Spaces:
Runtime error
Runtime error
File size: 9,699 Bytes
ce70a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
#!/usr/bin/env python3
"""
English Accent Detector - Analyzes speaker's accent from video URLs
"""
from __future__ import annotations
import argparse, random, tempfile
from collections import Counter
from pathlib import Path
import torch
import torchaudio
import gradio as gr
from speechbrain.inference.classifiers import EncoderClassifier
from yt_dlp import YoutubeDL
# βββββββββββββββ Model setup βββββββββββββββ
ACCENT_MODEL_ID = "Jzuluaga/accent-id-commonaccent_ecapa"
LANG_MODEL_ID = "speechbrain/lang-id-voxlingua107-ecapa"
# Force CPU
DEVICE = "cpu"
accent_clf = EncoderClassifier.from_hparams(
source=ACCENT_MODEL_ID,
run_opts={"device": DEVICE}
)
lang_clf = EncoderClassifier.from_hparams(
source=LANG_MODEL_ID,
run_opts={"device": DEVICE}
)
# βββββββββββββββ Helpers βββββββββββββββ
def sec_to_hms(sec: int) -> str:
h = sec // 3600
m = (sec % 3600) // 60
s = sec % 60
return f"{h:02d}:{m:02d}:{s:02d}"
def download_audio(url: str, out_path: Path) -> Path:
"""
Download best audio only via yt_dlp Python API.
Returns the actual file saved (could be .m4a, .webm, etc.).
"""
opts = {
"format": "bestaudio/best",
"outtmpl": str(out_path.with_suffix(".%(ext)s")),
"postprocessors": [],
"quiet": True,
}
with YoutubeDL(opts) as ydl:
info = ydl.extract_info(url, download=True)
filename = ydl.prepare_filename(info)
return Path(filename)
def extract_wav(src: Path, dst: Path, start: int, dur: int = 8) -> None:
target_sr = 16000
offset = start * target_sr
frames = dur * target_sr
wav, orig_sr = torchaudio.load(str(src),
frame_offset=offset,
num_frames=frames)
if orig_sr != target_sr:
wav = torchaudio.transforms.Resample(orig_sr, target_sr)(wav)
torchaudio.save(str(dst), wav, target_sr,
encoding="PCM_S", bits_per_sample=16)
def pick_random_offsets(total_s: int, n: int) -> list[int]:
max_start = total_s - 8
pool = list(range(max_start + 1))
if n > len(pool):
n = len(pool)
return random.sample(pool, n)
# βββββββββββββββ Classification βββββββββββββββ
def classify_language(wav: Path) -> tuple[str, float]:
sig = lang_clf.load_audio(str(wav))
_, log_p, _, label = lang_clf.classify_batch(sig)
return label[0], float(log_p.exp().item()) * 100
def classify_accent(wav: Path) -> tuple[str, float]:
sig = accent_clf.load_audio(str(wav))
_, log_p, _, label = accent_clf.classify_batch(sig)
return label[0], float(log_p.item()) * 100
def calculate_english_confidence(lang: str, lang_conf: float, accent_conf: float) -> float:
"""
Calculate overall English accent confidence score (0-100%)
"""
if not lang.lower().startswith("en"):
return 0.0
# Combine language confidence and accent confidence
# Weight language detection more heavily as it's the primary filter
english_score = (lang_conf * 0.7) + (accent_conf * 0.3)
return min(100.0, max(0.0, english_score))
# βββββββββββββββ Core pipeline βββββββββββββββ
def analyse_accent(url: str, n_samples: int = 4) -> dict:
"""
Main function to analyze accent from video URL
"""
if not url:
return {"error": "Please provide a video URL."}
if n_samples < 1:
return {"error": "Number of samples must be at least 1."}
with tempfile.TemporaryDirectory() as td:
td = Path(td)
try:
# 1) Download audio from video
audio_file = td / "audio"
audio_file = download_audio(url, audio_file)
# 2) Read metadata for total seconds
info = torchaudio.info(str(audio_file))
total_s = int(info.num_frames / info.sample_rate)
if total_s < 8:
return {"error": "Audio shorter than 8 seconds."}
# 3) Language detection on middle slice
mid_start = max(0, total_s // 2 - 4)
lang_wav = td / "lang_check.wav"
