File size: 41,751 Bytes
b355f13 af1dfde e66683b af1dfde 912fb34 b355f13 505b3b7 8359aa8 d14a34d 912fb34 8359aa8 5e6d596 8359aa8 fdaf769 5e6d596 fdaf769 8359aa8 5e6d596 b355f13 912fb34 51d2b4c 912fb34 51d2b4c 912fb34 505b3b7 912fb34 505b3b7 912fb34 505b3b7 912fb34 505b3b7 d14a34d 505b3b7 d14a34d 505b3b7 912fb34 505b3b7 912fb34 505b3b7 912fb34 505b3b7 912fb34 505b3b7 d14a34d 505b3b7 d14a34d 505b3b7 912fb34 505b3b7 912fb34 505b3b7 912fb34 a152ed7 ee9d69c b355f13 37f4fbc b355f13 912fb34 505b3b7 912fb34 b355f13 912fb34 b355f13 d14a34d 912fb34 5e6d596 912fb34 505b3b7 912fb34 505b3b7 912fb34 d14a34d 912fb34 505b3b7 912fb34 505b3b7 912fb34 d14a34d a152ed7 d14a34d a152ed7 d14a34d a152ed7 d14a34d a152ed7 d14a34d ee9d69c d14a34d 912fb34 505b3b7 d14a34d 43149ec d0693a3 505b3b7 da327c1 51d2b4c da327c1 505b3b7 da327c1 919b41c da327c1 505b3b7 da327c1 505b3b7 da327c1 505b3b7 da327c1 28b8ad7 da327c1 5e6d596 da327c1 ee9d69c da327c1 ee9d69c da327c1 28b8ad7 ee9d69c 28b8ad7 ee9d69c da327c1 505b3b7 da327c1 505b3b7 da327c1 505b3b7 5e6d596 d14a34d da327c1 505b3b7 912fb34 5e6d596 912fb34 84c1a07 912fb34 5e6d596 912fb34 84c1a07 912fb34 ee9d69c 37f4fbc ee9d69c 912fb34 5e6d596 912fb34 af1dfde 3d6ef7d af1dfde e66683b da327c1 b355f13 e66683b 912fb34 0cb8324 5e6d596 0cb8324 b355f13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 |
import os
import sys
from dotenv import load_dotenv
import gradio as gr
from typing import Optional, Dict, List, Union
import logging
# Custom CSS
CUSTOM_CSS = """
.footer {
text-align: center !important;
padding: 20px !important;
margin-top: 40px !important;
border-top: 1px solid #404040 !important;
color: #89CFF0 !important;
font-size: 1.1em !important;
}
.gradio-container {
max-width: 1200px !important;
margin: auto !important;
padding: 20px !important;
background-color: #1a1a1a !important;
color: #ffffff !important;
}
.main-header {
background: linear-gradient(135deg, #1e3c72 0%, #2a5298 100%) !important;
color: white !important;
padding: 30px !important;
border-radius: 15px !important;
margin-bottom: 30px !important;
text-align: center !important;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2) !important;
}
.app-title {
font-size: 2.5em !important;
font-weight: bold !important;
margin-bottom: 10px !important;
background: linear-gradient(90deg, #ffffff, #3498DB) !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3) !important;
}
.app-subtitle {
font-size: 1.3em !important;
color: #89CFF0 !important;
margin-bottom: 15px !important;
font-weight: 500 !important;
}
.app-description {
font-size: 1.1em !important;
color: #B0C4DE !important;
margin-bottom: 20px !important;
line-height: 1.5 !important;
}
.gr-checkbox-group {
background: #363636 !important;
padding: 15px !important;
border-radius: 10px !important;
margin: 10px 0 !important;
}
.gr-slider {
margin-top: 10px !important;
}
.status-message {
margin-top: 10px !important;
padding: 8px !important;
border-radius: 4px !important;
background-color: #2d2d2d !important;
}
.result-box {
background: #363636 !important;
border: 1px solid #404040 !important;
border-radius: 10px !important;
padding: 20px !important;
margin-top: 15px !important;
color: #ffffff !important;
}
.chart-container {
background: #2d2d2d !important;
padding: 20px !important;
border-radius: 10px !important;
box-shadow: 0 2px 4px rgba(0,0,0,0.2) !important;
color: #ffffff !important;
}
.action-button {
background: #3498DB !important;
color: white !important;
border: none !important;
padding: 10px 20px !important;
