Spaces:
Sleeping
Sleeping
File size: 12,477 Bytes
2232b2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
#!/usr/bin/env python3
"""
make_cyclegan_dataset.py
Create paired datasets (setA, setB) for CycleGAN training from your dataset.
What it does:
- Walks the dataset root (e.g. ../jpeg_stage1Just0)
- Finds scene directories that contain both a `source/` subfolder with >= min_images
and an `output/` subfolder with at least one image.
- For each scene: selects the best LDR from `source/` (using metrics: clipped, coverage,
exposure centering, sharpness, noise), copies that chosen source image into outdir/setA/,
copies the scene's output image into outdir/setB/ but renames it to the chosen source filename.
- Writes CSV and JSON reports with metric breakdowns.
Usage:
python make_cyclegan_dataset.py --root ../jpeg_stage1Just0 --outdir ./cyclegan_data
Dependencies:
pip install opencv-python pillow numpy
Author: ChatGPT (opinionated: default weights favor low clipping and good coverage)
"""
import argparse
import os
from pathlib import Path
import json
import csv
import shutil
from math import fabs
import numpy as np
import cv2
from PIL import Image, ExifTags
IMG_EXTS = {".jpg", ".jpeg", ".png", ".tif", ".tiff", ".bmp", ".webp"}
# ------------------ Image / metric helpers ------------------
def is_image_file(p: Path):
return p.suffix.lower() in IMG_EXTS and p.is_file()
def list_images(folder: Path):
if not folder.exists():
return []
return sorted([p for p in folder.iterdir() if is_image_file(p)])
def read_image_gray(path: Path, resize_max=None):
"""Read color then convert to grayscale float32 [0,1]. Uses cv2.imdecode to handle weird filenames."""
arr = np.fromfile(str(path), dtype=np.uint8)
img = cv2.imdecode(arr, cv2.IMREAD_COLOR)
if img is None:
raise IOError(f"Failed to read image {path}")
if resize_max:
h, w = img.shape[:2]
scale = resize_max / max(h, w) if max(h, w) > resize_max else 1.0
if scale != 1.0:
img = cv2.resize(img, (int(w*scale), int(h*scale)), interpolation=cv2.INTER_AREA)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY).astype(np.float32) / 255.0
return gray
def clipped_ratio(gray):
total = gray.size
high = np.count_nonzero(gray >= 0.992)
low = np.count_nonzero(gray <= 0.008)
return float(high + low) / float(total)
def histogram_coverage(gray, bins=256, min_frac=0.001):
hist, _ = np.histogram((gray * 255).astype(np.uint8), bins=bins, range=(0,255))
threshold = max(1, int(min_frac * gray.size))
covered = np.count_nonzero(hist >= threshold)
return float(covered) / float(bins)
def exposure_distance(gray):
return float(abs(float(np.mean(gray)) - 0.5))
def sharpness_metric(gray):
lap = cv2.Laplacian((gray * 255).astype(np.uint8), cv2.CV_64F)
return float(np.var(lap))
def noise_estimate(gray):
blur = cv2.GaussianBlur(gray, (3,3), 0)
hf = gray - blur
return float(np.std(hf))
def minmax_normalize(vals, eps=1e-8):
arr = np.array(vals, dtype=np.float64)
mn = float(arr.min())
mx = float(arr.max())
if mx - mn < eps:
# all equal -> zeros
return np.zeros_like(arr)
return (arr - mn) / (mx - mn)
# ------------------ Selection & scene processing ------------------
def compute_metrics_for_images(image_paths, resize_max):
records = []
for p in image_paths:
try:
g = read_image_gray(p, resize_max=resize_max)
