File size: 12,739 Bytes
2232b2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339



# import gradio as gr
# import torch
# import os
# import tempfile
# import shutil
# from PIL import Image
# import numpy as np
# from pathlib import Path
# import sys
# import copy

# # --- Import logic from your project ---
# from options.test_options import TestOptions
# from data import create_dataset
# from models import create_model
# try:
#     from best_ldr import compute_metrics_for_images, score_records
# except ImportError:
#     raise ImportError("Could not import from best_ldr.py. Make sure the file is in the same directory as app.py.")

# print("--- Initializing LDR-to-HDR Model (this may take a moment) ---")

# # --- Global Setup: Load the CycleGAN model once when the app starts ---

# # We need to satisfy the parser's requirement for a dataroot at startup
# if '--dataroot' not in sys.argv:
#     sys.argv.extend(['--dataroot', './dummy_dataroot_for_init'])

# # Load the base options
# opt = TestOptions().parse()

# # Manually override settings for our model
# opt.name = 'ldr2hdr_cyclegan_728'
# opt.model = 'test'
# opt.netG = 'resnet_9blocks'
# opt.norm = 'instance'
# opt.no_dropout = True
# opt.checkpoints_dir = './checkpoints'
# opt.gpu_ids = [0] if torch.cuda.is_available() else []
# opt.device = torch.device('cuda:{}'.format(opt.gpu_ids[0])) if opt.gpu_ids else torch.device('cpu')

# # Create the model using these options
# model = create_model(opt)
# model.setup(opt)
# model.eval()

# print("--- Model Loaded Successfully ---")


# # --- Helper Function for Inference ---

# def run_inference(model, image_path, process_options):
#     """
#     A reusable function to run the model with specific preprocessing options.
#     """
#     # Deep copy the base options to avoid modifying the global state
#     local_opt = copy.deepcopy(opt)

#     # Apply the specific settings for this run
#     for key, value in process_options.items():
#         setattr(local_opt, key, value)

#     with tempfile.TemporaryDirectory() as temp_dir:
#         shutil.copy(image_path, temp_dir)
#         local_opt.dataroot = temp_dir
#         local_opt.num_test = 1
#         dataset = create_dataset(local_opt)

#         for i, data in enumerate(dataset):
#             model.set_input(data)
#             model.test()
#             visuals = model.get_current_visuals()
            
#             for label, image_tensor in visuals.items():
#                 if label == 'fake':
#                     image_numpy = (np.transpose(image_tensor.cpu().float().numpy()[0], (1, 2, 0)) + 1) / 2.0 * 255.0
#                     return Image.fromarray(image_numpy.astype(np.uint8))

# # --- The Main Gradio Processing Function ---

# def process_images_and_display(list_of_temp_files):
#     """
#     The main workflow: select best LDR, then run two inference modes.
#     """
#     if not list_of_temp_files:
#         raise gr.Error("Please upload your bracketed LDR images.")
#     if len(list_of_temp_files) < 2:
#         gr.Warning("For best results, upload at least 2 bracketed LDR images.")

#     uploaded_filepaths = [Path(f.name) for f in list_of_temp_files]
    
#     try:
#         # --- Step 1: Select the Best LDR ---
#         print(f"Analyzing {len(uploaded_filepaths)} uploaded images...")
#         weights = {"clipped": 0.35, "coverage": 0.25, "exposure": 0.15, "sharpness": 0.15, "noise": 0.10}
#         records = compute_metrics_for_images(uploaded_filepaths, resize_max=1024)
#         scored_records = score_records(records, weights)
#         if not scored_records:
#             raise gr.Error("Could not read or score any of the uploaded images.")
            
#         best_ldr_record = scored_records[0]
#         best_ldr_path = best_ldr_record['path']
#         print(f"Best LDR selected: {os.path.basename(best_ldr_path)} (Score: {best_ldr_record['score']:.4f})")
#         chosen_ldr_image = Image.open(best_ldr_path).convert("RGB")

#         # --- Step 2: Run Inference in Both Modes ---
        
#         # Mode A: High-Quality Crop (at model's native resolution)
#         print("Running Mode A: High-Quality Crop...")
#         crop_options = {
#             'preprocess': 'resize_and_crop',
#             'load_size': 728,
#             'crop_size': 728
#         }
#         hdr_cropped = run_inference(model, best_ldr_path, crop_options)
#         print("Mode A successful.")
        
