Spaces:
Sleeping
Sleeping
File size: 9,469 Bytes
da1806c 620656a da1806c 620656a da1806c 620656a da1806c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
#!/usr/bin/env python3
"""
English Accent Detector - Analyzes speaker's accent from video URLs
"""
from __future__ import annotations
import argparse
import random
import tempfile
from collections import Counter
from pathlib import Path
import time
import torch
import torchaudio
import gradio as gr
from speechbrain.inference.classifiers import EncoderClassifier
from yt_dlp import YoutubeDL
from huggingface_hub.utils import LocalEntryNotFoundError
# βββββββββββββββ Model setup (with retry) βββββββββββββββ
ACCENT_MODEL_ID = "Jzuluaga/accent-id-commonaccent_ecapa"
LANG_MODEL_ID = "speechbrain/lang-id-voxlingua107-ecapa"
DEVICE = "cpu" # force CPU; Spaces' free tier has no GPU
def load_with_retry(model_id: str, tries: int = 5, backoff: int = 5):
"""Download model weights with exponential-backoff retry."""
for attempt in range(1, tries + 1):
try:
return EncoderClassifier.from_hparams(
source=model_id,
run_opts={"device": DEVICE},
)
except LocalEntryNotFoundError:
if attempt == tries:
raise
wait = backoff * attempt
print(f"[{model_id}] download failed (try {attempt}/{tries}), retrying in {wait}s")
time.sleep(wait)
accent_clf = load_with_retry(ACCENT_MODEL_ID)
lang_clf = load_with_retry(LANG_MODEL_ID)
# βββββββββββββββ Helpers βββββββββββββββ
def sec_to_hms(sec: int) -> str:
h = sec // 3600
m = (sec % 3600) // 60
s = sec % 60
return f"{h:02d}:{m:02d}:{s:02d}"
def download_audio(url: str, out_path: Path) -> Path:
"""
Download best audio via yt_dlp, always using cookies.txt in the repo root.
"""
repo_root = Path(__file__).parent
cookie_path = repo_root / "cookies.txt"
if not cookie_path.is_file() or cookie_path.stat().st_size == 0:
raise FileNotFoundError(
f"No valid cookies.txt found at {cookie_path}. "
f"Make sure you uploaded your Netscape-format cookie jar."
)
opts = {
"format": "bestaudio/best",
"outtmpl": str(out_path.with_suffix(".%(ext)s")),
"cookiefile": str(cookie_path),
"quiet": True,
}
print(f"[download_audio] using cookiefile: {opts['cookiefile']}")
with YoutubeDL(opts) as ydl:
info = ydl.extract_info(url, download=True)
filename = ydl.prepare_filename(info)
return Path(filename)
def extract_wav(src: Path, dst: Path, start: int, dur: int = 8) -> None:
target_sr = 16000
offset = start * target_sr
frames = dur * target_sr
wav, orig_sr = torchaudio.load(str(src), frame_offset=offset, num_frames=frames)
if orig_sr != target_sr:
wav = torchaudio.transforms.Resample(orig_sr, target_sr)(wav)
torchaudio.save(str(dst), wav, target_sr, encoding="PCM_S", bits_per_sample=16)
def pick_random_offsets(total_s: int, n: int) -> list[int]:
max_start = total_s - 8
pool = list(range(max_start + 1))
if n > len(pool):
n = len(pool)
return random.sample(pool, n)
# βββββββββββββββ Classification βββββββββββββββ
def classify_language(wav: Path) -> tuple[str, float]:
sig = lang_clf.load_audio(str(wav))
_, log_p, _, label = lang_clf.classify_batch(sig)
return label[0], float(log_p.exp().item()) * 100
def classify_accent(wav: Path) -> tuple[str, float]:
sig = accent_clf.load_audio(str(wav))
_, log_p, _, label = accent_clf.classify_batch(sig)
return label[0], float(log_p.item()) * 100
def calculate_english_confidence(lang: str, lang_conf: float, accent_conf: float) -> float:
if not lang.lower().startswith("en"):
return 0.0
english_score = (lang_conf * 0.7) + (accent_conf * 0.3)
return min(100.0, max(0.0, english_score))
# βββββββββββββββ Core pipeline βββββββββββββββ
def analyse_accent(url: str, n_samples: int = 4) -> dict:
if not url:
return {"error": "Please provide a video URL."}
