Spaces:
Runtime error
Runtime error
| from transformers import Wav2Vec2ForCTC, AutoProcessor | |
| import torch | |
| from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor | |
| import time | |
| import gradio as gr | |
| import librosa | |
| model_id = "facebook/mms-1b-all" | |
| processor = AutoProcessor.from_pretrained(model_id) | |
| model = Wav2Vec2ForCTC.from_pretrained(model_id) | |
| model_id_lid = "facebook/mms-lid-126" | |
| processor_lid = AutoFeatureExtractor.from_pretrained(model_id_lid) | |
| model_lid = Wav2Vec2ForSequenceClassification.from_pretrained(model_id_lid) | |
| def transcribe(audio): | |
| audio = librosa.load(audio, sr=16_000, mono=True)[0] | |
| inputs = processor(audio, sampling_rate=16_000,return_tensors="pt") | |
| with torch.no_grad(): | |
| tr_start_time = time.time() | |
| outputs = model(**inputs).logits | |
| tr_end_time = time.time() | |
| ids = torch.argmax(outputs, dim=-1)[0] | |
| transcription = processor.decode(ids) | |
| return transcription,(tr_end_time-tr_start_time) | |
| def detect_language(audio): | |
| audio = librosa.load(audio, sr=16_000, mono=True)[0] | |
| # print(audio) | |
| inputs_lid = processor_lid(audio, sampling_rate=16_000, return_tensors="pt") | |
| with torch.no_grad(): | |
| start_time_lid = time.time() | |
| outputs_lid = model_lid(**inputs_lid).logits | |
| end_time = time.time() | |
| # print(end_time-start_time," sec") | |
| lang_id = torch.argmax(outputs_lid, dim=-1)[0].item() | |
| detected_lang = model_lid.config.id2label[lang_id] | |
| print(detected_lang) | |
| return detected_lang, (end_time_lid-start_time_lid) | |
| def transcribe_lang(audio,lang): | |
| audio = librosa.load(audio, sr=16_000, mono=True)[0] | |
| processor.tokenizer.set_target_lang(lang) | |
| model.load_adapter(lang) | |
| print(lang) | |
| inputs = processor(audio, sampling_rate=16_000,return_tensors="pt") | |
| with torch.no_grad(): | |
| tr_start_time = time.time() | |
| outputs = model(**inputs).logits | |
| tr_end_time = time.time() | |
| ids = torch.argmax(outputs, dim=-1)[0] | |
| transcription = processor.decode(ids) | |
| return transcription,(tr_end_time-tr_start_time) | |