#         # Mode B: Full Image (at a higher resolution)
#         print("Running Mode B: Full Image (High-Res Scaled)...")
#         scale_options = {
#             'preprocess': 'scale_width',
#             'load_size': 1024, # <-- THIS IS THE CHANGE FOR HIGHER RESOLUTION
#             'crop_size': 728 # This value is ignored by scale_width but needs to be present
#         }
#         hdr_scaled = run_inference(model, best_ldr_path, scale_options)
#         print("Mode B successful.")
        
#         # Return all the images to update the UI
#         return uploaded_filepaths, chosen_ldr_image, hdr_cropped, hdr_scaled

#     except Exception as e:
#         print(f"An error occurred: {e}")
#         raise gr.Error(f"An error occurred during processing: {e}")

# # --- Create and Launch the Gradio Interface ---

# with gr.Blocks(theme=gr.themes.Monochrome(), css="footer {display: none !important}") as demo:
#     gr.Markdown("# LDR Bracketing to HDR Converter")
#     gr.Markdown("Upload a set of bracketed LDR images. The app will automatically select the best one and convert it to HDR using two different methods for comparison.")
    
#     with gr.Row():
#         with gr.Column(scale=1, min_width=300):
#             input_files = gr.Files(
#                 label="Upload Bracketed LDR Images",
#                 file_types=["image"]
#             )
#             process_button = gr.Button("Process Images", variant="primary")
            
#             with gr.Accordion("See Your Uploads", open=False):
#                  input_gallery = gr.Gallery(label="Uploaded LDR Bracket", show_label=False, columns=3, height="auto")

#         with gr.Column(scale=2):
#             gr.Markdown("## Results")
#             with gr.Row():
#                 chosen_ldr_display = gr.Image(label="Best LDR Chosen by Algorithm", type="pil", interactive=False)
#             with gr.Row():
#                 output_cropped = gr.Image(label="Result 1: High-Quality Crop (728x728)", type="pil", interactive=False)
#                 output_scaled = gr.Image(label="Result 2: Full Image (Scaled to 1024px Width)", type="pil", interactive=False)

#     process_button.click(
#         fn=process_images_and_display,
#         inputs=input_files,
#         outputs=[input_gallery, chosen_ldr_display, output_cropped, output_scaled]
#     )

# print("--- Launching Gradio App ---")
# demo.launch(share=True)









import gradio as gr
import torch
import os
import tempfile
import shutil
from PIL import Image
import numpy as np
from pathlib import Path
import sys
import copy

# --- Import logic from your project ---
from options.test_options import TestOptions
from data import create_dataset
from models import create_model
try:
    from best_ldr import compute_metrics_for_images, score_records
except ImportError:
    raise ImportError("Could not import from best_ldr.py. Make sure the file is in the same directory as app.py.")

print("--- Initializing LDR-to-HDR Model (this may take a moment) ---")

# --- Global Setup: Load the CycleGAN model once when the app starts ---

# We need to satisfy the parser's requirement for a dataroot at startup
if '--dataroot' not in sys.argv:
    sys.argv.extend(['--dataroot', './dummy_dataroot_for_init'])

# Load the base options
opt = TestOptions().parse()

# Manually override settings for our model
opt.name = 'ldr2hdr_cyclegan_728'
opt.model = 'test'
opt.netG = 'resnet_9blocks'
opt.norm = 'instance'
opt.no_dropout = True
opt.checkpoints_dir = './checkpoints'
opt.gpu_ids = [0] if torch.cuda.is_available() else []
opt.device = torch.device('cuda:{}'.format(opt.gpu_ids[0])) if opt.gpu_ids else torch.device('cpu')

# Create the model using these options
model = create_model(opt)
model.setup(opt)
model.eval()

print("--- Model Loaded Successfully ---")