border-radius: 5px !important;
cursor: pointer !important;
transition: all 0.3s ease !important;
}
.action-button:hover {
background: #2980B9 !important;
transform: translateY(-2px) !important;
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
}
"""
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# Constants
MAX_FILE_SIZE = 50 * 1024 * 1024 # 50MB
ALLOWED_EXTENSIONS = {'.xlsx', '.xls', '.csv'}
import pandas as pd
import google.generativeai as genai
import joblib
from reportlab.lib import colors
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, Image
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
import plotly.express as px
import plotly.graph_objects as go
import tempfile
from datetime import datetime
import numpy as np
from xgboost import XGBRegressor
# Configure Gemini API
GEMINI_API_KEY = os.getenv("gemini_api")
genai.configure(api_key=GEMINI_API_KEY)
generation_config = {
"temperature": 1,
"top_p": 0.95,
"top_k": 64,
"max_output_tokens": 8192,
"response_mime_type": "text/plain",
}
model = genai.GenerativeModel(
model_name="gemini-2.0-pro-exp-02-05",
generation_config=generation_config,
)
chat_model = genai.GenerativeModel('"gemini-2.0-pro-exp-02-05"')
class SupplyChainState:
def __init__(self):
self.sales_df = None
self.supplier_df = None
self.text_data = None
self.chat_history = []
self.analysis_results = {}
self.freight_predictions = []
try:
self.freight_model = create_initial_model()
except Exception as e:
print(f"Warning: Could not create freight prediction model: {e}")
self.freight_model = None
def create_initial_model():
n_samples = 1000
np.random.seed(42)
data = {
'weight (kilograms)': np.random.uniform(100, 10000, n_samples),
'line item value': np.random.uniform(1000, 1000000, n_samples),
'cost per kilogram': np.random.uniform(1, 500, n_samples),
'shipment mode_Air Charter_weight': np.zeros(n_samples),
'shipment mode_Ocean_weight': np.zeros(n_samples),
'shipment mode_Truck_weight': np.zeros(n_samples),
'shipment mode_Air Charter_line_item_value': np.zeros(n_samples),
'shipment mode_Ocean_line_item_value': np.zeros(n_samples),
'shipment mode_Truck_line_item_value': np.zeros(n_samples)
}
modes = ['Air', 'Ocean', 'Truck']
for i in range(n_samples):
mode = np.random.choice(modes)
if mode == 'Air':
data['shipment mode_Air Charter_weight'][i] = data['weight (kilograms)'][i]
data['shipment mode_Air Charter_line_item_value'][i] = data['line item value'][i]
elif mode == 'Ocean':
data['shipment mode_Ocean_weight'][i] = data['weight (kilograms)'][i]
data['shipment mode_Ocean_line_item_value'][i] = data['line item value'][i]
else:
data['shipment mode_Truck_weight'][i] = data['weight (kilograms)'][i]
data['shipment mode_Truck_line_item_value'][i] = data['line item value'][i]
df = pd.DataFrame(data)
base_cost = (df['weight (kilograms)'] * df['cost per kilogram'] * 0.8 +
df['line item value'] * 0.02)
air_multiplier = 1.5
ocean_multiplier = 0.8
truck_multiplier = 1.0
freight_cost = (
base_cost * (air_multiplier * (df['shipment mode_Air Charter_weight'] > 0) +
ocean_multiplier * (df['shipment mode_Ocean_weight'] > 0) +
truck_multiplier * (df['shipment mode_Truck_weight'] > 0))
)
freight_cost = freight_cost + np.random.normal(0, freight_cost * 0.1)
model = XGBRegressor(n_estimators=100, learning_rate=0.1, max_depth=5, random_state=42)
model.fit(df, freight_cost)
return model
def process_uploaded_data(state, sales_file, supplier_file, text_data):
try:
if sales_file is not None:
file_ext = os.path.splitext(sales_file.name)[1].lower()
