from langchain_sambanova import ChatSambaNovaCloud from langchain_openai import AzureChatOpenAI import os from .utils import get_vs_as_retriever from .prompts import BASE_SYSTEM_PROMPT from langchain.chains.retrieval import create_retrieval_chain from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_core.prompts import ChatPromptTemplate import logging from langchain.chains.history_aware_retriever import create_history_aware_retriever from langchain_core.prompts import MessagesPlaceholder from langchain_core.messages import AIMessage, HumanMessage # noqa from langchain_community.chat_message_histories import ChatMessageHistory from langchain_core.chat_history import BaseChatMessageHistory from langchain_core.runnables.history import RunnableWithMessageHistory logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) llm = ChatSambaNovaCloud( sambanova_api_key=os.environ.get("SAMBANOVA_API_KEY"), model="Meta-Llama-3.3-70B-Instruct", temperature=0.1, max_tokens=1024, ) llm_azure = AzureChatOpenAI( model="gpt-4o-mini", temperature=0.1, azure_deployment="gpt-4o-mini", azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"), api_key=os.getenv("AZURE_OPENAI_API_KEY"), api_version="2024-07-01-preview", max_tokens=1024, ) retriever = get_vs_as_retriever() contextualize_q_system_prompt = ( "Given a chat history and the latest user question " "which might reference context in the chat history, " "formulate a standalone question which can be understood " "without the chat history. Do NOT answer the question, " "just reformulate it if needed and otherwise return it as is." ) contextualize_q_prompt = ChatPromptTemplate.from_messages( [ ("system", contextualize_q_system_prompt), MessagesPlaceholder("chat_history"), ("human", "{input}"), ] ) history_aware_retriever = create_history_aware_retriever( llm, retriever, contextualize_q_prompt ) prompt = ChatPromptTemplate.from_messages( [ ("system", BASE_SYSTEM_PROMPT), MessagesPlaceholder("chat_history", n_messages=10), ("human", "{input}"), ] ) qa_chain = create_stuff_documents_chain(llm, prompt) rag_chain = create_retrieval_chain( retriever=history_aware_retriever, combine_docs_chain=qa_chain ) store = {} def get_session_history(session_id: str) -> BaseChatMessageHistory: if session_id not in store: store[session_id] = ChatMessageHistory() return store[session_id] def get_response(query: str, session_id: str): conversational_rag_chain = RunnableWithMessageHistory( rag_chain, get_session_history, input_messages_key="input", history_messages_key="chat_history", output_messages_key="answer", ) response = conversational_rag_chain.invoke( {"input": query}, config={"configurable": {"session_id": session_id}}, ) logger.info(response) return response["answer"]