# --- The Main Gradio Processing Function ---

def process_images_to_hdr(list_of_temp_files):
    """
    The main workflow: select best LDR, run inference, and return results for the UI.
    """
    if not list_of_temp_files:
        raise gr.Error("Please upload your bracketed LDR images.")
    if len(list_of_temp_files) < 2:
        gr.Warning("For best results, upload at least 2 bracketed LDR images.")

    uploaded_filepaths = [Path(f.name) for f in list_of_temp_files]
    
    try:
        # --- Step 1: Select the Best LDR ---
        print(f"Analyzing {len(uploaded_filepaths)} uploaded images...")
        weights = {"clipped": 0.35, "coverage": 0.25, "exposure": 0.15, "sharpness": 0.15, "noise": 0.10}
        records = compute_metrics_for_images(uploaded_filepaths, resize_max=1024)
        scored_records = score_records(records, weights)
        if not scored_records:
            raise gr.Error("Could not read or score any of the uploaded images.")
            
        best_ldr_record = scored_records[0]
        best_ldr_path = best_ldr_record['path']
        print(f"Best LDR selected: {os.path.basename(best_ldr_path)} (Score: {best_ldr_record['score']:.4f})")

        # --- Step 2: Run Inference ---
        print("Running Full Image (High-Res Scaled) Inference...")
        
        # We only need the one set of options now
        inference_options = {
            'preprocess': 'scale_width',
            'load_size': 1024, # Generate the high-resolution, full image
            'crop_size': 728   # This value is ignored but required by the parser
        }
        
        # Deep copy the base options to avoid modifying the global state
        local_opt = copy.deepcopy(opt)
        for key, value in inference_options.items():
            setattr(local_opt, key, value)

        # Run the model
        with tempfile.TemporaryDirectory() as temp_dir:
            shutil.copy(best_ldr_path, temp_dir)
            local_opt.dataroot = temp_dir
            local_opt.num_test = 1
            dataset = create_dataset(local_opt)

            for i, data in enumerate(dataset):
                model.set_input(data)
                model.test()
                visuals = model.get_current_visuals()
                
                for label, image_tensor in visuals.items():
                    if label == 'fake':
                        image_numpy = (np.transpose(image_tensor.cpu().float().numpy()[0], (1, 2, 0)) + 1) / 2.0 * 255.0
                        final_hdr_image = Image.fromarray(image_numpy.astype(np.uint8))
                        print("Conversion to HDR successful.")
                        # Return the gallery of inputs and the single final HDR image
                        return uploaded_filepaths, final_hdr_image

    except Exception as e:
        print(f"An error occurred: {e}")
        raise gr.Error(f"An error occurred during processing: {e}")

# --- Create and Launch the Gradio Interface ---

with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}") as demo:
    gr.Markdown(
        """
        # LDR Bracketing to HDR Converter
        Upload a set of bracketed LDR images. The app will automatically select the best one and convert it to a vibrant, full-resolution HDR image.
        """
    )
    
    with gr.Row():
        with gr.Column(scale=1, min_width=350):
            # --- INPUT ---
            input_files = gr.Files(
                label="Upload Bracketed LDR Images",
                file_types=["image"]
            )
            process_button = gr.Button("Process Images", variant="primary")
            with gr.Accordion("See Your Uploaded Images", open=True):
                 input_gallery = gr.Gallery(label="Uploaded Images", show_label=False, columns=[2, 3], height="auto")

        with gr.Column(scale=2):
            # --- OUTPUT ---
            gr.Markdown("## Generated HDR Result")
            output_image = gr.Image(label="Final HDR Image", type="pil", interactive=False, show_download_button=True)

    process_button.click(
        fn=process_images_to_hdr,
        inputs=input_files,
        outputs=[input_gallery, output_image]
    )
    
    # gr.Markdown("### Examples")
    # gr.Examples(
    #     examples=[
    #         [
    #             "../pix2pix_dataset/testA/077A2406.jpg", 
    #             "../pix2pix_dataset/testA/077A4049.jpg", 
    #             "../pix2pix_dataset/testA/077A4073.jpg"
    #         ]
    #     ],
    #     inputs=input_files
    # )

print("--- Launching Gradio App ---")
demo.launch(share=True)