except Exception as e:
print(f" WARNING: cannot read {p}: {e}")
continue
rec = {
"path": str(p),
"name": p.name,
"clipped": clipped_ratio(g),
"coverage": histogram_coverage(g),
"exposure_dist": exposure_distance(g),
"sharpness": sharpness_metric(g),
"noise": noise_estimate(g)
}
records.append(rec)
return records
def score_records(records, weights):
if not records:
return []
clipped_vals = [r["clipped"] for r in records]
cov_vals = [r["coverage"] for r in records]
exp_vals = [r["exposure_dist"] for r in records]
sharp_vals = [r["sharpness"] for r in records]
noise_vals = [r["noise"] for r in records]
clipped_n = minmax_normalize(clipped_vals)
cov_n = minmax_normalize(cov_vals)
exp_n = minmax_normalize(exp_vals)
sharp_n = minmax_normalize(sharp_vals)
noise_n = minmax_normalize(noise_vals)
scored = []
for i, r in enumerate(records):
score = 0.0
score += weights["clipped"] * (1.0 - float(clipped_n[i])) # less clipping -> better
score += weights["coverage"] * float(cov_n[i]) # more coverage -> better
score += weights["exposure"] * (1.0 - float(exp_n[i])) # closer to mid gray -> better
score += weights["sharpness"] * float(sharp_n[i]) # sharper -> better
score += weights["noise"] * (1.0 - float(noise_n[i])) # less noise -> better
rec = dict(r)
rec.update({
"clipped_n": float(clipped_n[i]),
"coverage_n": float(cov_n[i]),
"exposure_n": float(exp_n[i]),
"sharpness_n": float(sharp_n[i]),
"noise_n": float(noise_n[i]),
"score": float(score)
})
scored.append(rec)
scored_sorted = sorted(scored, key=lambda x: x["score"], reverse=True)
return scored_sorted
def find_output_image(output_folder: Path):
imgs = list_images(output_folder)
if not imgs:
return None
# Prefer file with same name as parent folder (if present), else pick largest file
parent_name = output_folder.parent.name
for p in imgs:
if p.stem == parent_name:
return p
# otherwise pick largest by file size (likely the main image)
imgs_sorted = sorted(imgs, key=lambda x: x.stat().st_size, reverse=True)
return imgs_sorted[0]
# ------------------ Main procedure ------------------
def make_dataset(root: Path, outdir: Path, min_images: int,
resize_max: int, weights: dict, copy_method="copy"):
scenes_found = 0
results = []
setA = outdir / "setA"
setB = outdir / "setB"
os.makedirs(setA, exist_ok=True)
os.makedirs(setB, exist_ok=True)
# Walk the tree and find directories that contain both source/ and output/
for dirpath, dirnames, filenames in os.walk(root):
d = Path(dirpath)
src_dir = d / "source"
out_dir = d / "output"
if not src_dir.exists() or not out_dir.exists():
continue
src_imgs = list_images(src_dir)
if len(src_imgs) < min_images:
# skip small scenes
continue
scenes_found += 1
print(f"[{scenes_found}] Scene: {d} ({len(src_imgs)} source images)")
# compute metrics and choose best
records = compute_metrics_for_images(src_imgs, resize_max=resize_max)
if not records:
print(" No readable source images, skipping.")
continue
scored = score_records(records, weights)
chosen = scored[0]
chosen_path = Path(chosen["path"])
chosen_name = chosen_path.name # used for setA filename (and setB target name)
# find output image for this scene
out_img = find_output_image(out_dir)
if out_img is None:
print(f" WARNING: no output image found in {out_dir}; skipping copying pair.")
