Spaces:
Sleeping
Sleeping
import numpy as np | |
import sys | |
import ntpath | |
import time | |
from . import util, html | |
from pathlib import Path | |
import wandb | |
import os | |
import torch.distributed as dist | |
def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256): | |
"""Save images to the disk. | |
Parameters: | |
webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details) | |
visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs | |
image_path (str) -- the string is used to create image paths | |
aspect_ratio (float) -- the aspect ratio of saved images | |
width (int) -- the images will be resized to width x width | |
This function will save images stored in 'visuals' to the HTML file specified by 'webpage'. | |
""" | |
image_dir = webpage.get_image_dir() | |
name = Path(image_path[0]).stem | |
webpage.add_header(name) | |
ims, txts, links = [], [], [] | |
for label, im_data in visuals.items(): | |
im = util.tensor2im(im_data) | |
image_name = f"{name}_{label}.png" | |
save_path = image_dir / image_name | |
util.save_image(im, save_path, aspect_ratio=aspect_ratio) | |
ims.append(image_name) | |
txts.append(label) | |
links.append(image_name) | |
webpage.add_images(ims, txts, links, width=width) | |
class Visualizer: | |
"""This class includes several functions that can display/save images and print/save logging information. | |
It uses wandb for logging (optional) and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images. | |
""" | |
def __init__(self, opt): | |
"""Initialize the Visualizer class | |
Parameters: | |
opt -- stores all the experiment flags; needs to be a subclass of BaseOptions | |
Step 1: Cache the training/test options | |
Step 2: Initialize wandb (if enabled) | |
Step 3: create an HTML object for saving HTML files | |
Step 4: create a logging file to store training losses | |
""" | |
self.opt = opt # cache the option | |
self.use_html = opt.isTrain and not opt.no_html | |
self.win_size = opt.display_winsize | |
self.name = opt.name | |
self.saved = False | |
self.use_wandb = opt.use_wandb | |
self.current_epoch = 0 | |
# Initialize wandb if enabled | |
if self.use_wandb: | |
# Only initialize wandb on main process (rank 0) | |
if not dist.is_initialized() or dist.get_rank() == 0: | |
self.wandb_project_name = getattr(opt, "wandb_project_name", "CycleGAN-and-pix2pix") | |
self.wandb_run = wandb.init(project=self.wandb_project_name, name=opt.name, config=opt) if not wandb.run else wandb.run | |
self.wandb_run._label(repo="CycleGAN-and-pix2pix") | |
else: | |
self.wandb_run = None | |
if self.use_html: # create an HTML object at <checkpoints_dir>/web/; images will be saved under <checkpoints_dir>/web/images/ | |
self.web_dir = Path(opt.checkpoints_dir) / opt.name / "web" | |
self.img_dir = self.web_dir / "images" | |
print(f"create web directory {self.web_dir}...") | |
util.mkdirs([self.web_dir, self.img_dir]) | |
# create a logging file to store training losses | |
self.log_name = Path(opt.checkpoints_dir) / opt.name / "loss_log.txt" | |
with open(self.log_name, "a") as log_file: | |
now = time.strftime("%c") | |
log_file.write(f"================ Training Loss ({now}) ================\n") | |
def reset(self): | |
"""Reset the self.saved status""" | |
self.saved = False | |
def set_dataset_size(self, dataset_size): | |
"""Set the dataset size for global step calculation""" | |
self.dataset_size = dataset_size | |
def _calculate_global_step(self, epoch, epoch_iter): | |
"""Calculate global step from epoch and epoch_iter""" | |
# Assuming epoch starts from 1 and epoch_iter is cumulative within epoch | |
return (epoch - 1) * self.dataset_size + epoch_iter | |
def display_current_results(self, visuals, epoch: int, total_iters: int, save_result=False): | |
"""Save current results to wandb and HTML file.""" | |
# Only display results on main process (rank 0) | |
if "LOCAL_RANK" in os.environ and dist.is_initialized() and dist.get_rank() != 0: | |
return | |
if self.use_wandb: | |
ims_dict = {} | |
for label, image in visuals.items(): | |
image_numpy = util.tensor2im(image) | |
wandb_image = wandb.Image(image_numpy, caption=f"{label} - Step {total_iters}") | |
ims_dict[f"results/{label}"] = wandb_image | |
self.wandb_run.log(ims_dict, step=total_iters) | |
if self.use_html and (save_result or not self.saved): # save images to an HTML file if they haven't been saved. | |
self.saved = True | |
# save images to the disk | |
for label, image in visuals.items(): | |
image_numpy = util.tensor2im(image) | |
img_path = self.img_dir / f"epoch{epoch:03d}_{label}.png" | |
util.save_image(image_numpy, img_path) | |
# update website | |
webpage = html.HTML(self.web_dir, f"Experiment name = {self.name}", refresh=1) | |
for n in range(epoch, 0, -1): | |
webpage.add_header(f"epoch [{n}]") | |
ims, txts, links = [], [], [] | |
for label, image in visuals.items(): | |
img_path = f"epoch{n:03d}_{label}.png" | |
ims.append(img_path) | |
txts.append(label) | |
links.append(img_path) | |
webpage.add_images(ims, txts, links, width=self.win_size) | |
webpage.save() | |
def plot_current_losses(self, total_iters, losses): | |
"""Log current losses to wandb | |
Parameters: | |
total_iters (int) -- current training iteration during this epoch | |
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs | |
""" | |
# Only plot losses on main process (rank 0) | |
if dist.is_initialized() and dist.get_rank() != 0: | |
return | |
if self.use_wandb: | |
self.wandb_run.log(losses, step=total_iters) | |
def print_current_losses(self, epoch, iters, losses, t_comp, t_data): | |
"""print current losses on console; also save the losses to the disk | |
Parameters: | |
epoch (int) -- current epoch | |
iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch) | |
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs | |
t_comp (float) -- computational time per data point (normalized by batch_size) | |
t_data (float) -- data loading time per data point (normalized by batch_size) | |
""" | |
local_rank = int(os.environ.get("LOCAL_RANK", 0)) | |
message = f"[Rank {local_rank}] (epoch: {epoch}, iters: {iters}, time: {t_comp:.3f}, data: {t_data:.3f}) " | |
for k, v in losses.items(): | |
message += f", {k}: {v:.3f}" | |
message += "\n" | |
print(message) # print the message on ALL ranks with rank info | |
# Only save to log file on main process (rank 0) | |
if local_rank == 0: | |
with open(self.log_name, "a") as log_file: | |
log_file.write(f"{message}\n") # save the message | |