if file_ext not in ['.xlsx', '.xls', '.csv']:
return 'β Error: Sales data must be in Excel (.xlsx, .xls) or CSV format'
try:
if file_ext == '.csv':
state.sales_df = pd.read_csv(sales_file.name)
else:
state.sales_df = pd.read_excel(sales_file.name)
except Exception as e:
return f'β Error reading sales data: {str(e)}'
if supplier_file is not None:
file_ext = os.path.splitext(supplier_file.name)[1].lower()
if file_ext not in ['.xlsx', '.xls', '.csv']:
return 'β Error: Supplier data must be in Excel (.xlsx, .xls) or CSV format'
try:
if file_ext == '.csv':
state.supplier_df = pd.read_csv(supplier_file.name)
else:
state.supplier_df = pd.read_excel(supplier_file.name)
except Exception as e:
return f'β Error reading supplier data: {str(e)}'
state.text_data = text_data
return "β
Data processed successfully"
except Exception as e:
return f'β Error processing data: {str(e)}'
def perform_demand_forecasting(state):
if state.sales_df is None:
return "Error: No sales data provided", None, "Please upload sales data first"
try:
sales_summary = state.sales_df.describe().to_string()
prompt = f"""Analyze the following sales data summary and provide:
1. A detailed demand forecast for the next quarter
2. Key trends and seasonality patterns
3. Actionable recommendations
Data Summary:
{sales_summary}
Please structure your response with clear sections for Forecast, Trends, and Recommendations."""
response = model.generate_content(prompt)
analysis_text = response.text
fig = px.line(state.sales_df, title='Historical Sales Data and Forecast')
fig.update_layout(
template='plotly_dark',
title_x=0.5,
title_font_size=20,
showlegend=True,
hovermode='x',
paper_bgcolor='#2d2d2d',
plot_bgcolor='#363636',
font=dict(color='white')
)
return analysis_text, fig, "β
Analysis completed successfully"
except Exception as e:
return f"β Error in demand forecasting: {str(e)}", None, "Analysis failed"
def perform_risk_assessment(state):
if state.supplier_df is None:
return "Error: No supplier data provided", None, "Please upload supplier data first"
try:
supplier_summary = state.supplier_df.describe().to_string()
prompt = f"""Perform a comprehensive risk assessment based on:
Supplier Data Summary:
{supplier_summary}
Additional Context:
{state.text_data if state.text_data else 'No additional context provided'}
Please provide:
1. Risk scoring for each supplier
2. Identified risk factors
3. Mitigation recommendations"""
response = model.generate_content(prompt)
analysis_text = response.text
fig = px.scatter(state.supplier_df, title='Supplier Risk Assessment')
fig.update_layout(
template='plotly_dark',
title_x=0.5,
title_font_size=20,
showlegend=True,
hovermode='closest',
paper_bgcolor='#2d2d2d',
plot_bgcolor='#363636',
font=dict(color='white')
)
return analysis_text, fig, "β
Risk assessment completed"
except Exception as e:
return f"β Error in risk assessment: {str(e)}", None, "Assessment failed"
def perform_inventory_optimization(state):
if state.sales_df is None:
return "Error: No sales data provided", None, "Please upload sales data first"
try:
inventory_summary = state.sales_df.describe().to_string()
prompt = f"""Analyze the following inventory data and provide:
1. Optimal inventory levels
2. Reorder points
3. Safety stock recommendations
4. ABC analysis insights
Data Summary:
{inventory_summary}
Additional Context:
{state.text_data if state.text_data else 'No additional context provided'}
Please structure your response with clear sections for each aspect."""