extract_wav(audio_file, lang_wav, start=mid_start)
lang, lang_conf = classify_language(lang_wav)
# 4) Check if English is detected
is_english = lang.lower().startswith("en")
if not is_english:
return {
"is_english_speaker": False,
"detected_language": lang,
"language_confidence": round(lang_conf, 1),
"accent_classification": "N/A",
"english_confidence_score": 0.0,
"summary": f"Non-English language detected: {lang} ({lang_conf:.1f}%)"
}
# 5) Accent analysis on multiple random slices
offsets = pick_random_offsets(total_s, n_samples)
accent_results = []
for i, start in enumerate(sorted(offsets)):
clip_wav = td / f"clip_{i}.wav"
extract_wav(audio_file, clip_wav, start=start)
acc, conf = classify_accent(clip_wav)
accent_results.append({
"clip": i + 1,
"time_range": f"{sec_to_hms(start)} - {sec_to_hms(start + 8)}",
"accent": acc,
"confidence": round(conf, 1),
})
# 6) Determine overall accent classification
accent_labels = [r["accent"] for r in accent_results]
accent_counter = Counter(accent_labels)
most_common_accent, accent_count = accent_counter.most_common(1)[0]
# Calculate average confidence for the most common accent
matching_confidences = [r["confidence"] for r in accent_results
if r["accent"] == most_common_accent]
avg_accent_conf = sum(matching_confidences) / len(matching_confidences)
# Calculate overall English confidence score
english_confidence = calculate_english_confidence(lang, lang_conf, avg_accent_conf)
return {
"is_english_speaker": True,
"detected_language": "English",
"language_confidence": round(lang_conf, 1),
"accent_classification": most_common_accent,
"accent_confidence": round(avg_accent_conf, 1),
"english_confidence_score": round(english_confidence, 1),
"samples_analyzed": len(accent_results),
"consensus": f"{accent_count}/{n_samples} samples",
"detailed_results": accent_results,
"summary": (
f"English speaker detected with {most_common_accent} accent "
f"(confidence: {english_confidence:.1f}%)"
)
}
except Exception as e:
return {"error": f"Processing failed: {str(e)}"}
# βββββββββββββββ Gradio UI βββββββββββββββ
def app():
with gr.Blocks(title="English Accent Detector") as demo:
gr.Markdown(
"# ποΈ English Accent Detector\n"
"**Analyze speaker's accent from video URLs**\n\n"
"This tool:\n"
"1. Accepts public video URLs (YouTube, Loom, direct MP4 links)\n"
"2. Extracts audio from the video\n"
"3. Analyzes if the speaker is an English language candidate\n"
"4. Classifies the accent type and provides confidence scores\n"
)
with gr.Row():
with gr.Column():
url_input = gr.Text(
label="Video URL",
placeholder="Enter public video URL (YouTube, Loom, etc.)",
lines=1
)
samples_input = gr.Slider(
minimum=1,
maximum=10,
value=4,
step=1,
label="Number of audio samples to analyze",
info="More samples = more accurate but slower"
)
analyze_btn = gr.Button("π Analyze Accent", variant="primary")
with gr.Column():
result_output = gr.JSON(
label="Analysis Results",
show_label=True
)
# Examples
gr.Markdown("### Example URLs to try:")
gr.Examples(
examples=[
["https://www.youtube.com/watch?v=dQw4w9WgXcQ", 4],
["https://www.youtube.com/shorts/VO6n9GTzSqU", 4],
],
inputs=[url_input, samples_input],
label="Click to load example"
)
analyze_btn.click(
fn=analyse_accent,
inputs=[url_input, samples_input],
outputs=result_output
)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="English Accent Detector")
parser.add_argument("--share", action="store_true",
help="Enable public share link")
parser.add_argument("--port", type=int, default=7860,
help="Port to run the server on")
args = parser.parse_args()
demo = app()
demo.launch(share=args.share, server_port=args.port) |