if n_samples < 1:
return {"error": "Number of samples must be at least 1."}
with tempfile.TemporaryDirectory() as td:
td = Path(td)
try:
# 1) Download audio
audio_file = download_audio(url, td / "audio")
info = torchaudio.info(str(audio_file))
total_s = int(info.num_frames / info.sample_rate)
if total_s < 8:
return {"error": "Audio shorter than 8 seconds."}
# 2) Language detection
mid_start = max(0, total_s // 2 - 4)
lang_wav = td / "lang_check.wav"
extract_wav(audio_file, lang_wav, start=mid_start)
lang, lang_conf = classify_language(lang_wav)
is_english = lang.lower().startswith("en")
if not is_english:
return {
"is_english_speaker": False,
"detected_language": lang,
"language_confidence": round(lang_conf, 1),
"accent_classification": "N/A",
"english_confidence_score": 0.0,
"summary": f"Non-English language detected: {lang} ({lang_conf:.1f}%)"
}
# 3) Accent analysis
offsets = pick_random_offsets(total_s, n_samples)
accent_results = []
for i, start in enumerate(sorted(offsets)):
clip_wav = td / f"clip_{i}.wav"
extract_wav(audio_file, clip_wav, start=start)
acc, conf = classify_accent(clip_wav)
accent_results.append({
"clip": i + 1,
"time_range": f"{sec_to_hms(start)} - {sec_to_hms(start + 8)}",
"accent": acc,
"confidence": round(conf, 1),
})
# 4) Aggregate results
labels = [r["accent"] for r in accent_results]
most_common_accent, count = Counter(labels).most_common(1)[0]
confs = [r["confidence"] for r in accent_results if r["accent"] == most_common_accent]
avg_conf = sum(confs) / len(confs)
eng_conf = calculate_english_confidence(lang, lang_conf, avg_conf)
return {
"is_english_speaker": True,
"detected_language": "English",
"language_confidence": round(lang_conf, 1),
"accent_classification": most_common_accent,
"accent_confidence": round(avg_conf, 1),
"english_confidence_score": round(eng_conf, 1),
"samples_analyzed": len(accent_results),
"consensus": f"{count}/{n_samples} samples",
"detailed_results": accent_results,
"summary": (
f"English speaker detected with {most_common_accent} accent "
f"(confidence: {eng_conf:.1f}%)"
)
}
except Exception as e:
return {"error": f"Processing failed: {e}"}
# βββββββββββββββ Gradio UI βββββββββββββββ
def app():
with gr.Blocks(title="English Accent Detector") as demo:
gr.Markdown(
"# ποΈ English Accent Detector\n"
"**Analyze speaker's accent from video URLs**\n\n"
"This tool:\n"
"1. Accepts public video URLs (YouTube, Loom, direct MP4 links)\n"
"2. Extracts audio from the video\n"
"3. Analyzes if the speaker is an English language candidate\n"
"4. Classifies the accent type and provides confidence scores\n"
)
with gr.Row():
with gr.Column():
url_input = gr.Text(
label="Video URL",
placeholder="Enter public video URL (YouTube, Loom, etc.)",
lines=1
)
samples_input = gr.Slider(
minimum=1,
maximum=10,
value=4,
step=1,
label="Number of audio samples to analyze",
info="More samples = more accurate but slower"
)
analyze_btn = gr.Button("π Analyze Accent", variant="primary")
with gr.Column():
result_output = gr.JSON(label="Analysis Results")
gr.Markdown("### Example URLs to try:")
gr.Examples(
examples=[
["https://www.youtube.com/watch?v=dQw4w9WgXcQ", 4],
["https://www.youtube.com/shorts/VO6n9GTzSqU", 4],
],
inputs=[url_input, samples_input],
label="Click to load example"
)
analyze_btn.click(
fn=analyse_accent,
inputs=[url_input, samples_input],
outputs=result_output
)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="English Accent Detector")
parser.add_argument(
"--port", type=int, default=7860,
help="Port to run the server on"
)
args = parser.parse_args()
demo = app()
# On Hugging Face Spaces, a public URL is provided automatically
demo.launch(server_port=args.port)
|