response = model.generate_content(prompt)
analysis_text = response.text
fig = go.Figure()
if 'quantity' in state.sales_df.columns:
fig.add_trace(go.Scatter(
y=state.sales_df['quantity'],
name='Inventory Level',
line=dict(color='#3498DB')
))
fig.update_layout(
title='Inventory Level Analysis',
template='plotly_dark',
title_x=0.5,
title_font_size=20,
showlegend=True,
hovermode='x',
paper_bgcolor='#2d2d2d',
plot_bgcolor='#363636',
font=dict(color='white')
)
return analysis_text, fig, "β
Inventory optimization completed"
except Exception as e:
return f"β Error in inventory optimization: {str(e)}", None, "Analysis failed"
def perform_supplier_performance(state):
if state.supplier_df is None:
return "Error: No supplier data provided", None, "Please upload supplier data first"
try:
supplier_summary = state.supplier_df.describe().to_string()
prompt = f"""Analyze supplier performance based on:
Supplier Data Summary:
{supplier_summary}
Additional Context:
{state.text_data if state.text_data else 'No additional context provided'}
Please provide:
1. Supplier performance metrics
2. Performance rankings
3. Areas for improvement
4. Supplier development recommendations"""
response = model.generate_content(prompt)
analysis_text = response.text
if 'performance_score' in state.supplier_df.columns:
fig = px.box(state.supplier_df, y='performance_score',
title='Supplier Performance Distribution')
else:
fig = go.Figure(data=[
go.Bar(name='On-Time Delivery', x=['Supplier A', 'Supplier B', 'Supplier C'],
y=[95, 87, 92]),
go.Bar(name='Quality Score', x=['Supplier A', 'Supplier B', 'Supplier C'],
y=[88, 94, 90])
])
fig.update_layout(
template='plotly_dark',
title_x=0.5,
title_font_size=20,
showlegend=True,
paper_bgcolor='#2d2d2d',
plot_bgcolor='#363636',
font=dict(color='white')
)
return analysis_text, fig, "β
Supplier performance analysis completed"
except Exception as e:
return f"β Error in supplier performance analysis: {str(e)}", None, "Analysis failed"
def perform_sustainability_analysis(state):
if state.supplier_df is None and state.sales_df is None:
return "Error: No data provided", None, "Please upload data first"
try:
data_summary = ""
if state.supplier_df is not None:
data_summary += f"Supplier Data Summary:\n{state.supplier_df.describe().to_string()}\n\n"
if state.sales_df is not None:
data_summary += f"Sales Data Summary:\n{state.sales_df.describe().to_string()}"
prompt = f"""Perform a comprehensive sustainability analysis:
Data Summary:
{data_summary}
Additional Context:
{state.text_data if state.text_data else 'No additional context provided'}
Please provide:
1. Carbon footprint analysis
2. Environmental impact metrics
3. Sustainability recommendations
4. Green initiative opportunities
5. ESG performance indicators"""
response = model.generate_content(prompt)
analysis_text = response.text
fig = go.Figure()
categories = ['Carbon Emissions', 'Water Usage', 'Waste Reduction',
'Energy Efficiency', 'Green Transportation']
current_scores = [75, 82, 68, 90, 60]
target_scores = [100, 100, 100, 100, 100]
fig.add_trace(go.Scatterpolar(
r=current_scores,
theta=categories,
fill='toself',
name='Current Performance'
))
fig.add_trace(go.Scatterpolar(
r=target_scores,
theta=categories,
fill='toself',
name='Target'
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 100]
)),
showlegend=True,
title='Sustainability Performance Metrics',
template='plotly_dark',
title_x=0.5,
title_font_size=20,
paper_bgcolor='#2d2d2d',
plot_bgcolor='#363636',
font=dict(color='white')
)
return analysis_text, fig, "β
Sustainability analysis completed"
except Exception as e:
return f"β Error in sustainability analysis: {str(e)}", None, "Analysis failed"
def calculate_shipping_cost(base_cost, params):
"""Calculate total shipping cost with all factors"""
total_cost = base_cost
# Fuel surcharge
fuel_charge = base_cost * (params['fuel_surcharge'] / 100)
# Insurance
insurance = params['line_item_value'] * (params['insurance_rate'] / 100)
# Customs duty
duty = params['line_item_value'] * (params['customs_duty'] / 100)
# Special handling charges
handling_charges = 0
handling_rates = {
"Temperature Controlled": 0.15,
"Hazardous Materials": 0.25,
"Fragile Items": 0.10,
"Express Delivery": 0.20,
"Door-to-Door Service": 0.15
}
for requirement in params['special_handling']:
if requirement in handling_rates:
handling_charges += base_cost * handling_rates[requirement]
# Distance-based charge
distance_rate = {
"Air": 0.1,
"Ocean": 0.05,
"Truck": 0.15
}
distance_charge = params['distance'] * distance_rate[params['shipment_mode']]
