+J3XzwRVx3+/SHbXW4VAurAjFvZBs24jVUqod1ciH998g3s6D9ZfpuyCMcskoWxRbIwtkiGVMdV6InUGJUSIMAat5ko1bFFzsS4IlkYW5xx63iapuHAAw9MdTPIgeyOLdPfh6KcDhR4eoZsd7kAr+mCS/iTM+NWUbGlaTEUmDg0RuK2S1mApz5ZgC/Nk9+kbMIxi2RhbJEsjC2SIdVxdc4Bv4Fb9cJlXAKgKvJOwVIJyVmDgOyS6tgiZ2JckSyMLc64dTzTNNHU1MTaU2Q7u2PLCBa5FfvcT3K7gZc/Ow8vbfkKoOXbcqyY3MX4v5f+jNteehCuGLe2QjNQOMnEXhyzSBbGFsnC2CIZUh1XR0z/D06Y8wQ0szvqPh+2fwO/fvsetJmLk9cwGrNUxxY5E+OKZGFsMXHreKZpYseOHVkd5CSH3bFlBlckFsrQYmpuN/Do2m/jH2u/A3hKbDlWzHYM6k6sxwNztG5MLt2GAqVeepuyCccskoWxRbIwtkiGVMaVEICqWHem1RgnQ3v9S/HR7uPQZ0aZkUtpiWMWycC4IlkYW0zcElGaMIOrkwll6DTX0KzXQBLK2wJDZ9BqMdYmm6C9jdtPOx+Hldwhv1FERERESWKagKoGE7cxFmoNnSfx6SMiIiJ5WOOWiNKCEWPGbXFuG9yaD2ZgHFS3R2o7zN4G3Lvia+gLFEHT/hl1PyU0A0Vk750/IiIich7DAFRY5zeqGj1xOzFvHQ6bvgd55gIAU5PUOiIiouzCxK3DKYqCkpKSrF6Bj+SwO7ZEsMYtlOE1bm8++RJUFtZDb38QnqpFthwvGlMPoDi3DZqqxyyVEErcKuA0EztxzCJZGFskC2OLZEhlXA2dcRv9ZGhR8SM4+vBX0Wj+AEzcZg6OWSQD44pkYWwxcet4mqZh/vz5qW4GOZDdsdUvyrG7bQG6lElDtrtcgG5as3B1fwBy59sChm5dqJhCjVkqQQmvpMwZt3bimEWyMLZIFsYWxWX4gfpngNwqYNwhgJYT9y2pjCvTBLRwjdvoJ0MieC4kTN7EziQcs0gGxhXJwthijVvHM00TdXV1WV3ImeSwO7YatTNw8wt/xXvNlw/Z7nIBhmndYzJCs3IlCl18iHiJW864lYJjFsnC2CJZGFsUl7cO/WvuRMdr10HUP5vQW1IZV4YBKIp1XC1GjVvexM5MHLNIBsYVycLYYuLW8RjkJIvdsRXKybqHlriFqgK6CM64DchP3Bq61R9DaIj1NIYSnoHCf1t24phFsjC2SBbGFsXVV4f6BqChAajf2Z3QW1IZV6YJXPfUf3Dd089AyyuLvmPoXMiUf35G9uGYRTIwrkgWxhZLJRBRmggErD/3TdwCgAgOVUYSEremEZpxGy9xy8XJiIiIKL5AZx38Puu/+zq7UtuYBBgG0No3HgCgxJrmEyqVIPj0ERERkSyccUtEaWFK/x/wi8+fhWUVjwx7zYSVzTX0gPR2hBO3cYZHnzYZz226CJ+2nyG9TURERJS5OhrqIIT134avJ7WNSUBoUpOqIuZNbLDGLRERkXSccetwqqqisrISqsocPdnL7tjSjHZUFDSgxegd9lpoxq2ZhBq3BnKwq30/dPsrY+7nc03HY2uvweF5wMXSW5U9OGaRLIwtkoWxRfH0NteF/9vwJTbjNpVxZQT8uHDpvdbiY+ZVgBrhcSggnLjl00eZhWMWycC4IlkYW0zcOp6qqpg1a1aqm0EOZHdsCcOaTauow4elTS1HorZlCk4/frJtx4vGnzMXN/7378jPB86NsV9o4bIsLrUjBccskoWxRbIwtigevXsgcQt/4onbVMWVqQdwyrxHrDIJ4ptR96s1zsCjKxfhgMNnJ69xNGYcs0gGxhXJwthiqQTHM00T27dvz+pCziSH3bElhDWbVtWGJ27fqbsAD626Hr2uhbYcK5ZgpQS44tzW0hQ/KgvrUajtkd6mbMIxi2RhbJEsjC2KSZhwBRoG/q4nViohlXEVKhulAAOzaiPoUvbHyp2fQ6t/TnIaRrbgmEUyMK5IFsYWE7eOZ5ommpubszrISQ7bY8uwErdKhMfxQguWJaFSwpC6brEUi0/x87M+j3Nnfkt+o7IIxyyShbFFsjC2KJ5fvP17vLD5QnzccCR2di1L6D2pjCszVLNWQczVyUJPHxkscZtROGaRDIwrkoWxxVIJRJQuRLBUQoQZt3mefhTm9EP35QDIk9oMrXMNfn7WrWj2zQHws6j7qap1taKAVytEREQUWW+fipWblmAllgAADj8cSPdlTU09dHGsxFydrETbiaWTd6FEnQBgblLaRkRElG0445aI0oIwgzNuteEzbr847w7c98UTUdL5hPyGGH2oLKxHWV5TzN1ULTR8CvltIiIiooy0ffvQv3clVuI2pURwxq2Ic6k4WXsB3zn6u5ib/1QSWkVERJSdmLh1OFVVMXny5KxegY/ksDu2egJV2NM1HYZaPOw1oVjJXNOQXyshdLFiiug13QBACfabM27txTGLZGFskSyMLYqlbctKHDf7X5hZvRMA0NfjA0T8xz1TGVeGHkzcxjsXCq/UynOhTMIxi2RgXJEsjC2WSnC8UJAT2c3u2Hqn/Xr861ngyisjHcwaqkQSErehi5VYNd0AQNVCpRKyt9aODByzSBbGFsnC2KJY8lqfxiUHv4oPu67DAXlfQ1FeD9D/HyBvQsz3pTKuRLCOoIk4iVuFZaMyEccskoFxRbIwtjjj1vEMw8CmTZtgcNUAspndsRVaeMw9vFJCkmfcWhcrIt7FCmfcSsExi2RhbJEsjC2KRfHWAQAqp01GwPDAMADh7477vlTGlV+rwg+ffQK/fO/h2DuGbqxzxm1G4ZhFMjCuSBbGFhO3jieEQGdnJ4RgHU6yl92xFbDWJoMr0nMASvDCQA/YcqxYwqtVcsZtSnDMIlkYWyQLY4uiEgK5ppW4nTpvMnr9xRAC8PXGL3SbyrgyTDcaumag2Tsz5n68iZ2ZOGaRDIwrkoWxxcQtEaWJkyq+hztOPxcVrvXDXlPCMzqSMOM2OKs33oxb01WCV7aciw8bzpbeJiIiIso87U2dcKEXUIA5iyahL1AEAPB2xZ9xm0qhSU1a7FMhKGpwByH//IyIiChbscYtEaWFYq0WnpIdaNT8w19UQ6US5M+41UUB9nZPRZdZHXM/4R6Hv67+PqZNAy6T3ioiIiLKNPVb66AC8JpVyC3IgY5g4ra7G2WpbVpMir8FX1z0BPKLiwB8Jfp+4cQtnz4iIiKShYlbh1NVFTNnzszqFfhIDrtjS4E1W0OLUCuhXZ+Dd+tPw9zx+9tyrFg6co7B9/9zDObPB74UY7/wQsq8VrEVxyyShbFFsjC2KJqW2jpUAQi4rUVVdLUYAODriT/jNpVxpQZa8PmFD6AfVYiVuO1yLcOjH96AymmTcVLymkdjxDGLZGBckSyMLSZuHU9VVVRVVaW6GeRAdseWIkKJ2+Grk+32H4fnVh6Ha5bZdrioQo8HxvtdUBUTJbntKHCZACqltytbcMwiWRhbJAtji6LpabYSt1qhlbg1NWvGbaAvfo3bVMZVaLGxeGWjAjkz8fq2mVhWmoRGkW04ZpEMjCuShbHFGreOZxgG1q1bl9Ur8JEcdseWCqsMguYefj/JHczl6kkooZZoXTePaMZvV5yCHx91pvxGZRGOWSQLY4tkYWxRNM9vOAc/feVP8E84HwDQac7D2vqj0e6fFve9qYwrM3zMOAu1Bl/m00eZhWMWycC4IlkYW5xx63hCCHi93qxegY/ksDu2lHDidviMW5fLhFsLwCpxm2PL8aIp9b6A20//C1qVIwBcE3U/VVVhAFDAqxU7ccwiWRhbJAtjiyIRAtjwWSn6+pZiwn7Wtp365/HSm5/HdQcBh8R9f+riSgQzsfFm3OYordh//DZU5RQBWJCElpEdOGaRDIwrkoWxxRm3RJQm1GCNWzVCjdv5hU/jgfOOwHL39dLboRntmFyyHaW5jTH3U4JTcpm4JSIion01NgJ9fYDLBUydam0rtkrcojt+iduUSrRUQqmxGj84/ls4YfJvktEsIiKirMQZt0SUFjr6q2D4ClDg9gx7TXW5AD8gTPm1EoQRmmUSe3jUtEH3vYQJKLwPRkRERJYd2/px3uL7oRZOhkv7PAA1nLjt6QoAGP6EUboIlUoQceb4KGowsSt4E5uIiEgWJm4dTtM0zJs3D1q8gp1EI2R3bN3z3uOorQX+fEaEF9XgxU0SErdmcJZJvESsEizsJgSYuLURxyyShbFFsjC2KJK9O+px+oKHkVNYDChfAABMKVyHB87/JrTCSQCeiPn+VMZVuFSCEvvYavjpoyQsQkC24ZhFMjCuSBbGFhO3jqcoCkpLS1PdDHIgu2MrtPBYhEoJULXgRpGECwNhJW6VOIlYzTXoh4MzTWzDMYtkYWyRLIwtiqS9oQ7IAUTe5PC23MI8uFv8UEVX3PenMq661ANw1wv/D/vN98SsxauoGgQABdm7YEwm4phFMjCuSBbGFmvcOp6u61i1ahV0nXfCyV52x1bAWpsMEdYmg6JZGxURsOVYsSQ6y2TojFtesNiFYxbJwtgiWRhbFEl/Wx0AwFM6Kbwtr6gQAOAS8YvcpjKu/GYBdrbNR3tgVsz9QjfWmbjNLByzSAbGFcnC2OKM26xgGDyZIjlsiy2jH987/DJ4+11wa/cDGFrnVnMlb8atCJdKiPd4oAtv7zgTqqZiXpx9aWQ4ZpEsjC2ShbFFgxkGgD4rcVs8fmDGbV6wyK0i/IDhB7Thdf2Hfk5q4ip4DxtqnCk+4Rq3XKg143DMIhkYVyRLtscWE7dElHqmH5OLP4NRALjcw68SBmbcyk/cBkQ++r1V8HuKY+6nud24//2b4XIBlzNvS0REREG7dwMV+XVQVaC4eiBxW1iSDx0qDMMEAl2AVpHCVkbnCezEGQveQFXZRAAnR90vVONWZY1bIiIiaVgqgYhSz9StkgMA3O7hWVDTPQ6r645Dbc9y6U3ZYX4F3/7381jVcVXM/UK10U1OMiEiIqJBtm8HqorqkJMDqIUDiduiYhV9/kIYJgA9frmEVMk3tuDcxfdi8bh/xtzPyJ2CR9Zci1d2fC05DSMiIspCnHHrcJqmYdGiRVm9Ah/JYWtsCStxq5tuuD3KsJf9nln4zVv34MgjgTPHfrSYQonYeN1SVSDH1QdVMSHM/HDNWxobjlkkC2OLZGFs0b52bDdwWEEDcnIADFqcrLgY2OovQoGnC/6+bngKo39GSuMqdDIUrxRUbjVe2HwhKivlN4nswzGLZGBckSyMLSZus4LHE7t+FtFo2RVbph6AEIBhuiIuThYqcRuQvzZZwnXdNA3407nHQoEJ0f9fKPm8arELxyyShbFFsjC2aLCt21Q8+f7TuPbKOkzMHTg/yM8HNjUtR13nLIz35qI8zuekKq7MYL1/gdgXyaFr6CwvPZiROGaRDIwrkiXbY4tTxBzOMAysXr0664s5k/3sjC09YNVG0013zMStocuvSzDVfAQ3nXwJ9i/+V8z9VBUwhTWEGoaQ3q5swTGLZGFskSyMLdrX9u0KWvvGo2zWMkAZuNxSVeDxjT/GL9/8BTqMuTE/I6VxJUILtca+VNTgxeyK9Zhc9GkSGkV24ZhFMjCuSBbGFmfcElEa0P3WVFrDdIWTtIMVKTvx8AXnQvUUAnhNalvyUYeqik9Q6z445n6aZiVuNQUws/hHhIiIiAb4fNbiZAAwa9bw14uKgK4uoDt9S9xCBB8/ijfjNsfYjZtOvhQ9gQoALyShZURERNmHiVsiSjldB7r6y9HlK4uYuNXcGhSYUJKwarEQidV1U1XANDVABUyDK5QRERERsHMncMjUFzB7/A6M044CcMCQ14uLgfp6oKvTRLo+/Bg6r1HizLhVVFdwP97AJiIikoWJWyJKOZ9nNq7+10tQVeDkW4e/rgWzuWoSErcwQ48HJpC4DV5wccYtERERAcD27cDyKa/h6HmvQekaB5QNTdyeOvt+fO/Av8Dd8iUA16amkfEESyWIOOdCmst6XQXPg4iIiGRh4tbhNE3DsmXLsnoFPpLDztgKLToWqb4tAGjBF5KRuBXBixUlzupkmhaccQvANDnj1i4cs0gWxhbJwtiiwbZtA+YW1SE3B0D+5GGv5+RqcKt+GL7YtRJSGVcN+rG4/5VZOOTIUhwZYz9Vs86VVCUJN9bJNhyzSAbGFcnC2ErX53PIVn6/P9VNIIeyK7b04Pl+tMStyxO6x2QCQnKSdCSlEkRoxi0Tt3bimEWyMLZIFsYWhWzfLlBVWIecKIlbNacYAGDGSdwCqYurPrMSnzUtRbeYGXM/NXgRrbJUQsbhmEUyMK5IlmyPrbRI3P7ud7/D9OnTkZubi0MOOQQffvhh1H3vv/9+HHXUUSgrK0NZWRlOPPHEmPtnO8MwsH79+qxegY/ksDO21M71+PFJX8dFB90e8fVQqQQhAJiSZ3WIBOu6KcBHdcfh/V0nw1Dy5bYpi3DMIlkYWyQLY4sGa2loR66rD54cBcidMOx1NddK3CLQFfNzUhlXoQeJ4jx8BFULlrJSDPDho8zBMYtkYFyRLIytNEjcPvbYY7juuutw8803Y82aNTjwwANxyimnoKmpKeL+b7zxBr785S/j9ddfx3vvvYcpU6bg5JNPRn19fZJbTkR2MX3tmFv5MaaUbon4uis4FVcIAEJu4jZg5KAvUARTzY2778Orf4T73r0dumu81DYRERFR+hMCcPnrAABqfhWgeYbt48kvtF434s+4TZVisREnzX0Mk3JXx9wvXOOWiVsiIiJpUp64/cUvfoHLL78cl1xyCRYsWIA//OEPyM/Px4MPPhhx/7///e+46qqrsHjxYsybNw9//vOfYZomXn311SS3nIjsYgSsZKyJyLUSXB43NjQeik8aY1Vas8fKrh/hyidexy7znLj7hsrs8GKFiIiIvF6g1GMlbl3Fw8skAIAn35pxq5rpm7itUt/HV5fdg5n5L8TcT8vJxz/XfxNPrrsKpiGS1DoiIqLsktLFyfx+Pz766CNcf/314W2qquLEE0/Ee++9l9Bn9PX1IRAIoLy8XFYzM142F3EmueyKLUMPrk6mRB6SXG4Vd792L/LzgS9KHrVCT2Ak0jVNNaEpJkxDRRrcB3MMjlkkC2OLZGFsEQC0tgKVhfVQVcBdFDlxm1NkJW5diF0qAUhdXAkz9Dhq7HMb1Z2HpzdcBgD4XwMYPr+Y0hXHLJKBcUWyZHtspTRx29LSAsMwUF1dPWR7dXU1Nm/enNBn/OAHP8DEiRNx4oknRnzd5/PB5/OF/97VZZ0k6boOPbgikqqqUFUVpmkOWR0+tN0wDAgh4m7XNA2KooQ/d/B2AMNqckTb7nK5IIQYsl1RFGiaNqyN0baH2qiqKpYsWRLusxP65MTvKVP7tHz5cpimOeS4o+mTqYdm3LrCnzW4T4oCCKEhEAiWS5DYJ8PQAAgIYULXRcw+3f65czAurw6i437o1QfE7StjL36fAITHLMMwHNEnJ35PmdqnZcuWwTCMIe/J9D5F2s4+Jb9PS5YsgaZpw9qYyX2K1Xb2KXLbm5oUPP3JZdjedxruv8wMr746uE/u/AJ81rQY7vwizDEMqJoWsU8ulwtLly6FECLiuZHcPlk31AXUqL/FqqpC01RY50yA32/A48mM78mJsTfSPh100EGO65MTv6dM6lO0vEMm98mJ31Om9ilS3iHT+zQSKU3cjtWdd96JRx99FG+88QZycyPXo7zjjjtw6623Dtu+du1aFBQUAAAqKysxa9Ys1NTUoLm5ObzP5MmTMXnyZGzZsgWdnZ3h7TNnzkRVVRU2bNgAr9cb3j5v3jyUlpZi7dq1Q76URYsWwePxYPXqoXWili1bBr/fj/Xr14e3aZqG5cuXo7Ozc0jyOi8vDwceeCBaWlqwY8eO8PaSkhLMnz8fDQ0NqKurC28f3KeGhga4gzVCndInJ35PmdinCRMmoLu7e0iN6dH0ydQDMIUJb38g3NbBfWprU9DXNw9eL9DXpyInR16flha+hv2OXYfO5pOwevWUmH0yTGtgr6utxe7ugRtE6fY9ZVrsBQIBuN1uR/XJid9TpvXpoIMOQmtrK3bu3OmYPjnxe8rUPgUCASxduhQ5OTmO6RPgvO9Jdp82bZoAgWnoQylWf/oJgPphfaqp68FtT/8KZWUBLL50T9Q+VVZWYs2aNUPanqw+tbe1YUKOiY7OLmzZsiXq9zRj+gyML/gUpuHH6lU6CotERnxPToy9kfaprKwMc+fOdVSfnPg9ZVKf6uvrsXPnznDewQl9cuL3lKl9mjZtGnw+H2pqahzTpxkzZiBRihicUk4yv9+P/Px8PPnkkzj77LPD2y+++GJ0dHTg6aefjvren/3sZ/jJT36CV155BcuWLYu6X6QZt1OmTEFrayuKi4M1pjIkIz+aOyehchRLly4N3wnL9D458XvKxD4ZhoG1a9di6dKlUNWBR+lG06dNL/0Tysa7UOM9Dqf84I5hferqAj793dkozmvD/pf/HVrxdGnf06rfX4ti/0rsqbgRx1xwesw+rbzrfFTk7UTh8fdh4sKlcfvK2IvfJ7/fjzVr1mDp0qVwuVyO6JMTv6dM7JMQAqtXrw7/HjqhT078njKxT4ZhYM2aNVi2bBlcLpcj+hSv7exT5LY/+aSKn/1MxXHHCdxxx8D+g/tUW2vii1/UkJsLvP22iNon0zSxatWqIWNWsvr06n2/xST//0Nr0fk4/NJro35PijCx6deHAgAqz38ZZVVFGfE9OTH2RtKn0Ji1fPlyKIriiD7Fajv7lJw+Rcs7ZHKfnPg9ZWKfouUdMrlPiqKgt7cXJSUl6OzsDOcmo0npjFuPx4ODDjoIr776ajhxa5rWQmNXX3111Pfdfffd+OlPf4oXX3wxZtIWAHJycpCTkzNsu8vlgss1tPuhL2xfgy/wEtm+7+eOZruiKBG3R2tjrO2hgB78eZneJyd+T5ncp5HsH6nthq5C1/MhlLxhn+VyuZCbC7g1P9yqH0ZAhytKG+3pkzWgai533DFCBGu/KVGOm27fUybEXugHUtO08LEyvU9O/J4ysU9W2ZXhv4dA5vYp1nb2Kbl9UhQl/D+n9Gm027O5Tx0dJq447GbMmFYBl3I5oOUO27+8XIWiAD4fYOiA6oncdtM0o45ZsvukKMFSUZo79m+xABTFKmOlYOjnpfP3NNrtTupT6DFdJ/UphH1KXZ8ijVmZ3icnfk+Z3Cc7+ppOfUpUylfTue6663D//ffj4YcfxqZNm/DNb34Tvb29uOSSSwAAF1100ZDFy+666y7ceOONePDBBzF9+nQ0NjaisbERPT09qeoCEY1RvfZFXPH4W3i+7raIr7tcgCGsgU4P6BH3sY2w7sopavyBVUALvoUrKRMREWW7vvZ2HDnjOSwu+SuguCPuU1gI3HDiN/DA+Yejr25Vkls4oK8PWLcOGDQZaUDwXAhK5IvYMEWFdft6+AwjIiIiskdKZ9wCwHnnnYfm5mbcdNNNaGxsxOLFi/HCCy+EFyyrra0dkiX//e9/D7/fj3POOWfI59x888245ZZbktn0jKAoCvLy8kZc/JgoHjtjK/T0gTvyNY6VuDWTk7hVhHXhoUS4O7ev0IxbXqzYh2MWycLYIlkYWxTi62oBKgHTXQ6okZOeqgrkeAy4VT/6u7tQEuWzZMfVz34GPPMM8POfA8ccM/S1jd0r8MjKQ3HqiolxP8cUGhToEDwXyhgcs0gGxhXJwthKg8QtAFx99dVRSyO88cYbQ/4+eFERik/TNBx44IGpbgY5kJ2xFbAWL46auFXVgRm3hj9gyzGjGlHiNjTjNtJ0FRoNjlkkC2OLZGFsUYjRF1wEJaci5n4BWLXs+ru7ou4jO64++MD6s7Z2+Gvt/ulYv2c6jkng2UwTGjTo0HUmbjMFxyySgXFFsjC20qBUAsllmiaampqGFGUmsoOdsVXlfxrfO+4aHDjuqejHE1ZW19All0qA1R81So2bwWo6l2Bt/dEIKOWS25Q9OGaRLIwtkoWxRSGKrwUAoOVXxtzP1AoBAP6+6KXeZMZVczOwd6/1310RcsehybMJ3MOGEMGb2JxxmzE4ZpEMjCuShbHFxK3jmaaJHTt2ZHWQkxx2xlauUYNFE1aiPDfCtI/Q8YIPCMhO3JpCs2b3xqvrBuC5bdfil2/+An3uBVLblE04ZpEsjC2ShbFFgLVAl6pbiVtPUewZt0KzZtwG+qLPuJUZVxs2DPx3pMRttWcNjp75DEq0bXE/yww+fWQycZsxOGaRDIwrkoWxlSalEogouwnDSsYqSvQhaXfXAnR7C7FcFEpty//b8md8+CHwf/8Xf9/QpNws/g0hIiIiAL29QJHbKpWQVxZ7xi3cVuLW6I+euJXJStwKKBDo6ho+j2de4TM47tBn0aX8D4DZMT/rjZoL4e0L4EunFklpKxERUbZj4paIUk6YVt1aRYs+JD2x8Udobgb+fonctoSSsAlUSgg/QshJJkRERNmttRUozWuBqgHugtgzblVPISAAwxe9VIJMGzYAZyx4GF9Y9Cf8u+EhAHOHvB6q3a8o8R/OfGnH19HUBJydvWvGEBERScVSCQ6nKApKSkqyegU+ksPO2ArNuIUaPXEbWrgsIHltslASNpHE7SWLrsFfvnwoinpektuoLMIxi2RhbJEsjC0CrMTtb9+5E3e//yww4aSY++o5k/FZ8xK0eKdH3UdWXJkmsHEjcO7ie+FW/VhY/GiEvUILtcY/GXK5Bj6XMgPHLJKBcUWyMLY449bxNE3D/PnzU90MciBbY0uEZty6o+4SujCQnbg9dcrtOLa4Bfnm1QBmxtxXUw1oig5hyl4wLXtwzCJZGFskC2OLACtxa5huaIXjgeinMwCA7tyjcd/LR+Oss4ATo+wjK662bwe8XuCVLefixLmPo6Vr3LB9FGEAChKq9z8ufw/MIj/MwHgAOba3l+zHMYtkYFyRLIwtzrh1PNM0UVdXl9WFnEkOW2MrmPhUY8y4/fLCm3HfOScgv+P5sR8vhulFq7Bk0lvwKN1x9xXBBTkE/33ZhmMWycLYIlkYWwQAbW3Wn+Xl8fcttkrcRlwYLERWXIUXJvOUAgA0s3P4TiJYKiGBx4+uPOgq3H3mF+Hq+8ymFpJsHLNIBsYVycLYYuLW8RjkJIudsWWaAkDsGrd5bi8KPZ2A3jfm48WiBB8PVLVEhkdrHyZu7cMxi2RhbJEsjC0CgK7WLnzj8Jtw4tR7ASFi7htK3HbHuEcsK64++URgQfUqTJ1pLfbqUTqH1eoPnQslUuN24CY2nz7KFByzSAbGFcnC2GLilojSwKstd+CiR1Zht/LFqPsIxUrqmobsC4PgLJME6roheEFjmlydjIiIKJv5uxpxxPTnsaD4GSBOHb6y/Dbcu+JkfGfh0XGTvHZr37UJPzzhmzh+4i8AAEU5HcMSyEKM4lyIK7USERFJwRq3RJRyVt1aBW53jAudUOJWl1vkdmDGbfyLldAsE67IQURElN30nmagHDA9FXH3LSjJA3LbrAsxwwu48qW3DwB6e4EJyusAgLyiAqhaLwo9nejqAkpLB/Zb2XgJGnacgfMTqCloBi8ns3kmFBERkUyccetwqqqisrISqsqvmuxlZ2yFFhxzx1rMQ03OjFt1JKUSgrNMhOAsE7twzCJZGFskC2OLAED0twAA1Lz4idvC4lyYQrNKFOg9EfeREVefbhBYNuVVuD2Ae9a5aPHORGP31GG1dnd3L8Kq3Scg4J4Y9zOFsG5ic8Zt5uCYRTIwrkgWxhZn3DqeqqqYNWtWqptBDmRnbB1cei/mHVWLcu1iAPtH3kmxsroiSaUSEplx29w/B91tXZgyu0pym7IHxyyShbFFsjC2CAAUfzMAwF1YGXffomIFe/zFKMpph9HfBS13+HmEjLjatbEG+xfVIifXDcz8Gn7/ybfw2WfAb740dL9QDjaRa2ShhJ4+Yo3bTMExi2RgXJEsjC3OuHU80zSxfft2Pr5EtrMztibmrsayKa8h39UafadwjVvZpRJCdd3iD48ftHwdd776e7Rox0ptUzbhmEWyMLZIFsYWCQG4TWvGbU5JAonbIqDXXwQA6OvsiriPjLgy97xmHTP/EMBVgJISa3tn59D9phV+iEOmvYRcNCXwqaxxm2k4ZpEMSYkrwy/vsyltccxi4tbxTNNEc3NzVgc5yWFnbCnCSsaqWvSHAHrMiahpWwCvGf+CaCx+9OoruOQf70PkTYu7byi3y2sV+3DMIlkYWyQLY4u6u4FijzXjNr8sfqkElwvwm8HEbVfkUgl2x5UQQKVpJW5zpx4PACgutl7bt1TCMZP+iG8dcQMKjQ1xP3dzx0l4cfMF8GKyLe0k+ThmkQzS46rlfeDlI4Cav8n5fEpbHLOYuCWiNDCQuI1e5HZDz4W4+YW/osb4UtR97GCYKgzhgqrFXhEaADSuTUZERJT1WluB0rwWaBrgLkjsBnMAVta0vyfyjFu77d3ZgPH5WyCgYuLiowEAX5p+FX674hQo3ZuH7iwSLxu1pu3L+Pua69CtzLG9zUREYf1NAATw2a+AQOQbXpQaus7rYdmYuCWilFNg1UXT3NFn3LqCL+mSS6iNpK7bceN/jj986ThMCvDOLxERUbZqawP+7+U/4+4PngXGLU/oPa2BOfiseQl6+oslt86yfssE/Pj5R/BS/Y/hKSwFABTltKMktxV6X/uQfZXgQq2KEv9kKJTb5dNHRCTVpDOAwpnWf9c+kdq2UJhhAOedB1xwAZO3MjFx63CqqmLy5MlZvQIfyWFnbIUTt67oM27dwZcCckvc4uLFN+CqI26AG/FnwLi1fuS7u6GY/XIblUU4ZpEsjC2ShbFFra2AYbqhFY4HXPkJvWdlyzX46cv3oz5wdMTX7Y6rDZ8qqO2Yi0D1WeFtwl0KANC9Q4vcDtT7jz/jNs/dhbK8JkDvs6WdJB/HLJJBdlztaVTx0FtfQ18fgF3/AAyflOPQyLS0ALt2Adu2AY2Nco7BMYuJW8djkJMsdsaWGp5xGz1xu3/xv/CLz5+J+covxny8qITAQRNfwqHTXoKmxJ/aG5qJInh70TYcs0gWxhbJwtii1uDaquPGJf6eUH3Z7u7Ir9sdV598Yv25cOGgY+RYq5MJX8eQfcMzbhMolXDa5Fvw6y+chnGBl2xpJ8nHMYtkkB1Xbz+/FU+8vBAbtlVB97YBdU9LOQ6NTFubdbNvfNEu1GyXM5mJYxYTt45nGAY2bdoEg88vkc3sjC0V1jTaWKUSclz9qCjYA7doj7rPmOndEML6T8VTGHd3oVgXNELw35ddOGaRLIwtkoWxRf1tdfjG4TfhmMkPJvyeaAuDhdgZV/quZ3FUyU3Yr2rN0MRtrpW4RWDfGbfWMVUt/qViaFauMBn/mYJjFskgO64OwjW458wVWFN7qDWzs+b/AabkGnqjYfiBjfcALR+muiVJ0d4O3H76+bj7zC+io+YTKcfgmMXEreMJIdDZ2QkRykYR2cTO2Lrlzf/i64+9AzNvRtR9FDWY1DUl1krwWVNm+gJF0NyeuLtzxq39OGaRLIwtkiWdYksI4B//ANavT3VLsovorcUR05/HnOJXEn7PgvKX8dsVp+AA4weRP9PGuOra/BwOnfo8Fk7+FFOmDGx35ZUCAFQ9cqkENYFSCQJM3GaadBqzyDmkxpUw4Tat67T/bLgEdXvL0dm0B2h81f5jjVXt40DtY8Dqq1LdkqToaNPR1DMZANDfslXKMThmAdGntxERJYnP74LfcCFWrlTRQolbiXdWfS0QADq8FZicyG2t0KIdgolbIiJKvfXrgZ//HJg9G3j00VS3JnvovS1ACaDkViT8nvx8BSX+Vvj0NoktA+DvgGj9CADQV3Q8FGXgpZzCEvQCcImOIW955rNr0N/dhStPmBb/84NPH4GJWyKSJdAFw7CutyqnTcDjH1+N/C3AtccdjxFUqEmOvtpUtyCpctpfwZJJbwEAlJ5tKW6Nc3HGLRGlXGjBsRglbgcSt0LyjFsBdHrHIYGybuGLFc64JSKidFBfb/3Z0JDadmQdXwsAQMtPPHHrKbBqJahG/MVQx6TpLfR7TdR2zMWU/SYNeSmndDzqO2dib0cFBk9kWt94NN6pOQPCk0BKROGMWyKSzNcKXQd6/cW45tsu7HWfhRc2nIWf3O5G+k3CVAfaZPhT2pJkCPQN3HwsMLem4ffhDEzcOpyqqpg5c2ZWF3ImOWyLLSFw0eIf4YrDboZbib4isZqEGbdmfyuEADr7E0vc9pkTsK3lAPSZ46W1KdtwzCJZGFskSzrFVlOT9Wdfn/U/Sg6X3gwA8BRVJvweT0ERAEATkVcnsy2umt+B1wus3n3ckPq2AJA3/Xhc/9zj+Nvq6+D1DmwPlREc2U3sNKw1SRGl05hFziEzrkQwcdvhrcD48cBtt1kTft5+G3j2PwbSKVvY1aljyxZg716Eb+o5meltDf/3+MLtaNpr/008jllM3DqeqqqoqqrK6iAnOWyLLWFg2cQXceSM5+B2RR/oFc2ajqtA3oxbb5dV462zf1x40ZBYPus/F7e99BdsC5wnrU3ZhmMWycLYIlnSKbZCiVsAaHH+9WJaME0gR1iJ2/yyxGfc5hVZiVs3oidu7Ygrf8cu+P3A9paFwxK3OTkDTzsNXiRtv3HvYfGkt6GJ3rifL9zWAmdGf8eY2knJk05jFjmHzLjq72yFMIGu/nKUlwOzZgFXXgkcPfMZlG/4Alq2fmT7MUfro9YL8NdV1+Enr/0NyJ+Y6ubI5xuYcetW/ajfstv2Q3DMYuLW8QzDwLp167J6BT6Sw7bYMgPhm6QuT/Sy28JVjIauGej0TRjb8WKoz78Klz32Ll7f/Q24EqgAHvrt4D8v+3DMIlkYWyRLOsUWE7fJ19UFFOda/2cXlCc+4zYveIdYhTfi00S2xJUQ8LZZdTM8JROH3ZRWFIS3DU7cXrT4Zlx3zLVw6/FrbhjFS/Dm9rOxtXnR6NtJSZVOYxY5h8y46m2zkoNesxy5uda2r34VOGz/TSjLbcCnz/wF6VK5rq5jJl7cfAHWbJuXThOBhzMNYPW3gU0/G9PHuAxrxm3ourijzv4FyjhmMXHreEIIeL3erF6Bj+SwK7aEqQ8kbmMUue1yH4IfPvsE/lt/65iOF0tLCxAwclBYWpDQ/qFHCNPlRMEJOGaRLIwtkiWdYouJ2+RrawNK81qgaYCrIPEZt4WlhQCCa3oFhte5tSWuDC9ae6oQMHIwcWaEG99GP2458Vzcu+JkdLX7wpsVWCc2mit+rQSl+hg88MGPsXL78aNvJyVVOo1Z5Bwy46o5sBDPfHoptvccG96mqsDhF3wVUFRUqh/g5X9usv24o9EarBzg8wHdkR+oSA8d64GWd4Fdj45pcUm3sJLqe4wj8e9PrsCm2pl2tTCMYxYTt0SUYkZgoPSB2xP9AiGU0w1IXJus2XrSERUJXnfNy3sMv/7CaVjo/rW8RtGoGAbw6aeAzpJ7RJRFBiduQ79pJFdLC/C9p5/CPaueB4rmJvy+4hIV21oOwKbGJTBlzSJy5ePXa/6Jyx57B/MXeoa/ruagunAXinPbwuWiAEBRrMStosZP3I4PlvlvbLSlxUREw+zuORBPrrsK9cbJQ7ZPmjMRZvWpAAD/+l+hvS3Fs2mEwHj/47jskJ/gqiN+hJ6NT6a2PbHog7LKvtGdMAgB5ChW4rZj3BX49ydX4KMts+xoHe2DiVsiSqlAwMqsGcIFt0eJul+odIHMRNyMjh/gisNuwZTqtvg7A/BofSjLa4IHnfF3pqR67DHg4ouBf/wj1S0ZPZ8v/j5ERCG6PjDTB+CM22Rpa7POYVyFVYAWITkaRWEhcNtLf8FPXr4fPXriJRZGatcuAFAwM9IkKEVBAFaN2v6ujvBmVbFOtlQt/qVidTWQ4/LC7d8JQ+cjSERkv9Bv27hxw19bcNYV0Dy5mFX2Ed54+NHkNmxfgS4cVnI3jpn1FA6d9iLM5lWpbU8MBnKxqxbY0wigf3R33rxeYMOeg/Fp48GYu8j6HaupSau14hyDiVuH0zQN8+bNg5bQsrBEibMrtnR/MHFruhCjUgKKlS244/Rz8aXpV43peFGZAVSar+LIGc9i3LgEh0Yl1HdeqNjFrrjauNH6c6v9ZZaSYts24NhjgV9zMrdt+HtIsqRLbLW2Dr1Y4ozb5IiVUIjF47EWBwMiP05rR1zpOtAQLFM7dWqUfdRSAIC/tyO8bSSlEsrLBH7/pRNwx2nnoK2B024zQbqMWeQsMuPKaN+CqsI6VIwbPoNHLbCkc5UAAOF6SURBVJyMnAOvBQDMMu7F1rU7bD9+wvytQyYZ6b1J/CFuXw+s/T6w56WEdt/ReTA+2rEUHe2A3jO6sbutDfjTe7fgN+/dhzkLK1FRuBczi95Ba5N3VJ8XDccsJm4dT1EUlJaWQlGiz2QkGg27YitUKkE33Yi1UKRbC2BSyQ6UeuxfqRIA4G+HrgOm0FBSURx/fwCKYjVYsMitbeyKq9CF6uDHhjPJypVWWZD33091S5yDv4ckS7rE1r7jHWfcJofo2IgrD78RR0x6ZMTvjbQwWIgdcdW1+l7ccvJXcfScF6KWgTK0UgCAv3dQqQQkXipB1RT0GVUAgPaGvaNuKyVPuoxZ5Cwy4+pQ9zX42VlnY0bFtoivTz9yBbo8h8Ol+vHKox+kbv2R/pYhiVvFl8QxsekNYO9rQPM7Ce3e2Ai09o2HEEDX3tG1M7hmHMrKrJuRPz3zEnz32O+gceuWUX1eNByzmLh1PF3XsWrVKugs9Eg2syu2fNoUfOOJN3DDf/+NWGOxy23VSlAhqcitz/qh7ewfh4rKxIZGJZRpFkzc2sWuuKqvt/7M1MTttuB56SjPoygC/h6SLOkSW6HxLvTTxBm3yaH2bsPh0/+LGUUjv9N24ZK78dsVp0Db89Sw1+yIq/6mLZhevgkTq/uj3xx3lwIAzP6O8CZNtY6puRI7H/Kr1QCAnhbOuM0E6TJmkbNIiythhhfAyi+L8miDomDOihvx65X34YFXv4xnn7W3CYkK9LbCMIDG7mkAAE1vTt51YvO71p8VRyS0+95GE0998nX88NknsF0/b1SHbG/ToSoGysqsv/eqcwAAXXX2PvLIMYuJ26xgyFrwgLKeHbEV0FV4A4XoN0tj7qcF6ygokDRgBxO3Hd4KVCZaai4045aJW1uNNa76+4EKbQ3uOP1clGN1RtZZCiVuu7qAvr7UtsVJ+HtIsqRDbIUSt7NnW38ycZscot+a2qzkJbiy6SCF+f0oyW2F3hu5tv5Y40rvsR4/ySmdGHUfJceqcSt81oxb0wQe+vCHeHjVD6C4ixI6juG2Erfedt5tzBTpMGaR80iJq0BnuH52cUVZ1N3GTazE0V84GADw299GLkEjW2+bVTtnZ9t+EFCtdvsSWztlTLx7gZ7tMAwg0N8N9NXHfcvi3vNww4nfgMfVj/rG3FEdVmt5HX/58qG4NFiqAkVW4tbfZn+tumwfs5i4JaKUClZKCC8+Fo3qkjvj1uy3ahJ1esdFfZxwWJuC01cUZPcPSbppaAC+f/zVmFSyA1cf9h309KS6RSOj61Zh/xDOuiWiRDQ1AROLa3D84jWYVLId3j6TN36SQAlYiVtP4cgTtwgmRvV+CRkGIaD5rMRtQWX0xC3yJqG+cyY6egsBAIYBvL5tBV7d+iWo7sQu5tWC8QCAQA9/sIjIZj7rGq3HX4JxFbEvGM87D5gxA3AF6rHhkZsA3d5aq/F4O63EbYe3Eh3eCus615eEx/9a3kUgYE38aHj5TqD1g9j7CwG33oCyvGb0+YvCJeZGKtDTBgUCrhxrYc7cSitx6/Zm6CIjaYyJWyJKKdGzC5cd8hOcteBPMfcLl0pQ5My49ba3QgirVEKiC4z4lTLUdcxGd2C8lDbR6DQ0AF395QCAxz++OuNmndXWDtzQAJi4JaLENDUBx835F74w6QrcdeZ5GFfQyDq3SeAyrP+Tc0tGnrgNzWg1ZCRu/W3QA34IqKiYVB11t56qr+H65x7Ha9vPB4AhtSETXQfGXWydBymjXJmciCgas78NhmFNrol3jeZyAf/7PRPfPfY7KO17Hi0rf5OcRgb5uqzEbUAdh7a+KgT0gacypGpeic4u68ZbXx9g9sYZi/VuCMMHADhq5n8w03fPqA5reIOrc+ZYX8y46VbitkjZxlKCNmPi1uE0TcOiRYuyegU+ksO22Orfi2NmPYWDJr0S+3jhGbdyEre9ndbKIAF1XMIXKnuVk3DD849iZdu1UtqUjeyIq4YGwKVamc+tzYsyrs7ttvC6C1aNByZu7cHfQ5IlXWKrqQmoKqyHy21dvFYWNjBxK5lpAnmKdXewoHzkiVs1x1qdTPiHr0425rjyNsDvB9r7KjF5qjvqbiVWpYTwAmmGbmL/8R9iQfUqqEpiF9755Vbi1q3zBysTpMuYFY9oeBFi91OpbgYlSFZc9ba1hCfXlEWvlBB28CEqNivfgxBAz6YnIJrjzD610Wb/1/Drt+9BX+Ex+OWbv8Alj6xEZ87Rcg9qBoDWD9HVBXxYeyKEAHpb4yRuvY0IBICA6cHnFz6AeXmPAfrIH9ER/VYZCFe+NWFm4uyp0E03XOhDR6N9N/IyZcySiYnbLODxeFLdBHIoO2LLNKxErInoFxUAoLk9aO0bj9a+CZBRtHSrdh0ufXQl1nZcnPB7Qr8dKVu51KHGGld763tRkmvdAW7snpqRiduJxTX407nH4IuLfs/ErY34e0gJ8e4Z8UyRdIitpiagsrAebhfgcgOVBUzcytbRAZTktgAKUFiRaIH8Aa7cYA3ZQOQZt2OJq0BXA/QA0NQzCVOnRt+vKNiEUOLWDPTjB8dfhR+e8E1oSmLlqYonTMeb28/GG1tPH3V7KbnSYcyKReh+1D77I+x89icwejPsRC6LyYirnjYrOehHecKTa875xiF4s+Yc9PUCu9550vY2RVPbNhMf7T4OOeXT4Movh2565J/H+1rRq87GnrZKfFR3rLWpI3bS1PQ2QQ8ADZ0z0Bcogj8AYBRPTKi69d24C6zEbV6BC+2BGQCApu32lktI9zFLNiZuHc4wDKxevTrrizmT/eyKLSMQnEGrxK5ZpOWV4tqnnsWPX3oKUJQxHTOS5mZANz0oGZef8HtCJw/852UfO+Kqv7UWgBUmXzjgfrQ3pWB1gjHYtg346rJ7UJjbh88vfAA23rDOavw9pIQ0vgK8eSaw5d6E35IOsSUE0NwsUFnQAJcLcLuAioI9GVcqJtO0tgiU5LXCpQFa/shn3LrzraypYgz/nYoWV3v3Aq++Gv8edmsrsKdrKlr7p8V8vLjUtQN3nH4uvn/UxQgEANMcOJ7mSuxSsWLKRDzwwY/xrzUXwudL6C2UQukwZsXT1d6L3h7A6wWaankilAlkxVWT7wA88+ml2Ok9JuH3jB8PTDjgCABAW338hbrsErpZWlEBVAcr1EhP3OaNxxO7H8R3n34azT1WPXO9Z0/Mt/S07IUQQFtfNVp7x0MPAIGukf87c5nWRJnckoEfmU+9X8Mf37sNnzXuP+LPiyYTxizZmLglopQy9MRm3LqDL+tyKiWEL24rRzBhpkp5C3efuQLHVdwipU00Okb3LgBAbi5w6ry/o7+9LsUtGplt24B8Tw8KC4GP649yVuK2cyNq17yPuprMSqZTFtl4l/VnzV9T244R6uwEctV25Li84VIJFSyVIF1bu4IrHnsL96x6HsiNXkc2GnfBONR1zkJTT4wpsfu4/XbgBz8AVq6Mvd+W7lPw/f/8C683/Sjm/e6CQhcmle7AxJIadHcjvHo7AKgJTm8rKgLy8qz/5lMiifP5pDxE5gj1zWXY3LQUANDpqBOh1OnoAF57Td61lCy7ew7Ek+uuQoN58ojeN2WulcTMMZMUP6aOycZjOHjqK6gYZ2DBlK244rBbUNzwS+mHfvllawKSV1hla1T/3phPDvW0WAO1T6lGp896z2hKG+TAmnGbXzpQwyIw7mS8W3MaNteMYsFOioqJWyJKKSO4CpOIk7gNlrgdsmiTbYTAYuM7uOKwWzChYniduWg8qhfji2pRqPEqJV0IAdTUl2P17uORF5w8rXdnzgl/Xx/Q0CBQUdCAwkLg6Q2XOeoiuHfj4+h962p4nz0OomV1qptDNFzxPOvP+f+b2naMUKhMgssFqEowccsZt9K1tgKGcMFdVAUoI7+sUkrn44bnHsPfP7094ffU1Fh/rlsXe79a6+GTmGUSAEDNLYWmArmuPnS2ByBCM5oUQEnwCSdFAaZO9GJC8U4013cm9J5sV1sLHH88cOedqW5JempoAFp6JwAAeltGueQ9DfGb3wDf/z7w4oupbsnItAbXv0p08eiQ8klW/LhE16jqt46Yvw1HVdyDbx15A8aNUzCxshtHzngWxf1vyTum3ofdO7rx2WeAqgLHnFIBU2jQAybQH/0EoKVnPDY3LUWfNge627rp2N08susl0wQ+3n0wPm08GIUVAzcuZ1iVEsK/VWQPJm5piL//HTj3XHCGhl28jcDa7wNta1LdkrRlBm/7ijilEtwugVtOuRg3n3QBhM/miwK9F+O1d3DkjGdRXjGC+jnhi7TsfWwj3XR3Ax/tPBi/eftu+EpPtDZ6Yz8ulE62b7cWFyor6EBOnhu72udi717nzMjp3L0BwrRuwPBCjNKSr9X695Y3KdUtGZHwwmQuAIqLi5MlyWgTCiHF1tpk4fqy8ZgmwnXbN2+OvW+iiVu4CqGo1vlMX2cXDMOapSWEOqLSVJcf/APcdcY5MPa8kfB7stnatdaM2/feS3VL0lNjgx+twcRtoIvnC3bYvt36c2AR3MxgdGxBdeFuVI4b2eyd6kn5aOyehm3NC9DXlYQnvXyt0HWgwzsOFZUq8sdZyUyXLvFEvuG/yF15Ai5adjcOPhhYsEDFgx/8CH/f9AvAXRT1bRs6V+D2V/6EBm0FkGvNuI1XF3df3d3An9+/EXe9dh9KqgcStzNnCMyvXo2p5j8Ao390/aJhYmdKKONpmoZly5YlvALfv/8N7Npp4v33VZxxhuTGZYNP7wBa3gX2vgac6qzZZSONrWhMIzjjVolTKsGjYHr5ZqiKAVP3QcsZ02GH8ls/tF69AOWVuQm/TVWDfR/hIjYU3VjjKlTGatw4IK98PHq3A1ogc2bcbtsGzKrYgJxcwJ3jwfKpr6G+Yya6u+eGL/AzVqAb6NkZ/mvn3gYUzkve4e0as8jBhEB3Ux3qdwHbuibjjPMSe1s6xFZTE7C9ZSHebLkeM0834N34IT7cNRnNbQKA/XXhyeLpeg/fPPw5VE5YBuDsEb8/NK53R8gpRIqrtraBx5w3bbJyARFzq8LE54tPw+JTK6FMvhdASfRGKCoCohgKOtDX2QFRUWh9BEYWz6ZnPBAAfJ0OekxEotD5SmOj9Z26knhVng5jVjyz+36MpQtfAwCIDLoBn84agvlvWSVfZcXVUXlX49Cz2rC94hEAcxN+X34+8JM3/4muLmDeJcCsclubNYwIJm47+8dh1jiguLISaAFMww8EugBPjHF4tJrfRXeXiQ5vBU5aAUycCLy14yxM8AL/G2NMCVVFqK4G3Mp4QAeM3pGN3cE141BcPFDSEABmzFTwrSNuQHFuG3oaD0ThpAUj7NRwmTBmycYZt1nA7/cntJ9pAoeN+y3uO+dEtDckr4i3o1UnXkQ9EyUaW7E0Kqfi2/9+Hi/v+XHM/VwuQDetX4WA3+biTL4WBHSg01uBihGU41FU62pJwQgStxt+Arz9peQ8spOhxhJX9XUCZXlNmDRJoGCcNVMjX2mEDaGaFNu2AROLa5CbA6hmL/7n6B9j+dRXHVHnVnR8it7egb/3tyV/Bk3E2DL8/PdIlkAHvN19ME2gpP5uoGdHwm+14/dwLJqbgaaeyWh0fxGYdi78+/8M/1j7HbS0MGkrk6d/Ew6b/gKmFsWpWxBFURHwf5+7ED898WSIvuHJqX3janDpnPZ2RC+F0d8Mj2jB1LItmDg1+qyrkIBiJRT6uzth6NZTRKYY2WWiq9CacWX2OuAHKwlCyTPTREp+41M9ZsXj8g9ci9a2TE9dQxzC67XGDEBe4haQEFfChMvsAAAUlI088zremkyalH9jfe3WEzud3nEoLweqxnvQ7SuFHgDQ32T/AQ0/+hs+RH8/8EnjETj2WCtxC1i/FVFrGQuBpkbrxepqwBx3OK5/7nE8sX1ktXjb23Roio6ysqHbCwqAFt9sAEBLzdYRfWYs6T5mycbErcMZhoH169cntAJfUxPwuf0eRoGnCxO8DyehdVmgfLn1p5rjnGedg0YSW7H49Fy0e6sQUGL/GLtcgGFatw51v72Fbk1vK4zgoy0jWZwMoRm3iZZKECZQ9xTQWwPsfWNkjcwSY42r1j1t+PUXTsONhx2L/LIKKCowrqAxYx4X3rYN+Of6b+Lj0v8C086Hyw1UF9Ul76Iu0AVs/QPQ8F/bx6yOXRsQCAAieOphdCf3BmHE2BICeO+rwFufB3RvUttDaaivHqGfl4k5HwK9tQm9za7fw7EIJfSqqqw/Qzche3ut2tkkic/6cXEVjOTkYUBxMVCS14rinDZ495l2Gymu9q15Hq1cQqCrAQEdaO0djylT41/u6WopAMDf0wFdKcYja67FU59+a0R9ySmxEreqn4nbRAxOniVx0XsA6TFmxZMrrJu71z/3OB764Lspbk3m2zPovpCseJMSV/4OmIYJAQXFFWXx999HKHG7JwmTtvvardo5XrMCHo+VFG33ViGgA0JG4rZ9Lbo7+9HRX4EJ+81FSQlQXg5MKN2D5VNeQvu2DyK/L9CJK2Ychl9/4TSMrzZQNbEY9Z0zsbMuf0SHF3vfwl++fCiuOuSaYa/5PHMAAD177EncZsKYJRsTtxRWv3vgLkZ/D8/ybZE3AYAKmL7wyT0NFVpsLN4jYoNn3BoBe2fc9ra1WHdI+ytQPoKbuWqwJpySaKmE/kFXXAEu3iFDb/Mu6z88pVAKJsPlAsblN2bEAj1CDNQdmzq3EihbCrcLqCqsS+4CZbVPAutvBFZ9M+HEVSLadnwCAFi581QAgOpLg5p1/U1Az3bA3w50xSkYSc5XOAt/WPMg+vV86yaDN3MSUM3NwMFTX8Gs8nWA4Ud+nkBVaTsKPJ0Zc+MqE2m69X+up3h0q2fn5ADegFUvoa8j/nnBvjfxoiVuW+oaAAG0+yYNmw0ViVeZhvrOmejtc8FQCvHC5gvxes0F8d84SGGFlSFxGyyVkIg9DTpWHPBHzKlYh7q6VLcmvQh/NzRh3cho6Z2A5mZkzJNT6Wpw4rKnJ/G62ikXLD/Q4yvFuIqRPyZ/yLTXcM9ZX8C0zhslNG4ob6f1e2C6raLnlZVAe18VhAn0tEgYF5vfRVcXsL7hcJx4ovV0jaoCR857H9864gaYO/4R+X39TdADApqio3q8Fp6lO9Lktq/LSlS7PMPXh1FLrcSt2WnfjNtsx8QthdXvDqDHbz0qFfD2pLg1DuDvAHb9Awg9Rt/Hs7JISgLv4cKDfo79Sl+NuZ+qWis3A4Buc+I2dIc0oI7DSErnCDUfzT2T0OmvSvAdCnQd6O8H0Ld7xO2k+IxOK9Eo8qcBBTPwt60P44bnH01u4nOUWlqAzk4r1mfOBJA/GW43UFUkOXHbvm5gdq27GJj+Zeu/21YD754PbH8QMMf4b04IoHMDAGBbz8nWocxmq0xBKnVvGfhvbxokkim1XHl4/7NFeHPb2TBNwNuWOYnbliY/vnXk9VhmXgboPcDGu/Cbs0/Cyfs9xsStRB5h/Z+bVzq6xC0A9BrWbF1fZ/yr5tBvQX5wYtSmTZH362q0xjPdPSGh9cU+wU24/rnHsbntaJjB01Z1hFeJpROsGbcFWiOE6aynzOzW1wcsqfgXzj7gftx48mVJn3Gb7jr2NECYQJevHNDyoMBE457snWlnh/p64JR5j+DUeX9Hef7ejIm5QG8bDAPo7C8f1SKQZeUqqgt3w+XbZX/j9hHoCf7Y5li/B2430A/rGrGn3f4JO7273oWvH9gQLJMQohVapeL0nsi/KXpPI3QDaOurRnU1MGECcOLcx/H52bejv2VnwsfX+6wit8I9fNZT4XgrcZsb2Oq4p45ThYnbLJBoEedd9QW49+07AQAl7lr4fDJblQW6tkD/9NfYsyeUqHNe4taOAuFFxic4Zb9/YFrBqrj7msHErRG1aM/oeLutGxXCPbILr77cpfjuM0/j8a0/T+wNeePxq1dvQk0N0Nu0c4StzB5jiSul30rcukumApoHgYL90dVfnhEzbrdtA46Z9TRuPuMa5LS9BORPhssNFHo60d5k/8202o07setf16D1+cvw5O9exw03AFdcAaz438vwf28+hUb9EAjDD2y9D1j5FaBjw6iPJQRw5yu/x18+vAHzjjgYdZ2z8GnjwVaCKYmGxVbfoCuXXvkn9SSPzwe8/vrYygL09gIdHUBLnzVzsK8t8TsmqV4ww+xthAIBlycX8JQBuVVwuYHKwgYmbiUxDKBAs35cikdUZ2moLn0qAEDvGn5Dd9+4Cs24PeII689oM269wRriSv6khNpQElwzp6sLMANezK5Yj2llnyX03pBxk6zErQYfutszZTpfatTXAz2+gYWK6uuSv8htqsesWNqCWcVufRKuO/FG/Pn8I9G345UUtyqz7dkDnDb/b7hg6S9Rnr83vFCZ3eyOq+5Wa3JNt28ciuKX6x6msNKaTuox5NdK+KTvCvz67XvQrh0e3ray9Rpc+uhKbNEvsfdgfQ3oa94FARX5Uw4esoBxXrl1DqP0R7753NW0FxBAp68KZWVWyZ6j57yA42b/C227tyfcBNNrfTdq3vCMevXMGRBQoehdgM+ei7B0HrOSgYlbh3O5XFi+fDlcCSxVWlcH7OmaBsCqt9VQzzubY9K7Ex0dViH4rQ1Toyz7m7lGEluxiNBMPjX+5/QEytHZPw66bu//l2v91+PSR1diWyDBJcSDQrNRzATPt30+YPWm6RAC6Gvl7L5IxhJXpgnkCyv5VlhtXQiH6j02SSgtZbdt24D9x3+AAyeutG70uPKheKxnXP2d9t74qf2sES3PXoTenSvR0OjC+g/q8dJLwJo1QG0t8PTLk3HGLffip/+5DY1tJTA6twEfXgH42kZ1vN11CtZun4t3dq3AKZ/z4IbnHsMtz92HgCp5id9BIsbW9POB2d+w/rt3Z9LaQvb772Ofof3FK/Cfv45ukSgA6PzkCZww58lwPfVAd2IzbiPGVqALWPu/QPO7o25PorxeIF+xEh2uoknW+UbeRLhcQEUBE7eydLQLlOS2QFGAopGsbLoPv2sKAEDvGFqaJlJc7d0LnLX/g/jSIY+jKLcDzc1AMK8xhNlrnWPklk9IqA2hi/6uLkDt342bTr4UVx3y7RH1Izffgzd3XYB/rr8Szc3OOue1W3098GHtieESYD0tyZ3db9c5vCy9zdZ4FnBNREGBCrfqR28Lz5vHonlPH8ryrJPh5p6JUmbcyoirwU9FjuZSunSClcT0oB0w+m1rVyQ1LbPx0e7j4CmdPHD8ikLopsf+J+fcRXh49Q149tOLcfQJQzPaxVVWn0WgFwgMnyDR02rFgV+rDv9/GlCt93Q3Jd5QJWBdE7jyh5/LT5/lQUPndAQCQH/ztoQ/M5p0H7OSgYlbhxNCoKOjAyKBKerelp1QFRPXPvUsrnz8ddQ3ZPddjTHr3QmfD3hu48W47fV/AZPOSHWLbDWS2Ir5OYZV5FbR3HH3/fm7D+N//vUivJ4FYzrmvpqbAd30oKwid0TvCyVuE62T3rC9EXu6puO7zzyNf7f+a4StzA5jiauWFqCqoBaKApRMtG5CLax6Excu/QVyej60u6m227YNmF2xATk5AEoWAgCUguDJn80z9uvWrUSuqw+tvul4sedxjFv2VVx3HXD77cC99wLnngvk5yt46sPTcP7v/omHXzkdz2/+GnY3jS7Runq19ecBB1iPZOXmJn8l7Wix1VV4Crpm3A7MuSp5jSHbzfX+EPOq1uBg5Zuj/oyc+r/g4uV3hv8u+hIL0EixFdjwKzSuex19b48s+TUazc1AVWE9VDWYuAWAvIlwu4CKgsyo8Z2J2pu7oak6NA1Qc0fxDG+Qq9hK3Jq9Q2fcRoqrpr0mPn/AnzFf3I25M3oBAJ9FmBjb0DYejd1TUVQ9JaE2TMl9G3ecfi5OqLwJpmHdUBcY+XXAOy3X4ekNX8eeluL4O2ex+nrAFBr6YH0/omdnUp8mtuscXpaG9vFY13AEet2LgHxrxmSgKwmrSzmYP3hjKDcXuPvMc1BXZ/93LyOuGn2L8PSGy7DLe8yo3l89qQhevQC6DujdcmModBNtcEmHautBBNsTtzt2F+HRd1fg359+C8fs839N9cRcdPtKrXVkvMP77OuwGmN6xoe3iVzrv73tiZ+Ya4aVuM0pHv77V1wM/Gfb93DrS39BTefShD8zmnQfs5KBiVuHMwwDmzdvjrsCnxDAyRN/gl+efQaOPGA9BNSMqX2TtoKJ2/rOGdi9O/HkXqZINLbiGcmM29BNttCCZnYJzUYa6YSZAnML/u9zF+L8udcltv+mq/H7c47HuPxG7NjB4TeSscRVfZ2B6qLdcLsBtdCacTu94F2cMu8RFAXW2N1U2+3Z1YaKggbk5CpASfDmxOwr8PM3foX3txyU8MzuRPibrLIHZuXx+N7NU/HtbwMXXACcfDJw6KHA978PvPAC8MMfAlWTSnHf27fipr9ejmuvHd3xlO1/wglznsRhyzqhKMCkYG4pmY+HRoot0wS+dtVUfOGqk9EtpietLWS/li7rwsEIjLJusuG3FqsDsGnvsuAmL2DGH4sixVb9ZzvR1hac7Z/oApaj1NQEVBbWw+UGkB+82ZM3wVqcsaARLc0OOwFJE80dxbjkH+/jZx/9F9CGL86SqLyKaWjsnoY9ndOHbN83rnTdWjDPrfrhyvFgzmwDCsyIdW7ve+dWfP8//0LZ9IUJtaEgz8Ckkh0o0nZDBH9szFEkbkNJimTelMtE9fUCM8o3IrfEeiyozLMzqYtF2XUOL8vqupPw8zd+jfbi8+ApCc4aZx36MVH6rCfS8guAPHcPOpsSeIKq/nng1eOB9vUJHUNGXNV2HYh/rv8m9ionjur9ZeUK2vsmQAigfaSrb42E4cN05VEcMvVljCsf+M2fVNWBKw67GUuR2LViol4JVg457DAMKyExYQLQ2jfeul6OUC7B7LMSt+7CgTVaXEVW4lbvSXzw9ggrU51fGnlSR6D4YGxvOQDbd45sYlQk6T5mJQMzBwTAepy/Iq8WUIAJs6yEBxO3YyN6rMTtnq7p0HVIqyWU8UIzbtX4M27dwV1sTdyaBo7OvxpXHHYzqsaN7BEal9KPaWWfoTIvgXpAwgS81j+qlt4J2LFjNI2lWBob/Hhh8wWo6TseyLWuHnNKrRN+l57eV5GGAbh6rGSqq2QG4C4EAJTMOgyfNB6J9t4ytI2uSkFEef2fAAAKJx8QdZ/8fOCcc4DHHgPuuw8AFOzcaT2WPRJC92Oe50FcvPxOHHSgNUPs+Pkv4t4VJ6O09kej64AdOjei9/VvYEnxA+jsjL7ID2WGv3zwQwBAZ28RDH0UMzK89fAHgH49H91iBr7xxBv41YY3AHV0Tx/1dlsJZJ8PEH1yZ/k0NVkzbt0uAKGapjnjoLncUGDC15UBtWIyUGurNWvSUzT6+rYAUDZ5Kr7/n3/ioY9vj7lfczMwoWgnFAVwKX5cMnsFppdvHlbntr9/oDzQ1KmJtSEvWOTWg45w4nY0l4mTxvdjYnENeptq4++cxToam3HrqRdhWtH7cLmBicU7ed01SOiaaeJEoKDCmnHr1nkhNVp9fUCJthMAUBBc2FDvTKCu/yc3WWV/Pv6hvMbFEZrFOtpqNKoK9MGKoe4midcCvmYcN/5nuPywW1FRMVDTobLagyNnPIdJnrcAfQxF+AcRPbXo3PBvTCndipNOGv76xInWtaauR16gbHfXAmxuWgpXycAPRF6Zdd0UrS5uJJ80HIxPGw9GwbjqiK/PmGH9yWteezBxSwCAhl3dKM5tg9sFzJrUhGuO+j6m+P6U6mZlLr0P/q4mCAE09UzCLadcjKIPT4hYZybbCTOUuI0/4/aLC+7BjSdfBnf3R/Y1wN+KiTnv44gZ/8W4ypHNmFGDF/QKEphN5W2E7g9AN92YWrYVn5v4I+g1LJdgp90NeXhs7TX4wH83oFg/bwXjrDvIediT1oua7t4NTC3ZAFUFcscPzJDStIGTVbtmMPl7u1Gs1QAAJi2IPxtLUYCDDwZO2P8VXHn4jWj65LURHa9+82YIQ0ePvwzzFluJ9NJxOSjObYPoTeGVauenMFs+wuyK9divci0CWx8Benh2mYn6+4HNu6dAQEGeuxt7ajtG/iF99Qj4gaaeyVi2TIE3UIixTM75z2dW6Q3DANpqE1/sYzSamoCqojprxm1eMHGrqBB51r83s5ePGMsQuplWPsZS3ZODk6Tr4lTEaWwEJhTvgtttjcu5ecD86o+GJW5311o/dsXFA4uOxZMf3DFX6wwvACtGcZl4yIQncOcZX8J0/Y8jfm82Mbp2AgA8biCglCNgeOJ+/1lDCLQ3WdOPJ04EyiZaSbc8NEp/esGp9uwBxhfvgqZZpRIAwOXblfiTXLMuk9a2eETnZ6guqkXluNHP2ulV56CmbQFa2vNsbNk+fK3QdaDTOw7jBidux+ejX8+3Jh3ZtEhXy+Z3cfr0n+JLS/6Ao48e/np5OfDatgvwizd+gWbl2GGvP7v127j9lT/BUzlQejBUF9djJnaxEQgAv3/rR7jrtftQXB25lvrMGQaOnf1vzPDebT3VRGPCxK3DKYqCvLw8KHGqebfVWXfG/UoFqir6sWzKa6jAB8loojMFyyR09o9Dt68MlYUNMPo7ba9TmUqJxlZcwrpAULT4idtJxdswp2Id4N9nJQ7DD/TUjO6EztcKPQB0eMehsmpkQ6KiWn1XkMBjG3274fcDzT2TML6oFodMfRHdu1bHf5+pA/6OEbUrk40lrkKzVSYNWkS7KHgyUZbbiI4OGxooybZtwKxxVn1btWxQMlXvwwkLXsLJ+z1qW32sHdsDeH7jV7Bu74monlKW8PuWzNqIw6f/F311I7txUv+pNZO4Sz0Anhzrey0MzqBxBZI3g2ZYbHVvhdcL7GrfD6fMfwTTfb8AWtK/FjIN11BvQAgFrb3WhUfLrgRmEu3LWw+/H2jqnoxlVqWEhBO3kcatVz4+HP/+5Aq8teMs7NojdxG+pibgkY+uxSfGD4HieeHtZvWpeHHzBajbWyr1+NmqoOtFXHXEj7B0wktj+pzQb1Zbm0Bfjx7evm9c7d1rJV9cbgCqB7k5wPzq1dizB+jsHPg877Zn8Lsvnogrjron4TYUlpcCAPLc3ejrsRIkphj5IjC5pdbMKzVg90o8zmGagNu3EwAgKo/G480v4W8ffS+pM25tO4eXwPS24KYjjsd955yASRNNVE6ptm4imH74e2x89CiL1NcDE0t2wu0BXEUToShAVcGu2Av3BrrQ0wvU1AA7/acmdBwZcXVs4f/gnjNXYEp5zag/Yyu+iZtf+Cs+af2cbe3aV6C3FYYBdPRXDJkdXFUFtPVVQw8AZp89T7+0126xjpm7HwoLh7+uKECPZwnW1h+N3c1Vw14PXU+MHyhxi3GTgolb0ZZQkjV0TaWqA4tb7mvGDBUXLP0l5hc8DnjHlgNJ5zErWZi4dThN03DggQdC02I/6tfbZF3k+FxTUTrRmjZfpO1K6xlqaa1wNl7o+hv+sPI2AMDe7snw+zHmQSudJBpb8axs/Tb+9z//QoP6+bj7ClgXEaauD32h+zPgnS8Bb68Y8fHNfuuHtrN/3Igfw1FGMuO2rxY+H9DYPRXtfmvhLF/rzvjvW3Md8PqpQOPIZjlmqrHElbe1DiW5rZg0cWDgcheOh8sFlBfsRXNT+s7U2LYN8Bu50Dx54YXJAACGF+fNuwEXHvQLNO21p0bIxm3l+Mfa7+CdnjtHtEKvu2Q6ACDQsXNEx+vbYyVuPZUD/SoNzqDRjA7bHh2LZ1hsdX0GrxfY3T4HjV3T4OsH0DeKhB+lXOeudXjg/CNQUWBlWrsbR/49mr11CASAvT1W4vaIGc/j8qXXon/b03Hfu29stbVZFzX//uQK/Pn9m/4/e2cdZlW5tvHf2jXd3cHQHaIComCgHruOcdRjx6fYfew8tthdx0LFAhQUkO6GAYbp7tida31/vHuK2TXDgIrc14XgXr33u964n/u5H7aVB+Yz2lfU10N+3REYos+D4M6BLGTktXy26XYKa3MxH5zX7G+FMMc2jspaQGrE3v06T0QEnDf+Y946fzrGLW91fL5vu6qrcytuNUDGOajVMCpjMyrJ1U11a2qsJiKolbiYfeZKPqALjUKlAgkFq77V/Wnvl4kRbtVWkHyYuPUGUUhVWF6EJmR3KK4PJnHbX3P4A4GW6moUBeyuUBISVUTHqNlRN5kNFdP7bR70d0NNDTyx8F3mVH+ClHE2Wq3oS3y2OUMRzc1Q0ZjCnB/DArpOv7crRUajtAIQFtv3ApDtBOWBtLg1NomCKQZ7XDfP2YQEaLUkoChgauof4lZpFRUpdXGDve7jnmb3fGbZSUO9GBu6ErfJGZHcN282V36xDJPVfwZqS7MTtcpBdHRnse59kZMrUavPwu4Ae8v+za//zH3WwcJh4vYQhyzL1NfXI/vJhXC0ub2owrJIyMoECUI1rbQ2HESn/EMJah2bi4aws/ZIBg0SqZc2O2A+dAysAm1b/mCwxVJnyASt/3w+RRImt+0VjzvQ5janDM3q9fWNTY0oCrRZ43ud7qhSiy40EOLW0lSBywV1hgzSh2SLD81lvlXCLhs0rRWq5K33Q/3y3t3gXxD7066mxj3Fq+fMYHDEvM4PgxJQa1SoJSfNNU3eD/6DUVgILy19kZUhv0NEXucGXSySNgQJGWN9/8w4271chw7t3XHhydkAaKylAR+jKBBsFcRt8pBO8iolIxyTPRK748D7f7ajW9tSZGR9IVYrlLYMpkafhc0GsuEwcftXhLG+EgkFp6zl+SWz2FTpIXfQDyxNVSgKNJnTyM6GrIQKxqQtx1S90++x+/ZbNbu2Mj5jCdEhIi2ysLDXt9MrtKumkvaxmQsNFX+gswjnYfQfVHbx+2oj+mi+2AVR0VpCtQaszRUdn+3brjqIWy2QfCJoIogKN/fwuXXoRSaDJjKNgKFSY5MF29BiCOfbbTewtvb8Xj9HTIpgAsLUdciuP2+w9I9EZSWkRJaKQqoR2R2K68rKg6eW6a85/IFAS7VYKxnlNBFMkODbkpeYtfxZqpo8p2Qfhm9UV4PVGYY6dhhEDUenE+p9n8StsVAEtJEIavwpICupfm9X9hZcLhkFFVHxgWeI7YsUd7OpqTlw75i5RQyyDlV8N1GERgMWxOBsaOiHgJbLjs4h7JeiswZ53S0j1cyRWQsJaZjd7XNr5Upe+cck7pw2s9ucITRMwkguNmdoQHV5nDUr+fDCo7nz2Bu97hMTA022LFCgpXL/5td/5j7rYOEwcXuIQ5ZliouL/TZylUUQt0ExWehCQzE5hay+saz0QN/iIYsit6Xd9Oki9dJu45CySgi0bflDu3hWE0BGniJ5Vtwq+t3U18OqnUN6bStgbBZknkOK8xox9AaVO+onSf6tEoz1YjFmUWWQPjANl6LBabOB1ccgrt8DivvcihPKvuJQl8H3tV3Z7RClFf1YdFqXaiwqNVZEf2Zs/PP6PLYTOwPy1B3+vABIEk6tWNU52vqh/1AUbNUbCNKYe03cJmaLwIhOrgtYJVta0EyUrhpJJZEzptNLKzUVGkypyC4wNx2cgFa3tmUqx2a2YXWEYFOl0+rIQlHA0niYuP0rwt4i3o21VWewrWYSheW9X+AVBv+Hxxe+T41zqhgLggUBZW317/e2b78llX/NLcfcxfTB81CrHBhr9grbmwMElbmYyTnzSY3chyFWFLJSWkiJLD1M3B4AqF3iSw2J2n/iVhUhxi2XoTtx27Vd1dbC/fO+YGvIBxA5GGLGEhwMQxM3diuuqLKKVXd4Qu9IrmZ7DpVtA6jXJ/HDjqvY1HBur58jLjUeBRUSMi21hxudJ3RNWycsm9Ehb/DSWaeRxk8H7R76aw7vDYsWwYoVfTvW1Cjar0OT2vFZO/H2dy30/OGHcNJJUN7Hmn/t31taGhCeQ7MylvzaI6iq8r6msDQU4XBAfFg1JyQ9ilK31O91+rtdKdYmXE4wWKOJi+87bZWaaOLZ08/h5iGTD5jXqt0g1pOKtqcyWNaKdYildf89bhVjCQ6bC5M9kqxByV73S0+x8n+T72e49BzInUp1fV2dEBypggjbR0jtVaXrAdY28bxqXbDXfSQJHFqxdjA17D9xeyD7rL8CDhO3hwHA4l0nMy//ckLTxwFgQrxkfUk3PAxw7nmHQUFfEh7UyvTpIvXS6ewn4uUQw6DQHzhv9BvEqAv87tuhuHV2T5Uy1+6msRGim97HtvSKXl2/feDxNND6g6TWoLfGYrD6l+qWmo9lWfEZOMOGkZOrps6Qgc0GmHy8Y21CqUj8JBh4A4x9jl7ltv+NUFttIy60VngtJXcvo73MNIub5yygsPHApiv3FRYL1NaINp2X13O7FCbyKBXT/vcfDn0FF+Vdz+vnnsTQIQF4M3dB1sAoDLaYXqU8FW4uREHCospBG9JpxBUcDCaXmCG21vwBKzFDgbBJaM1j2HAV4YlizHMa68BpOfj3cxj7BcUdFI1KEe9KXxa3ZTWx7G0cTURCAgCacLEgkk19qApoFARqfM4AZp19KteNuAhnW2nvzxMAnE7ICVvGdUc/RKr1k+4bW7fz+PQTuWvazMPEbX+idSfl399BSvA2JAkSMhL2+5QhcRkAaOwVXgO0dXVgskcRkjIK1MEQN4GQYBiavKGb4jZIFn1qTFovFLfAF8UfcP+8ryhtEgNRb4PZAGqNqkP80VJzACu4/4VRV2UmJqQenRYIzyY6wkxcaC2hcokoYPQXR0MD3Hsv3HUXfbJocbSJYK4U2tl+BaGk0FDz9/R8+fFHYcGzZEnfjo+0LuXyI/7L4NgVEJzAtpB3+Wj9fVRVeV9T7HTM5NGFH7K06CxcLjDV7J8lTF9g1Tcjy6C3xu5XEcik1FDiQuvAZUexHJh+yWkW60kpqOd6UgoRfaLVaNrv6+gr9+B0QkXrIAbkef/94lNicMg6HA4FrJ0WDaZmIRhyqJN6HHN03gqunPgkcuUvfu/DYRJ+07LG9w+jihDza5f+MKe0vzhM3B4GJhMs2z2Vr7bcTOJAoYhy6twenM2HX7JeQ3bh3PMBF499nphICzk5YNeIxaS15TBxuy8GRfzCGcM/6Khy7xPtituuVgkuO47mzord1uYKsLcEfH2b0Sj+Edx7xYwSkslNcxby5LKv/e67vuYs3lvzELr4YQwYADX6LOx2fC/mW3dQWwuvfDqGdU1XgaZLNVRr//gkHSpoKhcqJacUiaTrbruhi82lzRpHff2fc8grLoZHZlzOS+ecS6x6V4/tuijRf2gd+99/1O7egaJAjXEQKam984mKiYEGSw4oUF9aGtAxCzdO5LrZv1MU8d8e2/TScPLrjqCu5cAWbvIIp5kWUwzlLYMYMQIyBkRhtEdhtQLmCr+HH8afCzqneDfS81I4KmsBR8a9g8PWO4XrvsUNQ+PcRZbstb3LdJCdBDtLARgwOo9GcyaKAvXFB8YvoakJEsKqkCQIjk3vvjEkBY0G4sJqaWrsXaDmMLzAVIFr5eVYy5eiIGGOmkFczjD/x/lBdEoqCioUhwVsnm19at18Q0d6a/zRqHIvYuHuC6msBIMBzEY7YRqh6krK6p3itr3AjLnNQGZ0AXGhfcuGsEn9mBZ8CKK6WuGzTbdTqbkYtJGEJmSjUkFKZEnHb/xXxq5dost0OBR27+p9poFkEe1OF9WpuB2bupj3L5zMKPnufrvPvwrMZqhwT0u6Bmh6g0T1Wo4f+DWpIZuBznHOl4J5d2EoRY0jWV8+XdxHwwH2/PEAQ5PoC03OOEJC/OzsA4lJksjyksHQcGBesg1tN/HKsucxBk/ssa0p+HSu/HIVixoe2+/rtJQLf1s9gwkK8r5fapoo2OpwANbOZ7a3udePwT2Llg1K3sVxed+hNaz3ex9OsyBupWDfc/iQ+GwANO6CjIfRd/w5V7GH0W+QJImoqCifFfgq3VxATAwdknlVRBYOWYexzXoQ7vLPB6dDZvuqPVjbSb3ewFKFzerE4QoiJjnJvZjKoN6YTpM155BJdQ+kbQUERUzqVAF4JbgIweoMxeXq0nUZ9mK1ujDYYqhqcxdgad0e8OWXtz3GlV+uokZ9Vi9vvFON4gpgPdxe5DwrS1QYbbJk45LVtNR795F2JJ/N/1ZdyfJdR3PTTfD556DICux9SxRja8vv9T3/2dHXdmWoExI7s5TZQ5Wc6J6b+Kye+weiZK+ZjOhCMuPKIKhnACEsUZAxYarK/VbjtJWJd8OkHdlr8bYkgV2bjYKKpmr/lZ1lGTZuFL5qQybk9Nhepr6cZxa9yfbGk3p3I31Et7aVcRZ3/7KQ/228g+HDYeBAqNVnYbUBptKDcj+HKpxOCJDX7xcoCoRJYqGfNSyTayc9zlkj3qG2tBdKbmMxGZZZHJm1sGNBG5EgyCfFYQan77lA17almMpx2J1YnaGk5yVj0Qr1YlvFgVn01tdDQngVGg2owvZRWAbFoVJrhUd2PxVF+dsjLIO1JceypOB0Xt8ym5H/ehJUAXg9+UFahpZGY4ooZGsW41nXdmW1wtDoBVwy/gVSgjaKg8JzCBl7B43SJAD27IGaErFAdxFCRGx0r+6hnbiNYy1PnHoxZw14pE/PUuo8nW+3XU9FS26fjj/UUVoZxoLdF6NPvR0AKSIHrQ5SI0sPWoGyfpvDe0DZnjounfAcb5x3Am35vbd/0LpE3x0a39mfRcVHoVXZ0Tr/fl4JBQUQpDGTGlnSJ+LWaIRYXSkAkclCmJWWBhqVnea6Np/XBahsc6eCGUv92gz0d7syt7jt7FR9L0wGoNOBySUCWa21B8Y2raQxj42VxxEUndpjW0KSDqeso64fYlkraq/lv4vfoDHYd1HvlBQEcesEh77zmWWzuIn2rKKuCIoSnymWAG7UHWBUh/j+bWLSRRak5NT32s6wKw5kn/VXwWHi9hCHWq1m6NChPivw1ZXXMyRxI4NzOiP8tqRzufrLFXybf+fBuM0/HVbN/g71mkuo+Gg6rQuvheJPwFAUGOlqKsVmgxpDFrkDxCuWkBbLnT9+z/z6WYdMqnsgbSsQqBTBRKk1Wr/7Lm28n2tnL6NEuajzQ/0urBYobR5CYeMoQdy2bAv4+g0N4JR1xCX4r6C5L9of3a/djq0Za2MxGpWdrCzRBPJtV3LVlyvZYrzW62E7ao7gy003UtYyFFmGF1+ERx524mrcDE4TrP8/r8qcvyr62q7szaUAuIIye2zLiCniknEvMiz4w/64xX5HS9kuJGRkXSIE90y5DYtPR1JBYnglDftrj+UOaqjjRvbp8GLNTVz15QpWVl3id9/CQtDrISTEcyG0g11Ju2vbMhigrEzCKesYNgwGDYLPN93K479+AgnHHJwbOkTx6bv1vPefz1j0q+2gXK+10UiIpg0kSMhMxyCLPqC5vDTwk7TlMzz0E44b8H1Hu0xMCcFoj3KrVXwvYrq1repCXC6x2M3OkVBFikWvvfnAEbdJEZWiYFXoPsStpMKpFQsxe9uf1+P7Tw1Fgd0vQ81CcNlZvRpu+eg53lv7MNffmYOu91MHj0hLgzpjBg4HyEYhr+varurrYVz6Mk4Z+gVhzu4F84YMEX/v3g01VU521B5JrX18r+ebExJn88xp5zMl+R0AFPo2v2sOPYsfdlxNYe2APh1/qKNdMNPhZBGWjU4LCeHVVFceGP/NfdFfc3hPSDO8wImDviJc14azIfD5OACKwobyY9lWM4mY1M4MgphUQbqFSjW+i/oegtizB66Y+DTPnHY+Efb1mHqZbV9dLYoaqjUQFJsNQKb8Ge9fOJkZ2bNEptG+aMtnsPwsR2QsIm9EAiZ7JDarDCbf2ZH93a5qrKP5YcfVVNiP3e9zOTSiDVmaDgz5325HFO8hgbM9S6I/iNv8vVHsrJ1IQo7vwFhMDLTZkkHprjJW2cVNhMT0VNxGJor5gtblX5WscgoBhzbct+I2PSuYRxd+yJ3zFgZUiNwbDmSf9VfBYeL2EIcsy1RWVvo0cnZVL+f+E67jklGPd3yWmq5DQXXQFtR/Nii1vwPgsMvU5G+iec0slJX/hKoAIsfGUuw2qG7LJtfdp2Zni7/LDiHniUDaVkBoV9yq/StWtG5ut2ttMlfkKL7aeC2rSk9hb8MoRL2v3hG3AAl9sKjTyC08eNJV3DbpGp/7yTWLuGHkBdx8zL1kunnF9OxQXIqGYh9FWjeLjCamT4c77xQK33k/a7nmzZewqnPAaYCGlb2/8a5oWAXbH/3T+Hr2tV0pJqFQUkVk99iWEFHHjCGfMzhyYX/cYr9DbhZexs5wz2SqKmYYn+54kVnLn92/NEqXlRCnkFDE5vaNuE3LjsQp6ygJwNlk14YS/nPi1fzfjLc9Fh9sL4JQW2U7KJkIHW3L5eoo5JOaKia3AwZAcfMotpQMo6ltP/LxDoNBhlu5eNxLuHa+clCuV1tlZ0XJPyhonoIuNBR7eyGM+l4MuOYqHHaoN6Z3kCntahWjJRQc3lVJ0L3fai4XBK1BHkBQEISnCOJWYy3ydYo+o6HORVxYrXjHQjx4mga70+XNfz+lWr/AVAKl/4Mdj2G2qHjySVBQceGFMGpU/10mMREKm8aytXoSzUZRXK9ru6qtheSIcrRakMK6BChddiYP3cCUnLns3g0F1bk8u/h1Vlhe7vU9RIYYSY0sISao3S6mb8vEdpLiUEj7729YLBCn2kpmdAFpKW6SVhcLmggkZPQ1faw+1Uv02xzeAyJcOzr+HebY2qtjnS6Jt5bexfNLZpGU2UkIJWQkCSsRlwO78dASLPjDnj0yk7J/BuDsUe+wZ0/vjq+rthAbWic8lcPE+BgaHY9GrZASWebRLsFZv5FxcbM5MutXTjtNoqJ1oCB4Db59bvu7XZW1jebbbdfToDp+v8+luMdCu/4ABDGdZvK0X3Bk5q9eidsrJz7JORk37LfVXfvvP2iQ7/0kCZw68czmJndnrMhoZXH98PieHrfRKYK4DaFWZHj6gFYW72FIlG/FbUYGFDWOpLQ6FrOl7+K1A9ln/VVwmLg9xBFII3e2m0V3mQi2L1zq6rqTZH8HyE4X0YiJxvflL/LxurtZsGkyZeU6DLoj/J/AVIbVCjX67I5CQ1linBTE7SESKe6vDlSFUNwGYpXgibgtqh/E15uvZUv9qdhDxSrKWrczsAreTjOnJd3IdZMeIj6u9/5/KsnFwPit5Mb6npga6yuQZag3ZXSQVQPcQhSvxG3TBloKVhKm0zN+PFx4Ibz5JkRHw7b8UN776VhMZqBlS6/vuxs2zhQBiZJP/O97ENDXdrWubBq/7L4ETeK4Htuik8VEJDqoBsufg5/ugKJAiF0sckJTvBRP00bSpJ5KjT57v6L1zuZd2O0yLZYEBgzrGWkPBO3BKF8Bh3Y0Fm5jUMIWxmVv9Lg9LdXBrHNOZubQySIIcYDR0bYaV5Oy51QuP+IZRri/8uBgMbmEzvTAw+g9TEaFGK34AjcXHhy1XXldLO+sfpT5dS8DoAoXA66jLXDi1tFWidMJ9YbuxO1jCz/gis+XYQ8f7/P4rv2WtUEQtHKYeP7EXPG3zlUjMiX6GaZmUSFapdGBh6Io6ggx6KjtfyBxW/kT1P3+x11/f9A+xkaN5LU3NNTWioDPDTf072VUKtjYehXPL5lFiWkq0L1d1dUqJEeWiXmQm3wBwFzO8RHXc/kR/6Vgj7OjMF9mz+QTv1CHRIt7cc/LFPpmAZGc6CA1sgSdqZdqy78BqqvhiiOf4unTLybCvkF8KEk4g7MBsLeUHpT7OFAkSEtNPWHqepAACaK15bTUBV53oq5OZLHpdBDXpTuLjlHTahVEU1Pl3yt7oD17RKWCMK2h13YJbdWiU3CqoqG9BkRYFlqtUOJWeiif0FpRhKJAk20AxxwD5S0DcTjA2nBwiVu3xW23ttBXaCPFWKiYD0D7sdRwYvoLXD7xGY/3mpQEI1LWkhO5HtnU97HYVruZo+NmMSJljV/iFkAVuk/GjWxnY9UJ7K4fR0xKT4Y5KUu8YxrJiqHFu5UfQH7tEeyoPYqQ2J6WC10RESHWrtDp1dwXHCZuDxO3hwGoLKJDD4rpnAjGxcElE2bx2MkX01Sw7o+6tT8ExUVOvth4E+sqT+We56cw6rQLeGXFK1z43u/8898pHSpIb3AZSnE4oFrfqbjNyoIZg7/gjrEnIO96+YA/w18JEoJgDcQqYWjkT9w9/SbSXN90fJbvtnkdOhSyhmdiskdiNdnAEAD7YmskM2wd49N/JyGx96kXKrXK/QyyT8WgucE9adJmdtgr5ObCJeNf4NSYy0Df817loo/4R/ItHJW1kHFuLnL8ePj0Uxg8GLaUjaa8DMzVvVMzdIOly+TlL+7ruWj7sXy+6Taissf02BYam4xKBSFaI421ffCtPoBoblJIj9gOEsTneVfB9keaVcPe7SgylOtHkpbet6h3Tg5cfsQz/HvIFdjbvE8+ZRmUFkFIR2R4fq60dC0SCg4HuIwHL71DMuwFaz3hQW0MH975+bDBVk4YNBtN4YuHjBf5wcbereWggEPW8d2602ltPfDXbM8Mag+KBceJuYzaGjhxa2kWJzEqaYSHi88iI0GjE5U/eqMc/K3iFl5f8TRy3BQAcgdH0mJJxOEAc33/q27trWLV7dCmgtRzWt/ut6eT/yCyQ78HdjwKm+8Ex4EP0PQ7msWkr8I0lq/ddUj/8x8IDe3/S7UHDTwSKXWNBGvMqDUqCO1ShC48l6DwKII0FtTGfPYWiDlVeyCqN9CF7ZPG6qE9BYKMmGKeOe18zs75e9qt+UJVpSyU0zogLLvjcyVqJHsbR1Nb30/eG38QanYJsr7RNphWh1gEVWwPnMCvqdATojWSmtrd6UOSwIJQD7bV/n2yBxwO0Dc0oqAiMhLSoosp3tO7eay1qRSgIxsFgLBMdDqICGqhvqonQWdpFGOVKmoAERGwy3Amzy15lV22y/v8LH2BpN9FUkQ58XH7WeABCIrNoKR5GBUtef1wZ92h2JpwOqHNEudRcRsfD83mJBQFDA19V9w27VnNqUM+4djBiwIis23hE3lp6YusbBF9saIK5uXFj/PUb++QlNxz3R0cqsPiEkr3xkrfC453V93Hs4tfIzKpp6fvvhg/uJgLx76Cc88H/m/6MLziMHF7GIQoYnETkdwZnpckyE2pJDO6AEP1wa8i+Udiy/Ygfiu4gHXWx1BrVFx8MXz0kbCPqK+Hj57+marvroX6ZR6PtzWVio7Zld3RqaamAioNYdpWzI37Xxn+UEK7skOt9a/siNZVMiJ5DWGKW+5nrcdQtIzokAaGDYNx41T8XnQWvxRcBtpIv+dzmRtxuqDVEt8nqwSVm4VVuvzXE5x6EWLURneupHJzITt2N4lB+Tjb9pEvKgqWmp3IMtRaR3QEAECowN5/H7QJo1AUsDSV9d3svalLUMb01/XxMBqFlyp0kjddIWlDcSDaQ2vNnyt3s3RPPdHBjWi1KoIShnjdb0TaJs4Y/gFyc9+J+h31x/Hx+nuoVM7os9V2QgIMS9nKgLjtNBR7J6H27IGMiB2o1JA40LOSOD4emi2pKAq0+Cpt3N8w7MVigfKWQd2I2wF5Ki6d8Dyp9s/B1njw7ucQQtPeTQAUNY7AKevYscPPAf2AxppW1CpHB+kVlepOBVUC79OcBjEuayI6rQYkSfS3ADW94Dw3F2SytvxEknIEuRYZCWuqL+CbrTdSWuNhRbef2FU1hOeXzKIu+haP28PSx7Bgz0WsKznmj8k4qFlIayvUmQeANuIPuIH9RMtmZAVe+2wMigJnnAETexYN7xe0+yvXVel7BI/sLaI9OzSpoOqy4JZUaJPGo9XC0MQNXJhzNa+feyKD4vxXBd8XQRHR3T/oI3EbmyoijSHqZhy2g+PZ+ldBU1U1GpUDtUYHIZ1KNdWw23l84fss2j71Lx03NFQKH32zbiSWIJEFZ6gIfN6irfiEt88/jovHvdxjm0MjJnjmxr8PcVtSAtuqJnLTT+sIjooDFAzVvfNKcBrEAKaEZnd+qAnFqRELH2P9PvYciozKLNYl4cmC5IxMG8j2mqPZVeTbz7S/MT1qJs+dfg6ZsaX7fa6wlKE8/MsnfLH1nv2/sX1gbmlEUcR6MtbDV6RWg00S37ehse/ErblWyK1dYYMD2j8qKYnNVVPZUykKBOv1YHOXH0j0knhnlUS/1FLjnbi1WOiYT3h63n2Rl17PqUM/JbRtfkD3fRiecZi4PcShUqlISEhApfL8U9utDqK0QmkSn5XVbZvDHZmzNv91CZ2+YKt7fjFmTOdnQ4bA//4HJ54I2dG7sNdtgppfPR6/Qv09jy74iNDE7A5yRKWiQyFhbT40iFt/bStQvL1xFg/+/D/kMP8R0HYfXKXdBqFhBZNDbufaox9h+HAYOxa+2jyT13+did6Z7uNMAobGRlBAb43rSOPoDdRuxS0KoHixWpBdqGziHQtL6AyOJCZCoyVbkFYVpd2PMVdgMRpwyDoSc/PY9ysODoajp0ZRo8/GbAJa+5iOaO6icrRUBWYvcYDRl3ZVW97MwPitpCe1elVBtSs1jI1/LuJ2z24Xy4rPoMp5PKiDve43POYXzhv9BpG2VX2+1qY9mSzaez66tCl9PockgVWdDUBLZan3a603kx5dRFgoqGM9E7cqFVglsRBrqznwC7H2tmVv2ovTCRWtgxjcZe47YKCOBmOq8HH7Cwcy/kg4G4Q6scGUxVFZC6jdufaAX/Oo4Pv44MLJjEpcBEBijpi7BKuasZsCUHg6zSg2UWQjOLb7uDEmZxe3H3crUWWP+DxFe9uSJFWHjUjXgFup6t/8uPNKdpf5V6b0FmXVkWyrmYQuzXNRvZDUcczJv4MNFdM7iqccNCgKpqKFVFfDY59f2xFg+8vAUgPWWhoaVKzYMYL4eLjttgN3ufR0mdfOOYnTgqeDrbHbeKi4+yQ5JKvngbETCA6GIUkbSQirJiKohaR0/8HrfRES2V1xK/fRKiE6IQqnEgQKNFXtn5/joQZLQykANk1WN2K8PehsMnFQ3pP+msP3OK9eELfahFHokkaLz9oCJ25dBjEv1YT3VFNYgkezoWI6lS198AH5i6Kbn+n4V7nxm0Us2Trec0ExL/hxx7+54ZvFmFJv7Pa5K9htK9S6z3zHXInDZsMh60jNS++8fpf78YZ+bVeyCy2tAITH7r9XQl8CsYHC6PZ0sCpxHbZ++8KlEQEtS0vf+0SVUWRohiQG4JNAZ7/Sro2oq7aglpzExuK1sObvbc9zzexl7G7yXqi3pcmJWuVApxMFiP0hLFG0Na29EuTeWxPCgeuz/kr4+z753wQqlYoBAwZ4beR1pdVIyDiVYKKTug+SUoR4yRTj32gBq8gEN/5ASmQpo0Z2D3mHhsIdd8C6ihOwmMFetRRcPZUEe0siKGoaQVZO9x4xNF4Mfoq58pDwufXXtgJFVWs2ZS1D0AQF0PO7VSbtxK2zeTc2G5Q2D2X4cBH1y84WQhV/lhYAxmYx0Nql+B7kaCCQula29PabWmtx2p04ZB3x6Z3hTUkCxb0AM9Tt84617sBihrLmIYwZ53nhNH48fL31Rl5Y8iJyVE9f14Aw6EY4fjFMfBumLwZV3xZp/Ym+tCtz2WoePOkqZh5zn9d9HBoRQba1/rm80ZauS+W9NQ/RmP60z/20UaL/0Nj7HvhpL8g1dGifTwGAEiYi95bGUq/71OZvFr6bYakQ7F3OLgcJhaOl+eAQtwOy03G4lWvqmEHdJpyDBkGNPgu7vXf+qIchoCgQ6RId75ihddw4+QFi9V8c8OsGy5VIyEQnCzVrTEIYr62ZxV0/zqGyNsz/CSzVOOxgskeSkBLebVNSooMxqSsItmzweYr2fqutZAvHpH/KgPj8jqKkQIfffWE/JzApSmeBTW/qGegsvtm+70FD63bMTTVYnaFsqpjCmjUH+fr7i2ahtt1cNASbM5S77xZ+fQcK6ekqbM4Q7A7AXNFtPFS7A8CaSE/E7XiCg2FE8loig5vRaCAkNqXX1w+L7iRu5+26jFLTcX16DkklYXYJkuLPluXyR8OlLwX2UT8iSJTERNCo7FRW9FJya2uGFRfAntcCPqS/5vDdIDuIkIUiMC53BImDx7CnYSxr9k4MWEUsWUU7D4rpGeQyRp/NrOXPsq78hH675T87CgpkQGHwYIjJGkRQeCSyDHt9W812Q3W1GN8SM7qTn5oo0ZeozN3nO4qhCJsVqtpyGThItI/Bg2FUyioybW8I+xsv6Nd2ZW/B5VRQUBGVEL3fp3OXu0DfJmMx9a9QxaoX60mXxjvBLIWKQdph6CNxa2tG5WhEQSIhd2BAh6Smwpi05QwL+QTM1ahK3uODi47mkiPe8HpMZGIiNmeozwL1tqrVfHjh0Tw447qAMvgSMpJwuIJwOpxCKNQHHJA+6y+Gv++T/00gyzJFRUVejZybK0RnbZAzkVTd37x2nzit/eBUOP0zoLmimLMHPs7jp1zKyBE9I0Lx8aKAUIslEWOrGZp6rkKK3NnD7cWn2hGTmoKCCqfNfkik4fprW4HC4bYtCqA2GVI7segmbg1Vu1AUaHQM7fAAHTdOeJlWb18DDt+yBWub/4HWF9oHD0UBxVsE0VyB3S6K3mRld+9ydbHZ4nHcE/l2yK07MJtFuvHYsZ5PO2QI5DdNZ0XBVArLwj3vFACKyiP5/JfxyPTe4/dAoC/tqj0rwKHzocJwV5N1Gv48i0ibDbYLcQpH+Kl7GJYgiNsQpW/Eras5n2TndyRFlDPEuyNDQAhJyBb/8OKLbLdDsFEog0MyjvJ5Lk2E+F3kg+BxK8sy5flLsJhlDLYYMgd2T1tPTIQWexaK0jk2HkbgqCptQycZQFKRMFH44MVIW5BdBy5Q6bQ7CFOLdL74DPGOSBIYgiZRZ8ikvCKAaW54Lq9un88zi97osFvo2BQvVnoaZ71PlUh7v9W2dwkXjn2FU0b/3E3NkjdAJimiHFXD0n71T9br4eiM75mU/TPxUW1e98tIbiUnNp/mBnO/XTsg1C5Eb4CNlccxOnUloXvu3v+CmgcTxkIsZsivGUtsLBx33IG9XHo61BoycdgBU3m38fDDVTdz05yFSAM8eEyG56IJje74X0UdHpBdVI/TxEbRYkmgsjWP77dfTYHp1D4/i00l3h1D434Ysx+C0NhKgc75XwcUhcdOOp/3L5xCQ2Uv5ykV34gMqpDAyfr+msN3hUHv4oPVd7Ck8BxyR2SQMzyD/y55l8/WXhewyjHIJYK4EQlpPbbtqx78O0CpW8ab5x3PKdnPIUl0zN8CLVCm1ws7MehUnLYjJHUCK0pOY0vJ0G7DUmt1BS4XVOsHkCPi9AweDMfm/cCkpA9w1nm3YenPdiVbm3G5wGCNJi5+/ymriAj4v6mP8N6FU2jb/fN+n68r7AZ3FTWd9/WkJlwQt4qlb8St3LYbqxXqDJnkDQ5A7IR4Z84c8T6nDpiFo3k39rY6JBR0Yd4jkO3zIF/vrLlNZCmptUEB3UdmlooagxBG9DWj7UD0WX81HCZuD3HIskxDQ4PXRl7cMIgP193PHuu/emyLdvvE6ZR6cB7kyf4fhKrtwp+v3jGKsAjPTOK06SrWl0/HYABqf+u+seI7RmmeY1DClh7EbWaWhiZTsui0zH99uwR/bStQHJ/zEacP/xCdyr/ZvqTuoriVHbhahXwpJHFIR8Rv3Dh44MRrOVJ9EzT5VknZDYJAl4L7RtyqNSqszlAsjnAUL4txuyaVLzfewO+FZ/eo8hydJt4xjb2sm2LXWLkDlwsqjSO6pXJ3u7YaRossNDZt6sPNKzKKAvffDy++CL/80odzHAD0pV21ZwVI4R6USG40RFzBzXMWsLD0/7yc5OCbyu3aVE1m5DYS4mW/FcCjUgQpFRNc2asUuXY05y/ksnFPcsbIzzt8FPuKmPRsAIJdpR63b98OZlsQNiWKmIGTfJ4rNF7MECXbgVdCy7KMpX4rFquokDx8ePdgpSSByp1pYqo/TNz2Ftt2RXH914v5cO/XZI8Zg0MOJUhlpCL/wPnkN1bUICHjkIOJTe40WmsvzFQeSNxZUrGnLJGyliE9iNuY5HhkRY3TIfsMuLb3W/Ym97NGdLf+GTjAwbOnn8fp6XegWPsvcFtXB/8c+yo3TX0QnexdTnvdqH/z6MmX4WjqnTfifkGRsZT8is0Ka0pPYlz6MhKUxcg1iw/ePewvBs/ki5p5/LzrEo46ij5l5vQGqalQZ8jA5QJLc0VHu9LrZcxmCb01loR0D/MVSUKXPL7jf+2avllyhEXouO2Hn7l//pfYnKH79byyrj3L5TBx2w5ZhjClFICI5OzuGyWJkBAJCRlDTWngJ1VkqJoLsg3UgZE54l76Zw7fFQVFwSzeey4LKu8nMkpCp+tMsd+5M4ATOM1olFYAYtJ6tmFB3CoiLf0QyFz0B1kGnWkbYTo9Ce7iXKeN/IL7T7gWfYnv9U076ssbuGvazVw5+RWC93Hjih56Iu+ueYTVxdNoaen8fKv+Mv7v21/Z0PZ/HWn/iYnQYB0ofFwrvMt9vbYrczXkPwumwMVgxia3b6w1npiYgA/zidAwDVqVHVNj/845ZYsgbtWh3teTobGCuLXb+lZoraW8AFmGirbBZHlf7nRDVBS02dqL+tUiW0R/rI1I8npMdnwJV0x8ijHBL3rdp52odqoDWz9nZIiMNqfTXZulDzgQfdZfDYeJ27859lYms6TwHEzRPaPqSemRGGwxHZH/vwMsVYIBc0V6Tz2fNg3WlZ+A2QzO6mXd7BKc1b8zMeUr0qKKu/nbAWRlQZ0h/ZAhbvsLpw99m/NHv45O5T840O5xKykOMBZjszgw2SNJG9g5wRs3DvY2jMJmBVudb18tu1k4q6tD+1YwRqXRce3sZVz39e+4JM8puVUtmXy//SqWV1zUowJoUnYqTlmLy24Hi1th4bJjb3J7GKWMQO1DCDtuHAxJ3EhQ2Rtg6GW18o23ov/1apTWncSF1RBW/DBsvL135/iToD0rIDjWO/sZnRRHmzWOunoPw54iw+rLIP85sHtXrfU39Pnf89BJV3LnKU/4TTUKi09HpYJwXRv11b2rKAxgqRHSXnvoyP0mH1LzxPeskdtwmlt7bF+3TnhNf9f6K1Kid48sgMjkDHbVTSC/dsL+3VSAcBLCzsqR7G0Y3a0wWTvCk8RsWDYcJm57i+3bQUFFSl4WKo2aZmUMAPW7Nx6wazZXirHUJKd1yxoallXOGcM/ILx5tt9zyHKngmvfoEZyiopmc5LIDLH6J6DUFtEPhyR0j9xmDwjqIORaK3vZV/tAU52RcF2byFgJ8U7WtRf1sbcdRKsYax31zWGY7JEEpR3JrqapuJxgLF7+hwTK+orFq5JosSRy9NEH/lrBwWBC9K+mhoqOz2vd04PISHqQL+0IHXEV66vPBEDy0RZ8QZLENcJ0epLCKwjTtvg/yAtUYYIYcJn+PFkufzSammDOtquZvXUm0dkje2x3BWcD4Gwt6cVJ14GlGjQRkHy8mM84AvD2PgBoV4F2zeoZNgxCtQaqd/sPGtlbq3A6RVp/SkbPTLKUZJl3LjiWR46d0SG8OJRRUwPZUVuQJIjJEYXeBibuYkjiJlStgRUfbK0qYWTKao7I7llQu92eA+iWFl9QAAZbDMnZ3e3d1FEiPd/a0AufBjcMa5+kZu1sTMtuEtYeAcDYLPazKbEBZWUGAjlIkJi2fh4LVzXfxsvLXsAS4n0uG5QwjCu/XMWrGz7t0zX0VaUAWHWDfa4Nu0KSOq3ijI21qO1iHhMc4524TUkwMS1vDoMif/M6VLvM7t8wKLBidaGhYHC57QFrDs+v+4rDxO3fHO41j0cFVmoqVLTmUdmSjUn/N1DcKgohVkHcRmZ7J27T0kCKGUWLJR5jqxGaOwdPS0MpKGAku0d0MCsL9jaMZkvFRKxy9wIQf1soCmpJRB41Wv+jsqTWoCAhywq07cJihdLmId2Uc4mJ0KqMElHasu0+zze36r9c8eVqDOEz+nT7XQdObwHAdsVXVhY9yLkBeWpq9NlUNqdjN7sJQ5WG9/I/5+3VjzJghO+0t/Hj4ZShnzEs+APkhtWB37jLBs0bsNZuweYMweEKIo150LD8r6euV2RCEV9yZIp34rZ9curR47F5I+h3QfU88SMdpMCKrm0FAKHp/klLSRuKDTFBaq3u5f3JTtRGYXAbktJzsdhbJKUG02JNpcGYSm15U4/t69aJvyccoQKV79llQmYKTy96i3dW9H+VX0/Y3XoMD83/gJ8Lr+uRFQGdRTrV9mqPHuaH4R3tth8j3U1MjhHjqKM+AMPxPsJQL94Fm7r7JGZASjnnjX6DDOb4PYdx6wecPXwWadGlHZY77UhJgUZTMk4nuMy+CSi1y4DaKRYzcdndI7c6HehlocJtLO0/BbKhTjDODikWNF4qMwKK2ypGMe9/jrGiwMcfw4IFfnYMSeHBhd9y/7wvOeFELeFZR+GUtdhaKv4yxf+amwWJAXDkkQfpoqFCLu5o7RRMtFZVcNuxt3PxxHe8HiZFDSIuRaS/Rib1vQheZCRMH/gtz51xNkfHvdrn8zijjuTbbdezserv40fqD1VVsKPmKDa1XIYmoudvpI7MBkAylwZ+0orvxN+ppwrv0ZUXw/ZH9/9m+wBXxXwyovcyeHDnhPjIIbt58/zpHCHd7Ddg0+yOoDVb04jysEyKjlFhdkQD0FT556pXcCBQsNtOduwugoJBHSdS7KLc69MYNndYzflCey0Cm9qzRDMz3UFKZCk1lZ1z//Y+r10t3Y7wVEHcSuaSXhUzVpq30FSwlpYWqNpbTeuGtwI6ztwqxlOnKjByMBC023Mppv5tP4V1A9lUeSxhcd7N5pOS1ThlHfV9tLj9pfphbvvhJ/QRp/fqOClUPLO9rVpkUQMRCd6J27h0QfRGBjXS2uLZIkq2it9GFRJ4xqoSKtqgpeXQf3cPFA4Tt4c4VCoV6enpXo2cE5w/MyhhCxlpPXv/0FB4Z/Mb3DP3GyrNfSx+9BeCtaUcjasZh6wjZ4wHKVYXTJuuYm3pSWyrmQxq92LJZcdlFJOOkPjsHsdERsKSyuv47+I3KDEd29+3f9Dhr20FAtkld8zj1AEQt3WaM7j88/XMrXoeW+Nu7DYobRnCsGHd9wvPEJFpuWWXT/KloQFcspa4BC+lNf2g66O7vNgfGsvWkxxRRlZmzx0SEuDppZ9xxw/fU94qKkYpqFi0NpeVJf9g/HjfMsxhw6CkdQwuF+jLAq/aS8tWFJedyvoEqtpy0FtjqW1NwuFQQB+gcdYBQm/blWJpAJcNWVETn9nTE60dCXF2Lhn3IhcNuRuXY58JZ9VPOBxQUBqJ5ZfTYdtD+/MIAcHcXEeUVICCiuwJvu0EOo5BkFPG+l4St4a9OGx2tzo9o7e32gOSBO/umcPtP/xIQXV39tNkgpqSOkBh4kT/52r3rGtr6/RhO1BQqVTo9RlIkijQ5qmJZQ+K57GFHzDzu19RVH3rF/6OsOpbuHbwGVx79COMHCEW7dE5Yt4Q7tjUN4Vl227Y+oBIr/QCR5t4F5SQ7sRtbLpYIIRR7jelVq6cyz+GfsKA9KYeKpa4OGi1JqMoYKj3TtyqVCoyYhzY7NBoSiUnryeJKoeJd8Vc13/Era1VPL9V5b3vA1C7SSKVbf+J2/Xr4dVX4cEHfXvg1dZCfr5EqzWR446DIyeHsrt+PAYjUN9T/fWnQ+G7tC2+lZEpqxkyRBQ/PRgIihF9tMpagUqSSE9Px9ZUzNi0ZYxJW+7z2BPOyCB5+EQyRvTdyPy8ES9z/ujXxf9Iffe+D0kdww87rmZ9cQADwd8E7apGb3ZFoYnZgHcboh6wNUP977hc8OA7Z/Px5xFgLIL630Ff4PPQ/pjD73svkyMe4olTL2bYoE4SMGtELi5Zg8rZjGz0PXepaU5k0d7zKDZN85iFJElgoT3t+9A3uq0v3I1G5QBtDIS67bIGjEOthpzYHRQX+g8ut9fQcIVke9z+f+Mu5b+nnYet1r2GMJZwbPhMzhr5bg+rtrQByVidoThsDjB7zsT11K7qV76N2QRbqyezpOB0rnz2toDIy2rLaL7ffg2VjuP87xwggqNF+1Hb+7f9NLk1DPtmVnZFe2C4vt672McX9u6VaDKlkJnXu8FIFymI2CBrPrLTiYJEbIr3TFNdeCwqtQYJmfoKzxZMkl08sDY08Hsxh0/llu/ms6CpbwHBfu+z/oL4+z753wS+GrlsN3HewAf5z4lXk5Hq2TQxLU2MnL4qCx4qqNq+CUWBatMIUtJ8L9inT4fPNt3GPbNfwRTkrh5lLsdmUzA7IkjO9GzG0+5JU/bXEJv4RH90oA57Z8BAq/NP3Gp1oj06nbDLeilvr36MYtNJPdTNA0elYbDFYLU4fBKR7erLBO9F731CpYLbj7uVe6bfiGxr7bmD7GKM8yaePf1cBmf3HPwkCXIHiO+vuFh8VloKLS0QFCTIJV/QaECKFVF4a+3WwMmRpjVYLLCx7EhCQyUGDIDi5mGYzUBbIEZkHlDxHSw/Fwz7R0r0tl3pa8qQZag3ppOc4n2RGRev4fhB3zA+fTEttV1mjE4T1C6ivh5emHcbddUWaN0GxtL9eg5/KN+4AkWBKtNIUrKiAzpmi+1u7pv3FfmNU3t1LbllO1YrFDWNYOiwAMq/BoDsHPG+trfbdmza4ODpU8/j7Yv+QXKU/9Ty0FCIiQGt2kZNxYFVe6sUJ4114YDk0SYBIHeARHHzKGqaojyrsw/DIyq2bSY+rJohKfkkJYt3N3fMUByuIDRyK8b6Cj9n8ADZCjULoGahV/K1oG4EK0tPRYke3e3zlAGpuBQNyHYsvjw2FblDhaqL6kl+qlQizdDqDKWtxfsiWaVSEew0Irugsi3Po2d1ULzb97a3tjY+4DSIyZkS7FthGRwlFqtB8v4rXebOVZiWN4fRKcv41FvGp62JpYvF9zVmjCA9J02CTZVTsVrAWuGbgPxToGEFurYVRAa3HBSbhHZEJqeyveZotjefiQon6enpON0BCrvGt7Fh8MBziZ3xBlJa34uKxYV3TUHvO3HbXsG97hC0uLVa4Z13YO8uc6+ylIzVBUzIWMzgTM+kUUyGqAQVrS0NSE1J1VxQXOypG8nPK/J49cMcii0nim1F7/k8tL9JEFv9dmx2qG7LYdCwTpuD7FwdFfqhyDLU7dnm8xxFjUP5eP297HVd6XUfp1b0deamQ1+156zfAoAjbHRHyp4UloFLE4dWZadm1w6/51DbxIJTG5XtcbscLAJF9haxn7luDwMiVzEieS0DB3bfd8hQFZWteVitILd5tkvYt10pTZswVa7HpWiojLyXBdUPU14Vwo030s1X1xNKW0czZ/t1NGmm+33OQBHhzkbQKXX955Ps0DM05HOOyFhEvA/nvfh4OHvUu9w97QZai9b1+jJ73G4j+yqh/SHMXWRV7ajH6YRWSzxJyT7W3JIKC4Jlbq72HLBWu4TiNigycOI2JSOMFksiFRV9W4ccJm4PE7eHPFwuF7t27cLlQQ7YWFYuVCT2WBJSPVcXbFdDVR6czOE/FPoykc5pDRnr128yJwcyMyUcDli50v2hqRSbDarbssnL83yC7Gzxd2WZpX9u+g+Er7YVKLoStxqd1u/+7R5HDgdsLUhjZcmpRGX2VJaMGy+xt2EUVgvYG7zYJdiauSjvRq49+hHi4/rmt6dWw4jktQxPXofitPXcwVqDw+7CIetISPecPtPuhdxOgBnWvciJg77iiDHGjqIAvpA2dChOWYvT1AyWACMsTevQ62Fn7USmTYOjjoKSpnbidldg59gXNQtF+mv+M3073o3etquq1kw+2XA3a2ov8emBpVKrMDjF5KWttstEpHYRDruNgqosNlYcx6q9k7E7gKof9+Mp/MNSLogLS7hvD9iu0MQOoaptADV1vVOCtpXtEAUN9CP8FkELFPu223aUbtlKkMZCbLQTggOLiFw9+Tne/+dknEVf9s/NeYGrbilnhk1m5jF3eSVudbrOfrrAt2DpMLqgrUSMn0bduI7xMyZOy/92vcQt381nR0kvG56pDCKHiYwWR6tX9djve07i7VWPoU7tvrCLjFLTbBEL0oYSH5FSax1OuxOnrCUyyXMfvc18HdfOXsYOy9VeT+NyuSjdIWyTTKo8j313bKYgbkPkot4tGBUFpW65x1oDaqvo81XhvhW3YQliMhem2j+VkdkMVds3csXEp7jt2NspXLOKZk92hXteYWzrCUzOmc+0aeKj2FgwhYn+zlKz9aD6ifcaTgtK225MJthdP/agErepaRqeW/IqX++8Gxcadu3aBe7UeSUswIo0+wFFG935P1Lfl4lJSZAaWUJm2BrMxkPIdkZR+PhjWD9vGfr55+IqeDfgQyOMPzPzmLuZlPq5x+1RKVmoVBAZ1Exthd7/Cdt24nTCx4vP7vjogQ+uErU06hb7DKT3xxy+KxoLt4MC1eZR3VSHKhUY1CKw1lrqOzOs3Ws81Uccqj3t26E/9BW3wVZBdIekjur8UJIwBYlsFku1fxuiUHcxvLBEz32HOlJ8LpnFONlYKgKLba4BREZ23zcrC6oMA5FlaPPi1b5vuype+QtWC6wqO5OrbkrhjTeEdVlpqcK3z76HpXSR13tvdMeQfJGhvUVsSgKyosblcIG1n6Lz5kpOzn6Rf014wafiVqWCwal7GZa0HmNdaa8uYSr8hX8Oupsjsxb2INT9IdodRbNYYH35dLZWT/X7nTo1grg1NXombnc3HMGO2qMIjvFt6dcV7euPgIrGekB/91l/RRwmbg9xKIpCW1ubx4r3LZXizTG4Mr0Wq8lNb+LRky9jsuPUv1Qxib7gi8138cLvL6NK969UkCQ4/njx73XLaqFxDRgFcVujz+5RmKwdOVl2Xj1nBidrjgHHAc4LPsDw1bYCRdeU9UA8bqOk3cw85m6OSXipo0LtvjYJIHwJ6+3C57ap0PNE0WlqYEDMOkamrCY+oa/RP1AU8fK4nB4GElMFdjvUG9LJzPL8kg3Preahk67kaNcFYG8lzvg5l054jtGjA1vYjxmno7R5KGYzKM0B2CXYW1Ha9qDXw46aI5kxQ3jlFjcNw7Q/itthbo/Sli37Vcywt+2qrD6Z3wouoEw+x+++VqnToL8DVT/R2gJLC08HJJYWnUFbK1A1D+QDNDlwWQm3imh7VF7gxG17mlVvFUy2OqHKcIbvf2GydgzJKOeBE6/h5KjLu33uqHF7LccfFfCiPyhcmNnZWg/sQszVUoDdrmC2h3slbgEmj8jnkvEv4Cz0vLg+jJ5QtYkFpDapu61ScNpEWiyJbPMttOoO2QFrr4ZlZ0KQe3XR5Fmd0p4NlOaBtzSrxIK0zVchDHMldjs0mlJIS/PcXpOSherQly2Aoij8tPffPPjzp9Rpz/K4T8bgdByuIFwOOy5D4NHwkkIT382aQ9En/6RuzSfdSF+dS3wBQTFecq/diHYzIdFBtVjMfVcZLV4MWyvG0+bMJiQErjvyfuZ+tU9/77LhqPodp81MnSGd6V049ZFHpFDeOoiixmFg+xMXF2rdjtXqol6fhEVJ6fBtPhhoT6OvrOwcD4OcpQDoog88cYuui7moH49yXwgLg0dOuYq7p91EU8Who/5w7HqTiOL7SYqoIERqQL/t84A9mzW2UgB0sdket0vaUIoNU1hZeiq11Z4zIbth7H/5rPhTVhSeyLBhMGoU7K0ZwKIdx4slW9H7Xg/t9RxedvicE1lrhUjCEdbzZdEmCuJWafE9R7U0lBKiNfokbrVR7o2WQ5u4bW6GbeWj2NMwjoTB3cdVbaL4/yCT78KfisNCqCQmjDEZ2R73CU0QfUqwq11x6yZkI/J67KtWwy7r5dzx4w9sMlzv+Zpd2pUsw32f3sus5c8SNOxKYmOFEv+NN2DGyJ+ZlPAWVT8/hL0h3+O5VMZ8kiPKiI8LRH4eGJJTVGytnsyakun9RgA6jI2i8Kgl3idxCyBrhaDB0tI7o9vWovVMyFjMiKxCwnvW7fOJxNQIXlr6Ivf88DmvrXian8vv878WCBHrJWuLZ+L20w138+zi1whLCNx+LTMTjh3wA6ck34VS13u7pP7gHf7qOEzc/o1hahCdtF3rfSKYmBpJduxutK56sB26eaOyDOu3RLC1egoDxwQ2MZ42DXLjdnJe/GnIm+/H3laFwwHVPojbjCwdEgp2GwetANKfGe2KWxk1KrV/8jRE3cyEjMVMSPiMBNPnZEYXeCRgJAlImsqH6+5nccUNHs+lb2wCBfS2OKKj+3b/kgRWp/AylAw9LRmszRU4nVBnyOiwydgXadmR5MVvI4xilMZ1mM1Qa8hk5LhIzwfsg2HDoLh5NE4ntJQEQNw2rcdkUihtzEMKjmPiRJHKWtYyFLvNnXrrCEDpsQ/aXNmUW6eKxULpZ70+vh2KAm1tAZaPVZSObABPxM2+cLkrq9pa3QyMqQK5eTNNzSpWlpzK1KmwpWoKVQ0xKLYmaFzVhyfwD3PFepx2O42mFIZN9NJZeEBaQhunDfuIcWGzenW9rys/4rklrxKaOtr/zgEiPSecwQmbSdDl47ILNVVTE6TqVoMEicMC8+0F0EaKH082HdiFWGvFXlCg0TGoI43XE4blVDJj8BeEG3/rl+vW10O+53XJIQHFYSJMForYlKFjum1rJ7x2+M/o7ETDCrC3YLcrLNp7Lk4n0LSmx24mg50gVyVqyenx/ZdDRKdrbfJF3Ipxu96Y7rUPSXELSnwRtwDllZGUNg8hMcsz65CapuKbHbfy2rKnqWwIPL3wjXfCWZB/BhazTPPqWez88FoszYKwfX/NPbzw+ysEpR3l8xyh0fEsLr6ILzbfQmND4EVl9sW8eQASe+I/Jzh5FCFaI5lNd2BqM3Xu1LACY6uZRmMKusSR3d61KVPgkV8+4o6vP8IZ4qE64J8FrVswGWFP/VgmTCCg7Jf+Qjtxa2gxYjeIeXeEJKxG2kmWAwl1cCdxK+2H4hbAoohoY2ut58X/Xw4OPW1bv2RM0kIaTBlsrZ5MY4ML184XAjo8jFIAIpKzve6zqPVl3l71GGW13osctaOxEd7+cig2ZwjXXw9PPCEI83cWXy3UirW/gbHY73n8wtYES8+ANZd7rhshu9CaxSDnqQBq3AChGA12FIPD4PkaisJZSZfy9vnHkZPoPfgfHi/6V63z0LZKKCiAebsu49M97xCSPKLbtoRB4zDZI6moi/FaXwPA0NSAwRqJ0R5FcobnotjRaaJPidKU4nSCZBIq7bAkz/1zUnYqDcY09hT47xt+/hmKS1QUtE3n3Es6i2FlZ8Nl95zMroZJ2C02ir6+A6expyJhRtxMnj39XNKj+89fMD4eXl35Iq8se5YGY9+LOHaFoVH4vRrscUR4TmDuRLD4HuyG3hG39iYxx5Iie+9fnpYusblqKuWtg5AVdY8irJ7Q7otrN/b0s1CUTpuL3ni/p6dDTmw+o5KWYKntzaTwMNpxmLj9G8PZ5u4IfaRepaZrqTOki7Sbv0gV4L6gtBQMBggODtw7ZuhQsGiH0GaJxtSqp9x5Mjd++xs7Ws/ukV7SjuxssUC020E2HSZu7UoMjy74iOeXeq+U3BVqjVg9OR3wjwEvMiV3vlcf2JwROSwpPIelG3M8bje6c3BsSvx+qRCXlZwFQHDZq0KR0AVtNW5Vu5xJWJjn47PzwmmzxuGwg373PBwOKGkeEbDCR6cDJVpMivVVAfjLBsWytfY4NlRM48QThf1EZCSkZEZSa8ik0Zbbu/Sh8m9RWvO54w64751/CYP+qp/A7se8al/ITlwFH/DQ/VZuvXUIX33lh8hXZJyrrsGw9SM0KjtDApjLKMFiIuJqryarDmKX9TKWFZ6CNiKRxx+H4BAti3efKmwjDpBdwoayyTyy4EMWVtxFYlLgau+kRCcXjHmNo5L/h+IKXIGwNT+S7TVHM3Co96rzvUVyRgxWZwSKolBXItr5lrWNZEYXEBwkEZYVeAn28ATBjGkcnq0+tm+H3ftbM09RcLgnvrq4QT7tcOKzssV+zv0f86qr4dJ/yVx2Gaxdu9+n+1OiuXgrLqdMoymNvBHdyYaRI+HkIZ9xXMRMZGOAVi6VPwDww4bTeOWzScJruGULuLrb0TQU7eL5M87ipXPOJdRD09ZEuec2Rv+K23qDd+I2NdnB7cfexsmRF/n0s6yqCgbwGrhVqaBMOZ+15SeytyQwyUxBASxZApsqj2O1/n4sjlCk1i0Uf3IhW376jpLaNLZWTyY+zQ/JI6lYXH0HC3ZfTENTd6sVlwu+/x6/qujaWti2WagAZ5yiI+nk57CSSGJoCaU/PtipBK5ZgMEAa8tPZPr07i/akCEQEaXDZIKtvainedDRvBmjCfY0HFybBBCe3zOGzeGt847DvuV5VC4TOqlVbEvvJ68bH9CERHf+z34UJwOwq8WYa246NIhbueRLWpvMVLQO5OgzpzCv+A6sdg36olVQv8LnsVaznWid6AMT2v14PKC9H/JpUec0g9PEhx+C3S6UtkcfLSwG7r0XKloH8svmaZjNClT/3Mun7Aml4A1aahswVO327J1rLMJps2BxhpE6MLvH5sEjY6kzZmCzKTi82Zc5WkG2oCB1VLX3hOi0DDZUTGdN6fF9e5i/CNr9TPctEAaQMjCXO+f/xqvLnvRZM6WqJZMbvlnEUyt+QOfFYSs6NQtJBTEh9dRVNKN1igB6Qq5n4rZ9jdx+f97g0Ffz4XvCFvDyy+lBaA4eoiLvvKepMeSiWBso+vwqFEOXIIPsRIuw0wmP67/KkCqVsGoAMab1B8ytgrh1qOL8Wi3qIoTiVmUpDzyTWXaisYj1XURaLw1uEd99aCiE6dpQS86AiFtH+mVcM3sZn2+6rcc2o94Jsgjg7FtjxheCg8EsiXlZb60iDkPgMHF7iEOlUpGbm+vRyFltE4vt4FjvE8HUVKjVZ+FwgOxr8fNngaLQVtN7QrR54yecP/p1po4r9emT2RWSBMdNU7OhYjoGA9jLF2G0RZOc4V0pmZoKDaZ0ZBkMdX8i4tbeRkNlfWDFENzw1bYCxSf/01LUNAK9OjAloMr947gFfpi1Qz0u2EGk/4NQetk9CAQsrYK4dWr2zzxp/u4r0FtjkawVUDa7+zWa3AV5Qr2nkiQkQIMlG0UBS4UwTLaHjiAoKPB7iBpwJPfNm82723wXowCwhY3nvtnPM2f7dcyY0fn5uHFw39zZfFw4GyICVEKZq2DXsxgWXkZDSTF76seyqWgYLocdyr8O/AHsrcjrbqRm2RsMcT5GUFAQS77ZQMu6t70fU/k9zUVbOCb9E3IyLZx1lv/LaN0RZJVNzNaUoET++91M3ln9KOedJ5QqM2bA0qIzaG0F6pd7V4fsBzZsVFHUOJLQ7N4VGYtPjcXmDAFFxtjoR21iqYP1NyGbajsm2IGQ24FCpZYwKNkANJaWAFCfL1SRtuChoAt8NhedKlaqwdT28P7cuhWuugquvLLvvliAKHJlrcelBBGf43vimzlEvK9apQ2roe8+nEaDwlfPfcX/TbgajcrOU0+JojaHGup3C5uERnkcwcHdtw0cCEdmL2ZI3CoaC3yndQJgrYeGVZgt8NFvZ1Ctz6a8PhHFZRfkbRfo3WO9VfKsmtGkHMt982bz3uaXvF7OaajG6YR6Y5pX4jY5VcvgxM3EqPeC1fNKT2rbwRkD3uKo7IVeiVuAPHf2aWEgNRyrf6H0p4cJ07Vx4okS1zx6Jo6JX1JuHIckW9DtfZI7jruVhOg2r4HBrmj3tGvs4lBgNsncdptQ6t18k4PGCu/9ytqfN/HSWf/gxlM+JSUFVCFx6Ac8j0PWoW1ZhmPX2+A04axdgckEq0tO7maTAGLRPMktxl+70iCUfH82yE5czduxmIXi9mATt5IE6nAxVjlaK4gPD8fqCKHFkkhiSsgBv74uPLrj303y/mVpyO5K9qG1H6FYD7I1hqufO1unCf32L7HbYWHRlVxwgYrT/5nJL7svprER5PwXPatR3agvrURCxi6HER7rPZ86PR3UkpPWOh+KvIrvsC+YgW3XhwBcf31H7SpOOQVOPhm+2XoDj859GVPqjR5PEfAcXr8Hw+4fqakRZLJt98eg716YytG4HZsNihuHM2Roz/MlJ8PvZZfzwdr72Vvn2aDT0lyFywmtlgRS0737+CdmJDBr+bN8sOImj3P7QwX1xcWE6fQeiVuVWiJvoPiefQW1hWewRGyi90ChFBSFUxJqXEPh79is0GqNJ2+oZ4Xu4MEwfeC3TAq7D1p7WqupVCpyc3KoWfAId008g6MHreeCCzxfe/T4MCKmzaLOmInLWEvVnKugeZPYaG/B5VRQUBGdEO39IfsAkUWjUFfdPwVxbXoxjilaPz4JgCp6KAoSUcoOKAxMtISpFIfNgcUZRlpe71XCkgRHDMrnzfOO58OLjmJ8+u9+j0nNDMfmDKWysvucAcBUsY4PLpzEI6dc7TUg4PVewgVx2yEe7AX6g3f4q+Pv++R/E6hUKhITE3s2ckUhVBEvTWSKd+I2KQnqjFkoCpjq/vzE7dqPX6Tqi7NY/9VHvTourPl7Th/+IROG945MnTYN1pUfj8EAoYYlqCQXA3xwXhoNOLQiD07/ZyFuLbXUz72Kre/dxPVX6bF5qLHlCV7bViCwNlL6/d0snCuqmtx9d2CHqfdh1UOTvTNRGRkwIK2WKVnfUr5mfo/tNoN7wajzP9D6glMJZfaWm4T1V9G73Yg+xSiIW12Md+JWksDhtitpaxWfRWWO8Lq/J4wZH0pVWy4bNqr8BnBXrBAFZpKThUqjHePHg0vRsDEAbqUDhe8gyy6W7zqKqrZcVCqJH7b9i+YWBIntCqAxGYpQVl1G9Y5N1DeHsrr8dCaNruW2Y25Gv/ldlIbVPY9xGLBue4OmJvhu+7XcMDMqoMlDcLRQdqodQlG8Y4dIYdfp4Gx3bY8zz4SqtgG8ufRujGO/Aa2/vKfeY72oYcQRR/TuuOAQiVa7YJdaq3z0H/oCWPNvaFpD09LHsVhEpNuHyKdPcAYLNbuhthRFAXWLsJYISusd05GUmYBL0eByuJDNnYtVoxEefFBY2YxNWcjqj19Hkfvgz+nQo+x6AYsFftx5NUNH+v5N4xJDMDiSUBSo3NO3cc9lbmbDO7cwI+M5hiRv4x9j5lNVJSqRH2ooqYqhsjUPJWZcj20aDejVIorWUrzJ/8mq5gEyW8vGUGfIBCQ2VxxFk3MoKN1zQi1N4h1wBnn2d03JiqKqLZeSMu+dQ3nME9z6/Ty21J/mNVMmJQWaTMk4nCCbPRtMG8q2MjXnB47IXOqzAOCgPBujUlYR3DjH+04A9lZMG58nXZrHtIHfc8014uMjj0vl2DvfojLsViQJgjQWJgzY5lflA5CaaCQ7dheWxlJw2TFsep3fX7qLVasU4sJquHvqVdTOuwmcPYunKgoEVb5HuK6No0d39j1T/jGM7wr+g8OpYvP2cKhbilFvp0afhTZuoMfvYsoU+MfQTzhRdQIUf+T/xvsKRREL451PgaUX0ip7C/W2YTSbE1FFZHdYFxxMaKPEnEGyVGHTHsE1s5fxwpovAhYW7A904TG0WBLIrzuCGtex+3WugSdeSoM5HbW9mtp5Mw9abQdT/ldUf34yVQX9YBPQjvJvaG3UU2vIIvuo4wkNFfOGVbVX0WSIpbW6HMq8F9hsrSoFQC9nI6m8v7ADE7bz/oWT+UfCdZ53UBSo/I6meitt5ijGjes5l7j3XlDCclm0bQr/fVYC2QmlnwuiTRZWKYHO4Z3lc6mvU1hTdhIbKo6jvs4Fu7tbQxSZZ/Dfxa+xqPRKjzZEkgRtEWexpPActhd4LlraUiWUnq22NJ8entHRdAQIDxUHDk+YHHYvb543nXGZPW2CoDMQX7Kn1es52ou9tdv9eEO+8Z/M2X4dBXucmO3h1BkHeD0mLw9Gp65iZPyvGKt6qqdVKhVRrlKcDdsI1po44Uzhh+4NE6cmYx3zAYWNo9A3GWhYcCvYW7GbmnG5QG+NIT6hf+mqSbmLeP/CyWQ23tUv53OaxHpSCvK/ngxPzubj9fditYJc+G5ABaGdLXuw2aCseTCDBvftu5iQ05nyFRaAv0FKisiYCtM08cHb3e3zzC1i7a7SBns61CeC48R6V2Wp6F2RVvaTdzhE8Pd98r8JXC4XW7du7WHArSgKL/3+PB+vv5eELO+zUpUK7Fox87b48onzB2s97HxaEDkuG+yZBQ396x9ZtXUlkS1fABBS9TYtFQFO2KyNaB3lKEikDu+dumDMGKi1j8flApuhhduOvd0ncQugjhDft73lT0DcGoux/H4lzRWiIEBtRSsvvohQDfjpUL21Lb8wV2FZehXWssVcc9Sj/PvfcJRve74OqLsYzVmdoaQP8k2Izpi4lX8f8TRK6Rc9798sQojq0P1T3I4cCcuLT2P53hNRRj0Bms4Z55LKG/hu+7VevaLaoYrIFvfkAqesJXd0z6IAvjBihCAfm5qgosLHjsZiVi8WqXonnUQ3i4ixY8XfxcXQ2hLAYGoshuqfaWmGj1beSHw83H8/rC8/nrmbzsA06FlQ+WFT65airLmC6qJqiqrTeOK3j7jw5kmccZGBJYXnYTJBw5LHe6helcL3qK9qpbotG3PceRwTYH2v4JTR3DxnAU8v+wLKv2XlD2uQkDn55M50n2HDRKrzL/kXsGB5/6/YTbtmc0zMk+TG7exQhffqeEXck6nBS//RuE4UdrI1UGvM5YoXHwLgyCPpt8Jk7dBGZQPgbCulshJ+2Hwev+69mNSx03p1nsQkFU3mFOGb1b7SAJ59VqG6GgZn1XH9pEcYGfYhxT883MOSxC+qf0Hf2EJJQy7fbTmXIUP891k2jZhcNpSW9u5aAA0rKf/yQhKlVbjQETrhbo695EwAFv9YzN7dAUbH/iL4ev3F3D//S0LzTvO4XZskOhep1Q9xqyhQ9SNmM8xedSYqlRgb3l/zH97Z/ikkdPdNdrmtF1Thnt/TdtKwuRlMJo+7UFmlotmcRHSiZ3URiLTKJksyiuy9wnJb1V5kRcaszvVJrg3KMXDntJlMinrGd2Br94s017ZS2TYAOeNicro4/oSEqjjpun8RetJsElKjOfv0wLICJqV9xWMnX0qu5WkMv15G7coPyQ5dysS8Tdx0SyjRIY2ozGVUL36+x7GFG7aRGbYORVKTNf3fHZ9rNDD0+FO556eveeKzS5GrF2DQw+rSGT1sEtpx1FEi88hhd2EpX3bgCt+2bofCd6FiDqw4D4o+8KmI7EBwAp/sfodbv5vLUUf/McukyKQUFFQ47TY2rhKRvohY7220PxEUP5BbvvuZZxa9iXr/nBLIHBhLVfJr6K2xGKoKsG14qH9u0geU+hU0Ln+OueuO45Y7o6nvnZWkZ7isGHf8D7MJ5uZfyT//KdqFTgf/+ncYX225mcZGcOq9p4VYGksBsGmyfV4qPiMFleQiXFWF4vTQXlu2YG8ppb4pmNWlM7qpbdsRHg6PPy7G/PnzYfb7BZg2vohj+eUovx0La69F3v0au9bP8zuH/3LL7by0+GnmF83kfxvvZkn+dLbT/XfctTecHTVHoYqf4DWI1F5IeGdPkSYAhnrRn9tUvhWFkgSpqQqRwc3UV/Y9I+bPDIveQLRWrGEzhnnOEBo9qJaXzjqNE4PO9LpeG2y+i9uPvY0h6b7Xw+W6a/l++zW8Nf8Crvt6Cb82Pud1vhgaCgZJqKZbyvf22O5yOtn10ws4nbCx7lxOPcczUd8Vp5wRTdOAN9lQOY0nv7uHJSujO3xj9bYAfGN7ifCYKLQqOypb//gkK+5Cm+ow/+vJceNgQ925fL7+RuYWPwBRXvz+uqClbA+KAnXmQX5JeG/QRnT6I0Qm+vdKkCS494adPHbKv8hq/Q+FezvbmFUviFunqvcWFtGpqThlLU6HvXcBVfaDdziEcJi4PcShKAoWi6VHBb7mFhWbyiaypOg8UtJ8kytKWDYALr0H4laR/acjOfSw4Wao+Jb8b5/h40f/h3XXJ7DjCXB6WU21w9YMVfM9KkC6QrY007r8UZFu7ghHhYPSeU8EFM3Rl2/GbheeUMNG9W50UKlg6rEaag2ZuFyQF7/dZ5okQGi8e5G5v8XJ9l3suKy9WwC1bMO1+mpqSuqpbMnhg/wPqTdm8v0cJxU/3Q3bH+mIzHu+vOe25ROGQuTVV1JbXEVdWxrrTXdzvefCpB7RVXFb2jyE4SN8d2EJA4WkVGfZBav/DdW/dJA+dotYNAdF7p/i9u