Abhinav Gavireddi
[fix]: optimized the entire pipeline
6c61722
"""
Generic Pre-Processing Pipeline (GPP) for Document Intelligence
This module handles:
1. Parsing PDFs via MinerU Python API (OCR/text modes)
2. Extracting markdown, images, and content_list JSON
3. Chunking multimodal content (text, tables, images), ensuring tables/images are in single chunks
4. Parsing markdown tables into JSON 2D structures for dense tables
5. Narration of tables/images via LLM
6. Semantic enhancements (deduplication, coreference, metadata summarization)
7. Embedding computation for in-memory use
Each step is modular to support swapping components (e.g. different parsers or stores).
"""
import os
import json
from typing import List, Dict, Any, Optional
import re
import numpy as np
from src import EmbeddingConfig, GPPConfig, logger, get_embedder, get_chroma_client
from src.utils import OpenAIEmbedder, LLMClient
def parse_markdown_table(md: str) -> Optional[Dict[str, Any]]:
"""
Parses a markdown table into a JSON-like dict:
{ headers: [...], rows: [[...], ...] }
Handles multi-level headers by nesting lists if needed.
"""
lines = [l for l in md.strip().splitlines() if l.strip().startswith("|")]
if len(lines) < 2:
return None
header_line = lines[0]
sep_line = lines[1]
# Validate separator line
if not re.match(r"^\|?\s*:?-+:?\s*(\|\s*:?-+:?\s*)+\|?", sep_line):
return None
def split_row(line):
parts = [cell.strip() for cell in line.strip().strip("|").split("|")]
return parts
headers = split_row(header_line)
rows = [split_row(r) for r in lines[2:]]
return {"headers": headers, "rows": rows}
class GPP:
def __init__(self, config: GPPConfig):
self.config = config
self.text_embedder = get_embedder()
self.chroma_client = get_chroma_client()
def parse_pdf(self, pdf_path: str, output_dir: str) -> Dict[str, Any]:
"""
Uses MinerU API to parse PDF in OCR/text mode,
dumps markdown, images, layout PDF, content_list JSON.
Returns parsed data plus file paths for UI traceability.
"""
# Lazy import heavy libraries
from magic_pdf.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader
from magic_pdf.data.dataset import PymuDocDataset
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
from magic_pdf.config.enums import SupportedPdfParseMethod
name = os.path.splitext(os.path.basename(pdf_path))[0]
img_dir = os.path.join(output_dir, "images")
os.makedirs(img_dir, exist_ok=True)
os.makedirs(output_dir, exist_ok=True)
writer_imgs = FileBasedDataWriter(img_dir)
writer_md = FileBasedDataWriter(output_dir)
reader = FileBasedDataReader("")
pdf_bytes = reader.read(pdf_path)
ds = PymuDocDataset(pdf_bytes)
if ds.classify() == SupportedPdfParseMethod.OCR:
infer = ds.apply(doc_analyze, ocr=True)
pipe = infer.pipe_ocr_mode(writer_imgs)
else:
infer = ds.apply(doc_analyze, ocr=False)
pipe = infer.pipe_txt_mode(writer_imgs)
# Visual layout
pipe.draw_layout(os.path.join(output_dir, f"{name}_layout.pdf"))
# Dump markdown & JSON
pipe.dump_md(writer_md, f"{name}.md", os.path.basename(img_dir))
pipe.dump_content_list(
writer_md, f"{name}_content_list.json", os.path.basename(img_dir)
)
content_list_path = os.path.join(output_dir, f"{name}_content_list.json")
with open(content_list_path, "r", encoding="utf-8") as f:
blocks = json.load(f)
# UI traceability paths
return {
"blocks": blocks,
"md_path": os.path.join(output_dir, f"{name}.md"),
"images_dir": img_dir,
"layout_pdf": os.path.join(output_dir, f"{name}_layout.pdf"),
"spans_pdf": os.path.join(output_dir, f"{name}_spans.pdf"),
}
def chunk_blocks(self, blocks: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
Creates chunks of ~CHUNK_TOKEN_SIZE tokens, but ensures any table/image block
becomes its own chunk (unsplittable), flushing current text chunk as needed.
"""
# Lazy import heavy libraries
from langchain.text_splitter import RecursiveCharacterTextSplitter
chunks, current, token_count = [], {"text": "", "type": None, "blocks": []}, 0
for blk in blocks:
btype = blk.get("type")
text = blk.get("text", "")
if btype in ("table", "img_path"):
# Flush existing text chunk
if current["blocks"]:
chunks.append(current)
current = {"text": "", "type": None, "blocks": []}
token_count = 0
# Create isolated chunk for the table/image
tbl_chunk = {"text": text, "type": btype, "blocks": [blk]}
# Parse markdown table into JSON structure if applicable
if btype == "table":
tbl_struct = parse_markdown_table(text)
tbl_chunk["table_structure"] = tbl_struct
chunks.append(tbl_chunk)
continue
# Standard text accumulation
count = len(text.split())
if token_count + count > self.config.CHUNK_TOKEN_SIZE and current["blocks"]:
chunks.append(current)
current = {"text": "", "type": None, "blocks": []}
token_count = 0
current["text"] += text + "\n"
current["type"] = current["type"] or btype
current["blocks"].append(blk)
token_count += count
# Flush remaining
if current["blocks"]:
chunks.append(current)
logger.info(f"Chunked into {len(chunks)} pieces (with tables/images isolated).")
return chunks
def narrate_multimodal(self, chunks: List[Dict[str, Any]]) -> None:
"""
For table/image chunks, generate LLM narration. Preserve table_structure in metadata.