# Time-based charge
transit_charge = params['transit_time'] * (base_cost * 0.01)
total_cost = base_cost + fuel_charge + insurance + duty + handling_charges + distance_charge + transit_charge
return {
'base_cost': round(base_cost, 2),
'fuel_charge': round(fuel_charge, 2),
'insurance': round(insurance, 2),
'customs_duty': round(duty, 2),
'handling_charges': round(handling_charges, 2),
'distance_charge': round(distance_charge, 2),
'transit_charge': round(transit_charge, 2),
'total_cost': round(total_cost, 2)
}
def predict_freight_cost(state, params):
"""Predict freight cost with enhanced parameters"""
if state.freight_model is None:
return "Error: Freight prediction model not loaded"
try:
# Clean shipment mode string
mode = params['shipment_mode'].replace("βοΈ ", "").replace("π’ ", "").replace("π ", "")
# Prepare features for the model
features = {
'weight (kilograms)': params['weight'],
'line item value': params['line_item_value'],
'cost per kilogram': params['cost_per_kg'],
'shipment mode_Air Charter_weight': params['weight'] if mode == "Air" else 0,
'shipment mode_Ocean_weight': params['weight'] if mode == "Ocean" else 0,
'shipment mode_Truck_weight': params['weight'] if mode == "Truck" else 0,
'shipment mode_Air Charter_line_item_value': params['line_item_value'] if mode == "Air" else 0,
'shipment mode_Ocean_line_item_value': params['line_item_value'] if mode == "Ocean" else 0,
'shipment mode_Truck_line_item_value': params['line_item_value'] if mode == "Truck" else 0
}
input_data = pd.DataFrame([features])
base_prediction = state.freight_model.predict(input_data)[0]
# Calculate total cost with all factors
cost_breakdown = calculate_shipping_cost(base_prediction, params)
return cost_breakdown
except Exception as e:
return f"Error making prediction: {str(e)}"
if state.freight_model is None:
return "Error: Freight prediction model not loaded"
try:
# Set weights based on mode
if "Air" in shipment_mode:
air_charter_weight = weight
air_charter_value = line_item_value
elif "Ocean" in shipment_mode:
ocean_weight = weight
ocean_value = line_item_value
else:
truck_weight = weight
truck_value = line_item_value
features = {
'weight (kilograms)': weight,
'line item value': line_item_value,
'cost per kilogram': cost_per_kg,
'shipment mode_Air Charter_weight': air_charter_weight,
'shipment mode_Ocean_weight': ocean_weight,
'shipment mode_Truck_weight': truck_weight,
'shipment mode_Air Charter_line_item_value': air_charter_value,
'shipment mode_Ocean_line_item_value': ocean_value,
'shipment mode_Truck_line_item_value': truck_value
}
input_data = pd.DataFrame([features])
prediction = state.freight_model.predict(input_data)
return round(float(prediction[0]), 2)
except Exception as e:
return f"Error making prediction: {str(e)}"
if state.freight_model is None:
return "Error: Freight prediction model not loaded"
try:
features = {
'weight (kilograms)': weight,
'line item value': line_item_value,
'cost per kilogram': cost_per_kg,
'shipment mode_Air Charter_weight': air_charter_weight if "Air" in shipment_mode else 0,
'shipment mode_Ocean_weight': ocean_weight if "Ocean" in shipment_mode else 0,
'shipment mode_Truck_weight': truck_weight if "Truck" in shipment_mode else 0,
'shipment mode_Air Charter_line_item_value': air_charter_value if "Air" in shipment_mode else 0,
'shipment mode_Ocean_line_item_value': ocean_value if "Ocean" in shipment_mode else 0,
'shipment mode_Truck_line_item_value': truck_value if "Truck" in shipment_mode else 0
}
input_data = pd.DataFrame([features])
prediction = state.freight_model.predict(input_data)
return round(float(prediction[0]), 2)
except Exception as e:
return f"Error making prediction: {str(e)}"
def chat_with_navigator(state, message):
try:
context = "Available data and analysis:\n"
if state.sales_df is not None:
context += f"- Sales data with {len(state.sales_df)} records\n"
if state.supplier_df is not None:
context += f"- Supplier data with {len(state.supplier_df)} records\n"
if state.text_data:
context += "- Additional context from text data\n"
if state.freight_predictions:
context += f"- Recent freight predictions: {state.freight_predictions[-5:]}\n"
if state.analysis_results:
context += "\nRecent analysis results:\n"
for analysis_type, results in state.analysis_results.items():
context += f"- {analysis_type} completed\n"
prompt = f"""You are SupplyChainAI Navigator's assistant. Help the user with supply chain analysis,
including demand forecasting, risk assessment, and freight cost predictions.