out_img_path = None
else:
out_img_path = out_img
# destination paths
destA = setA / chosen_name
destB = setB / chosen_name
# copy or symlink
try:
if copy_method == "symlink":
if destA.exists():
destA.unlink()
os.symlink(os.path.abspath(chosen_path), destA)
else:
shutil.copy2(chosen_path, destA)
except Exception as e:
print(f" ERROR copying source -> {destA}: {e}")
if out_img_path is not None:
try:
if copy_method == "symlink":
if destB.exists():
destB.unlink()
os.symlink(os.path.abspath(out_img_path), destB)
else:
shutil.copy2(out_img_path, destB)
except Exception as e:
print(f" ERROR copying output -> {destB}: {e}")
# record result
result = {
"scene_dir": str(d),
"source_dir": str(src_dir),
"output_dir": str(out_dir),
"chosen_source_path": str(chosen_path),
"chosen_source_name": chosen_name,
"chosen_score": chosen["score"],
"metrics": {
"clipped": chosen["clipped"],
"coverage": chosen["coverage"],
"exposure_dist": chosen["exposure_dist"],
"sharpness": chosen["sharpness"],
"noise": chosen["noise"],
"clipped_n": chosen["clipped_n"],
"coverage_n": chosen["coverage_n"],
"exposure_n": chosen["exposure_n"],
"sharpness_n": chosen["sharpness_n"],
"noise_n": chosen["noise_n"],
},
"output_image_used": str(out_img_path) if out_img_path is not None else None,
"destA": str(destA),
"destB": str(destB) if out_img_path is not None else None
}
results.append(result)
# print top 3 for quick audit
print(" Top candidates:")
for c in scored[:3]:
print(f" {c['score']:.4f} clipped={c['clipped']:.4f} cov={c['coverage']:.4f} expd={c['exposure_dist']:.4f} sharp={c['sharpness']:.1f} noise={c['noise']:.5f} -> {Path(c['path']).name}")
# write reports
out_csv = outdir / "paired_selection.csv"
out_json = outdir / "paired_selection.json"
with open(out_json, "w", encoding="utf-8") as jf:
json.dump(results, jf, indent=2)
with open(out_csv, "w", newline="", encoding="utf-8") as cf:
writer = csv.writer(cf)
header = ["scene_dir", "source_dir", "output_dir", "chosen_source_name", "chosen_source_path",
"chosen_score", "output_image_used", "destA", "destB"]
writer.writerow(header)
for r in results:
writer.writerow([r.get(h, "") for h in header])
print(f"\nDone. Scenes processed: {scenes_found}")
print(f"Paired data saved to:\n {setA}\n {setB}")
print(f"Reports: {out_csv} , {out_json}")
return results
# ------------------ CLI ------------------
def parse_weights(s):
parts = [float(x.strip()) for x in s.split(",")]
if len(parts) != 5:
raise argparse.ArgumentTypeError("weights must be 5 comma-separated numbers")
ssum = sum(parts)
if ssum == 0:
raise argparse.ArgumentTypeError("weights sum must be > 0")
return [p / ssum for p in parts]
def main():
ap = argparse.ArgumentParser(description="Make paired CycleGAN dataset from your LDR/HDR scene layout.")
ap.add_argument("--root", "-r", required=True, help="Root of dataset (e.g. ../jpeg_stage1Just0)")
ap.add_argument("--outdir", "-o", default="./cyclegan_data", help="Output folder for paired dataset")
ap.add_argument("--min_images", type=int, default=2, help="Minimum images in source/ to consider scene")
ap.add_argument("--resize_max", type=int, default=1024, help="Resize longest side for metric calc (speeds up)")
ap.add_argument("--weights", type=parse_weights, default="0.35,0.25,0.15,0.15,0.10",
help="5 weights: clipped,coverage,exposure,sharpness,noise (will be normalized)")
ap.add_argument("--copy_method", choices=["copy", "symlink"], default="copy",
help="copy files or create symlinks (symlink saves disk space)")
args = ap.parse_args()
root = Path(args.root).expanduser().resolve()
outdir = Path(args.outdir).expanduser().resolve()
w = args.weights if isinstance(args.weights, list) else args.weights # parse_weights returns list
weights = {
"clipped": w[0],
"coverage": w[1],
"exposure": w[2],
"sharpness": w[3],
"noise": w[4]
}
print("Using weights:", weights)
outdir.mkdir(parents=True, exist_ok=True)
make_dataset(root, outdir, min_images=args.min_images,
resize_max=args.resize_max, weights=weights, copy_method=args.copy_method)
if __name__ == "__main__":
main()
|