File size: 20,889 Bytes
9705b6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
const { encoding_for_model: encodingForModel, get_encoding: getEncoding } = require('tiktoken');
const ChatGPTClient = require('./ChatGPTClient');
const BaseClient = require('./BaseClient');
const { getModelMaxTokens, genAzureChatCompletion } = require('../../utils');
const { truncateText, formatMessage, CUT_OFF_PROMPT } = require('./prompts');
const spendTokens = require('../../models/spendTokens');
const { isEnabled } = require('../../server/utils');
const { createLLM, RunManager } = require('./llm');
const { summaryBuffer } = require('./memory');
const { runTitleChain } = require('./chains');
const { tokenSplit } = require('./document');

// Cache to store Tiktoken instances
const tokenizersCache = {};
// Counter for keeping track of the number of tokenizer calls
let tokenizerCallsCount = 0;

class OpenAIClient extends BaseClient {
  constructor(apiKey, options = {}) {
    super(apiKey, options);
    this.ChatGPTClient = new ChatGPTClient();
    this.buildPrompt = this.ChatGPTClient.buildPrompt.bind(this);
    this.getCompletion = this.ChatGPTClient.getCompletion.bind(this);
    this.sender = options.sender ?? 'ChatGPT';
    this.contextStrategy = options.contextStrategy
      ? options.contextStrategy.toLowerCase()
      : 'discard';
    this.shouldSummarize = this.contextStrategy === 'summarize';
    this.azure = options.azure || false;
    if (this.azure) {
      this.azureEndpoint = genAzureChatCompletion(this.azure);
    }
    this.setOptions(options);
  }

  setOptions(options) {
    if (this.options && !this.options.replaceOptions) {
      this.options.modelOptions = {
        ...this.options.modelOptions,
        ...options.modelOptions,
      };
      delete options.modelOptions;
      this.options = {
        ...this.options,
        ...options,
      };
    } else {
      this.options = options;
    }

    if (this.options.openaiApiKey) {
      this.apiKey = this.options.openaiApiKey;
    }

    const modelOptions = this.options.modelOptions || {};
    if (!this.modelOptions) {
      this.modelOptions = {
        ...modelOptions,
        model: modelOptions.model || 'gpt-3.5-turbo',
        temperature:
          typeof modelOptions.temperature === 'undefined' ? 0.8 : modelOptions.temperature,
        top_p: typeof modelOptions.top_p === 'undefined' ? 1 : modelOptions.top_p,
        presence_penalty:
          typeof modelOptions.presence_penalty === 'undefined' ? 1 : modelOptions.presence_penalty,
        stop: modelOptions.stop,
      };
    } else {
      // Update the modelOptions if it already exists
      this.modelOptions = {
        ...this.modelOptions,
        ...modelOptions,
      };
    }

    const { OPENROUTER_API_KEY, OPENAI_FORCE_PROMPT } = process.env ?? {};
    if (OPENROUTER_API_KEY) {
      this.apiKey = OPENROUTER_API_KEY;
      this.useOpenRouter = true;
    }

    const { reverseProxyUrl: reverseProxy } = this.options;
    this.FORCE_PROMPT =
      isEnabled(OPENAI_FORCE_PROMPT) ||
      (reverseProxy && reverseProxy.includes('completions') && !reverseProxy.includes('chat'));

    const { model } = this.modelOptions;

    this.isChatCompletion = this.useOpenRouter || !!reverseProxy || model.includes('gpt-');
    this.isChatGptModel = this.isChatCompletion;
    if (model.includes('text-davinci-003') || model.includes('instruct') || this.FORCE_PROMPT) {
      this.isChatCompletion = false;
      this.isChatGptModel = false;
    }
    const { isChatGptModel } = this;
    this.isUnofficialChatGptModel =
      model.startsWith('text-chat') || model.startsWith('text-davinci-002-render');
    this.maxContextTokens = getModelMaxTokens(model) ?? 4095; // 1 less than maximum

    if (this.shouldSummarize) {
      this.maxContextTokens = Math.floor(this.maxContextTokens / 2);
    }

    if (this.options.debug) {
      console.debug('maxContextTokens', this.maxContextTokens);
    }

