ReaLens / util /visualizer.py
Abubakar740
Upload LDR to HDR application files
2232b2c
import numpy as np
import sys
import ntpath
import time
from . import util, html
from pathlib import Path
import wandb
import os
import torch.distributed as dist
def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256):
"""Save images to the disk.
Parameters:
webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details)
visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs
image_path (str) -- the string is used to create image paths
aspect_ratio (float) -- the aspect ratio of saved images
width (int) -- the images will be resized to width x width
This function will save images stored in 'visuals' to the HTML file specified by 'webpage'.
"""
image_dir = webpage.get_image_dir()
name = Path(image_path[0]).stem
webpage.add_header(name)
ims, txts, links = [], [], []
for label, im_data in visuals.items():
im = util.tensor2im(im_data)
image_name = f"{name}_{label}.png"
save_path = image_dir / image_name
util.save_image(im, save_path, aspect_ratio=aspect_ratio)
ims.append(image_name)
txts.append(label)
links.append(image_name)
webpage.add_images(ims, txts, links, width=width)
class Visualizer:
"""This class includes several functions that can display/save images and print/save logging information.
It uses wandb for logging (optional) and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images.
"""
def __init__(self, opt):
"""Initialize the Visualizer class
Parameters:
opt -- stores all the experiment flags; needs to be a subclass of BaseOptions
Step 1: Cache the training/test options
Step 2: Initialize wandb (if enabled)
Step 3: create an HTML object for saving HTML files
Step 4: create a logging file to store training losses
"""
self.opt = opt # cache the option
self.use_html = opt.isTrain and not opt.no_html
self.win_size = opt.display_winsize
self.name = opt.name
self.saved = False
self.use_wandb = opt.use_wandb
self.current_epoch = 0
# Initialize wandb if enabled
if self.use_wandb:
# Only initialize wandb on main process (rank 0)
if not dist.is_initialized() or dist.get_rank() == 0:
self.wandb_project_name = getattr(opt, "wandb_project_name", "CycleGAN-and-pix2pix")
self.wandb_run = wandb.init(project=self.wandb_project_name, name=opt.name, config=opt) if not wandb.run else wandb.run
self.wandb_run._label(repo="CycleGAN-and-pix2pix")
else:
self.wandb_run = None
if self.use_html: # create an HTML object at <checkpoints_dir>/web/; images will be saved under <checkpoints_dir>/web/images/
self.web_dir = Path(opt.checkpoints_dir) / opt.name / "web"
self.img_dir = self.web_dir / "images"
print(f"create web directory {self.web_dir}...")
util.mkdirs([self.web_dir, self.img_dir])
# create a logging file to store training losses
self.log_name = Path(opt.checkpoints_dir) / opt.name / "loss_log.txt"
with open(self.log_name, "a") as log_file:
now = time.strftime("%c")
log_file.write(f"================ Training Loss ({now}) ================\n")
def reset(self):
"""Reset the self.saved status"""
self.saved = False
def set_dataset_size(self, dataset_size):
"""Set the dataset size for global step calculation"""
self.dataset_size = dataset_size
def _calculate_global_step(self, epoch, epoch_iter):
"""Calculate global step from epoch and epoch_iter"""
# Assuming epoch starts from 1 and epoch_iter is cumulative within epoch
return (epoch - 1) * self.dataset_size + epoch_iter
def display_current_results(self, visuals, epoch: int, total_iters: int, save_result=False):
"""Save current results to wandb and HTML file."""
# Only display results on main process (rank 0)
if "LOCAL_RANK" in os.environ and dist.is_initialized() and dist.get_rank() != 0:
return
if self.use_wandb:
ims_dict = {}
for label, image in visuals.items():
image_numpy = util.tensor2im(image)
wandb_image = wandb.Image(image_numpy, caption=f"{label} - Step {total_iters}")
ims_dict[f"results/{label}"] = wandb_image
self.wandb_run.log(ims_dict, step=total_iters)
if self.use_html and (save_result or not self.saved): # save images to an HTML file if they haven't been saved.
self.saved = True
# save images to the disk
for label, image in visuals.items():
image_numpy = util.tensor2im(image)
img_path = self.img_dir / f"epoch{epoch:03d}_{label}.png"
util.save_image(image_numpy, img_path)
# update website
webpage = html.HTML(self.web_dir, f"Experiment name = {self.name}", refresh=1)
for n in range(epoch, 0, -1):
webpage.add_header(f"epoch [{n}]")
ims, txts, links = [], [], []
for label, image in visuals.items():
img_path = f"epoch{n:03d}_{label}.png"
ims.append(img_path)
txts.append(label)
links.append(img_path)
webpage.add_images(ims, txts, links, width=self.win_size)
webpage.save()
def plot_current_losses(self, total_iters, losses):
"""Log current losses to wandb
Parameters:
total_iters (int) -- current training iteration during this epoch
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
"""
# Only plot losses on main process (rank 0)
if dist.is_initialized() and dist.get_rank() != 0:
return
if self.use_wandb:
self.wandb_run.log(losses, step=total_iters)
def print_current_losses(self, epoch, iters, losses, t_comp, t_data):
"""print current losses on console; also save the losses to the disk
Parameters:
epoch (int) -- current epoch
iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch)
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
t_comp (float) -- computational time per data point (normalized by batch_size)
t_data (float) -- data loading time per data point (normalized by batch_size)
"""
local_rank = int(os.environ.get("LOCAL_RANK", 0))
message = f"[Rank {local_rank}] (epoch: {epoch}, iters: {iters}, time: {t_comp:.3f}, data: {t_data:.3f}) "
for k, v in losses.items():
message += f", {k}: {v:.3f}"
message += "\n"
print(message) # print the message on ALL ranks with rank info
# Only save to log file on main process (rank 0)
if local_rank == 0:
with open(self.log_name, "a") as log_file:
log_file.write(f"{message}\n") # save the message