Available Context:
{context}
Chat History:
{str(state.chat_history[-3:]) if state.chat_history else 'No previous messages'}
User message: {message}
Provide a helpful response based on the available data and analysis results."""
response = chat_model.generate_content(prompt)
state.chat_history.append({"role": "user", "content": message})
state.chat_history.append({"role": "assistant", "content": response.text})
return state.chat_history
except Exception as e:
return [{"role": "assistant", "content": f"Error: {str(e)}"}]
def generate_pdf_report(state, analysis_options):
try:
temp_dir = tempfile.mkdtemp()
pdf_path = os.path.join(temp_dir, "supply_chain_report.pdf")
doc = SimpleDocTemplate(pdf_path, pagesize=letter)
styles = getSampleStyleSheet()
story = []
# Create custom title style
title_style = ParagraphStyle(
'CustomTitle',
parent=styles['Heading1'],
fontSize=24,
spaceAfter=30,
textColor=colors.HexColor('#2C3E50')
)
story.append(Paragraph("SupplyChainAI Navigator Report", title_style))
story.append(Spacer(1, 12))
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
story.append(Paragraph(f"Generated on: {timestamp}", styles['Normal']))
story.append(Spacer(1, 20))
if state.analysis_results:
for analysis_type, results in state.analysis_results.items():
if analysis_type in analysis_options:
story.append(Paragraph(analysis_type, styles['Heading2']))
story.append(Spacer(1, 12))
story.append(Paragraph(results['text'], styles['Normal']))
story.append(Spacer(1, 12))
if 'figure' in results:
img_path = os.path.join(temp_dir, f"{analysis_type.lower()}_plot.png")
results['figure'].write_image(img_path)
story.append(Image(img_path, width=400, height=300))
story.append(Spacer(1, 20))
if state.freight_predictions:
story.append(Paragraph("Recent Freight Cost Predictions", styles['Heading2']))
story.append(Spacer(1, 12))
pred_data = [["Prediction #", "Cost (USD)"]]
for i, pred in enumerate(state.freight_predictions[-5:], 1):
pred_data.append([f"Prediction {i}", f"${pred:,.2f}"])
table = Table(pred_data)
table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.HexColor('#3498DB')),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, 0), 14),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('BACKGROUND', (0, 1), (-1, -1), colors.whitesmoke),
('TEXTCOLOR', (0, 1), (-1, -1), colors.black),
('FONTNAME', (0, 1), (-1, -1), 'Helvetica'),
('FONTSIZE', (0, 1), (-1, -1), 12),
('GRID', (0, 0), (-1, -1), 1, colors.black)
]))
story.append(table)
story.append(Spacer(1, 20))
doc.build(story)
return pdf_path
except Exception as e:
print(f"Error generating PDF: {str(e)}")
return None
def run_analyses(state, choices, sales_file, supplier_file, text_data):
results = []
figures = []
status_messages = []
process_status = process_uploaded_data(state, sales_file, supplier_file, text_data)
if "Error" in process_status:
return process_status, None, process_status
for choice in choices:
if "π Demand Forecasting" in choice:
text, fig, status = perform_demand_forecasting(state)
results.append(text)
figures.append(fig)
status_messages.append(status)
if text and fig:
state.analysis_results['Demand Forecasting'] = {'text': text, 'figure': fig}
elif "β οΈ Risk Assessment" in choice:
text, fig, status = perform_risk_assessment(state)
results.append(text)
figures.append(fig)
status_messages.append(status)
if text and fig:
state.analysis_results['Risk Assessment'] = {'text': text, 'figure': fig}
elif "π¦ Inventory Optimization" in choice:
text, fig, status = perform_inventory_optimization(state)
results.append(text)
figures.append(fig)
status_messages.append(status)
if text and fig:
state.analysis_results['Inventory Optimization'] = {'text': text, 'figure': fig}