    this.maxResponseTokens = this.modelOptions.max_tokens || 1024;
    this.maxPromptTokens =
      this.options.maxPromptTokens || this.maxContextTokens - this.maxResponseTokens;

    if (this.maxPromptTokens + this.maxResponseTokens > this.maxContextTokens) {
      throw new Error(
        `maxPromptTokens + max_tokens (${this.maxPromptTokens} + ${this.maxResponseTokens} = ${
          this.maxPromptTokens + this.maxResponseTokens
        }) must be less than or equal to maxContextTokens (${this.maxContextTokens})`,
      );
    }

    this.userLabel = this.options.userLabel || 'User';
    this.chatGptLabel = this.options.chatGptLabel || 'Assistant';

    this.setupTokens();

    if (!this.modelOptions.stop) {
      const stopTokens = [this.startToken];
      if (this.endToken && this.endToken !== this.startToken) {
        stopTokens.push(this.endToken);
      }
      stopTokens.push(`\n${this.userLabel}:`);
      stopTokens.push('<|diff_marker|>');
      this.modelOptions.stop = stopTokens;
    }

    if (reverseProxy) {
      this.completionsUrl = reverseProxy;
      this.langchainProxy = reverseProxy.match(/.*v1/)?.[0];
      !this.langchainProxy &&
        console.warn(`The reverse proxy URL ${reverseProxy} is not valid for Plugins.
The url must follow OpenAI specs, for example: https://localhost:8080/v1/chat/completions
If your reverse proxy is compatible to OpenAI specs in every other way, it may still work without plugins enabled.`);
    } else if (isChatGptModel) {
      this.completionsUrl = 'https://api.openai.com/v1/chat/completions';
    } else {
      this.completionsUrl = 'https://api.openai.com/v1/completions';
    }

    if (this.azureEndpoint) {
      this.completionsUrl = this.azureEndpoint;
    }

    if (this.azureEndpoint && this.options.debug) {
      console.debug('Using Azure endpoint');
    }

    if (this.useOpenRouter) {
      this.completionsUrl = 'https://openrouter.ai/api/v1/chat/completions';
    }

    return this;
  }

  setupTokens() {
    if (this.isChatCompletion) {
      this.startToken = '||>';
      this.endToken = '';
    } else if (this.isUnofficialChatGptModel) {
      this.startToken = '<|im_start|>';
      this.endToken = '<|im_end|>';
    } else {
      this.startToken = '||>';
      this.endToken = '';
    }
  }

  // Selects an appropriate tokenizer based on the current configuration of the client instance.
  // It takes into account factors such as whether it's a chat completion, an unofficial chat GPT model, etc.
  selectTokenizer() {
    let tokenizer;
    this.encoding = 'text-davinci-003';
    if (this.isChatCompletion) {
      this.encoding = 'cl100k_base';
      tokenizer = this.constructor.getTokenizer(this.encoding);
    } else if (this.isUnofficialChatGptModel) {
      const extendSpecialTokens = {
        '<|im_start|>': 100264,
        '<|im_end|>': 100265,
      };
      tokenizer = this.constructor.getTokenizer(this.encoding, true, extendSpecialTokens);
    } else {
      try {
        const { model } = this.modelOptions;
        this.encoding = model.includes('instruct') ? 'text-davinci-003' : model;
        tokenizer = this.constructor.getTokenizer(this.encoding, true);
      } catch {
        tokenizer = this.constructor.getTokenizer('text-davinci-003', true);
      }
    }

    return tokenizer;
  }

  // Retrieves a tokenizer either from the cache or creates a new one if one doesn't exist in the cache.
  // If a tokenizer is being created, it's also added to the cache.
  static getTokenizer(encoding, isModelName = false, extendSpecialTokens = {}) {
    let tokenizer;
    if (tokenizersCache[encoding]) {
      tokenizer = tokenizersCache[encoding];
    } else {
      if (isModelName) {
        tokenizer = encodingForModel(encoding, extendSpecialTokens);
      } else {
        tokenizer = getEncoding(encoding, extendSpecialTokens);
      }
      tokenizersCache[encoding] = tokenizer;
    }
    return tokenizer;
  }