"""
for c in chunks:
if c["type"] in ("table", "img_path"):
prompt = f"Describe this {c['type']} concisely:\n{c['text']}"
c["narration"] = LLMClient.generate(prompt)
else:
c["narration"] = c["text"]
def deduplicate(self, chunks: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
try:
narrations = [c.get("narration", "") for c in chunks]
embs = self.text_embedder.embed(narrations)
# Simple cosine similarity check
keep_indices = []
for i in range(len(embs)):
is_duplicate = False
for j_idx in keep_indices:
sim = np.dot(embs[i], embs[j_idx]) / (np.linalg.norm(embs[i]) * np.linalg.norm(embs[j_idx]))
if sim > self.config.DEDUP_SIM_THRESHOLD:
is_duplicate = True
break
if not is_duplicate:
keep_indices.append(i)
deduped = [chunks[i] for i in keep_indices]
logger.info(f"Deduplicated: {len(chunks)} -> {len(deduped)}")
return deduped
except Exception as e:
logger.error(f"Deduplication failed: {e}")
return chunks
def coref_resolution(self, chunks: List[Dict[str, Any]]) -> None:
for idx, c in enumerate(chunks):
start = max(0, idx - self.config.COREF_CONTEXT_SIZE)
ctx = "\n".join(chunks[i].get("narration", "") for i in range(start, idx))
prompt = f"Context:\n{ctx}\nRewrite pronouns in:\n{c.get('narration', '')}\n\n give only the rewritten text, no other text"
try:
c["narration"] = LLMClient.generate(prompt)
except Exception as e:
logger.error(f"Coref resolution failed for chunk {idx}: {e}")
def metadata_summarization(self, chunks: List[Dict[str, Any]]) -> None:
sections: Dict[str, List[Dict[str, Any]]] = {}
for c in chunks:
sec = c.get("section", "default")
sections.setdefault(sec, []).append(c)
for sec, items in sections.items():
blob = "\n".join(i.get("narration", "") for i in items)
try:
summ = LLMClient.generate(f"Summarize this section:\n{blob}\n\n give only the summarized text, no other text")
for i in items:
i.setdefault("metadata", {})["section_summary"] = summ
except Exception as e:
logger.error(f"Metadata summarization failed for section {sec}: {e}")
def store_in_chroma(self, chunks: List[Dict[str, Any]], collection_name: str) -> None:
"""
Computes embeddings and stores the chunks in a ChromaDB collection.
"""
if not chunks:
logger.warning("No chunks to store in ChromaDB.")
return
collection = self.chroma_client.get_or_create_collection(name=collection_name)
# Prepare data for ChromaDB
documents = [c['narration'] for c in chunks]
metadatas = []
for chunk in chunks:
# metadata can only contain str, int, float, bool
meta = {k: v for k, v in chunk.items() if k not in ['narration', 'text', 'id'] and type(v) in [str, int, float, bool]}
meta['text'] = chunk.get('text', '') # Add original text to metadata
metadatas.append(meta)
ids = [str(c['id']) for c in chunks]
logger.info(f"Storing {len(chunks)} chunks in ChromaDB collection '{collection_name}'...")
try:
collection.add(
ids=ids,
documents=documents,
metadatas=metadatas
)
logger.info("Successfully stored chunks in ChromaDB.")
except Exception as e:
logger.error(f"Failed to store chunks in ChromaDB: {e}")
raise
def run(self, pdf_path: str, output_dir: str, collection_name: str) -> Dict[str, Any]:
"""
Executes a streamlined GPP: parse -> chunk -> narrate -> store.
Heavy enhancement steps are bypassed for maximum efficiency.
"""
parsed_output = self.parse_pdf(pdf_path, output_dir)
blocks = parsed_output.get("blocks", [])
chunks = self.chunk_blocks(blocks)
for idx, chunk in enumerate(chunks):
chunk["id"] = idx
self.narrate_multimodal(chunks)
# NOTE: Heavy enhancement steps are disabled for performance.
# To re-enable, uncomment the following lines:
# chunks = self.deduplicate(chunks)
# self.coref_resolution(chunks)
# self.metadata_summarization(chunks)
self.store_in_chroma(chunks, collection_name)
parsed_output["chunks"] = chunks
parsed_output["collection_name"] = collection_name
logger.info("GPP pipeline complete. Data stored in ChromaDB.")
return parsed_output