elif "π€ Supplier Performance" in choice:
text, fig, status = perform_supplier_performance(state)
results.append(text)
figures.append(fig)
status_messages.append(status)
if text and fig:
state.analysis_results['Supplier Performance'] = {'text': text, 'figure': fig}
elif "πΏ Sustainability Analysis" in choice:
text, fig, status = perform_sustainability_analysis(state)
results.append(text)
figures.append(fig)
status_messages.append(status)
if text and fig:
state.analysis_results['Sustainability Analysis'] = {'text': text, 'figure': fig}
combined_results = "\n\n".join(results)
combined_status = "\n".join(status_messages)
final_figure = figures[-1] if figures else None
return combined_results, final_figure, combined_status
def predict_and_store_freight(state, *args):
if len(args) >= 3:
weight, line_item_value, shipment_mode = args[:3]
result = predict_freight_cost(state, weight, line_item_value, 50, shipment_mode)
if isinstance(result, (int, float)):
state.freight_predictions.append(result)
return result
return "Error: Invalid parameters"
def create_interface():
state = SupplyChainState()
with gr.Blocks(css=CUSTOM_CSS, title="SupplyChainAI Navigator") as demo:
# Header
with gr.Row(elem_classes="main-header"):
with gr.Column():
gr.Markdown("# π’ SupplyChainAI Navigator", elem_classes="app-title")
gr.Markdown("### Intelligent Supply Chain Analysis & Optimization", elem_classes="app-subtitle")
gr.Markdown("An AI-powered platform for comprehensive supply chain analytics", elem_classes="app-description")
gr.Markdown("### Created by Aditya Ratan", elem_classes="creator-info")
# Main Content Tabs
with gr.Tabs() as tabs:
# Data Upload Tab
with gr.Tab("π Data Upload", elem_classes="tab-content"):
with gr.Row():
with gr.Column(scale=1):
sales_data_upload = gr.File(
file_types=[".xlsx", ".xls", ".csv"],
label="π Sales Data (Excel or CSV)",
elem_classes="file-upload"
)
gr.Markdown("*Upload sales data in Excel (.xlsx, .xls) or CSV format*", elem_classes="file-instructions")
with gr.Column(scale=1):
supplier_data_upload = gr.File(
file_types=[".xlsx", ".xls", ".csv"],
label="π Supplier Data (Excel or CSV)",
elem_classes="file-upload"
)
gr.Markdown("*Upload supplier data in Excel (.xlsx, .xls) or CSV format*", elem_classes="file-instructions")
with gr.Row():
text_input_area = gr.Textbox(
label="π Additional Context",
placeholder="Add market updates, news, or other relevant information...",
lines=5
)
with gr.Row():
upload_status = gr.Textbox(
label="Status",
elem_classes="status-box"
)
upload_button = gr.Button(
"π Process Data",
variant="primary",
elem_classes="action-button"
)
# Analysis Tab
with gr.Tab("π Analysis", elem_classes="tab-content"):
with gr.Row():
analysis_options = gr.CheckboxGroup(
choices=[
"π Demand Forecasting",
"β οΈ Risk Assessment",
"π¦ Inventory Optimization",
"π€ Supplier Performance",
"πΏ Sustainability Analysis"
],
label="Choose analyses to perform",
value=[]
)
analyze_button = gr.Button(
"π Run Analysis",
variant="primary",
elem_classes="action-button"
)
with gr.Row():
with gr.Column(scale=2):
analysis_output = gr.Textbox(
label="Analysis Results",
elem_classes="result-box"
)
with gr.Column(scale=3):
plot_output = gr.Plot(
label="Visualization",
elem_classes="chart-container"
)
processing_status = gr.Textbox(
label="Processing Status",
elem_classes="status-box"
)
# Cost Prediction Tab
with gr.Tab("π° Cost Prediction", elem_classes="tab-content"):
with gr.Row():
with gr.Column():
shipment_mode = gr.Dropdown(
choices=["βοΈ Air", "π’ Ocean", "π Truck"],
label="Transport Mode",
value="βοΈ Air"
)
# Basic Parameters
weight = gr.Slider(
label="π¦ Weight (kg)",
minimum=1,
maximum=10000,