  // Frees all encoders in the cache and resets the count.
  static freeAndResetAllEncoders() {
    try {
      Object.keys(tokenizersCache).forEach((key) => {
        if (tokenizersCache[key]) {
          tokenizersCache[key].free();
          delete tokenizersCache[key];
        }
      });
      // Reset count
      tokenizerCallsCount = 1;
    } catch (error) {
      console.log('Free and reset encoders error');
      console.error(error);
    }
  }

  // Checks if the cache of tokenizers has reached a certain size. If it has, it frees and resets all tokenizers.
  resetTokenizersIfNecessary() {
    if (tokenizerCallsCount >= 25) {
      if (this.options.debug) {
        console.debug('freeAndResetAllEncoders: reached 25 encodings, resetting...');
      }
      this.constructor.freeAndResetAllEncoders();
    }
    tokenizerCallsCount++;
  }

  // Returns the token count of a given text. It also checks and resets the tokenizers if necessary.
  getTokenCount(text) {
    this.resetTokenizersIfNecessary();
    try {
      const tokenizer = this.selectTokenizer();
      return tokenizer.encode(text, 'all').length;
    } catch (error) {
      this.constructor.freeAndResetAllEncoders();
      const tokenizer = this.selectTokenizer();
      return tokenizer.encode(text, 'all').length;
    }
  }

  getSaveOptions() {
    return {
      chatGptLabel: this.options.chatGptLabel,
      promptPrefix: this.options.promptPrefix,
      ...this.modelOptions,
    };
  }

  getBuildMessagesOptions(opts) {
    return {
      isChatCompletion: this.isChatCompletion,
      promptPrefix: opts.promptPrefix,
      abortController: opts.abortController,
    };
  }

  async buildMessages(
    messages,
    parentMessageId,
    { isChatCompletion = false, promptPrefix = null },
  ) {
    let orderedMessages = this.constructor.getMessagesForConversation({
      messages,
      parentMessageId,
      summary: this.shouldSummarize,
    });
    if (!isChatCompletion) {
      return await this.buildPrompt(orderedMessages, {
        isChatGptModel: isChatCompletion,
        promptPrefix,
      });
    }

    let payload;
    let instructions;
    let tokenCountMap;
    let promptTokens;

    promptPrefix = (promptPrefix || this.options.promptPrefix || '').trim();
    if (promptPrefix) {
      promptPrefix = `Instructions:\n${promptPrefix}`;
      instructions = {
        role: 'system',
        name: 'instructions',
        content: promptPrefix,
      };

      if (this.contextStrategy) {
        instructions.tokenCount = this.getTokenCountForMessage(instructions);
      }
    }

    const formattedMessages = orderedMessages.map((message, i) => {
      const formattedMessage = formatMessage({
        message,
        userName: this.options?.name,
        assistantName: this.options?.chatGptLabel,
      });

      if (this.contextStrategy && !orderedMessages[i].tokenCount) {
        orderedMessages[i].tokenCount = this.getTokenCountForMessage(formattedMessage);
      }

      return formattedMessage;
    });

    // TODO: need to handle interleaving instructions better
    if (this.contextStrategy) {
      ({ payload, tokenCountMap, promptTokens, messages } = await this.handleContextStrategy({
        instructions,
        orderedMessages,
        formattedMessages,
      }));
    }

    const result = {
      prompt: payload,
      promptTokens,
      messages,
    };

    if (tokenCountMap) {
      tokenCountMap.instructions = instructions?.tokenCount;
      result.tokenCountMap = tokenCountMap;
    }

    if (promptTokens >= 0 && typeof this.options.getReqData === 'function') {
      this.options.getReqData({ promptTokens });
    }

    return result;
  }

  async sendCompletion(payload, opts = {}) {
    let reply = '';
    let result = null;
    let streamResult = null;
    this.modelOptions.user = this.user;
    if (typeof opts.onProgress === 'function') {
      await this.getCompletion(
        payload,
        (progressMessage) => {
          if (progressMessage === '[DONE]') {
            return;
          }

          if (this.options.debug) {
            // console.debug('progressMessage');
            // console.dir(progressMessage, { depth: null });
          }

