import gradio as gr import spacy import medspacy from medspacy.visualization import visualize_dep, visualize_ent from spacy import displacy med_ner = medspacy.load(r"./model-best") def merge_tokens(tokens): merged_tokens = [] for token in tokens: if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]): # If current token continues the entity of the last one, merge them last_token = merged_tokens[-1] last_token['word'] += token['word'].replace('##', '') last_token['end'] = token['end'] # last_token['score'] = (last_token['score'] + token['score']) / 2 else: # Otherwise, add the token to the list merged_tokens.append(token) return merged_tokens def ner(inp): output = med_ner(inp) formatted_ents = [] for i in output.ents: ent = {} ent['entity']= i.label_ ent['word']= i.text ent['start']= int(i.start_char) ent['end']= int(i.end_char) print(i.label_,"->",i.text,"->",i.start_char,"->",i.end_char,"->",type(i.start_char)) formatted_ents.append(ent) print(formatted_ents) merged_tokens = merge_tokens(formatted_ents) # return {"text": str(inp), "entities": formatted_ents} return {"text": str(inp), "entities": merged_tokens} demo = gr.Interface(fn=ner, inputs=[gr.Textbox(label="Text to find entities", lines=2)], outputs=[gr.HighlightedText(label="Text with entites")], title="Custom-NER with Spacy3 and MedSpacy with v2 model", description="Find medical entities using the NER model under the hood!", allow_flagging = True, examples=["Patient has hx of stroke. Mother diagnosed with diabetes. No evidence of pna.", "I have fever and cough since 2 days."] ) demo.launch()