step=1,
value=1000
)
line_item_value = gr.Slider(
label="π΅ Item Value (USD)",
minimum=1,
maximum=1000000,
step=1,
value=10000
)
cost_per_kg = gr.Slider(
label="π² Base Cost per kg (USD)",
minimum=1,
maximum=500,
step=1,
value=50
)
# Advanced Parameters
gr.Markdown("### Advanced Parameters")
transit_time = gr.Slider(
label="π Transit Time (Days)",
minimum=1,
maximum=60,
step=1,
value=7
)
distance = gr.Slider(
label="π Distance (km)",
minimum=100,
maximum=20000,
step=100,
value=1000
)
fuel_surcharge = gr.Slider(
label="β½ Fuel Surcharge (%)",
minimum=0,
maximum=50,
step=0.5,
value=5
)
# Risk Factors
gr.Markdown("### Risk Factors")
insurance_rate = gr.Slider(
label="π‘οΈ Insurance Rate (%)",
minimum=0.1,
maximum=10,
step=0.1,
value=1
)
customs_duty = gr.Slider(
label="ποΈ Customs Duty (%)",
minimum=0,
maximum=40,
step=0.5,
value=5
)
# Special Handling
gr.Markdown("### Special Handling")
special_handling = gr.CheckboxGroup(
choices=[
"Temperature Controlled",
"Hazardous Materials",
"Fragile Items",
"Express Delivery",
"Door-to-Door Service"
],
label="Special Requirements"
)
predict_button = gr.Button(
"π Calculate Total Cost",
variant="primary",
elem_classes="action-button"
)
with gr.Row():
freight_result = gr.Number(
label="Base Freight Cost (USD)",
elem_classes="result-box"
)
total_cost = gr.Number(
label="Total Cost Including All Charges (USD)",
elem_classes="result-box"
)
cost_breakdown = gr.JSON(
label="Cost Breakdown",
elem_classes="result-box"
)
# Chat Tab
with gr.Tab("π¬ Chat", elem_classes="tab-content"):
chatbot = gr.Chatbot(
label="Chat History",
elem_classes="chat-container",
height=400
)
with gr.Row():
msg = gr.Textbox(
label="Message",
placeholder="Ask about your supply chain data...",
scale=4
)
chat_button = gr.Button(
"π€ Send",
variant="primary",
scale=1,
elem_classes="action-button"
)
# Report Tab
with gr.Tab("π Report", elem_classes="tab-content"):
report_options = gr.CheckboxGroup(
choices=[
"π Demand Forecasting",
"β οΈ Risk Assessment",
"π¦ Inventory Optimization",
"π€ Supplier Performance",
"πΏ Sustainability Analysis"
],
label="Select sections to include",
value=[]
)
report_button = gr.Button(
"π Generate Report",
variant="primary",
elem_classes="action-button"
)
report_download = gr.File(
label="Download Report"
)
# Event Handlers
upload_button.click(
fn=lambda *args: process_uploaded_data(state, *args),
inputs=[sales_data_upload, supplier_data_upload, text_input_area],
outputs=[upload_status])
analyze_button.click(
fn=lambda choices, sales, supplier, text: run_analyses(state, choices, sales, supplier, text),
inputs=[analysis_options, sales_data_upload, supplier_data_upload, text_input_area],
outputs=[analysis_output, plot_output, processing_status]
)
predict_button.click(
fn=lambda mode, w, val, cost, time, dist, fuel, ins, duty, special: predict_and_store_freight(
state,
{
'shipment_mode': mode,
'weight': w,
'line_item_value': val,
'cost_per_kg': cost,
'transit_time': time,
'distance': dist,
'fuel_surcharge': fuel,
'insurance_rate': ins,
'customs_duty': duty,
'special_handling': special
}
),
inputs=[
shipment_mode, weight, line_item_value, cost_per_kg,
transit_time, distance, fuel_surcharge,
insurance_rate, customs_duty, special_handling
],
outputs=[freight_result, total_cost, cost_breakdown]
)
chat_button.click(
fn=lambda message: chat_with_navigator(state, message),
inputs=[msg],
outputs=[chatbot]
)
report_button.click(
fn=lambda options: generate_pdf_report(state, options),
inputs=[report_options],
outputs=[report_download]
)
# Footer
gr.HTML(
'''<div class="footer">
Made with π§ by Aditya Ratan
</div>'''
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
debug=True
) |