          if (progressMessage.choices) {
            streamResult = progressMessage;
          }

          let token = null;
          if (this.isChatCompletion) {
            token =
              progressMessage.choices?.[0]?.delta?.content ?? progressMessage.choices?.[0]?.text;
          } else {
            token = progressMessage.choices?.[0]?.text;
          }

          if (!token && this.useOpenRouter) {
            token = progressMessage.choices?.[0]?.message?.content;
          }
          // first event's delta content is always undefined
          if (!token) {
            return;
          }
          if (this.options.debug) {
            // console.debug(token);
          }
          if (token === this.endToken) {
            return;
          }
          opts.onProgress(token);
          reply += token;
        },
        opts.abortController || new AbortController(),
      );
    } else {
      result = await this.getCompletion(
        payload,
        null,
        opts.abortController || new AbortController(),
      );
      if (this.options.debug) {
        console.debug(JSON.stringify(result));
      }
      if (this.isChatCompletion) {
        reply = result.choices[0].message.content;
      } else {
        reply = result.choices[0].text.replace(this.endToken, '');
      }
    }

    if (streamResult && typeof opts.addMetadata === 'function') {
      const { finish_reason } = streamResult.choices[0];
      opts.addMetadata({ finish_reason });
    }
    return reply.trim();
  }

  initializeLLM({
    model = 'gpt-3.5-turbo',
    modelName,
    temperature = 0.2,
    presence_penalty = 0,
    frequency_penalty = 0,
    max_tokens,
    streaming,
    context,
    tokenBuffer,
    initialMessageCount,
  }) {
    const modelOptions = {
      modelName: modelName ?? model,
      temperature,
      presence_penalty,
      frequency_penalty,
      user: this.user,
    };

    if (max_tokens) {
      modelOptions.max_tokens = max_tokens;
    }

    const configOptions = {};

    if (this.langchainProxy) {
      configOptions.basePath = this.langchainProxy;
    }

    if (this.useOpenRouter) {
      configOptions.basePath = 'https://openrouter.ai/api/v1';
      configOptions.baseOptions = {
        headers: {
          'HTTP-Referer': 'https://librechat.ai',
          'X-Title': 'LibreChat',
        },
      };
    }

    const { req, res, debug } = this.options;
    const runManager = new RunManager({ req, res, debug, abortController: this.abortController });
    this.runManager = runManager;

    const llm = createLLM({
      modelOptions,
      configOptions,
      openAIApiKey: this.apiKey,
      azure: this.azure,
      streaming,
      callbacks: runManager.createCallbacks({
        context,
        tokenBuffer,
        conversationId: this.conversationId,
        initialMessageCount,
      }),
    });

    return llm;
  }

  async titleConvo({ text, responseText = '' }) {
    let title = 'New Chat';
    const convo = `||>User:
"${truncateText(text)}"
||>Response:
"${JSON.stringify(truncateText(responseText))}"`;

    const { OPENAI_TITLE_MODEL } = process.env ?? {};

    const modelOptions = {
      model: OPENAI_TITLE_MODEL ?? 'gpt-3.5-turbo',
      temperature: 0.2,
      presence_penalty: 0,
      frequency_penalty: 0,
      max_tokens: 16,
    };

    try {
      this.abortController = new AbortController();
      const llm = this.initializeLLM({ ...modelOptions, context: 'title', tokenBuffer: 150 });
      title = await runTitleChain({ llm, text, convo, signal: this.abortController.signal });
    } catch (e) {
      if (e?.message?.toLowerCase()?.includes('abort')) {
        this.options.debug && console.debug('Aborted title generation');
        return;
      }
      console.log('There was an issue generating title with LangChain, trying the old method...');
      this.options.debug && console.error(e.message, e);
      modelOptions.model = OPENAI_TITLE_MODEL ?? 'gpt-3.5-turbo';
      const instructionsPayload = [
        {
          role: 'system',
          content: `Detect user language and write in the same language an extremely concise title for this conversation, which you must accurately detect.
Write in the detected language. Title in 5 Words or Less. No Punctuation or Quotation. Do not mention the language. All first letters of every word should be capitalized and write the title in User Language only.