67QatTcd9XTzNv3ZRuM+jFu07ku+3Xkprte3ALS8ru+Hd562BGjeld7olOB8dNKOaGSf/BvMb7wsi+8y3OTTiTGUM+5+STu2+LiYEBuTL3n3At/DYV/KU17n0Lp1Pm123TKGkexo03whlnQHaOmteXPcRnP4/ruZpoh6JA8Scom++kutzMmoIJPPrrJ9zyQC5TpihER+sJG3cjdcYMWmrqsWzuQiSYyjHs+BKjEb7aeju336kJSG0GEJ+oo80aR2uzFceOlzg27CZy4/L55z8795EkOmwXfvihy/16gyIHpix2Q79rHsflfccRQwp7ZerfDqdbsW9r3af/MBRB+Tew8WYUp5mdNeO54IX3qW1NYtIkeOSR3l/LHyJSsgFRKXv9ethTP46drtsJTuydJ4NKBcWGY1lefDq1TSLwsXL+To6ULychvIa7H0qiNvZeZEWNq+Jn7Ktv7pWFRX3w+Tzyw7O8t+YBTj61iYgI/31WezClV5kmLhvkP0fzr7dgaW2mqm0AxpGfkj7pAqYeK3HjWb/w6Mn/YsuXz9MX4fCfEXZ7Z6rmyFGeX8TEwaNRUKGxV/ueqLftBHMF1fWhrCs/ntNOg8suAwUVixfTowiLyiregZBYzx4H4eFw0oifueaoR2nYvd7jPlVu211fxQ01GrBJYqGjr/d8/87WIlBAFek76JY9KA6jPQqnU8baVOJ5p4ZVWIrnozdIfLDuQa682nNlrKzhuRwz81nGnXaqz2u2Qx0uVnxhto1U7Smk2RjDl3ue44EXxnP6OVEUBD+GgoS18AdcVb92O7Ztk7DhqVWdRmhs95XjmWeKQEd1NSwov4PP1l7HqtKTmeYlfhMRAarEo3DKWlFkzVQa0P33Fq7IUczOv5+yMmhtsuLa8was/GdAooFVq0S7O9g2Ce1ITdNQb0zD7gBrcxWKQkC+hP2ByEgI0+mJCm5Eq/I99w4E512Wzhd7X6WyJZP3fveiIu0vGIpoWnQ/JhM4XVpKq2O49VYwG/tekA+Ayh9obWih0ZRK5OAZHR6ZIOY9RZZ/8MDcT/hq53+8nmJT7anMWv4sDUHn+LxUUkYcFkc4iixjqPewTqj8jsYmWFUyg1HjwhjXM9EBgNGj4eqrxb+//hp+WHUMW3ZGsnunjcINm6hc9hGROx9CafRuvt7aCu+9J7G2/EQuuzaZY2ckMmv5s7zwRmq3aVH7GODLjmnECEiLKiay9Wsw9VQY2FpF0FYJ8V9p9vLxT/LaOSehqvrW7779DkXxuTbqD1TlbwcFWuwZxCR7nijmDE0kVGdAdpiQ2wo83KdMPKsZk7achETfEZj28U8EOSSy83zXQ9BEC+LW3rQPcavIWPd+i860F4esI+2YywMu7PjvK4OojH+WFcX/4IEHYMdGt2+sFBPwHD9QtNdV0Mk97bn6giW19/LS0hdxho/yu290tJiP/7jzSh778GyWLXNv8LHOaKq34pB1uMIG9/m7iInv9N+LSw1MsDR4iIb0xDZGpqxi01dvdXzuMIrfRg7AGmJfZGWpqDNkuGsnlfbq2D7xDocYDhO3f1O0q/KSkvCbYqyLyabemE69eYDo4Oxtwux+639g8Qnw6zGw9UHhd7kvXDbYeBuKsYjy+gRue/1a3ll4MZv3pOEw1gvlrTdY63GtugLT2keQm7f4vMdVv+zCaTVSYxyAafSnWJ2haEz5FG70X8q7YY/w56t3jveaKukL06bBc0teZVvNJF5a+qJf4jY2PYP8uiPYUTc5cKJVkaF+mVCPbLkfVl4Ev5/S/fidT8GvU2D5+bDxVsh/Diq+F4TOvgNTw0qU9TdQV6FnR+VIXlv/Hs+8nMTll8OA+B0YS1dhL50Pm+/uFSnlEy3bYO01NFQ2sbcmj5dWv8/dD6f1KvWvK3Fb0TaEgZ6tsjowbHwKC3ZfjN6opWb3Duwb/gO/nwaF7/Dd3oe44os1OGL2LxUwOxuuc69FXnjB7QXkMKLISocnp6/UWRDFkJrMyeyqm8CvdU969e31hREj4OjsXwjRL/I8qVRk9KXrUWSw6EZ5/O7GjlMREdSK1WQFvY93p2031C2moVHiiw03MGgQnHaaIOCuvVbs8tlnoNfjuY072lBK/kdNtcKcDefz/O+v8Z9Hozi2y09x0b+C+bnyUZwuFc3b54n2Dzh3vkRdnYttNZMYfcIkv99tV7QvtkYn/kZTvZUafRaRmcN7eIidcgqo1WCu3UXL4jtg13OdG5s3gqmLqqZpnXgXd7/iuQ/sClsz6IXcJCRzcuA33hVhgrhNsX3e/fO1V0L+M7icLn7Ln8FVb76K2RHBZZfByy/3LAzRH0jMyabFkkhFQxJr3Nl8Eyf27VybzLfy7pqHKaofRH1pJUE7biUnNp/HL3+b0aPh2EvO4H+7X8FoDaV57wZYe5Xw8fUDWYZHHpVYXjAdXeJI/vGPwArvhSWKhmVr80E0uuzdFXxlX2HI/4q6Oli450LqBnzK0Sd2qu3PuSiWII2D4ZHfsezL/S8Ys19w2UQ7btoAsgNFEf67dpvcq8KChTvrUVx2oqO9k5/DR4VS2jwEmw2sNT5Ut1HD2RP7KbN+uw+nEspVVwkLl+hoQSBsXm/u5okarAhSIzLZuzJ+4oB1HJP7E6YqD5WwjCXk6u/jH8M+9psOrwSJ/F9ri4f2ILvQ2UsBCEvyPQGIjZNosOSBAnVFHoxunWbY+RSNDbBw90UMnDCi3yxOgtyWPVYrrCudzmdls7nj2Wkdv9s5V0/g16IrsFqhaemTYBZEir0xnwjrKhRUxE64osd5g4PhoovEvx9/IZNvtlyDNirT5/h8xNGh5NcdgdGA8BLvZygK/Pe/8OznZ3Puu+t58Jsn2LAtnurCCszLZ6JsvN1z2r4iU1mip6pKjAETJvT7rQWE9HSoM2TgsMOMmEe4ZepdDEzdH5PvwBEZCReNe5lXzzmZgTrvqf+BQqeDK28dzL1zv+bDbwezYUM/3KQn2FuwrrqNxjozu+vHIw+5m9hYCUdjPsUfn4Pc4kXqGQBqVKfz3rKZzN7yf1z8r+6TVq0WrrpaRUnzMD76CCwWxFi/D/ZWJLOhYjpByb4z+3RBEs32bACayroEd1x2qP4FW/lvtLXC74Vn+xU+XHUV/N//QfLgYXxT8hIzv/+Ne+fO5q3lD7CxeAwtjQr6JXeAsbTnwc0b+fBdI0YjHXO8666DkBBhM/XbbwhbptYdZJhnMTx5nU/idtgw0a5Ozf4vloqewRPZJOZPmgj/Hp7qMBHFcOire250mj1+//uFdhHRtodgyQxYOEmstbY+AMWf+Bc69DhfE2x7CHn5BZ2erl3QVirGK73KOxGYk6uiqGkMsgtaijyMq9YGFKcVWVET4ysyCaSlyiRFlDM4QayH/RXpjkoXnbvG0mV92bIF65J/0bjsOWRZYmPDBZx4WuAZjZIE99wjMXWqCAjP/VGIbBRNHxbmfhCTkoiCCtlp730hZQ/YWzeIzVVTCY8L7HmnToWLLxb/fuQRqKtogXXX9vDxb8fP5fdzzVfLscXO8Lg9EGiTjsRgi2Z3/XiSkgNMpYgcTNiRDyJJMCL0A3YuXgyAyyLeLym49+qTjAyoMWRhsgSh2Ft7ffzfHYeJ278DFGcP8sRUuoopOXMZnuu/ynN8aix3/vg93xS/KPybFp8I2x6Eml+EmhYFan6G5ed0V5HKLthyH0rrViprI5j5yas0mVIIjQjhjWUPUlEJctm3ggjZF9YG7Cuuo2xXFVt3x3Lf8xO9Fs5qbYWHX5vMg/M/Q5/zNFNPzmCr/Cj/mf8Zj786wq+yydUgrq+OH+v3u/CEI44As5LG80tmoVeP8VskJDU7hmcWvcm7q+7zrkjsioZVgqjddDsUvg21C8GwF2yNYO8yObFUg2wDUwk0rIDyr2DnE0Jhsmhap2q5bilsvI3WZhvLdk3iuSVv8J9Ho0hIEAUOgpLH8MKSFyiv1KHULxNqaft+pCO57MImY921GFoMrN0ziid/e4fb7o336IXlE2GZlDaLtBJ78FC/QYecHKiJvp1bvpvHe0uvZ+OOeCqLm7Bsfwe1tRiXoiEuIcBwsA/8618wdCgYDDD/rdkoS0/DuP1j8qJWERdW71PNBZAxKJXbvp/L04veIme4f7WBJwwam43ZEYHdYkPRe4i+t+VjajNgdkQwfPIwj01v3DgoaR6G2Sz294q9b2CzwbxNp1DVlsutt3am4U+fLjywVM4Wtn39sggi7AOXOpo31r7Mq7/dxacb7+GxJzQ9ithoNHDZzFH8vOtftLVB68onoHUHzXtWYbOp+aX0dq7oySH4RHAwnDHmK64+6jFaWmBZ0elceGHPLyImBo49FoI1ZmwVS6FqLjSshLXXwrrroPBtfvxRELwrv/0V2a6H0k9h2VnieRtWeY7iN6zAbBLf8YjxfbPocEWOQ1bUFDePZNs2YW1RXw9OXRpmKYN3f7+e+794HJVGx2OPwcyZ/W+R0I7kAZncOXc+zy9+kaDaLxmevI6JR/TSxsCNDsVHZQtVP9xMqKaFVnkIYy8WBtg6HZx33VE8sfA9SqrjsTQUCx9fT229HbWL+eHrFtatg6AgeOQROeDU34gh/+CmOQt5dsETYgxRZDCVQc1C2POqaAuLjoO6JR3HlBvHkF8Yz3OLZ2FIv5NLLu3eQUUPmIglVUigYmqeoqGktOeFnSao/El4c9avcI+x/QSnCSq+p/LbKyl7bzLFn5xD4RfXc9FZNRx1FEyZovD+nc9T//2lnhfyHqDZ9RhvX3Ac50xe7HU4S0iAKst4FAWa9m72fjJJYtbHQ1lVegqnnSbahFot+pQTBs0mJX86FLwBgGw3EySJ8S8+wwfrGiYsL+wtHpTTxiJSVb8yPn2p3z5aHSYGK6fJQ7DAXI7D7sDqDCY5x38eo10nyHxb5UpoWt99fC14HUtLLSW1KczZcX2HYq4/EJoygq82z2TW8mfZHfJfnp8VQ1SX7PuoKEg/9lqKmkbQ0mDEtuE/ILuoXfEeLhdsrT+Z0Ud7/q7PP1+k0LYXC5o+3ff0ZsoU2Fx5DCYzuGoWi/lif8BaDxtmMuezGubMEffwz39KVMknc8f33/L56kspLlGzdGETs+eE9pwfmkoJXT2dR2ZczujRSp+CqP2BduLW7gCnU2JCxu/EJx4Eg1sEcTs190cAotVF/XLO0aPhnHNF5/vkk2Cv3wYl/+uXcwPgsqNsuou60mpq9en83vosN96k5aWX4MyRH6OyVVP+/W0dwYgekJ3CWsPk2Xfxi69DmbvzMuSkGR5JrX/8Q/xmLS3w0+xqWHIyrLtekH3urMRK9/LIX18DYFEJbxRTfWnnh+Vfw7b/0FRvp7BxBEmDh3erU+AJajVccQW8+irMmQMrV6l463+5/POOs9kV/iobyifxyZJzWbU1q/uBtiYsK2/jaOc5JIVXcPvtYh4RFweXXip2qfr1OeSVFyPveIrxcZ8wOWeeT+I2OhoaHIK0binpEkhzv/uba05i8d5z0cb5z9jRRrnJXUv339NYtZP6r06i/quTMC84H3a9KOZjfrI2u8FlB2NJ97G37EvY/hBUzwd7M4oii7VWzQIomAXOLhlA1kZBHvuAtXEvFWvns3dTMfpFNwiRTRdIre7vJ9o7ya/RQIsk/LYM5T2JW8VUhsMB9cZ0UlJ99x1ZCWU8d/o5PHDiNcw85m4GDfS9cE4bmI7DFYTTbutY969dZaVsewGNrWF8veVKhp5xXa/nnmo1PPWUEKI0mZKpbM2j2HZG704SAJJTtbRa4nE4QPHWJ/QC7cW74nsxrb/5ZhHM0Oth6QfvojRvFuuHkv/B3jdhx5Ow8XYoeJ2CApAVNQMH97ISWBckZ4Rz2/dzeWnFm70SqcWPOoW6EMEyq3Y8gqwvRrKLALo6pPeK27Q0eG/NI1z5+XKagwPLFjqMThycWcBh/GHYsEFNRu17KAvuQAkORVKHgCaUbH0z1x6tZ7fqHuB8n+don2RUVQHhAwAZIgaixE9hU8VkCkt0HJ/5JnFxElKoe1KvKLDjMZT6ZVTW6Lj36xepbM3jzjvhmGPg8ssn8PP2czhTO4e07Y8jTfkS1G6Ta2sj1uXXUbmnguqWVJ789R2azGqc98Izj9Sj1amhiwH4rFnQ1gaJA3M43a36OP3qaXw4H6p2wrx5cPrpXh7O3obOXoQTiB/UN+JWqxXRs59/xq/aFiDLPT+qrRXKl32rcHdD0fuw902cTmjSR6IPmkpMZi6xGTmoInO7V24/4k0aK+vYub6K0l1VmBoqGJ6xi9FZO4lKSkDSuN3ho4ZhdCbx3ZqxvL3yIa6/UdOhKtFoxKT64ouP4eG5r/HsP28jTdoEi48HbRSknQFDbgFArVYzLNWJWrYAPuR8Ki0Y9uKwO/l507G8suQJzj4vpJu6MlBotCqe+PVdMmL2cuRx3v1tOy6tEqqbTZti+eSTq7n1+8uZkLGE0akrWbBeTHgS/Nsv+YVaDQ8/LAjcurJa9IOMaPSvcec0WFlzGVrtTJ/Hx8cLRaTBgNe0N38YOUrF91+PYqR2Jc3FW4kbN6zbdmP5OswmyK89gpMu9jybGj8eFn80DKttLraGfII8KaYUBRKPoXBdMXO2XcvUqd1VliqVUGU8+ZCTGP2XOGudaFq3Q0gqGEuwhU/gvvtg2bJhqFTDeOwxOPHEzuPVajVDhgxBrVYzYgQsHHw9VW0r0FYVY9+7nes+/Zqc6C1cfE12nxbVxw2c2/EYBcZTefA4z/udcQbctngsxdVpJCZWodoo2r0iaVmxNorH3lEAiVvffYCzpxzLLWd/TZhltQiaNKyAoERIPRkG3ggqMdSay1dgs8HW6inc1MffOSIll/97+1c0Kjtt3da9nQrchASh/h42rMfh/Qq1WvRnNeV6LhzzImqVTN6AeUDvc3rT0kR67gj9JQTp6mm2ppJz4Suogzp/5AkTYMSkQTzyy0c8qpvJkcOLkQwFEOlhJW0sxrbufjLKwogN/Zyrb0oiN1dNXJxoW/6QNSACqwwJQcWseflxxg3cS7DWgy1Q207s8TP44gv44P0RWCzzGDdezb33eiauRp97Dcte2EKiZj2Vc+8h/oaPkTTuQcDeAr+fhtNhQ5FxpxhKYtyNHQsJx3T6vCqyIBtUWv8BQP1eKP0fcs0i6musuO3JsLuCaTYnYbdYcLkgTGdgcPwaGqtqUc27ivgZL0P0SO/nlV3oTFtxquwkZPuWvivRY3G4ZlNX58Ijb6EobN0msXataFdXXdW56YQT4K3V6RgNTuTGtagUhaZGF99vu5qY0EauSfNeyUYXmwXNIJn3IW4tdVD4DnY7VOuzGedHcRsck4y1LRTZ1HPhJNevxm6DGv0ARgz0P61WRw8EG0QYf4X1v8K4FyFxqiAwghNpbIQP1j3AtBNCO+YL/YGRoyTmZF3GkQPg8ss9B3TOOU/DTT8/RWrURTQXbSMl9mloWIGChC39Sq8L8YgIOO88+OQT8f/7BuL2RW4uVNqnIsvPYanZQfjqS2HiO6D1UZXIH5wW2HQ7+srdKNsfA97kttuEsklRYOvWMH744RYe/e0M7HaZqjYVy5bDEw/ria5/HXIuhebNmEzCQ//oo/s5P7cXSE6G/LqJJEeUMTZzNQ5ZR2RibyPdfYNGI9qGLEOQav/VaO246SZYuhTMzTU0/XIDKYk2aFwNySdA0jTQRXs+UFEEQWcqhbBsMZfo2ucpCuQ/TUvJFhpbw3lt9cu89E4UKhUMHw71pzxM+bIKMimg4odbyTjv/Z5FR3c8DtXzxL9VOgjLgYgBEJaDKeRIvv9eDKb/+pfnW9Ro4JprxDxw65KNnHu+jLp5AzRvgPxnUOImcna2wm/Wc0hL859tI4dkAxCj/wq4CrMZVu86haTSr/lxw6ks2P1P3ni39+1TpRJFh1JSYNy4YB647xl+WxXKNzsl3n4bhg9TxHe7900aasw0mbIZOj6tm/L8X/+Cb7+FivpYWlogzF6AIkOFYaTfzAUpVhCRmqYlsOQUQXjKDjhpDb/uOouCgrN4+RL/zxEenwINoHVWg7WBBkMCn30GP3w/iCdPCic62EpjYwnhZSXExn5OWIQWKWYMDLwBYtxst6kCqn4S/3YaRQaKudxt5yPD6Kcg5SSxPWESjpqVbKs+mtmLj2LzngwGpxUxNG0PuQmFrFqZSWyc6NdOy3gFVdNyyDwfsi6CILcq0WkGTSgGA9zy4FHkKteRGVPAEfISlNVPEGUsgsG3iudz7cAJRGaN8f17xol1q1q/WcwJpM4O2lRfiixDjT6LKX66jsSsNErd/x6dtpIBeb4Z18FDVKz5eQA5mnxaKvby/KeZLFhwJMcPvIeW4BP5v7tUjBrV+8JVINbEL70EV101ifvnT+K88/p0Gp9ISoJNxlRiQuoxN9UQFuNjnrMvKr6D4CQIzxV/21sYEf4LoRnJxMf7Gfi6QKuFZ54R49PL82cyPGMPw1O3wp6Xu+2nONoocOsT/GWZ+kJeHpx5TjA5OYFpxrpi3EW38PvzBeTFbKD25zsJke3IQFBE7xW3Oh1Ex4dhrobychEMChRd14d/Vxwmbg9xvP66xCU5djKjXahUBoKCDOh0YHNnv6tjh/s9RztxW1kJxI6D4+azpyyRl16iI+XpOV5l+BArp58lVGhhcjFK1Twqq1Q8Pvdp9jaN5eGHOwnU556D22fOZEzaCnS6ShKT3oIht4KtGfPSG6gqKKe2LZn3tr3Fdbcm8/zzsGVtE7s+uZ4Rw0F15JsQFEvdr/8hf9UlwCjuu4+OtPv4eOHtNGsWfP/JLo4f1UhoVs8KRo62ChrbImm1xDF8TEyP7YHi0kthzx4491z/+0ZHC0WDzWyhssRB3lDvoS9j+Ino6z/i27Xn8M3mqzDZxb7h4YKUGT5cdOR798LKlVoKCtKB7jMnCZmBmY2cWCQq4KpUCdzw0UcUlMYw5RgVl1/e/ZqpqfCf/8C9947jls/e4Z3/u4/YoHJwtHVU9W5pgYKdekbW34oSDFJ4BkQOhsghYjCrXw6DbwZtJM0tErubb+fnBXZ+XjOOIUOECrAv0GoF2VDUOJJLAiSlJEkQkuPHQ3Gxlk8/PYkPfj6pY3tXr7L9QV4eXHklfPrhlUwf9BNZKWLB0xHM8HOPM2eK9LO+euoFBYE5aDSwkuaircSNc0cxDEVQ8jHWHb+iKNCmnUiGF847Lg6sumGggLkmnyBF6TnCSxLr687nxg/ORVKpPP6Wxx0H72UmsKLoFOLjfiJpz6tgrcVpbubJX95h2cph6HRi0jJ16r6nl4iOju74/+tv1HH7VY+g2VHBjm9OwmiUSMzJ7Eb29gZ2VQogqrjOODPRqwLz6KMhLl7Fgl3nMGLAq0RG67AnnsVj//s3v/wuGs2ZZ8KSJSrmrJjKb9um8uwj5UxI+EYsBmz10LgGBru/IJcdR4VIM2rVHtMnWxaAyZPhyCmRVFZCmBGM7j/tyrFRo+DZZ3sX+d8f5OZCrH0dEjJWTS6a8L4ZMQ5K3sWb5wkpj8keiWXYLNJye87obr0Vzl2ezD1z3uPVtNcYlXJK58amDWIiHZqGvP0Jqquc7KkbTd6IRM47r2fb8gWtVlTmfuuVSKLZTkkhRMUEkThgIJrYQRA5BCV6HEvWZfHyPe3Vm1WMHCm+f2++biq1ipyznqB2zkVEUETjd+dhOmIu27bBli0xTNEOQrEZKG4exsRBO8hLKSeUQiRjobA3aCdurfWw9DRAAnUQqILdfweJIGjKDMh1d+7WGpzl86ishOK6LJYWnknmUSczZHQC8ZESz10qxpSwsEjeee19LE23APmofrme2On/hcQpnh/GsAeH1YLJHkn2cN9Ry8gBk7j25d+ZPEXLuMs87LDh/yj/LZm40Gs55qRkUrtky44fDzX2cdgcWszNtYSbK6isy+TbbdeTmgrX+5jDR6UI4jZELhUEjyQJlfbGW1BsDTTo45m783JO96OC08SP4dp3lzFlCuybPd9qCMIlS2ypOYFTM/2viDQZJ7Bu8Vrim2qIb7Kg10dz9CkQEaGmojac7zZeQH7dUTzWj2pbEG3yiSd876NSwdU3p/LBk/dzytDPSBl4OY999S8GJ6znuiezfR57ySXw008icOQvaCRJMGJCEm+vepQ7op8jPCd5/0hbRYbtD2Op282ekmjeW/MgF1zQaeEgSaKY7JgxYDLl8NNPQoW4Zg188viXXH3ct4RWfIesjcVkgj31Yzm3lxkd/QmtFmpcx7Jgt5aRKWuoM2SQmnzwkiTVajGm6CQPdhJ9RHi4qAlw110pfPj7v7n9jLcJbloLTWtFVlbcBEHiJh4HQbG4XGDa+Tnqsg9RbC24ZAgLBU1oHMSMgZjRkHIy6KJptcRRW6vi1RXPcMEV2d3mONNOCOXLypeJqLocqbaY2l/uIXnIKEj9B4S5d0yaBg3LhTpWtoNhj/gDNDTOJy/qNkwpk3zOz045BT74ABbsOB17+AROHzeXoZE/EamtRmX9ndHJkBxeQnKyf+JWE5MLLaBvczLrHli+HOz2WOA7QOKcc8T8f3+gVks8/mQ4xtvEe3DHbXZm338vkWkDMe75AaMRvthyB0+90b3dhYaK7Lxnnr6MKXkLGZ0rVNlK5Ei/Csu43OGYKiOJsOqRLQ3Y7WCzwzfvWCgrE0Harn2/N0SnpuLaBWGqSgo+vYp/f/A9docK0PJJwSdExgZjKN3AiOQ1jExZTWpsDbEx61GHnojeOEoUq2ysIq3mg465k04n/qjVgDpUkLlAQQF8880Y5s//DGuX2O3qvUms3tu9YKZa5SDpn3sYk2ckqPhDKP0M0k4TwpeKObQO/4L/uyORPXugJOIaxsYolG19n3N5C0X+gmhTKc7My3A5rJgdEWQOzfb5PcTnDsVeHIxsaxPXynHLoc2VyCVfAWCQs/1mJ4aG69BowOkEjU5LUJDv/ePioM4ylBRHKdffmUtRLahUErnHnc9VV9ErCzxPiImBN94Q3szn+LaE7hOCgsDoSgW2oK+vISzQetAum+ircDcadShKUAKnDyyjJimzV8QtiLb+0ENw993B3PDuy3zy0JtkJzdBUByKNoaa5jjW70ynrU2Mzf6Kn/uCSgX33NO3YyOj1NiGPk1T8aVo6soJ0sK6mqNJGdq3SmkZGWLOXFHRWRi7A04z9TuWEDHoVEJCu8+nejOHP1TxpyBuX3/9dZ577jlqa2sZPXo0r776KhN9GOV9/fXXPPjgg5SWljJw4ED++9//cuqph+XWnpCRIfPyqudw2bUEqS0Ea80Ea8wEa80YbVFce7d/9qt9EG1uhooqLR9+mMhPP4k1kE4nrALWr4edu4PZ+Qy88grcc97vjAxRMWvRA2yrPZann4bjj+8859ixcMc94Xzwzv3cEXIr6m0/EJdxLoZld1Czt4QGQyKf7Hqb515LJSlJpCA98YCV1mYHlQU1pCtXo8QegbFwEbdO3cxS6cce0b2LLoLtSzfw7+E30rQknNCLvhGRT0UWXpRhGeysGsENX/9GZkoL3zzc9+950CCYPTvw/S+f/A5HxLxD5M400CeJCYLTKFJZE47BnPcIX34Jn36aics6H7MjgkGDRCRy925B1KxbJ/50hSSJFJPJk4Vyc906+PZbFQXliRS8Du++KyLtZWVxpKbCo496Vt2ccIIYLOfMGcyFr8/hqceM1JVUs2N1GKu2CPV1RnQtt0xJIDGqgeCgCoJDKggJ/o3gYDH4r16WwAfLrqWwEGAEICZ8Tz/t31fZG7qSIX2ZtObmCkXEDTfAd9+JhUTXVNH9xRVXwKJF4Xy58QauPPIpAELiAjNhPfts8Wd/EJY+BkxAy1ZQFBQkdm8oI7xwPgYj7KqbQOIY331l0sBByIoau7EVrLUQ4h6YZQdY65CD03npJVG45fzz8Oi/KElCdfvCo//i2LyfiGsQaVybCzLYuDWCsDARUfekLnY6nWzevJmxY8ei0WgIDYVLbhzGbbeJvkqlEou/vhr0b3fcRklFML/suYIPfLyzarXwdPv4o0uJy8rhgquGcss9CRQVifb7yCNw0klCGXjvvZCfD9ffnsmVV97O9dfchKp5JUhdGCVjMSYztFrjSR062Ot1/SEsTBCDXaEowlfPahUT3v4u5OALx+X9QHr84wC4YvteyScuPQ3zNh1alZ0Vlhe59cxsj/vFxooUs6eeiuSmN+/nm+PdwRfZIQoqWusheiRNhdtoMYTyTf49vP2xhErVs235wxlnwITxcfz03jPMXZpHrT6TuHgVt90mlMYvPg6b3BmKCQnivk4+2b81RdagODbGP8Vg/Y3Uljdy00v6jqDcIt0rmOwRSJLE26sgMriZEyds4dzpW8hLnNjpbyW3e48rgmxwWaGrS0Xs+I5/bq+dzNolF/LbzpOosYzkiSckjukZxwTg1rtjeOHZtzBU3wusQlp8OzFT/gPpXdIV3bYRpt3f4XDA3sYxnOWnUOSIkRpcMmzfDkr5HKTmDRAUL/6odJgr1pGjUyNzE1de2f1YtRqOOTaYvQ2jiY/bQHjjGqqrRb/qT+GVkJWOY6dKqJ3szWAohM13gcuMXZvLwz/PosWa7LfwU0qqeKlqPBSh3lB3Lu8vyKNVSUVRnPibWh93QgT/3fgM7/zaaS0Q9IoYd6uqzmHLFolTT/XvjX6gMG4cfDtkBo8uOAHtEjU2myhE6C+jKC4Ovv++U7HpD5Mnw+3fnkLJV0dxhtnJOETgSSs3Q/3vkHwSGIvBWCjsoQx7ARUc+U7nSXa/LCxMZBv2mnWUlGl56ffnGTwmlTvu8NwXhoXBhRcKBf/dd8PKPZNICt7BCWNWERzUKFRq1jF+fR4PNNLSIEZfiizL1OgzGXuQipMBtNgzCZfKqZeOZT+4gh6YNk38mbPkGhq0M7j94kWoGxehs+zGUbsOx5Z1zCvQ893Wf9PSAtPygvj3ES24FA11hgySIyuIi2kizrgIXd0iSJiCrI3l7vduonrv6aQNyvKo0Pvn5Ym88czLTHJcTWvROrT6dTRESZB3HampEBF/DNK0X0WDMVfh0hdhaSjG2VLI3pIagjQWzrrE99iqUgk/2XvugSVrUliy5hokrmJQ4haOy/uRkcmr2Np4OtMCcOfSJE/mxxVXYrGHs2iXyO7JyIATT5Q46aT9I3Da4XQ62bJlM089NZb/+z8Nqc4fqNuxjBDDMupqYU3ZSYybPtpjP3TGGfDFF1reWv4gj4RficEWRWyWf/Zr8LAQ7nvnc1KiyjHaIjHZIzDbIzDZRUZgaGhgxG1iRgIlzlCCMWNvbSY5rJDY7EFccQVMmpSIJEFFxXS+/no6D/6gEK6qYGTKGko+GUiRO609JTKZEwaJyrQ2Zwi1+kzqDBkYySI6MYaMDImaGtjaxdUhN1fYwkydKtZhTU0iTb6pCRoaYO5cLTd98SUTc5Zx+1kfkxu7HaliDgAOB3z23Hz27Pk3MTHw+uuQlyfxzDNX8+qyHK6f9BCyvBqXfRjvr3mAqDAzD6T7Ub4O1bBtzTjGBq1CcVrpaJ4Og+gXAbMmsGKxWq1Yu1nVAaSOAoXKVZTtSKWpLZzMTHj8cbEuczqdrF8f+DzLG5KTxZzqQKFZGc2GCiujhmfglX7UFwirtCG3iZffaYLk6WJcMpWBy4xLX4aiQKMplZg+6L+mT4cLLoDZsyO4+oW7mTlTzCtXrxbtqh3Dh/d97dwfOPO8GG698nkmxH3K+2sfwOYM5c0L+naurEwnR2j/w5CmMnC+Dxp3Zp0iI299GMOaJcz5pIipV8/sFgTu7Rz+UMQf/tRfffUVt99+O2+99RZHHnkkL7/8MjNmzGDPnj0kepDCrVq1iosuuoinn36a0047jc8//5yzzjqLTZs2MWLEiD/gCf7ceOwxmQ0bKhg9egK1tRpKS+n4o9UKnzF/iIzsTOM+/3zRsYNYoP7f/wkiUK+HuXNF+kxZGTz66RWEaC/ApYrgxRdh0qSe5z3tNCgpmcJna29n89zjuUKOQdqaSkq4gS+L3+bZ19I6OsGJE+HBp9J47P53uf2YG4AKQkJ+xGaDb3ffy4Ov9UzJ0Grh7CvHULEgjyypgLbVzxCVMwHKvsRhMfJt01y+/U6HgorcIXEHlezQRIrVpkNfhaFcVAxu/+OomcftD1/GrgoxeObmRnDDDULFKEni+y8uFurM/HwRDc7IEIugo4+m28AxbpxQgf76K3z5JezaJX4frVZYCPhS/d1xh5iwFBXB9TeFA91XMVLkQO795QuCJMiOKyA7ZjdZsbvJiC6k1pDJjzumUOJOyR00SCySzjwTr2rPQBAZKcjr8HDhX9tXJCZ2FhTrT2i1ghi+8oozOTr7F5IjywkdOLT/L+QFOaOHwSrA1sCPs2v5eHYKFeXHcsn4f7Ki+B9kjBjGk37I4dFjdVSsziMsdI/wuQ1JcVufPA71y/m99QUKCsYRHt5ZiMwTjjkG3ksbwKbKKURErGB37UiemP8i2rAY3n3Nd/ED1z7l4485RpCkCxeKBff+LFqSslN4cc5jnHuuf9L+jDPgo49U/G/BVH5cLfy04+LgxRc7AwepqfDee6IA2OzZQnGzbZuOq6+eRl4eRLefzN6M2QRL9p7DcVf3r3JKksSC54/wY0xM1kKr+9/DPHT0ASIjN5Kb170H6mCefyvXZ3981llC2bd9u1gkT54MaQl6xmjyiHXW4qreSmMjfLP1Rq6dmdRNVb9v2/KH1DSJ6x4+gZGrBGFeWQkPPNC5XacTaeeXXSaKtgSK0y6bwAt3PEK0vJGoMCODR0QyahSMHi3+NhhEgb8ffojl2xXT+XbFdDIyOrNWTKYMHJbfsVtsOGxW1NhISbSSnGglOd5GtDOJJDP88gs8+6wap/NOcnPh03d8E4KSBHfcHcrzz72IvvgJpjAXacVjRE9shVy3VHbDTGhag8tt69fMeL9tb/Bg0T+2tIChfAuRxoXdtjc0wOaqY5h2cqzHhfsJJ8DPrx/JiNQNyA3raKs+kvgwLelpSYB3yW16po71xhQSwqswVW0nrOghcJkhZhwF2udpMkeSmupfIdR+TzU1buGuqRh0cRSURvH006DXj+Loo8sB/yu30FARNL39dpg/XwQRi4uFrROIIEN/etv2BbfcAsuWqUWhJYSHZyDw5/HfFRMnikBMTVMMb38EfCS+mwfOmMXEtLkEBz+FWi0IMbXaTZpJWrdFiPsHa94E+nxcLqHeeXvlgxAzhqefxq+fdV4e/O9/8PjjI3ju11l8syWfc8d/gtmsIi5v3AHzBg8U6emQULsbgDZrYq9SSvcXX5a8j7V6I1PPO5a+h+M84667hKhg+cZMlm+8AriCxPBKjshYzMSs35i7/nia3ULfzVXHYWAQZs1gLDYdFWU2cuN2MjhhK1PG7CUhNYP8XYLoCAnJ4u2HPAcNJAmuvXMwL93/DJOjn2Rz5UB+KxjOVre9ZViYmqQkkY3Y1paB0ZgBHNdxfFycWPP4w/Tp8PHHsGULFBZCYaGK4uJxvL1qXMf2QDDhCBUvvnQjwcFifDnxRNGH9vc6xeVyERoqBDdXXXkuC3YWcqLrW6wOHfMLb+b/27vvsKiu9A/g3ztDZygiXUFUUDEKdtQkatRYY1mNGCsal8QaS0wxa41JzJq4pmwsyRpbys9N1mjU1awx0VjQSLFFRcGCShMVEBCBuef3xw0jIx25DIzfz/PwKGcuw/vOfTlz75lzz/1yack/p9UqV4nNmtUK83dtQp7eBpNfLf/y5cBAIN/CE2eSlGv3HR2Bpi2U4/nGjYHOnctZPu5PzvW02HR6BSzzr0Hy7o2FHzqiTRvjbXx8lD528mQJO3f6YssWX1xNU/oYnQ6wsfdDTO5rsLcH8vTA9bvK+xAA3LgJ/PHHg1x79lTOf9u2fbAPPDyKH4uOGwcsXarBkSM9MHJldwx++gTmDN0E7f1reO/HKdgd0xPu7sps0sJJD/PmAStX9sLbuxuiW9Mfce7Ay4iM06BNm/I/APP3B+ZGzsO55L14uXcbeBVeJGfriZj7b+D/DrrArdUz5b+gAH7NXAm3zHWQn5iP9uVvjk7d3PH++2EYNkyphaL7rbLHWaZwXRqOTQeH49VOQBtAuVm60CvLFjk0U5YqvPINABlwbI5EaSC+/NIFsvw+fHwAnwYF8PNIgJR9CVtiEnEhowdCq3jLlFmzlD7jwgXg7bcftNvaKpPjOndWzoFMycoKGD6xBd54411DW1UGqgGgoY8FmspRsNPfUZYocfrzw4W4z3En9ldk37NEVEIPjC7hg/m6UFtqkoSo6G3t1RESEoKOHTvin//8JwBAlmX4+PhgxowZePPNN4ttP3LkSGRnZ2Pnzp2Gts6dO6NNmzZYs2ZNub8vMzMTTk5OyMjIgGNVr1WtQwoKChAZGYkOHTo80qcTY8cqMz0BZUbE7NlA6xKWhBECiIkBvv9eORF5/fWy1+yUZWWb/fuV77WafDzVIQ1LlntBV8JVc9HRwMI30jCz61Q0cLqE3y4Nhu+AhShrwvWyeecx2G08HHQynJ2V9XBT7+jw/s+rcPl2S8Mg5sOXbKtp08YCHN/xM6y093Ev377Ilw45eTrcuecGHx8JL7+sdNbVcQIhhDLQsWePMpBekUH7S5ceDM61aqXs81atlMsgbW0LcPx4JBo16oDYWAucPasc6MTGKgNiHTooJ2bt21e9cy9JQoJymUt5M6RM6dNPgc2b9BBCwmerNCjjAoJqde8esGvJVHg5XMac7T9CL1vCzk4Z7BkxouTZsQ9LSQHWv7UKvvXi8JdZL8C2YSflRklxnyM9Q4NXv/kYJ290wcyZD25SUZojR4DX5uSgldcxnErsCndPa3z2Wdmz5Errs/LylKVZQkLKPyEvS16ecllg584V+/T6r39VDqgA5cRp5crSl9f43/+UWQeFgx2AMjDh76/kvO0HPSBpsX+/aQZZ1ZB64RRu7XoRFpaA/+QjkCyqPiWg8HWryADohQvK+9LDNxfyczmHAYGbcS9fh+uOb+K9ZRrDidajvh/m5QGbNyuD8/fvKyfy06ej8jdZ/FNWlnK5WOPGpS+tcOeO8oHAli3KB6RV1bOnMku8onUnBPDBBwK48BkGttyEVO/lcAzogRs3ANe0lWgof4/Y5JaIutwWGv8JeH1e+U88YYLygeOTgZFo4R2LenZpcLFPg4NVGm4m38fm6Dfxyfpm8Cph+oteD7w08ixe7ToeDf3sEZscCPvcSCTWX4jeYWXfvGT7glfgXy8Cui5L0KixDZDyK1LcF2DDJit8953yPrVqVdmx378PfDL9EwR5ReDpUYNgl7QB2fnOCPv0M1xJdkOrVjImTIjEU0+1q3RtCaG8Lj/8oKwBOnSoujONKmrDBuCf/1T62z17qvd9vFBmpvI+ceSI0i/fvq3ciG5Em89ga5GNO/fccC09ANfS/ZGSHYDbBQG4fb+JYS3HZi5HUc82CRZyBuKSG+Ha/WewYUPllkASQrkk9x//eDAx4e23UeZxZU3YuBHoeKsDZFlGRPI4hH84u8Z+9/z5yj5fuFD5ALO6/fe/ylJJzs5K//nwl5ubMljq7Pzg+FcI5Rxg0ybg8OEHz1W4Hu+bb6Lc9TCzspRJDJcuKX1vYqJSc6VxcFDqfvLkqg+cyLLye27cUAYuK3PqWdJqVdXl4ffD69eBF18UCND9jLQcTwyb2BojR5Yd25QpD5bM27KlYh+qJyYq9/jw83u0K4Ru3QJycio3GUSWyz6fundP+XD22jXlS6tV3ucrs/SUEMqVBytXKvHZ2irvu7duKbPoV68uPqtYCGDNGmDdugdtoaHK+XF5Ro1SlssDlOMIZ2c8ONdNVa4KmzKl/OdJTgZ++UV5/6nocUJBQfEPPatr3EFtK1cqH46PGQPMnlkA/NLbsDwGIAH4c3jMoycic+bi9QXuZR6DNW2q/A1UVUKCMoBrZaWco3fpotzU0ZSzbB8mhFJPp04p3//vf8o5TmUdPgzc3PlXBPmcQJOh7wLefYGkvSiImoe4eGDNocXoNuq5Ystk1JXaqqzKjE2aNOu8vDxERUVh3rx5hjaNRoPevXsjIiKixJ+JiIjAnDlzjNr69u2Lbdu2lbj9/fv3cb9wQVcoLw6g7PyCP4/QNBoNNBoNZFmGXOQssLBdr9ej6Ph2ae1arRaSJBmet2g7UPxTgtLaLSwsIIQwapckCVqttliMpbUXzanoc1U1p+ef12PbNgkvvCDQq5eAhYUWQpScU9u2QFDQg3alYy89p8WLZYSHAxcuSOjYSYu3/+4Oe3uUmFO7dhosed8Fb879Eg11J2Hp2QnhfWUApec06uUAbHlnIga1XIe4JF/8dP4FHLr8HBr72+DViXr06SPg5AQIUXP7qVdv4EhEH6RnS7C0l2ChFXDWCtTXKp10t24CgwZJkCQ9ZFkYBicetfZatlS+tNqS99/DOfn6Anv2SH9ub5yTXq+HJAGurjLc3QsMl96W9PdUUFB9f08+Pto/n9M0f08V6SPCwzU4elSLxEQBf/8Cw8mg2n2Era0WkXnv4Nqhy/D1AYY9r8fAgYCjo5JTQUH5Obm5aXDk5lR8f1Kg4WA9npS3QXNxLe7ckfDu9rdw8kZn9O8vIzRURkFB2Tl17gz4N7dB5JkeCAgQ+OijAnh4lF97hf8W3R8ajYxOnfDnz1Z9P2k0wnAFgCyXX3sjR0qIidGgZ0+BJUsk2NqWXns9e+rRpAmwdq0GsbFAYqIGt28LHDsGHDsGABq0aiXDzq54jNVVezX9/uTSOBC57abD1sUXQmMBfZHnr2xO1tYVz6lJE2DDBi0OHZKQnKxHaqqElBQgNbUFVh1+F15ewPr1euj1D55fCFHs76aknEqLXaMBJkyQMGSIFhkZMho1Kt6/VWY/6XQaNG2qtJfWRzg4KAfKY8dqsWMHcPKkgI2NMMyw1uk0sLMD9HoZSUlAYqKExEQgKUmDzEwBSQImT5YxfryARiMBqHi/9+qrGqxcOR1v7eqH6+lNUXgiY2sZjjz9K5CFBkIAy0fLKCgoKLf2nnxSj9OnNTh0tj0OnW1vOGEv3PQvf5Hh5lZQ6ntx03YtkJ3niKz0TLhpIpEDwNZFGeUtK6dfbi7Asp8c8KLOEtqzEg4c6ImzZ4UhxsaNZciyVGbtWVjo0dAlCT7OFyGdX4E8rYTjp12RnGaDgAAZH36Yj4sX9aXWWFl/T4BAYKAegYHAW28psVdmP6nVR4SGAklJEvz9NXB2Vuc9195eQr9+WvTpo7w/XbgAREQMx+e/D0FaSi5S7zgip8gN2pWaUU6qhQCuXQsxtOt0Elav1sPFpfS/p9JiHzZMuQpk/nwtsrOBTp30KPojpjiO8PLS4Ju9M9G10XacyhxryKEmzjUmTZLh4yPQvbvyWlZ37fXtqxx7F42xpJwkyfh4IThYufHm1atafPWVMgBcUAB06CAweLAMoOz9ZGMjY8IE4/acHBmJiTJSU5VJAfXqaVCvngY6nQxJepBTaccL5f09yXKBYUAaqNlzjbL2U9F49Xo9PD0FVqwAZszohQYNJAwfjnL7iGnTgIkTtXB0VJYPqkgf4e4OeHs/ek716mlQv3719nuWlg9m/xaNvWhZVmQ/DRqkTFpZulSDmBgN7t0T8PMT+OQTGe7uJR/Dhocrx0CrVmkACAQEyCgoEOXm9PzzGqxcKXDvnvLhcmpq4cxhCUII+Pk9eJ6y+ggPDyA0VGkvzLe82gNkw7ZF20sad6htx7AeHjKE0GDrVsClnozRvRfC4tZ+iJuHIOVnQNh6Q27xGr7a0w2ffSYgywItWwo8+aRAYqIGN25ISEgQhg9+WrYs/ziirJy8vR8sufgotVfSfqrO96fp04HwcC3s7QEnJ6lK+8nLCziV6YvmeScgZ12BlHsLOL0YqanAzjNjkGo5AEOHolhOhf9Xzmerfq5h6tp7eD9VhkkHbtPS0qDX6+Hx0NQ5Dw8PnC+c3vmQ5OTkErdPTk4ucftly5ZhyZIlxdpjYmJg/+c1XW5ubmjatCkuX76Mm4XXSQBo2LAhGjZsiAsXLiAjI8PQ3qRJE7i7u+PMmTO4V2RqVYsWLeDs7IyYmBijnRIUFAQrKytEFn4s+acOHTogLy8Ppwo/uoCyszt27IiMjAyj18DW1hbBwcFIS0vDpUuXDO1OTk4IDAxEYmIirl+/bmgvzOnatWuQZRkxMTGPlFODBtGYPFnJKSqqenPKyUnDSy9dwcWLdmjZMhsJCY5l5uTsfBmTXr6LiIgG6Nv3JJKSPMvMKSPjDO649sHkb59FgYULhv7FBl+9Z4e0tOPQ6/WGTyprej9NmPAgp/j4S8Vqz8KiIc6dqz21d/Nm8ZyCgoKQkpKCGzduFNtP5vj3VJmc1q93x8mTp3HhwoOzzprI6eUZBYiM1KBhwyhIEnDjhhMcHSuXU/v2DXHpUi6i9/6Etm3+hox0DTYdfAkH4oeiW7dE9O+fgD+7lHJzGj06BtHRTggJSceVKzJcXcvPqbDPqon9VF7tOTjo8cEHGtjZyQCCoNeXv5+GD1dyatWqI06evIuDB5Nw/bo1bt2yQv/+WQCamTSnaq8957bwbR2M1NTUGs/ppZeccfx4tFFO/v5B0OmscOKEcU7t27dHs2bNDO+HZeZUTu3l5iYiMrJm99Pzz1vBz6/0/VQ4o74wpxs3MnDhwgXY2sqIiqpav/fqq02Rne2EGzsyodPp4eqah6ZNbdGypRYFBQlwcroFe/v7iIwsP6fg4Gi89ZYFsrK0yM3VwsurKfLzLXHmjBLLU0/dQWSkXGrtPftsR/z48TjI0GNs+88gyxLS/1wktqyc7skCGXdtsXJlASwsLGBtbYO8vPvw88tE+/YZ6NjxDhITvcvdT+l5DpBlGenpebic0hRv7/4nrO3zMXFiFOLi9JBlGXl5eZAkqda/P1W09p55Rqm9ivR71ZVT69ZAz56Fx0bxSE6+iXv3tMjJ0cDRsQFcXDxx6dJlZGU9uHFWgwYN0KFDfVy6dAaRkVXv977/vgOysvIQF2f6/WRvH4A958dia/QwhITcMcRaE8cR9vZpCA6+hHPnqjen6nx/eu21PHTqdBZ//KFDu3aZOHlSqtJ+un07EWlp16HRKOuQCuGGevWaIj6+Fr/nVlPtubu7Q6vV4vz584acFi/WICDADxYW7jh5svycZs2yQ+vWAQAsa0VOtWk/TZ1qi7i4YERHZ+OZZ84hIUGPhITSc+re3Q3u7k2xa1c6nJ0vIjJSLjen4cPd4e9/CunpucjKssDdu1q4uDSFXu+AS5cuwMnpjmFWdE3UXkpKitG4Q23dTy4ucXB3b4QrV2yx/AMNtv7QE+PHt4W3Vz9Yy6m4m++GTX9rgZMngby8fHTpkoKxYxNhaSnw7LMPzt2vXbuF9HQLuLvnITGx9tSemn9PL7+sQ5Mm3tBqXSrURzycU0EBcDXNE/rGMrJTL0Pb0BYRaeNxJfocvjw0CfMXnIVG0wrp6cVzCgoKwp07d3D58uVqzcmU+6lxJdZ+NOlSCYmJiWjQoAGOHDmCLkVu1fn666/jwIEDOKZMUTJiZWWFjRs3YlThrWIBrFq1CkuWLEFKSkqx7Uuacevj44Nbt24ZpiPXlRH5qnxyonxao8yEkSTJLHKqyn6SZYEbN5TLUywtzSMnU++noo+XFGNdzMkc91NVctq1S4PPV17GJyNGwNYW2BXdB2uOLEX4S1q8+KIehkuIVMipoKDgzxm2SnzcT8ypunIqfI7C2MwhJ3PcT6W1S5IF+vUT0ObdwD+GDEW+bIWGEw6gvqtlmTnt3CmwZIkGFhbKsgg9e0p4+mkZzs6Vy2nTezsQYv8O0u+54e3//QvWzg2wZk0B3NyUmSGyLMPS0hKSJD3W+4k5VU9O2dka9OqlHF+NGycwffqDWXN1NSdz3E91NafCqwMsLS0NsyTrek5lxc6caian0sYdamNOsgzs3i1h1SoNbt1SruRo00Zg9GgZq1drcPmyBAsLCXPnyhg61Lz2k6lrb+HkQxjbci48AprDecBXCAsTOHdOwoABAosWySXmVDSHor+ztuRUXntp+yk7O7tuLJXg6uoKrVZbbMA1JSUFnqUsGufp6Vmp7a2trWFtbV2s3cLCotj6GIU77GGFO6Ci7aWtu1GZdkmSSmwvLcbS2oUQiImJKbYeSF3OqSr7Sastvr5nXc+pojFWtr2iOZW31kxdzKmq7eaWU/v2wKi2n+DePeDqzYb44uhizHlVC+XzMnVzkiTJ0GcVvn7cT8yprPaKxl5QUICoqKgS+6y6mlNZ7eaYU8+eEs4fVq7wuHPPG0H1LcuN/bnngBYtlA9uH6ydr/nzq2Kxa7Va3HUYgI3H8nEi8Slo7b2wejXg5aXEWHi348Laetz3E3N69JycnAAHBxnJyTnw9LQt9rvrYk7ltTOnmsuprPfDQnUtp6LMZT8VVRdyKm3cobbmNGSIcvO/TZuATZsknDgh4cQJJU43N+WmtK1bl3y8UFtzqkiMpq49S2dllqkmKxa7dgLnz2tgbw/MmiXBwkJTYk5VHXeoC/upoqrhlkdVZ2Vlhfbt22Pfvn2GNlmWsW/fPqMZuEV16dLFaHsA2Lt3b6nbExFR5Xh5AQeT/opdZ8Ow5H+bMH+hFYpc5EBEZBK9ewOBHlEAABeHu6jI8mAajbJ+aUk3PK0Mn0ZW2HdxBIS1V4k3mCGqbk2aKP/6+Jjs4kgiIrNmZ6fcgHDrVuVmdADQti3w1Vcl34idHp2jZwNk5zkiI8cRX6xRliV46SXlppRUOpPOuAWAOXPmICwsDB06dECnTp3w0UcfITs7GxMnTgQAjB8/Hg0aNMCyZcsAADNnzkT37t2xYsUKDBw4EP/3f/+HyMhIfP7556ZMg4jIbEgS0KHXE/jmmyewcKmyziERkam1awekNzoKAEgXLWv0d/fvD9y/Dzz1FNCwYY3+anpMvfmmjK1bb6Bjx6amDoWIyKx5egLvvAO89hrg6IgKfTBMVePja4Gla9bBUpuPpDt28PMDRo40dVS1n8kHbkeOHImbN29i4cKFSE5ORps2bbBnzx7DDcgSEhKMpjd37doV33zzDebPn4+33noLAQEB2LZtG1q1amWqFIiIzM6kScCLL/LAhYhqD60WOGv7CY6f3gLPkBHoVoO/28YGeOGFGvyF9Nhr3Bjo3v0OSrjKk4iIVODkZOoIzJ+vL5CY+eCmXHPnApaWJgyojjDpzclMITMzs8ILAJuDwkWQCxdWJqourC1SA+uK1MLaMg85OcDu3UDfvo++/EF1YW2RGlhXpBbWFqmBdUUVkZgIDB6s/L9HD+DDD8v/GXOtrcqMTfIz3MdAXl6eqUMgM8XaIjWwrkgtrK26z84OGD689gzaFmJtkRpYV6QW1hapgXVF5fH0BNzdleO5OXMq/nOPe21x4NbM6fV6nDp1Cnq93tShkJlhbZEaWFekFtYWqYW1RWpgXZFaWFukBtYVVYRGA2zeDHz3XcVv9MraqgVr3BIREREREREREZF5q1/f1BHUPZxxS0RERERERERERFTLcOD2MaDVak0dApkp1hapgXVFamFtkVpYW6QG1hWphbVFamBdkVoe99qShBDC1EHUpMrcuY2IiIiIiIiIiIioulRmbJIzbs2cEALp6el4zMbnqQawtkgNrCtSC2uL1MLaIjWwrkgtrC1SA+uK1MLa4sCt2dPr9Th//vxjfQc+Ugdri9TAuiK1sLZILawtUgPritTC2iI1sK5ILawtDtwSERERERERERER1TocuCUiIiIiIiIiIiKqZThwa+YkSYKtrS0kSTJ1KGRmWFukBtYVqYW1RWphbZEaWFekFtYWqYF1RWphbQGSeMxW+K3MnduIiIiIiIiIiIiIqktlxiY549bMybKM1NRUyLJs6lDIzLC2SA2sK1ILa4vUwtoiNbCuSC2sLVID64rUwtriwK3Zk2UZly5deqyLnNTB2iI1sK5ILawtUgtri9TAuiK1sLZIDawrUgtriwO3RERERERERERERLUOB26JiIiIiIiIiIiIahkO3Jo5SZLg5OT0WN+Bj9TB2iI1sK5ILawtUgtri9TAuiK1sLZIDawrUgtrC5CEEMLUQdSkyty5jYiIiIiIiIiIiKi6VGZskjNuzZwsy7h+/fpjvZAzqYO1RWpgXZFaWFukFtYWqYF1RWphbZEaWFekFtYWB27NHouc1MLaIjWwrkgtrC1SC2uL1MC6IrWwtkgNrCtSC2uLA7dEREREREREREREtQ4HbomIiIiIiIiIiIhqGQ7cmjmNRgM3NzdoNNzVVL1YW6QG1hWphbVFamFtkRpYV6QW1hapgXVFamFtAZIQQpg6iJpUmTu3EREREREREREREVWXyoxNPr5D1o8JWZYRHx//WC/kTOpgbZEaWFekFtYWqYW1RWpgXZFaWFukBtYVqYW1xYFbsyfLMm7evPlYFzmpg7VFamBdkVpYW6QW1hapgXVFamFtkRpYV6QW1hYHbomIiIiIiIiIiIhqHQtTB1DTCpf0zczMNHEkNaOgoADZ2dnIzMyEhcVjt7tJRawtUgPritTC2iK1sLZIDawrUgtri9TAuiK1mGttFY5JVuS2Y+aTdQXdvXsXAODj42PiSIiIiIiIiIiIiOhxdPfuXTg5OZW5jSQqMrxrRmRZRmJiIhwcHCBJkqnDUV1mZiZ8fHxw7dq1cu9UR1QZrC1SA+uK1MLaIrWwtkgNrCtSC2uL1MC6IrWYa20JIXD37l14e3tDoyl7FdvHbsatRqNBw4YNTR1GjXN0dDSrIqfag7VFamBdkVpYW6QW1hapgXVFamFtkRpYV6QWc6yt8mbaFuLNyYiIiIiIiIiIiIhqGQ7cEhEREREREREREdUyHLg1c9bW1li0aBGsra1NHQqZGdYWqYF1RWphbZFaWFukBtYVqYW1RWpgXZFaWFuP4c3JiIiIiIiIiIiIiGo7zrglIiIiIiIiIiIiqmU4cEtERERERERERERUy3DgloiIiIiIiIiIiKiW4cCtmfvss8/g5+cHGxsbhISE4Pfffzd1SFSHLFu2DB07doSDgwPc3d0xdOhQxMbGGm3To0cPSJJk9DV58mQTRUx1xeLFi4vVTYsWLQyP5+bmYtq0aahfvz50Oh2GDx+OlJQUE0ZMdYGfn1+xupIkCdOmTQPA/ooq7rfffsOgQYPg7e0NSZKwbds2o8eFEFi4cCG8vLxga2uL3r174+LFi0bb3L59G2PGjIGjoyOcnZ0xadIkZGVl1WAWVBuVVVv5+fl444030Lp1a9jb28Pb2xvjx49HYmKi0XOU1Ne9//77NZwJ1Sbl9VkTJkwoVjP9+vUz2oZ9FpWkvNoq6bhLkiR88MEHhm3YZ9HDKjLOUJHzwYSEBAwcOBB2dnZwd3fHa6+9hoKCgppMpUZw4NaMbdmyBXPmzMGiRYsQHR2N4OBg9O3bF6mpqaYOjeqIAwcOYNq0aTh69Cj27t2L/Px89OnTB9nZ2UbbhYeHIykpyfC1fPlyE0VMdckTTzxhVDeHDh0yPDZ79mzs2LED3333HQ4cOIDExEQMGzbMhNFSXXD8+HGjmtq7dy8AYMSIEYZt2F9RRWRnZyM4OBifffZZiY8vX74cn3zyCdasWYNjx47B3t4effv2RW5urmGbMWPG4I8//sDevXuxc+dO/Pbbb3jppZdqKgWqpcqqrZycHERHR2PBggWIjo7G1q1bERsbi8GDBxfb9u233zbqy2bMmFET4VMtVV6fBQD9+vUzqplvv/3W6HH2WVSS8mqraE0lJSXhyy+/hCRJGD58uNF27LOoqIqMM5R3PqjX6zFw4EDk5eXhyJEj2LhxIzZs2ICFCxeaIiV1CTJbnTp1EtOmTTN8r9frhbe3t1i2bJkJo6K6LDU1VQAQBw4cMLR1795dzJw503RBUZ20aNEiERwcXOJj6enpwtLSUnz33XeGtnPnzgkAIiIiooYiJHMwc+ZM0bRpUyHLshCC/RVVDQDxww8/GL6XZVl4enqKDz74wNCWnp4urK2txbfffiuEEOLs2bMCgDh+/Lhhm927dwtJksSNGzdqLHaq3R6urZL8/vvvAoC4evWqoa1Ro0Zi5cqV6gZHdVZJdRUWFiaGDBlS6s+wz6KKqEifNWTIENGzZ0+jNvZZVJ6Hxxkqcj743//+V2g0GpGcnGzYZvXq1cLR0VHcv3+/ZhNQGWfcmqm8vDxERUWhd+/ehjaNRoPevXsjIiLChJFRXZaRkQEAcHFxMWr/+uuv4erqilatWmHevHnIyckxRXhUx1y8eBHe3t5o0qQJxowZg4SEBABAVFQU8vPzjfqvFi1awNfXl/0XVVheXh6++uorvPjii5AkydDO/ooe1eXLl5GcnGzURzk5OSEkJMTQR0VERMDZ2RkdOnQwbNO7d29oNBocO3asxmOmuisjIwOSJMHZ2dmo/f3330f9+vXRtm1bfPDBB2Z5aShVr/3798Pd3R3NmzfHlClTcOvWLcNj7LOoOqSkpGDXrl2YNGlSscfYZ1FZHh5nqMj5YEREBFq3bg0PDw/DNn379kVmZib++OOPGoxefRamDoDUkZaWBr1eb1TEAODh4YHz58+bKCqqy2RZxqxZs/Dkk0+iVatWhvbRo0ejUaNG8Pb2xqlTp/DGG28gNjYWW7duNWG0VNuFhIRgw4YNaN68OZKSkrBkyRI8/fTTOHPmDJKTk2FlZVXsJNXDwwPJycmmCZjqnG3btiE9PR0TJkwwtLG/oupQ2A+VdIxV+FhycjLc3d2NHrewsICLiwv7Maqw3NxcvPHGGxg1ahQcHR0N7a+88gratWsHFxcXHDlyBPPmzUNSUhL+8Y9/mDBaqs369euHYcOGoXHjxoiPj8dbb72F/v37IyIiAlqtln0WVYuNGzfCwcGh2PJm7LOoLCWNM1TkfDA5ObnEY7HCx8wJB26JqEKmTZuGM2fOGK1DCsBo7avWrVvDy8sLvXr1Qnx8PJo2bVrTYVId0b9/f8P/g4KCEBISgkaNGuHf//43bG1tTRgZmYt169ahf//+8Pb2NrSxvyKiuiI/Px+hoaEQQmD16tVGj82ZM8fw/6CgIFhZWeHll1/GsmXLYG1tXdOhUh3wwgsvGP7funVrBAUFoWnTpti/fz969eplwsjInHz55ZcYM2YMbGxsjNrZZ1FZShtnoAe4VIKZcnV1hVarLXbXvZSUFHh6epooKqqrpk+fjp07d+LXX39Fw4YNy9w2JCQEABAXF1cToZGZcHZ2RrNmzRAXFwdPT0/k5eUhPT3daBv2X1RRV69exc8//4y//vWvZW7H/oqqorAfKusYy9PTs9jNYAsKCnD79m32Y1SuwkHbq1evYu/evUazbUsSEhKCgoICXLlypWYCpDqvSZMmcHV1Nbz/sc+iR3Xw4EHExsaWe+wFsM+iB0obZ6jI+aCnp2eJx2KFj5kTDtyaKSsrK7Rv3x779u0ztMmyjH379qFLly4mjIzqEiEEpk+fjh9++AG//PILGjduXO7PnDhxAgDg5eWlcnRkTrKyshAfHw8vLy+0b98elpaWRv1XbGwsEhIS2H9Rhaxfvx7u7u4YOHBgmduxv6KqaNy4MTw9PY36qMzMTBw7dszQR3Xp0gXp6emIiooybPPLL79AlmXDBwZEJSkctL148SJ+/vln1K9fv9yfOXHiBDQaTbFL3YlKc/36ddy6dcvw/sc+ix7VunXr0L59ewQHB5e7LfssKm+coSLng126dMHp06eNPnQq/LCzZcuWNZNIDeFSCWZszpw5CAsLQ4cOHdCpUyd89NFHyM7OxsSJE00dGtUR06ZNwzfffIPt27fDwcHBsFaMk5MTbG1tER8fj2+++QYDBgxA/fr1cerUKcyePRvdunVDUFCQiaOn2mzu3LkYNGgQGjVqhMTERCxatAharRajRo2Ck5MTJk2ahDlz5sDFxQWOjo6YMWMGunTpgs6dO5s6dKrlZFnG+vXrERYWBguLB4c57K+oMrKysoxmYl++fBknTpyAi4sLfH19MWvWLLzzzjsICAhA48aNsWDBAnh7e2Po0KEAgMDAQPTr1w/h4eFYs2YN8vPzMX36dLzwwgtGy3fQ46es2vLy8sLzzz+P6Oho7Ny5E3q93nDs5eLiAisrK0RERODYsWN45pln4ODggIiICMyePRtjx45FvXr1TJUWmVhZdeXi4oIlS5Zg+PDh8PT0RHx8PF5//XX4+/ujb9++ANhnUenKez8ElA8vv/vuO6xYsaLYz7PPopKUN85QkfPBPn36oGXLlhg3bhyWL1+O5ORkzJ8/H9OmTTO/JTgEmbVPP/1U+Pr6CisrK9GpUydx9OhRU4dEdQiAEr/Wr18vhBAiISFBdOvWTbi4uAhra2vh7+8vXnvtNZGRkWHawKnWGzlypPDy8hJWVlaiQYMGYuTIkSIuLs7w+L1798TUqVNFvXr1hJ2dnfjLX/4ikpKSTBgx1RU//fSTACBiY2ON2tlfUWX8+uuvJb7/hYWFCSGEkGVZLFiwQHh4eAhra2vRq1evYjV369YtMWrUKKHT6YSjo6OYOHGiuHv3rgmyodqkrNq6fPlyqcdev/76qxBCiKioKBESEiKcnJyEjY2NCAwMFO+9957Izc01bWJkUmXVVU5OjujTp49wc3MTlpaWolGjRiI8PFwkJycbPQf7LCpJee+HQgixdu1aYWtrK9LT04v9PPssKkl54wxCVOx88MqVK6J///7C1tZWuLq6ildffVXk5+fXcDbqk4QQQsVxYSIiIiIiIiIiIiKqJK5xS0RERERERERERFTLcOCWiIiIiIiIiIiIqJbhwC0RERERERERERFRLcOBWyIiIiIiIiIiIqJahgO3RERERERERERERLUMB26JiIiIiIiIiIiIahkO3BIRERERERERERHVMhy4JSIiIiIiIiIiIqplOHBLRERE9BiaMGEChg4dauowqBrUln155coVSJKEEydOmDoUIiIiIrPAgVsiIiIiMyNJUplfixcvxscff4wNGzaYJL4vvvgCwcHB0Ol0cHZ2Rtu2bbFs2TLD46YYiDxw4AB8fHxKfby8mOu6Hj16YNasWaYOg4iIiIiKsDB1AERERERUvZKSkgz/37JlCxYuXIjY2FhDm06ng06nM0Vo+PLLLzFr1ix88skn6N69O+7fv49Tp07hzJkzJomn0Pbt2zFo0KASH6utMRMRERGReeOMWyIiIiIz4+npafhycnKCJElGbTqdrtis1h49emDGjBmYNWsW6tWrBw8PD3zxxRfIzs7GxIkT4eDgAH9/f+zevdvod505cwb9+/eHTqeDh4cHxo0bh7S0tFJj+/HHHxEaGopJkybB398fTzzxBEaNGoV3330XALB48WJs3LgR27dvN8wQ3r9/PwDg2rVrCA0NhbOzM1xcXDBkyBBcuXLF8NyFOS1ZsgRubm5wdHTE5MmTkZeXV+5r9uOPP2Lw4MFVihkAjh8/jmeffRaurq5wcnJC9+7dER0dbfQ8kiRh7dq1eO6552BnZ4fAwEBEREQgLi4OPXr0gL29Pbp27Yr4+HjDzyxevBht2rTB2rVr4ePjAzs7O4SGhiIjI6PUXGRZxrJly9C4cWPY2toiODgY33//fbmvQVF+fn5477338OKLL8LBwQG+vr74/PPPjbb5/fff0bZtW9jY2KBDhw6IiYkp9jxl1cf+/fthZWWFgwcPGrZfvnw53N3dkZKSUql4iYiIiMwRB26JiIiICACwceNGuLq64vfff8eMGTMwZcoUjBgxAl27dkV0dDT69OmDcePGIScnBwCQnp6Onj17om3btoiMjMSePXuQkpKC0NDQUn+Hp6cnjh49iqtXr5b4+Ny5cxEaGop+/fohKSkJSUlJ6Nq1K/Lz89G3b184ODjg4MGDOHz4MHQ6Hfr162c0MLtv3z6cO3cO+/fvx7fffoutW7diyZIlZeb9xx9/IDU1FT179qxSzABw9+5dhIWF4dChQzh69CgCAgIwYMAA3L1712i7pUuXYvz48Thx4gRatGiB0aNH4+WXX8a8efMQGRkJIQSmT59u9DNxcXH497//jR07dmDPnj2IiYnB1KlTS41l2bJl2LRpE9asWYM//vgDs2fPxtixY3HgwIEyX4eHrVixwjAgO3XqVEyZMsUwczsrKwvPPfccWrZsiaioKCxevBhz5841+vny6qNweYZx48YhIyMDMTExWLBgAf71r3/Bw8OjUrESERERmSVBRERERGZr/fr1wsnJqVh7WFiYGDJkiOH77t27i6eeesrwfUFBgbC3txfjxo0ztCUlJQkAIiIiQgghxNKlS0WfPn2MnvfatWsCgIiNjS0xnsTERNG5c2cBQDRr1kyEhYWJLVu2CL1eX2psQgixefNm0bx5cyHLsqHt/v37wtbWVvz000+Gn3NxcRHZ2dmGbVavXi10Op3R8z/s3XffFc8//3ypj1ck5ofp9Xrh4OAgduzYYWgDIObPn2/4PiIiQgAQ69atM7R9++23wsbGxvD9okWLhFarFdevXze07d69W2g0GpGUlGTIu/D1ys3NFXZ2duLIkSNG8UyaNEmMGjWq1Hi7d+8uZs6cafi+UaNGYuzYsYbvZVkW7u7uYvXq1UIIIdauXSvq168v7t27Z9hm9erVAoCIiYkRQlSsPu7fvy/atGkjQkNDRcuWLUV4eHipMRIRERE9bjjjloiIiIgAAEFBQYb/a7Va1K9fH61btza0Fc6CTE1NBQCcPHkSv/76q2HNXJ1OhxYtWgCA0eX+RXl5eSEiIgKnT5/GzJkzUVBQgLCwMPTr1w+yLJca28mTJxEXFwcHBwfD73JxcUFubq7R7woODoadnZ3h+y5duiArKwvXrl0r9bm3b99e6jIJFY05JSUF4eHhCAgIgJOTExwdHZGVlYWEhASj5yr6Ghe+ng+/xrm5ucjMzDS0+fr6okGDBkY5ybJstG5xobi4OOTk5ODZZ5812i+bNm0qdZ+UpmishcttFO77c+fOISgoCDY2NkZxFVWR+rCyssLXX3+N//znP8jNzcXKlSsrFSMRERGROePNyYiIiIgIAGBpaWn0vSRJRm2SJAGAYbAyKysLgwYNwt///vdiz+Xl5VXm72rVqhVatWqFqVOnYvLkyXj66adx4MABPPPMMyVun5WVhfbt2+Prr78u9pibm1vZiZUhKSkJMTExGDhwYLnblhVzWFgYbt26hY8//hiNGjWCtbU1unTpUmx93ZJez7Je48rKysoCAOzatctosBcArK2tK/VcJdVDZeKqaH0cOXIEAHD79m3cvn0b9vb2lYqTiIiIyFxx4JaIiIiIqqRdu3b4z3/+Az8/P1hYVP2wsmXLlgCA7OxsAMosTL1eX+x3bdmyBe7u7nB0dCz1uU6ePIl79+7B1tYWAHD06FHodDr4+PiUuP2OHTvQtWtXuLi4PFLMhw8fxqpVqzBgwAAAyo3UyrpJW2UkJCQgMTER3t7eAJScNBoNmjdvXmJc1tbWSEhIQPfu3avl95ckMDAQmzdvRm5urmHW7dGjR422qUh9xMfHY/bs2fjiiy+wZcsWhIWF4eeff4ZGwwsDiYiIiHhERERERERVMm3aNNy+fRujRo3C8ePHER8fj59++gkTJ04sNvBaaMqUKVi6dCkOHz6Mq1ev4ujRoxg/fjzc3NwMl9r7+fnh1KlTiI2NRVpaGvLz8zFmzBi4urpiyJAhOHjwIC5fvoz9+/fjlVdewfXr1w3Pn5eXh0mTJuHs2bP473//i0WLFmH69OmlDgT++OOPZS6TUNGYAwICsHnzZpw7dw7Hjh3DmDFjDIPHj8rGxgZhYWE4efIkDh48iFdeeQWhoaHw9PQstq2DgwPmzp2L2bNnY+PGjYiPj0d0dDQ+/fRTbNy4sVriAYDRo0dDkiSEh4cbXusPP/zQaJvy6kOv12Ps2LHo27cvJk6ciPXr1+PUqVNYsWJFtcVJREREVJdx4JaIiIiIqsTb2xuHDx+GXq9Hnz590Lp1a8yaNQvOzs6lDpT27t0bR48exYgRI9CsWTMMHz4cNjY22LdvH+rXrw8ACA8PR/PmzdGhQwe4ubnh8OHDsLOzw2+//QZfX18MGzYMgYGBmDRpEnJzc41m4Pbq1QsBAQHo1q0bRo4cicGDB2Px4sUlxpKdnY19+/aVO3BbkZjXrVuHO3fuoF27dhg3bhxeeeUVuLu7V+FVLc7f3x/Dhg3DgAED0KdPHwQFBWHVqlWlbr906VIsWLAAy5YtQ2BgIPr164ddu3ahcePG1RIPAOh0OuzYsQOnT59G27Zt8be//a3Ykgjl1ce7776Lq1evYu3atQCU5RM+//xzzJ8/HydPnqy2WImIiIjqKkkIIUwdBBERERHRo5owYQLS09Oxbdu2Cm2/detWzJ8/H2fPnlU3sEewePFibNu2DSdOnDB1KERERERUwzjjloiIiIgeSzqdrsQbZxERERER1Qa8ORkRERERPZb69Olj6hCIiIiIiErFpRKIiIiIiIiIiIiIahkulUBERERERERERERUy3DgloiIiIiIiIiIiKiW4cAtERERERERERERUS3DgVsiIiIiIiIiIiKiWoYDt0RERERERERERES1DAduiYiIiIiIiIiIiGoZDtwSERERERERERER1TIcuCUiIiIiIiIiIiKqZThwS0RERERERERERFTL/D+IRN4darRBMwAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"- Observation: The orange dashed line (predicted values) very closely tracks the blue line (actual values). The model captures the peaks, troughs, and general trends remarkably well within this 200-sample window.\n",
"- Interpretation: This is excellent performance for a time series model. It demonstrates that your model is highly effective at capturing the temporal dynamics of your total_emission data. The ability to follow sudden spikes and dips so accurately suggests that the LSTM architecture, combined with your data preprocessing, is working effectively to learn the sequence dependencies."
],
"metadata": {
"id": "L2uQ6u5ApOdF"
}
},
{
"cell_type": "markdown",
"source": [
"Result: The model is very accurate"
],
"metadata": {
"id": "8pq5HCo3oZxg"
}
},
{
"cell_type": "code",
"source": [
"save_path = '/content/drive/MyDrive/AuraClima/Agri_Slider_Model.keras'\n",
"model.save(save_path)\n",
"print(f\"Model successfully saved to: {save_path}\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "bhyvokhYoS5i",
"outputId": "f3f0a8e3-d477-488c-9aa1-e39d4cef1929"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Model successfully saved to: /content/drive/MyDrive/AuraClima/Agri_Slider_Model.keras\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"____________________________________________________________________________________________________________________________________________"
],
"metadata": {
"id": "d9mjldgGjF7j"
}
},
{
"cell_type": "markdown",
"source": [
"### CO2 Model"
],
"metadata": {
"id": "bo8JKPk1E1B7"
}
},
{
"cell_type": "code",
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')"
],
"metadata": {
"id": "0ibbVJCmpsRk",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "69d29998-2546-46a0-a90c-4d9691322f76"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Mounted at /content/drive\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"import pandas as pd\n",
"file_path = '/content/drive/My Drive/AuraClima/CO2_Emissions_MinMaxScaled.csv'\n",
"\n",
"# Load the CSV\n",
"df = pd.read_csv(file_path)"
],
"metadata": {
"id": "w1-npB5rjXas"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"df.head()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 359
},
"id": "2-9ch-vXlqXB",
"outputId": "bf77cf73-016c-432f-eede-d23879a7a42d"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Country Name 1960 1961 1962 1963 \\\n",
"0 Afghanistan 0.010176 0.012215 0.016912 0.015899 \n",
"1 Africa Eastern and Southern 0.240022 0.244291 0.238947 0.228401 \n",
"2 Africa Western and Central 0.022155 0.023351 0.022843 0.025272 \n",
"3 Albania 0.334134 0.364941 0.370842 0.287538 \n",
"4 Algeria 0.146764 0.140804 0.124205 0.109448 \n",
"\n",
" 1964 1965 1966 1967 1968 ... 2009 2010 \\\n",
"0 0.017065 0.018785 0.018251 0.019424 0.020448 ... 0.013644 0.020950 \n",
"1 0.225235 0.217482 0.197850 0.181053 0.166294 ... 0.065989 0.073970 \n",
"2 0.027837 0.036327 0.034975 0.030891 0.024810 ... 0.027557 0.033345 \n",
"3 0.251709 0.242438 0.255838 0.235268 0.232796 ... 0.095285 0.110880 \n",
"4 0.103134 0.107911 0.124088 0.108606 0.103309 ... 0.206084 0.221777 \n",
"\n",
" 2011 2012 2013 2014 2015 2016 2017 \\\n",
"0 0.027829 0.020922 0.015206 0.014384 0.015044 0.013834 0.013368 \n",
"1 0.068729 0.068761 0.068117 0.074097 0.073525 0.071541 0.071064 \n",
"2 0.033979 0.031762 0.031803 0.034629 0.034292 0.033831 0.034193 \n",
"3 0.118600 0.107618 0.111011 0.130743 0.133352 0.127806 0.146469 \n",
"4 0.220302 0.233679 0.231670 0.260912 0.281584 0.265675 0.265183 \n",
"\n",
" 2018 \n",
"0 0.013643 \n",
"1 0.071154 \n",
"2 0.038376 \n",
"3 0.150057 \n",
"4 0.279596 \n",
"\n",
"[5 rows x 60 columns]"
],
"text/html": [
"\n",
"