${convo}

||>Title:`,
        },
      ];

      try {
        title = (await this.sendPayload(instructionsPayload, { modelOptions })).replaceAll('"', '');
      } catch (e) {
        console.error(e);
        console.log('There was another issue generating the title, see error above.');
      }
    }

    console.log('CONVERSATION TITLE', title);
    return title;
  }

  async summarizeMessages({ messagesToRefine, remainingContextTokens }) {
    this.options.debug && console.debug('Summarizing messages...');
    let context = messagesToRefine;
    let prompt;

    const { OPENAI_SUMMARY_MODEL = 'gpt-3.5-turbo' } = process.env ?? {};
    const maxContextTokens = getModelMaxTokens(OPENAI_SUMMARY_MODEL) ?? 4095;
    // 3 tokens for the assistant label, and 98 for the summarizer prompt (101)
    let promptBuffer = 101;

    /*
     * Note: token counting here is to block summarization if it exceeds the spend; complete
     * accuracy is not important. Actual spend will happen after successful summarization.
     */
    const excessTokenCount = context.reduce(
      (acc, message) => acc + message.tokenCount,
      promptBuffer,
    );

    if (excessTokenCount > maxContextTokens) {
      ({ context } = await this.getMessagesWithinTokenLimit(context, maxContextTokens));
    }

    if (context.length === 0) {
      this.options.debug &&
        console.debug('Summary context is empty, using latest message within token limit');

      promptBuffer = 32;
      const { text, ...latestMessage } = messagesToRefine[messagesToRefine.length - 1];
      const splitText = await tokenSplit({
        text,
        chunkSize: Math.floor((maxContextTokens - promptBuffer) / 3),
      });

      const newText = `${splitText[0]}\n...[truncated]...\n${splitText[splitText.length - 1]}`;
      prompt = CUT_OFF_PROMPT;

      context = [
        formatMessage({
          message: {
            ...latestMessage,
            text: newText,
          },
          userName: this.options?.name,
          assistantName: this.options?.chatGptLabel,
        }),
      ];
    }
    // TODO: We can accurately count the tokens here before handleChatModelStart
    // by recreating the summary prompt (single message) to avoid LangChain handling

    const initialPromptTokens = this.maxContextTokens - remainingContextTokens;
    this.options.debug && console.debug(`initialPromptTokens: ${initialPromptTokens}`);

    const llm = this.initializeLLM({
      model: OPENAI_SUMMARY_MODEL,
      temperature: 0.2,
      context: 'summary',
      tokenBuffer: initialPromptTokens,
    });

    try {
      const summaryMessage = await summaryBuffer({
        llm,
        debug: this.options.debug,
        prompt,
        context,
        formatOptions: {
          userName: this.options?.name,
          assistantName: this.options?.chatGptLabel ?? this.options?.modelLabel,
        },
        previous_summary: this.previous_summary?.summary,
        signal: this.abortController.signal,
      });

      const summaryTokenCount = this.getTokenCountForMessage(summaryMessage);

      if (this.options.debug) {
        console.debug('summaryMessage:', summaryMessage);
        console.debug(
          `remainingContextTokens: ${remainingContextTokens}, after refining: ${
            remainingContextTokens - summaryTokenCount
          }`,
        );
      }

      return { summaryMessage, summaryTokenCount };
    } catch (e) {
      if (e?.message?.toLowerCase()?.includes('abort')) {
        this.options.debug && console.debug('Aborted summarization');
        const { run, runId } = this.runManager.getRunByConversationId(this.conversationId);
        if (run && run.error) {
          const { error } = run;
          this.runManager.removeRun(runId);
          throw new Error(error);
        }
      }
      console.error('Error summarizing messages');
      this.options.debug && console.error(e);
      return {};
    }
  }

  async recordTokenUsage({ promptTokens, completionTokens }) {
    if (this.options.debug) {
      console.debug('promptTokens', promptTokens);
      console.debug('completionTokens', completionTokens);
    }
    await spendTokens(
      {
        user: this.user,
        model: this.modelOptions.model,
        context: 'message',
        conversationId: this.conversationId,
      },
      { promptTokens, completionTokens },
    );
  }
}

module.exports = OpenAIClient;